WO2021056272A1 - 连续化气液反应装置及含有其的连续化气液反应系统 - Google Patents

连续化气液反应装置及含有其的连续化气液反应系统 Download PDF

Info

Publication number
WO2021056272A1
WO2021056272A1 PCT/CN2019/107889 CN2019107889W WO2021056272A1 WO 2021056272 A1 WO2021056272 A1 WO 2021056272A1 CN 2019107889 W CN2019107889 W CN 2019107889W WO 2021056272 A1 WO2021056272 A1 WO 2021056272A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
continuous gas
main reactor
liquid reaction
liquid
Prior art date
Application number
PCT/CN2019/107889
Other languages
English (en)
French (fr)
Inventor
洪浩
洪亮
陶建
郭金海
戴睿智
张岩
Original Assignee
凯莱英生命科学技术(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凯莱英生命科学技术(天津)有限公司 filed Critical 凯莱英生命科学技术(天津)有限公司
Priority to PCT/CN2019/107889 priority Critical patent/WO2021056272A1/zh
Publication of WO2021056272A1 publication Critical patent/WO2021056272A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents

Definitions

  • the invention relates to the field of chemical reaction device manufacturing, in particular to a continuous gas-liquid reaction device and a continuous gas-liquid reaction system containing the same.
  • the gas-liquid-solid three-phase reaction is widely used in the field of medicine and chemical industry. According to the nature of the bed, it can be divided into two categories: fixed-bed gas-liquid-solid three-phase reactor and suspended bed gas-liquid-solid three-phase reactor.
  • the representative of the fixed bed reactor is the trickle bed.
  • the advantage of the trickle bed is that the solid-to-liquid ratio (or liquid retention) is very small under the action of the horizontal plug flow, which can reduce the influence of the homogeneous reaction, and it will not form the flow pattern of the gas-liquid two-phase co-current flow.
  • the disadvantage is that the fixed-bed reactor has relatively high requirements for the particle size of solid particles.
  • the solids in the reaction system are suspended in the gas-liquid mixture.
  • the suspended bed gas-liquid-solid three-phase reactor can be divided into a mechanical agitated suspension type, a bubbling slurry reactor with gas bubbling agitation, and the gas-liquid without agitation flows upwards without solids.
  • the reaction time is too long, and the use of a suspended bed gas-liquid-solid three-phase reactor for scale-up production is likely to cause the entire reactor to have a huge volume, and it is necessary to ensure that the reaction temperature is low.
  • the main purpose of the present invention is to provide a continuous gas-liquid reaction device and a continuous gas-liquid reaction system containing the same, so as to solve the discontinuous reaction and poor heat transfer effect caused by the precipitation of solids in the existing gas-liquid reaction device. The problem.
  • a continuous gas-liquid reaction device includes a main reactor, a stirring device, and an oscillation source.
  • the stirring device is arranged inside the main reactor and extends along the length of the main reactor; the oscillation source is used to control the oscillation frequency of the main reactor.
  • the main reactor includes: a reaction section, a temperature recovery and dissolution section, and a temperature control unit.
  • the reaction section is provided with a first feed inlet and a reaction product system outlet;
  • the temperature recovery and dissolution section is provided with a reaction product system inlet and a product outlet, and the reaction section is equipped with a reaction product system inlet and a product outlet.
  • the product system inlet and the reaction product system outlet are connected through the reaction product system delivery pipeline; the temperature control unit is used to control the temperature of the main reactor.
  • the main reactor further includes an intermediate buffer section, the intermediate buffer section includes a buffer solvent inlet, and the intermediate buffer section is arranged on the reaction product system delivery pipeline.
  • reaction section is also provided with a second feed port, and the level of the second feed port is lower than the level of the first feed port.
  • the temperature control unit includes: a first temperature control device, a second temperature control device, and a third temperature control device, the first temperature control device is used to control the temperature of the reaction section; the second temperature control device is used to control the intermediate buffer section The temperature; and the third temperature control device is used to control the temperature of the re-temperature dissolution section.
  • the main reactor also includes a product pool, and the inlet end of the product pool is connected to the product outlet.
  • the continuous gas-liquid reaction system includes the above-mentioned continuous gas-liquid reaction device and a pre-mixing device.
  • the continuous gas-liquid reaction device includes a main reactor, and the main reactor is provided with a first feed port; the pre-mixing device is used to mix at least part of the reaction raw materials and then transport them to the continuous gas-liquid reaction device, and the pre-mixing device is provided There are gas-phase raw material inlet, solvent inlet and pre-reaction product outlet, and the pre-reaction product outlet and the first feed inlet are connected through a pre-reaction product delivery pipeline.
  • the main reactor is provided with a product outlet
  • the continuous gas-liquid reaction system further includes a product collection device, the product collection device is provided with a product collection port, and the product collection port is connected with the product outlet via an overflow pipeline.
  • the main reactor is also provided with a vent
  • the continuous gas-liquid reaction system also includes an overflow pressure balance device
  • the overflow pressure balance device is provided with a first communication port and a second communication port
  • the first communication port and the overflow The flow pipeline is in communication
  • the second communication port is in communication with the vent port through an overflow pressure-regulating pipeline.
  • reaction section of the main reactor is also provided with a second feed port, and the level of the second feed port is lower than the level of the first feed port, and the first feed port is used to pass in the liquid phase raw material
  • the pre-mixing device is provided with a solvent inlet, a gas phase raw material inlet and a mixed liquid outlet, and the mixed liquid outlet is connected to the second feed inlet.
  • the above-mentioned continuous gas-liquid reaction device is provided with a stirring device and an oscillation source at the same time.
