WO2021053252A1 - Procedimiento de control de un aerogenerador de torre mar adentro de tipo flotante; sistema de control y aerogenerador que emplean dicho procedimiento - Google Patents
Procedimiento de control de un aerogenerador de torre mar adentro de tipo flotante; sistema de control y aerogenerador que emplean dicho procedimiento Download PDFInfo
- Publication number
- WO2021053252A1 WO2021053252A1 PCT/ES2020/070551 ES2020070551W WO2021053252A1 WO 2021053252 A1 WO2021053252 A1 WO 2021053252A1 ES 2020070551 W ES2020070551 W ES 2020070551W WO 2021053252 A1 WO2021053252 A1 WO 2021053252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wind turbine
- speed
- wind
- value
- power
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 119
- 238000007667 floating Methods 0.000 title claims abstract description 29
- 230000009467 reduction Effects 0.000 claims description 21
- 230000007423 decrease Effects 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 claims description 6
- 230000001934 delay Effects 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 238000013016 damping Methods 0.000 description 45
- 230000002441 reversible effect Effects 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 20
- 230000000694 effects Effects 0.000 description 15
- 238000004422 calculation algorithm Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 11
- 238000012261 overproduction Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000505 pernicious effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0202—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling floating wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
- F03D13/25—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0298—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce vibrations
- F03D7/0302—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce vibrations of the tower
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/028—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/93—Mounting on supporting structures or systems on a structure floating on a liquid surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/95—Mounting on supporting structures or systems offshore
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/103—Purpose of the control system to affect the output of the engine
- F05B2270/1033—Power (if explicitly mentioned)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/32—Wind speeds
Definitions
- the present invention is part of the field of offshore wind power generation technologies. More specifically, the invention relates to a control method for offshore tower wind turbines (also known as "offshore") of the floating type. The invention also relates to a system and a wind turbine that use or implement said procedure.
- Offshore wind power generation technologies can be differentiated into two large groups: wind turbines installed on fixed structures anchored or supported on the seabed, also called “bottom-fixed”, and wind turbines installed on floating structures. .
- Aerodynamic damping is a very relevant and beneficial aspect to reduce movements and / or efforts on wind turbines and the structures that support them.
- aerodynamic damping is based on the fact that the variations in aerodynamic force that result from the movement of the wind turbine tend to oppose and / or slow down said movement: when the wind turbine moves against the wind, the relative wind speed over the rotor increases. . With this, the thrust of the wind that opposes the movement increases, thus helping to slow it down.
- the wind turbine displacement is in the other direction, in the same direction as the wind, the relative speed of the wind over the rotor is reduced, and the wind thrust that goes in the direction of the movement decreases, helping to reduce or dampen said movement. This is a "positive damping" phenomenon.
- the basic premise in most of them is to add, to the turbine's own control data, the data of the position or the speed of the turbine due to the movement of its tower to try to introduce some form of correction in the blade pitch angle data.
- patent application US 2006/0033338 A1 describes a turbine control system that includes a wind flow estimator, which provides wind flow, tower position and tower speed to calculate pitch angle. wanted.
- Patent EP 2063110 B1 describes a turbine control system that comprises a control system that uses the data of the inclination of the tower, to modify the reference rotation speed of the wind turbine turbine and achieve a stabilizing effect in the system. floating.
- Patent application EP 1719910 A1 describes a turbine control system that uses an accelerometer in the turbine to detect vibration in the turbine tower and thereby modifies the pitch angle to avoid the vibration mode of the tower.
- Patent EP 3004636 B1 describes a system for damping the "tilt" of a floating turbine, acting on the pitch and rotational speed of the rotor based on data on the acceleration of the turbine.
- Patent EP 2924280 B1 describes a control system for floating turbines that acts on the pitch as a function of the movement of the turbine in the stop and start phases and when the turbine is not producing energy, to stabilize it.
- the present invention makes it possible to solve this need, thanks to a novel control procedure for floating wind turbines that not only can improve the reduction of the effect of "negative damping", but can also cancel it or generate a certain effect of "positive damping" even in "above rated” operating situations, all of this minimizing the loss of energy compared to a fixed structure, or even providing a certain increase in energy production.
- the present invention aims to provide a novel wind turbine control method, designed to minimize, cancel or even reverse the undesirable effects of "negative damping" for the operation of wind turbines with high speeds. wind speeds higher than the nominal speed “Vr” (operation “above rated”), thus reducing the loads on the wind turbine and on the support structure, and with little or no loss in energy production capacity.
- Nominal power of a wind turbine (Pnom):
- the nominal power of the wind turbine is a value that is part of the technical characteristics of a certain model of wind turbine, logically being one of the key parameters in the marketing of wind turbines and is therefore reflected in practically all the technical and / or marketing characteristics documents for modern wind turbines.
- the nominal power of a wind turbine is even part of the name by which a particular model is referred to.
- the nominal power of the AW3000 wind turbine from the manufacturer Acciona Windpower is 3000kw
- that of the model SWT-3.6-107 of the manufacturer SIEMENS is 3.6MW
- that of the model 2.75-120 of the manufacturer GE has a nominal power of 2.75MW
- the nominal power coincides with the maximum power at which a wind turbine operates in suitable wind conditions.
- the nominal power is generally the upper threshold of power from which the control system begins to apply increases in the blade pitch angle “A” with the aim that the power of the wind turbine is generally kept below or without exceeding this threshold.
- the nominal power is the actual or design limit capacity of the wind turbine, nor does it prevent wind turbines from operating at power levels higher than the nominal power in certain specific and / or temporary conditions.
- the nominal power is the actual or design limit capacity of the wind turbine, nor does it prevent wind turbines from operating at power levels higher than the nominal power in certain specific and / or temporary conditions.
- the singular point of transition between "below rated” and "above rated” operation may involve momentary situations of slightly higher than rated power.
- conventional control procedures are designed to try to keep the wind turbine working at a power no higher than the nominal power.
- the blade pitch angle “A” used at each moment is established by the wind turbine control system and depends, among other factors, on the incident wind speed, although it is normal for the control systems to take as a parameter rotational speed of the rotor and / or generator, which in turn depends on the incident wind speed and whose monitoring is simpler and more reliable.
- Vw Wind speed
- the wind speed Vw refers to the apparent or relative speed with respect to the rotor.
- Wind turbine speed A wind turbine can experience movements as a consequence in particular of the displacements or deformations of the substructure that supports.
- Va Wind turbine speed
- Va the component of the global speed of the wind turbine projected on the axis of the rotor. Therefore, Va can be determined from the vector decomposition of the speed that provides the corresponding vector component of the speed along said rotor axis.
- the present invention employs a turbine control method that, to avoid or mitigate negative damping during "above rated” operation, uses adjustments in power, with intentional variations that can be placed both above and below by Pnom. Said variation in power is applied by means of a specific procedure devised so that the phenomenon of "negative damping" can be avoided or reduced.
- the procedure allows that, although the power may intentionally exceed the nominal power Pnom for short periods of time, the average power remains substantially similar to the nominal power, in such a way that the solicitation, efforts and / or The demands on the generator and the electrical system are similar to those that would be had in a situation of approximately constant power and equal to the nominal power Pnom.
- the control system can be programmed in different ways, taking into account different available inputs.
- An example of possible simple programming will be to use a logic similar to the current logic in control for "above rated" situations in onshore or bottom-fixed turbines, to which a logic is introduced that modifies the power parameter to be produced with an input on the speed and / or acceleration of the turbine / tower induced by the movement of the float back and forth, in such a way that it modifies the maximum power and / or the target power up at the moments when the turbine goes forward and decrease it in situations where you go backwards.
- This power modification algorithm may take into account different variables, among them the time lag between the incidence of the apparent wind and the modification of the rotor speed, which is not instantaneous due to the rotational inertia of the rotor and / or the bending of the rotor. the shovels.
- the intentional variation or adjustment of the power can be carried out, for example, by varying the rotational speed of the rotor, or by varying the torque or "torque" of the generator, or by a combination of both.
- the power variation is applied by a variation of the generator torque, while the rotor speed that the control system seeks or tries to maintain is constant.
- said constant rotational speed that is sought is the nominal rotational speed, which is the rotational speed at which the rotor would rotate at nominal potential in the event of operating the wind turbine on a fixed structure and using its standard or conventional controller.
- the algorithms for adjusting the pitch angle A can be similar to those used in conventional control algorithms, in which in general the operation is maintained by maintaining an approximately constant rotational speed of the rotor.
- additional data such as the actual wind measured ahead of the turbine, in addition to the relative movement of the turbine induced by the movement of the turbine, can be captured to program the control procedure according to the present invention.
- the object of the invention is preferably carried out by means of a control method of an offshore tower wind turbine of the floating type, where said wind turbine: o comprises a rotor with a plurality of blades; o produces a power P that is variable in time and depends on the speed V w with which the wind affects the rotor, where P n0m is the nominal power of the wind turbine that can be achieved when V w is equal to or greater than the nominal wind speed ⁇ or "rated wind speed"; or it comprises means for adjusting the pitch angle A of the blades, such that:
- ⁇ the pitch angle A of the blades has a minimum value to which, by convention, the value of 0 degrees of blade pitch is assigned;
- said control procedure further comprises carrying out the following steps: or at least during part of the time in which the wind turbine speed Va is positive (V a > 0) and the wind speed V w is higher than V r (V w > V r ), a pitch angle A is established lower blades to a t (a ⁇ A t) and the generator produces a P greater than P N0M (P> P nom) power ⁇ and / oo to the least and only during part of the time in which the speed of the turbine V to is negative (V a ⁇ 0) and the wind speed V w is higher than V r (V w > V r ), a blade pitch angle A is set higher than A t (A> A t ) and the generator produces a power P less than P n0m (P ⁇ P nom ).
- control system establishes the pitch angle A can consist in applying a certain value, or in applying variations in A until a certain objective situation is reached (for example a certain speed of rotation of the rotor), or by any other method or algorithm known in the art.
- an angle A lower pitch blades to A t (A ⁇ A t) and the generator produces power P greater than P N0M (P> P nom) is set only when V a> 0.
- the power during the advance cycles exceeds the nominal power P n0m by more than 5%. And, more preferably, the power during the forward cycles is more than 15% greater than the nominal power P nom
- a variable P max is additionally used where: o The value of P max is set dynamically and can therefore vary at each instant; o P max is defined as the upper threshold of power P that the control procedure admits, in such a way that if the wind speed and / or the rotor speed increase tending to generate a power greater than P ma , it is acted upon by increasing the pitch angle A of the blades to avoid and / or correct that the power in the generator is greater than P ma ; and where: o at least during part of the time that the wind turbine speed is positive, a value greater than P n0m is assigned to the variable P max , and / oo at least and only during part of the time that the wind turbine speed is negative, the variable P max is assigned a value equal to P nom ⁇
- a variable P min is used where: or the value of P m ⁇ nautis dynamically established and can therefore vary at each instant; o P min is defined as the lower power threshold from which the control system acts to reduce the pitch angle A of the blades, such that if>4> 0 and the wind speed and / or the speed of the rotor decreases tending to generate a lower power P min , it acts by reducing the pitch of the blades to maintain and / or increase the power in the generator; and where: o at least and only during part of the time in which the wind turbine speed is positive, the variable P m in is assigned a value equal to P n m, and / or o at least and only during part of the time in Since the wind turbine speed is negative, the variable P m in is assigned a value lower than P n m
- a variable P b ⁇ is used where: o the value of P b ⁇ is set dynamically and can therefore vary at each instant; o P obj is defined as the target power that the control system seeks to generate at a given instant; o The value of the variable P b ⁇ is established, at least, as a function of the value of V a and where: or at least during part of the time that the wind turbine speed is positive, the variable P b ⁇ is assigned a A value higher than P n m, and / or at least and only during part of the time that the wind turbine speed is negative, is the variable P b ⁇ assigned a value lower than P n m ⁇
- the value of the variable P b ⁇ can also be determined as a function of the value of V w and / or the value of the rotational speed of the rotor.
- the value of the variable P b ⁇ can also be determined as a function of the value of the inclination and / or acceleration of the wind turbine, which can make it possible to anticipate the value of V a in future instants, in such a way that the control procedure can anticipate the value from V to expected.
- set P bj Pnom while the absolute value of the speed of the wind turbine will be kept below a certain threshold M, n m ⁇
- M n m ⁇
- the value of the pitch angle A in the blades is established taking into consideration the value and / or sign of the speed V a of the wind turbine.
- the value of the pitch angle A of the blades is defined in two phases: or a first phase in which the theoretical pitch angle value A t is calculated with rules equal to or analogous to those used in the standard control system of said wind turbine when it operates on a fixed substructure; or a second phase in which a correction is applied to said blade pitch theoretical value to establish the actual pitch value to be applied, establishing said correction according to at least one of the following rules:
- control system does not admit increases in the angle A the pitch of the blades; and / or at least during part of the time in which the wind turbine speed is negative ( ⁇ 4 ⁇ 0) and V w > V ⁇ , said control system does not admit reductions in the angle A of the pitch of the blades.
- said control is exercised only in the event of movements of a certain threshold value of amplitude and / or speed of the wind turbine.
- said method comprises monitoring the temperature in the wind turbine by means of sensors and where the value assigned at each moment to the variables P max and / or P 0b depends on the temperature measured in the generator .
- said method comprises monitoring the voltage in the wind turbine by means of sensors and where the value assigned at each instant to the variables P max and / or P 0b ⁇ depends on the voltage measured in the generator.
- said method is used in a wind turbine supported by a highly flexible and non-floating substructure, whose first oscillation mode has a period equal to or greater than 3 seconds.
- a second object of the invention relates to a computer program that implements the instructions for executing a procedure according to any of the embodiments described herein.
- a third object of the invention refers to a control system of a wind turbine (1), characterized in that it comprises one or more sensors for monitoring physical parameters of said wind turbine and software / hardware means configured to carry out a procedure according to any of the preceding claims.
- a fourth object of the invention relates to a wind turbine employing a control method or a control system according to any of the embodiments described herein.
- the wind turbine comprises a generator and / or an electrical system capable of producing a power P greater than its nominal power P n0m temporarily, in intermittent periods lasting less than 100 seconds and which are interspersed with periods in which a power P less than P n0m is produced .
