WO2021053979A1 - Silicone composition and cured product thereof - Google Patents

Silicone composition and cured product thereof Download PDF

Info

Publication number
WO2021053979A1
WO2021053979A1 PCT/JP2020/029614 JP2020029614W WO2021053979A1 WO 2021053979 A1 WO2021053979 A1 WO 2021053979A1 JP 2020029614 W JP2020029614 W JP 2020029614W WO 2021053979 A1 WO2021053979 A1 WO 2021053979A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
parts
mass
silicone
Prior art date
Application number
PCT/JP2020/029614
Other languages
French (fr)
Japanese (ja)
Inventor
晶 坂本
展明 松本
一馬 石田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2021053979A1 publication Critical patent/WO2021053979A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a silicone composition and a cured product thereof.
  • a substance having a property that its viscoelastic property changes depending on the frequency of stress is a liquid or grease-like composition highly filled with particles (Patent Document 3), but these compositions are liquid. It is difficult to protect the parts with the composition itself, and it is difficult to use in design because it is easy for anyone to occur and it will flow out if it is not sealed.
  • mobile terminals and the like are required to be designed to be as light as possible in order to be carried and worn, but the above composition has a high density due to its high particle filling, so that it can be used for use. There was a limit.
  • JP-A-2018-104615 Japanese Unexamined Patent Publication No. 2011-74973 Japanese Patent No. 3867898
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a silicone composition that gives a cured product having a high storage elastic modulus and a low density under high frequency.
  • the present invention 1.
  • a silicone composition containing C) an addition reaction catalyst and (D) a hollow inorganic filler having an average particle size of 100 ⁇ m or less: 10 to 500 parts by mass.
  • silicone cured products with a density of 0.8 g / cm 3 or less, 6.
  • a 4 or 5 silicone cured product having a (storage elastic modulus at a frequency of 100 Hz) / (storage elastic modulus at a frequency of 0.1 Hz) of 3.0 or more.
  • Impact cushioning material made of a cured silicone product of any of 4 to 6.
  • An electronic component having a shock absorbing material of 7 is provided.
  • the storage elastic modulus is high at the time of impact such as dropping, and not only the internal precision parts can be protected from the impact, but also the storage elastic modulus is low against vibration and the like.
  • a cured product that can prevent misalignment of parts can be obtained.
  • the cured product of the present invention has a low density after curing, so that the weight of the device is not excessively increased.
  • the cured product of the present invention having such characteristics is extremely effective for a wearable device such as a smart watch, which wants to reduce the weight as much as possible.
  • the silicone composition according to the present invention is (A) At least one silicon atom in one molecule of organopolysiloxane (B) having an alkenyl group bonded to at least one silicon atom in one molecule and having a viscosity at 25 ° C. of 0.01 to 100 Pa ⁇ s. It is characterized by containing an organohydrogenpolysiloxane (C) addition reaction catalyst (D) having a hydrogen atom bonded to the hollow inorganic filler having an average particle size of 100 ⁇ m or less.
  • Component (A) has a viscosity at 25 ° C. of 0.01 to 100 Pa ⁇ s, preferably 0.1 to 10 Pa ⁇ s, and more preferably 0.5 to 10 Pa ⁇ s. It is an organopolysiloxane having an alkenyl group bonded to at least one silicon atom in the molecule.
  • the viscosity is a value measured by a rotational viscometer (hereinafter, the same applies).
  • Such an organopolysiloxane is not particularly limited as long as it satisfies the above viscosity and alkenyl group content, and a known organopolysiloxane can be used.
  • the structure may be linear or branched, and may be a mixture of two or more organopolysiloxanes having different viscosities.
  • the number of carbon atoms of the alkenyl group bonded to the silicon atom is not particularly limited, but is preferably 2 to 10, and more preferably 2 to 8.
  • Specific examples of the alkenyl group include vinyl, allyl, 1-butenyl, 1-hexenyl group and the like, and among these, the vinyl group is preferable from the viewpoint of ease of synthesis and cost.
  • the alkenyl group may be present at the end or in the middle of the molecular chain of the organopolysiloxane, but it is preferable that the alkenyl group is present only at the end in terms of flexibility.
  • Examples of the organic group other than the alkenyl group bonded to the silicon atom include a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms.
  • a monovalent hydrocarbon group include an alkyl group such as methyl, ethyl, n-propyl, n-butyl, n-hexyl and n-dodecyl group; an aryl group such as a phenyl group; 2-phenylethyl. , 2-Phenylpropyl group and other aralkyl groups.
  • a part or all of the hydrogen atoms of these hydrocarbon groups may be substituted with halogen atoms such as chlorine, fluorine and bromine.
  • the group substituted with a halogen atom include a halogen-substituted monovalent hydrocarbon group such as fluoromethyl, bromoethyl, chloromethyl, and 3,3,3-trifluoropropyl group.
  • a halogen-substituted monovalent hydrocarbon group such as fluoromethyl, bromoethyl, chloromethyl, and 3,3,3-trifluoropropyl group.
  • 90 mol% or more of the organic groups are methyl groups.
  • an organopolysiloxane having both ends sealed with a dimethylvinylsilyl group is preferable, and a dimethylpolysiloxane having both ends sealed with a dimethylvinylsilyl group is more preferable.
  • the component (A) may be used alone or in combination of two or more.
  • the component (B) is an organohydrogenpolysiloxane having a hydrogen atom bonded to at least one silicon atom in one molecule.
  • the molecular structure of the organohydrogensiloxane of the component (B) may be linear, branched or reticulated.
  • the kinematic viscosity not particularly limited, preferably a kinematic viscosity 1 ⁇ 10,000mm 2 / s at 25 °C, 1 ⁇ 1,000mm 2 / s is more preferable.
  • the kinematic viscosity is a value measured by a Canon Fenceke type viscometer.
  • organic group other than the hydrogen atom bonded to the silicon atom of the component (B) those having 1 to 10 carbon atoms excluding the alkenyl group are preferable.
  • alkyl groups such as methyl, ethyl, n-propyl, n-butyl, n-hexyl and n-dodecyl groups; aryl groups such as phenyl groups; 2-phenylethyl, 2-phenylpropyl groups and the like.
  • Aralkyll groups and the like a part or all of the hydrogen atoms of these hydrocarbon groups may be substituted with halogen atoms such as chlorine, fluorine and bromine.
  • the group substituted with a halogen atom include a halogen-substituted monovalent hydrocarbon group such as fluoromethyl, bromoethyl, chloromethyl, and 3,3,3-trifluoropropyl group.
  • a halogen-substituted monovalent hydrocarbon group such as fluoromethyl, bromoethyl, chloromethyl, and 3,3,3-trifluoropropyl group.
  • 90 mol% or more of the organic groups are methyl groups.
  • component (B) of the present invention preferably contains an organohydrogenpolysiloxane represented by the following formula (2).
  • p and q represent positive integers
  • p + q represents an integer of 10 to 100, preferably an integer of 20 to 60.
  • the organohydrogenpolysiloxane has a viscosity suitable for handling, and when used for electronic parts, it is possible to suppress contact failure due to volatilization of the organohydrogenpolysiloxane. it can.
  • p / (p + q) is preferably 0.01 to 0.5, more preferably 0.05 to 0.4. Within such a range, the cross-linking proceeds sufficiently, and it is possible to suppress the progress of the excess cross-linking reaction by the unreacted Si—H group after the initial curing with time.
  • R 3 independently represents an alkyl group having 1 to 6 carbon atoms, and the structure may be linear, branched chain, or cyclic.
  • Specific examples of the alkyl group include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl group and the like, and 90 mol% or more of R 3 in terms of ease of synthesis and cost. Is preferably a methyl group.
  • component (B) of the present invention preferably contains an organohydrogenpolysiloxane represented by the following formula (3).
  • R 4 independently represents an alkyl group having 1 to 6 carbon atoms, and specific examples thereof include the same groups as those exemplified in R 3 above. In this case, however, from the viewpoint of ease of synthesis and cost, a methyl group is preferable for 90% or more. Further, m represents an integer of 5 to 1,000, preferably an integer of 10 to 100. Within such a range, the organohydrogenpolysiloxane has a viscosity suitable for handling, and when used for electronic components, contact failure due to volatilization of the organohydrogenpolysiloxane can be suppressed.
  • component (B) used in the present invention include, but are not limited to, organohydrogenpolysiloxane represented by the following formula.
  • the blending amount of the component (B) is 0.1 to 100 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A) in consideration of improving the curability of the composition, but 1 to 1 to 100 parts by mass. 10 parts by mass is preferable.
  • the component (B) may be used alone or in combination of two or more.
  • the addition reaction catalyst of the component (C) and the component (C) is a platinum group metal-based catalyst, and promotes the addition reaction between the alkenyl group of the component (A) and the Si—H group of the component (B). Any of the conventionally known ones can be appropriately selected and used. Specific examples of the catalyst include platinum (including platinum black), rhodium, palladium and other platinum group metals alone; H 2 PtCl 4 ⁇ nH 2 O, H 2 PtCl 6 ⁇ nH 2 O, NaHP PtCl 6 ⁇ nH 2 O.
  • n is an integer of 0 to 6, preferably 0 or 6
  • platinum chloride such as platinum chloride, chloroplatinic acid and chloroplatinate; alcohol-modified chloroplatinic acid; complex of chloroplatinic acid and olefin; platinum black.
  • Platinum group metal such as palladium supported on a carrier such as alumina, silica, carbon; rhodium-olefin complex; chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst); platinum chloride, platinum chloride acid or platinum chloride Examples thereof include a complex of an acid salt and a vinyl group-containing siloxane, and these platinum group metal-based catalysts may be used alone or in combination of two or more. Among these, a catalyst selected from platinum and a platinum compound is preferable.
  • the blending amount of the component (C) may be an effective amount as a catalyst, that is, an amount capable of advancing the reaction between the component (A) and the like and the component (B), and may be appropriately adjusted according to the desired curing rate. Good.
  • the amount of the component (A) is preferably 0.1 to 7,000 ppm, preferably 1 to 6,000 ppm based on the mass converted to the platinum group metal atom. If the blending amount of the component (C) is less than 0.1 ppm based on the mass converted to platinum group metal atoms, the effect as a catalyst may not be exhibited, and even if it is used in excess of 7,000 ppm, it is particularly cured. It may not be possible to expect an increase in speed.
  • the component (D) is a hollow inorganic filler having an average particle size of 100 ⁇ m or less, and since the filler itself has a hollow structure, it is a component that reduces the density of the composition and is inorganic. It is also a component that increases the storage elastic modulus at high frequencies as particles.