  • a stirring device Under the simultaneous action of the two, axial and radial complex vortices will be formed in the main reactor.
  • the oscillation progresses, the vortex appears and disappears continuously. This can make the flow pattern in the main reactor more complicated, strengthen the liquid-liquid mass transfer, and then make the reaction more complete, and at the same time improve the heat transfer effect of the main reactor.
  • the existence of the oscillation source makes the system vigorously repeatedly flushed between the wall and the stirring device, which can effectively suppress the risk of adhesion and blockage during the reaction.
  • the aforementioned continuous gas-liquid reaction device can not only realize continuous synthesis, but also improve the mass transfer and heat transfer effects of the reaction raw materials, and at the same time can effectively suppress the risk of sticking and clogging.
  • Fig. 1 shows a schematic structural diagram of a continuous gas-liquid reaction device according to a typical embodiment of the present invention.
  • Figure 2 shows a schematic structural diagram of a continuous gas-liquid reaction system provided by a preferred embodiment of the present invention.
  • Pre-mixing device 210.
  • the second weight control device 220.
  • the third weight control device 230.
  • the second delivery pump 230.
  • the existing gas-liquid reaction device has the problem of discontinuous reaction and poor heat transfer effect due to the precipitation of solids during the reaction.
  • the present application provides a continuous gas-liquid reaction device.
  • the continuous gas-liquid reaction device includes a main reactor, a stirring device, and an oscillation source 170.
  • the stirring device is arranged inside the main reactor and extends along the length of the main reactor.
  • the oscillation source 170 is used to control the oscillation frequency of the main reactor.
  • the above-mentioned continuous gas-liquid reaction device is equipped with a stirring device and an oscillation source 170 at the same time.
  • a stirring device Under the simultaneous action of the two, complex vortices in the axial and radial directions will be formed in the main reactor.
  • the vortices will continue as the oscillation progresses. Appear and disappear. This can make the flow pattern in the main reactor more complicated, strengthen the liquid-liquid mass transfer, and then make the reaction more complete, and at the same time improve the heat transfer effect of the main reactor.
  • the existence of the oscillating source 170 makes the system vigorously repeatedly flushed between the vessel wall and the stirring device, which can effectively suppress the risk of adhesion clogging during the reaction.
  • the aforementioned continuous gas-liquid reaction device can not only realize continuous synthesis, but also improve the mass transfer and heat transfer effects of the reaction raw materials, and at the same time can effectively suppress the risk of sticking and clogging.
  • the above-mentioned main reactor includes: a reaction section 110, a temperature recovery and dissolution section 130, and a temperature control unit.
  • the reaction section 110 is provided with a first feed inlet 111 and a reaction product system outlet 112;
  • the warming and dissolving section 130 is provided with a reaction product system inlet 131 and a product outlet 132, and the reaction product system inlet 131 and the reaction product system outlet 112 are reacted
  • the product system delivery pipeline is connected; the temperature control unit is used to control the temperature of the main reactor.
  • the reaction raw materials are reacted in the reaction section 110 to obtain the desired reaction product, and then the reaction product is transferred to the temperature recovery and dissolution section 130 through the reaction product system delivery pipeline.
  • the violent turbulence of the gas-liquid two-phase in the warming and dissolving section 130 can greatly reduce the particle size of the produced solid product, and is beneficial to increase the suspension time of the solid product in the warming and dissolving section 130. This can aggravate the dissolution of solids and the precipitation of dissolved gases in the warming and dissolving section 130, realize the effects of dissolving solid products and removing gas phase raw materials absorbed in the system, and making subsequent feeding more convenient.
  • the reaction section 110 is further provided with a second feed port 114, and the first feed port 111 is provided at the top of the reaction section 110, and the level of the second feed port 114 is lower than that of the second feed port 114.
  • the level of the first feed inlet 111 is described.
  • a plurality of feed ports are provided to enable the above continuous gas-liquid reaction device to have different feed methods. For example, the reaction material that does not contain a gas phase enters the reaction section 110 from the first feed port 111, while the solvent in which the gas phase raw material is dissolved enters the reaction section 110 from the second feed port 114.
  • the reaction product system discharged through the reaction section 110 is usually doped with some unreacted gas-phase raw materials.
  • the above-mentioned main reactor further includes an intermediate buffer section 120,
  • the intermediate buffer section 120 includes a buffer solvent inlet 121, and the intermediate buffer section 120 is arranged on the reaction product system delivery pipeline.
  • the intermediate buffer section 120 is provided to re-dissolve the separated gas-phase raw materials for use , Improve the utilization rate of raw materials; in addition, the re-temperature dissolution section also provides a place for the precipitation of solid products.
  • the intermediate buffer section 120 is arranged on the delivery pipeline of the reaction product system, and a buffer solvent is added to the intermediate buffer section 120 through the buffer solvent inlet 121, which is beneficial for the unreacted gas phase raw materials in the reaction product system to be absorbed by the buffer solvent again, and It reproduces and returns to the reaction section 110 to participate in the reaction, thereby reducing the waste of gas phase raw materials.
  • the above-mentioned continuous gas-liquid reaction device further includes: a first temperature measurement device, a second temperature measurement device, and a third temperature measurement device.
  • the first temperature measurement device is used to detect the temperature of the reaction section 110
  • the second temperature measurement device is used to detect the temperature of the intermediate buffer section 120
