WO2021056269A1 - 激光雷达回波信号处理方法、装置、计算机设备和存储介质 - Google Patents

激光雷达回波信号处理方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2021056269A1
WO2021056269A1 PCT/CN2019/107880 CN2019107880W WO2021056269A1 WO 2021056269 A1 WO2021056269 A1 WO 2021056269A1 CN 2019107880 W CN2019107880 W CN 2019107880W WO 2021056269 A1 WO2021056269 A1 WO 2021056269A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
preset
buffer
echo
echo signal
Prior art date
Application number
PCT/CN2019/107880
Other languages
English (en)
French (fr)
Inventor
杨珺鹏
刘夏
刘冬山
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN201980050255.XA priority Critical patent/CN112585489B/zh
Priority to PCT/CN2019/107880 priority patent/WO2021056269A1/zh
Priority to CN202310695029.5A priority patent/CN116879864A/zh
Publication of WO2021056269A1 publication Critical patent/WO2021056269A1/zh
Priority to US17/702,940 priority patent/US20220214429A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • This application relates to a laser radar echo signal processing method, device, computer equipment and storage medium.
  • Lidar transmits a detection signal to the object to be measured, and the detection signal will be reflected when it passes the object to be measured.
  • signal processing is performed on the echo signal.
  • the signal-to-noise ratio is an important quality indicator in the signal processing process, which determines the ranging capability of the lidar.
  • the lidar echo signal is accumulated through one-dimensional non-coherent accumulation to improve the signal-to-noise ratio of the lidar echo signal, thereby improving the ranging ability of the lidar echo signal.
  • the inventor realized that the traditional method cannot effectively improve the signal-to-noise ratio of the lidar echo signal when the echo signal reflected by the object to be detected with a low reflectivity or a long distance is accumulated in a non-coherent manner, resulting in laser The radar echo signal has a low ranging ability.
  • a lidar echo signal processing method, device, and computer equipment capable of improving the ranging capability of the lidar echo signal by effectively improving the signal-to-noise ratio of the lidar echo signal And storage media.
  • a laser radar echo signal processing method includes:
  • a laser radar echo signal processing device includes:
  • the receiving module is configured to receive the echo signal reflected by the object to be measured, and the echo signal includes a multi-dimensional signal transmission angle;
  • a buffer module configured to buffer the echo signal according to the multi-dimensional signal transmission angle to obtain a buffer signal
  • An extraction module configured to extract a target signal corresponding to a preset neighborhood window from the buffer signal when the number of the buffer signals reaches a preset buffer quantity
  • the accumulation module is used to perform non-coherent accumulation of the target signal and output the accumulated target signal.
  • a computer device including a memory and one or more processors, the memory stores computer readable instructions, and when the computer readable instructions are executed by the processor, the one or more processors execute The following steps:
  • One or more non-volatile computer-readable storage media storing computer-readable instructions.
  • the computer-readable instructions When executed by one or more processors, the one or more processors perform the following steps:
  • Fig. 1 is an application scenario diagram of a lidar echo signal processing method according to one or more embodiments.
  • Fig. 2 is a schematic flow chart of a laser radar echo signal processing method according to one or more embodiments.
  • 3 is a schematic flowchart of the step of extracting the target signal corresponding to the preset neighborhood window from the buffer signal when the number of buffer signals reaches the preset buffer quantity according to one or more embodiments.
  • Fig. 4 is a schematic flow chart of a laser radar echo signal processing method in another embodiment.
  • Fig. 5 is a block diagram of a lidar echo signal processing device according to one or more embodiments.
  • Figure 6 is a block diagram of a computer device according to one or more embodiments.
  • the laser radar echo signal processing method provided in this application can be applied to the application environment as shown in FIG. 1.
  • the lidar 102 emits a detection signal, and the detection signal will reflect an echo signal after encountering the object to be detected.
  • the lidar may be a solid-state lidar.
  • the lidar 102 receives the echo signal reflected by the object to be measured through a receiver, which may be a silicon photomultiplier tube (SiPM).
  • the lidar 102 sends an echo signal to the computer device 104, and the echo signal includes multi-dimensional signal emission angles.
  • the computer device 104 buffers the echo signal according to the multi-dimensional signal transmission angle to obtain the buffer signal.
  • the computer device 104 When the number of buffered signals reaches the preset number of buffers, the computer device 104 extracts the target signal corresponding to the preset neighborhood window from the buffered signal. The computer device 104 performs non-coherent accumulation of the target signal, and outputs the accumulated target signal.
  • a laser radar echo signal processing method is provided. Taking the method applied to the computer device in FIG. 1 as an example for description, the method includes the following steps:
  • Step 202 Receive an echo signal reflected by the object to be measured, where the echo signal includes multi-dimensional signal transmission angles.
  • the lidar emits a detection signal. After the detection signal encounters the object to be measured, the echo signal will be reflected.
  • the lidar receives the echo signal through the receiver.
  • the computer equipment receives the echo signal sent by the lidar.
  • the echo signal may include a preamble signal, a valid echo signal, a false echo signal, and environmental noise.
  • the echo signal includes multi-dimensional signal transmission angles.
  • the multi-dimensional signal transmission angle may include a pitch angle (pitch) and a yaw angle (yaw).
  • the same pitch angle can correspond to multiple yaw angles, and the same yaw angle can also correspond to multiple pitch angles.
  • Different signal transmission angles can correspond to independent signal transmission and reception, that is, correspond to different detection signals and echo signals.
  • the number of signal emission angles can be judged according to the single field of view resolution of the lidar.
  • the solid-state lidar has a single field of view resolution of 76*250, and the solid-state lidar can include 76 pitch angles and 250 yaw angles.
  • the echo signal of the multi-dimensional signal emission angle can be obtained by the laser radar by scanning the visible range and adjusting the emission angle of the detection signal.
  • the lidar can first fix the pitch angle and adjust the yaw angle emitted by the detection signal.
  • the lidar adjusts the pitch angle, and then adjusts the yaw angle emitted by the subsequent detection signal according to the opposite direction of the previous detection signal, and then the echo signal of the multi-dimensional signal transmission angle can be obtained .
  • the method before buffering the echo signal according to the multi-dimensional signal transmission angle, the method further includes: amplifying the received echo signal to obtain the amplified echo signal; The wave signal undergoes analog-to-digital conversion to obtain the converted digital signal; the converted digital signal is filtered.
  • the computer equipment can amplify the weak echo signal by amplifying the echo signal for subsequent signal processing.
  • the computer equipment performs analog-to-digital conversion on the amplified echo signal in order to perform non-coherent accumulation of the echo signal.
  • the computer device performs filtering processing on the converted digital signal.
  • the filtering processing may be to remove the DC component in the echo signal, and the way to remove the DC component may be to perform filtering processing through a high-pass filter.
  • the computer equipment can avoid the interference of the DC component by filtering the converted digital signal.
  • Step 204 Buffer the echo signal according to the multi-dimensional signal transmission angle to obtain the buffer signal.
  • Step 206 When the number of buffered signals reaches the preset number of buffers, extract the target signal corresponding to the preset neighborhood window from the buffered signal.
  • Step 208 Perform non-coherent accumulation of the target signal, and output the accumulated target signal.
  • the computer device can buffer the echo signal according to the multi-dimensional signal transmission angle.
  • the echo signal received by the computer device may also include the signal receiving sequence.
  • Multiple memories are pre-configured in the computer equipment.
  • the computer device determines the preset memory corresponding to the echo signal according to the multi-dimensional signal transmission angle and the signal reception sequence. Furthermore, the computer device buffers the echo signal into the determined preset memory.
  • the buffer signal is obtained.
  • the computer device judges whether the number of buffered signals reaches the preset buffer number.
  • the preset buffer quantity may be determined by the computer device according to the launch angle of the lidar.
  • the lidar can include 76 pitch angles and 250 yaw angles.
  • the preset number of buffers can be 3*250 times.
  • the computer device extracts the target signal corresponding to the preset neighborhood window from the buffered signal.
  • the size of the preset neighborhood window may be 3*3.
  • the preset neighborhood window may be a sliding window.
  • the computer equipment performs non-coherent accumulation of the target signal of the preset neighborhood window. For example, when the size of the preset neighborhood window is 3*3, the computer device extracts a total of 9 echo signals from the buffered echo signals for the 1-3 times, 251-253 times, and 501-503 times, as Target signal.