  • the average particle size of the hollow inorganic filler is 100 ⁇ m or less from the viewpoint of the impact protection performance of the cured product, but considering that the impact protection performance is further enhanced, 1 to 90 ⁇ m is preferable, and 5 to 40 ⁇ m is more preferable. ..
  • the average particle size in the present invention is a value measured as a volume mean value D 50 (that is, a particle size or a median diameter when the cumulative volume becomes 50%) in the particle size distribution measurement by the laser light diffraction method.
  • the shape of the hollow inorganic filler is not particularly limited, but a spherical shape is preferable.
  • the true specific gravity of the hollow inorganic filler is not particularly limited, but is preferably 0.1 to 0.8 in consideration of ease of preparation of the composition and efficient reduction of density.
  • component (D) examples include glass balloons, silica balloons, carbon balloons, alumina balloons, zirconia balloons, shirasu balloons and the like.
  • a glass balloon is preferable because it is easily available and the heat resistance of the composition is improved.
  • the blending amount of the component (D) is 10 to 500 parts by mass, preferably 30 to 100 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the blending amount is less than 10 parts by mass, the effects of lowering the density of the composition and protecting the impact may not be sufficiently obtained, and if it exceeds 500 parts by mass, the mechanical properties of the composition are inferior.
  • the component (D) may be used alone or in combination of two or more.
  • the silicone composition of the present invention may contain (E) an organopolysiloxane represented by the following formula (1).
  • the component (E) has a role of lowering the viscosity of the composition and improving the filling property of the hollow filler.
  • R 1 independently has no addition-reactive carbon-carbon bond and is unsubstituted or substituted, having 1 to 10 carbon atoms, preferably 1 to 6, and more preferably 1 to 1. It is a monovalent hydrocarbon group of 3.
  • the monovalent hydrocarbon group include a linear, branched or cyclic alkyl group, an aryl group, an aralkyl group, an alkyl halide and the like.
  • Specific examples of the linear alkyl group include methyl, ethyl, n-propyl, n-hexyl, n-octyl group and the like.
  • branched chain alkyl group examples include isopropyl, isobutyl, tert-butyl, 2-ethylhexyl group and the like.
  • cyclic alkyl group examples include cyclopentyl, cyclohexyl group and the like.
  • aryl group examples include a phenyl group and a tolyl group.
  • aralkyl group examples include 2-phenylethyl, 2-methyl-2-phenylethyl group and the like.
  • alkyl halide group examples include 3,3,3-trifluoropropyl, 2- (nonafluorobutyl) ethyl, 2- (heptadecafluorooctyl) ethyl group and the like.
  • R 2 is preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • R 2 is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group having 1 to 5 carbon atoms independently of each other.
  • the alkyl group include those exemplified in R 1 above.
  • Specific examples of the alkoxyalkyl group include methoxyethyl and methoxypropyl groups.
  • Specific examples of the acyl group include an acetyl group and an octanoyl group.
  • R 2 is preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group or an ethyl group.
  • n represents an integer of 2 to 100, but an integer of 5 to 80 is preferable.
  • a is an integer of 1 to 3, but 3 is preferable.
  • the viscosity of the component (E) at 25 ° C. is not particularly limited, but is preferably 0.005 to 10 Pa ⁇ s, preferably 0.005 to 1 Pa ⁇ s, from the viewpoint of preventing bleeding from the composition and moldability. Is more preferable.
  • component (E) include, but are not limited to, organopolysiloxane represented by the following formula.
  • the blending amount is preferably 1 to 100 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of curability.
  • the component (E) may be used alone or in combination of two or more.
  • the silicone composition of the present invention may contain known additives as long as the object of the present invention is not impaired.
  • additives include reaction control agents, hindered phenolic antioxidants, fillers such as calcium carbonate, pigments, dyes and the like.
  • the reaction control agent may be any one that can suppress the curing reaction at room temperature and suppress the catalytic activity of the component (C) in order to prolong the shelf life and pot life, and is appropriately selected from known reaction control agents. You can use it.
  • reaction control agent examples include acetylene compounds having hydroxyl groups such as 1-ethynyl-1-cyclohexanol and 3-butin-1-ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds. Among these, an acetylene compound having a hydroxyl group that is not corrosive to metal is preferable.
  • the reaction control agent may be diluted with an organic solvent such as toluene, xylene, or isopropyl alcohol in order to improve the dispersibility in the silicone resin.
  • the method for producing the silicone composition of the present invention is not particularly limited, and a conventionally known method may be followed. That is, the silicone composition of the present invention can be obtained by mixing the components (A) to (D), and the component (E) and other components used as necessary.
  • the component (A), the component (D), and the component (E) if necessary are put into a gate mixer, and the composition is kept at a predetermined temperature (for example, 25 ° C.) for a predetermined time.
  • a predetermined temperature for example, 25 ° C.
  • Mix under reduced pressure for example, 1 hour
  • cool the obtained mixture add the component (C) and the reaction control agent, mix at a predetermined temperature (for example, 25 ° C.) for a predetermined time (for example, 1 hour), and further (B). It can be obtained by adding components and mixing at a predetermined temperature (for example, 25 ° C.) for a predetermined time (for example, 30 minutes).
  • the two-component type composition can be composed of any combination as long as only the combination of the component (A), the component (B), and the component (C) does not coexist.
  • the component (A), the component (D), and the component (E) if necessary are put into a gate mixer, mixed under reduced pressure at a predetermined temperature (for example, 25 ° C.) for a predetermined time (for example, 1 hour), cooled, and then cooled.
  • the composition obtained by adding the component (C) and mixing at a predetermined temperature (for example, 25 ° C.) for a predetermined time (for example, 30 minutes) is used as the material A, while the component (A) and the component (D) are added to a gate mixer.
  • the component (E) is added, mixed under reduced pressure at a predetermined temperature (for example, 150 ° C.) for a predetermined time (for example, 1 hour), cooled, and then a reaction control agent is added for a predetermined temperature (for example, 25 ° C.). After mixing for an hour (for example, 30 minutes), the component (B) is added, and the mixture is mixed at a predetermined temperature (for example, 25 ° C.) for a predetermined time (for example, 30 minutes), and the obtained composition is used as the B material, whereby the A material , A two-component type composition of B material can be obtained.
  • the silicone composition of the present invention can be refrigerated or frozen for long-term storage if it is a one-component type, and can be stored for a long time at room temperature if it is a two-component type.
  • the viscosity of the silicone composition of the present invention is not particularly limited, but is preferably 1 to 400 Pa ⁇ s at 25 ° C. from the viewpoint of dispersibility of the hollow inorganic filler and handleability of the silicone composition, and 10 to 300 Pa. -S is more preferable.
  • the cured product of the present invention is obtained by curing the above-mentioned silicone composition of the present invention.
  • the curing conditions are not particularly limited, and the same conditions as those of the conventionally known curable silicone composition can be used.
  • the silicone composition may be naturally cured by the heat generated from the installed parts after being poured, or may be positively cured by heating.
  • the conditions for heating and curing are preferably 60 to 180 ° C., more preferably 80 to 150 ° C., preferably 0.1 to 3 hours, and more preferably 0.5 to 2 hours.
  • the cured product of the silicone composition thus obtained usually behaves softly against slow deformation and comes into contact with a hardness of 40 or less measured by a type A durometer specified in JIS K 6253-: 2012.
  • the stress applied to the parts to be used can be reduced as much as possible. Further, if the hardness measured by the type A durometer is 5 or more, the impact from the component can be protected.
  • the density is preferably 0.8 g / cm 3 or less.
  • a cured product having such a density can suppress an increase in weight of the device having the cured silicone product of the present invention.
  • the storage elastic modulus at a frequency of 100 Hz is preferably 3.0 MPa or more, more preferably 3.0 to 11.0 MPa.
  • the storage elastic modulus at a frequency of 0.1 Hz is preferably 4.0 MPa or less, and more preferably 0.3 to 4 MPa.
  • the [storage elastic modulus at a frequency of 100 Hz] / [storage elastic modulus at a frequency of 0.1 Hz] of the cured product is preferably 3.0 or more, and more preferably 3.5 or more. Within such a range, it is suitable as a shock absorbing material.
  • Component (A) A-1: Both ends are sealed with a dimethylvinylsilyl group, and dimethylpolysiloxane having a viscosity of 5 Pa ⁇ s at 25 ° C.
  • Component (B) -B-1 Organohydrogensiloxane represented by the following formula
  • Component (C) C-1 Didimethylpolysiloxane solution of platinum-divinyltetramethyldisiloxane complex (dissolved in the same dimethylpolysiloxane as A-2 above. Contains 1% as platinum atom)
  • Component-D-1 Glass balloon powder with an average particle size of 20 ⁇ m and a true specific gravity of 0.46-D-2: Glass balloon powder with an average particle size of 24 ⁇ m and a true specific gravity of 0.60-D-3: Average particle size Glass balloon powder with 40 ⁇ m and true specific gravity of 0.38 ⁇
  • D-4 Crystalline silica powder with an average particle size of 4 ⁇ m
  • Examples 1 to 5 and Comparative Examples 1 to 3 The components (A), (D), and (E) were added to a 5 L gate mixer (5 L planetary mixer manufactured by Inoue Seisakusho Co., Ltd.), and the mixture was mixed under reduced pressure at 25 ° C. for 1 hour. Next, the component (C) was added and mixed at 25 ° C. for 30 minutes. Then, the reaction control agent (F-1) was added and mixed at 25 ° C. for 30 minutes. Finally, the component (B) was added and mixed at 25 ° C. for 30 minutes. Table 1 shows the blending amount of each component.
  • the cured products obtained by curing the silicone compositions obtained in Examples 1 to 5 have a low density and a storage elastic modulus of 3.2 to 11 at a frequency of 100 Hz. It can be seen that it has a relatively high range of 0.0 and a low storage elastic modulus in the range of 0.3 to 3.2 at a frequency of 0.1 Hz, and has good characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This silicone composition contains: 100 parts by mass of (A) an organopolysiloxane which has at least one silicon atom-bonded alkenyl group per molecule and has a viscosity at 25°C of 0.01-100 Pa·s; 0.1-100 parts by mass of (B) an organohydrogenpolysiloxane having at least one silicon atom-bonded hydrogen atom per molecule; (C) an addition reaction catalyst; and 10-500 parts by mass of (D) a hollow inorganic filler having an average particle diameter of 100 μm or less. The silicone composition has a high storage elastic modulus under high frequency conditions and gives a cured product having a low density.