  • the third temperature measurement device is used to detect the temperature of the warming and dissolving section 130.
  • the continuous gas-liquid reaction device is provided with a first temperature measurement port 115, a second temperature measurement port 122, and a third temperature measurement port 133, which are sequentially connected with the first temperature measurement device and the second temperature measurement device. Corresponds to the third temperature measuring device.
  • the temperature control unit includes: a first temperature control device, a second temperature control device, and a third temperature control device; the first temperature control device is used to control the temperature of the reaction section 110, and the second temperature control device The device is used to control the temperature of the intermediate buffer section 120, and the third temperature control device is used to control the temperature of the reheating and dissolving section 130.
  • the first temperature control device includes a first temperature control jacket 151 and a first temperature control device 152, wherein the first temperature control jacket 151 is provided with a first temperature control jacket 151 and a first temperature control device 152.
  • a temperature control medium inlet and a first temperature control medium outlet, the first temperature control device 152 is connected to the first temperature control medium inlet, and is used to provide the temperature control medium to the first temperature control jacket 151;
  • the second temperature control device It includes a second temperature control jacket 153 and a second temperature control device 154.
  • the second temperature control jacket 153 is provided with a second temperature control medium inlet and a second temperature control medium outlet.
  • the second temperature control device 154 is connected to the second temperature control device 154.
  • the temperature medium inlet is connected to provide temperature control medium to the second temperature control jacket 153;
  • the third temperature control device includes a third temperature control jacket 155 and a third temperature control device 156, wherein the third temperature control jacket 155 is provided with a third temperature control medium inlet and a third temperature control medium outlet, and the third temperature control device 156 is connected to the third temperature control medium inlet and is used to provide the temperature control medium in the third temperature control jacket 155.
  • the above-mentioned stirring device can be of a type commonly used in this field.
  • the above-mentioned stirring device includes a motor 161, a stirring shaft 162, and a stirring paddle 163 connected in sequence.
  • the stirring shaft 162 extends along the length of the continuous gas-liquid reaction device.
  • the motor 161 is used to drive the stirring shaft.
  • 162 drives the stirring paddle 163 to stir the materials.
  • the above-mentioned stirring device can be made of materials commonly used in the art, including but not limited to enamel, stainless steel, tetrafluoroethylene, and the like.
  • the stirring shape of the stirring device includes, but is not limited to, a pusher type, a disc shape, a plate and frame type, and the like.
  • the above-mentioned main reactor further includes a product tank 140, and the inlet end of the product tank 140 is in communication with the product outlet 132.
  • the setting of the product pool 140 can prepare an overflow place for the product system passing through the re-temperature dissolution section 130.
  • the material of the above-mentioned main reactor includes, but is not limited to, glass or stainless steel, etc.
  • enamel or spraying tetrafluoride can be used.
  • main reactor segmented connection (such as flange connection, quick-open connection or threaded connection) provided in this application can also be integrally fabricated.
  • the continuous gas-liquid reaction system includes: the above-mentioned continuous gas-liquid reaction device 100 and a pre-mixing device 200.
  • the continuous gas-liquid reaction device 100 includes a main reactor, and the main reactor is provided with a first feed port 111, and the pre-mixing device 200 is used to mix at least part of the reaction raw materials and transport them to the continuous gas-liquid reaction device 100, and
  • the pre-mixing device 200 is provided with a gas-phase raw material inlet, a solvent inlet, and a pre-reaction product outlet.
  • the pre-reaction product outlet and the first feed inlet 111 are connected through a pre-reaction product delivery pipeline.
  • the above-mentioned continuous gas-liquid reaction device 100 can not only realize continuous synthesis, but also can improve the mass transfer and heat transfer effects of the reaction raw materials, and at the same time can effectively suppress the risk of sticking and clogging.
  • the arrangement of the pre-mixing device 200 can increase the absorption rate of the solvent to the gas-phase raw materials, and at the same time increase the contact area of the gas-phase raw materials and the liquid-phase raw materials, and increase the conversion rate of the reaction raw materials. Therefore, the above-mentioned continuous gas-liquid reaction system has the advantages of mass transfer, high heat transfer efficiency, resistance to clogging, and high reaction conversion rate.
  • the above-mentioned main reactor is further provided with a product outlet 132
  • the continuous gas-liquid reaction system further includes a product collection device 300
  • the product collection device 300 is provided with a product collection port.
  • the collection port is communicated with the product outlet 132 via an overflow pipeline.
  • the main reactor is further provided with a vent 113
  • the continuous gas-liquid reaction system further includes an overflow pressure balance device 400
  • the overflow pressure balance device 400 is provided with The first communication port and the second communication port, and the first communication port is in communication with the overflow pipeline, and the second communication port is in communication with the vent port 113 through the overflow and pressure balance pipeline.
  • the overflow pressure equalization device 400 communicates with the main reactor through the overflow pressure equalization pipeline, and is connected to the product collection device via the overflow pipeline. Therefore, the arrangement of the overflow pressure equalization device 400 can balance the overflow pipeline and the main reactor. Pressure to ensure that overflow occurs.
