WO2021053730A1 - 電力供給システム並びにその制御方法及び装置 - Google Patents

電力供給システム並びにその制御方法及び装置 Download PDF

Info

Publication number
WO2021053730A1
WO2021053730A1 PCT/JP2019/036416 JP2019036416W WO2021053730A1 WO 2021053730 A1 WO2021053730 A1 WO 2021053730A1 JP 2019036416 W JP2019036416 W JP 2019036416W WO 2021053730 A1 WO2021053730 A1 WO 2021053730A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
soc
generator
storage device
Prior art date
Application number
PCT/JP2019/036416
Other languages
English (en)
French (fr)
Inventor
林 正人
大野 達也
達也 小野寺
武憲 檜野
泰典 久次米
芳輝 原田
秀明 江崎
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to NO20220437A priority Critical patent/NO20220437A1/en
Priority to PCT/JP2019/036416 priority patent/WO2021053730A1/ja
Priority to CA3149733A priority patent/CA3149733A1/en
Priority to JP2021546089A priority patent/JP7219819B2/ja
Publication of WO2021053730A1 publication Critical patent/WO2021053730A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • the present invention relates to a power supply system including a generator and a low-capacity, high-output power storage device connected to a power load.
  • Patent Documents 1 and 2 disclose a method of charging and discharging such a power storage device.
  • Patent Document 1 a generator driven by an engine, a first inverter for controlling the generator, an electric motor, a second inverter for driving the electric motor, and first and second inverters are connected via converters.
  • a hybrid construction machine including a power storage device whose charge and discharge are controlled by a converter is disclosed.
  • the output upper limit value and the output lower limit value of the power storage device are determined in consideration of the target SOC determined to maintain the SOC (charge rate: State Of Charge) of the power storage device within a predetermined range. This avoids overcharging and overdischarging of the power storage device.
  • a plug including a generator driven by an engine, a power storage device for storing the electric power generated by the generator, and an external power supply unit for supplying the power stored in the power storage device to the outside of the vehicle.
  • In-hybrid vehicles are disclosed.
  • the engine is started when the SOC of the power storage device reaches the lower limit value of the allowable range, and the engine is stopped when the SOC of the power storage device reaches the upper limit value of the allowable range.
  • the SOC of the power storage device increases according to the amount of electric power generated.
  • the LIC is a power storage device that combines a positive electrode of an electric double layer capacitor (hereinafter abbreviated as EDLC) and a negative electrode of a lithium ion battery (hereinafter abbreviated as LIB).
  • EDLC electric double layer capacitor
  • LIB lithium ion battery
  • the LIC has a high energy density and a high output density, and is suitable for applications in which charging and discharging are frequently repeated because of the characteristics that a large current can be rapidly charged and discharged.
  • LIB lithium ion battery
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power supply system including a power storage device that is connected to a generator and a power load to charge and discharge, and the system size of the power storage device and the physique of the generator.
  • the purpose is to propose a technology that can suppress (size).
  • the control device for the power supply system is An engine, a generator that uses the power of the engine to generate electricity, a power storage device that stores at least one of the power generated by the generator and the regenerated power from the power load, the power stored in the power storage device, and A control device for a power supply system including a power supply unit for supplying the power generated by the generator to a power load.
  • the SOC of the power storage device is measured, the SOC average value is obtained from the SOC, the generator output target value is determined based on the SOC average value, and the output of the generator becomes the generator output target value.
  • the generator output target value is determined to be a predetermined basic value larger than 0 if the SOC average value exceeds a predetermined allowable upper limit value, and is greater than the predetermined basic value if the SOC average value is less than a predetermined allowable lower limit value. Is also determined to be a large correction value, and if the SOC average value is equal to or greater than the allowable upper limit value and is less than or equal to the allowable upper limit value, it is determined to be the current generator output target value.
  • the power supply system is With the engine A generator that uses the power of the engine to generate electricity, A power storage device that stores at least one of the power generated by the generator and the regenerative power from the power load, and A power supply unit for supplying the electric power stored in the power storage device and the power generated by the generator to the power load. It is characterized by including the control device.
  • An engine a generator that uses the power of the engine to generate electricity
  • a power storage device that stores at least one of the power generated by the generator and the regenerated power from the power load, the power stored in the power storage device
  • It is a control method of a power supply system including a power supply unit for supplying the power generated by the generator to a power load. Measuring the SOC of the power storage device, Obtaining the SOC average value from the SOC, Determining the generator output target value based on the SOC average value, and Including controlling the output of the generator in response to the generator output target value.
  • the generator output target value is determined to be a predetermined basic value larger than 0 if the SOC average value exceeds a predetermined allowable upper limit value, and is greater than the predetermined basic value if the SOC average value is less than a predetermined allowable lower limit value. Is also determined to be a large correction value, and if the SOC average value is equal to or greater than the allowable upper limit value and is less than or equal to the allowable upper limit value, it is determined to be the current generator output target value.
  • the SOC average value decreases, power is supplied from the generator to the power storage device or the power load so as to compensate for the lost power storage amount.
  • the SOC average value is maintained within the permissible range of the permissible lower limit value and the permissible upper limit value or less regardless of the number of charge / discharge cycles. That is, the simple control of changing the generator output between two values suppresses the influence of charge / discharge efficiency due to repeated charging / discharging.
  • the power storage device can repeat charging and discharging while avoiding over-discharging and over-charging.
  • the power storage device Since the charge amount at the initial stage of operation is generally maintained, the power storage device need only have a capacity and output satisfying the charge / discharge profile (that is, the required charge / discharge amount) at the initial stage of operation, and as a result, the power storage device of the power storage device.
  • the number of cells (system size, capacity) can be reduced.
  • the electric power generated by the generator is mainly used to supplement the charge / discharge efficiency of the power storage device. That is, the physique (size) of the generator provided in the power supply system can be suppressed as compared with the case where the load fluctuation is suppressed only by the electric power generated by the generator. This can contribute to the reduction of initial cost and fuel consumption for the generator.
  • the system size of the power storage device and the body size of the generator can be suppressed.
  • FIG. 1 is a schematic configuration diagram of a landing and landing system to which the power supply system according to the embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing a configuration of a power supply system.
  • FIG. 3 is a functional block diagram of the control device.
  • FIG. 4 is an example of a one-cycle power load profile.
  • FIG. 5 is a flowchart showing a processing flow of the control device.
  • FIG. 6 is a chart showing the simulation results of one cycle.
  • FIG. 7 is a chart showing the simulation results of 1 cycle to 480 cycles.
  • the power supply system 10 according to one aspect of the present invention will be described by applying it to a general launch and recovery system 13.
  • the power supply system 10 is not limited to the landing and landing system 13, and can be applied to vehicles, construction machinery, and the like.
  • FIG. 1 is a schematic configuration diagram of a landing / unloading system 13 to which the power supply system 10 according to the embodiment of the present invention is applied.
  • the landing and unloading system 13 shown in FIG. 1 suspends the underwater device 12 from the platform 11 floating on the water, and lands, unloads, and maintains the posture of the underwater device 12.
  • the platform 11 is, for example, a mother ship, an ocean base, or the like.
  • the underwater device 12 is, for example, an underwater vehicle, an underwater pipe, an observation device, or the like.
  • the landing and unloading system 13 is crawled along the frame crane 21 and the pendant frame 22 by using a frame crane 21 supported by the platform 11, a pendant frame 22 suspended from the tip of the frame crane 21, and a plurality of sheaves.
  • the hoist winch 25 for winding the hoisting rope 24 and the hoisting rope 24 is provided.
  • the tip of the lifting rope 24 is coupled to the lifting metal fitting 23 provided in the underwater device 12.
  • the frame crane 21 is raised by a hydraulic cylinder (not shown).
  • the hoist winch 25 includes a winch drum 27 on which the lifting rope 24 is wound, and an electric motor 28 that rotates the winch drum 27.
  • the hoist winch 25 has a sway compensation function, which will be described in detail later.
  • the electric motor 28 receives power from the power supply system 10.
  • FIG. 2 is a block diagram showing a configuration of the power supply system 10.
  • the electric power supply system 10 shown in FIG. 2 supplies electric power to the electric motor 28 as the electric power load L, and charges the power storage device 30 with the regenerated electric power from the electric motor 28.
  • the power supply system 10 includes an engine 32, an ECU 31, a generator 35, a power storage device 30, a first inverter 29, a second inverter 34, a converter 33, and a control device 40.
