WO2021056279A1 - 一种可调光学滤波器件 - Google Patents

一种可调光学滤波器件 Download PDF

Info

Publication number
WO2021056279A1
WO2021056279A1 PCT/CN2019/107912 CN2019107912W WO2021056279A1 WO 2021056279 A1 WO2021056279 A1 WO 2021056279A1 CN 2019107912 W CN2019107912 W CN 2019107912W WO 2021056279 A1 WO2021056279 A1 WO 2021056279A1
Authority
WO
WIPO (PCT)
Prior art keywords
bragg reflector
substrate
optical filter
filter device
tunable optical
Prior art date
Application number
PCT/CN2019/107912
Other languages
English (en)
French (fr)
Inventor
郭斌
Original Assignee
深圳市海谱纳米光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市海谱纳米光学科技有限公司 filed Critical 深圳市海谱纳米光学科技有限公司
Priority to CN201980102490.7A priority Critical patent/CN114902092A/zh
Priority to PCT/CN2019/107912 priority patent/WO2021056279A1/zh
Publication of WO2021056279A1 publication Critical patent/WO2021056279A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the invention relates to the field of semiconductor devices, and in particular to a tunable optical filter device.
  • Tunable filter device based on Fabry-Perot (Farber cavity) interference.
  • FPI devices in the visible-shortwave infrared range (400nm-2500nm) usually use optical glass (such as synthetic quartz glass) as the substrate. It is processed with semiconductors to form a mirror chip, and then the two mirror chips are assembled with an external piezoelectric actuator (piezo actuator) into a Faber cavity module. In the wavelength band exceeding 2500nm, the glass substrate will absorb most of the incident light, so it cannot be used for mirror processing.
  • the Faber cavity module formed by this assembly method has a relatively large volume and a high driving voltage, and is not suitable for applications in devices with extremely limited space sizes, such as handheld hyperspectral cameras.
  • the Faber cavity devices formed by current micromachining are mainly of bulk and surface technology types.
  • Surface technology devices form movable mirrors from suspended thin films.
  • the bulk process type device is formed by a substrate with a cantilever beam structure to form a movable mirror surface.
  • the bulk process to process the cantilever beam on the substrate will increase the complexity of device design and processing and thus increase the cost.
  • the elastic structure (spring) and the mirror surface in the bulk process device are provided by the same substrate, resulting in the inherent stress and deformation of the mirror surface affected by the elastic structure. Because the cantilever beam structure takes up a lot of chip volume, it also limits the size of the mirror itself.
  • the available film materials are limited to a certain wavelength range (such as 1500nm-2500nm). In the other case, it is difficult to realize commercial applications due to processing difficulties and complex processes.
  • the present invention proposes a tunable optical filter element. , In an attempt to solve the problems of the existing tunable filter device, which is too large, difficult to process, and high driving voltage.
  • the present invention provides a tunable optical filter device.
  • the device includes a first substrate provided with a first Bragg reflector and a second substrate provided with a second Bragg reflector, the first Bragg reflector and the second Bragg reflector.
  • the outer periphery of the surface of the reflector is bonded to each other through a bonding compound to form a cavity between the first Bragg reflector and the second Rager reflector, and a first electrode is arranged between the first Bragg reflector and the bonding compound
  • the second Bragg reflector is provided with a second electrode opposite to the first electrode in the cavity.
  • the capacitance formed by the first electrode and the second electrode arranged in the cavity drives the second substrate to generate relative displacement to adjust the interval between the cavities to realize the adjustable optical filter function.
  • the manufacturing process of the adjustable optical filter device Simple, low cost, and small in size, it can be widely used in small optical devices such as mobile phones or handheld hyperspectral cameras.
  • the middle of the second substrate is removed to form an incident area for light to pass through.
  • the material of the first substrate includes alumina or barium fluoride. Using alumina or barium fluoride as the substrate can ensure the passage of short-wave infrared light.
  • the surface of the first substrate opposite to the first Bragg reflector is provided with an antireflection film.
  • the reflected light can be reduced to increase the light transmittance on the surface.
  • the antireflection film is a glass film
  • the refractive index of the glass film is smaller than the refractive index of the first substrate.
  • the material of the second substrate is silicon.
  • Using silicon as the second substrate can facilitate processing such as etching to obtain a desired shape or pattern.