  • the pre-mixing device 200 can be a mixing device commonly used in the art.
  • the main reactor is further provided with a second feed port 114, and the level of the second feed port 114 is lower than that of the second feed port 114.
  • the level of a feed port 111, the first feed port 111 is used to feed liquid-phase raw materials; the pre-mixing device 200 is provided with a solvent inlet, a gas-phase raw material inlet and a mixed liquid outlet, a mixed liquid outlet and a second feed port 114 Connected.
  • the entire section is continuously fed with temperature control, and the solvent dissolved in the gas phase is continuously fed from the second feed port 114 at the lower part of the reaction section 110.
  • the other reactant is fed from the first feed port 111 at the top of the reaction section 110, and the two are in countercurrent contact, and under the agitation and stirring of the incompletely absorbed air bubbles in the pre-mixing device 200, the transmission of the reaction is increased. Quality effect.
  • the temperature-sensitive solid precipitates dissolve back into the system, and the unreacted gas will re-precipitate and float to the reaction section 110 to participate in the reaction again as the temperature rises.
  • the system is overflowed and received by the overflow pressure balance device 400.
  • the above-mentioned overflow pipeline is a U-shaped overflow pipeline to ensure the pressure balance in the entire reactor, thereby ensuring the reaction time, and preventing the unbalanced overflow of the system due to pressure imbalance.
  • the aforementioned continuous gas-liquid reaction system further includes a fourth temperature control device for controlling the temperature of the material in the overflow pipeline.
  • a typical implementation of the present application also provides a continuous gas-liquid reaction process, which is carried out by using the device shown in FIG. 1 and FIG. 2, and the specific process is as follows:
  • the liquid-phase raw materials are delivered by the first delivery pump 190 and delivered to the reaction section 110 via the first feed port 111, and the addition amount thereof is controlled by the first weight control device 180.
  • the gas phase raw materials are transported by the second transfer pump 230, and are transported together with the gas phase raw materials to the pre-mixing device 200 for mixing, and then the mixture is transported to the reaction section 110 through the second feed port 114, and in the process passes through the second
  • the weight control device 210 and the third weight control device 220 control the ratio of the gas phase material and the solvent.
  • the gas generated during the reaction and excess gas-phase raw materials are discharged from the vent 113.
  • reaction raw materials After the reaction raw materials enter the reaction section 110, they are stirred under the action of the stirring blade 163 and the stirring shaft 162 under the action of the motor, and the oscillation source 170 is turned on at the same time.
  • the refrigerant in the first temperature control device 152 (refrigerator) is delivered to the first temperature control jacket 151 to control the temperature of the reaction section 110.
  • a first temperature measuring device is inserted into the first temperature measuring port 115 to monitor the reaction temperature.
  • the reaction product system obtained after the reaction is completed is transported to the intermediate buffer section 120 through the reaction product system outlet 112.
  • the buffer solvent is added to the intermediate buffer section 120 through the buffer solvent inlet 121.
  • the unreacted gas in the reaction product system will be absorbed and dissolved after being in contact with the buffer solvent.
  • the refrigerant in the second temperature control device 154 (refrigerator) is delivered to the second temperature control jacket 153 to control the temperature of the intermediate buffer section 120.
  • a second temperature measuring device is inserted into the second temperature measuring port 122 to monitor the temperature in the intermediate buffer section 120.
  • the reaction product system is transported to the warming and dissolving section 130 through the product outlet 132.
  • the temperature control medium in the third temperature control device 156 (water bath device) is transported to the third temperature control jacket 155 to control the temperature of the re-temperature dissolution section 130.
  • a third temperature measurement device is inserted into the third temperature measurement port 133 to monitor the temperature in the re-temperature dissolution section 130. Since the temperature of the reheating and dissolving section 130 is higher than the temperature of the intermediate buffer section 120 and the reaction section 110, the solids in the reaction product system can be re-solvent, and the remaining gas phase raw materials can be removed at the same time.
  • the product overflowing from the warming and dissolving section 130 enters the overflow pressure balance device 400 through the product pool 140 and the subsequent overflow pipeline, and finally enters the product collection device 300.
  • a fourth weight control device 410 is provided on the overflow pipeline.
  • the overflow pressure balance device 400 is also connected to the vent 113 via an overflow pressure balance pipeline, which can adjust the pressure in the main reactor and the product collection device 300 during the reaction process.
  • the above-mentioned continuous gas-liquid reaction device has the advantage of high integration. Specifically, it integrates gas dissolution, gas-liquid reaction, solid phase dissolution, gas-phase raw material reuse, and system degassing. This can ensure that the reaction completes all the above processes in the reactor at one time. It saves the number of unit operations, reduces labor intensity and equipment investment, and is safer, more practical, and more efficient than batch devices.
  • the continuous process of this type of reaction with solid product precipitation has been successfully realized by segmented temperature control. Compared with batch reaction operation, segmented temperature control and continuous reaction, the reaction speed is fast, the conversion rate of raw materials and the product yield are high , The product has high purity, safer and more practical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种连续化气液反应装置(100)及含有其的连续化气液反应系统,连续化气液反应装置(100)包括:主反应器、搅拌装置和振荡源(170),搅拌装置设置于主反应器的内部,且沿主反应器的长度方向延伸;振荡源(170)用于控制主反应器的振荡频率。上述连续化气液反应装置(100)中同时设置有搅拌装置和振荡源(170),在二者的同时作用下,主反应器中会形成轴向和径向的复杂漩涡,同时随着振荡的进行,漩涡不断出现消失。这能够使主反应器中的流型更加复杂,强化液液传质,进而使反应更加充分,同时提高主反应器的传热效果,振荡源(170)的存在使得体系在器壁和搅拌装置之间剧烈地反复冲刷能够有效抑制反应过程中出现粘接堵塞的风险。