  • the computer device performs non-coherent accumulation of 9 target signals corresponding to the preset neighborhood window, and the initial phases between the echo signals subjected to the non-coherent accumulation may be random and uncorrelated with each other.
  • Non-coherent accumulation may be to accumulate the echo signal when the echo signal loses phase information, so as to improve the signal-to-noise ratio of the echo signal.
  • the echo signal is accumulated by one-dimensional non-coherent accumulation based on the yaw angle direction.
  • the computer device can use the spatial correlation between the echo signals of the multi-dimensional signal transmission angle by receiving the echo signals of the multi-dimensional signal transmission angle to improve the signal accumulation of non-coherent accumulation. frequency.
  • the computer device can improve the correlation between the target signals by extracting the target signal corresponding to the preset neighborhood window from the buffered echo signal when the number of the buffered echo signals reaches the preset number of buffers.
  • the computer equipment performs non-coherent accumulation of the target signal corresponding to the preset neighborhood window, which can increase the number of signal accumulation when the phase of the target signal is lost, thereby increasing the signal-to-noise ratio of the echo signal, thereby effectively improving Ranging capability of echo signal.
  • buffering the echo signal according to the multi-dimensional signal transmission angle includes: determining the preset memory corresponding to the echo signal according to the multi-dimensional signal transmission angle and the signal receiving order of the echo signal; The wave signal is buffered into the corresponding preset memory.
  • the echo signal received by the computer device may include the signal reception sequence.
  • the signal receiving sequence can be the transmission sequence number corresponding to the echo signal, or the transmission time corresponding to the echo signal.
  • Multiple memories can be pre-configured in the computer equipment. The same number of echo signals can be stored in multiple memories. Each memory has a corresponding storage capacity. The number of echo signals stored in each memory may be less than or equal to the storage capacity.
  • the multi-dimensional signal transmission angle may include a pitch angle (pitch) and a yaw angle (yaw). The same pitch angle can correspond to multiple yaw angles, and the same yaw angle can also correspond to multiple pitch angles.
  • the computer device can store multiple echo signals with the same pitch angle and different yaw angles in the corresponding memory.
  • the computer equipment fixes the adjusted elevation angle by adjusting the elevation angle of the lidar, and then adjusts the yaw angle of the lidar according to the direction opposite to the last transmitted detection signal to obtain the echo signal corresponding to the adjusted elevation angle.
  • the computer device stores the echo signal corresponding to the adjusted pitch angle in another memory.
  • the multi-dimensional signal emission angle includes a first emission angle and a second emission angle
  • the above method further includes: arranging a plurality of preset memories into a plurality of storage rows, and each preset memory corresponds to a storage row. Row, each preset memory is used to store echo signals with the same first emission angle corresponding to the preset receiving order; correspondingly arrange the storage columns of multiple preset memories to obtain multiple matrix columns, each of which is used To store echo signals with the same second emission angle.
  • the computer device arranges a plurality of preset memories correspondingly, and the storage row of each preset memory can store echo signals with the same first emission angle corresponding to the preset receiving order.
  • the preset memory stores the echo signals with the same second emission angle in the same matrix column generated by the storage columns of the plurality of preset memories.
  • the first launch angle may be a pitch angle.
  • the second launch angle may be the yaw angle. Conducive to subsequent signal extraction.
  • the computer device may be pre-configured with three memories, the first memory, the second memory, and the third memory.
  • the computer device buffers the 1-250th echo signal into the first memory, and the pitch angle of the 1-250th echo signal may be the same, and the yaw angle may be different.
  • the computer device buffers the 251-5500th echo signal in the second memory, and the pitch angle of the 251-5500th echo signal may be the same, and the yaw angle may be different.
  • the computer device buffers the 501-750th echo signal into the third memory, and the pitch angle of the 500-750th echo signal may be the same, and the yaw angle may be different.
  • the pitch angle of the first echo signal, the 251st echo signal, and the 501st echo signal may be different, and the yaw angle may be the same.
  • the computer device stores the echo signal in the corresponding preset memory according to the multi-dimensional signal transmission angle and the signal reception sequence of the echo signal, and can perform the pitch angle direction and the yaw according to the adjacent detection signal.
  • the spatial relationship between the angular directions, the corresponding storage of echo signals with good correlation, is beneficial to the extraction of target signals.
  • the above method further includes the step of extracting the target signal corresponding to the preset neighborhood window from the buffered signal when the number of buffered signals reaches the preset buffered number, which specifically includes:
  • Step 302 When the number of buffered echo signals reaches the preset buffer quantity, extract historical signals from the buffer signal according to the preset signal receiving order and the preset extraction quantity.
  • Step 304 Obtain a target signal corresponding to a preset neighborhood window according to the extracted historical signal.
  • the computer equipment obtains the buffered signal after buffering the echo signal according to the multi-dimensional signal transmission angle.
  • the computer device judges whether the number of buffer signals reaches the preset buffer quantity, and when the number of buffer signals reaches the preset buffer quantity, extracts the target signal corresponding to the preset neighborhood window.
  • the preset neighborhood window may include a preset signal receiving order and a preset extraction quantity.
  • the preset signal receiving order may be an earlier echo signal in the signal receiving order in the plurality of preset memories corresponding to the buffered signal.
  • the preset extraction quantity may be three echo signals extracted in each preset memory, that is, a total of 9 echo signals.
  • the computer device extracts the three-time historical signal with an earlier signal receiving order in each preset memory, and uses the extracted three-time historical signal as the target signal corresponding to the preset neighborhood window. For example, the computer device extracts a total of 9 historical signals from the buffered signal for the 1-3 times, the 251-253th times, and the 501st-503th times, as the target signal.
  • the above method further includes: determining the number of storage rows of the preset neighborhood window according to the number of storage rows corresponding to the plurality of preset memories, and each storage row of the preset neighborhood window is used for storing in the preset The buffer signals in the preset signal receiving order extracted from the memory; correspondingly store the buffer signals stored in the storage rows of the preset neighborhood window according to the storage columns of the multiple preset memories.
  • the number of storage rows of the preset neighborhood window in the computer device and the number of storage rows corresponding to the preset memory may be the same.
  • Each storage line of the preset neighborhood window is used to store the buffered signals in the preset signal receiving order extracted from the preset memory.
  • Each storage row of the preset neighborhood window can store buffer signals with the same pitch angle.
  • the number of storage columns of the preset neighborhood window may be preset.
  • the storage column of the preset neighborhood window can be used to store buffer signals with the same yaw angle, and the buffer signals in adjacent spaces differ by a preset transmission period.
  • the size of the preset neighborhood window may be 3*3.
  • the preset signal receiving order may be to extract the three buffered signals with the earliest signal receiving order in each memory.
  • the preset number of extractions can be 9 times.
  • the computer device uses the extracted 9-time buffer signal as the target signal corresponding to the preset neighborhood window.
  • the computer device extracts historical signals from the buffered signal according to the preset extraction order and the preset extraction quantity to obtain the target signal corresponding to the preset neighborhood window, so as to extract the historical signals with better correlation. In order to increase the number of non-coherent accumulation, and then improve the echo signal ranging ability.
  • a laser radar echo signal processing method is provided. Taking the method applied to a computer device as an example for description, the method includes the following steps:
  • Step 402 Receive the echo signal reflected by the object to be measured, where the echo signal includes multi-dimensional signal transmission angles.
  • Step 404 Buffer the echo signal according to the multi-dimensional signal transmission angle to obtain the buffer signal.
  • Step 406 When the number of buffered signals reaches the preset number of buffers, extract the target signal corresponding to the preset neighborhood window from the buffered signal.
  • Step 408 Obtain a corresponding signal sequence according to the target signal.
  • Step 410 Determine the signal length corresponding to the target signal in the signal sequence.
  • Step 412 Perform non-coherent accumulation of the target signal according to the signal length corresponding to the target signal and the preset relationship.
  • the computer device After extracting the target signal corresponding to the preset neighborhood window, the computer device obtains the corresponding signal sequence according to the target signal.
  • the signal sequence may be a pulse sequence obtained after holding the echo signal at a certain frequency.
  • the signal sequence can be a distance gate.
  • the computer equipment determines the signal length corresponding to the target signal in the signal sequence.