Description

シリコーン組成物およびその硬化物Silicone composition and its cured product
 本発明は、シリコーン組成物およびその硬化物に関する。 The present invention relates to a silicone composition and a cured product thereof.
 近年、電気電子分野では、スマートフォンやタブレット端末、ウェアラブルデバイスなどのモバイル端末の高機能化が進んでいる。それに伴い、搭載されている部品についても小型化や高性能化がなされている。
 それら搭載されている部品は、端末の振動等によって位置ずれが発生する可能性や、落下等の強い衝撃によって破損する可能性があるため、これらの部品を振動等の遅い応力に対しては柔らかい部材で、衝撃等の速い応力に対しては硬い部材で保護する手法が採用される(特許文献1,2参照)。
In recent years, in the field of electrical and electronic engineering, mobile terminals such as smartphones, tablet terminals, and wearable devices have become more sophisticated. Along with this, the mounted parts have also been miniaturized and improved in performance.
Since the mounted parts may be displaced due to the vibration of the terminal or may be damaged by a strong impact such as dropping, these parts are soft against slow stress such as vibration. A method of protecting a member with a hard member against a fast stress such as an impact is adopted (see Patent Documents 1 and 2).
 ところで、一般的に、応力の周波数によって粘弾性特性が変化する特性を有する物質は、粒子を高充填した液体またはグリース状の組成物である(特許文献3)が、これらの組成物は、液だれ等が発生し易く、封入しないと流れ出てしまうため、当該組成物そのもので部品を保護することが難しく、設計上使いにくいものであった。
 また、モバイル端末等は、持ち運んだり、身に着けたりするために少しでも軽い設計が要求されるが、上記組成物は、粒子を高充填していることから高密度となるため、その使用に制限があった。
By the way, in general, a substance having a property that its viscoelastic property changes depending on the frequency of stress is a liquid or grease-like composition highly filled with particles (Patent Document 3), but these compositions are liquid. It is difficult to protect the parts with the composition itself, and it is difficult to use in design because it is easy for anyone to occur and it will flow out if it is not sealed.
In addition, mobile terminals and the like are required to be designed to be as light as possible in order to be carried and worn, but the above composition has a high density due to its high particle filling, so that it can be used for use. There was a limit.
 したがって、ゴムのような固体で衝撃を保護できるような粘弾性特性を有し、さらに低密度であるような部材が切に望まれていた。 Therefore, a member having a viscoelastic property that can protect the impact with a solid such as rubber and having a low density has been urgently desired.
特開2018-104615号公報JP-A-2018-104615 特開2011-74973号公報Japanese Unexamined Patent Publication No. 2011-74973 特許第3867898号公報Japanese Patent No. 3867898
 本発明は、上記事情に鑑みなされたもので、高周波時下における貯蔵弾性率が高く、低密度である硬化物を与えるシリコーン組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a silicone composition that gives a cured product having a high storage elastic modulus and a low density under high frequency.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、中空無機フィラーを含むシリコーン組成物が、高周波時下における貯蔵弾性率が高く、かつ、低密度である硬化物を与えることを見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors have found that a silicone composition containing a hollow inorganic filler gives a cured product having a high storage elastic modulus and a low density under high frequency. , The present invention has been completed.
 すなわち、本発明は、
1. (A)1分子中に少なくとも1個の珪素原子に結合したアルケニル基を有する、25℃における粘度が0.01~100Pa・sのオルガノポリシロキサン:100質量部、
(B)1分子中に少なくとも1個の珪素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン:0.1~100質量部、
(C)付加反応触媒、および
(D)平均粒径が100μm以下である中空無機フィラー:10~500質量部
を含むシリコーン組成物、
2. (E)下記式(1)で示されるオルガノポリシロキサン:1~100質量部を含む1のシリコーン組成物、
Figure JPOXMLDOC01-appb-C000002
(式中、R1は、それぞれ独立して付加反応性炭素-炭素結合を有しない非置換または置換の炭素原子数1~10の一価炭化水素基を表し、R2は、それぞれ独立して、アルキル基、アルコキシアルキル基、アルケニル基、またはアシル基を表し、nは、2~100の整数を表し、aは、1~3の整数を表す。)
3. 前記中空無機フィラーが、球状であり、真比重0.1~0.8である1または2のシリコーン組成物、
4. 1~3のいずれかのシリコーン組成物を硬化してなるシリコーン硬化物、
5. 密度が、0.8g/cm3以下である4のシリコーン硬化物、
6. (周波数100Hzにおける貯蔵弾性率)/(周波数0.1Hzにおける貯蔵弾性率)の値が3.0以上である4または5のシリコーン硬化物、
7. 4~6のいずれかのシリコーン硬化物からなる衝撃緩衝材、
8. 7の衝撃緩衝材を有する電子部品
を提供する。
That is, the present invention
1. 1. (A) Organopolysiloxane having an alkenyl group bonded to at least one silicon atom in one molecule and having a viscosity at 25 ° C. of 0.01 to 100 Pa · s: 100 parts by mass,
(B) Organohydrogenpolysiloxane having a hydrogen atom bonded to at least one silicon atom in one molecule: 0.1 to 100 parts by mass,
A silicone composition containing (C) an addition reaction catalyst and (D) a hollow inorganic filler having an average particle size of 100 μm or less: 10 to 500 parts by mass.
2. (E) Organopolysiloxane represented by the following formula (1): 1 silicone composition containing 1 to 100 parts by mass,
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 1 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms independently having no addition-reactive carbon-carbon bond, and R 2 is independent of each other. , Alkyl group, alkoxyalkyl group, alkenyl group, or acyl group, n represents an integer of 2 to 100, and a represents an integer of 1 to 3).
3. 3. 1 or 2 silicone compositions in which the hollow inorganic filler is spherical and has a true specific gravity of 0.1 to 0.8.
4. A cured silicone product obtained by curing any of the silicone compositions 1 to 3,
5. 4 silicone cured products with a density of 0.8 g / cm 3 or less,
6. A 4 or 5 silicone cured product having a (storage elastic modulus at a frequency of 100 Hz) / (storage elastic modulus at a frequency of 0.1 Hz) of 3.0 or more.
7. Impact cushioning material made of a cured silicone product of any of 4 to 6.
8. An electronic component having a shock absorbing material of 7 is provided.
 本発明のシリコーン組成物を用いることで、落下等の衝撃時には貯蔵弾性率が高く、内部の精密な部品を衝撃から保護することができるのみならず、振動等に対しては貯蔵弾性率が低く、部品の位置ずれを防ぐことのできる硬化物を得ることができる。
 また、本発明の硬化物は、硬化後の密度が小さいため、デバイスの重量を過度に上昇させることもない。
 このような特性を有する本発明の硬化物は、例えば、スマートウォッチのような、少しでも重量を軽くしたいウェアラブルデバイスに対して極めて有効である。
By using the silicone composition of the present invention, the storage elastic modulus is high at the time of impact such as dropping, and not only the internal precision parts can be protected from the impact, but also the storage elastic modulus is low against vibration and the like. , A cured product that can prevent misalignment of parts can be obtained.
In addition, the cured product of the present invention has a low density after curing, so that the weight of the device is not excessively increased.
The cured product of the present invention having such characteristics is extremely effective for a wearable device such as a smart watch, which wants to reduce the weight as much as possible.
 以下、本発明について具体的に説明する。
 本発明に係るシリコーン組成物は、
(A)1分子中に少なくとも1個の珪素原子に結合したアルケニル基を有する、25℃における粘度が0.01~100Pa・sのオルガノポリシロキサン
(B)1分子中に少なくとも1個の珪素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン
(C)付加反応触媒
(D)平均粒径が100μm以下である中空無機フィラー
を含むことを特徴とする。
Hereinafter, the present invention will be specifically described.
The silicone composition according to the present invention is
(A) At least one silicon atom in one molecule of organopolysiloxane (B) having an alkenyl group bonded to at least one silicon atom in one molecule and having a viscosity at 25 ° C. of 0.01 to 100 Pa · s. It is characterized by containing an organohydrogenpolysiloxane (C) addition reaction catalyst (D) having a hydrogen atom bonded to the hollow inorganic filler having an average particle size of 100 μm or less.
[1](A)成分
 (A)成分は、25℃における粘度が0.01~100Pa・s、好ましくは0.1~10Pa・s、より好ましくは0.5~10Pa・sであり、1分子中に少なくとも1個の珪素原子と結合するアルケニル基を有するオルガノポリシロキサンである。
[1] Component (A) The component (A) has a viscosity at 25 ° C. of 0.01 to 100 Pa · s, preferably 0.1 to 10 Pa · s, and more preferably 0.5 to 10 Pa · s. It is an organopolysiloxane having an alkenyl group bonded to at least one silicon atom in the molecule.
 本発明において、上記粘度が0.01Pa・s未満であると、組成物の保存安定性が悪くなり、100Pa・sを超えると、組成物の粘度が高粘度になり成型性を確保できなくなる。なお、粘度は、回転粘度計による測定値(以下、同様)である。
 このようなオルガノポリシロキサンは、上記粘度とアルケニル基含有量を満たせば、特に限定されるものではなく、公知のオルガノポリシロキサンを使用することができる。その構造も直鎖状でも分岐状でもよく、また異なる粘度を有する2種以上のオルガノポリシロキサンの混合物でもよい。
In the present invention, if the viscosity is less than 0.01 Pa · s, the storage stability of the composition deteriorates, and if it exceeds 100 Pa · s, the viscosity of the composition becomes high and moldability cannot be ensured. The viscosity is a value measured by a rotational viscometer (hereinafter, the same applies).
Such an organopolysiloxane is not particularly limited as long as it satisfies the above viscosity and alkenyl group content, and a known organopolysiloxane can be used. The structure may be linear or branched, and may be a mixture of two or more organopolysiloxanes having different viscosities.
 珪素原子と結合するアルケニル基の炭素原子数は、特に限定されるものではないが、2~10が好ましく、2~8がより好ましい。アルケニル基の具体例としては、ビニル、アリル、1-ブテニル、1-ヘキセニル基等が挙げられ、これらの中でも、合成のし易さ、コストの面からビニル基が好ましい。
 なお、アルケニル基は、オルガノポリシロキサンの分子鎖の末端、途中のいずれに存在してもよいが、柔軟性の点で末端にのみ存在することが好ましい。
The number of carbon atoms of the alkenyl group bonded to the silicon atom is not particularly limited, but is preferably 2 to 10, and more preferably 2 to 8. Specific examples of the alkenyl group include vinyl, allyl, 1-butenyl, 1-hexenyl group and the like, and among these, the vinyl group is preferable from the viewpoint of ease of synthesis and cost.
The alkenyl group may be present at the end or in the middle of the molecular chain of the organopolysiloxane, but it is preferable that the alkenyl group is present only at the end in terms of flexibility.
 珪素原子と結合するアルケニル基以外の有機基としては、炭素原子数1~20、好ましくは1~10の1価炭化水素基が挙げられる。
 このような1価炭化水素基の具体例としては、メチル、エチル、n-プロピル、n-ブチル、n-ヘキシル、n-ドデシル基等のアルキル基;フェニル基等のアリール基;2-フェニルエチル、2-フェニルプロピル基等のアラルキル基などが挙げられる。
 なお、これらの炭化水素基の水素原子の一部または全部は、塩素、フッ素、臭素等のハロゲン原子で置換されていてもよい。ハロゲン原子で置換された基の具体例としては、フロロメチル、ブロモエチル、クロロメチル、3,3,3-トリフルオロプロピル基等のハロゲン置換一価炭化水素基などが挙げられる。
 これらの中でも、合成のし易さ、コストの面から、上記有機基の90モル%以上がメチル基であることが好ましい。
Examples of the organic group other than the alkenyl group bonded to the silicon atom include a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms.
Specific examples of such a monovalent hydrocarbon group include an alkyl group such as methyl, ethyl, n-propyl, n-butyl, n-hexyl and n-dodecyl group; an aryl group such as a phenyl group; 2-phenylethyl. , 2-Phenylpropyl group and other aralkyl groups.