Description

连续化气液反应装置及含有其的连续化气液反应系统 技术领域
本发明涉及化工反应装置制造领域,具体而言,涉及一种连续化气液反应装置及含有其的连续化气液反应系统。
背景技术
气-液-固三相反应在医药化工领域中应用广泛,按床层性质可以分为两类:固定床气液固三相反应器和悬浮床气液固三相反应器。固定床反应器的代表为滴流床。滴流床的优点在于气体在平推流作用下,固液比(或液体滞留量)很小,可使均相反应的影响降低,并且对于气液两相并流向下的流型不会形成有液泛。但缺点在于固定床反应器对固体颗粒的粒度要求比较高。如果固体颗粒太小,催化剂和反应体系不能均匀接触从而容易造成反应器内局部温度升高,导致飞温现象,从而对整个反应效果造成影响。特别地,固定床反应器对反应中有固体生成的气液固三相反应极不适用。
在悬浮床气液固三相反应器中,反应体系中的固体在气液混合物中呈悬浮状态。按有无机械搅拌的类型,悬浮床气液固三相反应器可以分为机械搅拌悬浮式,以气体鼓泡搅拌的鼓泡淤浆反应器,不带搅拌的气液并流向上而固体不带出床外的三相流化床反应器,以及具有导流筒的三相环流反应器等。但在一些低温连续反应过程中,反应时间过长,利用悬浮床气液固三相反应器进行放大生产后容易造成整个反应器体积巨大,同时需要保证反应温度较低。但由于反应温度较低,生成的产品的溶解性也不高导致反应物极易在反应过程中被析出,导致反应器中有大量固体生产,而以上列举的反应器中固体床层大都作为催化剂存在,并且多为批次操作。
由此可以看出,现在的气液固三相反应器通常为批次反应,大部分不能满足连续化生产的需求,且以被堵塞。且对于反应时间较长的反应,为了保证平推流效果,需要巨大的反应体积才能达到希望的反应效果。同时上述反应器的传质传热效果较差,大大提升了放大效应对反应造成的风险,以及需要花费较大的设备投资成本。
在此基础上,有必要提供一种连续化、传热效果好及低成本的连续化气液反应装置。
发明内容
本发明的主要目的在于提供一种连续化气液反应装置及含有其的连续化气液反应系统,以解决现有的气液反应装置存在因反应中析出固体导致反应不连续且传热效果差的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种连续化气液反应装置,连续化气液反应装置包括:主反应器、搅拌装置和振荡源。搅拌装置设置于主反应器的内部,且沿主反应器的长度方向延伸;振荡源用于控制主反应器的振荡频率。
进一步地,主反应器包括:反应段、回温溶解段和控温单元,反应段设置有第一进料口和反应产物体系出口;回温溶解段设置有反应产物体系入口和产品出口,反应产物体系入口与反应产物体系出口经反应产物体系输送管路相连通;控温单元用于控制主反应器的温度。
进一步地,主反应器还包括中间缓冲段,中间缓冲段包括缓冲溶剂入口,中间缓冲段设置在反应产物体系输送管路上。
进一步地,反应段还设置有第二进料口,且第二进料口的水平高度低于第一进料口的水平高度。
进一步地,控温单元包括:第一控温装置、第二控温装置和第三控温装置,第一控温装置用于控制反应段的温度;第二控温装置用于控制中间缓冲段的温度;及第三控温装置用于控制回温溶解段的温度。
进一步地,主反应器还包括产品池,产品池的入口端与产品出口相连通。
本申请的另一方面还提供了一种连续化气液反应系统,连续化气液反应系统包括:上述连续化气液反应装置和预混合装置。连续化气液反应装置包括主反应器,且主反应器设置有第一进料口;预混合装置用于将至少部分反应原料混合后输送至连续化气液反应装置中,且预混合装置设置有气相原料入口、溶剂入口和预反应产物出口,预反应产物出口与第一进料口通过预反应产物输送管路连通。
进一步地,主反应器设置有产品出口,连续化气液反应系统还包括产品收集装置,产品收集装置设置有产品收集口,产品收集口与产品出口经溢流管路连通。
进一步地,主反应器还设置有放空口,连续化气液反应系统还包括溢流衡压装置,溢流衡压装置设置有第一连通口和第二连通口,且第一连通口与溢流管路连通,第二连通口与放空口经溢流衡压管路连通。
进一步地,主反应器的反应段还设置有第二进料口,且第二进料口的水平高度低于第一进料口的水平高度,第一进料口用于通入液相原料;预混合装置设置有溶剂入口和气相原料入口及混合液出口,混合液出口与第二进料口相连通。
应用本发明的技术方案,上述连续化气液反应装置中同时设置有搅拌装置和振荡源,在二者的同时作用下,主反应器中会形成轴向和径向的复杂漩涡,同时随着振荡的进行,漩涡不断出现消失。这能够使主反应器中的流型更加复杂,强化液液传质,进而使反应更加充分,同时提高主反应器的传热效果。此外,振荡源的存在使得体系在器壁和搅拌装置之间剧烈地反复冲刷能够有效抑制反应过程中出现粘接堵塞的风险。综上所述,上述连续化气液反应装置不仅能够实现连续化合成,还能够提高反应原料的传质、传热效果,同时还能够有效抑制粘结堵塞的风险。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的一种典型的实施方式提供的连续化气液反应装置的结构示意图;以及
图2示出了本发明的一种优选的实施方式提供的连续化气液反应系统的结构示意图。
其中,上述附图包括以下附图标记:
100、连续化气液反应装置;
110、反应段;111、第一进料口;112、反应产物体系出口;113、放空口;114、第二进料口;115、第一测温口;
120、中间缓冲段;121、缓冲溶剂入口;122、第二测温口;
130、回温溶解段;131、反应产物体系入口;132、产品出口;133、第三测温口;
140、产品池;
151、第一控温夹套;152、第一控温装置;153、第二控温夹套;154、第二控温装置;155、第三控温夹套;156、第三控温装置;
161、电机;162、搅拌轴;163、搅拌桨;170、振荡源;180、第一重量控制装置;190、第一输送泵;
200、预混合装置;210、第二重量控制装置;220、第三重量控制装置;230、第二输送泵;
300、产品收集装置;400、溢流衡压装置;410、第四重量控制装置。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
正如背景技术所描述的,现有的气液反应装置存在因反应中析出固体导致反应不连续且传热效果差的问题。为了解决上述技术问题,本申请提供了一种连续化气液反应装置,如图1所示,该连续化气液反应装置包括:主反应器、搅拌装置和振荡源170。搅拌装置设置于主反应器的内部,且沿主反应器的长度方向延伸,振荡源170用于控制主反应器的振荡频率。
上述连续化气液反应装置中同时设置有搅拌装置和振荡源170,在二者的同时作用下,主反应器中会形成轴向和径向的复杂漩涡,同时随着振荡的进行,漩涡不断出现消失。这能够使主反应器中的流型更加复杂,强化液液传质,进而使反应更加充分,同时提高主反应器的传热效果。此外,振荡源170的存在使得体系在器壁和搅拌装置之间剧烈地反复冲刷能够有 效抑制反应过程中出现粘接堵塞的风险。综上所述,上述连续化气液反应装置不仅能够实现连续化合成,还能够提高反应原料的传质、传热效果,同时还能够有效抑制粘结堵塞的风险。