  • the signal length can be the amplitude of the target signal.
  • the data length of the echo signal is L
  • the signal length corresponding to the target signal is n
  • the value range of n can be [1, L].
  • the computer equipment performs non-coherent accumulation of the target signal according to the signal length and the preset relationship.
  • the preset relationship may be a calculation formula of non-coherent accumulation. For example, when the number of extracted target signals is 9 times, the calculation formula can be as follows:
  • y[n] represents the accumulated target signal
  • n represents the signal length of each target signal
  • i represents the number of target signals
  • L represents the data length of the echo signal
  • the computer device can use the spatial correlation between the echo signals of the multi-dimensional signal transmission angle by receiving the echo signals of the multi-dimensional signal transmission angle to increase the number of signal accumulations for non-coherent accumulation.
  • the computer device can improve the correlation between the target signals by extracting the target signal corresponding to the preset neighborhood window from the buffer signal when the number of buffer signals reaches the preset number of buffers.
  • the computer equipment obtains the signal sequence corresponding to the target signal, determines the signal length corresponding to the target signal in the signal sequence, and then performs non-coherent accumulation of the target signal according to the preset relationship, and can calculate the signal lengths of multiple target signals in the same signal sequence Accumulate to further improve the signal-to-noise ratio of the echo signal, and further improve the ranging ability of the echo signal.
  • the echo signal includes a signal receiving sequence
  • the above method further includes: when the number of received echo signals exceeds the preset buffer quantity, using the echo signals exceeding the buffer quantity as signals to be processed;
  • the echo signal with the earliest signal reception sequence in the buffer signal determines the first signal corresponding to the next preset transmission period, and the echo signal with the earliest signal reception sequence is covered according to the first signal; the next signal is determined according to the first signal in the buffer signal
  • the second signal corresponding to the preset transmission period the first signal is covered according to the second signal
  • the step of performing signal coverage in the buffer signal is repeated, and the buffer signal of the next preset transmission period is compared with the previous signal in the buffer signal. It is assumed that the buffer signal of the transmission period is covered until the signal to be processed is covered by the buffer signal corresponding to the previous preset transmission period; the target signal corresponding to the preset neighborhood window is extracted from the buffer signal after the coverage.
  • the computer device can overwrite the buffered signals in the preset memory.
  • multiple memories are pre-configured in the computer device, and the computer device uses echo signals exceeding the buffer quantity as signals to be processed.
  • Each memory can store an echo signal with a preset transmission period.
  • a preset transmission period can be 250 echo signals.
  • the echo signal received by the computer equipment includes the signal reception sequence.
  • the computer device can first identify the first signal of the next preset transmission period corresponding to the echo signal with the earliest signal reception sequence in multiple preset memories, and store the first signal in the memory of the echo signal with the earliest signal reception sequence. The signal position is covered.
  • the computer device recognizes the second signal of the next preset transmission period corresponding to the first signal in the plurality of preset memories, and covers the signal position of the first signal in the memory by the second signal.
  • the computer equipment repeats the above-mentioned signal coverage step, and covers the buffer signal of the next preset transmission period in the buffer signal to the buffer signal of the previous preset transmission period, until the to-be-processed signal is in front of the to-be-processed signal in the buffered signal.
  • a buffer signal corresponding to a preset transmission period is overwritten.
  • the computer device extracts the target signal corresponding to the preset neighborhood window from the buffered signal after the coverage.
  • the preset neighborhood window may be a sliding neighborhood window. When the size of the preset neighborhood window is 3*3, the computer device can extract the 502-504th, 252-254th, and 2-4th buffered signals from the overwritten buffered signal for non-coherent accumulation .
  • the preset neighborhood window can also slide along with it.
  • the preset neighborhood window includes storage rows and storage columns. The number of storage lines and the number of preset memories may be the same.
  • Each storage row of the preset neighborhood window may include three memories, which are a first neighborhood memory, a second neighborhood memory, and a third neighborhood memory.
  • the computer device reads the signal stored in the first neighborhood memory and writes it into the second memory.
  • the computer device reads the signal with the earliest signal reception sequence in the second memory and writes it into the third memory.
  • the first memory extracts and stores the next echo signal in the preset memory.
  • the signals stored in the preset neighborhood window are the 502-504th, the 252-254th, and the 2-4th buffered signals.
  • the structure diagram of performing signal coverage on the buffer signal in the preset memory and extracting the target signal of the preset neighborhood window from the covered buffer signal can be as shown in the following figure:
  • line_ram1 represents the third memory
  • line_ram2 represents the second memory
  • line_ram3 represents the first memory.
  • the signal in the black frame may be the signal of the preset neighborhood window extracted from the buffered signal.
  • the computer device may be pre-configured with three memories, the first memory, the second memory, and the third memory.
  • the preset transmission period is 250.
  • the computer device buffers the 1-250th echo signals in the first memory, buffers the 251-5500th echo signals in the second memory, and buffers the 501-750th echo signals in the third memory.
  • the computer device receives the 751th echo signal.
  • the number of echo signals received by the computer device exceeds the preset buffer number 750.
  • the echo signal with the earliest signal reception sequence in the memory is the first echo signal.
  • the computer device first identifies the 251st echo signal corresponding to the first echo signal in the three memories, and covers the signal position of the first echo signal in the first memory with the 251st echo signal.
  • the computer device recognizes the 501st echo signal corresponding to the 251st echo signal in the three memories, and covers the signal position of the 251st echo signal in the second memory with the 501st echo signal.
  • the computer device covers the received 751th echo signal over the signal position of the 501st echo signal in the third memory.
  • the computer device can extract the 502-504th, 252-254th, and 2-4th buffered signals from the overwritten buffered signal for non-coherent accumulation .
  • the computer when the computer receives the 752th echo signal, at this time, the echo signal with the earliest signal reception sequence in the memory is the second echo signal.
  • the computer equipment first identifies the 252nd echo signal corresponding to the second echo signal in the three memories, and covers the signal position of the second echo signal in the first memory by the 252nd echo signal.
  • the computer device identifies the 502nd echo signal corresponding to the 252nd echo signal in the three memories, and covers the signal position of the 502nd echo signal in the second memory with the 502nd echo signal.
  • the computer device covers the received 752th echo signal over the signal position of the 502nd echo signal in the third memory.
  • the computer device can extract the 502-504th, 252-254th, and 2-4th buffered signals from the overwritten buffered signal for non-coherent accumulation .
  • the computer device when the number of received echo signals exceeds the preset number of buffers, covers the corresponding buffered signals according to the echo signals exceeding the number of buffers, and extracts the pre-buffered signals from the covered buffered signals. Set the target signal of the neighborhood window. It is beneficial to realize the non-coherent accumulation of the target signal, and thus can improve the signal-to-noise ratio of the echo signal.
  • a laser radar echo signal processing device which includes: a receiving module 502, a buffer module 504, an extraction module 506, and an accumulation module 508, wherein:
  • the receiving module 502 is configured to receive the echo signal reflected by the object to be measured, and the echo signal includes a multi-dimensional signal transmission angle.
  • the buffer module 504 is configured to buffer the echo signal according to the multi-dimensional signal transmission angle to obtain the buffer signal.
  • the extracting module 506 is configured to extract the target signal corresponding to the preset neighborhood window from the buffered signal when the number of buffered signals reaches the preset buffered number.
  • the accumulation module 508 is used to perform non-coherent accumulation of the target signal and output the accumulated target signal.
  • the buffer module 504 is further configured to determine the preset memory corresponding to the echo signal according to the multi-dimensional signal transmission angle and the signal receiving order of the echo signal; and buffer the echo signal into the corresponding preset memory .
  • the above-mentioned device further includes: an arrangement module for arranging a plurality of preset memories into a plurality of storage rows, each preset memory corresponds to a storage row, and each preset memory is used to store Receiving the echo signals with the same first emission angle corresponding to the order; arranging the storage columns of a plurality of preset memories correspondingly to obtain a plurality of matrix columns, and each matrix column is used to store the echo signals with the same second emission angle.
  • the extraction module 506 is also used for the extraction module to extract historical signals from the buffered signal according to the preset signal receiving order and the preset extraction number when the number of buffered signals reaches the preset buffered number;
  • the extracted historical signal obtains the target signal corresponding to the preset neighborhood window.