  • the engine 32 drives the generator 35.
  • the electric power generated by the generator 35 is supplied to the power storage device 30 via the first inverter 29 and the converter 33. As a result, the power storage device 30 is charged. Further, the electric power generated by the generator 35 is supplied to the electric power load L via the first inverter 29 and the second inverter 34. Power is supplied to the power load L from the power storage device 30 via the converter 33 and the second inverter 34. As a result, the power storage device 30 is discharged.
  • the power storage device 30 is a DC power source configured so that it can be charged and discharged.
  • a low-capacity, high-output power storage device is adopted as the power storage device 30.
  • a low-capacity power storage device can be defined as a power storage device having a storage capacity of several to ten and several Ah.
  • the high-power power storage device can be defined as a power storage device having an output density of 3000 W / Kg or more and a charge / discharge rate of 5 C or more at least one of them.
  • Capacitors such as LIC and EDLC are exemplified as low-capacity and high-output power storage devices.
  • a secondary battery such as a high-power lithium-ion battery is exemplified.
  • the power storage device 30 includes a voltage sensor and a current sensor 41 (not shown).
  • the voltage sensor detects the voltage of the power storage device 30 and outputs it to the control device 40.
  • the current sensor 41 detects the input / output current of the power storage device 30 and outputs it to the control device 40.
  • the engine 32 is, for example, an internal combustion engine such as a gasoline engine, a diesel engine, or a gas engine.
  • the generator 35 uses the power of the engine 32 to generate electricity.
  • the engine 32 is controlled by the ECU 31 so as to obtain an engine output corresponding to the generator output (that is, the engine load) of the generator 35.
  • the generator 35 may be a motor generator.
  • the motor generator in this case is a generator 35 and also has a power load L.
  • the control device 40 controls the first inverter 29, the second inverter 34, and the converter 33 to supply power from the generator 35 to the power storage device 30 (that is, the amount of charge of the power storage device 30) and power from the power storage device 30.
  • the power supplied to the load L (that is, the amount of discharge of the power storage device 30) is controlled.
  • FIG. 3 is a functional block diagram of the control device 40.
  • the control device 40 includes an arithmetic control unit 51 and a storage unit 52.
  • the arithmetic control unit 51 is, for example, at least one of a microcontroller, a microcontroller, a PLD (programmable logic device) such as an FPGA (field-programmable gate array), a PLC (programmable logic controller), and a logic circuit, or It can consist of two or more combinations.
  • the storage unit 52 stores a basic program, a software program, and the like executed by the arithmetic control unit 51.
  • the storage unit 52 stores the allowable lower limit value S1 and the allowable upper limit value S2 regarding the SOC average. Further, the storage unit 52 stores a reference value P1 and a correction value P2 regarding the generator output target value P. These values are predetermined values by simulation or the like and are stored in the storage unit 52.
  • the calculation control unit 51 has each function unit of the SOC calculation unit 51a, the SOC average calculation unit 51b, and the generator output determination unit 51c.
  • the arithmetic control unit 51 realizes the functions as these functional units by executing the program stored in advance.
  • each functional unit of the arithmetic control unit 51 may be realized not by a program but by a theory circuit.
  • the SOC calculation unit 51a obtains the SOC of the power storage device 30 based on the detected value of the current sensor 41, and stores it in the storage unit 52.
  • SOC is defined as the ratio of the remaining charge to the charge capacity of the power storage device 30.
  • SOC is expressed using a method called "coulomb count", which integrates the current flowing into the power storage device 30 and the current flowing out of the power storage device 30.
  • the SOC calculation unit 51a may obtain the SOC of the power storage device 30 by using the detection value of the voltage sensor.
  • the SOC average calculation unit 51b obtains the average value of SOC (hereinafter referred to as SOC average). Since the value of SOC fluctuates constantly, the SOC average is used as a representative value of SOC.
  • the SOC average calculation unit 51b may be a moving average filter that obtains a moving average of a predetermined period of SOC (for example, one cycle) as an SOC average.
  • the SOC averaging unit 51b may be an SOC low-pass filter as the SOC averaging.
  • the generator output determination unit 51c determines the generator output target value P so that the SOC average falls within the allowable range from the allowable lower limit value S1 to the allowable upper limit value S2.
  • the generator output target value P is determined from the reference value P1 and the correction value P2 which is a value larger than the reference value P1.
  • the sway compensation function detects the sway of the platform 11 and cancels the movement of the underwater device 12 connected to the lifting rope 24, which is swayed up and down under the influence of the sway of the platform 11. Is to rotate.
  • the electric motor 28 of the winch drum 27 constantly repeats the winding operation and the feeding operation so that the tension of the lifting rope 24 is kept substantially constant.
  • electric power is supplied from the generator 35 and / or the power storage device 30 to the electric motor 28.
  • the electric power from the generator 35 and the regenerative electric power from the electric motor 28 are stored in the power storage device 30.
  • FIG. 4 is an example of a power load profile for one cycle (60 seconds).
  • this power load profile in this power load, regeneration and power running of ⁇ 8 MW (maximum power amount during regeneration 5.8 MW, maximum power amount 7.4 MW during power running) are repeated in a cycle of about 10 seconds. ..
  • power compensation for a power load that frequently repeats regeneration and power running for example, shaking compensation as in the present embodiment
  • the power storage device 30 frequently repeats charging and discharging, so that the power storage device 30 is a LIC. Is preferable.
  • the LIC has a feature that the storage capacity is smaller than that of the LIB. Therefore, the capacity of the LIC determined by assuming the operation for a long time becomes remarkably large. In order to verify this, a simulation was performed for each of the LIC and the LIB to obtain the specifications required for the power storage device 30 in order to realize the power load profile shown in FIG. 4 under the conditions of the following 1) to 4). .. 1) Maximum voltage about 1100V, 2) Environmental temperature 25 ° C, 3) The rise ( ⁇ T) of the saturation temperature of the cell is about 10 ° C or less, 4) Operating time 24,000 hours. The condition that the rise ( ⁇ T) of the saturation temperature of the cell is about 10 ° C.
  • the power storage device can be used for 8 hours a day, 300 days a year, and 10 years as a motion compensation function of the landing and collection system 13. It is assumed from the temperature that can be achieved. However, the LIC has 36 cells as one module, and the LIB has 24 cells as one module, and the number of cells is increased for each module. Further, in the power load profile of FIG. 4, the maximum amount of power during power running is 7.4011 MW, and in the case of LIB, the C rate (ratio of the charging current value to the stored capacity) of the first cycle is assumed to be 3C.
  • the power storage device 30 needs a capacity of 2.467 MWh.
  • Table 1 below shows the specifications of the power storage device 30 required to realize the one-cycle charge / discharge profile corresponding to the power load profile obtained in the above simulation.
  • the items of the specifications of the power storage device 30 are the number of cells, the maximum voltage, the minimum voltage, the SOC initial value, the SOC final value, the DOD, the cell current effective value, and the rise of the cell saturation temperature.
  • the number of cells of the power storage device 30 required to realize the charge / discharge profile from 1 to 10, 100, 200, 300, 400, 480 cycles (8 hours with 60 seconds per cycle), the current effective value, and C.
  • the rates are shown in Table 2 below.
  • LIC is advantageous because the required number of cells of LIC is smaller than the required number of cells of LIB in one cycle.
  • the required number of cells increases, and the rate of increase is larger than that in LIB.
  • 1 to 480 cycles require about 9 times as many cells as one cycle.
  • ⁇ SOC the difference in the amount of increase / decrease in SOC in one cycle due to charging / discharging.
  • ⁇ SOC is the difference between the SOC initial value and the SOC final value in one cycle.
  • the electromotive force of LIB shows plateau characteristics in the range of SOC of 10 to 90%. From this, in LIB, since the current value is substantially the same for a substantially constant charge / discharge force amount [W] in the range of SOC 10 to 90%, ⁇ SOC does not depend on the SOC initial value. On the other hand, the LIC has no electromotive force. From this, in LIC, even if the charge / discharge force amount [W] is substantially constant, the current value differs depending on the SOC initial value, and ⁇ SOC also depends on the SOC initial value.
  • the SOC initial value is set to one cycle for each cycle.
  • the SOC may be returned to the initial value.
  • FIG. 5 is a flowchart showing a processing flow of the control device 40.
  • the control device 40 during the agitation compensation acquires the current value entering and exiting the power storage device 30, obtains the SOC of the power storage device 30, and stores it (step S1).
  • the control device 40 obtains the SOC average for one cycle from the accumulated SOC (step S2).
  • the control device 40 compares the obtained SOC average with the allowable upper limit value S2 (step S3), and if the SOC average exceeds the allowable upper limit value S2 (YES in step S3), the generator output target value P is used as a reference.
  • the value is P1 (step S4).
  • the control device 40 compares the SOC average with the allowable lower limit value S1 (step S5). If the control device 40 is below the SOC average and the allowable lower limit value S1 (YES in step S5), the output target value P is set as the correction value P2. If the SOC average is equal to or higher than the allowable lower limit value S1 in step S3 (NO in step S5), the control device 40 maintains the current value of the output target value P.