在一种优选的实施例中,如图1所示,上述主反应器包括:反应段110、回温溶解段130及控温单元。其中,反应段110设置有第一进料口111和反应产物体系出口112;回温溶解段130设置有反应产物体系入口131和产品出口132,反应产物体系入口131与反应产物体系出口112经反应产物体系输送管路相连通;控温单元用于控制主反应器的温度。
在控温单元的作用下,反应原料在反应段110中进行反应制得所需的反应产物,然后反应产物经反应产物体系输送管路转移至回温溶解段130中。回温溶解段130中气液两相剧烈的湍动能够使产生的固体产物的粒度大大减小,并且有利于提高固体产物在回温溶解段130的悬浮时间。这能够加剧回温溶解段130的固体溶解及溶解气体的析出,实现溶解固体产物并脱除体系内吸收的气相原料的效果,使后续打料更加方便。
优选地,如图1所示,上述反应段110还设置有第二进料口114,且第一进料口111设置于反应段110的顶部,第二进料口114的水平高度低于所述第一进料口111的水平高度。设置多个进料口使上述连续化气液反应装置具有不同的进料方式。比如将不含气相的反应物料从第一进料口111进入反应段110,同时溶解有气相原料的溶剂从第二进料口114进入反应段110。
经反应段110排出的反应产物体系中通常还掺杂有一些未反应的气相原料,为了提高气相原料的利用率,优选地,如图1所示,上述主反应器还包括中间缓冲段120,该中间缓冲段120包括缓冲溶剂入口121,中间缓冲段120设置在反应产物体系输送管路上。为了抑制回温溶解段130对反应段110形成对流等对反应不利的影响,且溶解在溶剂中的气相会因回温而重新析出,设置的中间缓冲段120能够把析出的气相原料重新溶解利用,提高原料利用率;此外回温溶解段还为固体产品的析出提供了场所。
中间缓冲段120设置在反应产物体系输送管路上,并通过缓冲溶剂入口121向中间缓冲段120中加入缓冲溶剂,这有利于使反应产物体系中未反应的气相原料重新被上述缓冲溶剂吸收,并重现返回至反应段110中参与反应,进而降低气相原料的浪费。
为了更准确地监测连续化气液反应装置中的温度,在一种优选的实施例中,上述连续化气液反应装置还包括:第一测温装置、第二测温装置和第三测温装置。其中第一测温装置用于检测反应段110的温度,第二测温装置用于检测中间缓冲段120的温度,第三测温装置用于检测回温溶解段130的温度。如图1所示,连续化气液反应装置上设置有第一测温口115、第二测温口122和第三测温口133,且依次与第一测温装置、第二测温装置和第三测温装置相对应。
为了更好地控制连续化气液反应装置中各段的温度,本申请中采用了分段控温的方式。在一种优选的实施例中,控温单元包括:第一控温装置、第二控温装置和第三控温装置;第一控温装置用于控制反应段110的温度,第二控温装置用于控制中间缓冲段120的温度,第三控温装置用于控制回温溶解段130的温度。
为了进一步提高反应的转化率,如图1所示,更优选地,第一控温装置包括第一控温夹套151和第一控温装置152,其中第一控温夹套151设置有第一控温介质入口和第一控温介质出口,第一控温装置152与第一控温介质入口相连通,用于向第一控温夹套151中提供控温介质;第二控温装置包括第二控温夹套153和第二控温装置154,其中第二控温夹套153设置有第二控温介质入口和第二控温介质出口,第二控温装置154与第二控温介质入口相连通,用于向第二控温夹套153中提供控温介质;第三控温装置包括第三控温夹套155和第三控温装置156,其中第三控温夹套155设置有第三控温介质入口和第三控温介质出口,第三控温装置156与第三控温介质入口相连通,用于向第三控温夹套155中提供控温介质。
上述搅拌装置可以采用本领域常用的种类。优选地,如图1所示,上述搅拌装置包括依次相连接的电机161、搅拌轴162和搅拌桨163,搅拌轴162沿连续化气液反应装置的长度方向延伸,电机161用于驱动搅拌轴162带动搅拌桨163进行物料搅拌。上述搅拌装置可以采用本领域常用的材质,包括但不限于搪瓷、不锈钢、四氟材质等。搅拌装置的搅拌形状包括但不限于推进式、圆盘状、板框式等。
在一种优选的实施例中,如图1所示,上述主反应器还包括产品池140,产品池140的入口端与产品出口132相连通。产品池140的设置能够为经过回温溶解段130的产品体系准备溢流的场所。
优选地,上述主反应器的材质包括但不限于玻璃或不锈钢等,对于强腐蚀物料可采用搪瓷或喷涂四氟等。
需要说明的是,本申请提供的上述主反应器分段连接(如法兰连接、快开连接或螺纹连接),也可整体制作形成。
本申请的另一方面还提供了一种连续化气液反应系统,如图1和图2所示,该连续化气液反应系统包括:上述连续化气液反应装置100和预混合装置200。连续化气液反应装置100包括主反应器,且主反应器设置有第一进料口111,预混合装置200用于将至少部分反应原料混合后输送至连续化气液反应装置100中,且预混合装置200设置有气相原料入口、溶剂入口和预反应产物出口,预反应产物出口与第一进料口111通过预反应产物输送管路连通。
上述连续化气液反应装置100不仅能够实现连续化合成,还能够提高反应原料的传质、传热效果,同时还能够有效抑制粘结堵塞的风险。预混合装置200的设置能够提高溶剂对气相原料的吸收率,同时提高气相原料和液相原料的接触面积,提高反应原料的转化率。因而上述连续化气液反应系统具有传质、传热效率高、不易堵塞及反应转化率高等优点。
为了便于产品的收集,如图2所示,优选地,上述主反应器还设置有产品出口132,连续化气液反应系统还包括产品收集装置300,产品收集装置300设置有产品收集口,产品收集口与产品出口132经溢流管路连通。
在一种优选的实施例中,如图2所示,主反应器还设置有为放空口113,该连续化气液反应系统还包括溢流衡压装置400,溢流衡压装置400设置有第一连通口和第二连通口,且第一 连通口与溢流管路连通,第二连通口与放空口113经溢流衡压管路连通。溢流衡压装置400经溢流衡压管路与主反应器连通,经溢流管路与产品收集装置,因而溢流衡压装置400的设置能够平衡溢流管路和主反应器中的压力,保证溢流产生。
上述预混合装置200可以选用本领域常用的混合装置,优选地,如图2所示,上述主反应器还设置有第二进料口114,且第二进料口114的水平高度低于第一进料口111的水平高度,第一进料口111用于通入液相原料;预混合装置200设置有溶剂入口和气相原料入口及混合液出口,混合液出口与第二进料口114相连通。
整个分段控温连续进料,溶有气相的溶剂从反应段110下部的第二进料口114连续进料。另一个反应物从反应段110的顶部的第一进料口111进料,二者逆流接触,并在预混合装置200中的未完全吸收掉的气泡搅动及搅拌作用下,增大反应的传质效果。并随着体系逐渐向回温溶解段130推进的过程中,对温度较敏感的固体析出物溶回体系,没有反应完的气体也会随温度升高重新析出上浮到反应段110再次参加反应。最后体系通过溢流衡压装置400溢出接收。优选地,上述溢流管路为U型溢流管路,确保整个反应器中的压力平衡,从而保证反应时间,防止因为压力失衡导致体系溢流不平稳。更优选地,上述连续化气液反应系统中还包括第四控温装置,用于控制溢流管路中物料的温度。