  • the above-mentioned device further includes: a determining module, configured to determine the number of storage rows of the preset neighborhood window according to the number of storage rows corresponding to the plurality of preset memories, and each storage row of the preset neighborhood window is used
  • the buffer signal in the preset signal receiving order extracted from the preset memory is stored; the buffer signal stored in the storage row of the preset neighborhood window is correspondingly stored according to the storage columns of the plurality of preset memories.
  • the accumulation module 508 is further configured to obtain the corresponding signal sequence according to the target signal; determine the signal length corresponding to the target signal in the signal sequence; perform non-determining on the target signal according to the signal length corresponding to the target signal and the preset relationship. Coincident accumulation.
  • the above-mentioned device further includes: a preprocessing module for amplifying the received echo signal to obtain the amplified echo signal; performing analog-to-digital conversion on the amplified echo signal to obtain Converted digital signal; filter the converted digital signal.
  • the above-mentioned device further includes: a covering module, configured to use the echo signal exceeding the buffer quantity as the signal to be processed when the number of received echo signals exceeds the preset buffer quantity;
  • the echo signal with the earliest signal reception sequence determines the first signal corresponding to the next preset transmission period, and the echo signal with the earliest signal reception sequence is covered according to the first signal; the next signal is determined according to the first signal in the buffer signal.
  • Each module in the above-mentioned laser radar echo signal processing device can be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • a computer device in one embodiment, is provided, and its internal structure diagram may be as shown in FIG. 6.
  • the computer equipment includes a processor, a memory, a communication interface, and a database connected through a system bus.
  • the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, computer readable instructions, and a database.
  • the internal memory provides an environment for the operation of the operating system and computer-readable instructions in the non-volatile storage medium.
  • the database of the computer equipment is used to store echo signals and target signals.
  • the communication interface of the computer equipment is used to connect and communicate with the lidar.
  • the computer-readable instruction is executed by the processor to realize a laser radar echo signal processing method.
  • FIG. 6 is only a block diagram of part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • One or more non-volatile computer-readable storage media storing computer-readable instructions.
  • the computer-readable instructions are executed by one or more processors, the one or more processors execute the steps in each of the foregoing method embodiments. step.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达回波信号处理方法,包括:接收待测物体反射的回波信号,回波信号包括多维度的信号发射角度;根据多维度的信号发射角度将回波信号进行缓存,得到缓存信号;当缓存信号的数量达到预设缓存数量时,在缓存信号中提取预设邻域窗对应的目标信号;对目标信号进行非相参积累,输出积累后的目标信号。

Description

激光雷达回波信号处理方法、装置、计算机设备和存储介质 技术领域
本申请涉及一种激光雷达回波信号处理方法、装置、计算机设备和存储介质。
背景技术
激光雷达通过向待测物体发射探测信号,探测信号在经过待测物体时,会发生反射。通过接收待测物体反射的回波信号,进而对回波信号进行进行信号处理。信噪比作为信号处理过程中的重要质量指标,其决定了激光雷达的测距能力。传统方式中,是通过一维非相参积累的方式对激光雷达回波信号进行积累,以提高激光雷达回波信号的信噪比,从而提高激光雷达回波信号的测距能力。
然而,发明人意识到,传统方式在对反射率较低或者距离较远的待检测物体反射的回波信号进行非相参积累时,无法有效提高激光雷达回波信号的信噪比,导致激光雷达回波信号的测距能力较低。
发明内容
根据本申请公开的各种实施例,提供一种能够通过有效提高激光雷达回波信号的信噪比来提高激光雷达回波信号的测距能力的激光雷达回波信号处理方法、装置、计算机设备和存储介质。
一种激光雷达回波信号处理方法包括:
接收待测物体反射的回波信号,所述回波信号包括多维度的信号发射角度;
根据所述多维度的信号发射角度将所述回波信号进行缓存,得到缓存信号;
当所述缓存信号的数量达到预设缓存数量时,在所述缓存信号中提取预设邻域窗对应的目标信号;及
对目标信号进行非相参积累,输出积累后的目标信号。
一种激光雷达回波信号处理装置包括:
接收模块,用于接收待测物体反射的回波信号,所述回波信号包括多维度的信号发射角度;
缓存模块,用于根据所述多维度的信号发射角度将所述回波信号进行缓存,得到缓存信 号;
提取模块,用于当所述缓存信号的数量达到预设缓存数量时,在所述缓存信号中提取预设邻域窗对应的目标信号;及
积累模块,用于对目标信号进行非相参积累,输出积累后的目标信号。
一种计算机设备,包括存储器和一个或多个处理器,所述存储器中储存有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述一个或多个处理器执行以下步骤:
接收待测物体反射的回波信号,所述回波信号包括多维度的信号发射角度;
根据所述多维度的信号发射角度将所述回波信号进行缓存,得到缓存信号;
当所述缓存信号的数量达到预设缓存数量时,在所述缓存信号中提取预设邻域窗对应的目标信号;及
对目标信号进行非相参积累,输出积累后的目标信号。