  • the control logic of the power supply system 10 is shown in Table 3 below.
  • the control device 40 determines the output target value P as described above, and outputs the generator output target value P to the generator 35 when the output target value P is changed (step S7).
  • the output of the generator 35 is, that is, the load of the engine 32, and the generator output changes depending on the change of the output of the engine 32 in response to this load. Therefore, the generator output target value P may be output to the ECU 31.
  • the generator output changes from the reference value P1 to a correction value P2 larger than that.
  • the increase in the generated power of the generator 35 is charged to the power storage device 30 (or supplied to the power load), and the amount of power stored lost in one cycle is compensated.
  • Example 1 the control method of the power supply system 10 will be described in detail by applying specific numerical values.
  • the LIC is adopted as the power storage device 30, and the specifications (4896 cells) of the power storage device 30 required to realize the charge / discharge profile corresponding to the power load profile of one cycle (see FIG. 4) are used.
  • the charge / discharge SOC (storage amount) characteristics of the power storage device 30 in one cycle adopted in this embodiment are as shown in Table 4 below.
  • the reference value P1 and the correction value P2 of the generator output target value P for compensating the amount of electricity stored in one cycle with the generator are obtained.
  • the target value of the generator load for increasing the SOC average from 62.592% to 12.555% corresponding to ⁇ SOC is obtained.
  • the basic value P1 of the generator output target value P is determined as the basic value P1 of the generator output target value P so that the power storage device 30 is not overcharged by the generator output.
  • the basic value P1 is 115 kW, which is about 2 W less than the amount of charging power obtained by the correction value P2.
  • the generator output target value P is switched from the basic value P1 to the correction value P2, triggered by the SOC average becoming the allowable lower limit value S1 or less.
  • the difference between the maximum SOC value and the SOC average is defined as the average value range.
  • the average price range is 22.497%.
  • the allowable upper limit value S2 of the SOC average is set to 70% in consideration of the SOC average and the average value range.
  • the allowable lower limit value S1 corresponding to the SOC average allowable upper limit value S2 is determined, and the allowable range of the SOC average (allowable lower limit value S1 or more and allowable upper limit value S2 or less) is set. As shown in Table 4, the current values are different even if the charge / discharge amount is the same. From the viewpoint of suppressing fluctuations in the effective current value, the allowable range of the SOC average is preferably 5 to 10%. In this embodiment, since the allowable upper limit value S2 of the SOC average is 70%, the allowable lower limit value S1 is set to 65%.
  • the generator output target value P is switched to 115 kW when the SOC average> 70%, the generator output target value P is switched to 125 kW when the SOC average is ⁇ 65%, and 65.
  • the generator output target value P is maintained as it is.
  • a simulation of sway compensation was performed in which the power storage device 30 compensates for the load fluctuation of the power load L (the power load profile shown in FIG. 4).
  • FIG. 6 is a time chart showing the simulation result of the agitation compensation for the first hour
  • FIG. 7 is a time chart showing the simulation result of the agitation compensation for the first 8 hours.
  • the vertical axis represents SOC, the SOC average, and the generator output target value P, and the horizontal axis represents time. Further, the values related to the charge / discharge characteristics of the power storage device 30 obtained from the simulation result of the agitation compensation are shown in Table 6 below.
  • the generator output target value P is switched from the basic value P1 to the correction value P2 (or vice versa) in a cycle of 800 to 900 seconds.
  • it may be changed in a stepwise manner or may be changed with a time gradient. Since the change of the generator output target value P has a time gradient, it is possible to suppress abrupt load fluctuations of the generator 35 and the engine 32.
  • the power supply system 10 is derived from the engine 32, the generator 35 that generates electricity using the power of the engine 32, the power generated by the generator 35, and the power load L.
  • a power storage device 30 that stores at least one of the regenerated power, a power supply unit (second inverter 34) for supplying the power stored in the power storage device and the power generated by the generator to the power load L, and control.
  • the device 40 is provided.
  • the control device 40 measures the SOC of the power storage device 30, obtains the SOC average value from the measured SOC, determines the generator output target value P based on the SOC average value, and determines the generator output as the generator output target value. It is configured to be controlled to be P.
  • the generator output target value P is determined to be a predetermined basic value P1 larger than 0 if the SOC average value exceeds a predetermined allowable upper limit value S2, and if the SOC average value is less than the predetermined allowable lower limit value S1. It is determined that the correction value P2 is larger than the basic value P1, and if the SOC average value is equal to or greater than the allowable lower limit value S1 and equal to or less than the allowable upper limit value S2, the current generator output target value P is determined to be maintained.
  • control method of the power supply system 10 having the above configuration is to measure the SOC of the power storage device 30, obtain the SOC average value from the measured SOC, and determine the generator output target value P based on the SOC average value. This includes controlling the output of the generator 35 in response to the generator output target value P.
  • the generator output target value P is determined to be a predetermined basic value P1 larger than 0 if the SOC average value exceeds a predetermined allowable upper limit value S2, and if the SOC average value is less than the predetermined allowable lower limit value S1.
  • the correction value P2 is larger than the basic value P1, and if the SOC average value is equal to or greater than the allowable lower limit value S1 and equal to or less than the allowable upper limit value S2, the current generator output target value P is determined to be maintained.
  • the power supply system 10 if the SOC average value decreases, power is supplied from the generator 35 to the power storage device 30 so as to compensate for the lost power storage amount.
  • the SOC average value is maintained within the permissible range of the permissible lower limit value S1 or more and the permissible upper limit value S2 or less regardless of the number of charge / discharge cycles.
  • the influence of charge / discharge efficiency due to repeated charge / discharge can be suppressed by a simple control of changing the generator output between two values of the reference value P1 and the correction value P2.
  • the power storage device can repeat charging and discharging while avoiding over-discharging and over-charging.
  • the power storage device 30 Since the charge amount at the initial stage of operation is generally maintained, the power storage device 30 only needs to have a capacity and an output satisfying the charge / discharge profile (that is, the required charge / discharge amount) at the initial stage of operation, and as a result, the power storage device 30.
  • the number of cells (system size, capacity) of 30 can be suppressed.
  • the engine output is first determined, and the capacity and output of the power storage device are determined so that the engine output can be assisted by the power storage device. That is, the main operation amount is the engine output, and the auxiliary operation amount is the output of the power generation device.
  • the engine output corresponds to the generator output.
  • the main operation amount is the output of the power storage device 30, and the system size of the power storage device 30 that satisfies the power load profile at the initial stage of operation is determined, and the system size is used.
  • the generator output is operated so as to realize long-term operation. By such a change of thinking, the system size of the power storage device 30 can be suppressed.
  • the electric power generated by the generator 35 is mainly used to supplement the charge / discharge efficiency of the power storage device 30. That is, the physique (size) of the generator 35 included in the power supply system 10 can be suppressed as compared with the case where the load fluctuation of the electric power load is suppressed only by the electric power generated by the generator 35. In this way, the enormous size of the power storage device 30 is suppressed, and the size of the generator 35 can be reduced, thereby reducing the occupied space, initial cost, and running cost of the power storage device 30 and the generator 35. It becomes possible to do.
  • the power storage device 30 may be any one or a combination of two or more of a lithium ion capacitor, an electric double layer capacitor, and a high output type lithium ion battery.
  • the control logic according to the present embodiment is suitable for a low-capacity high-output power storage device 30 capable of rapid charging / discharging and having a relatively small capacity.
  • the SOC average value may be the SOC moving average value or the low-pass filter output value. Since the SOC fluctuates constantly, it is desirable to adopt such an SOC average value.
  • Electric power supply system 11 Platform 12: Underwater equipment 13: Landing and unloading system 21: Frame crane 22: Pendant frame 23: Lifting metal fittings 24: Lifting rope 25: Hoist winch 27: Winch drum 28: Electric motor (electric power) Example of load) 29: First inverter 30: Power storage device 31: ECU 32: Engine 33: Converter 34: Second inverter (example of power supply unit) 35: Generator 40: Control device 41: Current sensor 51: Calculation control unit 51a: SOC calculation unit 51b: SOC average calculation unit 51c: Generator output determination unit 52: Storage unit 80: Fourth L: Power load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