本申请的一种典型的实施方式还提供了一种连续化气液反应工艺,采用如图1和图2所示的装置进行,具体工艺如下:
液相原料经第一输送泵190输送,经第一进料口111输送至反应段110中,且通过第一重量控制装置180控制其添加量。气相原料经第二输送泵230输送,并与气相原料一并输送至预混合装置200中进行混合,然后将混合物经第二进料口114输送至反应段110中,在此过程中通过第二重量控制装置210、第三重量控制装置220控制气相物料和溶剂的比例。反应过程中生成的气体以及多余的气相原料从放空口113排出。
反应原料进入反应段110后,在搅拌桨163和搅拌轴162在电机的作用下进行搅拌,同时振荡源170开启。将第一控温装置152(制冷机)中的冷媒输送至第一控温夹套151中,以控制反应段110的温度。同时在第一测温口115插入第一测温装置监测反应温度。
反应完毕后得到的反应产物体系经反应产物体系出口112输送至中间缓冲段120。经缓冲溶剂入口121向中间缓冲段120加入缓冲溶剂。反应产物体系中未反应的气体与缓冲溶剂接触后会被吸收溶解。将第二控温装置154(制冷机)中的冷媒输送至第二控温夹套153中,以控制中间缓冲段120的温度。同时在第二测温口122插入第二测温装置监测中间缓冲段120中的温度。
随后反应产物体系经产品出口132输送至回温溶解段130中。将第三控温装置156(水浴装置)中的控温介质输送至第三控温夹套155中,以控制回温溶解段130的温度。同时在第三测温口133插入第三测温装置监测回温溶解段130中的温度。由于回温溶解段130的温度高于中间缓冲段120和反应段110的温度,因而反应产物体系中的固体能够重新溶剂,同时还能够脱除剩余的气相原料。
从回温溶解段130中溢流的产品经产品池140以及后续的溢流管线进入溢流衡压装置400中,最终进入产品收集装置300中。同时在溢流管线上设置第四重量控制装置410。此外溢流衡压装置400还与放空口113经溢流衡压管路连通,这能够调节反应过程中主反应器和产品收集装置300中的压力。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
上述连续化气液反应装置具有集成度高的优点,具体地,集成气体溶解、气液反应、固相溶解、气相原料重复利用、体系脱气于一体。这能够保证反应在反应器内一次性完成以上所有过程。节省了单元操作的次数,降低了劳动强度及设备上的投资,相较于批次性装置更为安全、实用、高效。通过分段控温成功实现了带有固体产品析出的这类反应的连续化过程,相较于间歇批次反应操作,分段控温连续反应,反应速度快,原料转化率及产品收率高,产品纯度高,更为安全、实用。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种连续化气液反应装置,其特征在于,所述连续化气液反应装置包括:
    主反应器;
    搅拌装置,所述搅拌装置设置于所述主反应器的内部,且沿所述主反应器的长度方向延伸;及
    振荡源(170),所述振荡源(170)用于控制所述主反应器的振荡频率。
  2. 根据权利要求1所述的连续化气液反应装置,其特征在于,所述主反应器包括:
    反应段(110),所述反应段(110)设置有第一进料口(111)和反应产物体系出口(112);
    回温溶解段(130),所述回温溶解段(130)设置有反应产物体系入口(131)和产品出口(132),所述反应产物体系入口(131)与所述反应产物体系出口(112)经反应产物体系输送管路相连通;
    控温单元,所述控温单元用于控制所述主反应器的温度。
  3. 根据权利要求2所述的连续化气液反应装置,其特征在于,所述主反应器还包括中间缓冲段(120),所述中间缓冲段(120)包括缓冲溶剂入口(121),所述中间缓冲段(120)设置在所述反应产物体系输送管路上。
  4. 根据权利要求2或3所述的连续化气液反应装置,其特征在于,所述反应段(110)还设置有第二进料口(114),且第二进料口(114)的水平高度低于所述第一进料口(111)的水平高度。
  5. 根据权利要求3所述的连续化气液反应装置,所述控温单元包括:
    第一控温装置,所述第一控温装置用于控制所述反应段(110)的温度;
    第二控温装置,所述第二控温装置用于控制所述中间缓冲段(120)的温度;及
    第三控温装置,所述第三控温装置用于控制所述回温溶解段(130)的温度。
  6. 根据权利要求5所述的连续化气液反应装置,其特征在于,所述主反应器还包括产品池(140),产品池(140)的入口端与所述产品出口(132)相连通。
  7. 一种连续化气液反应系统,其特征在于,所述连续化气液反应系统包括:
    权利要求2至6中任一项所述的连续化气液反应装置(100),所述连续化气液反应装置(100)包括主反应器,且所述主反应器设置有第一进料口(111);
    预混合装置(200),所述预混合装置(200)用于将至少部分反应原料混合后输送至所述连续化气液反应装置(100)中,且所述预混合装置(200)设置有气相原料入口、溶剂入口和预反应产物出口,所述预反应产物出口与所述第一进料口(111)通过预反应 产物输送管路连通。
  8. 根据权利要求7所述的连续化气液反应系统,其特征在于,所述主反应器还设置有产品出口(132),所述连续化气液反应系统还包括产品收集装置(300),所述产品收集装置(300)设置有产品收集口,所述产品收集口与所述产品出口(132)经溢流管路连通。
  9. 根据权利要求8所述的连续化气液反应系统,其特征在于,所述主反应器还设置有放空口(113),所述连续化气液反应系统还包括溢流衡压装置(400),所述溢流衡压装置(400)设置有第一连通口和第二连通口,且所述第一连通口与所述溢流管路连通,所述第二连通口与所述放空口(113)经溢流衡压管路连通。
  10. 根据权利要求7所述的连续化气液反应系统,其特征在于,所述主反应器还设置有第二进料口(114),且所述第二进料口(114)的水平高度低于所述第一进料口(111)的水平高度,所述第一进料口(111)用于通入液相原料;
    所述预混合装置(200)设置有溶剂入口和气相原料入口及混合液出口,所述混合液出口与所述第二进料口(114)相连通。
PCT/CN2019/107889 2019-09-25 2019-09-25 连续化气液反应装置及含有其的连续化气液反应系统 WO2021056272A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107889 WO2021056272A1 (zh) 2019-09-25 2019-09-25 连续化气液反应装置及含有其的连续化气液反应系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107889 WO2021056272A1 (zh) 2019-09-25 2019-09-25 连续化气液反应装置及含有其的连续化气液反应系统