- the duration and frequency of these periods of overproduction (P> P ram ) will be similar to that of the phases in which the wind turbine moves with positive speed ( ⁇ 4> 0).
- a standard wind turbine will be able to fulfill this condition, in particular thanks to the fact that periods of overproduction are interspersed with periods of underproduction, as the method of the invention makes possible.
- Figure 1 shows a representation of the pitch angle A of a wind turbine blade.
- Figure 2 shows graphs of variation of the following magnitudes as a function of the wind speed ⁇ / w with a conventional controller: a) power Pvs. wind speed Vw, b) blade pitch angle A vs. wind speed Vw, c) thrust or thrust T vs. wind speed V w .
- Figures 3a-3b show two representations of the speed of the wind turbine V as a result of the movements of the floating structure that supports it.
- Figures 4a-4b show graphs corresponding to the forward ( ⁇ 4> 0) and backward ( ⁇ / a ⁇ 0) cycles, respectively, and how these cycles affect the apparent speed V w that affects the rotor, in comparison with a situation where the wind turbine remains substantially stationary.
- Figure 5 represents a series of graphs (Figs. 5a-5d) that show how different variables or parameters of the operation or control of a wind turbine evolve over time, and how some of these parameters differ in the case of a wind turbine fixed or with conventional controller, and in the case of using the process of the invention.
- Figure 6 shows graphs of variation of the following magnitudes as a function of the wind speed V w , under a first embodiment of the invention: a) power P vs. wind speed Vw, b) blade pitch angle A vs. wind speed Vw, c) thrust or thrust T vs. wind speed V w .
- Figure 7 shows graphs of variation of the following magnitudes as a function of the wind speed V w , in a second embodiment of the invention with variables P max and P min ' .
- Figure 8 shows a flow chart of the method of the invention, according to a preferred embodiment thereof.
- Figure 1 schematizes the way in which a blade (3) can vary its pitch angle (A).
- a wind turbine (1) comprises regulation means, usually consisting of a series of bearings and hydraulic actuators (not shown in figure 1) that are governed by the wind turbine's control system ( one).
- Figure 2 shows a series of 3 curves that describe the behavior of a conventional controller or control procedure, such as those commonly used for wind turbines operating on fixed structures.
- Figures 3a, 3b and 3c show respectively how the power (P), the blade pitch angle (A) and the horizontal thrust (T) that the wind exerts on the rotor (2) vary, depending on of the wind speed (Vw).
- the wind turbine (1) can start producing at its nominal power.
- Vw exceeds Vr (Vw> Vr)
- the wind turbine control system (1) increases the pitch angle A of the blades (3), thanks to which it is achieved that the production power P does not exceed "Pnom" (see figures 2a and 2b).
- Vr Operation with Vw> Vr is called “above rated” operation, while operation with Vw ⁇ Vr is called “below rated”.
- the value of Vr may vary depending on the wind turbine model (1). Usual values of Vr are around 12m / s.
- Figures 3a and 3b schematize the possible movements that a wind turbine (1) may experience, in this case supported by a floating substructure (4), which generally increases said movements.
- Figure 3a shows a movement substantially opposite to the wind direction (Va> 0)
- Figure 3b shows a movement substantially coincident with the wind direction (Va ⁇ 0).
- Said movements and / or speeds will be fundamentally caused by changes in the inclination of the floating substructure (4), although they can also be caused at least in part by horizontal displacements of the substructure (4) or deformations experienced by the substructure (4) , for instance.
- Figure 3a shows by way of example a floating substructure (4) formed by two bodies, but the present invention applies to wind turbines supported by other types of substructures.
- the control method according to the present invention provides a great advantage for wind turbines that experience significant movements and is therefore especially suitable for floating wind turbines.
- it can also be used advantageously in wind turbines installed on other highly mobile and / or flexible substructures without departing from the scope of the invention.
- the control system according to the present invention can also be used for wind turbines installed on very flexible towers whose deformations generate significant movements in the wind turbine (1).
- Those commonly known as “soft” towers are towers whose natural period of oscillation is high (greater than the period of rotation of the rotor (2)), usually exceeding values of 3s, which is associated with relevant deformations whose negative effects can be avoided. or mitigated by the present invention.
- Figure 4a shows how the wind speed Vw is affected by the movements of the wind turbine (1).
- the red curve in the graph of figure 4a shows how the absolute wind speed evolves over time, subject to natural variability or turbulence; Said red curve represents what would be the wind speed Vw in the case of a perfectly fixed wind turbine (1).
- the green curve of the same graph represents the apparent or relative wind speed Vw with respect to the rotor (2), when it is not fixed but moves with speeds Va as shown in figure 4b.
- Va ⁇ 0 the apparent or relative wind speed Vw is reduced with respect to the absolute wind speed
- Va> 0 the apparent or relative wind speed Vw is reduced. increases with respect to the absolute wind speed shown in the red graph.
- Figure 5 represents a series of graphs that show how different variables or parameters of the operation or control of a wind turbine (1) evolve over time.
- the representative behavior of a conventional controller with a fixed wind turbine (1) is represented, on the one hand, with red curves, and on the other hand, with green curves, the Representative behavior of a controller or control method according to the present invention for a floating wind turbine (1) that experiences movements.
- the graphs correspond to an "above rated" operating situation (Vw> Vr) and show the evolution of different magnitudes over time.
- the abscissa axes of all the graphs represent the same period of time at the same scale.
- Figures 5a and 5b are analogous to Figures 4a and 4b, but in the case of Figure 5 it has been assumed in a simplified way that the absolute wind speed is constant over time, in order to simplify the explanation and its graphic representation.
- the graph in figure 5a shows with a horizontal red curve the absolute wind speed, which would be the one that would affect a perfectly fixed wind turbine (1) and which in this case is of constant value equal to Vw1.
- the green dashed curve in the same graph shows the wind speed Vw applied to a moving wind turbine (1), according to the wind turbine speed curve (1) shown in figure 5b. The corresponding interleaved forward and reverse cycles can be observed.
- control method according to the present invention leads to an operation (for the wind speed and wind turbine (1) conditions shown in Figures 5a and 5b) as represented in Figures 5c and 5d.
- Figure 5d shows the pitch angle of the blades A, over time.
- the horizontal red line represents the case of a fixed wind turbine (1), which for a wind speed Vw1> Vr would adopt a theoretical value of the blade pitch angle At1, according to a curve like the one shown in figure 2b.
- the theoretical value At1 is that which leads to a power P equal to the nominal power Pnom for said wind speed Vw1.
- Said constant power equal to Pnom which would be the one that would occur in a fixed wind turbine (1) with a conventional controller, is represented by the horizontal red line in figure 5c.
- the speed Vw changes as shown by the green curve in figure 5a.
- a conventional controller would apply a theoretical blade pitch angle (3) that would allow the power produced to be kept approximately constant and equal to Pnom.
- Said theoretical values At are obtained from a graph such as that shown in figure 2b, and their variation over time, linked to the variation in Vw, is shown in the black dotted curve represented in figure 5d.
- At values for the blade pitch (3) would make it possible to keep the power approximately constant and equal to the nominal power, but would lead to the undesirable effect of "negative damping" described in previous sections.
- the control method according to the present invention would adopt values for the pitch angle A of the blades (3) as represented by the dashed green curve of figure 5d.
- the resulting power of the wind turbine (1) is represented in the dashed green curve in figure 5c: during the advance cycles (Va> 0), the power P produced by the wind turbine (1) will be greater than Pnom, while during the reverse cycles (Va ⁇ 0), the power P produced will be less than Pnom.
- the nominal power Pnom is a fixed and constant value throughout the operating life of a wind turbine
- the possibilities or strategies for the control algorithms of a method according to the invention can be very diverse. For example, algorithms can be used that fix a target value of power Pobj, and that the value of A that is established or results in each instant derives from said target power, or specific values of A can be established, and that are the values of power those that result from the values of A that are set. Various other possibilities evident or known in the art are equally possible.
- the controller or control method according to the present invention generates brief and intermittent phases of overproduction (P> Pnom) interspersed with as many periods of underproduction (P ⁇ Pnom).
- control method provides a way that a fraction of the energy associated with the movement of the structure can be extracted by the wind turbine (1).
- the cyclical and alternating character in the variation of the power is a key factor of the control method according to the present invention. Indeed, maintaining a power greater than Pnom for permanent or prolonged periods may in general not be admissible due to limitations of the generator and / or other components.
- the periods of overproduction associated with the forward cycles are short and interspersed with periods of underproduction associated with the reverse cycles, the demand and demand on the generator or other components of the electrical system is reduced and is similar to the which can occur in a situation of production at approximately constant power and equal to the nominal power Pnom.
- the reduced duration of the forward and / or reverse cycles which will typically be a few seconds or a few tens of seconds, can limit the expected power increases and decreases, since the rotor (2) has a high rotational inertia, and It therefore takes a certain time for a higher wind torque on the rotor (2) to increase its rotation speed, or for a lower wind torque to reduce its rotation speed.
- the "above rated" generated power P is adjusted, at least in part, by varying the rotation speed of the rotor (2).
- the power adjustment according to the present invention can also be done by varying the torque of the generator, or by a combination of varying the torque and rotational speed of the rotor.
- control procedure according to the present invention will always establish values A ⁇ At at least during part of the time in which Va> 0 (advance cycles), generally coinciding with periods of overproduction (P> P nom ), and will always set A> At values at least during part of the time when Va ⁇ 0 (backward cycles), generally coinciding with periods of underproduction (P ⁇ P n0m ),
- the control procedure prevents or limits possible reductions in the wind bias force, which during a forward cycle oppose movement.
- the control procedure avoids or limits possible increases in force. wind thrust, which during a forward cycle amplify the movement.
- the control method according to the present invention limits or cancels the unfavorable effect of negative damping, being able instead to generate a positive damping during the above rated operation, analogous to that generally experienced during the below rated operation.
- figure 6 represents a first embodiment of the control method according to the present invention.
- figure 6b shows the values of the blade pitch angle (3) to be adopted during a determined cycle, either forward or reverse, and in an "above rated" operating situation.
- the following curves are shown in the graph of figure 5b:
- Red curve showing the values of A as a function of Vw that a conventional controller would adopt.
- Said curve indicates the theoretical values At of the blade pitch angle (3) which, for each wind speed Vw> Vr, lead to a power P equal to the nominal power Pnom.
- Green curve which corresponds to the values of the blade pitch angle A that an embodiment of the control method according to the present invention would establish for a feed cycle (Va> 0). It can be seen that the values of A indicated by said green curve are always equal to or less than At.
- the green and blue curves correspond to a specific forward or reverse cycle, in which the wind speed Vw at the beginning of the cycle had a value Vwi (see figure 4).
- the curves for cycles starting at another speed would therefore be different but similar.
- the procedure can establish objective values of A, according to the rules of the procedure described above, so that the value of P is obtained as a result, or it can establish objective values of P (by means of the variable Pobj), such that the value of A is obtained as a result.
- Other similar or equivalent strategies may be possible to implement the method of the invention, generating a behavior such as that represented in Figures 5 and / or 6.
- control procedure according to the present invention refers to the wind speed Vw as a possible control parameter
- Vw wind speed
- the practical application of the method it may be generally simpler and more efficient to use another parameter directly related to Vw but simpler to measure or monitor, such as rotor speed (2) or the generator, as usual in conventional controllers.
- the value of Va will not be measured directly, but will be obtained indirectly from measurements of other related parameters, such as, in particular, the tilt and / or acceleration in the wind turbine (1).
- the control method according to the following invention can be used using other control parameters that are directly related to the parameters used in the description of the method without thereby departing from the scope of the invention.
- the angular speed of the floating structure which is obtained from the rate of variation of the inclination, which is equivalent, can be used as the control parameter, or instead of the wind speed, the speed of the wind can be used.
- rotor which is directly related to a torque value in the known generator.
- the speed Va will be generated by the changes in the inclination of the floating support structure, which in general is the parameter with the greatest influence, as well as by other parameters such as, for example, the horizontal displacements of the structure. floating support or deformation of the floating support structure, which in general will be parameters of less influence.
- the speed Va is determined approximately only from the variations in the inclination of the structure, without taking into account, for example, the horizontal displacements of the structure. This allows the method according to the present invention to be especially effective in damping and / or reducing movements due to inclinations of the structure, which are generally the most relevant.
- embodiments are also possible which determine Va from other parameters in addition to or instead of the inclination of the structure, without thereby departing from the scope of the invention.
- Figure 6a shows what will be the power produced by the wind turbine (1) in a forward cycle (green curve) or backward cycle (blue curve) that correspond to the pitch angle variation curves A shown in figure 6b, both for above rated operating conditions. It is verified that in the forward cycle we have P3Pnom and in the backward cycle we have P £ Pnom.
- the graph shown in figure 6c shows what will be the variation in the thrust or thrust T that the wind will exert on the rotor (2) as a function of the acting wind speed applying the procedure in an advance cycle (curve green) or in a reverse cycle (blue curve).
- the thrust T always increases compared to the value for the cycle start speed Vwi.
- the blue curve for a retracement cycle, It achieves that the thrust T always decreases compared to the value for the speed Vwi at the start of the cycle. In this way it is achieved that the variations in T oppose the movement (increasing T in forward cycles and decreasing T in reverse cycles), thereby achieving a favorable positive damping.
- the slope S of the curves that define T is represented when Vw> Vwi (in forward cycles) and when Vw ⁇ Vwi (in reverse cycles).
- Said slope will be a function of the definition curves of A and / or the definition of P used in the procedure (such as those shown in Figures 6b and / or 6a).
- the procedure allows generating a suitable positive damping even for above-rated operation, in the same way as in the below-rated operation in the that the slope of the curve (red curve for Vw ⁇ Vr) is markedly positive.
- Figure 7 shows figures analogous to those of Figure 6 for a second embodiment of the control method according to the present invention, again for above rated operating conditions (Vw> Vr).
- the control procedure incorporates the variable Pmax, which establishes the power threshold from which values of A are established to avoid exceeding said upper threshold, and the variable Pmin, which establishes the lower power value from the which values of A are established that avoid a power lower than said lower threshold.