給電システムは、エンジンと、エンジンの動力を用いて発電する発電機と、発電機で発電された電力及び電力負荷からの回生電力のうち少なくとも一方を蓄電する蓄電デバイスと、前記蓄電デバイスに蓄電された電力及び前記発電機で発電された電力を電力負荷へ供給するための給電部と、制御装置とを備える。制御装置は、蓄電デバイスのSOCを計測し、SOCからSOC平均値を求め、SOC平均値に基づいて発電機出力目標値を決定し、発電機の出力を発電機出力目標値となるように制御する。発電機出力目標値は、発電機出力目標値は、SOC平均値が所定の許容上限値を超えれば0よりも大きい所定の基本値と決定され、SOC平均値が所定の許容下限値を下回れば基本値より大きい補正値と決定され、SOC平均値が許容下限値以上許容上限値以下であれば現在の発電機出力目標値と決定される。

Description

電力供給システム並びにその制御方法及び装置
 本発明は、発電機及び電力負荷と接続された低容量高出力型蓄電デバイスを備える電力供給システムに関する。
 従来、発電機から電力負荷へ電力を供給する電力供給システムにおいて、発電機及び電力負荷に接続された蓄電デバイスに余剰の電力を充電するとともに、電力負荷で電力が不足したときには蓄電デバイスに蓄えられた電力を放電して電力負荷へ供給するように構成されたものがある。特許文献1、2では、このような蓄電デバイスの充放電方法が開示されている。
 特許文献1では、エンジンにより駆動される発電機と、発電機を制御する第1インバータと、電動機と、電動機を駆動する第2インバータと、第1及び第2インバータとコンバータを介して接続され、コンバータにより充放電制御される蓄電装置とを備えたハイブリット式建設機械が開示されている。この建設機械では、蓄電デバイスのSOC(充電率:State Of Charge)を所定範囲内に維持するように決定された目標SOCを考慮して、蓄電デバイスの出力上限値と出力下限値とを決定することによって、蓄電デバイスの過充電及び過放電を回避する。
 特許文献2では、エンジンにより駆動される発電機と、発電機で発電された電力を蓄える蓄電装置と、蓄電装置に蓄電された電力を車両の外部へ供給するための外部給電部とを備えるプラグインハイブリッド車両が開示されている。この車両では、外部給電部から外部へ給電中に、蓄電装置のSOCが許容範囲の下限値に達したらエンジンを始動させ、蓄電装置のSOCが許容範囲の上限値に達したらエンジンを停止させる。蓄電装置のSOCは、発電された電力量に応じて増加する。
特開2010-41828号公報 特開2015-47972号公報
 上記のような充放電が可能な蓄電デバイスの一つとして、リチウムイオンキャパシタ(以下、LICと略す)がある。LICは、電気二重層キャパシタ(以下、EDLCと略す)の正極とリチウムイオン電池(以下、LIBと略す)の負極とを組み合わせた蓄電デバイスである。LICは、高いエネルギー密度と高い出力密度を兼ね備え、大電流の急速充放電が可能であるという特性から、充電と放電とを頻繁に繰り返す用途に好適である。一方で、LICは、LIBと比較して、容量が小さく、充放電効率(=放電容量÷充電電気量×100)の影響を受けやすい。そのため、長時間の稼働を想定して決定されたLICの容量は著しく大きくなる。蓄電デバイスは、容量の増加に伴って、占有空間が大きくなり、イニシャルコスト及びランニングコストも嵩む。
 本発明は以上の事情に鑑みてなされたものであり、その目的は、発電機及び電力負荷と接続されて充放電を行う蓄電デバイスを備える電力供給システムにおいて、蓄電デバイスのシステムサイズ及び発電機体格(サイズ)を抑え得る技術を提案することにある。
 本発明の一態様に係る電力供給システムの制御装置は、
エンジンと、前記エンジンの動力を用いて発電する発電機と、前記発電機で発電された電力及び電力負荷からの回生電力の少なくとも一方を蓄電する蓄電デバイスと、前記蓄電デバイスに蓄電された電力及び前記発電機で発電された電力を電力負荷へ供給するための給電部とを備える電力供給システムの制御装置であって、
前記蓄電デバイスのSOCを計測し、前記SOCからSOC平均値を求め、前記SOC平均値に基づいて発電機出力目標値を決定し、前記発電機の出力を前記発電機出力目標値となるように制御するように構成されており、
前記発電機出力目標値は、前記SOC平均値が所定の許容上限値を超えれば0よりも大きい所定の基本値と決定され、前記SOC平均値が所定の許容下限値を下回れば前記基本値よりも大きい補正値と決定され、前記SOC平均値が前記許容下限値以上前記許容上限値以下であれば現在の前記発電機出力目標値と決定されることを特徴としている。
 また、本発明の一態様に係る電力供給システムは、
エンジンと、
前記エンジンの動力を用いて発電する発電機と、
前記発電機で発電された電力及び電力負荷からの回生電力の少なくとも一方を蓄電する蓄電デバイスと、
前記蓄電デバイスに蓄電された電力及び前記発電機で発電された電力を電力負荷へ供給するための給電部と、
前記制御装置と、を備えることを特徴としている。
 また、本発明の一態様に係る電力供給システムの制御方法は、
エンジンと、前記エンジンの動力を用いて発電する発電機と、前記発電機で発電された電力及び電力負荷からの回生電力の少なくとも一方を蓄電する蓄電デバイスと、前記蓄電デバイスに蓄電された電力及び前記発電機で発電された電力を電力負荷へ供給するための給電部とを備える電力供給システムの制御方法であって、
前記蓄電デバイスのSOCを計測すること、
前記SOCからSOC平均値を求めること、
前記SOC平均値に基づいて発電機出力目標値を決定すること、及び、
前記発電機出力目標値に対応して前記発電機の出力を制御すること、を含み、
前記発電機出力目標値は、前記SOC平均値が所定の許容上限値を超えれば0よりも大きい所定の基本値と決定され、前記SOC平均値が所定の許容下限値を下回れば前記基本値よりも大きい補正値と決定され、前記SOC平均値が前記許容下限値以上前記許容上限値以下であれば現在の前記発電機出力目標値と決定されることを特徴としている。
 上記の電力供給システム並びにその制御方法及び装置によれば、SOC平均値が低下すれば、失われた蓄電量を補うように発電機から蓄電デバイス又は電力負荷へ電力が供給される。これにより、充放電のサイクル数に関わらず、SOC平均値が許容下限値以上許容上限値以下の許容範囲に維持される。つまり、発電機出力を2値の間で変化させるという単純な制御で、充放電の繰り返しに起因する充放電効率の影響が抑制される。これにより、蓄電デバイスは過放電及び過充電を回避しつつ充放電を繰り返すことができる。
 蓄電デバイスは、稼働初期の充電量が概ね維持されるので、稼働初期の充放電プロファイル(即ち、要求される充放電量)を満足する容量及び出力を備えれば足り、その結果、蓄電デバイスのセル数(システムサイズ、容量)を抑えることができる。
 また、発電機で生じた電力は主に蓄電デバイスの充放電効率を補うために用いられる。つまり、発電機で生じた電力のみで負荷変動を抑制する場合と比較して、電力供給システムが備える発電機の体格(サイズ)を抑えることができる。これにより、発電機のためのイニシャルコストや燃費の削減に寄与することができる。
 本発明によれば、発電機及び電力負荷と接続されて充放電を行う蓄電デバイスを備える電力供給システムにおいて、蓄電デバイスのシステムサイズ及び発電機体格を抑えることができる。
図1は、本発明の一実施形態に係る電力供給システムが適用される着水揚収システムの概略構成図である。 図2は、電力供給システムの構成を示すブロック図である。 図3は、制御装置の機能ブロック図である。 図4は、1サイクルの電力負荷プロファイルの一例である。 図5は、制御装置の処理の流れを示すフローチャートである。 図6は、1サイクルのシミュレーション結果を示す図表である。 図7は、1サイクルから480サイクルのシミュレーション結果を示す図表である。