一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行以下步骤:
接收待测物体反射的回波信号,所述回波信号包括多维度的信号发射角度;
根据所述多维度的信号发射角度将所述回波信号进行缓存,得到缓存信号;
当所述缓存信号的数量达到预设缓存数量时,在所述缓存信号中提取预设邻域窗对应的目标信号;及
对目标信号进行非相参积累,输出积累后的目标信号。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为根据一个或多个实施例中激光雷达回波信号处理方法的应用场景图。
图2为根据一个或多个实施例中激光雷达回波信号处理方法的流程示意图。
图3为根据一个或多个实施例中当缓存信号的数量达到预设缓存数量时,在缓存信号中提取预设邻域窗对应的目标信号步骤的流程示意图。
图4为另一个实施例中激光雷达回波信号处理方法的流程示意图。
图5为根据一个或多个实施例中激光雷达回波信号处理装置的框图。
图6为根据一个或多个实施例中计算机设备的框图。
具体实施方式
为了使本申请的技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的激光雷达回波信号处理方法,可以应用于如图1所示的应用环境中。激光雷达102通过发射探测信号,探测信号在遇到待测物体后,会反射回波信号。激光雷达可以是固态激光雷达。激光雷达102通过接收机接收待测物体反射的回波信号,接收机可以是硅光电倍增管(SiPM)。激光雷达102将回波信号发送至计算机设备104,回波信号包括多维度的信号发射角度。计算机设备104根据多维度的信号发射角度将回波信号进行缓存,得到缓存信号。当缓存信号的数量达到预设缓存数量时,计算机设备104在缓存信号中提取预设邻域窗对应的目标信号。计算机设备104对目标信号进行非相参积累,输出积累后的目标信号。
在其中一个实施例中,如图2所示,提供了一种激光雷达回波信号处理方法,以该方法应用于图1中的计算机设备为例进行说明,包括以下步骤:
步骤202,接收待测物体反射的回波信号,回波信号包括多维度的信号发射角度。
激光雷达发射探测信号,探测信号在遇到待测物体后,会反射回波信号,激光雷达通过接收机接收回波信号。计算机设备接收激光雷达发送的回波信号。回波信号可以包括前导信号、有效回波信号、假回波信号以及环境噪声。回波信号包括多维度的信号发射角度。多维度的信号发射角度可以包括俯仰角(pitch)、偏航角(yaw)。同一个俯仰角可以对应多个偏航角、同一个偏航角也可以对应多个俯仰角。不同的信号发射角度可以对应独立的信号发射和接收,即对应不同的探测信号和回波信号。信号发射角度的数量可以根据激光雷达的单视场分辨率来判断。例如,固态激光雷达的单视场分辨率为76*250,固态激光雷达可以包括76个俯仰角,250个偏航角。多维度的信号发射角度的回波信号可以是激光雷达通过扫描可视范围,调节探测信号的发射角度得到的。激光雷达可以先固定俯仰角,调节探测信号发射的偏航角。当偏航角达到角度范围极限时,激光雷达调整俯仰角,再按照与上一次发射探测信号的相反方向调节后续探测信号发射的偏航角,进而可以得到多维度的信号发射角度的回波信号。
在其中一个实施例中,在根据多维度的信号发射角度将回波信号进行缓存之前,还包括:对接收到的回波信号进行放大处理,得到放大后的回波信号;对放大后的回波信号进行模数转换,得到转换后的数字信号;对转换后的数字信号进行滤波处理。
计算机设备通过对回波信号进行放大处理,能够将微弱的回波信号进行放大,以便后续进行信号处理。计算机设备对放大后的回波信号进行模数转换,以便对回波信号进行非相参积累。计算机设备对转换后的数字信号进行滤波处理,滤波处理可以是去除回波信号中的直流分量,去除直流分量的方式可以是通过高通滤波器来进行滤波处理。计算机设备通过对转换后的数字信号进行滤波处理,能够避免直流分量的干扰。
步骤204,根据多维度的信号发射角度将回波信号进行缓存,得到缓存信号。
步骤206,当缓存信号的数量达到预设缓存数量时,在缓存信号中提取预设邻域窗对应的目标信号。
步骤208,对目标信号进行非相参积累,输出积累后的目标信号。
计算机设备在接收到回波信号之后,可根据多维度的信号发射角度将回波信号进行缓存。具体的,计算机设备接收的回波信号还可以包括信号接收顺序。计算机设备中预先配置有多个存储器。计算机设备根据多维度的信号发射角度和信号接收顺序确定回波信号对应的预设存储器。进而计算机设备将回波信号缓存至确定的预设存储器中。
计算机设备将回波信号缓存后,得到缓存信号。计算机设备判断缓存信号的数量是否达到预设缓存数量。预设缓存数量可以是计算机设备根据激光雷达的发射角度来确定的。例如,激光雷达可以包括76个俯仰角,250个偏航角。预设缓存数量可以是3*250次。
当计算机设备中缓存信号的数量达到预设缓存数量时,计算机设备在缓存信号中提取预设邻域窗对应的目标信号。例如,预设邻域窗的尺寸可以是3*3。预设邻域窗可以是滑动窗。
计算机设备将预设邻域窗的目标信号进行非相参积累。例如,当预设邻域窗的尺寸为3*3时,计算机设备在缓存的回波信号中提取第1-3次、第251-253次、第501-503次总共9次回波信号,作为目标信号。计算机设备将预设邻域窗对应的9次目标信号进行非相参积累,进行非相参积累的回波信号之间的初始相位可以是随机的,彼此不相关。非相参积累可以是在回波信号丢失相位信息的情况下,对回波信号进行积累,以提高回波信号的信噪比。
传统方式中,是通过基于偏航角方向的一维非相参积累的方式对回波信号进行积累,在面对反射率较低或者距离较远的待检测物体时,无法有效提高回波信号的信噪比,导致回波信号的测距能力较低。而在本实施例中,计算机设备通过接收多维度的信号发射角度的回波信号,能够利用多维度的信号发射角度的回波信号之间的空间相关性,来提高非相参积累的信号积累次数。计算机设备通过在缓存的回波信号的数量达到预设缓存数量时,在缓存的回 波信号中提取预设邻域窗对应的目标信号,能够提高目标信号之间的相关性。计算机设备对预设邻域窗对应的目标信号进行非相参积累,能够在目标信号相位丢失的情况下,提高了信号的积累次数,从而提高了回波信号的信噪比,进而有效提高了回波信号的测距能力。
在其中一个实施例中,根据多维度的信号发射角度将回波信号进行缓存,包括:根据多维度的信号发射角度和回波信号的信号接收顺序确定回波信号对应的预设存储器;将回波信号缓存至对应的预设存储器中。
计算机设备接收的回波信号可以包括信号接收顺序。信号接收顺序可以是回波信号对应的发射序号,也可以是回波信号对应的发射时刻。计算机设备中可以预先配置多个存储器。多个存储器中可以存储有相同数量的回波信号。每个存储器具有相应的存储容量。每个存储器中存储的回波信号的数量可以是小于或者等于存储容量的。多维度的信号发射角度可以包括俯仰角(pitch)、偏航角(yaw)。同一个俯仰角可以对应多个偏航角、同一个偏航角也可以对应多个俯仰角。计算机设备可以将具有相同俯仰角、不同偏航角的多个回波信号存储至对应的存储器中。计算机设备通过调节激光雷达的俯仰角,将调节后的俯仰角进行固定,再按照与上一次发射探测信号的相反方向调节激光雷达的偏航角,得到调节后的俯仰角对应的回波信号。计算机设备将调节后的俯仰角对应的回波信号存储至另外一个存储器中。
在其中一个实施例中,多维度的信号发射角度包括第一发射角度和第二发射角度,上述方法还包括:将多个预设存储器排列为多个存储行,每个预设存储器对应一个存储行,每个预设存储器用于存储预设接收顺序对应的第一发射角度相同的回波信号;将多个预设存储器的存储列进行对应排列,得到多个矩阵列,每个矩阵列用于存储第二发射角度相同的回波信号。
计算机设备将多个预设存储器进行对应排列,每个预设存储器的存储行可以将预设接收顺序对应的第一发射角度相同的回波信号进行存储。预设存储器将第二发射角度相同的回波信号存储至多个预设存储器的存储列生成的同一矩阵列中。第一发射角度可以是俯仰角。第二发射角度可以是偏航角。有利于后续进行信号提取。
例如,计算机设备中可以预先配置三个存储器,第一存储器、第二存储器和第三存储器。计算机设备将第1-250次回波信号缓存至第一存储器中,第1-250次回波信号的俯仰角可以是相同的、偏航角可以是不同的。计算机设备将第251-500次回波信号缓存至第二存储器中,第251-500次回波信号的俯仰角可以是相同的、偏航角可以是不同的。计算机设备将第501-750次回波信号缓存至第三存储器中,第500-750次回波信号的俯仰角可以是相同的、偏航角可以是不同的。第1次回波信号、第251次回波信号和第501次回波信号的俯仰角可以是不同的、偏航角可以是相同的。
在本实施例中,计算机设备通过根据多维度的信号发射角度和回波信号的信号接收顺序将回波信号存储至对应的预设存储器中,能够根据相邻探测信号在俯仰角方向和偏航角方向之间的空间关系,将具有较好相关性的回波信号进行对应存储,有利于目标信号的提取。
在其中一个实施例中,如图3所示,上述方法还包括当缓存信号的数量达到预设缓存数量时,在缓存信号中提取预设邻域窗对应的目标信号的步骤,具体包括:
步骤302,当缓存的回波信号的数量达到预设缓存数量时,根据预设信号接收顺序和预设提取数量在缓存信号中提取历史信号。
步骤304,根据提取出的历史信号得到预设邻域窗对应的目标信号。
计算机设备在根据多维度的信号发射角度将回波信号进行缓存后,得到缓存信号。计算机设备判断缓存信号的数量是否达到预设缓存数量,当缓存信号的数量达到预设缓存数量时,提取预设邻域窗对应的目标信号。预设邻域窗可以包括预设信号接收顺序和预设提取数量。预设信号接收顺序可以是缓存信号对应的多个预设存储器中信号接收顺序较早回波信号。预设提取数量可以是在每个预设存储器中提取三次回波信号,即总共9次回波信号。计算机设备在每个预设存储器中提取信号接收顺序较早的三次历史信号,将提取的三次历史信号作为预设邻域窗对应的目标信号。例如,计算机设备在缓存信号中提取第1-3次、第251-253次、第501-503次总共9次历史信号,作为目标信号。
在其中一个实施例中,上述方法还包括:根据多个预设存储器对应的存储行数量确定预设邻域窗的存储行数量,预设邻域窗的每个存储行用于存储在预设存储器中提取出的预设信号接收顺序的缓存信号;根据多个预设存储器的存储列将预设邻域窗的存储行中存储的缓存信号进行对应存储。