  • the first Bragg reflector includes a silicon oxide layer and a peripheral silicon layer disposed on both surfaces of the silicon oxide layer.
  • the peripheral silicon layers provided on both surfaces of the silicon oxide layer, light will undergo corresponding reflection and refraction when passing through the silicon oxide and silicon layers, thereby achieving a filtering effect.
  • the second Bragg reflector includes two alternating silicon oxide layers and silicon layers arranged on a silicon substrate.
  • the alternating silicon oxide layers and silicon layers light will have corresponding reflection and refraction when passing through different silicon oxide and silicon layers, thereby achieving a filtering effect.
  • a ring-shaped weight formed of silicon is provided in the middle of the surface of the second substrate opposite to the cavity.
  • the bonding method includes eutectic bonding, polymer or anodic bonding.
  • the two glass film structures can be tightly combined to ensure the stability of the tunable optical filter.
  • the tunable optical filter of the present invention uses materials such as alumina or barium fluoride as a substrate to be processed as a fixed mirror surface, a silicon substrate is processed into a movable mirror surface, and silicon/silicon oxide/silicon forms a dispersed Bragg reflector while being fixed at the same time.
  • the mirror surface and the movable mirror surface are formed by semiconductor processing, and the fixed mirror surface and the movable mirror surface are combined into a Fabry-Perot cavity by bonding, and the electrodes arranged on the upper and lower sides of the cavity form a capacitive drive
  • the movable mirror produces a relative displacement to adjust the gap of the cavity.
  • the tunable optical device can be used for hyperspectral imaging in the infrared band greater than 2500nm, and has the performance of small size, lower driving voltage, simple processing technology, low cost, and can be applied to mobile phones, handheld hyperspectral cameras, etc., where the space size is extremely affected. Limited devices.
  • Fig. 1 is a cross-sectional view of a tunable optical filter device according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a tunable optical filter device according to a specific embodiment of the present invention
  • Fig. 3 is a bottom view of a tunable optical filter device according to a specific embodiment of the present invention.
  • Fig. 1 shows a cross-sectional view of a tunable optical filter device according to an embodiment of the present invention.
  • the tunable optical filter device includes a first substrate 2 and a second substrate 8.
  • a first Bragg reflector 3 is provided on one side of the second substrate 2 and a surface of the second substrate 8
  • a second Bragg reflector 7 is provided, and the peripheries of the surfaces of the first Bragg reflector 3 and the second Bragg reflector 7 are bonded to each other through a bonding compound 5 to form a Fabry-Perot cavity between the two Bragg reflectors ,
  • a first electrode 4 is arranged between the first Bragg reflector 3 and the bonding compound 5, and the second Bragg reflector 7 is provided with a second electrode at a position corresponding to the first electrode 4 in the Fabry-Perot cavity 6.
  • the capacitance drive structure formed between the first electrode 4 and the second electrode 6 can make the second Bragg reflector 7 and the second substrate 8 produce a relative displacement, adjust the gap of the Fabry-Perot cavity and realize the adjustment With the function of optical filtering, the middle of the second substrate 8 is moved out to form an incident area through which light can pass.
  • the device can be used for hyperspectral imaging in the infrared band greater than 2500nm, with low processing cost and simpler processing technology. Compared with piezoelectric actuators, the driving voltage is lower and the volume is smaller. It is suitable for small optical devices such as mobile phones or handheld hyperspectral Camera etc.
  • the material of the first substrate 2 is sapphire (aluminum oxide) or barium fluoride.
  • the spectral coverage of sapphire (alumina) can reach 5 microns, and the spectral coverage of barium fluoride can reach 12 microns.
  • Alumina or barium fluoride as a substrate can ensure the passage of short-wave infrared light. It should be realized that other materials other than alumina or barium fluoride, such as zinc selenide, etc., can also be used to achieve the technical effects of the present invention.
  • FIG. 2 shows a cross-sectional view of a tunable optical filter device according to a specific embodiment of the present invention.
  • an antireflection film 1 is provided on a surface of the first substrate 2
  • the anti-reflection film 1 is deposited or bonded on the first substrate 2 to reduce the reflected light and increase the light transmittance on the surface.