- control method provides that said variables Pmax and Pmin have variable values that will be set dynamically and / or in real time taking into account various parameters or circumstances such as:
- the temperature of the generator is the temperature of the generator.
- the generator voltage The generator voltage.
- figure 8 shows flow diagrams corresponding to the control algorithms used in carrying out the procedure according to the present invention shown in figure 7.
- figure 8a shows the flow diagram used according to the current state of the technique in a conventional controller; said flow diagram would result in behavior curves such as those represented in figure 2 and in the red curves of figure 7.
- Vw> Vr the above-rated operation
- a conventional controller according to the state of the art is generally designed to prevent the wind turbine (1) from operating at a power greater than the nominal, this does not necessarily mean that with a conventional controller at no time can there be powers greater than the nominal;
- the possible situations of work at power higher than the nominal that can occur with the controllers known in the art are completely different in their form, cause and / or motivation from the situations of overproduction caused intentionally by means of the control procedure.
- a situation with P> Pnom may occur because the ability to adjust the pitch of the blades (3) is not instantaneous, and therefore, in the event of a sudden rise in wind speed, an increase may occur.
- a control method according to the invention has been described that considers the sign of Va. It is of course possible to develop another embodiment of a method according to the invention that also takes into account the value of Va.
- the value of Va can be used to set a variable Pobj as described above.
- a method can be used that maintains conventional algorithms as long as the absolute value of Va does not exceed a certain value or threshold, and only applies the most advanced method according to the present invention for high speeds of the wind turbine (1), above a certain threshold.
- a conventional procedure can be maintained.
- the positive aerodynamic damping effect provided by the control method according to the present invention can be increased by setting reductions in A for forward cycles (Va> 0) and / or by setting increases in A for reverse cycles (Va ⁇ 0).
- One way to implement such improved damping in a control algorithm according to the present invention may be to set Pmin> Pnom in forward cycles and / or Pmax ⁇ Pnom in reverse cycles.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
La invención se refiere a un procedimiento de control de un aerogenerador (1) de torre mar adentro de tipo flotante, así como a diferentes sistemas y a un aerogenerador (1) que hacen uso de dicho procedimiento. La invención se basa principalmente en el control del ángulo de "pitch" de las palas (3) del aerogenerador (1) mediante niveles de potencia distintos a potencia nominal, en función de las condiciones de movimiento a las que se encuentre sometido el aerogenerador (1) en el mar, y para condiciones de operación por encima de la velocidad nominal de viento. La invención permite, gracias al método descrito, reducir los movimientos experimentados por el aerogenerador (1), aprovechando de forma más eficiente su rendimiento energético sin perjudicar a su vida útil.
Description
DESCRIPCIÓN
PROCEDIMIENTO DE CONTROL DE UN AEROGENERADOR DE TORRE MAR ADENTRO DE TIPO FLOTANTE; SISTEMA DE CONTROL Y AEROGENERADOR QUE EMPLEAN DICHO PROCEDIMIENTO
CAMPO DE LA INVENCIÓN
La presente invención se enmarca en el ámbito de las tecnologías de generación de energía eólica marina. Más concretamente, la invención se refiere a un procedimiento de control de aerogeneradores de torre mar adentro (también denominados como “offshore”) de tipo flotante. La invención se refiere, asimismo, a un sistema y a un aerogenerador que emplean o implementan dicho procedimiento.
ANTECEDENTES DE LA INVENCIÓN
El potencial de desarrollo de la energía eólica offshore a nivel mundial es prometedor. Las grandes mejoras de eficiencia de esta tecnología hacen que su papel en el “mix” energético mundial en el futuro vaya a ser muy relevante.
En comparación con la instalación de aerogeneradores en tierra, el mar plantea mayores dificultades tecnológicas y mayores dificultades de acceso, pero tiene tres enormes ventajas: por un lado, el mayor recurso eólico que suele darse en el mar respecto a tierra y, por otro lado, la abundancia de espacio disponible para instalar aerogeneradores sin impactos sociales apreciables. Finalmente, también es relevante el hecho de que estos espacios están muy cercanos a los grandes núcleos de consumo eléctrico, porque la mayor parte de la población mundial se localiza en zonas cercanas a la costa.
Las tecnologías de generación de energía eólica marina, a su vez, se pueden diferenciar en dos grandes grupos: los aerogeneradores instalados en estructuras fijas ancladas o apoyadas en el fondo marino, también denominadas “bottom-fixed”, y los aerogeneradores instalados en estructuras flotantes.
El comportamiento de un aerogenerador sobre una estructura bottom-fixed es, lógicamente, similar al de una turbina en tierra. Esta tecnología ha avanzado muy rápidamente hacia la mejora de costes y, hoy por hoy, se está utilizando en volúmenes importantes en Europa y en otras partes del mundo, con costes de energía muy prometedores. Las últimas adjudicaciones en Europa han tenido lugar a precios inferiores a los 50 €/MWh para la energía producida.
El caso de la eólica offshore flotante es, sin embargo, diferente. Se trata de una tecnología en fase aún no comercial, en la que sólo hay algunas instalaciones de prototipo y de preserie en el mundo. Uno de los aspectos tecnológicos más importantes a resolver en este campo es el control de la turbina sobre una estructura que se mueve, al contrario de lo que ocurre en eólica onshore o en eólica offshore bottom-fixed, en las que los aerogeneradores operan sobre estructuras fijas. De esta forma, el flotador induce movimientos en la turbina y la turbina induce movimientos en el flotador. Controlar este movimiento de una manera eficiente es un reto de la tecnología, y es el campo donde se sitúa la presente invención.
Uno de los principales retos a los que se enfrente la industria a este respecto es el fenómeno conocido como “amortiguamiento negativo” o “negative damping”.
El amortiguamiento aerodinámico es un aspecto muy relevante y beneficioso para reducir los movimientos y/o esfuerzos sobre los aerogeneradores y las estructuras que los soportan. Muy resumidamente, el amortiguamiento aerodinámico se basa en que las variaciones en fuerza aerodinámica que resultan del movimiento del aerogenerador tienden a oponerse y/o a frenar a dicho movimiento: cuando el aerogenerador se desplaza contra el viento, la velocidad relativa de viento sobre el rotor aumenta. Con ello, el empuje del viento que se opone al movimiento crece, contribuyendo así al frenarlo. Asimismo, cuando el desplazamiento del aerogenerador es en el otro sentido, en la misma dirección que el viento, la velocidad relativa del viento sobre el rotor se reduce, y el empuje de viento que va en el sentido del movimiento decrece, contribuyendo a reducir o amortiguar dicho movimiento. Este es un fenómeno de “amortiguamiento positivo”.
Sin embargo, en los aerogeneradores modernos con regulación del ángulo “A” de pitch de pala (ver Figura 1), cuando se supera una cierta velocidad de viento, denominada velocidad nominal de viento o “rated wind speed” (Vr), el sistema de control actúa sobre el ángulo “A” de pitch de la pala (ver Figura 2b) para evitar que la potencia supere la potencia nominal del aerogenerador (ver Figura 2a) y moderar los máximos esfuerzos a soportar por la maquinaria y la estructura. Como consecuencia de dicha forma de control, que es la empleada en la práctica totalidad de aerogeneradores multimegawattio modernos sobre estructuras fijas, para velocidades de viento superiores a Vr (situación conocida habitualmente como operación “above rated”), la relación entre la velocidad de viento y el empuje sobre el aerogenerador se invierte, tal y como puede observarse en la Figura 2c, con el objeto de mantener la potencia aproximadamente constante e igual a la potencia nominal del aerogenerador. Así, con un controlador convencional en la operación “above rated”, un incremento de la velocidad de viento no produce un incremento en el empuje sobre el rotor sino una disminución, y una reducción de la velocidad de viento no conlleva una reducción del empuje sobre el rotor, sino un aumento; esto lleva a que, para situaciones de operación “above rated” el efecto de amortiguamiento positivo antes descrito
pueda llegarse a invertir dando lugar al fenómeno de “negative damping”,que puede suponer amplificaciones indeseables en los movimientos y esfuerzos que experimentan el aerogenerador y sus componentes. Descrito simplificadamente, la razón de dicho fenómeno de “negative damping” es que la turbina cuando se mueve hacia el viento genera un “viento adicional” aparente o relativo. Como la turbina ya está en funcionamiento a plena potencia o “above rated”, el controlador incrementa el ángulo de pitch “A” con objeto de mantener la potencia constante lo que conlleva una reducción del empuje o “thrust” del viento en las palas y el rotor en su conjunto. El efecto secundario de esto es que ese empuje en las palas, que ayudaba a frenar el movimiento de la turbina hacia adelante, se reduce. Al contrario, cuando la turbina deja de ir hacia adelante y empieza a ir hacia atrás, baja el viento aparente, y el controlador de la turbina ante ese menor viento reduce el ángulo “A” de pitch de las palas para que éstas generen más empuje y par sobre el rotor, con objeto de mantener la potencia pese a ese menor viento aparente. Al generar más empuje, acentúan el movimiento de la turbina hacia atrás.
El efecto pernicioso de esta fenómeno resulta mayor cuanto más altos son los movimientos experimentados por el aerogenerador, y por lo tanto resulta especialmente crítico en el diseño y operación de aerogeneradores flotantes. Por tanto, este comportamiento del control convencional, que maximiza la producción y minimiza las cargas en aerogeneradores fijos, genera movimientos indeseados y muchas veces inaceptables en las turbinas offshore flotantes.
Resolver los movimientos generados en las turbinas offshore flotantes motivados por cambios en el viento, por las olas y por el negative damping inducido por el propio funcionamiento de la turbina ha sido objeto de diversas soluciones conocidas del estado de la técnica.
La premisa básica en la mayor parte de ellas es sumar, a los datos propios de control de la turbina, el dato de la posición o de la velocidad de la turbina por el movimiento de su torre para tratar de introducir alguna forma de corrección en el dato de ángulo de pitch de las palas.
Así, por ejemplo, la solicitud de patente US 2006/0033338 A1 describe un sistema de control de turbina que comprende un estimador de flujo de viento, que prevea flujo de viento, posición de la torre y velocidad de la torre para calcular ángulo de pitch deseado.
La patente EP 2063110 B1 describe un sistema de control de turbina que comprende un sistema de control que utiliza el dato de la inclinación de la torre, para modificar la velocidad de giro de referencia de la turbina del aerogenerador y lograr un efecto estabilizador en el sistema flotante.
La solicitud de patente EP 1719910 A1 describe un sistema de control para turbinas que utiliza un acelerómetro en la turbina para detectar vibración en la torre de una turbina y, con ello, modifica el ángulo de pitch para evitar el modo de vibración de la torre.
La patente EP 3004636 B1 describe un sistema para amortiguar el “tilt” de una turbina flotante, actuando sobre el pitch y la velocidad de rotación del rotor en base a un dato sobre la aceleración de la turbina.
La patente EP 2924280 B1 describe un sistema de control para turbinas flotantes que actúa sobre el pitch en función del movimiento de la turbina en las fases de parada, arranque y cuando la turbina no está produciendo energía, para estabilizarla.
No obstante, las soluciones conocidas anteriores para mitigar los efectos perjudiciales del “negative damping” lo reducen, pero en general no lo anulan. Además, tienen el problema añadido de que permiten dicha reducción o mitigación del efecto de “negative damping”, a costa de perder energía en comparación con el rendimiento que ofrecería un aerogenerador sobre una estructura fija. Básicamente, lo que se hace en ellos es aceptar capturar menos viento, de forma que se deja un margen para que las palas puedan salir o al menos alejarse en cierta medida de ese comportamiento descrito para el control de turbinas onshore que genera el negative damping.
A la luz de las anteriores limitaciones y problemas técnicos se hace necesario proporcionar nuevos procedimientos de control de aerogeneradores flotantes, que permitan reducir en mayor medida el efecto desfavorable del “negative damping”. La presente invención permite resolver dicha necesidad, gracias a un novedoso procedimiento de control de los aerogeneradores flotantes que no sólo puede mejorar la reducción del efecto del “negative damping”, sino que puede también anularlo o generar un cierto efecto de “positive damping” incluso en situaciones de operación “above rated”, todo ello minimizando la pérdida de energía respecto a la que tendría una estructura fija, o incluso proporcionando cierto incremento en la producción de energía.
DESCRIPCIÓN BREVE DE LA INVENCIÓN
Para resolver los inconvenientes del estado de la técnica anteriormente descritos, la presente invención tiene por objeto proporcionar un novedoso procedimiento de control de aerogeneradores, ideado para minimizar, anular o incluso invertir los efectos indeseables del “negative damping” para la operación de aerogeneradores con velocidades de viento superiores a la velocidad nominal “Vr” (operación “above rated”), reduciendo así las cargas en el aerogenerador y en la estructura de soporte, y con baja o nula pérdida en la capacidad de producción de energía.
Para una mejor descripción de la invención se aportan a continuación definiciones y explicaciones específicas de ciertos términos, interpretados en el ámbito de la presente invención y de sus realizaciones preferentes:
Potencia nominal de un aerogenerador (Pnom): La potencia nominal del aerogenerador es un valor que forma parte de las características técnicas de un cierto modelo de aerogenerador, siendo lógicamente uno de los parámetros clave en la comercialización de aerogeneradores y que figura por tanto reflejado en la práctica totalidad de documentos de características técnicas y/o de comercialización de aerogeneradores modernos. Con frecuencia, aunque no siempre, la potencia nominal de un aerogenerador forma parte incluso del nombre con el que se denomina a un determinado modelo. Así, por ejemplo, la potencia nominal del aerogenerador AW3000 del fabricante Acciona Windpower es de 3000kw, la del modelo SWT-3.6-107 del fabricante SIEMENS es de 3.6MW, y la del modelo 2.75-120 del fabricante GE tiene una potencia nominal de 2.75MW, por poner algunos ejemplos. En general, la potencia nominal coincide con la máxima potencia a la que opera un aerogenerador en condiciones adecuadas de viento. Con sistemas de control convencionales, la potencia nominal es en general el umbral superior de potencia a partir de la cual el sistema de control empieza a aplica incrementos en el ángulo “A” de pitch de las palas con el objetivo de que la potencia del aerogenerador se mantenga en general por debajo o sin superar dicho umbral. Lo anterior no significa que la potencia nominal sea la capacidad límite real o de diseño del aerogenerador, ni impide que en ciertos casos los aerogeneradores puedan llegar a trabajar a niveles de potencia superiores a la potencia nominal en ciertas condiciones específicas y/o temporales. Por ejemplo, si se produce un incremento muy rápido de la velocidad del aerogenerador, ello puede llevar a un incremento temporal de la potencia pues el tiempo de respuesta del controlador para ajustar el ángulo del pitch de las palas que reduzca la potencia no es instantáneo. O por ejemplo, el punto singular de transición entre la operación “below rated” y “above rated” puede implicar situaciones momentáneas de potencia ligeramente superior a la nominal. En cualquier caso, los procedimientos de control convencionales se diseñan para tratar de mantener el aerogenerador trabajando a una potencia no superior a la potencia nominal.