In addition, a part or all of the hydrogen atoms of these hydrocarbon groups may be substituted with halogen atoms such as chlorine, fluorine and bromine. Specific examples of the group substituted with a halogen atom include a halogen-substituted monovalent hydrocarbon group such as fluoromethyl, bromoethyl, chloromethyl, and 3,3,3-trifluoropropyl group.
Among these, from the viewpoint of ease of synthesis and cost, it is preferable that 90 mol% or more of the organic groups are methyl groups.
 以上のことから、(A)成分としては、両末端がジメチルビニルシリル基で封鎖されたオルガノポリシロキサンが好ましく、特に、両末端がジメチルビニルシリル基で封鎖されたジメチルポリシロキサンがより好ましい。
 なお、(A)成分は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
From the above, as the component (A), an organopolysiloxane having both ends sealed with a dimethylvinylsilyl group is preferable, and a dimethylpolysiloxane having both ends sealed with a dimethylvinylsilyl group is more preferable.
The component (A) may be used alone or in combination of two or more.
[2](B)成分
 (B)成分は、1分子中に少なくとも1個の珪素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンである。
 (B)成分のオルガノハイドロジェンシロキサンの分子構造は、直鎖状、分岐状または網状のいずれでもよい。また、その動粘度も特に限定されるものではないが、25℃における動粘度1~10,000mm2/sが好ましく、1~1,000mm2/sがより好ましい。なお、動粘度は、キャノン・フェンスケ型粘度計による測定値である。
[2] Component (B) The component (B) is an organohydrogenpolysiloxane having a hydrogen atom bonded to at least one silicon atom in one molecule.
The molecular structure of the organohydrogensiloxane of the component (B) may be linear, branched or reticulated. Although the kinematic viscosity not particularly limited, preferably a kinematic viscosity 1 ~ 10,000mm 2 / s at 25 ℃, 1 ~ 1,000mm 2 / s is more preferable. The kinematic viscosity is a value measured by a Canon Fenceke type viscometer.
 (B)成分の珪素原子に結合する水素原子以外の有機基としては、アルケニル基を除く炭素原子数1~10のものが好ましい。その具体例としては、メチル、エチル、n-プロピル、n-ブチル、n-ヘキシル、n-ドデシル基等のアルキル基;フェニル基等のアリール基;2-フェニルエチル、2-フェニルプロピル基等のアラルキル基などが挙げられる。なお、これらの炭化水素基の水素原子の一部または全部は、塩素、フッ素、臭素等のハロゲン原子で置換されていてもよい。ハロゲン原子で置換された基の具体例としては、フロロメチル、ブロモエチル、クロロメチル、3,3,3-トリフルオロプロピル基等のハロゲン置換一価炭化水素基などが挙げられる。
 これらの中でも、合成のし易さ、コストの面から、上記有機基の90モル%以上がメチル基であることが好ましい。
As the organic group other than the hydrogen atom bonded to the silicon atom of the component (B), those having 1 to 10 carbon atoms excluding the alkenyl group are preferable. Specific examples thereof include alkyl groups such as methyl, ethyl, n-propyl, n-butyl, n-hexyl and n-dodecyl groups; aryl groups such as phenyl groups; 2-phenylethyl, 2-phenylpropyl groups and the like. Aralkyll groups and the like. In addition, a part or all of the hydrogen atoms of these hydrocarbon groups may be substituted with halogen atoms such as chlorine, fluorine and bromine. Specific examples of the group substituted with a halogen atom include a halogen-substituted monovalent hydrocarbon group such as fluoromethyl, bromoethyl, chloromethyl, and 3,3,3-trifluoropropyl group.
Among these, from the viewpoint of ease of synthesis and cost, it is preferable that 90 mol% or more of the organic groups are methyl groups.
 特に、本発明の(B)成分としては、下記式(2)で示されるオルガノハイドロジェンポリシロキサンを含むことが好ましい。 In particular, the component (B) of the present invention preferably contains an organohydrogenpolysiloxane represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
(式中、括弧が付されたシロキサン単位の配列は任意であってよい。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, the arrangement of siloxane units in parentheses may be arbitrary.)
 式(2)において、pおよびqは正の整数、p+qは10~100の整数、好ましくは20~60の整数を表す。p+qの値がこのような範囲であると、オルガノハイドロジェンポリシロキサンが取扱いに適した粘度となり、また、電子部品に用いる場合に、オルガノハイドロジェンポリシロキサンの揮発による接点不良等を抑制することができる。
 また、p/(p+q)は、0.01~0.5が好ましく、0.05~0.4がより好ましい。このような範囲であれば、架橋が十分に進行し、初期硬化後の未反応Si-H基による余剰の架橋反応が経時で進行することを抑制できる。
In the formula (2), p and q represent positive integers, p + q represents an integer of 10 to 100, preferably an integer of 20 to 60. When the value of p + q is in such a range, the organohydrogenpolysiloxane has a viscosity suitable for handling, and when used for electronic parts, it is possible to suppress contact failure due to volatilization of the organohydrogenpolysiloxane. it can.
Further, p / (p + q) is preferably 0.01 to 0.5, more preferably 0.05 to 0.4. Within such a range, the cross-linking proceeds sufficiently, and it is possible to suppress the progress of the excess cross-linking reaction by the unreacted Si—H group after the initial curing with time.
 上記R3は、それぞれ独立して炭素原子数1~6のアルキル基を表し、その構造としては、直鎖状、分岐鎖状、環状のいずれでもよい。
 アルキル基の具体例としては、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル基等が挙げられ、合成のし易さ、コストの面からR3の90モル%以上はメチル基が好ましい。
Each of the above R 3 independently represents an alkyl group having 1 to 6 carbon atoms, and the structure may be linear, branched chain, or cyclic.
Specific examples of the alkyl group include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl group and the like, and 90 mol% or more of R 3 in terms of ease of synthesis and cost. Is preferably a methyl group.
 また、本発明の(B)成分は、下記式(3)で示されるオルガノハイドロジェンポリシロキサンを含むことが好ましい。 Further, the component (B) of the present invention preferably contains an organohydrogenpolysiloxane represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(3)において、R4は、それぞれ独立して炭素原子数1~6のアルキル基を表し、その具体例としては、上記R3で例示した基と同様のものが挙げられるが、この場合も、合成のし易さ、コストの面から90%以上はメチル基が好ましい。
 また、mは、5~1,000の整数を表すが、好ましくは10~100の整数である。このような範囲であれば、オルガノハイドロジェンポリシロキサンが取扱いに適した粘度となり、また、電子部品に用いる場合に、オルガノハイドロジェンポリシロキサンの揮発による接点不良等を抑制することができる。
In the formula (3), R 4 independently represents an alkyl group having 1 to 6 carbon atoms, and specific examples thereof include the same groups as those exemplified in R 3 above. In this case, However, from the viewpoint of ease of synthesis and cost, a methyl group is preferable for 90% or more.
Further, m represents an integer of 5 to 1,000, preferably an integer of 10 to 100. Within such a range, the organohydrogenpolysiloxane has a viscosity suitable for handling, and when used for electronic components, contact failure due to volatilization of the organohydrogenpolysiloxane can be suppressed.
 本発明で用いられる(B)成分の好適な具体例としては、下記式で示されるオルガノハイドロジェンポリシロキサンが挙げられるが、これらに限定されるものではない。 Preferable specific examples of the component (B) used in the present invention include, but are not limited to, organohydrogenpolysiloxane represented by the following formula.
Figure JPOXMLDOC01-appb-C000005
(式中、括弧が付されたシロキサン単位の配列は任意である。)
Figure JPOXMLDOC01-appb-C000005
(In the formula, the arrangement of siloxane units in parentheses is arbitrary.)
 (B)成分の配合量は、組成物の硬化性を良好にすることを考慮すると、(A)成分のオルガノポリシロキサン100質量部に対して0.1~100質量部であるが、1~10質量部が好ましい。
 なお、(B)成分は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
The blending amount of the component (B) is 0.1 to 100 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A) in consideration of improving the curability of the composition, but 1 to 1 to 100 parts by mass. 10 parts by mass is preferable.
The component (B) may be used alone or in combination of two or more.
[3](C)成分
 (C)成分の付加反応触媒は、白金族金属系触媒であり、(A)成分のアルケニル基と(B)成分のSi-H基との間の付加反応を促進するものであれば、従来公知のものから適宜選択して使用することができる。
 触媒の具体例としては、白金(白金黒を含む。)、ロジウム、パラジウム等の白金族金属単体;H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中のnは0~6の整数であり、好ましくは0または6である。)等の塩化白金、塩化白金酸および塩化白金酸塩;アルコール変性塩化白金酸;塩化白金酸とオレフィンとのコンプレックス;白金黒、パラジウム等の白金族金属を、アルミナ、シリカ、カーボン等の担体に担持させた触媒;ロジウム-オレフィンコンプレックス;クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒);塩化白金、塩化白金酸または塩化白金酸塩とビニル基含有シロキサンとのコンプレックスなどが挙げられ、これらの白金族金属系触媒は、単独で使用しても2種以上組み合わせて使用してもよい。
 これらの中でも、白金および白金化合物から選ばれる触媒が好ましい。
[3] The addition reaction catalyst of the component (C) and the component (C) is a platinum group metal-based catalyst, and promotes the addition reaction between the alkenyl group of the component (A) and the Si—H group of the component (B). Any of the conventionally known ones can be appropriately selected and used.
Specific examples of the catalyst include platinum (including platinum black), rhodium, palladium and other platinum group metals alone; H 2 PtCl 4 · nH 2 O, H 2 PtCl 6 · nH 2 O, NaHP PtCl 6 · nH 2 O. , KHPtCl 6 · nH 2 O, Na 2 PtCl 6 · nH 2 O, K 2 PtCl 4 · nH 2 O, PtCl 4 · nH 2 O, PtCl 2 , Na 2 HPtCl 4 · nH 2 O (However, in the formula n is an integer of 0 to 6, preferably 0 or 6), such as platinum chloride, chloroplatinic acid and chloroplatinate; alcohol-modified chloroplatinic acid; complex of chloroplatinic acid and olefin; platinum black. , Platinum group metal such as palladium supported on a carrier such as alumina, silica, carbon; rhodium-olefin complex; chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst); platinum chloride, platinum chloride acid or platinum chloride Examples thereof include a complex of an acid salt and a vinyl group-containing siloxane, and these platinum group metal-based catalysts may be used alone or in combination of two or more.
Among these, a catalyst selected from platinum and a platinum compound is preferable.
 (C)成分の配合量は触媒としての有効量、すなわち、(A)成分等と、(B)成分との反応を進行できる量であればよく、希望する硬化速度に応じて適宜調整すればよい。
 特に、(A)成分の質量に対し、白金族金属原子に換算した質量基準で0.1~7,000ppm、好ましくは1~6,000ppmとなる量がよい。(C)成分の配合量が、白金族金属原子に換算した質量基準で0.1ppm未満の場合、触媒としての効果が発揮されないことがあり、また、7,000ppmを超えて用いても特に硬化速度の向上が期待できないことがある。
The blending amount of the component (C) may be an effective amount as a catalyst, that is, an amount capable of advancing the reaction between the component (A) and the like and the component (B), and may be appropriately adjusted according to the desired curing rate. Good.
In particular, the amount of the component (A) is preferably 0.1 to 7,000 ppm, preferably 1 to 6,000 ppm based on the mass converted to the platinum group metal atom. If the blending amount of the component (C) is less than 0.1 ppm based on the mass converted to platinum group metal atoms, the effect as a catalyst may not be exhibited, and even if it is used in excess of 7,000 ppm, it is particularly cured. It may not be possible to expect an increase in speed.
[4](D)成分
 (D)成分は、平均粒径が100μm以下である中空無機フィラーであり、フィラー自身が中空の構造であるために、組成物の密度を低下させる成分であり、無機粒子として高周波時の貯蔵弾性率を上昇させる成分でもある。
 中空無機フィラーの平均粒径は、硬化物の衝撃保護性能の観点から、100μm以下とされるが、この衝撃保護性能をより高めることを考慮すると、1~90μmが好ましく、5~40μmがより好ましい。