 次に、図面を参照して本発明の実施の形態を説明する。ここでは、本発明の一態様に係る電力供給システム10を一般的な着水揚収システム(Launch and recovery system)13に適用して説明する。但し、電力供給システム10は、着水揚収システム13に限定されず、車両、建設機械などにも適用することができる。
 図1は、本発明の一実施形態に係る電力供給システム10が適用される着水揚収システム13の概略構成図である。図1に示す着水揚収システム13は、水上に浮遊しているプラットフォーム11から水中機器12を吊り下げ、水中機器12の着水、揚収、及び姿勢保持などを行うものである。プラットフォーム11は、例えば、母船、海洋基地などである。水中機器12は、例えば、水中ビークル、水中パイプ、及び観測機器などである。
 着水揚収システム13は、プラットフォーム11に支持されたフレームクレーン21、フレームクレーン21の先端に吊り下げられたペンダントフレーム22、複数のシーブを用いてフレームクレーン21及びペンダントフレーム22に沿って這わされた吊揚索24、及び、吊揚索24を巻き上げるホイストウインチ25を備える。吊揚索24の先端は、水中機器12に設けられた吊揚金具23と結合されている。フレームクレーン21は、図示されない油圧シリンダによって俯仰する。
 ホイストウインチ25は、吊揚索24が巻き取られたウインチドラム27と、ウインチドラム27を回転させる電動機28とを備える。ホイストウインチ25は、後ほど詳細に説明する動揺補償(Heave Compensation)機能を備える。電動機28は、電力供給システム10から電力の供給を受ける。
〔電力供給システム10の構成〕
 図2は、電力供給システム10の構成を示すブロック図である。図2に示す電力供給システム10は、電力負荷Lとしての電動機28へ電力を供給し、また、当該電動機28からの回生電力を蓄電デバイス30に充電するものである。電力供給システム10は、エンジン32、ECU31、発電機35、蓄電デバイス30、第1インバータ29、第2インバータ34、コンバータ33、及び、制御装置40を備える。
 エンジン32は、発電機35を駆動する。発電機35により生成された電力は、第1インバータ29及びコンバータ33を介して蓄電デバイス30へ供給される。これにより、蓄電デバイス30が充電される。また、発電機35により生成された電力は、第1インバータ29及び第2インバータ34を介して電力負荷Lへ供給される。電力負荷Lへは、蓄電デバイス30からコンバータ33及び第2インバータ34を介して電力が供給される。これにより、蓄電デバイス30が放電される。
 蓄電デバイス30は、充放電可能に構成された直流電源である。蓄電デバイス30には、低容量高出力型蓄電デバイスが採用される。低容量の蓄電デバイスとは、蓄電容量が数~10数Ah程度の蓄電デバイスと定義され得る。高出力型蓄電デバイスとは、出力密度が3000W/Kg以上、及び、充放電レートが5C以上のうち少なくとも一方を充足する蓄電デバイスと定義され得る。低容量高出力型蓄電デバイスとして、LIC、EDLCなどのキャパシタが例示される。また、低容量高出力型蓄電デバイスとして、高出力型リチウムイオン電池などの二次電池が例示される。
 蓄電デバイス30は、図示されない電圧センサ及び電流センサ41を含む。電圧センサは、蓄電デバイス30の電圧を検出して、制御装置40に出力する。電流センサ41は、蓄電デバイス30の入出力電流を検出して、制御装置40に出力する。
 エンジン32は、例えば、ガソリンエンジンやディーゼルエンジン、ガスエンジン等の内燃機関である。発電機35は、エンジン32の動力を用いて発電する。エンジン32は、ECU31によって、発電機35の発電機出力(即ち、エンジン負荷)と対応するエンジン出力が得られるように制御される。なお、発電機35は、電動発電機であってもよい。この場合の電動発電機は、発電機35であり、電力負荷Lでもある。
 制御装置40は、第1インバータ29、第2インバータ34、コンバータ33を制御して、発電機35から蓄電デバイス30への供給電力(即ち、蓄電デバイス30の充電量)や、蓄電デバイス30から電力負荷Lへの供給電力(即ち、蓄電デバイス30の放電量)を制御する。
 図3は、制御装置40の機能ブロック図である。制御装置40は、演算制御部51と記憶部52とを含む。演算制御部51は、例えば、マイクロコントローラ、マイクロプロセッサ、FPGA(field-programmable gate array)などのPLD(programmable logic device)、PLC(programmable logic controller)、及び、論理回路のうち少なくとも1つ、或いは、2つ以上の組み合わせで構成され得る。記憶部52には、演算制御部51が実行する基本プログラムやソフトウエアプログラム等が格納されている。
 記憶部52は、SOC平均に関する許容下限値S1と許容上限値S2とが記憶されている。また、記憶部52には、発電機出力目標値Pに関する基準値P1と補正値P2とが記憶されている。これらの値は、シミュレーション等によって予め決定された値であって、記憶部52に格納される。
 演算制御部51は、SOC演算部51a、SOC平均演算部51b、及び、発電機出力決定部51cの各機能部を有する。制御装置40では、演算制御部51が予め記憶されたプログラムを実行することによってこれらの機能部としての機能を実現する。但し、演算制御部51の各機能部は、プログラムではなく論路回路で実現されていてもよい。
 SOC演算部51aは、電流センサ41の検出値に基づいて蓄電デバイス30のSOCを求め、それを記憶部52に記憶する。SOCは、蓄電デバイス30の充電容量に対する充電残量の比率として定義される。SOCは、蓄電デバイス30に流れ込む電流と蓄電デバイス30から流れ出す電流とを積算する、「クーロンカウント」と呼ばれる方法を使って表される。但し、SOC演算部51aは、電圧センサの検出値を利用して蓄電デバイス30のSOCを求めてもよい。
 SOC平均演算部51bは、SOCの平均値(以下、SOC平均と称する)を求める。SOCの値は絶えず変動することから、SOCの代表値としてSOC平均を利用する。SOC平均演算部51bは、SOC平均としてSOCの所定期間(例えば1サイクル)の移動平均を求める移動平均フィルタであってよい。或いは、SOC平均演算部51bは、SOC平均としてSOCのローパスフィルタであってよい。
 発電機出力決定部51cは、SOC平均が許容下限値S1から許容上限値S2までの許容範囲に収まるように、発電機出力目標値Pを決定する。発電機出力目標値Pは、基準値P1と、基準値P1よりも大きな値である補正値P2のうちから決定される。
〔動揺補償機能〕
 ここで、上記着水揚収システム13の動揺補償機能について説明する。動揺補償機能は、プラットフォーム11の動揺を検知して、吊揚索24に接続された水中機器12がプラットフォーム11の動揺の影響を受けて上下に揺さぶられてしまう動きをキャンセルするよう、ウインチドラム27を回転させるものである。具体的には、ウインチドラム27の電動機28は、吊揚索24の張力が略一定に保たれるように、巻取動作と繰出動作とを絶えず繰り返す。巻取動作時は、発電機35及び/又は蓄電デバイス30から電動機28へ電力が供給される。繰出動作時は、発電機35からの電力及び電動機28からの回生電力が蓄電デバイス30に蓄えられる。
 図4は、1サイクル(60秒)の電力負荷プロファイルの一例である。この電力負荷プロファイルによれば、この電力負荷では、およそ約10秒周期で±8MW(回生時の最大電力量5.8MW、力行時の最大電力量7.4MW)の回生と力行とが繰り返される。このように回生と力行とを頻繁に繰り返す電力負荷の電力補償(例えば、本実施形態のような動揺補償)では、蓄電デバイス30が充電と放電とを頻繁に繰り返すから、蓄電デバイス30としてはLICが好適である。