  • the material of the antireflection film 1 can be glass or silicon oxide. According to the experiment of the inventor of the present application, the refractive index of the antireflection film 1 is set to be lower than the refractive index of the first substrate 2, which can make the light transmittance better.
  • the first Bragg reflector 3 is arranged on the side of the first substrate 2 corresponding to the antireflection film 1, and the outer silicon layer 31, the silicon oxide layer 32, and the outer silicon layer 33 are formed on the first substrate.
  • 2 is formed by semiconductor processing
  • the second Bragg reflector 7 is formed by alternating silicon layer 71, silicon oxide layer 72, silicon layer 73 and silicon oxide layer 74 on the second substrate 7 by semiconductor processing.
  • the thickness corresponding to silicon and silicon oxide is 1/4 wavelength.
  • the light can be made between the thin film layers with different refractive indexes.
  • the light reflected back from time to time interferes constructively due to the change of the phase angle, and then combines with each other to obtain strong reflected light, which can reduce the reflection of the light within a certain wavelength range and increase the amount of light passing.
  • the first Bragg reflector 3 and the second Bragg reflector 7 are bonded to each other through the bonding compound 5
  • the first Bragg reflector 3 and the second Bragg reflector 7 are parallel to each other and in the Fabry -A reflection zone is formed in the Perot cavity.
  • the first electrode 4 and the second electrode 6 are metal electrodes, which are processed on the surface of the first Bragg reflector 3 and the second Bragg reflector 7 respectively by a semiconductor processing technology.
  • the first electrode 4 and The second electrode 6 at the opposite position forms a driving capacitor.
  • the arrangement position of the first electrode 4 can provide convenience for the external electrode lead, so as to facilitate the later packaging.
  • FIG. 3 is a tunable optical filter device according to a specific embodiment of the present invention.
  • the second substrate 8 is removed to form a support structure and a ring-shaped weight structure.
  • the etching method partially removes the second substrate 8 to form a ring-shaped weight 9 for enhancing the flatness of the second Bragg reflector 7.
  • the shape of the ring-shaped weight 9 is not limited to a circle, but may also be an ellipse.
  • the etching method is not limited to plasma etching, but also can be chemical reagent etching. Depending on the specific application scenario, select the appropriate etching method to etch the required shape.
  • the bonding method between the first Bragg reflector 3 and the second Bragg reflector 7 may specifically be eutectic bonding, polymer or anodic bonding.
  • Eutectic bonding is the use of metal as a transition layer to achieve the bonding between silicon and silicon. The surface requirements are not high, the bonding temperature is low, and the bonding strength is high; anodic bonding has a low bonding temperature, which is comparable to other processes. It has the advantages of good capacitance, high bonding strength and stability, and can be used for bonding between silicon/silicon substrates, non-silicon materials and silicon materials, and mutual bonding between glass, metals, semiconductors, and ceramics.
  • a suitable bonding method can be selected for the actual bonding surface technology and material to achieve the bonding between the two glass films.
  • the tunable optical filter device of the present invention includes a movable mirror surface and a fixed mirror surface processed by a substrate of a heterogeneous material.
  • the movable mirror surface is formed by silicon/silicon oxide/silicon through semiconductor processing, and the fixed mirror surface is made of sapphire (alumina).
  • the movable mirror surface and the fixed mirror surface form a Fabry-Perot cavity by bonding, and the gap of the Fabry-Perot cavity is adjusted by the electrode arranged on the glass film to drive the displaceable glass film, Furthermore, the tunable filtering function of the tunable optical filter device is realized.
  • the tunable optical filter device can be used for hyperspectral imaging in the infrared band greater than 2500nm, and can be used to drive the displaceable glass film with a lower driving voltage. It has the advantages of small size, and can be applied to devices with extremely limited space size, and can be widely used in small hyperspectral optical devices such as mobile phones and handheld hyperspectral cameras.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种可调光学滤波器件,器件包括设置有第一布拉格反射器(3)的第一衬底(2)和设置有第二布拉格反射器(7)的第二衬底(8),第一布拉格反射器(3)和第二布拉格反射器(7)的表面的外围通过键合物相互键合以在两布拉格反射器之间形成腔体,第一布拉格反射器(3)与键合物之间设置有第一电极(4),第二布拉格反射器(7)在腔体内设置有与第一电极(4)相对的第二电极(6)。该可调光学滤波器件,体积小便于加工和组装,可以推广应用于手机、手持高光谱相机等小型高光谱光学设备上。