Ángulo de “pitch” de palas (A): El ángulo “A” de pitch de una pala se refiere a su posición o giro según un eje sustancialmente coincidente con el eje longitudinal de la pala, como se esquematiza en la Figura 1. Es habitual en el estado de la técnica emplear aerogeneradores capaces de variar el ángulo de pitch de las palas, proceso generalmente gobernado por un sistema de control o controlador, que realiza dicha función en base a una serie de algoritmos de control.
Existe un cierto ángulo de pitch de las palas que maximiza su exposición aerodinámica al viento incidente, y con ello la capacidad de producción de energía y el empuje horizontal que el viento ejerce. Por convenio, se suele definir dicha posición como la posición de mínimo ángulo “A” de pitch de pala, asignando a dicha posición un valor A=0 grados. Conforme se gira la pala, su exposición al viento incidente se reduce, reduciendo también el par generado por el viento sobre el rotor, la potencia producida y/o el empuje horizontal que el viento ejerce sobre el rotor, en lo que habitualmente y por convenio se denomina como un giro que aumenta el ángulo “A” de pitch de pala. Cuando dicho ángulo “A” alcanza su valor máximo que es igual o próximo a 90 grados, las palas están en la posición que minimiza o anula el par y empuje generado por el viento, posición habitualmente conocida como de “palas en bandera” (ver figura 1b). Este es el convenio de valores y signos del ángulo “A” de pitch de pala habitualmente empleado en la industria de aerogeneradores y que se empleará también para la descripción de la presente invención, siendo posible por supuesto emplear otros posibles convenios de valores o signos sin salir por ello del alcance de la invención.
El ángulo “A” de pitch de pala que se emplea en cada instante lo establece el sistema de control del aerogenerador y depende, entre otros factores, de la velocidad del viento incidente, si bien lo normal es que los sistemas de control tomen como parámetro de control la velocidad de rotación del rotor y/o del generador, que a su vez dependen de la velocidad del viento incidente y cuya monitorización es más sencilla y fiable.
Velocidad de viento (Vw): Se trata de la velocidad con la que el viento incide sobre el rotor de un aerogenerador. Obviamente, dicha velocidad no es en general igual en todos los puntos del plano del rotor, por lo que el valor que se le asigna a Vw es un valor medio y/o representativo.
Es conveniente y relevante distinguir entre la velocidad absoluta de viento, medida respecto a un punto fijo en el espacio, y la velocidad de viento aparente o relativa respecto al rotor. Cuando el aerogenerador está quieto o fijo, ambas son iguales, pero cuando el aerogenerador experimenta movimientos, la velocidad absoluta de viento es distinta a la velocidad relativa con la que el viento incide sobre el rotor (ver figura 4). Así, cuando el aerogenerador se mueve contra el viento, la velocidad aparente o relativa crece y es superior a la velocidad absoluta del viento, mientras que cuando el aerogenerador se mueve en la misma dirección que el viento, la velocidad relativa de viento disminuye y es inferior a la velocidad absoluta. A lo largo de la descripción de la presente invención, salvo que se indique lo contrario, la velocidad de viento Vw se refiere a la velocidad aparente o relativa respecto al rotor.
Velocidad del aerogenerador (Va): Un aerogenerador puede experimentar movimientos como consecuencia en particular de los desplazamientos o deformaciones de la subestructura que lo
soporta. Como convenio a emplear a lo largo de la descripción de la presente invención, cuando el aerogenerador se mueve en dirección contraria a la dirección de viento se entiende que su velocidad es positiva (Va>0) (ver figura 3a), y cuando se mueve en la misma dirección que el viento su velocidad es negativa (Va<0) (ver figura 3b). Obviamente, si el aerogenerador está perfectamente quieto se tiene Va=0.
De forma natural, el movimiento del aerogenerador será de naturaleza cíclica de tal modo que se intercalarán ciclos con Va>0, que en adelante denominaremos como “ciclos de avance” o movimientos hacia adelante, con ciclos con Va<0, que en adelante denominaremos como “ciclos de retroceso” o movimientos hacia atrás.
El movimiento y velocidad del aerogenerador no serán en general perfectamente coincidentes con la dirección de viento ni perfectamente perpendiculares al plano del rotor. A lo largo de descripción de la presente invención, nos referiremos a Va como la componente de la velocidad global del aerogenerador proyectada sobre el eje del rotor. Por tanto, Va puede determinarse a partir de la descomposición vectorial de la velocidad que proporciona la correspondiente componente vectorial de la velocidad según dicho eje del rotor.
Obsérvese que el anterior criterio o convenio para la definición de Va aplica por igual a aerogeneradores “upwind” (con el rotor situado a barlovento) o “downwind” (con el rotor situado a sotavento). Naturalmente otros convenios sobre el sentido del movimiento y/o el signo de Va son posibles sin salir por ello del alcance de la invención.
Establecidas ciertas definiciones, se procede a continuación con la descripción de la invención. La premisa o criterio que subyace en los sistemas de control conocidos en la técnica es que, cuando la turbina está en modo de funcionamiento “above rated”, hay una restricción consistente en que la potencia generada no suba por encima de la potencia nominal Pnom del aerogenerador. Así, los controladores convencionales se diseñan y programan para tratar de evitar y/o corregir que la potencia exceda dicho umbral Pnom.
En este contexto, la presente invención emplea un procedimiento de control de la turbina que, para evitar o mitigar el negative damping durante la operación “above rated”, utiliza ajustes en la potencia, con variaciones intencionadas que pueden situarse tanto por encima como por debajo de Pnom. Dicha variación en la potencia se aplica mediante un procedimiento específico ideado para que el fenómeno de “negative damping” pueda evitarse o reducirse. Además, el procedimiento permite que, aunque la potencia pueda llegar a exceder intencionadamente la potencia nominal Pnom durante breves periodos de tiempo, la potencia promedio se mantenga sustancialmente similar a la potencia nominal, de tal modo que la solicitación, esfuerzos y/o
exigencias sobre el generador y el sistema eléctrico resulten similar a los que se tendría en una situación de potencia aproximadamente constante e igual a la potencia nominal Pnom.
Para ello, en los movimientos del aerogenerador hacia delante o ciclos de avance (Va>0), en los que el viento Vw que “ve” la turbina (viento aparente) tiende a incrementarse, el procedimiento de control según la presente invención lleva a que la turbina eleve la potencia y produzca por encima de su potencia nominal; en cambio, cuando la turbina va hacia atrás (ciclo de retroceso con Va<0) el procedimiento de control lleva a que la turbina baje su potencia y produzca por debajo de dicha potencia nominal.
Gracias a dicho ajuste intencionado y específico en la potencia de trabajo, resulta posible adoptar valores del ángulo A de pitch de palas que reduzcan o anulen el efecto de negative damping.
El control del negative-damping con mediante criterios específicos de variación de la potencia de producción, según la invención, presenta importantes ventajas frente al estado del arte actual:
No sólo se reduce el negative damping, sino que puede generarse un damping positivo y/o activo durante la operación above rated: los sistemas actuales lo que hacen es reducir el negative damping que el control de turbina típico de onshore produce. Son sistemas que no eliminan el negative damping, sólo lo minoran. La turbina se sigue moviendo más de lo que sería propio por las características del flotador, las olas y el empuje variable del viento. Con el sistema de control a través de la potencia, el negative damping puede desaparecer completamente y pasar a ser positive damping, un amortiguamiento positivo. Gracias a ello, la turbina reduce radicalmente sus movimientos, con la correspondiente reducción de cargas en los distintos elementos de la turbina, el flotador y el “mooring” del flotador, que pueden mejorar la seguridad y/o la economía del aerogenerador en su conjunto. Con un sistema de control según la presente invención los inevitables movimientos de un aerogenerador flotante llevan a aplicar variaciones en la potencia durante la operación above rated, pero dichas variaciones contribuyen a reducir los movimientos, y al reducirse los movimientos las variaciones en la potencia que resulta necesario aplicar son a su vez menores, generándose un círculo virtuoso de reducción de movimientos y con ello de reducción de las variaciones de potencia necesarias.
Incremento de energía producida, frente a las pérdidas de energía de los sistemas de mitigación de negative damping actuales: los sistemas actuales se basan en dejar pasar algo de viento para evitar el negative damping que el software de control típico de turbinas onshore produciría cuando las turbinas están trabajando con vientos elevados cerca de la potencia nominal de las turbinas. Con ello, la producción energética pasa a ser en cierta medida inferior a la que se tendría con el mismo aerogenerador situado sobre una estructura fija. El procedimiento de control propuesto en base a variaciones específicas provocadas en la potencia, en cambio, combina momentos en los que se deja pasar el viento, en ciclos de retroceso, con momentos en
los que se captura más viento, en ciclos de avance, de forma que cuando se produce el movimiento hacia adelante la turbina produce más y cuando se produce el movimiento hacia atrás la turbina produce menos. Con ello, la producción energética global no se reduce, pudiendo incluso incrementarse. En efecto, como la producción es proporcional al cubo de la velocidad del viento, las ganancias de producción cuando la turbina va hacia adelante pueden ser superiores a las mermas de producción cuando la turbina va hacia atrás.
Posibilidad de programación simplificada del sistema de control: El sistema de control podrá programarse de diferentes maneras, atendiendo a distintos inputs disponibles. Un ejemplo de posible programación sencilla será utilizar una lógica similar a la lógica actual en control para situaciones “above rated” en turbinas onshore o bottom-fixed, a la que se le introduce una lógica que modifica el parámetro de potencia a producir con un input sobre la velocidad y/o aceleración de la turbina/torre inducida originada por el movimiento del flotador hacia adelante y hacia atrás, de forma que modifique la potencia máxima y/o la potencia objetivo hacia arriba en los momentos en que la turbina va hacia adelante y la disminuya en las situaciones en que va hacia atrás. Este algoritmo de modificación de la potencia podrá tener en cuenta distintas variables, entre ellas el desfase temporal entre la incidencia del viento aparente y la modificación de la velocidad del rotor, que no es instantánea por la inercia rotacional del rotor y/o la flexión de las palas.
De esta forma, si hay un cambio en la velocidad del viento real, sin movimiento adelante atrás de la turbina, el sistema de control seguirá comportándose normalmente, y aumentará el ángulo de pitch de forma análoga a como lo hace un controlador convencional conocido en la técnica. Sin embargo, si una velocidad Va del aerogenerador por encima de un cierto umbral, el sistema de control modificará el parámetro de potencia máxima y/o potencia objetivo a producir, hacia arriba y/o hacia abajo selectivamente en función de Va, para amortiguar convenientemente esos movimientos del aerogenerador.
La variación o ajuste intencionado de la potencia, según el procedimiento de la invención, puede llevarse a cabo, por ejemplo, variando la velocidad de giro del rotor, o variando el par o “torque” del generador, o mediante una combinación de ambas. En una realización preferente del procedimiento según la invención, la variación de potencia se aplica mediante una variación del torque del generador, mientras que la velocidad del rotor que el sistema de control busca o trata de mantener es constante. Preferentemente dicha velocidad de rotación constante que se busca es la velocidad de rotación nominal, que es la velocidad de rotación a la que giraría el rotor a potencial nominal en caso de operar el aerogenerador sobre una estructura fija y empleando su controlador estándar o convencional. En dicha realización, al aplicarse la variación de potencia según el procedimiento de la invención manteniendo una velocidad de giro del rotor aproximadamente constante, los algoritmos para el ajuste del ángulo de pitch A pueden ser
similares a los empleados en algoritmos de control convencionales, en los que en general se opera manteniendo una velocidad de giro del rotor aproximadamente constante.
En otra posible realización se pueden capturar datos adicionales como el viento real medido por delante de la turbina, además del movimiento relativo de la turbina inducido por el movimiento de la misma para programar el procedimiento de control según la presente invención.
Así pues, el objeto de la invención se realiza, preferentemente, mediante un procedimiento de control de un aerogenerador de torre mar adentro de tipo flotante, donde dicho aerogenerador: o comprende un rotor con una pluralidad de palas; o produce una potencia P variable en el tiempo y dependiente de la velocidad Vw con la que el viento incide sobre el rotor, siendo Pn0m la potencia nominal del aerogenerador que puede alcanzarse cuando Vwes igual o superior a la velocidad nominal de viento \ o “rated wind speed”; o comprende medios de regulación del ángulo A de pitch de las palas, tal que:
■ dada una cierta velocidad de viento Vw, un incremento del ángulo A de pitch de pala conlleva una reducción de la velocidad de giro del rotor y/o de la potencia producida P y/o del empuje o “thrust” que el viento ejerce sobre el rotor;
■ dada una velocidad de viento Vw, una reducción del ángulo A de pitch de pala conlleva un incremento de la velocidad de giro del rotor y/o de la potencia producida P y/o del empuje o “thrust” que el viento ejerce sobre el rotor;
■ el ángulo A de pitch de las palas tiene un valor mínimo al que se asigna, por convenio, el valor de 0 grados de pitch de pala;
■ dada una velocidad de viento Vw superior a Vr, existe un ángulo teórico de pitch de las palas At superior a 0 grados tal que la potencia producida P es sustancialmente igual a Pn0m, o experimenta, en al menos una condición de trabajo, movimientos que generan una velocidad Va del aerogenerador, que se entiende como positiva (Va>0) cuando el aerogenerador se desplaza en dirección sustancialmente contraria a la dirección del viento, y se entiende como negativa (Va<0) cuando el aerogenerador se desplaza en dirección sustancialmente coincidente con la dirección del viento; o comprende sensores que permiten monitorizar directa o indirectamente la velocidad del aerogenerador Va.