 LICは、LIBと比較して、蓄電容量が小さいという特徴がある。そのため、長時間の稼働を想定して決定されたLICの容量は著しく大きくなる。このことを検証するために、LICとLIBの各々について、次の1)~4)を条件として、図4の電力負荷プロファイルを実現するために蓄電デバイス30に必要な仕様を求めるシミュレーションを行った。
1)最大電圧約1100V、
2)環境温度25℃、
3)セルの飽和温度のライズ(ΔT)が約10℃以下、
4)稼働時間24000時間。
セルの飽和温度のライズ(ΔT)が約10℃以下という条件は、着水揚収システム13の動揺補償機能として、1日8時間、年間300日、10年稼働するのに、蓄電デバイスが耐用できる温度から想定している。但し、LICは36セルを1モジュールとし、LIBは24セルを1モジュールとし、それぞれモジュール単位でセル数を増加することとする。また、図4の電力負荷プロファイルにおいて、力行時の最大電力量は7.4011MWであり、LIBの場合、最初の1サイクルのCレート(蓄電容量に対する充電電流値の比)を3Cと想定して蓄電デバイス30には2.467MWhの容量が必要である。
 上記のシミュレーションで得られた、電力負荷プロファイルに対応する1サイクルの充放電プロファイルを実現するために必要な蓄電デバイス30の仕様を、次の表1に示す。蓄電デバイス30の仕様の項目は、セル数、最高電圧、最低電圧、SOC初期値、SOC最終値、DOD、セル電流実効値、及び、セルの飽和温度のライズである。
Figure JPOXMLDOC01-appb-T000001
 更に、1から10、100、200、300、400、480サイクル(1サイクル60秒として8時間)までの充放電プロファイルを実現するために必要な蓄電デバイス30のセル数と、電流実効値及びCレートとを、次の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から、セル数を抑える観点では、1サイクルではLICの必要セル数がLIBの必要セル数と比較して少ないため、LICが有利である。しかし、LICではサイクル数が増加するにしたがって、必要なセル数が増加し、その増加率がLIBと比較して大きい。LICでは、1~480サイクルにおいて1サイクルの約9倍ものセル数が必要となる。このような必要なセル数の変化の違いは、充放電による1サイクルのSOCの増減量(以下、ΔSOCと称する)の違いが原因の一つであると考えられる。ΔSOCは、1サイクルにおけるSOC初期値とSOC最終値との差である。
 LIBの起電力は、SOCが10~90%の範囲でプラトーな特性を示す。このことから、LIBでは、SOC10~90%の範囲において略一定の充放電力量[W]に対して略同じ電流値となるので、ΔSOCはSOC初期値に依存しない。一方、LICは起電力を持たない。このことから、LICでは、充放電力量[W]が略一定であっても、SOC初期値によって電流値が異なり、ΔSOCもSOC初期値に依存する。
 以上から、1サイクルの充放電プロファイルを実現するために必要な蓄電デバイス30の仕様で、1サイクルから480サイクルまでの稼働を実現するためには、サイクルを繰り返すごとにSOC初期値を1サイクルのSOC初期値に戻せばよい。そのためには、1サイクルで失われた蓄電量(ΔSOCに相当)を発電機35からの電力で補償することが考えられる。
 ここで、1サイクルで失われた蓄電量を発電機35からの電力で補償するための、制御装置40による処理の流れを説明する。図5は、制御装置40の処理の流れを示すフローチャートである。
 図5に示すように、動揺補償中の制御装置40は、蓄電デバイス30に出入りする電流値を取得し、蓄電デバイス30のSOCを求めてそれを記憶する(ステップS1)。次に、制御装置40は、蓄積されたSOCから1サイクルのSOC平均を求める(ステップS2)。制御装置40は、求めたSOC平均と許容上限値S2とを比較し(ステップS3)、SOC平均が許容上限値S2を上回っていれば(ステップS3でYES)、発電機出力目標値Pを基準値P1とする(ステップS4)。制御装置40は、ステップS3でSOC平均が許容上限値S2以下であれば(ステップS3でNO)、SOC平均と許容下限値S1とを比較する(ステップS5)。制御装置40は、SOC平均と許容下限値S1を下回っていれば(ステップS5でYES)、出力目標値Pを補正値P2とする。制御装置40は、ステップS3でSOC平均が許容下限値S1を以上であれば(ステップS5でNO)、出力目標値Pの現在の値に維持する。この電力供給システム10の制御ロジックを次の表3に表示する。
Figure JPOXMLDOC01-appb-T000003
 制御装置40は、上記のように出力目標値Pを決定し、出力目標値Pに変更がある場合には発電機出力目標値Pを発電機35へ出力する(ステップS7)。なお、発電機35の出力は即ちエンジン32の負荷であり、この負荷に応答するエンジン32の出力の変化によって発電機出力が変化する。よって、発電機出力目標値PはECU31に出力されてもよい。これにより、発電機出力が基準値P1から、それよりも大きい補正値P2となる。発電機35の発電電力の増加分が蓄電デバイス30に充電され(又は、電力負荷に供給され)、1サイクルで失われた蓄電量が補償される。
〔実施例1〕
 実施例1では、上記の電力供給システム10の制御方法を、具体的な数値を当てはめて詳細に説明する。実施例1においては、蓄電デバイス30としてLICを採用し、1サイクルの電力負荷プロファイル(図4、参照)と対応する充放電プロファイルを実現するために必要な蓄電デバイス30の仕様(4896セル)で、1サイクルから480サイクル(8時間)の稼働を実現することを検討する。本実施例で採用する1サイクルにおける蓄電デバイス30の充放電SOC(蓄電量)特性は、次の表4に示す通りである。
Figure JPOXMLDOC01-appb-T000004
 1サイクルのSOCの各種値から、1サイクルで失われる蓄電量を発電機で補償するための、発電機出力目標値Pの基準値P1と補正値P2とを求める。本実施例では、SOC平均を62.592%からΔSOCに相当する12.555%だけ増加させるための発電機負荷の目標値を求める。
 次の表5では、LICの1セルにSOC初期値を与えて1サイクルのSOCの各種値で25W充電するシミュレーションを行い、当該シミュレーションで得られたSOC最終値、ΔSOC、及び、電流値の各値を示す。
Figure JPOXMLDOC01-appb-T000005
 表5から、SOC初期値が60%であるとき、60秒(1サイクル)で1セル当たり25Wの充電をすると、SOCはΔSOCに相当する12.5%だけ増加することがわかる。なお、ΔSOCのマイナス値はSOCの増加を表す。よって、SOCを62.592%(≒60%)から12.555%(≒12.5%)だけ増加させるための発電機出力目標値Pの補正値P2は、25W×4896セル≒125kWであると概算することができる。
 SOC初期値とSOC最大値とを考慮して、発電機出力により蓄電デバイス30が過充電とならないように、補正値P2よりも小さい値を発電機出力目標値Pの基本値P1と決定する。本実施例では、補正値P2で得られる充電電力量よりも1セル当たり約2W少ない115kWを基本値P1とする。
 発電機出力目標値Pは、SOC平均が許容下限値S1以下となったことをトリガとして、基本値P1から補正値P2へ切り替えられる。SOC最大値とSOC平均との差を平均値幅とする。本実施例では平均値幅は22.497%である。蓄電デバイス30の過充電を回避するために、SOC平均と平均値幅とを考慮して、SOC平均の許容上限値S2を70%とする。
 SOC平均の許容上限値S2に対応する許容下限値S1を決定し、SOC平均の許容範囲(許容下限値S1以上許容上限値S2以下)を設定する。表4に示すように、同じ充放電量であっても電流値は異なる。電流実効値の変動を抑える観点から、SOC平均の許容範囲の幅は、5~10%が望ましい。本実施例では、SOC平均の許容上限値S2が70%であることから、許容下限値S1を65%とする。