Description

一种可调光学滤波器件 技术领域
本发明涉及一种半导体器件领域,并且特别涉及一种可调光学滤波器件。
背景技术
基于Fabry-Perot(法伯腔)干涉的可调滤光器件(tuneabl FPI)在可见光-短波红外范围(400nm-2500nm)的FPI器件通常使用光学玻璃(例如合成石英玻璃)为衬底,通过光学和半导体加工形成镜面芯片,然后将两个镜面芯片同外置压电执行器(piezo actuator)组装成法伯腔模组。在超过2500nm波段,玻璃衬底将会吸收大部分入射光,所以不能用于加工镜面。由这种组装方式形成的法伯腔模组的体积比较大,驱动电压高,不适合应用在空间尺寸极为受限的器件,例如手持式高光谱相机。
另一方面,目前的微机械加工(micromachining)形成的法伯腔器件主要是体工艺型和表面工艺型。表面工艺型器件由悬空的薄膜形成可动的镜面。体工艺型器件由具有悬臂梁结构的衬底形成可动镜面。
体工艺在衬底上加工悬臂梁会增加器件设计和加工的复杂度从而增加成本。体工艺器件中弹性结构(spring)和镜面由同一个衬底提供,导致了镜面受到弹性结构的影响存在本征的应力和形变。由于悬臂梁结构要占用很大的芯片体积,也限制了镜面本身的尺寸。
表面工艺一种情况下由于可以选用的薄膜材料受限于一定波长范围(如1500nm-2500nm)。另一种情况由于加工困难和工艺复杂,很难实现商业化应用。
发明内容
为了解决现有可调滤波器件中体工艺和表面工艺在衬底上的加工工艺的复杂、系统体积过大和压电执行器的驱动电压高的问题,本发明提出了一种可调光学滤波器件,以试图解决现有可调滤光器件的体积过大、加工工艺困难和驱动电压高的问题。
本发明提出了一种可调光学滤波器件,该器件包括设置有第一布拉格反射器的第一 衬底和设置有第二布拉格反射器的第二衬底,第一布拉格反射器和第二布拉格反射器的表面的外围通过键合物相互键合以在第一布拉格反射器和第二拉格反射器之间形成腔体,第一布拉格反射器与键合物之间设置有第一电极,第二布拉格反射器在腔体内设置有与第一电极相对的第二电极。通过设置于腔体内的第一电极和第二电极形成的电容驱动第二衬底产生相对位移来调节腔体之间的间隔从而实现可调的光学滤波功能,该可调光学滤波器件的制造工艺简单、成本较低,且体积小巧,可广泛应用于手机或手持高光谱相机等小型光学设备上。
在一个优选的实施例中,第二衬底的中部被移除形成用于光线通过的入射区域。凭借该结构,光线可以通过入射区域进入腔体,进而实现滤波的效果。
在一个优选的实施例中,第一衬底的材质包括氧化铝或氟化钡。采用氧化铝或氟化钡作为衬底可以保证短波红外光的通过性。
在一个优选的实施例中,第一衬底与第一布拉格反射器相背的表面设置有增透膜。凭借增透膜的设置,可以减少反射光来增加光在表面的透过率。
在进一步优选的实施例中,增透膜为玻璃薄膜,玻璃薄膜的折射率小于第一衬底的折射率。利用玻璃薄膜作为增透膜并通过折射率的有效配置可以进一步提升光的透过率,且成本更低。
在一个优选的实施例中,第二衬底的材质为硅。使用硅作为第二衬底可便于利用蚀刻等工艺对其进行加工获得所需的形状或图案。
在一个优选的实施例中,第一布拉格反射器包括氧化硅层以及设置于氧化硅层两表面的外围硅层。凭借设置于氧化硅层两表面的外围硅层,光在经过氧化硅和硅层会产生相应的反射和折射,进而实现滤波的效果。
在一个优选的实施例中,第二布拉格反射器包括设置于硅衬底上的两层相互交替的氧化硅层和硅层。凭借相互交替的氧化硅层和硅层,光在经过不同的氧化硅和硅层时会产生相应的反射和折射,进而实现滤波的效果。