 なお、本発明における平均粒径は、レーザー光回折法による粒度分布測定における体積平均値D50(即ち、累積体積が50%になるときの粒子径またはメジアン径)として測定した値である。
[4] Component (D) The component (D) is a hollow inorganic filler having an average particle size of 100 μm or less, and since the filler itself has a hollow structure, it is a component that reduces the density of the composition and is inorganic. It is also a component that increases the storage elastic modulus at high frequencies as particles.
The average particle size of the hollow inorganic filler is 100 μm or less from the viewpoint of the impact protection performance of the cured product, but considering that the impact protection performance is further enhanced, 1 to 90 μm is preferable, and 5 to 40 μm is more preferable. ..
The average particle size in the present invention is a value measured as a volume mean value D 50 (that is, a particle size or a median diameter when the cumulative volume becomes 50%) in the particle size distribution measurement by the laser light diffraction method.
 本発明において、中空無機フィラーの形状は、特に限定されるものではないが、球状が好ましい。
 また、中空無機フィラーの真比重も特に限定されるものではないが、組成物の調製の容易性や、効率的に低密度化を図ることを考慮すると、0.1~0.8が好ましい。
In the present invention, the shape of the hollow inorganic filler is not particularly limited, but a spherical shape is preferable.
The true specific gravity of the hollow inorganic filler is not particularly limited, but is preferably 0.1 to 0.8 in consideration of ease of preparation of the composition and efficient reduction of density.
 (D)成分の具体例としては、ガラスバルーン、シリカバルーン、カーボンバルーン、アルミナバルーン、ジルコニアバルーン、シラスバルーン等が挙げられる。これらの中でも、入手がしやすく、組成物の耐熱性が良好になる事から、ガラスバルーンが好ましい。 Specific examples of the component (D) include glass balloons, silica balloons, carbon balloons, alumina balloons, zirconia balloons, shirasu balloons and the like. Among these, a glass balloon is preferable because it is easily available and the heat resistance of the composition is improved.
 (D)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して10~500質量部、好ましくは30~100質量部である。配合量が10質量部未満の場合には組成物の低密度化および衝撃保護の効果が十分に得られないことがあり、500質量部を超える場合は、組成物の機械的物性が劣る。
 なお、(D)成分は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
The blending amount of the component (D) is 10 to 500 parts by mass, preferably 30 to 100 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the blending amount is less than 10 parts by mass, the effects of lowering the density of the composition and protecting the impact may not be sufficiently obtained, and if it exceeds 500 parts by mass, the mechanical properties of the composition are inferior.
The component (D) may be used alone or in combination of two or more.
[5](E)成分
 本発明のシリコーン組成物は、(E)下記式(1)で示されるオルガノポリシロキサンを含んでいてもよい。この(E)成分は、組成物の粘度を低下させて中空フィラーの充填性を向上させる役割を有する。
[5] Ingredients (E) The silicone composition of the present invention may contain (E) an organopolysiloxane represented by the following formula (1). The component (E) has a role of lowering the viscosity of the composition and improving the filling property of the hollow filler.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)において、R1は、それぞれ独立して、付加反応性炭素-炭素結合を有しない、非置換または置換の、炭素原子数1~10、好ましくは1~6、より好ましくは1~3の一価炭化水素基である。
 この一価炭化水素基としては、例えば、直鎖、分岐鎖または環状のアルキル基、アリール基、アラルキル基、ハロゲン化アルキル等が挙げられる。
 直鎖状アルキル基の具体例としては、メチル、エチル、n-プロピル、n-ヘキシル、n-オクチル基等が挙げられる。
 分岐鎖状アルキル基の具体例としては、イソプロピル、イソブチル、tert-ブチル、2-エチルヘキシル基等が挙げられる。
 環状アルキル基の具体例としては、シクロペンチル、シクロヘキシル基等が挙げられる。
 アリール基の具体例としては、フェニル、トリル基等が挙げられる。
 アラルキル基の具体例としては、2-フェニルエチル、2-メチル-2-フェニルエチル基等が挙げられる。
 ハロゲン化アルキル基の具体例としては、3,3,3-トリフルオロプロピル、2-(ノナフルオロブチル)エチル、2-(ヘプタデカフルオロオクチル)エチル基等が挙げられる。
 これらの中でも、R2は、炭素原子数1~3の直鎖状アルキル基が好ましく、メチル基がより好ましい。
In formula (1), R 1 independently has no addition-reactive carbon-carbon bond and is unsubstituted or substituted, having 1 to 10 carbon atoms, preferably 1 to 6, and more preferably 1 to 1. It is a monovalent hydrocarbon group of 3.
Examples of the monovalent hydrocarbon group include a linear, branched or cyclic alkyl group, an aryl group, an aralkyl group, an alkyl halide and the like.
Specific examples of the linear alkyl group include methyl, ethyl, n-propyl, n-hexyl, n-octyl group and the like.
Specific examples of the branched chain alkyl group include isopropyl, isobutyl, tert-butyl, 2-ethylhexyl group and the like.
Specific examples of the cyclic alkyl group include cyclopentyl, cyclohexyl group and the like.
Specific examples of the aryl group include a phenyl group and a tolyl group.
Specific examples of the aralkyl group include 2-phenylethyl, 2-methyl-2-phenylethyl group and the like.
Specific examples of the alkyl halide group include 3,3,3-trifluoropropyl, 2- (nonafluorobutyl) ethyl, 2- (heptadecafluorooctyl) ethyl group and the like.
Among these, R 2 is preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
 また、R2は、互いに独立して、炭素原子数1~5の、アルキル基、アルコキシアルキル基、アルケニル基、またはアシル基である。
 アルキル基の具体例としては、上記R1で例示したものが挙げられる。
 アルコキシアルキル基の具体例としては、メトキシエチル、メトキシプロピル基等が挙げられる。
 アシル基の具体例としては、アセチル、オクタノイル基等が挙げられる。
 これらの中でも、R2は、炭素原子数1~3の直鎖状アルキル基が好ましく、メチル基、エチル基がより好ましい。
 さらに、nは、2~100の整数を表すが、5~80の整数が好ましい。aは、1~3の整数であるが、3が好ましい。
Further, R 2 is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group having 1 to 5 carbon atoms independently of each other.
Specific examples of the alkyl group include those exemplified in R 1 above.
Specific examples of the alkoxyalkyl group include methoxyethyl and methoxypropyl groups.
Specific examples of the acyl group include an acetyl group and an octanoyl group.
Among these, R 2 is preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group or an ethyl group.
Further, n represents an integer of 2 to 100, but an integer of 5 to 80 is preferable. a is an integer of 1 to 3, but 3 is preferable.
 (E)成分の25℃における粘度は、特に限定されるものではないが、組成物からのブリード防止および成型性の点から、0.005~10Pa・sが好ましく、0.005~1Pa・sがより好ましい。 The viscosity of the component (E) at 25 ° C. is not particularly limited, but is preferably 0.005 to 10 Pa · s, preferably 0.005 to 1 Pa · s, from the viewpoint of preventing bleeding from the composition and moldability. Is more preferable.
 (E)成分の好適な具体例としては、下記式で示されるオルガノポリシロキサンが挙げられるが、これらに限定されるものではない。 Preferable specific examples of the component (E) include, but are not limited to, organopolysiloxane represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (E)成分を使用する場合の配合量は、硬化性の点から、(A)成分100質量部に対して好ましくは1~100質量部、より好ましくは1~50質量部である。
 なお、(E)成分は、単独で使用しても、2種類以上を併用してもよい。
When the component (E) is used, the blending amount is preferably 1 to 100 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of curability.
The component (E) may be used alone or in combination of two or more.
[6]その他の成分
 本発明のシリコーン組成物は、上記(A)~(E)成分以外に、公知の添加剤を本発明の目的を損なわない範囲で含んでいてもよい。
 このような添加剤としては、例えば、反応制御剤、ヒンダードフェノール系酸化防止剤、炭酸カルシウム等の充填材、顔料、染料などが挙げられる。
 反応制御剤としては、室温での硬化反応を抑え、シェルフライフ、ポットライフを延長させるために(C)成分の触媒活性を抑制できるものであればよく、公知の反応制御剤から適宜選択して使用すればよい。
 反応制御剤の具体例としては、1-エチニル-1-シクロヘキサノール,3-ブチン-1-オール等の水酸基を有するアセチレン化合物、各種窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物などが挙げられ、これらの中でも、金属への腐食性の無い水酸基を有するアセチレン化合物が好ましい。
 なお、反応制御剤は、シリコーン樹脂への分散性を良くするためにトルエン、キシレン、イソプロピルアルコール等の有機溶剤で希釈して使用してもよい。
[6] Other Components In addition to the above components (A) to (E), the silicone composition of the present invention may contain known additives as long as the object of the present invention is not impaired.
Examples of such additives include reaction control agents, hindered phenolic antioxidants, fillers such as calcium carbonate, pigments, dyes and the like.
The reaction control agent may be any one that can suppress the curing reaction at room temperature and suppress the catalytic activity of the component (C) in order to prolong the shelf life and pot life, and is appropriately selected from known reaction control agents. You can use it.
Specific examples of the reaction control agent include acetylene compounds having hydroxyl groups such as 1-ethynyl-1-cyclohexanol and 3-butin-1-ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds. Among these, an acetylene compound having a hydroxyl group that is not corrosive to metal is preferable.
The reaction control agent may be diluted with an organic solvent such as toluene, xylene, or isopropyl alcohol in order to improve the dispersibility in the silicone resin.
[7]シリコーン組成物の製造方法
 本発明のシリコーン組成物の製造方法は、特に限定されるものではなく、従来公知の方法に従えばよい。すなわち、本発明のシリコーン組成物は、(A)~(D)成分、並びに必要に応じて用いられる(E)成分およびその他の成分を混合して得ることができる。
[7] Method for Producing Silicone Composition The method for producing the silicone composition of the present invention is not particularly limited, and a conventionally known method may be followed. That is, the silicone composition of the present invention can be obtained by mixing the components (A) to (D), and the component (E) and other components used as necessary.
 より具体的には、1液タイプの組成物は、ゲートミキサーに、(A)成分、(D)成分、および必要に応じて(E)成分を入れ、所定温度(例えば25℃)で所定時間(例えば1時間)減圧混合し、得られた混合物を冷却後、(C)成分、反応制御剤を加え、所定温度(例えば25℃)で所定時間(例えば1時間)混合し、さらに(B)成分を加えて所定温度(例えば25℃)で所定時間(例えば30分間)混合して得ることができる。
 2液タイプの組成物は、(A)成分、(B)成分、(C)成分の組み合わせのみ共存させなければ、任意の組み合わせで構成することができる。
 例えば、ゲートミキサーに、(A)成分、(D)成分、および必要に応じて(E)成分を入れ、所定温度(例えば25℃)で所定時間(例えば1時間)減圧混合し、冷却後、(C)成分を加え所定温度(例えば25℃)にて所定時間(例えば30分)混合して得られた組成物をA材とし、一方、ゲートミキサーに、(A)成分、(D)成分、および必要に応じて(E)成分を入れ、所定温度(例えば150℃)で所定時間(例えば1時間)減圧混合し、冷却後、反応制御剤を加えて所定温度(例えば25℃)で所定時間(例えば30分)混合した後、(B)成分を加え、所定温度(例えば25℃)で所定時間(例えば30分)混合し、得られた組成物をB材とすることで、A材、B材の2液タイプの組成物を得ることができる。
 なお、本発明のシリコーン組成物は、1液タイプであれば冷蔵または冷凍して長期保存することができ、2液タイプであれば、常温で長期保存することができる。
More specifically, for the one-component type composition, the component (A), the component (D), and the component (E) if necessary are put into a gate mixer, and the composition is kept at a predetermined temperature (for example, 25 ° C.) for a predetermined time. Mix under reduced pressure (for example, 1 hour), cool the obtained mixture, add the component (C) and the reaction control agent, mix at a predetermined temperature (for example, 25 ° C.) for a predetermined time (for example, 1 hour), and further (B). It can be obtained by adding components and mixing at a predetermined temperature (for example, 25 ° C.) for a predetermined time (for example, 30 minutes).