Ventajosamente, dicho procedimiento de control comprende, además, la realización de los siguientes pasos:
o al menos durante parte del tiempo en el que la velocidad del aerogenerador Va es positiva (Va>0) y la velocidad de viento Vw es superior a Vr ( Vw>Vr ), se establece un ángulo A de pitch de palas inferior a At ( A<At ) y el generador produce una potencia P superior a Pn0m ( P>Pnom)\ y/o o al menos y sólo durante parte del tiempo en el que la velocidad del aerogenerador Va es negativa (Va<0) y la velocidad de viento Vw es superior a Vr ( Vw>Vr ), se establece un ángulo A de pitch de palas superior a At ( A>At ) y el generador produce una potencia P inferior a Pn0m ( P<Pnom ).
El modo en que el sistema de control establece el ángulo A de pitch puede consistir en aplicar un determinado valor, o en aplicar variaciones en A hasta que se alcanza una determinada situación objetivo (por ejemplo una determinada velocidad de giro del rotor), o mediante cualquier otro método o algoritmo conocido en la técnica.
En una realización preferente del procedimiento de la invención se establece un ángulo A de pitch de palas inferior a At ( A<At ) y el generador produce una potencia P superior a Pn0m ( P>Pnom ) solo cuando Va >0. En una realización preferente del método de la invención, la potencia durante los ciclos de avance supera en más de un 5% a la potencia nominal Pn0m. Y, más preferentemente, la potencia durante los ciclos de avance supera en más de un 15% a la potencia nominal Pnom·
En una realización preferente del procedimiento de la invención, se emplea adicionalmente una variable Pmax donde: o El valor de Pmax se establece dinámicamente y puede por tanto variar en cada instante; o Pmax se define como el umbral superior de potencia P que admite el procedimiento de control, de tal forma que si la velocidad de viento y/o la velocidad del rotor aumentan tendiendo a generar una potencia superior a Pma, se actúa incrementando el ángulo A de pitch de las palas para evitar y/o corregir que la potencia en el generador sea superior a Pma; y donde: o al menos durante parte del tiempo en que la velocidad del aerogenerador es positiva, se asigna a la variable Pmax un valor superior a Pn0m, y/o o al menos y sólo durante parte del tiempo en que la velocidad del aerogenerador es negativa, se asigna a la variable Pmax un valor igual a Pnom·
En otra realización preferente del procedimiento de la invención, se emplea una variable Pm¡n donde:
o el valor de Pm¡„ se establece dinámicamente y puede por tanto variar en cada instante; o Pm¡n se define como el umbral inferior de potencia a partir del cual el sistema de control actúa para reducir el ángulo A de pitch de las palas, de tal forma que si >4>0 y la velocidad de viento y/o la velocidad del rotor disminuyen tendiendo a generar una potencia inferiora Pm¡n, se actúa reduciendo el pitch de las palas para mantener y/o incrementar la potencia en el generador; y donde: o al menos y sólo durante parte del tiempo en que la velocidad del aerogenerador es positiva, se asigna a la variable Pm¡n un valor igual a Pn m, y/o o al menos y sólo durante parte del tiempo en que la velocidad del aerogenerador es negativa , se asigna a la variable Pm¡n un valor inferior a Pn m·
En otra realización preferente del procedimiento de la invención, se emplea una variable P b¡ donde: o el valor de P b¡ se establece dinámicamente y puede por tanto variar en cada instante; o Pobj se define como la potencia objetivo que el sistema de control busca generar en un determinado instante; o El valor de la variable P b¡ se establece, al menos, en función del valor de Va y donde: o al menos durante parte del tiempo en que la velocidad del aerogenerador es positiva, se asigna a la variable P b¡ un valor superior a Pn m, y/o o al menos y solo durante parte del tiempo en que la velocidad del aerogenerador es negativa, se asigna a la variable P b¡ un valor inferior a Pn m·
El valor de la variable P b¡ puede determinarse además en función del valor de Vwy/o el valor de la velocidad de giro del rotor. El valor de la variable P b¡ puede determinarse además en función el valor de la inclinación y/o aceleración del aerogenerador, que pueden permitir anticipar el valor de Va en instantes futuros, de tal manera que el procedimiento de control pueda anticiparse al valor de Va esperable.
En una realización del procedimiento de la invención, se establece P b¡ =Pnom mientras el valor absoluto de la velocidad del aerogenerador Va se mantenga por debajo de un determinado umbral Ma,nm· De ese modo, para movimientos de reducida entidad, el procedimiento de control se puede mantener análogo al usado de forma estándar sobre estructuras fijas, y cuando los movimientos crecen y la velocidad del aerogenerador, en valor absoluto, supera dicho umbral
pasa a usarse el procedimiento según la presente invención para amortiguar mejor dichos movimientos.
En otra realización preferente del procedimiento de la invención, se establece el valor del ángulo A de pitch en las palas teniendo en consideración el valor y/o signo de la velocidad Va del aerogenerador.
En otra realización preferente del procedimiento de la invención, se define el valor del ángulo A de pitch de las palas en dos fases: o una primera fase en la que se calcula el valor de ángulo de pitch teórico At con reglas iguales o análogas a las empleadas en el sistema de control estándar de dicho aerogenerador cuando opera sobre subestructura fija; o una segunda fase en la que se aplica una corrección sobre dicho valor teórico de pitch de pala para establecer el valor de pitch real a aplicar, estableciendo dicha corrección según al menos una de las siguientes reglas:
■ si la velocidad del aerogenerador es positiva, se aplica una corrección sobre el valor de pitch teórico que evita, reduce o retrasa incrementos en el pitch;
■ si la velocidad del aerogenerador es negativa, se aplica una corrección sobre el valor de pitch teórico que evita, reduce o retrasa reducciones en el pitch.
En otra realización preferente del procedimiento de la invención: o al menos durante parte del tiempo en el que la velocidad del aerogenerador es positiva (Va>0) y Vw>V^, dicho sistema de control no admite incrementos en el ángulo A del pitch de las palas; y/o o al menos durante parte del tiempo en el que la velocidad del aerogenerador es negativa (\4<0) y Vw>V^, dicho sistema de control no admite reducciones en el ángulo A del pitch de las palas.
En otra realización preferente del procedimiento de control de la invención, dicho control se ejerce sólo ante movimientos de un determinado valor umbral de amplitud y/o de velocidad del aerogenerador.
En otra realización preferente del procedimiento de la invención, dicho procedimiento comprende monitorizar la temperatura en el aerogenerador mediante sensores y donde el valor que en cada instante se asigna a las variables Pmax y/o P0b¡ depende de la temperatura medida en el generador.
En otra realización preferente del procedimiento de la invención, dicho procedimiento comprende monitorizar el voltaje en el aerogenerador mediante sensores y donde el valor que en cada instante se asigna a las variables Pmax y/o P0b¡ depende del voltaje medido en el generador.
En otra realización preferente del procedimiento de la invención, dicho procedimiento se emplea en un aerogenerador soportado por una subestructura de alta flexibilidad y no flotante, cuyo primer modo de oscilación tiene un periodo igual o superior a 3 segundos.
Un segundo objeto de la invención se refiere a un programa de ordenador que implementa las instrucciones para ejecutar un procedimiento según cualquiera de las realizaciones descritas en el presente documento.
Un tercer objeto de la invención se refiere a un sistema de control de un aerogenerador (1), caracterizado por que comprende uno o más sensores de monitorización de parámetros físicos de dicho aerogenerador y medios software/hardware configurados para llevar a cabo un procedimiento según cualquiera de las reivindicaciones anteriores.
Un cuarto objeto de la invención se refiere a un aerogenerador que emplea un procedimiento de control o un sistema de control según cualquiera de las realizaciones descritas en el presente documento.
En una realización preferente de la invención, el aerogenerador comprende un generador y/o un sistema eléctrico capacitados para producir una potencia P superior a su potencia nominal Pn0m de forma temporal, en periodos intermitentes de duración inferior a 100 segundos y que se intercalan con periodos en los que se produce una potencia P inferior a Pn0m. La duración y frecuencia de dichos periodos de sobreproducción (P>Pram) será similar a la de las fases en las que el aerogenerador se mueve con velocidad positiva (\4>0). En general, un aerogenerador estándar podrá cumplir dicha condición, en particular gracias a que los periodos de sobreproducción se van intercalando con periodos de infraproducción, como el procedimiento de la invención hace posible.
Las realizaciones anteriores no han de entenderse como limitativas del ámbito de protección de la invención, comprendiendo dicho ámbito cualquier combinación técnicamente posible de las mismas, siempre que éstas no resulten mutuamente excluyentes.
La expresión “sustancialmente”, aplicada a cualquiera de los términos empleados en el presente documento, se entenderá como idéntica o comprendida en un margen de variación de un 20% superior o inferior.
DESCRIPCIÓN DE LOS DIBUJOS
Las anteriores y otras características y ventajas se comprenderán más plenamente a partir de la descripción detallada de la invención, así como de los ejemplos de realización preferente referidos a los dibujos adjuntos, en los que:
La Figura 1 muestra una representación del ángulo A de pitch de una pala de aerogenerador.
La Figura 2 muestra gráficas de variación de las siguientes magnitudes en función de la velocidad de viento \/wcon un controlador convencional: a) potencia Pvs. velocidad de viento Vw, b) ángulo de pitch de pala A vs. velocidad de viento Vw, c) empuje o “thrust” T vs. velocidad de viento Vw.
Las Figuras 3a-3b muestran dos representaciones de la velocidad del aerogenerador Va fruto de los movimientos de la estructura flotante que lo soporta.
Las Figuras 4a-4b muestran gráficas correspondientes a los ciclos de avance (\4>0) y retroceso (\/a<0), respectivamente, y como dichos ciclos afectan a la velocidad Vw aparente que incide sobre el rotor, en comparación con una situación en la que el aerogenerador permanezca sustancialmente fijo.
La Figura 5 representa una serie de gráficas (Figs. 5a-5d) que muestran cómo evolucionan distintas variables o parámetros del funcionamiento o control de un aerogenerador a lo largo del tiempo, y como se diferencian algunos de dichos parámetros en el caso de un aerogenerador fijo o con controlador convencional, y en el caso de emplear el procedimiento de la invención.
La Figura 6 muestra gráficas de variación de las siguientes magnitudes en función de la velocidad de viento Vw, bajo una primera realización de la invención: a) potencia P vs. velocidad de viento Vw, b) ángulo de pitch de pala A vs. velocidad de viento Vw, c) empuje o “thrust” T vs. velocidad de viento Vw.
La Figura 7 muestra gráficas de variación de las siguientes magnitudes en función de la velocidad de viento Vw, en una segunda realización de la invención con variables Pmax y Pm¡n'. a) potencia vs. velocidad de viento Vw, b) ángulo de pitch de pala A vs. velocidad de viento Vw, c) empuje o “thrust” T vs. velocidad de viento Vw.
La Figura 8 muestra un diagrama de flujo del procedimiento de la invención, según una realización preferente de la misma.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Se expone, a continuación, una descripción detallada de la invención referida a diferentes realizaciones preferentes de la misma, según la información proporcionada por las Figuras 1-8 del presente documento. Dicha descripción se aporta con fines ilustrativos, pero no limitativos de la invención reivindicada.
La Figura 1 esquematiza el modo en el que una pala (3) puede variar su ángulo de pitch (A). La figura 1a muestra una situación de ángulo de pitch mínimo (A=0) que maximiza la exposición de las palas (3) al viento y con ello la capacidad de producción del aerogenerador (1), mientras que la figura 1b muestra una situación de ángulo de pitch máximo (A=90 grados aproximadamente), que sitúa las palas (3) en bandera y minimiza su exposición al viento (ver también la definición del ángulo A de pitch de pala (3) incluida en apartados anteriores).
Para variar el ángulo de pitch de pala (A) un aerogenerador (1) comprende medios de regulación, habitualmente consistentes en una serie de rodamientos y actuadores hidráulicos (no mostrados en la figura 1) que se gobiernan mediante el sistema de control del aerogenerador (1).
La Figura 2 muestra una serie de 3 curvas que describen el comportamiento de un controlador o procedimiento de control convencional, tal y como los que se emplean habitualmente para aerogeneradores que operan sobre estructuras fijas. Las figuras 3a, 3b y 3c muestran respectivamente como varían la potencia (P), el ángulo de pitch de palas (A) y el empuje o “thrust” horizontal (T) que el viento ejerce sobre el rotor (2), en función de la velocidad de viento (Vw).
Para velocidades bajas de viento, inferiores a un valor de referencia “Vr” que se denomina “velocidad nominal de viento” o “rated wind speed” en inglés, se mantiene el mínimo ángulo A de
pitch de pala (A=0) para maximizar la producción (ver figura 2b). En dicha situación, la potencia generada será inferior a la potencia nominal “Pnom” por ser la velocidad de viento “Vw” inferior a “Vr” (ver figura 2a).
Cuando la velocidad de viento alcanza el valor Vr, el aerogenerador (1) puede empezara producir a su potencia nominal. Cuando la velocidad de viento Vw excede Vr (Vw>Vr), el sistema de control del aerogenerador (1) incrementa el ángulo A de pitch de las palas (3), gracias a lo cual se consigue que la potencia P de producción no supere “Pnom” (ver figuras 2a y 2b).
Así, a cada velocidad de viento Vw>Vr, le corresponde un cierto valor teórico del ángulo de pitch de pala At (At>0), tal que la potencia producida P será igual a la potencia nominal Pnom. Dicho valor puede depender de distintos factores, entre ellos la densidad del aire en cada emplazamiento. La gráfica que muestra los valores de At se muestra en la gráfica 2b. Por ejemplo, para una velocidad de viento Vw1>Vr, el valor teórico At1 del ángulo de pitch de palas (3) será el que lleve a una potencia de producción P igual a la potencia nominal del aerogenerador (1) (P=Pnom).