在一个优选的实施例中,第二衬底与腔体相背的表面中部设置有由硅形成的环形重物。凭借环形重物的设置可以提高第一玻璃薄膜工作时的平整度。
在一个优选的实施例中,键合的方式包括共晶键合、聚合物或阳极键合。凭借键合的方式可将两玻璃薄膜结构紧密结合,保证可调光学滤波器件的稳定性。
本发明的可调光学滤波器件,利用氧化铝或氟化钡等材料作为衬底加工作为固定镜面,硅衬底加工成为可动镜面,硅/氧化硅/硅形成分散式布拉格反射器同时在固定镜面和可动镜面上通过半导体加工过的方式形成,并将固定镜面和可动镜面通过键合的方式组合成法布里-珀罗腔,凭借设置于腔体上下两侧的电极形成电容驱动可动镜面产生相对位移来调节腔体的间隙。该可调光学器件可用于红外波段大于2500nm的高光谱成像,且具有体积小、驱动电压更低的性能,加工工艺简单,成本低,能够应用于手机、手持高光谱相机等在空间尺寸极为受限的器件上。
附图说明
包括附图以提供对实施例的进一步理解并且附图被并入本说明书中并且构成本说明书的一部分。附图图示了实施例并且与描述一起用于解释本发明的原理。将容易认识到其它实施例和实施例的很多预期优点,因为通过引用以下详细描述,它们变得被更好地理解。附图的元件不一定是相互按照比例的。同样的附图标记指代对应的类似部件。
图1是根据本发明的一个实施例的可调光学滤波器件的截面图;
图2是根据本发明的一个具体的实施例的可调光学滤波器件的截面图;
图3是根据本发明的一个具体的实施例的可调光学滤波器件的仰视图。
具体实施方式
在以下详细描述中,参考附图,该附图形成详细描述的一部分,并且通过其中可实践本发明的说明性具体实施例来示出。对此,参考描述的图的取向来使用方向术语,例如“顶”、“底”、“左”、“右”、“上”、“下”等。因为实施例的部件可被定位于若干不同取向中,为了图示的目的使用方向术语并且方向术语绝非限制。应当理解的是,可以利用其他实施例或可以做出逻辑改变,而不背离本发明的范围。因此以下详细描述不应当在限制的意义上被采用,并且本发明的范围由所附权利要求来限定。
图1示出了根据本发明的一个实施例的可调光学滤波器件的截面图。如图1所示,该可调光学滤波器件包括第一衬底2和第二衬底8,第二衬底2的一侧设置有第一布拉格反射器3,第二衬底8的一表面设置有第二布拉格反射器7,第一布拉格反射器3和第二布拉格反射器7的表面的外围通过键合物5互相键合以在两布拉格反射器之间形成法布里-珀罗腔,第一布拉格反射器3与键合物5之间设置有第一电极4,第二布拉格反射 器7在法布里-珀罗腔内与第一电极4相对应的位置设置有第二电极6,通过第一电极4与第二电极6之间形成的电容驱动结构可以使得第二布拉格反射器7和第二衬底8产生相对位移调节法布里-珀罗腔的间隙进而实现可调光学滤波的功能,第二衬底8的中部被移出形成可使光线通过的入射区域。该器件可用于红外波段大于2500nm的高光谱成像,加工成本低且加工工艺更为简单,相比压电执行器驱动电压更低,且体积更小,适用于小型光学器件如手机或手持高光谱相机等。
在优选的实施例中,第一衬底2的材质为蓝宝石(氧化铝)或氟化钡,蓝宝石(氧化铝)的光谱覆盖可以达到5微米,氟化钡的光谱覆盖可以达到12微米,利用氧化铝或氟化钡作为衬底可以保证短波红外光的通过性。应当认识到,还可以使用除了氧化铝或氟化钡之外的其他材质,例如硒化锌等,同样可以实现本发明的技术效果。