计算机设备中预设邻域窗的存储行数量与预设存储器对应的存储行数量可以是相同的。预设邻域窗的每个存储行用于在预设存储器中提取出的预设信号接收顺序的缓存信号,进行存储。预设邻域窗的每个存储行中可以存储俯仰角相同的缓存信号。预设邻域窗的存储列数量可以是预先设置的。预设邻域窗的存储列可以用于存储偏航角相同的缓存信号,且相邻空间上的缓存信号之间相差一个预设发射周期。
例如,当预设缓存数量为3*250次时,预设邻域窗的尺寸可以是3*3。预设信号接收顺序可以是在每个存储器中提取信号接收顺序最早的三次缓存信号。预设提取数量可以是9次。计算机设备将提取出来的9次缓存信号作为预设邻域窗对应的目标信号。
在本实施例中,计算机设备通过根据预设提取顺序和预设提取数量在缓存信号中提取历史信号,得到预设邻域窗对应的目标信号,实现将相关性较好的历史信号提取出来,以提高非相参积累的次数,进而提高回波信号的测距能力。
在其中一个实施例中,如图4所示,提供了一种激光雷达回波信号处理方法,以该方法应用于计算机设备为例进行说明,包括以下步骤:
步骤402,接收待测物体反射的回波信号,回波信号包括多维度的信号发射角度。
步骤404,根据多维度的信号发射角度将回波信号进行缓存,得到缓存信号。
步骤406,当缓存信号的数量达到预设缓存数量时,在缓存信号中提取预设邻域窗对应的目标信号。
步骤408,根据目标信号获取对应的信号序列。
步骤410,在信号序列中确定目标信号对应的信号长度。
步骤412,根据目标信号对应的信号长度和预设关系对目标信号进行非相参积累。
计算机设备在提取预设邻域窗对应的目标信号之后,根据目标信号获取对应的信号序列。信号序列可以是以一定频点对回波信号进行保持之后得到的脉冲序列。信号序列可以是距离门。计算机设备在信号序列中确定目标信号对应的信号长度。信号长度可以是目标信号的幅度。回波信号的数据长度为L,目标信号对应的信号长度为n,n的取值范围可以是[1,L]。进而计算机设备根据信号长度和预设关系对目标信号进行非相参积累。预设关系可以是非相参积累的计算公式。例如,当提取的目标信号的数量为9次,则计算公式可以如下所示:
Figure PCTCN2019107880-appb-000001
其中,y[n]表示积累后的目标信号,n表示每次目标信号的信号长度,i表示目标信号的次数,L表示回波信号的数据长度。
在本实施例中,计算机设备通过接收多维度的信号发射角度的回波信号,能够利用多维度的信号发射角度的回波信号之间的空间相关性,来提高非相参积累的信号积累次数。计算机设备通过在缓存信号的数量达到预设缓存数量时,在缓存信号中提取预设邻域窗对应的目标信号,能够提高目标信号之间的相关性。计算机设备通过获取目标信号对应的信号序列,在信号序列中确定目标信号对应的信号长度,进而根据预设关系对目标信号进行非相参积累,能够将同一信号序列的多个目标信号的信号长度进行积累,从而进一步提高回波信号的信噪比,进而提高回波信号的测距能力。
在其中一个实施例中,回波信号包括信号接收顺序,上述方法还包括:当接收到的回波信号的数量超过预设缓存数量时,将超过缓存数量的回波信号作为待处理信号;根据缓存信号中信号接收顺序最早的回波信号确定下一个预设发射周期对应的第一信号,根据第一信号对信号接收顺序最早的回波信号进行覆盖;根据缓存信号中第一信号确定下一个预设发射周期对应的第二信号,根据第二信号对第一信号进行覆盖;重复在缓存信号中进行信号覆盖的步骤,在缓存信号中将下一个预设发射周期的缓存信号对前一个预设发射周期的缓存信号进 行覆盖,直至将待处理信号对前一个预设发射周期对应的缓存信号进行覆盖;在覆盖后的缓存信号中提取预设邻域窗对应的目标信号。
计算机设备在缓存信号的数量达到预设数量后,可以对预设存储器中的缓存信号进行覆盖。具体地,计算机设备中预先配置有多个存储器,计算机设备将超出缓存数量的回波信号作为待处理信号。每个存储器中可以存储一个预设发射周期的回波信号。一个预设发射周期可以是发射250次回波信号。计算机设备接收到的回波信号包括信号接收顺序。计算机设备可以先在多个预设存储器中识别信号接收顺序最早的回波信号对应的下一个预设发射周期的第一信号,将第一信号对信号接收顺序最早的回波信号在存储器中的信号位置进行覆盖。计算机设备在多个预设存储器中识别第一信号对应的下一个预设发射周期的第二信号,将第二信号对第一信号在存储器中的信号位置进行覆盖。计算机设备重复上述信号覆盖的步骤,在缓存信号中将下一个预设发射周期的缓存信号对前一个预设发射周期的缓存信号进行覆盖,直至将待处理信号对缓存信号中待处理信号的前一个预设发射周期对应的缓存信号进行覆盖。计算机设备在信号覆盖完成后,在覆盖后的缓存信号中提取预设邻域窗对应的目标信号。预设邻域窗可以是滑动的邻域窗。当预设邻域窗的尺寸为3*3时,计算机设备可以在覆盖后的缓存信号中提取第502-504次、第252-254次、第2-4次缓存信号,进行非相参积累。
当预设存储器中的缓存先后进行覆盖后,预设邻域窗也可以随之滑动。预设邻域窗内包括存储行与存储列。存储行数量与预设存储器的数量可以是相同的。预设邻域窗的每个存储行可以包括三个存储器,分别为第一邻域存储器、第二邻域存储器、第三邻域存储器。计算机设备读取第一邻域存储器中存储的信号,写入第二存储器。计算机设备读取第二存储器中信号接收顺序最早的信号,写入第三存储器。第一存储器提取预设存储器中的下一次回波信号进行存储。此时,预设邻域窗中存储的信号为第502-504次、第252-254次、第2-4次缓存信号。
对预设存储器中的缓存信号进行信号覆盖以及在覆盖后的缓存信号中提取预设邻域窗的目标信号的结构示意图可以如下图所示:
Figure PCTCN2019107880-appb-000002
Figure PCTCN2019107880-appb-000003
其中,line_ram1表示第三存储器,line_ram2表示第二存储器,line_ram3表示第一存储器。黑框中的信号可以是在缓存信号中提取的预设邻域窗的信号。
例如,计算机设备中可以预先配置三个存储器,第一存储器、第二存储器和第三存储器。预设发射周期为250。计算机设备将第1-250次回波信号缓存至第一存储器中,将第251-500次回波信号缓存至第二存储器中,将第501-750次回波信号缓存至第三存储器中。当计算机设备接收到第751次回波信号时。此时,计算机设备接收到的回波信号的数量超过预设缓存数量750。存储器中信号接收顺序最早的回波信号为第1次回波信号。计算机设备先在三个存储器中识别第1次回波信号对应的第251次回波信号,将第251次回波信号对第一存储器中的第1次回波信号的信号位置进行覆盖。计算机设备在三个存储器中识别第251次回波信号对应的第501次回波信号,将第501次回波信号对第二存储器中的第251次回波信号的信号位置进行覆盖。计算机设备将接收到的第751次回波信号对第三存储器中的第501次回波信号的信号位置进行覆盖。当预设邻域窗的尺寸为3*3时,计算机设备可以在覆盖后的缓存信号中提取第502-504次、第252-254次、第2-4次缓存信号,进行非相参积累。
又如,当计算机接收到第752次回波信号时,此时,存储器中信号接收顺序最早的回波信号为第2次回波信号。计算机设备先在三个存储器中识别第2次回波信号对应的第252次回波信号,将第252次回波信号对第一存储器中的第2次回波信号的信号位置进行覆盖。计算机设备在三个存储器中识别第252次回波信号对应的第502次回波信号,将第502次回波信号对第二存储器中的第252次回波信号的信号位置进行覆盖。计算机设备将接收到的第752次回波信号对第三存储器中的第502次回波信号的信号位置进行覆盖。当预设邻域窗的尺寸为3*3时,计算机设备可以在覆盖后的缓存信号中提取第502-504次、第252-254次、第2-4次缓存信号,进行非相参积累。
在本实施例中,计算机设备在接收到的回波信号的数量超过预设缓存数量时,根据超过缓存数量的回波信号对相应的缓存信号进行覆盖,并在覆盖后的缓存信号中提取预设邻域窗的目标信号。有利于实现目标信号的非相参积累,进而能够提高回波信号的信噪比。
应该理解的是,虽然图1-4的流程图中的各个步骤按照箭头的指示依次显示,但是这些 步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-4中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在其中一个实施例中,如图5所示,提供了一种激光雷达回波信号处理装置,包括:接收模块502、缓存模块504、提取模块506和积累模块508,其中:
接收模块502,用于接收待测物体反射的回波信号,回波信号包括多维度的信号发射角度。
缓存模块504,用于根据多维度的信号发射角度将回波信号进行缓存,得到缓存信号。
提取模块506,用于当缓存信号的数量达到预设缓存数量时,在缓存信号中提取预设邻域窗对应的目标信号。
积累模块508,用于对目标信号进行非相参积累,输出积累后的目标信号。
在其中一个实施例中,缓存模块504还用于根据多维度的信号发射角度和回波信号的信号接收顺序确定回波信号对应的预设存储器;将回波信号缓存至对应的预设存储器中。
在其中一个实施例中,上述装置还包括:排列模块,用于将多个预设存储器排列为多个存储行,每个预设存储器对应一个存储行,每个预设存储器用于存储预设接收顺序对应的第一发射角度相同的回波信号;将多个预设存储器的存储列进行对应排列,得到多个矩阵列,每个矩阵列用于存储第二发射角度相同的回波信号。
在其中一个实施例中,提取模块506还用于提取模块还用于当缓存信号的数量达到预设缓存数量时,根据预设信号接收顺序和预设提取数量在缓存信号中提取历史信号;根据提取出的历史信号得到预设邻域窗对应的目标信号。
在其中一个实施例中,上述装置还包括:确定模块,用于根据多个预设存储器对应的存储行数量确定预设邻域窗的存储行数量,预设邻域窗的每个存储行用于存储在预设存储器中提取出的预设信号接收顺序的缓存信号;根据多个预设存储器的存储列将预设邻域窗的存储行中存储的缓存信号进行对应存储。
在其中一个实施例中,积累模块508还用于根据目标信号获取对应的信号序列;在信号序列中确定目标信号对应的信号长度;根据目标信号对应的信号长度和预设关系对目标信号进行非相参积累。