El empuje horizontal o “thrust” T que el viento ejerce sobre el rotor (2) crece con la velocidad de viento mientras Vw<Vr (pendiente de la curva positiva; ver figura 2c). Sin embargo, cuando se tiene Vw>Vr y el pitch empieza a actuar la situación se invierte y una mayor velocidad de viento Vw lleva a un menor thrust T (pendiente de la curva negativa; ver figura 2c). Esta última situación es la que lleva al fenómeno de “negative damping” en situaciones con Vw>Vr, ya descrito en el anterior apartado de antecedentes.
A la operación con Vw>Vr se la denomina operación “above rated”, mientras que la operación con Vw<Vr se la denomina “below rated”. El valor de Vr puede variar en función del modelo de aerogenerador (1). Valores habituales de Vr se sitúan en torno a 12m/s.
Las figuras 3a y 3b esquematizan los posibles movimientos que puede experimentar un aerogenerador (1), en este caso soportado por una subestructura (4) flotante, que en general acrecienta dichos movimientos. La figura 3a muestra un movimiento sustancialmente contrario a la dirección de viento (Va>0), mientras que la figura 3b muestra un movimiento sustancialmente coincidente con la dirección de viento (Va<0). Dichos movimientos y/o velocidades vendrán fundamentalmente provocados por cambios en la inclinación de la subestructura (4) flotante, si bien también pueden venir provocados al menos en parte por desplazamientos horizontales de la subestructura (4) o deformaciones experimentadas por la subestructura (4), por ejemplo.
La figura 3a muestra a modo de ejemplo una subestructura (4) flotante formada por dos cuerpos, pero la presente invención aplica a aerogeneradores soportados por otros tipos de subestructuras.
El procedimiento de control según la presente invención proporciona una gran ventaja para aerogeneradores que experimentan movimientos importantes y por ello es especialmente adecuado para aerogeneradores flotantes. Sin embargo, puede también emplearse de forma ventajosa en aerogeneradores instalados sobre otras subestructuras de alta movilidad y/o flexibilidad sin salir por ello del alcance de la invención. Por ejemplo, el sistema de control según la presente invención puede también emplearse para aerogeneradores instalados sobre torres muy flexibles cuyas deformaciones generan movimientos importantes en el aerogenerador (1). Las habitualmente conocidas como torres “soft”, por ejemplo, son torres cuyo periodo natural de oscilación es alto (superior al periodo de giro del rotor (2)) excediendo habitualmente valores de 3s, lo que lleva asociadas deformaciones relevantes cuyos efectos negativos pueden evitarse o mitigarse mediante la presente invención.
Los movimientos experimentados por el aerogenerador (1) son en general de naturaleza cíclica, de tal modo que se intercalan ciclos de movimiento con Va>0, denominados aquí como ciclos de avance, y ciclos de movimiento con Va<0, denominados aquí como ciclos de retroceso. Lo anterior se esquematiza en la figura 4b, en la que se muestra cómo evoluciona la velocidad del aerogenerador (1) Va a lo largo del tiempo y como en general los ciclos de avance y retroceso irán intercalándose.
La figura 4a muestra como la velocidad de viento Vw se ve afectada por los movimientos del aerogenerador (1). La curva roja en la gráfica de la figura 4a muestra cómo evoluciona a lo largo del tiempo la velocidad absoluta del viento, sujeta a una variabilidad o turbulencia natural; dicha curva roja representar la que sería la velocidad de viento Vw en el caso de un aerogenerador (1) perfectamente fijo. Por su parte, la curva verde de la misma gráfica representa la velocidad de viento Vw aparente o relativa respecto al rotor (2), cuando este no está fijo sino que se mueve con velocidades Va como las mostradas en la figura 4b. Durante un ciclo de retroceso (Va<0), la velocidad de viento Vw aparente o relativa se reduce respecto a la velocidad absoluta de viento, mientras que durante un ciclo de avance (Va>0) la velocidad de viento Vw aparente o relativa se incrementa con respecto a la velocidad absoluta de viento mostrada en la gráfica roja.
Viendo la gráfica de la figura 4b, puede considerarse que cuando la curva de la velocidad del aerogenerador (1) Va cruza el eje de abscisas se inicia un nuevo ciclo de avance o retroceso. La velocidad de viento Vwi medida en el instante en el que se inicia un determinado ciclo i (ver
figuras 4a y 4b) puede ser un parámetro a emplear en los algoritmos que gobiernen el procedimiento de control según la presente invención, como se explicará más adelante.
La figura 5 representa una serie de gráficas que muestran cómo evolucionan distintas variables o parámetros del funcionamiento o control de un aerogenerador (1) a lo largo del tiempo. Para una mejor explicación y comprensión de la presente invención se representa, por un lado, con curvas de color rojo, el comportamiento representativo de un controlador convencional con un aerogenerador (1) fijo, y por otro lado, con curvas de color verde, el comportamiento representativo de un controlador o procedimiento de control según la presente invención para un aerogenerador (1) flotante que experimenta movimientos. Las gráficas corresponden a una situación de operación “above rated” (Vw>Vr) y muestran la evolución de distintas magnitudes en el tiempo. Los ejes de abscisas de todas las gráficas representan el mismo periodo de tiempo a la misma escala.
Las figuras 5a y 5b son análogas a las figuras 4a y 4b, pero en el caso de la figura 5 se ha asumido simplificadamente que la velocidad absoluta de viento es constante a lo largo del tiempo, a efectos de hacer más sencilla la explicación y su representación gráfica. Así, la gráfica de la figura 5a muestra con una curva roja horizontal la velocidad del viento absoluta, que sería la que afectaría a un aerogenerador (1) perfectamente fijo y que en este caso es de valor constante e igual a Vw1. Por su parte, la curva discontinua verde en la misma gráfica muestra la velocidad de viento Vw que aplica a un aerogenerador (1) en movimiento, según la curva de velocidad del aerogenerador (1) que se muestra en la figura 5b. Pueden observarse los correspondientes ciclos de avance y retroceso intercalados.
Para anular o reducir el efecto del “negative damping” y/o los movimientos experimentados por el aerogenerador (1), y/o ampliar o mejorar el amortiguamiento positivo de dichos movimientos, y/o aumentar la producción de energía del aerogenerador (1), el procedimiento de control según la presente invención lleva a un funcionamiento (para las condiciones de velocidad de viento y del aerogenerador (1) mostradas en las figuras 5a y 5b) como el que se representa en las figuras 5c y 5d.
La figura 5d muestra el ángulo de pitch de las palas A, a lo largo del tiempo. La recta roja horizontal representa el caso de un aerogenerador (1) fijo, que para una velocidad de viento Vw1>Vr adoptaría un valor teórico del ángulo de pitch de palas At1, según una curva como la mostrada en la figura 2b. El valor teórico At1 es aquel que lleva a una potencia P igual a la potencia nominal Pnom para dicha velocidad de viento Vw1. Dicha potencia constante e igual a Pnom que sería la que se daría en un aerogenerador (1) fijo con controlador convencional está representada por la línea roja horizontal de la figura 5c.
Sin embargo, al producirse movimientos en el aerogenerador (1), la velocidad Vw pasa a variar como muestra la curva verde de la figura 5a. Ante dicha variación en Vw, un controlador convencional aplicaría un ángulo teórico de Pitch de palas (3) que permitiese mantener la potencia producida aproximadamente constante e igual a Pnom. Dichos valores teóricos At se obtienen de una gráfica como la mostrada en la figura 2b, y su variación a lo largo del tiempo, ligada a la variación en Vw, se muestra en la curva negra de puntos representada en la figura 5d. Emplear dichos valores At para el pitch de pala (3) permitiría mantener la potencia aproximadamente constante e igual a la potencia nominal, pero llevaría al indeseable efecto de “negative damping” descrito en apartados anteriores. Para evitar o reducir dicho efecto de “negative damping”, el procedimiento de control según la presente invención adoptaría valores para el ángulo de pitch A de las palas (3) como los representados mediante la curva verde discontinua de la figura 5d. Como se aprecia en dicha curva, dichos valores son tal que A (curva verde discontinua) es menor que At (curva negra de puntos) (A<At) durante los ciclos de avance (Va>0). Por el contrario, en los ciclos de retroceso, se tiene que A>At.
Por su parte, la potencia resultante del aerogenerador (1) se representa en la curva verde discontinua de la figura 5c: durante los ciclos de avance (Va>0), la potencia P producida por el aerogenerador (1) será superior a Pnom, mientras que durante los ciclos de retroceso (Va<0), la potencia P producida será inferior a Pnom.
Conviene señalar que, aunque en general la potencia nominal Pnom es un valor fijo y constante a lo largo de la vida operativa de un aerogenerador, en ciertos casos o modelos de aerogenerador puede ser posible ajustar su valor para ciertas condiciones de operación o en función de ciertos parámetros, como por ejemplo el voltaje del generador, la potencia reactiva a producir exigida por el sistema de red, o la temperatura ambiente y/o del generador. Por tanto, en una realización de la invención puede emplearse, bajo unas condiciones determinadas, un valor corregido para el parámetro Pnom que pueda diferir de la potencia nominal que figura en la ficha técnica de un determinado modelo de aerogenerador, sin que ello afecte a los pasos y reglas de funcionamiento que caracterizan al procedimiento según la presente invención y manteniéndose por tanto dentro de su alcance.
Debe entenderse que las posibilidades o estrategias para los algoritmos de control de un procedimiento según la invención pueden ser muy diversas. Por ejemplo, pueden emplearse algoritmos que fijen un valor objetivo de potencia Pobj, y que el valor de A que se establezca o resulte en cada instante derive de dicha potencia objetivo, o bien pueden establecerse valores concretos de A, y que sean los valores de potencia los que resulten de los valores de A que se fijen. Otras varias posibilidades evidentes o conocidas en la técnica son igualmente posibles.
Como se observa en la figura 5c, el controlador o procedimiento de control según la presente invención genera breves e intermitentes fases de sobreproducción (P>Pnom) intercaladas con otros tantos periodos de infraproducción (P<Pnom). En comparación con la situación de producción equivalente de un aerogenerador (1) fijo (representada por la recta roja de la figura 5c), se van alternando periodos en los que se genera más energía en comparación (zonas sombreadas en verde en la figura 5c correspondientes a los ciclos de avance) y periodos en los que se genera menos energía en comparación (zonas sombreadas en rojo de la figura 5c correspondientes a los ciclos de retroceso). En el cómputo global, los periodos de infraproducción se compensan con los periodos de sobreproducción para evitar o reducir posibles pérdidas de energía. Incluso, el procedimiento de control según la presente invención puede llevar a un incremento de la producción de energía por ser mayor la sobreproducción que la infraproducción. Esto puede ser así debido al hecho de que la energía generada es proporcional al cubo de la velocidad de viento Vw. Eso hace que, a igual variación en Vw para un ciclo de avance y un ciclo de retroceso, la ganancia en el primero sea superior a la perdida en el segundo. Por ejemplo, si Vw crece un 10% durante el ciclo de avance y se reduce igualmente un 10% durante el ciclo de retroceso se tiene 1.1L3+0.9L3=1, 331+0.729=2.06>2, con lo que se genera más energía que trabajando a potencia constante. De esta forma, el procedimiento de control según la presente invención proporciona un modo de que una fracción de la energía asociada al movimiento de la estructura pueda ser extraída por el aerogenerador (1).
El carácter cíclico y alternante en la variación de la potencia es un factor clave del procedimiento de control según la presente invención. En efecto, mantener una potencia superior a Pnom durante periodos permanente o prolongados puede en general no ser admisible por limitaciones del generador y/o de otros componentes. En cambio, cuando los periodos de sobreproducción asociados a los ciclos de avance son breves y se intercalan con periodos de infraproducción asociados a los ciclos de retroceso, la solicitud y exigencia sobre el generador u otros componentes del sistema eléctrico se reduce y es similar a la que puede darse en una situación de producción a potencia aproximadamente constante e igual a la potencia nominal Pnom.
Además, la reducida duración de los ciclos de avance y/o retroceso, que serán típicamente de algunos segundos o de algunas decenas de segundos puede limitar los incrementos y decrementos de potencia esperables, pues el rotor (2) tiene una elevada inercia rotacional, y hace falta por ello un cierto tiempo para que un mayor par del viento sobre el rotor (2) aumente su velocidad de rotación, o para que un menor par del viento reduzca su velocidad de rotación. Teniendo en cuenta lo anterior, en una realización preferente de la presente invención, se ajusta la potencia P generada “above rated”, al menos en parte, variando la velocidad de giro del rotor (2). De ese modo, se reduce y/o retrasa el incremento de potencia asociado a los ciclos de avance, pues lleva tiempo conferir al rotor (2) el incremento de momento angular asociado a una
mayor velocidad de rotación, y de forma similar se reduce y/o retrasa la reducción de potencia en los ciclos de retroceso, pues la disminución del par generado por el viento tarde un tiempo en traducirse en la correspondiente reducción de la velocidad de giro del rotor (2), debido a la gran inercia rotacional de la masa del rotor (2).
Emplear la velocidad del giro del rotor (2) como parámetro para la adaptación de la potencia en el generador, al involucrar la inercia de giro del rotor (2) y suponer cambios en su momento angular que requieren cierto tiempo, llevará a que la amplitud de las oscilaciones de potencia en la operación above rated (ver figura 5c) pueda ser inferior, generando por ello un efecto potencialmente favorable. También es posible que ello produzca un cierto desfase entre las oscilaciones de potencia y las oscilaciones de Va, lo que puede suponer que en la parte inicial de un ciclo de avance se tenga temporalmente P<Pnom y/o que en la parte inicial de un ciclo de retroceso se tenga P>Pnom, sin salir por ello del alcance de la presente invención.
El ajuste de potencia según la presente invención puede también hacerse variando el torque o par del generador, o mediante una combinación de variación de torque y velocidad de rotación del rotor.
Las estrategias específicas para establecer los valores del ángulo A de pitch de palas (3) a emplear pueden ser diversas sin salir por ello del alcance de la invención. A modo de ejemplo, en la figura 5d se muestran diversos casos:
En los ciclos 1 y 2 se aplica una estrategia en la que se mantiene el ángulo de pitch de palas A constante a pesar de las variaciones de Vw.
En los ciclos 3 y 4, el ángulo de pitch A se mantiene constante hasta que se alcanza un umbral de potencia a partir del cual empieza a variar.