继续参考图2,图2示出了根据本发明的一个具体实施例的可调光学滤波器件的截面图,在该优选的实施例中,第一衬底2的一表面设置有增透膜1,增透膜1通过沉积或键合的方式设置于第一衬底2上,用于减少反射光来增加光在表面的透过率。增透膜1的材质可以为玻璃或氧化硅,经本申请发明人的试验,设置增透膜1的折射率小于第一衬底2的折射率,可使得光的透过率更好。
在优选的实施例中,第一布拉格反射器3设置于第一衬底2与增透膜1对应的一侧,由外围硅层31、氧化硅层32和外围硅层33在第一衬底2上通过半导体加工的方式形成,第二布拉格反射器7由互相交替的硅层71、氧化硅层72、硅层73和氧化硅层74在第二衬底7上通过半导体加工的方式形成,其中硅与氧化硅对应的厚度为1/4的波长。凭借设置于硅层和氧化硅层交替结构形成的布拉格反射器结构,光在经过氧化硅和硅层会产生相应的反射和折射,通过合理的配置,可使得光在不同折射率的薄膜层之间反射回来的光因相位角的改变而进行建设性干涉,然后互相结合在一起,得到强烈反射光,可以使得光线在一定波长的范围内减少反射,增加通光量。
在优选的实施例中,第一布拉格反射器3和第二布拉格反射器7通过键合物5互相键合后,第一布拉格反射器3与第二布拉格反射器7互相平行且在法布里-珀罗腔内形成反射区,第一电极4和第二电极6为金属电极,利用半导体加工工艺分别于第一布拉格反射器3和第二布拉格反射器7表面加工获得,第一电极4与相对的位置的第二电极6构成驱动电容。第一电极4的设置位置可为外接电极引线提供便利,以利于后期的封装。
继续参考图3,图3为根据本发明的一个具体实施例的可调光学滤波器件的,结合图2和图3,第二衬底8被去除形成支撑结构和环形重物结构,利用等离子刻蚀的方法将第二衬底8部分去除,形成用于加强第二布拉格反射器7的平整度的环形重物9,应当认识到,环形重物9的形状不限于圆形,也可以是椭圆、矩形等其他规则或不规则形状,刻蚀方式也不限于等离子刻蚀,也可以是化学试剂刻蚀,视具体的使用场景选择合适的刻蚀方式刻蚀所需的形状。
在具体的实施例中,第一布拉格反射器3和第二布拉格反射器7之间的键合方式具体可以为共晶键合、聚合物或阳极键合的方式。共晶键合是采用金属作为过渡层从而实现硅-硅之间的键合,对表面要求不高,键合温度低、键合强度高;阳极键合具有键合温度低,与其他工艺相容性好,键合强度及稳定性高等优点,可用于硅/硅基片之间的键合、非硅材料与硅材料、以及玻璃、金属、半导体、陶瓷之间的互相键合。可针对实际的键合的表面工艺以及材料选择合适的键合方式实现两玻璃薄膜之间的键合。
本发明的可调光学滤波器件包括异质材料衬底加工而成的可动镜面和固定镜面,可动镜面由硅/氧化硅/硅通过半导体加工形成,固定镜面的材质为蓝宝石(氧化铝)或氟化钡,可动镜面和固定镜面通过键合的方式形成法布里-珀罗腔,通过设置于玻璃薄膜上的电极驱动可位移的玻璃薄膜调节法布里-珀罗腔的间隙,进而实现可调光学滤波器件的可调滤波功能,该可调光学滤波器件可用于红外波段大于2500nm的高光谱成像,并可用利用较低的驱动电压实现对可位移的玻璃薄膜的驱动,具有体积小的优点,可适用于空间尺寸极为受限的器件,可以广泛推广应用于手机、手持高光谱相机等小型高光谱光学设备。
显然,本领域技术人员在不偏离本发明的精神和范围的情况下可以作出对本发明的实施例的各种修改和改变。以该方式,如果这些修改和改变处于本发明的权利要求及其等同形式的范围内,则本发明还旨在涵盖这些修改和改变。词语“包括”不排除未在权利要求中列出的其它元件或步骤的存在。某些措施记载在相互不同的从属权利要求中的简单事实不表明这些措施的组合不能被用于获利。权利要求中的任何附图标记不应当被认为限制范围。