在其中一个实施例中,上述装置还包括:预处理模块,用于对接收到的回波信号进行放 大处理,得到放大后的回波信号;对放大后的回波信号进行模数转换,得到转换后的数字信号;对转换后的数字信号进行滤波处理。
在其中一个实施例中,上述装置还包括:覆盖模块,用于当接收到的回波信号的数量超过预设缓存数量时,将超过缓存数量的回波信号作为待处理信号;根据缓存信号中信号接收顺序最早的回波信号确定下一个预设发射周期对应的第一信号,根据第一信号对信号接收顺序最早的回波信号进行覆盖;根据缓存信号中所述第一信号确定下一个预设发射周期对应的第二信号,根据第二信号对第一信号进行覆盖;重复在缓存信号中进行信号覆盖的步骤,在缓存信号中将下一个预设发射周期的缓存信号对前一个预设发射周期的缓存信号进行覆盖,直至将待处理信号对前一个预设发射周期对应的缓存信号进行覆盖;在覆盖后的缓存信号中提取预设邻域窗对应的目标信号。
关于激光雷达回波信号处理装置的具体限定可以参见上文中对于激光雷达回波信号处理方法的限定,在此不再赘述。上述激光雷达回波信号处理装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,其内部结构图可以如图6所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机可读指令和数据库。该内存储器为非易失性存储介质中的操作系统和计算机可读指令的运行提供环境。该计算机设备的数据库用于存储回波信号和目标信号。该计算机设备的通信接口用于与激光雷达进行连接通信。该计算机可读指令被处理器执行时以实现一种激光雷达回波信号处理方法。
本领域技术人员可以理解,图6中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行上述各个方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用, 均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种激光雷达回波信号处理方法,包括:
    接收待测物体反射的回波信号,所述回波信号包括多维度的信号发射角度;
    根据所述多维度的信号发射角度将所述回波信号进行缓存,得到缓存信号;
    当所述缓存信号的数量达到预设缓存数量时,在所述缓存信号中提取预设邻域窗对应的目标信号;及
    对所述目标信号进行非相参积累,输出积累后的目标信号。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述多维度的信号发射角度将所述回波信号进行缓存,包括:
    根据所述多维度的信号发射角度和所述回波信号的信号接收顺序确定所述回波信号对应的预设存储器;及
    将所述回波信号缓存至对应的预设存储器中。
  3. 根据权利要求1至2任意一项所述的方法,其特征在于,所述多维度的信号发射角度包括第一发射角度和第二发射角度,所述方法还包括:
    将多个预设存储器排列为多个存储行,每个预设存储器对应一个存储行,每个预设存储器用于存储预设接收顺序对应的第一发射角度相同的回波信号;及
    将多个预设存储器的存储列进行对应排列,得到多个矩阵列,每个矩阵列用于存储第二发射角度相同的回波信号。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,所述当缓存信号的数量达到预设缓存数量时,在所述缓存信号中提取预设邻域窗对应的目标信号,包括:
    当缓存信号的数量达到预设缓存数量时,根据预设信号接收顺序和预设提取数量在所述缓存信号中提取历史信号;及
    根据提取出的历史信号得到预设邻域窗对应的目标信号。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,所述方法还包括:
    根据多个预设存储器对应的存储行数量确定预设邻域窗的存储行数量,预设邻域窗的每个存储行用于存储在预设存储器中提取出的预设信号接收顺序的缓存信号;及
    根据多个预设存储器的存储列将所述预设邻域窗的存储行中存储的缓存信号进行对应存储。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,所述对目标信号进行非相参积累,包括:
    根据所述目标信号获取对应的信号序列;
    在所述信号序列中确定所述目标信号对应的信号长度;及
    根据所述目标信号对应的信号长度和预设关系对所述目标信号进行非相参积累。
  7. 根据权利要求1至6任意一项所述的方法,其特征在于,在所述根据所述多维度的信号发射角度将所述回波信号进行缓存之前,还包括:
    对接收到的回波信号进行放大处理,得到放大后的回波信号;
    对所述放大后的回波信号进行模数转换,得到转换后的数字信号;及
    对所述转换后的数字信号进行滤波处理。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,所述回波信号包括信号接收顺序,所述方法还包括:
    当接收到的回波信号的数量超过预设缓存数量时,将超过缓存数量的回波信号作为待处理信号;
    根据所述缓存信号中信号接收顺序最早的回波信号确定下一个预设发射周期对应的第一信号,根据所述第一信号对所述信号接收顺序最早的回波信号进行覆盖;
    根据所述缓存信号中所述第一信号确定下一个预设发射周期对应的第二信号,根据所述第二信号对所述第一信号进行覆盖;
    重复在所述缓存信号中进行信号覆盖的步骤,在缓存信号中将下一个预设发射周期的缓存信号对前一个预设发射周期的缓存信号进行覆盖,直至将所述待处理信号对前一个预设发射周期对应的缓存信号进行覆盖;及
    在覆盖后的缓存信号中提取预设邻域窗对应的目标信号。
  9. 一种激光雷达回波信号的积累装置,包括:
    接收模块,用于接收待测物体反射的回波信号,所述回波信号包括多维度的信号发射角度;
    缓存模块,用于根据所述多维度的信号发射角度将所述回波信号进行缓存,得到缓存信号;
    提取模块,用于当所述缓存信号的数量达到预设缓存数量时,在所述缓存信号中提取预设邻域窗对应的目标信号;及
    积累模块,用于对目标信号进行非相参积累,输出积累后的目标信号。
  10. 根据权利要9所述的装置,其特征在于,所述缓存模块还用于根据所述多维度的 信号发射角度和所述回波信号的信号接收顺序确定所述回波信号对应的预设存储器;及将所述回波信号缓存至对应的预设存储器中。
  11. 根据权利要9至10任意一项所述的装置,其特征在于,所述装置还包括:排列模块,用于将多个预设存储器排列为多个存储行,每个预设存储器对应一个存储行,每个预设存储器用于存储预设接收顺序对应的第一发射角度相同的回波信号;及将多个预设存储器的存储列进行对应排列,得到多个矩阵列,每个矩阵列用于存储第二发射角度相同的回波信号。
  12. 根据权利要求9至11任意一项所述的装置,其特征在于,所述提取模块还用于当缓存信号的数量达到预设缓存数量时,根据预设信号接收顺序和预设提取数量在所述缓存信号中提取历史信号;及根据提取出的历史信号得到预设邻域窗对应的目标信号。
  13. 根据权利要求9至12任意一项所述的装置,其特征在于,所述装置还包括:确定模块,用于根据多个预设存储器对应的存储行数量确定预设邻域窗的存储行数量,预设邻域窗的每个存储行用于存储在预设存储器中提取出的预设信号接收顺序的缓存信号;及根据多个预设存储器的存储列将所述预设邻域窗的存储行中存储的缓存信号进行对应存储。
  14. 根据权利要求9至13任意一项所述的装置,其特征在于,所述积累模块还用于根据所述目标信号获取对应的信号序列;在所述信号序列中确定所述目标信号对应的信号长度;及根据所述目标信号对应的信号长度和预设关系对所述目标信号进行非相参积累。
  15. 根据权利要求9至14任意一项所述的装置,其特征在于,所述装置还包括:预处理模块,用于对接收到的回波信号进行放大处理,得到放大后的回波信号;对所述放大后的回波信号进行模数转换,得到转换后的数字信号;及对所述转换后的数字信号进行滤波处理。
  16. 根据权利要求9至15任意一项所述的装置,其特征在于,所述装置还包括:覆盖模块,用于当接收到的回波信号的数量超过预设缓存数量时,将超过缓存数量的回波信号作为待处理信号;根据所述缓存信号中信号接收顺序最早的回波信号确定下一个预设发射周期对应的第一信号,根据所述第一信号对所述信号接收顺序最早的回波信号进行覆盖;根据所述缓存信号中所述第一信号确定下一个预设发射周期对应的第二信号,根据所述第二信号对所述第一信号进行覆盖;重复在所述缓存信号中进行信号覆盖的步骤,在缓存信号中将下一个预设发射周期的缓存信号对前一个预设发射周期的缓存信号进行覆盖,直至将所述待处理信号对前一个预设发射周期对应的缓存信号进行覆盖;及在覆盖后的缓 存信号中提取预设邻域窗对应的目标信号。
  17. 一种计算机设备,包括存储器及一个或多个处理器,所述存储器中储存有计算机可读指令,所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行权利要求1至8中任意一项所述方法的步骤。
  18. 一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行权利要求1至8中任意一项所述方法的步骤。
PCT/CN2019/107880 2019-09-25 2019-09-25 激光雷达回波信号处理方法、装置、计算机设备和存储介质 WO2021056269A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980050255.XA CN112585489B (zh) 2019-09-25 2019-09-25 激光雷达回波信号处理方法、装置、计算机设备和存储介质
PCT/CN2019/107880 WO2021056269A1 (zh) 2019-09-25 2019-09-25 激光雷达回波信号处理方法、装置、计算机设备和存储介质
CN202310695029.5A CN116879864A (zh) 2019-09-25 2019-09-25 激光雷达回波信号处理方法和装置