The two-component type composition can be composed of any combination as long as only the combination of the component (A), the component (B), and the component (C) does not coexist.
For example, the component (A), the component (D), and the component (E) if necessary are put into a gate mixer, mixed under reduced pressure at a predetermined temperature (for example, 25 ° C.) for a predetermined time (for example, 1 hour), cooled, and then cooled. The composition obtained by adding the component (C) and mixing at a predetermined temperature (for example, 25 ° C.) for a predetermined time (for example, 30 minutes) is used as the material A, while the component (A) and the component (D) are added to a gate mixer. , And if necessary, the component (E) is added, mixed under reduced pressure at a predetermined temperature (for example, 150 ° C.) for a predetermined time (for example, 1 hour), cooled, and then a reaction control agent is added for a predetermined temperature (for example, 25 ° C.). After mixing for an hour (for example, 30 minutes), the component (B) is added, and the mixture is mixed at a predetermined temperature (for example, 25 ° C.) for a predetermined time (for example, 30 minutes), and the obtained composition is used as the B material, whereby the A material , A two-component type composition of B material can be obtained.
The silicone composition of the present invention can be refrigerated or frozen for long-term storage if it is a one-component type, and can be stored for a long time at room temperature if it is a two-component type.
 本発明のシリコーン組成物の粘度は、特に限定されるものではないが、中空無機フィラーの分散性およびシリコーン組成物の取り扱い性の点から、25℃で1~400Pa・sが好ましく、10~300Pa・sがより好ましい。 The viscosity of the silicone composition of the present invention is not particularly limited, but is preferably 1 to 400 Pa · s at 25 ° C. from the viewpoint of dispersibility of the hollow inorganic filler and handleability of the silicone composition, and 10 to 300 Pa. -S is more preferable.
[8]シリコーン硬化物
 本発明の硬化物は、上述した本発明のシリコーン組成物を硬化させて得られる。
 その際、硬化条件は特に制限されるものではなく、従来公知の硬化性シリコーン組成物と同様の条件とすることができる。
 具体的には、シリコーン組成物は、流し込まれた後、設置部品から生じた熱で自然に硬化させても、積極的に加熱して硬化させてもよい。加熱して硬化させる場合の条件は、好ましくは60~180℃、より好ましくは80~150℃の温度にて、好ましくは0.1~3時間、より好ましくは0.5~2時間である。
 こうして得られるシリコーン組成物の硬化物は、通常、JIS K 6253-3:2012に規定されているタイプAデュロメータにて測定した硬度40以下であれば、ゆっくりとした変形に対して柔らかく振る舞い、接触する部品に与えるストレスを可及的に軽減可能なものとなる。さらに、タイプAデュロメータにて測定した硬度が5以上であれば部品からの衝撃を保護することができる。
[8] Cured Silicone The cured product of the present invention is obtained by curing the above-mentioned silicone composition of the present invention.
At that time, the curing conditions are not particularly limited, and the same conditions as those of the conventionally known curable silicone composition can be used.
Specifically, the silicone composition may be naturally cured by the heat generated from the installed parts after being poured, or may be positively cured by heating. The conditions for heating and curing are preferably 60 to 180 ° C., more preferably 80 to 150 ° C., preferably 0.1 to 3 hours, and more preferably 0.5 to 2 hours.
The cured product of the silicone composition thus obtained usually behaves softly against slow deformation and comes into contact with a hardness of 40 or less measured by a type A durometer specified in JIS K 6253-: 2012. The stress applied to the parts to be used can be reduced as much as possible. Further, if the hardness measured by the type A durometer is 5 or more, the impact from the component can be protected.
 上記硬化物において、密度は0.8g/cm3以下が好ましい。このような密度を有する硬化物であれば、本発明のシリコーン硬化物を有するデバイスの重量増加を抑制することができる。
 また、上記硬化物において、周波数100Hzの場合の貯蔵弾性率は、好ましくは3.0MPa以上であり、より好ましくは3.0~11.0MPaである。
 さらに、周波数0.1Hzの場合の貯蔵弾性率は、好ましくは4.0MPa以下であり、より好ましくは0.3~4MPaである。
 そして、上記硬化物の[周波数100Hzの場合の貯蔵弾性率]/[周波数0.1Hzの場合の貯蔵弾性率]は、好ましくは3.0以上であり、より好ましくは3.5以上である。このような範囲であれば、衝撃緩衝材として好適なものとなる。
In the cured product, the density is preferably 0.8 g / cm 3 or less. A cured product having such a density can suppress an increase in weight of the device having the cured silicone product of the present invention.
Further, in the cured product, the storage elastic modulus at a frequency of 100 Hz is preferably 3.0 MPa or more, more preferably 3.0 to 11.0 MPa.
Further, the storage elastic modulus at a frequency of 0.1 Hz is preferably 4.0 MPa or less, and more preferably 0.3 to 4 MPa.
The [storage elastic modulus at a frequency of 100 Hz] / [storage elastic modulus at a frequency of 0.1 Hz] of the cured product is preferably 3.0 or more, and more preferably 3.5 or more. Within such a range, it is suitable as a shock absorbing material.
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
使用した各成分を以下に示す。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
Each component used is shown below.
(A)成分
・A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度5Pa・sのジメチルポリシロキサン
・A-2:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度0.6Pa・sのジメチルポリシロキサン
Component (A) A-1: Both ends are sealed with a dimethylvinylsilyl group, and dimethylpolysiloxane having a viscosity of 5 Pa · s at 25 ° C. A-2: Both ends are sealed with a dimethylvinylsilyl group at 25 ° C. Dimethylpolysiloxane with a viscosity of 0.6 Pa · s
(B)成分
・B-1:下記式で示されるオルガノハイドロジェンシロキサン
Figure JPOXMLDOC01-appb-C000008
Component (B) -B-1: Organohydrogensiloxane represented by the following formula
Figure JPOXMLDOC01-appb-C000008
・B-2:下記式で示されるオルガノハイドロジェンシロキサン
Figure JPOXMLDOC01-appb-C000009
(式中、括弧が付されたシロキサン単位の配列は任意である。)
-B-2: Organohydrogensiloxane represented by the following formula
Figure JPOXMLDOC01-appb-C000009
(In the formula, the arrangement of siloxane units in parentheses is arbitrary.)
(C)成分
・C-1:白金-ジビニルテトラメチルジシロキサン錯体のジメチルポリシロキサン溶液(上記A-2と同じジメチルポリシロキサンに溶解したもの。白金原子として1%含有)
Component (C) C-1: Didimethylpolysiloxane solution of platinum-divinyltetramethyldisiloxane complex (dissolved in the same dimethylpolysiloxane as A-2 above. Contains 1% as platinum atom)
(D)成分
・D-1:平均粒径20μm、真比重0.46のガラスバルーン粉末
・D-2:平均粒径24μm、真比重0.60のガラスバルーン粉末
・D-3:平均粒径40μm、真比重0.38のガラスバルーン粉末
・D-4:平均粒径4μmの結晶性シリカ粉末
(D) Component-D-1: Glass balloon powder with an average particle size of 20 μm and a true specific gravity of 0.46-D-2: Glass balloon powder with an average particle size of 24 μm and a true specific gravity of 0.60-D-3: Average particle size Glass balloon powder with 40 μm and true specific gravity of 0.38 ・ D-4: Crystalline silica powder with an average particle size of 4 μm
(E)成分
・E-1:下記式で示されるオルガノポリシロキサン
Figure JPOXMLDOC01-appb-C000010
Component (E) E-1: Organopolysiloxane represented by the following formula
Figure JPOXMLDOC01-appb-C000010
その他の成分
・F-1:1-エチニル-1-シクロヘキサノール
Other ingredients ・ F-1: 1-ethynyl-1-cyclohexanol
[実施例1~5および比較例1~3]
 5Lゲートミキサー(井上製作所(株)製、5Lプラネタリミキサー)に、(A)成分、(D)成分、および(E)成分を加え、25℃で1時間減圧混合した。次に、(C)成分を加え、25℃で30分混合した。その後、反応制御剤(F-1)を加えて25℃で30分混合した。最後に、(B)成分を加えて25℃で30分混合した。各成分の配合量を表1に示す。
[Examples 1 to 5 and Comparative Examples 1 to 3]
The components (A), (D), and (E) were added to a 5 L gate mixer (5 L planetary mixer manufactured by Inoue Seisakusho Co., Ltd.), and the mixture was mixed under reduced pressure at 25 ° C. for 1 hour. Next, the component (C) was added and mixed at 25 ° C. for 30 minutes. Then, the reaction control agent (F-1) was added and mixed at 25 ° C. for 30 minutes. Finally, the component (B) was added and mixed at 25 ° C. for 30 minutes. Table 1 shows the blending amount of each component.
 上記で得られた各組成物を硬化してなる硬化物について、以下の物性を測定・評価した。結果を併せて表1に示す。
(1)硬度
 各シリコーン組成物を2.0mmの厚さで120℃10分プレス硬化し、さらに120℃のオーブン中で50分間加熱した。得られたシリコーンシートを3枚重ねて、JIS K 6253-3:2012に規定されるタイプAデュロメータにより硬さを測定した。
(2)密度
 各シリコーン組成物を2.0mmの厚さで120℃10分プレス硬化し、さらに120℃のオーブン中で50分間加熱した。得られたシリコーンシートを、JIS K 7112:1999に規定される水中置換法により密度を測定した。
(3)貯蔵弾性率
 各シリコーン組成物を2.0mmの厚さで120℃10分プレス硬化し、さらに120℃のオーブン中で50分間加熱した。得られたシリコーンシートを、(株)ユービーエム社製Rheogel-E4000を用いて、引張モード、正弦波歪みにより粘弾性を測定し、周波数0.1Hzの貯蔵弾性率と周波数100Hzの貯蔵弾性率を評価した。
The following physical properties were measured and evaluated for the cured product obtained by curing each composition obtained above. The results are also shown in Table 1.
(1) Hardness Each silicone composition was press-cured at 120 ° C. for 10 minutes to a thickness of 2.0 mm, and further heated in an oven at 120 ° C. for 50 minutes. Three obtained silicone sheets were stacked and the hardness was measured by a type A durometer specified in JIS K 6253-: 2012.
(2) Density Each silicone composition was press-cured at 120 ° C. for 10 minutes to a thickness of 2.0 mm, and further heated in an oven at 120 ° C. for 50 minutes. The density of the obtained silicone sheet was measured by the underwater substitution method specified in JIS K 7112: 1999.
(3) Storage Elastic Modulus Each silicone composition was press-cured at 120 ° C. for 10 minutes to a thickness of 2.0 mm, and further heated in an oven at 120 ° C. for 50 minutes. The viscoelasticity of the obtained silicone sheet was measured by using Rheogel-E4000 manufactured by UBM Co., Ltd. in a tensile mode and sinusoidal strain, and the storage elastic modulus at a frequency of 0.1 Hz and the storage elastic modulus at a frequency of 100 Hz were obtained. evaluated.
Figure JPOXMLDOC01-appb-T000011
1) グリース状にならずシート成形不能
Figure JPOXMLDOC01-appb-T000011
1) Sheet cannot be molded without becoming grease-like
 表1に示されるように、実施例1~5で得られたシリコーン組成物を硬化して得られた硬化物は、低密度であり、周波数100Hzのときの貯蔵弾性率が3.2~11.0の範囲と比較的高く、かつ、周波数0.1Hzのとき貯蔵弾性率が0.3~3.2の範囲と低く、良好な特性を有していることがわかる。 As shown in Table 1, the cured products obtained by curing the silicone compositions obtained in Examples 1 to 5 have a low density and a storage elastic modulus of 3.2 to 11 at a frequency of 100 Hz. It can be seen that it has a relatively high range of 0.0 and a low storage elastic modulus in the range of 0.3 to 3.2 at a frequency of 0.1 Hz, and has good characteristics.