 電力供給システム10の制御ロジックを本実施例に当てはめると、SOC平均>70%で発電機出力目標値Pを115kWに切り替え、SOC平均<65%で発電機出力目標値Pを125kWに切り替え、65%≦SOC平均≦70%では発電機出力目標値Pを現状維持することとなる。この制御ロジックを採用して電力負荷Lの負荷変動(図4に示す電力負荷プロファイル)を蓄電デバイス30で補償する動揺補償のシミュレーションを行った。図6は、最初の1時間の動揺補償のシミュレーション結果を表すタイムチャートであり、図7は、最初の8時間の動揺補償のシミュレーション結果を表すタイムチャートである。図6及び図7において、縦軸はSOC、SOC平均、及び発電機出力目標値Pを表し、横軸は時間を表す。更に、動揺補償のシミュレーション結果から得られた蓄電デバイス30の充放電特性に関する値を次の表6に示す。
Figure JPOXMLDOC01-appb-T000006
 図6及び図7に示すシミュレーション結果では、発電機出力目標値Pは800~900秒周期で基本値P1から補正値P2へ(又はその逆へ)切り替わっている。なお、発電機出力目標値Pを変化させるに際し、ステップ状に変化させてもよいし、時間勾配をもって変化させてもよい。発電機出力目標値Pの変化が時間勾配を持つことにより、発電機35及びエンジン32の急激な負荷変動を抑制することができる。
 シミュレーション結果では、SOCの値に基づいて発電機出力目標値Pを基本値P1と補正値P2との2値の間で切り替えることにより、8時間稼働後も最初の1時間稼働時と同レベルのSOCが維持されている。更に、表6に示すように、8時間の稼働において安定して理想的な充放電特性が得られている。以上の実施例から、1サイクルの電力負荷プロファイルを実現する蓄電デバイス30の仕様で、8時間の稼働が可能であることが確認された。
 また、シミュレーション結果から、±8MWで力行と回生とを繰り返す電力負荷プロファイル(図4、参照)に対応して電力負荷Lへ必要十分な電力を供給する際に、発電機35のみで電力を供給する場合には8MW以上の電力を発生させる発電機35が必要となるところ、本実施形態のように蓄電デバイス30を備えることによって、150kW程度の電力を発生させる発電機35で足りることが明らかとなった。つまり、電力負荷Lの±数MWの負荷変動に対して、数100kWの規模の発電機35で、蓄電デバイス30が過放電・過充電を回避しつつ充放電を繰り返すことができる。このように、電力供給システム10が備える発電機35の体格(サイズ)を抑えることができるので、発電機35のためのイニシャルコストや燃費の削減が期待できる。
 以上に説明したように、本実施形態に係る電力供給システム10は、エンジン32と、エンジン32の動力を用いて発電する発電機35と、発電機35で発電された電力及び電力負荷Lからの回生電力の少なくとも一方を蓄電する蓄電デバイス30と、前記蓄電デバイスに蓄電された電力及び前記発電機で発電された電力を電力負荷Lへ供給するための給電部(第2インバータ34)と、制御装置40とを備える。制御装置40は、蓄電デバイス30のSOCを計測し、計測したSOCからSOC平均値を求め、SOC平均値に基づいて発電機出力目標値Pを決定し、発電機の出力を発電機出力目標値Pとなるように制御するように構成されている。ここで、発電機出力目標値Pは、SOC平均値が所定の許容上限値S2を超えれば0よりも大きい所定の基本値P1と決定され、SOC平均値が所定の許容下限値S1を下回れば基本値P1よりも大きい補正値P2と決定され、SOC平均値が許容下限値S1以上許容上限値S2以下であれば現在の発電機出力目標値Pを維持すると決定される。
 また、上記構成の電力供給システム10の制御方法は、蓄電デバイス30のSOCを計測すること、計測したSOCからSOC平均値を求めること、SOC平均値に基づいて発電機出力目標値Pを決定すること、及び、発電機出力目標値Pに対応して発電機35の出力を制御すること、を含む。ここで、発電機出力目標値Pは、SOC平均値が所定の許容上限値S2を超えれば0よりも大きい所定の基本値P1と決定され、SOC平均値が所定の許容下限値S1を下回れば基本値P1よりも大きい補正値P2と決定され、SOC平均値が許容下限値S1以上許容上限値S2以下であれば現在の発電機出力目標値Pを維持すると決定される。
 上記の電力供給システム10及びその制御方法によれば、SOC平均値が低下すれば、失われた蓄電量を補うように発電機35から蓄電デバイス30へ電力が供給される。これにより、充放電のサイクル数に関わらず、SOC平均値が許容下限値S1以上許容上限値S2以下の許容範囲に維持される。発電機出力を基準値P1と補正値P2との2値の間で変化させるという単純な制御で、充放電の繰り返しに起因する充放電効率の影響を抑制することができる。これにより、蓄電デバイスは過放電及び過充電を回避しつつ充放電を繰り返すことができる。蓄電デバイス30は、稼働初期の充電量が概ね維持されるので、稼働初期の充放電プロファイル(即ち、要求される充放電量)を満足する容量及び出力を備えれば足り、その結果、蓄電デバイス30のセル数(システムサイズ、容量)を抑えることができる。
 従来のハイブリッドシステムでは、まず、エンジン出力が決定され、エンジン出力を蓄電デバイスでアシストできるように蓄電デバイスの容量及び出力が決定される。つまり、主操作量がエンジン出力であり、補助操作量が発電デバイスの出力である。なお、エンジン出力は発電機出力と対応している。これに対し、本実施形態に係る電力供給システム10では、主操作量が蓄電デバイス30の出力であり、稼働初期の電力負荷プロファイルを満足する蓄電デバイス30のシステムサイズを決定し、そのシステムサイズで長時間稼働を実現するように発電機出力を操作している。このような発想の転換により、蓄電デバイス30のシステムサイズを抑えることができる。
 また、本実施形態では、発電機35で生じた電力は主に蓄電デバイス30の充放電効率を補うために用いられる。つまり、発電機35で生じた電力のみで電力負荷の負荷変動を抑制する場合と比較して、電力供給システム10が備える発電機35の体格(サイズ)を抑えることができる。このように、蓄電デバイス30の巨大化が抑制され、発電機35の体格(サイズ)の小型化が可能となることにより、蓄電デバイス30及び発電機35の占有スペースやイニシャルコスト及びランニングコストを削減すること可能となる。
 上記の電力供給システム10及びその制御方法において、蓄電デバイス30が、リチウムイオンキャパシタ及び電気二重層キャパシタ、高出力型リチウムイオン電池のうちいずれか1つ又は2つ以上の組み合わせであってよい。本実施形態に係る制御ロジックは、これらのような急速な充放電が可能であり、且つ、容量の比較的小さな低容量高出力型蓄電デバイス30に適している。
 また、上記の電力供給システム10及びその制御方法において、SOC平均値が、SOCの移動平均値又はローパスフィルタ出力値であってよい。SOCは絶えず変動することから、このようなSOC平均値を採用することが望ましい。
 以上に本発明の好適な実施の形態を説明したが、本発明の思想を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。
10  :電力供給システム
11  :プラットフォーム
12  :水中機器
13  :着水揚収システム
21  :フレームクレーン
22  :ペンダントフレーム
23  :吊揚金具
24  :吊揚索
25  :ホイストウインチ
27  :ウインチドラム
28  :電動機(電力負荷の一例)
29  :第1インバータ
30  :蓄電デバイス
31  :ECU
32  :エンジン
33  :コンバータ
34  :第2インバータ(給電部の一例)
35  :発電機
40  :制御装置
41  :電流センサ
51  :演算制御部
51a :SOC演算部
51b :SOC平均演算部
51c :発電機出力決定部
52  :記憶部
80  :第4
L   :電力負荷