En el ciclo 5 se aplica una variación paulatina de A lo largo del ciclo.
Sea cual fuera la estrategia concreta a emplear para establecer el valor exacto de A, el procedimiento de control según la presente invención siempre establecerá valores A<At al menos durante parte del tiempo en que Va>0 (ciclos de avance), coincidiendo en general con periodos de sobreproducción (P>Pnom), y siempre establecerá valores A>At al menos durante parte del tiempo en que Va<0 (ciclos de retroceso), coincidiendo en general con periodos de infraproducción (P<Pn0m),
Al evitar o reducir los incrementos de A durante un ciclo de avance, el procedimiento de control evita o limita las posibles reducciones en la fuerza de empuje del viento, que durante un ciclo de avance se oponen al movimiento. Igualmente, al evitar o reducir las reducciones de A durante un ciclo de retroceso, el procedimiento de control evita o limita los posibles incrementos en la fuerza
de empuje del viento, que durante un ciclo de avance amplifican el movimiento. Así, el procedimiento de control según la presente invención limita o anula el efecto desfavorable de negative damping, pudiendo llegar a generar en su lugar un amortiguamiento positivo durante la operación above rated, análogo al que se tiene en general durante la operación below rated.
A modo de ejemplo no limitativo, la figura 6 representa una primera realización del procedimiento de control según la presente invención. Específicamente, la figura 6b muestra los valores del ángulo de pitch de palas (3) a adoptar durante un determinado ciclo, ya sea de avance o de retroceso, y en una situación de operación “above rated”. En la gráfica de la figura 5b se muestran las siguientes curvas:
Curva roja, que muestra los valores de A en función de Vw que adoptaría un controlador convencional. Dicha curva indica los valores teóricos At del ángulo de pitch de pala (3) que, para cada velocidad de viento Vw>Vr, llevan a una potencia P igual a la potencia nominal Pnom.
Curva verde, que corresponde a los valores del ángulo de pitch de palas A que una realización del procedimiento de control según la presente invención establecería para un ciclo de avance (Va>0). Puede observarse que los valores de A indicados por dicha curva verde son siempre iguales o inferiores a At.
Curva azul, que corresponde a los valores del ángulo de pitch de palas A que una realización del procedimiento de control según la presente invención establecería para un ciclo de retroceso (Va<0). Puede observarse que los valores de A indicados por dicha curva verde son siempre iguales o superiores a At.
Las curvas verde y azul corresponden a un determinado ciclo de avance o de retroceso, en el que la velocidad de viento Vw al iniciarse el ciclo tuviese un valor Vwi (ver figura 4). Las curvas para ciclos que se iniciasen a otra velocidad serían por tanto distintas pero análogas.
El procedimiento puede establecer valores objetivos de A, según las reglas del procedimiento antes descritas, de modo que el valor de P se obtenga como resultado, o puede establecer valores objetivos de P (mediante la variable Pobj), de tal modo que el valor de A se obtenga como resultado. Otras estrategias similares o equivalentes pueden ser posibles para implementar el procedimiento de la invención generando un comportamiento como el representado en las figuras 5 y/o 6.
Aunque la explicación teórica del procedimiento de control según la presente invención se refiere a la velocidad de viento Vw como posible parámetro de control, en la aplicación práctica del método puede resultar en general más sencillo y eficiente emplear otro parámetro directamente relacionado con Vw pero más sencillo de medir o monitorizar, como la velocidad del rotor (2) o
el generador, como es habitual en controladores convencionales. De forma parecida, en la aplicación práctica de una realización preferente del procedimiento de control según la presente invención, el valor de Va no se medirá directamente, sino que se obtendrá indirectamente a partir de medidas de otros parámetros relacionados, como pueden en particular ser la inclinación y/o la aceleración en el aerogenerador (1). En general, el procedimiento de control según la siguiente invención puede emplearse empleando otros parámetros de control que estén directamente relacionados con los parámetros empleados en la descripción del procedimiento sin salir por ello del alcance de la invención. Por ejemplo, en lugar de la velocidad Va puede emplearse como parámetro de control la velocidad angular de la estructura flotante que se obtiene del ritmo de variación de la inclinación, que es equivalente, o en lugar de la velocidad del viento pueden emplearse la velocidad del rotor, que está directamente relacionada para un valor de torque en el generador conocido.
Como se ha explicado, la velocidad Va vendrá generada por los cambios en la inclinación de la estructura flotante de soporte, que en general es el parámetro de mayor influencia, así como por otros parámetros tales como, por ejemplo, los desplazamientos horizontales de la estructura flotante de soporte o la deformación de la estructura flotante de soporte, que en general serán parámetros de menor influencia. En una realización preferente del procedimiento según la presente invención, la velocidad Va se determina de forma aproximada sólo a partir de las variaciones en la inclinación de la estructura, sin tener en consideración, por ejemplo, los desplazamientos horizontales de la estructura. Ello permite que el procedimiento según la presente invención sea especialmente efectivo en amortiguar y/o reducir los movimientos por inclinaciones de la estructura, que en general son los más relevantes. Por supuesto, son posibles también realizaciones que determinen Va a partir de otros parámetros además de o en vez de la inclinación de la estructura, sin salir por ello del alcance de la invención.
La figura 6a muestra cual será la potencia producida por el aerogenerador (1) en un ciclo de avance (curva verde) o de retroceso (curva azul) que se corresponden con las curvas de variación del ángulo de pitch A mostradas en la figura 6b, ambas para condiciones de operación above rated. Se comprueba que en el ciclo de avance se tiene P³Pnom y en el ciclo de retroceso se tiene P£Pnom.
De forma análoga, la gráfica mostrada en la figura 6c muestra cual será la variación en el empuje o thrust T que el viento ejercerá sobre el rotor (2) en función de la velocidad del viento actuante aplicando el procedimiento en un ciclo de avance (curva verde) o en un ciclo de retroceso (curva azul). Como puede observarse en la curva verde, para un ciclo de avance se consigue que el thrust T siempre aumente en comparación con el valor que se tiene para la velocidad Vwi de inicio de ciclo. Al mismo tiempo, como se observa en la curva azul, para un ciclo de retroceso se
consigue que el thrust T siempre disminuya en comparación con el valor que se tiene para la velocidad Vwi de inicio de ciclo. De este modo se consigue que las variaciones en T se opongan al movimiento (aumentando T en ciclos de avance y disminuyendo T en ciclos de retroceso), consiguiendo de ese modo un favorable amortiguamiento positivo.
En la figura 6c, se representa la pendiente S de las curvas que definen T cuando Vw>Vwi (en ciclos de avance) y cuando Vw<Vwi (en ciclos de retroceso). Dicha pendiente será función de las curvas de definición de A y/o de definición de P empleadas en el procedimiento (como por ejemplo las mostradas en las figuras 6b y/o 6a). Cuando dicha pendiente S sea positiva (como es el caso en la realización del procedimiento mostrada en la figura 6c), el procedimiento permite generar un conveniente amortiguamiento positivo incluso para operación above rated, del mismo modo que se tiene en la operación below rated en la que la pendiente de la curva (curva roja para Vw<Vr) es marcadamente positiva. Si otra realización del presente procedimiento genera una pendiente S negativa, no se logrará generar un amortiguamiento positivo, pero al ser dicha pendiente negativa menos pronunciada que la de la curva roja para igual valor de Vw, se conseguirá reducir al menos en parte el efecto desfavorable del negative damping.
La figura 7 muestra figuras análogas a las de la figura 6 para una segunda realización del procedimiento de control según la presente invención, de nuevo para condiciones de operación above rated (Vw>Vr). En este caso, el procedimiento de control incorpora la variable Pmax, que establece el umbral de potencia a partir del cual se establecen valores de A que eviten superar dicho umbral superior, y la variable Pmin, que establece el valor inferior de potencia a partir del cual se establecen valores de A que eviten una potencia inferior a dicho umbral inferior.
El procedimiento de control según la presente invención prevé que dichas variables Pmax y Pmin tengan valores variables que se establecerán de forma dinámica y/o en tiempo real teniendo en cuenta diversos parámetros o circunstancias tales como:
El tipo de ciclo de avance o retroceso en el que se encuentre el aerogenerador (1), o, dicho de otro modo, el signo de Va.
La temperatura del generador.
El voltaje del generador.
El valor de la velocidad de viento Vwi al inicio del ciclo de avance o retroceso en el que se encuentre el aerogenerador (1).
Tal y como se aprecia en la figura 7a, en esta realización del procedimiento se tiene una potencia P³Pnom en un ciclo de avance (curva verde), pero para limitar el exceso de potencia y/o producción se establece un umbral superior Pmax>Pnom. Igualmente, en el ciclo de avance se establece un umbral inferior Pmin=Pnom (dicho umbral inferior Pmin se establece también en la realización mostrada en la figura 6).
Como se aprecia igualmente en la figura 7a, en esta realización del procedimiento se tiene una potencia P£Pnom en un ciclo de retroceso (curva azul), pero para limitar la pérdida de potencia y/o producción se establece un umbral inferior Pmin<Pnom. Igualmente, en el ciclo de retroceso se establece un umbral superior Pmax=Pnom (dicho umbral superior se establece también en la realización mostrada en la figura 6).
Finalmente, la figura 8 muestra esquemas de flujo correspondientes a los algoritmos de control empleados en la realización del procedimiento según la presente invención mostrada en la figura 7. Por un lado, la figura 8a muestra el diagrama de flujo empleado según el estado actual de la técnica en un controlador convencional; dicho diagrama de flujo resultaría en unas curvas de comportamiento como las representadas en la figura 2 y en las curvas rojas de la figura 7. Según dicho controlador convencional, durante la operación above rated (Vw>Vr), se mantiene una potencia aproximadamente constante e igual a Pnom, con independencia de los movimientos que experimente el aerogenerador (1).
En un tal controlador convencional, los umbrales Pmax y Pmin antes descritos están también presentes y/o implícitos, adaptando un valor igual y constante (Pmax=Pmin=Pnom) con independencia del sentido del movimiento del aerogenerador (1) (es decir, del signo de Va).
Aunque un controlador convencional según el estado del arte esté diseñado en general para evitar que el aerogenerador (1) opere a una potencia superior a la nominal, esto no necesariamente significa que con un controlador convencional en ningún momento puedan darse potencias superiores a la nominal; ahora bien, las posibles situaciones de trabajo a potencia superior a la nominal que pueden darse con los controladores conocidos en la técnica son completamente distintas en su forma, causa y/o motivación a las situaciones de sobreproducción provocadas de forma intencionada mediante el procedimiento de control según la invención; por ejemplo, con un controlador convencional una situación con P>Pnom puede darse debido a que la capacidad de ajuste del pitch de las palas (3) no es instantánea, y por tanto ante una subida brusca de la velocidad de viento puede darse un incremento de la potencia producida durante el breve intervalo de tiempo que el sistema de control requiere para reaccionar y llevar a cabo el ajuste en el pitch de las palas (3) que tiene por objeto corregir dicha situación. Esta situación es obviamente completamente distinta a la que caracterizar el procedimiento de control al que se refiere la presente invención, en donde los momentos en los que P>Pnom están previstos y provocados por el propio algoritmo de control y son dependientes de los movimientos que experimental el aerogenerador, tal y como, por ejemplo, se describe en la figura 8b.
La figura 8b muestra el diagrama de flujo para un algoritmo de control de un procedimiento según la presente invención. Mediante dicho algoritmo, para la operación above rated, se tiene en cuenta el signo de la velocidad del aerogenerador (1) Va para establecer el ángulo de pitch A y las variables Pmax y Pmin según se indica de forma autoexplicativa en la figura.
Se ha descrito un procedimiento de control según la invención que considera el signo de Va. Es por supuesto posible desarrollar otra realización de un procedimiento según la invención que además tenga en cuenta el valor de Va. Por ejemplo puede emplearse el valor de Va para establecer una variable Pobj como se ha descrito anteriormente. O por ejemplo, puede emplearse un procedimiento que mantiene algoritmos convencionales mientras el valor absoluto de Va no supera un cierto valor o umbral, y sólo aplica el procedimiento más avanzado según la presente invención para velocidades del aerogenerador (1) altas, por encima de un cierto umbral. De ese modo, mientras las velocidades Va son pequeñas e insuficientes para generar un efecto de negative damping significativo se puede mantener un procedimiento convencional.
El efecto de amortiguamiento aerodinámico positivo que proporciona el procedimiento de control según la presente invención puede incrementarse estableciendo reducciones de A para los ciclos de avance (Va>0) y/o estableciendo incrementos de A para los ciclos de retroceso (Va<0). Una manera de implementar dicho amortiguamiento mejorado en un algoritmo de control según la presente invención puede consistir en establecer Pmin > Pnom en los ciclos de avance y/o Pmax < Pnom en los ciclos de retroceso.
Claims
1. Procedimiento de control de un aerogenerador (1) de torre mar adentro de tipo flotante, donde dicho aerogenerador (1): o comprende un rotor (2) con una pluralidad de palas (3); o produce una potencia P variable en el tiempo y dependiente de la velocidad relativa Vw con la que el viento incide sobre el rotor (2), siendo Pn0m la potencia nominal del aerogenerador (1) que puede alcanzarse cuando Vw es igual o superior a la velocidad nominal de viento Vr o “rated wind speed”; o comprende medios de regulación del ángulo A de pitch de las palas (3), tal que:
■ dada una cierta velocidad de viento Vw, un incremento del ángulo A de pitch de pala (3) conlleva una reducción de la velocidad de giro del rotor (2) y/o de la potencia producida P y/o del empuje o “thrust” que el viento ejerce sobre el rotor (2);
■ dada una velocidad de viento Vw, una reducción del ángulo A de pitch de pala (3) conlleva un incremento de la velocidad de giro del rotor (2) y/o de la potencia producida P y/o del empuje o “thrust” que el viento ejerce sobre el rotor (2);
■ el ángulo A de pitch de las palas (3) tiene un valor mínimo al que se asigna, por convenio, el valor de 0 grados de pitch de pala (3);
■ dada una velocidad de viento Vw superior a Vr, existe un ángulo teórico de pitch de las palas At superior a 0 grados tal que la potencia producida P es sustancialmente igual a Pn0m, o experimenta, en al menos una condición de trabajo, movimientos que generan una velocidad Va del aerogenerador (1), que se entiende como positiva (Va>0) cuando el aerogenerador (1) se desplaza en dirección sustancialmente contraria a la dirección del viento, y se entiende como negativa (Va<0) cuando el aerogenerador (1) se desplaza en dirección sustancialmente coincidente con la dirección del viento; o comprende sensores que permiten monitorizar directa o indirectamente la velocidad del aerogenerador Va, estando dicho procedimiento de control caracterizado por que: o al menos durante parte del tiempo en el que la velocidad del aerogenerador (1) Va es positiva (Va>0) y la velocidad de viento Vw es superior a Vr (Vw>Vr), se establece un ángulo A de pitch de palas (3) inferior a At ( A<At ) y el generador produce una potencia P superior a Pn0m ( P>Pnom ); y/o o al menos y sólo durante parte del tiempo en el que la velocidad del aerogenerador (1) Va es negativa (Va<0) y la velocidad de viento Vwes superior
a Vr{Vw>Vr), se establece un ángulo A de pitch de palas (3) superior a At ( A>At ) y el generador produce una potencia P inferior a Pn0m ( P<Pnom ).