Claims (8)

  1.  (A)1分子中に少なくとも1個の珪素原子に結合したアルケニル基を有する、25℃における粘度が0.01~100Pa・sのオルガノポリシロキサン:100質量部、
    (B)1分子中に少なくとも1個の珪素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン:0.1~100質量部、
    (C)付加反応触媒、および
    (D)平均粒径が100μm以下である中空無機フィラー:10~500質量部
    を含むシリコーン組成物。
    (A) Organopolysiloxane having an alkenyl group bonded to at least one silicon atom in one molecule and having a viscosity at 25 ° C. of 0.01 to 100 Pa · s: 100 parts by mass,
    (B) Organohydrogenpolysiloxane having a hydrogen atom bonded to at least one silicon atom in one molecule: 0.1 to 100 parts by mass,
    A silicone composition containing (C) an addition reaction catalyst and (D) a hollow inorganic filler having an average particle size of 100 μm or less: 10 to 500 parts by mass.
  2.  (E)下記式(1)で示されるオルガノポリシロキサン:1~100質量部を含む請求項1記載のシリコーン組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、それぞれ独立して付加反応性炭素-炭素結合を有しない非置換または置換の炭素原子数1~10の一価炭化水素基を表し、R2は、それぞれ独立して、アルキル基、アルコキシアルキル基、アルケニル基、またはアシル基を表し、nは、2~100の整数を表し、aは、1~3の整数を表す。)
    (E) The silicone composition according to claim 1, which contains 1 to 100 parts by mass of an organopolysiloxane represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms independently having no addition-reactive carbon-carbon bond, and R 2 is independent of each other. , Alkyl group, alkoxyalkyl group, alkenyl group, or acyl group, n represents an integer of 2 to 100, and a represents an integer of 1 to 3).
  3.  前記中空無機フィラーが、球状であり、真比重0.1~0.8である請求項1または2記載のシリコーン組成物。 The silicone composition according to claim 1 or 2, wherein the hollow inorganic filler is spherical and has a true specific gravity of 0.1 to 0.8.
  4.  請求項1~3のいずれか1項記載のシリコーン組成物を硬化してなるシリコーン硬化物。 A silicone cured product obtained by curing the silicone composition according to any one of claims 1 to 3.
  5.  密度が、0.8g/cm3以下である請求項4記載のシリコーン硬化物。 The cured silicone product according to claim 4, which has a density of 0.8 g / cm 3 or less.
  6.  (周波数100Hzにおける貯蔵弾性率)/(周波数0.1Hzにおける貯蔵弾性率)の値が3.0以上である請求項4または5記載のシリコーン硬化物。 The silicone cured product according to claim 4 or 5, wherein the value of (storage elastic modulus at a frequency of 100 Hz) / (storage elastic modulus at a frequency of 0.1 Hz) is 3.0 or more.
  7.  請求項4~6のいずれか1項記載のシリコーン硬化物からなる衝撃緩衝材。 A shock-cushioning material made of the cured silicone product according to any one of claims 4 to 6.
  8.  請求項7記載の衝撃緩衝材を有する電子部品。 An electronic component having the shock absorbing material according to claim 7.
PCT/JP2020/029614 2019-09-17 2020-08-03 Silicone composition and cured product thereof WO2021053979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-168468 2019-09-17
JP2019168468A JP7196802B2 (en) 2019-09-17 2019-09-17 Silicone composition and cured product thereof