Claims (10)

  1. 一种可调光学滤波器件,其特征在于,所述器件包括设置有第一布拉格反射器的第一衬底和设置有第二布拉格反射器的第二衬底,所述第一布拉格反射器和所述第二布拉格反射器的表面的外围通过键合物相互键合以在所述第一布拉格反射器和所述第二布拉格反射器之间形成腔体,所述第一布拉格反射器与所述键合物之间设置有第一电极,所述第二布拉格反射器在所述腔体内设置有与所述第一电极相对的第二电极。
  2. 根据权利要求1所述的可调光学滤波器件,其特征在于,所述第二衬底的中部被移除形成用于光线通过的入射区域。
  3. 根据权利要求1或2所述的可调光学滤波器件,其特征在于,所述第一衬底的材质包括氧化铝或氟化钡。
  4. 根据权利要求1或2所述的可调光学滤波器件,其特征在于,所述第一衬底与所述第一布拉格反射器相背的表面设置有增透膜。
  5. 根据权利要求4所述的可调光学滤波器件,其特征在于,所述增透膜为玻璃薄膜,所述玻璃薄膜的折射率小于所述第一衬底的折射率。
  6. 根据权利要求1或2所述的可调光学滤波器件,其特征在于,所述第二衬底的材质为硅。
  7. 根据权利要求1所述的可调光学滤波器件,其特征在于,所述第一布拉格反射器包括氧化硅层以及设置于所述氧化硅层两表面的外围硅层。
  8. 根据权利要求1所述的可调光学滤波器件,其特征在于,所述第二布拉格反射器包括设置于硅衬底上的两层相互交替的氧化硅层和硅层。
  9. 根据权利要求2所述的可调光学滤波器件,其特征在于,所述第二衬底与所述腔体相背的表面中部设置有由硅形成的环形重物。
  10. 根据权利要求1所述的可调光学滤波器件,其特征在于,所述键合的方式包括共晶键合、聚合物或阳极键合。
PCT/CN2019/107912 2019-09-25 2019-09-25 一种可调光学滤波器件 WO2021056279A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980102490.7A CN114902092A (zh) 2019-09-25 2019-09-25 一种可调光学滤波器件
PCT/CN2019/107912 WO2021056279A1 (zh) 2019-09-25 2019-09-25 一种可调光学滤波器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107912 WO2021056279A1 (zh) 2019-09-25 2019-09-25 一种可调光学滤波器件