Publications (1)

Publication Number Publication Date
WO2021056272A1 true WO2021056272A1 (zh) 2021-04-01

Family

ID=75166253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107889 WO2021056272A1 (zh) 2019-09-25 2019-09-25 连续化气液反应装置及含有其的连续化气液反应系统

Country Status (1)

Country Link
WO (1) WO2021056272A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247886A (zh) * 2005-06-23 2008-08-20 倪泰克解决方案有限公司 用于流体-液体反应的方法和设备
CN101967114A (zh) * 2010-08-27 2011-02-09 浙江工程设计有限公司 合成联二脲的连续生产方法及装置
CN103055792A (zh) * 2013-01-25 2013-04-24 浙江曙扬化工有限公司 一种用于环己烷液相氧化的振荡管式反应器及其使用方法
WO2015056156A1 (en) * 2013-10-14 2015-04-23 Universidade Do Porto Apparatus for mixing based on oscillatory flow reactors provided with smooth periodic constrictions
WO2015126291A1 (en) * 2014-02-20 2015-08-27 Nordic Chemquest Ab An auxiliary reactor for biological or chemical transformation
CN206910867U (zh) * 2017-06-07 2018-01-23 凯莱英生命科学技术(天津)有限公司 淬灭萃取装置
CN110183480A (zh) * 2019-06-21 2019-08-30 辽宁凯莱英医药化学有限公司 三甲基硅基乙炔的连续化合成系统及连续化合成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247886A (zh) * 2005-06-23 2008-08-20 倪泰克解决方案有限公司 用于流体-液体反应的方法和设备
CN101967114A (zh) * 2010-08-27 2011-02-09 浙江工程设计有限公司 合成联二脲的连续生产方法及装置
CN103055792A (zh) * 2013-01-25 2013-04-24 浙江曙扬化工有限公司 一种用于环己烷液相氧化的振荡管式反应器及其使用方法
WO2015056156A1 (en) * 2013-10-14 2015-04-23 Universidade Do Porto Apparatus for mixing based on oscillatory flow reactors provided with smooth periodic constrictions
WO2015126291A1 (en) * 2014-02-20 2015-08-27 Nordic Chemquest Ab An auxiliary reactor for biological or chemical transformation
CN206910867U (zh) * 2017-06-07 2018-01-23 凯莱英生命科学技术(天津)有限公司 淬灭萃取装置
CN110183480A (zh) * 2019-06-21 2019-08-30 辽宁凯莱英医药化学有限公司 三甲基硅基乙炔的连续化合成系统及连续化合成方法

Similar Documents

Publication Publication Date Title
TW497990B (en) Two stage reactor for continuous three phase slurry hydrogenation and method of operation
EP0242776B1 (en) Gas-liquid reactor and method for gas-liquid mixing
JP2006055847A (ja) 気液反応を行うための撹拌装置及び方法
CN207970852U (zh) 一种加氢反应釜
CN111689530B (zh) 一种硫酸镍溶液的生产方法和装置
US20130129576A1 (en) Multiphase catalytic tower-type impinging-stream reactor
CN110193334A (zh) 一种制备高纯氟化锂的装置与方法
CN110449103A (zh) 一种带预混的一体化制备重氮盐的方法和装置
CN104437286A (zh) 一种生产超细碳酸铈的沉淀反应器
CN105819471B (zh) 一种生产大粒度小苏打的方法
WO2021056272A1 (zh) 连续化气液反应装置及含有其的连续化气液反应系统
KR101038232B1 (ko) 회분식 및 연속식 반응수행이 가능한 반응장치
JP2000302701A (ja) ガスハイドレートの製造装置および製法
CN110681334B (zh) 连续化气液反应装置及含有其的连续化气液反应系统
KR100596600B1 (ko) 고순도 방향족 카르복실산의 개량된 제조 방법
CN214552834U (zh) 一种料浆搅拌装置
CN216024773U (zh) 一种基于微界面混合罐的自动混合系统
CN210906096U (zh) 一种采用球冠形微孔刚玉供气器的气液反应釜
CN212595615U (zh) 一种反应装置及甲醇羰基合成醋酸的系统
CN104437255B (zh) 一种氧化联二脲生产adc发泡剂的反应釜及方法
CN211612676U (zh) 一种生产液体肥的反应釜
CN102391489B (zh) 搅拌预热与聚酯固相增粘一体化反应器
CN207913774U (zh) 一种充分搅拌受热均匀的稀释釜
CN110302688A (zh) 物料溶解装置及方法
CN104387258A (zh) 一种氯乙酸生产方法及氯化反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946290

Country of ref document: EP

Kind code of ref document: A1