Publications (1)

Publication Number Publication Date
WO2021053979A1 true WO2021053979A1 (en) 2021-03-25

Family

ID=74877775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029614 WO2021053979A1 (en) 2019-09-17 2020-08-03 Silicone composition and cured product thereof

Country Status (2)

Country Link
JP (1) JP7196802B2 (en)
WO (1) WO2021053979A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022160028A (en) 2021-04-06 2022-10-19 信越化学工業株式会社 Silicone composition, and cured article thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269388A (en) * 1997-11-17 1999-10-05 Shin Etsu Chem Co Ltd Silicone rubber composition for injection molding
JP2004026875A (en) * 2002-06-21 2004-01-29 Shin Etsu Chem Co Ltd Silicone rubber composition
JP2006052760A (en) * 2004-08-10 2006-02-23 Shin Etsu Chem Co Ltd Silicone rubber compound for fixing roll and fixing roll
JP2010150399A (en) * 2008-12-25 2010-07-08 Shin-Etsu Chemical Co Ltd Thermally conductive silicone grease composition
JP2010155946A (en) * 2008-12-29 2010-07-15 Dow Corning Toray Co Ltd Curable organopolysiloxane composition and porous organopolysiloxane cured product
JP2014218564A (en) * 2013-05-07 2014-11-20 信越化学工業株式会社 Heat conductive silicone composition and cured product of the same
JP2017206652A (en) * 2016-05-20 2017-11-24 日立化成株式会社 Thermosetting resin composition, cured product, optical semiconductor element mounting substrate, method of manufacturing the same, optical semiconductor device, and printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269388A (en) * 1997-11-17 1999-10-05 Shin Etsu Chem Co Ltd Silicone rubber composition for injection molding
JP2004026875A (en) * 2002-06-21 2004-01-29 Shin Etsu Chem Co Ltd Silicone rubber composition
JP2006052760A (en) * 2004-08-10 2006-02-23 Shin Etsu Chem Co Ltd Silicone rubber compound for fixing roll and fixing roll
JP2010150399A (en) * 2008-12-25 2010-07-08 Shin-Etsu Chemical Co Ltd Thermally conductive silicone grease composition
JP2010155946A (en) * 2008-12-29 2010-07-15 Dow Corning Toray Co Ltd Curable organopolysiloxane composition and porous organopolysiloxane cured product
JP2014218564A (en) * 2013-05-07 2014-11-20 信越化学工業株式会社 Heat conductive silicone composition and cured product of the same
JP2017206652A (en) * 2016-05-20 2017-11-24 日立化成株式会社 Thermosetting resin composition, cured product, optical semiconductor element mounting substrate, method of manufacturing the same, optical semiconductor device, and printed wiring board

Also Published As

Publication number Publication date
JP2021046464A (en) 2021-03-25
JP7196802B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JP5783128B2 (en) Heat curing type heat conductive silicone grease composition
JP6874366B2 (en) Silicone composition and its cured product
KR102360378B1 (en) Silicone composition
JP5304588B2 (en) Thermally conductive silicone composition and cured product thereof
JP6217588B2 (en) Thermally conductive silicone potting composition
JP6614362B2 (en) Thermally conductive silicone composition
JP5843364B2 (en) Thermally conductive composition
JP6933198B2 (en) Thermally conductive silicone composition and its manufacturing method
JP7111187B2 (en) High thermal conductive silicone composition and method for producing the same
JP2016079378A (en) Thermally-conductive silicone composition and cured product thereof
JP7136203B2 (en) Thermally conductive silicone composition and method for producing the same
WO2021053979A1 (en) Silicone composition and cured product thereof
WO2022215523A1 (en) Silicone composition and cured product thereof
JP7290118B2 (en) Thermally conductive silicone adhesive composition
EP4056653A1 (en) Thermally conductive silicone potting composition and cured product thereof
JP2005320462A (en) Addition reaction-curable silicone rubber composition for heat-resistant applications and silicone adhesive
JP2021113290A (en) Heat-conductive silicone potting composition, and cured product of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865398

Country of ref document: EP

Kind code of ref document: A1