Publications (1)

Publication Number Publication Date
WO2021056279A1 true WO2021056279A1 (zh) 2021-04-01

Family

ID=75165489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107912 WO2021056279A1 (zh) 2019-09-25 2019-09-25 一种可调光学滤波器件

Country Status (2)

Country Link
CN (1) CN114902092A (zh)
WO (1) WO2021056279A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384953B1 (en) * 2000-06-29 2002-05-07 The United States Of America As Represented By The Secretary Of The Navy Micro-dynamic optical device
CN103293660A (zh) * 2013-05-31 2013-09-11 华中科技大学 一种微型f-p腔可调谐滤波器及其制备方法
CN103576311A (zh) * 2012-07-18 2014-02-12 精工爱普生株式会社 波长可变干涉滤波器、滤光器设备、光模块及电子设备
CN104007546A (zh) * 2013-02-22 2014-08-27 精工爱普生株式会社 波长可变干涉滤波器、滤光器设备、光模块及电子设备
CN104062700A (zh) * 2013-03-18 2014-09-24 精工爱普生株式会社 干涉滤波器、光学滤波器装置、光学模块及电子设备
CN106133563A (zh) * 2013-11-26 2016-11-16 英菲尼斯有限责任公司 波长可调谐的mems‑法布里‑珀罗滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384953B1 (en) * 2000-06-29 2002-05-07 The United States Of America As Represented By The Secretary Of The Navy Micro-dynamic optical device
CN103576311A (zh) * 2012-07-18 2014-02-12 精工爱普生株式会社 波长可变干涉滤波器、滤光器设备、光模块及电子设备
CN104007546A (zh) * 2013-02-22 2014-08-27 精工爱普生株式会社 波长可变干涉滤波器、滤光器设备、光模块及电子设备
CN104062700A (zh) * 2013-03-18 2014-09-24 精工爱普生株式会社 干涉滤波器、光学滤波器装置、光学模块及电子设备
CN103293660A (zh) * 2013-05-31 2013-09-11 华中科技大学 一种微型f-p腔可调谐滤波器及其制备方法
CN106133563A (zh) * 2013-11-26 2016-11-16 英菲尼斯有限责任公司 波长可调谐的mems‑法布里‑珀罗滤波器

Also Published As

Publication number Publication date
CN114902092A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
US9459387B2 (en) Optical filter and optical module provided with same
US9195047B2 (en) Optical filter and optical module having optical filter
TWI531821B (zh) 干涉濾光器、光模組及分析裝置
US11391629B2 (en) Interferometer and method for producing an interferometer
WO2021056279A1 (zh) 一种可调光学滤波器件
WO2021056273A1 (zh) 一种可调光学滤波器件
CN110809711A (zh) 微机电(mems)法布里-珀罗干涉仪、其制造装置和方法
WO2021056251A1 (zh) 一种可调光学滤波装置
WO2021142791A1 (zh) 可调红外光学滤波器件
WO2021237567A1 (zh) 一种可调光学滤波器件和光谱成像系统
CN109477921B (zh) 光学滤波器及光学元件用封装件
US20180102390A1 (en) Integrated imaging sensor with tunable fabry-perot interferometer
WO2021056257A1 (zh) 一种可调光学滤波器件
US20210255376A1 (en) Optical device and a method for bonding
WO2018061679A1 (ja) 光変調素子および光検出素子
WO2022040864A1 (zh) 一种具有可动镜面的可调法珀腔器件及其制造方法
JP2020500337A (ja) 調整可能なmemsエタロン・デバイス
US20190219816A1 (en) Micromechanical mirror structure with improved mechanical and reflectivity features and corresponding manufacturing process
US9306091B2 (en) Light receiving device
CN118091811A (zh) 滤光单元和滤光单元的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946255

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19946255

Country of ref document: EP

Kind code of ref document: A1