Claims (7)

  1.  エンジンと、前記エンジンの動力を用いて発電する発電機と、前記発電機で発電された電力及び電力負荷からの回生電力の少なくとも一方を蓄電する蓄電デバイスと、前記蓄電デバイスに蓄電された電力及び前記発電機で発電された電力を電力負荷へ供給するための給電部とを備える電力供給システムの制御装置であって、
     前記蓄電デバイスのSOCを計測し、前記SOCからSOC平均値を求め、前記SOC平均値に基づいて発電機出力目標値を決定し、前記発電機の出力を前記発電機出力目標値となるように制御するように構成されており、
     前記発電機出力目標値は、前記SOC平均値が所定の許容上限値を超えれば0よりも大きい所定の基本値と決定され、前記SOC平均値が所定の許容下限値を下回れば前記基本値よりも大きい補正値と決定され、前記SOC平均値が前記許容下限値以上前記許容上限値以下であれば現在の前記発電機出力目標値と決定される、
    電力供給システムの制御装置。
  2.  前記SOC平均値が、前記SOCの移動平均値又はローパスフィルタ出力値である、
    請求項1に記載の電力供給システムの制御装置。
  3.  エンジンと、
     前記エンジンの動力を用いて発電する発電機と、
     前記発電機で発電された電力及び電力負荷からの回生電力の少なくとも一方を蓄電する蓄電デバイスと、
     前記蓄電デバイスに蓄電された電力及び前記発電機で発電された電力の少なくとも一方を電力負荷へ供給するための給電部と、
     請求項1又は2に記載の制御装置と、を備える、
    電力供給システム。
  4.  前記蓄電デバイスが、リチウムイオンキャパシタ、電気二重層キャパシタ、及び、高出力型リチウムイオン電池のうちいずれか1つ又は2つ以上の組み合わせである、
    請求項3に記載の電力供給システム。
  5.  エンジンと、前記エンジンの動力を用いて発電する発電機と、前記発電機で発電された電力及び電力負荷からの回生電力の少なくとも一方を蓄電する蓄電デバイスと、前記蓄電デバイスに蓄電された電力及び前記発電機で発電された電力を電力負荷へ供給するための給電部とを備える電力供給システムの制御方法であって、
     前記蓄電デバイスのSOCを計測すること、
     前記SOCからSOC平均値を求めること、
     前記SOC平均値に基づいて発電機出力目標値を決定すること、及び、
     前記発電機出力目標値に対応して前記発電機の出力を制御すること、を含み、
     前記発電機出力目標値は、前記SOC平均値が所定の許容上限値を超えれば0よりも大きい所定の基本値と決定され、前記SOC平均値が所定の許容下限値を下回れば前記基本値よりも大きい補正値と決定され、前記SOC平均値が前記許容下限値以上前記許容上限値以下であれば現在の前記発電機出力目標値と決定される、
     電力供給システムの制御方法。
  6.  前記蓄電デバイスが、リチウムイオンキャパシタ、電気二重層キャパシタ、及び、高出力型リチウムイオン電池のうちいずれか1つ又は2つ以上の組み合わせである、
    請求項5に記載の電力供給システムの制御方法。
  7.  前記SOC平均値が、前記SOCの移動平均値又はローパスフィルタ出力値である、
    請求項5又は6に記載の電力供給システムの制御方法。
PCT/JP2019/036416 2019-09-17 2019-09-17 電力供給システム並びにその制御方法及び装置 WO2021053730A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NO20220437A NO20220437A1 (en) 2019-09-17 2019-09-17 Electric power supply system, method of controlling the same, and device
PCT/JP2019/036416 WO2021053730A1 (ja) 2019-09-17 2019-09-17 電力供給システム並びにその制御方法及び装置
CA3149733A CA3149733A1 (en) 2019-09-17 2019-09-17 Electricity supply system and method and controller for controlling the same
JP2021546089A JP7219819B2 (ja) 2019-09-17 2019-09-17 電力供給システム並びにその制御方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036416 WO2021053730A1 (ja) 2019-09-17 2019-09-17 電力供給システム並びにその制御方法及び装置

Publications (1)

Publication Number Publication Date
WO2021053730A1 true WO2021053730A1 (ja) 2021-03-25

Family

ID=74884159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036416 WO2021053730A1 (ja) 2019-09-17 2019-09-17 電力供給システム並びにその制御方法及び装置

Country Status (4)

Country Link
JP (1) JP7219819B2 (ja)
CA (1) CA3149733A1 (ja)
NO (1) NO20220437A1 (ja)
WO (1) WO2021053730A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879910A (ja) * 1994-09-01 1996-03-22 Toyota Motor Corp シリーズハイブリッド車の発電制御方法
JP2010041828A (ja) * 2008-08-05 2010-02-18 Sumitomo Heavy Ind Ltd バッテリ充放電制御方法
WO2012102351A1 (ja) * 2011-01-28 2012-08-02 住友重機械工業株式会社 ショベル
JP2015047972A (ja) * 2013-09-02 2015-03-16 トヨタ自動車株式会社 車両
WO2015071970A1 (ja) * 2013-11-13 2015-05-21 ボルボ ラストバグナー アクチエボラグ 充放電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879910A (ja) * 1994-09-01 1996-03-22 Toyota Motor Corp シリーズハイブリッド車の発電制御方法
JP2010041828A (ja) * 2008-08-05 2010-02-18 Sumitomo Heavy Ind Ltd バッテリ充放電制御方法
WO2012102351A1 (ja) * 2011-01-28 2012-08-02 住友重機械工業株式会社 ショベル
JP2015047972A (ja) * 2013-09-02 2015-03-16 トヨタ自動車株式会社 車両
WO2015071970A1 (ja) * 2013-11-13 2015-05-21 ボルボ ラストバグナー アクチエボラグ 充放電システム

Also Published As

Publication number Publication date
CA3149733A1 (en) 2021-03-25
JPWO2021053730A1 (ja) 2021-03-25
JP7219819B2 (ja) 2023-02-08
NO20220437A1 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US8227935B2 (en) Hybrid power supply device
JP4561921B2 (ja) 電圧検出装置、及び電池の状態制御装置
JP5267675B2 (ja) 車両の充電システムおよびそれを備える電動車両
JP3997965B2 (ja) 組電池の充放電制御装置および方法、プログラム、電池制御システム
US9278622B2 (en) Vehicle battery management unit having cell balancer based on capacity differences of battery cells
CN106464000B (zh) 电力储藏系统及其控制方法
JP5546649B2 (ja) 車両用電源システム
JP2008109840A (ja) 電源システムおよびそれを備えた車両、電源システムの制御方法ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
US8836251B2 (en) Drive system and machine
KR20160003817A (ko) 배터리 충전 상태 종합 방법
US20160297309A1 (en) Vehicle power management device
US10576835B2 (en) Energy storage device, transport apparatus, and control method
CN106159980B (zh) 发电系统和能量管理方法
JP5503957B2 (ja) 車両用電源装置
CN103475045B (zh) 一种车用太阳能动力系统及其控制方法
CN107592953B (zh) 充放电控制装置、移动体及电力分担量确定方法
WO2021053730A1 (ja) 電力供給システム並びにその制御方法及び装置
JP2003333751A (ja) 自然エネルギ発電システムの運用方法及びそれを用いた自然エネルギ発電システム
JP2011135686A (ja) ハイブリッドシステムの制御装置及び制御方法
JP6450656B2 (ja) 太陽電池充電装置、輸送機器及び太陽電池充電方法
JP2010133333A (ja) 荷役機械の制御装置及び荷役機械の制御方法
JP2009112122A (ja) 電力供給装置
JP6485871B2 (ja) 燃料電池システム
JP2011193653A (ja) アクティブ制御蓄電池
WO2015145895A1 (ja) 電力供給装置および移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546089

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3149733

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945555

Country of ref document: EP

Kind code of ref document: A1