US17/702,940 US20220214429A1 (en) 2019-09-25 2022-03-24 Lidar echo signal processing method and device, computer device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107880 WO2021056269A1 (zh) 2019-09-25 2019-09-25 激光雷达回波信号处理方法、装置、计算机设备和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/702,940 Continuation-In-Part US20220214429A1 (en) 2019-09-25 2022-03-24 Lidar echo signal processing method and device, computer device, and storage medium

Publications (1)

Publication Number Publication Date
WO2021056269A1 true WO2021056269A1 (zh) 2021-04-01

Family

ID=75117217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107880 WO2021056269A1 (zh) 2019-09-25 2019-09-25 激光雷达回波信号处理方法、装置、计算机设备和存储介质

Country Status (3)

Country Link
US (1) US20220214429A1 (zh)
CN (2) CN112585489B (zh)
WO (1) WO2021056269A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249951A1 (en) * 2022-03-24 2023-09-27 Suteng Innovation Technology Co., Ltd Lidar echo signal processing method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759339B (zh) * 2021-11-10 2022-02-25 北京一径科技有限公司 一种回波信号的处理方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174475A1 (en) * 2006-10-20 2008-07-24 David Charles Clark Signal processing for accelerating moving targets
CN102073043A (zh) * 2010-11-04 2011-05-25 电子科技大学 一种多帧相参积累目标检测前跟踪方法
CN102313884A (zh) * 2010-06-29 2012-01-11 电子科技大学 一种基于多帧相参积累的目标检测前跟踪方法
CN102608590A (zh) * 2012-03-21 2012-07-25 电子科技大学 一种基于动态规划和后像投影算法的相参积累方法
CN103941253A (zh) * 2014-05-12 2014-07-23 上海航天电子通讯设备研究所 一种搜索雷达数据的滑窗检测录取方法及其系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647578B2 (ja) * 2006-11-22 2011-03-09 三菱電機株式会社 レーダ信号処理装置
CN105589061A (zh) * 2015-12-11 2016-05-18 无锡市雷华科技有限公司 一种岸基雷达的信号处理算法
CN108828552B (zh) * 2018-03-28 2020-12-15 郑州航空工业管理学院 一种机载脉冲激光雷达的目标检测及航迹搜索方法
CN109143179B (zh) * 2018-07-26 2020-10-30 清华大学 一种基于变重频技术的捷变频雷达信号处理方法及装置
CN109870678B (zh) * 2018-12-06 2024-02-20 苏州镭图光电科技有限公司 激光雷达发射功率及回波增益自动调节方法及调节装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174475A1 (en) * 2006-10-20 2008-07-24 David Charles Clark Signal processing for accelerating moving targets
CN102313884A (zh) * 2010-06-29 2012-01-11 电子科技大学 一种基于多帧相参积累的目标检测前跟踪方法
CN102073043A (zh) * 2010-11-04 2011-05-25 电子科技大学 一种多帧相参积累目标检测前跟踪方法
CN102608590A (zh) * 2012-03-21 2012-07-25 电子科技大学 一种基于动态规划和后像投影算法的相参积累方法
CN103941253A (zh) * 2014-05-12 2014-07-23 上海航天电子通讯设备研究所 一种搜索雷达数据的滑窗检测录取方法及其系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249951A1 (en) * 2022-03-24 2023-09-27 Suteng Innovation Technology Co., Ltd Lidar echo signal processing method and device

Also Published As

Publication number Publication date
CN112585489B (zh) 2023-07-14
US20220214429A1 (en) 2022-07-07
CN116879864A (zh) 2023-10-13
CN112585489A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2021056269A1 (zh) 激光雷达回波信号处理方法、装置、计算机设备和存储介质
US10281565B2 (en) Distance measuring device and solid-state image sensor used therein
US9008383B2 (en) Enhancing quality of ultrasound image in ultrasound system
WO2021056332A1 (zh) 激光雷达信号处理方法、装置、计算机设备和存储介质
US20120114209A1 (en) Enhancing quality of ultrasound spatial compound image based on beam profile in ultrasound system
CA3067943C (en) Method and device for optical distance measurement
WO2021042382A1 (zh) 激光雷达测距方法、装置、计算机设备和存储介质
US9568599B2 (en) Radar signal processing device, radar apparatus, and method of processing radar signal
KR101041926B1 (ko) 최소값 선택 추정방식을 이용한 잡음재밍 추정방법
CN113253240B (zh) 一种基于光子探测的空间目标识别分法、存储介质和系统
US20230204723A1 (en) Lidar control method, terminal apparatus, and computer-readable storage medium
US20110184292A1 (en) Ultrasound image enhancement in an ultrasound system
JP3853976B2 (ja) レーダー装置及び類似装置並びに画像データ書込方法
US20220284543A1 (en) Signal processing apparatus and signal processing method
US11835649B2 (en) Method and apparatus for radar signal processing using convolutional neural network
KR20220037835A (ko) 표적 식별 향상을 위한 부엽 감소 방법 및 장치
JP6829801B2 (ja) 超音波アレイセンサシステム
EP4249951A1 (en) Lidar echo signal processing method and device
CN105787954B (zh) 一种用于取款机钞票图像采集的图像分割方法
CN113671458A (zh) 一种目标物体识别方法及装置
JP6059665B2 (ja) レーダ信号処理装置、レーダ装置、及びレーダ信号処理方法
CN112097778B (zh) 一种同时提取大小目标的识别跟踪方法
Satzoda et al. Gradient angle histograms for efficient linear hough transform
CN116616817B (zh) 超声心率检测方法、装置、超声设备及存储介质
CN113109777B (zh) 基于stokes矢量分解的宽带极化雷达目标检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946835

Country of ref document: EP

Kind code of ref document: A1