2. Procedimiento de control según la reivindicación 1 , donde se emplea adicionalmente una variable Pmax donde: o El valor de Pmax se establece dinámicamente y puede por tanto variar en cada instante; o Pmax se define como el umbral superior de potencia P que admite el procedimiento de control, de tal forma que si la velocidad de viento y/o la velocidad del rotor (2) aumentan tendiendo a generar una potencia superior a Pmax, se actúa incrementando el ángulo A de pitch de las palas (3) para evitar y/o corregir que la potencia en el generador sea superior a Pmax; y caracterizado por que: o al menos durante parte del tiempo en que la velocidad del aerogenerador (1) es positiva, se asigna a la variable Pmax un valor superior a Pn0m, y/o o al menos y sólo durante parte del tiempo en que la velocidad del aerogenerador (1) es negativa, se asigna a la variable Pmax un valor igual a Pnom·
3. Procedimiento de control según la reivindicación 1, donde se emplea una variable Pm¡n donde: o el valor de Pm¡n se establece dinámicamente y puede por tanto variar en cada instante; o
se define como el umbral inferior de potencia a partir del cual el sistema de control actúa para reducir el ángulo A de pitch de las palas (3), de tal forma que si A>0 y la velocidad de viento y/o la velocidad del rotor (2) disminuyen tendiendo a generar una potencia inferior a Pm¡n, se actúa reduciendo el pitch de las palas (3) para mantener y/o incrementar la potencia en el generador; y caracterizado por que: o al menos y sólo durante parte del tiempo en que la velocidad del aerogenerador (1) es positiva, se asigna a la variable Pm¡n un valor igual a Pn0m, y/o o Al menos y sólo durante parte del tiempo en que la velocidad del aerogenerador (1) es negativa, se asigna a la variable Pm¡n un valor inferior a Pnom·
4. Procedimiento de control según la reivindicación 1, donde se emplea una variable P0b¡ donde: o el valor de P0b¡ se establece dinámicamente y puede por tanto variar en cada instante;
o Pobj se define como la potencia objetivo que el sistema de control busca generar en un determinado instante; y caracterizado por que: o El valor de la variable P0b¡ se establece, al menos, en función del valor de Va y caracterizado por que: o al menos durante parte del tiempo en que la velocidad del aerogenerador es positiva, se asigna a la variable P0b¡ un valor superior a Pn0m, y/o o al menos y solo durante parte del tiempo en que la velocidad del aerogenerador es negativa, se asigna a la variable P0b¡ un valor inferior a Pn0m·
5. Procedimiento de control según la reivindicación 1 , caracterizado por que se establece el valor del ángulo A de pitch en las palas (3) teniendo en consideración el valor y/o signo de la velocidad Va del aerogenerador (1).
6. Procedimiento de control según la reivindicación 4, caracterizado por que se define el valor del ángulo A de pitch de las palas (3) en dos fases: o una primera fase en la que se calcula el valor de ángulo de pitch teórico At con reglas iguales o análogas a las empleadas en el sistema de control estándar de dicho aerogenerador (1) cuando opera sobre subestructura (4) fija; o una segunda fase en la que se aplica una corrección sobre dicho valor teórico de pitch de pala (3) para establecer el valor de pitch real a aplicar, estableciendo dicha corrección según al menos una de las siguientes reglas:
■ si la velocidad del aerogenerador (1) es positiva, se aplica una corrección sobre el valor de pitch teórico que evita, reduce o retrasa incrementos en el pitch;
■ si la velocidad del aerogenerador (1) es negativa, se aplica una corrección sobre el valor de pitch teórico que evita, reduce o retrasa reducciones en el pitch.
7. Procedimiento de control según la reivindicación 1 caracterizado por que: o al menos durante parte del tiempo en el que la velocidad del aerogenerador (1) es positiva (Va>0) y Vw>V^, dicho sistema de control no admite incrementos en el ángulo A del pitch de las palas (3); y/o o al menos durante parte del tiempo en el que la velocidad del aerogenerador (1) es negativa (\4¡<0) y Vw>V^, dicho sistema de control no admite reducciones en el ángulo A del pitch de las palas (3).
8. Procedimiento de control según la reivindicación 1 , donde dicho control se ejerce sólo ante movimientos de un determinado valor umbral de amplitud y/o de velocidad del aerogenerador (1).
9. Procedimiento de control según la reivindicación 2 o 4, caracterizado por que comprende monitorizar la temperatura en el aerogenerador (1) mediante sensores y por que el valor que en cada instante se asigna a la variable Pmax y/o P0b¡ depende de la temperatura medida en el generador.
10. Procedimiento de control según la reivindicación 2 o 4 caracterizado por que comprende monitorizar el voltaje en el aerogenerador (1) mediante sensores y por que el valor que en cada instante se asigna a la variable Pmax y/o P0b¡ depende del voltaje medido en el generador.
11. Procedimiento de control según la reivindicación anterior, caracterizado por que se emplea en un aerogenerador (1) soportado por una subestructura (4) de alta flexibilidad y no flotante, cuyo primer modo de oscilación tiene un periodo igual o superior a 3 segundos.
12. Sistema de control de un aerogenerador (1), caracterizado por que comprende uno o más sensores de monitorización de parámetros físicos de dicho aerogenerador (1), medios de regulación del ángulo A de pitch de las palas (3) de dicho aerogenerador (1), y medios software/hardware configurados para llevar a cabo un procedimiento según cualquiera de las reivindicaciones anteriores.
13. Aerogenerador (1) que emplea un procedimiento de control según cualquiera de las reivindicaciones 1-11 , o que comprende un sistema de control según la reivindicación 12.
14. Aerogenerador (1) según la reivindicación 13, caracterizado porque comprende un generador y/o un sistema eléctrico capacitados para producir una potencia P superior a su potencia nominal Pn0m de forma temporal, en periodos intermitentes de duración inferior a 100 segundos y que se intercalan con periodos en los que se produce una potencia P inferior a Pn0m
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022516594A JP2022548108A (ja) | 2019-09-16 | 2020-09-15 | オフショア浮動タワー風力タービンの制御方法並びに制御方法を使用する制御システム及び風力タービン |
US17/642,496 US20220325695A1 (en) | 2019-09-16 | 2020-09-15 | Method for controlling an offshore floating tower wind turbine, and control system and wind turbine that use the method |
EP20865453.3A EP4033092A4 (en) | 2019-09-16 | 2020-09-15 | METHOD FOR CONTROLLING A FLOATING OFFSHORE TOWER AND CONTROL SYSTEM AND WIND TURBINE USING SUCH METHOD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201930802A ES2812374B2 (es) | 2019-09-16 | 2019-09-16 | Procedimiento de control de un aerogenerador de torre mar adentro de tipo flotante, asi como el sistema y el aerogenerador que incorporan este procedimiento |
ESP201930802 | 2019-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021053252A1 true WO2021053252A1 (es) | 2021-03-25 |
Family
ID=74871900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2020/070551 WO2021053252A1 (es) | 2019-09-16 | 2020-09-15 | Procedimiento de control de un aerogenerador de torre mar adentro de tipo flotante; sistema de control y aerogenerador que emplean dicho procedimiento |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220325695A1 (es) |
EP (1) | EP4033092A4 (es) |
JP (1) | JP2022548108A (es) |
ES (1) | ES2812374B2 (es) |
WO (1) | WO2021053252A1 (es) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022240292A1 (en) * | 2021-05-14 | 2022-11-17 | Technische Universiteit Delft | Enhanced wake mixing for floating wind turbines |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019105296A1 (de) * | 2019-03-01 | 2020-09-03 | Wobben Properties Gmbh | Verfahren zum Betreiben einer Windenergieanlage, Reglerstruktur, Windenergieanlage und Windpark |
EP3722595A1 (en) * | 2019-04-09 | 2020-10-14 | Siemens Gamesa Renewable Energy A/S | Controller for a wind turbine |
EP4386200A1 (en) * | 2022-12-13 | 2024-06-19 | Siemens Gamesa Renewable Energy A/S | System and method for operating a floating wind turbine, floating wind turbine, wind park, computer program product and computer-readable storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060033338A1 (en) | 2004-05-11 | 2006-02-16 | Wilson Kitchener C | Wind flow estimation and tracking using tower dynamics |
EP1719910A1 (en) | 2004-02-27 | 2006-11-08 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator, active vibration damping method for the same, and wind turbine tower |
EP2063110A1 (en) * | 2007-11-26 | 2009-05-27 | Siemens Aktiengesellschaft | Method of damping power vibrations of a wind turbine and inclination control system |
GB2466649A (en) * | 2008-12-30 | 2010-07-07 | Statoilhydro Asa | Floating wind turbine blade pitch controller based on rotor and tower speeds |
CN103541861A (zh) * | 2013-10-30 | 2014-01-29 | 新疆金风科技股份有限公司 | 浮动式风电机组塔架负阻尼抑制系统和方法 |
WO2014191001A1 (en) * | 2013-05-30 | 2014-12-04 | Mhi Vestas Offshore Wind A/S | Tilt damping of a floating wind turbine |
EP2924280B1 (en) | 2012-12-27 | 2016-10-26 | MHI Vestas Offshore Wind A/S | Method and device for controlling floating body wind power electricity generation device, and floating body wind power electricity generation device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO325856B1 (no) * | 2005-11-01 | 2008-08-04 | Hywind As | Fremgangsmåte for demping av ustabile frie stivlegeme egensvingninger ved en flytende vindturbininstallasjon |
ES2759363T3 (es) * | 2014-03-12 | 2020-05-08 | Vestas Wind Sys As | Turbina eólica con control de sobreestimación |
US10890159B2 (en) * | 2016-08-17 | 2021-01-12 | Vestas Wind Systems A/S | Dynamic controlled wind turbine shutdown |
GB2602301B (en) * | 2020-12-22 | 2023-03-29 | Equinor Energy As | Floating wind turbine control below rated wind speed |
-
2019
- 2019-09-16 ES ES201930802A patent/ES2812374B2/es active Active
-
2020
- 2020-09-15 US US17/642,496 patent/US20220325695A1/en active Pending
- 2020-09-15 JP JP2022516594A patent/JP2022548108A/ja active Pending
- 2020-09-15 WO PCT/ES2020/070551 patent/WO2021053252A1/es unknown
- 2020-09-15 EP EP20865453.3A patent/EP4033092A4/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1719910A1 (en) | 2004-02-27 | 2006-11-08 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator, active vibration damping method for the same, and wind turbine tower |
US20060033338A1 (en) | 2004-05-11 | 2006-02-16 | Wilson Kitchener C | Wind flow estimation and tracking using tower dynamics |
EP2063110A1 (en) * | 2007-11-26 | 2009-05-27 | Siemens Aktiengesellschaft | Method of damping power vibrations of a wind turbine and inclination control system |
EP2063110B1 (en) | 2007-11-26 | 2015-08-12 | Siemens Aktiengesellschaft | Method of damping tower vibrations of a wind turbine and inclination control system |
GB2466649A (en) * | 2008-12-30 | 2010-07-07 | Statoilhydro Asa | Floating wind turbine blade pitch controller based on rotor and tower speeds |
EP2924280B1 (en) | 2012-12-27 | 2016-10-26 | MHI Vestas Offshore Wind A/S | Method and device for controlling floating body wind power electricity generation device, and floating body wind power electricity generation device |
WO2014191001A1 (en) * | 2013-05-30 | 2014-12-04 | Mhi Vestas Offshore Wind A/S | Tilt damping of a floating wind turbine |
EP3004636B1 (en) | 2013-05-30 | 2017-01-25 | MHI Vestas Offshore Wind A/S | Tilt damping of a floating wind turbine |
CN103541861A (zh) * | 2013-10-30 | 2014-01-29 | 新疆金风科技股份有限公司 | 浮动式风电机组塔架负阻尼抑制系统和方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022240292A1 (en) * | 2021-05-14 | 2022-11-17 | Technische Universiteit Delft | Enhanced wake mixing for floating wind turbines |
NL2028217B1 (en) * | 2021-05-14 | 2022-11-30 | Univ Delft Tech | Enhanced wake mixing for floating wind turbines |
US12116983B2 (en) | 2021-05-14 | 2024-10-15 | Technische Universiteit Delft | Enhanced wake mixing for floating wind turbines |
Also Published As
Publication number | Publication date |
---|---|
JP2022548108A (ja) | 2022-11-16 |
EP4033092A1 (en) | 2022-07-27 |
ES2812374B2 (es) | 2022-02-17 |
US20220325695A1 (en) | 2022-10-13 |
EP4033092A4 (en) | 2023-09-27 |
ES2812374A1 (es) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2812374B2 (es) | Procedimiento de control de un aerogenerador de torre mar adentro de tipo flotante, asi como el sistema y el aerogenerador que incorporan este procedimiento | |
ES2714085T3 (es) | Método de control de aerogeneador | |
ES2892398T3 (es) | Sistema y procedimiento para controlar un parque eólico | |
ES2644936T3 (es) | Método de funcionamiento de una turbina eólica así como un sistema adecuado para ello | |
ES2476426T3 (es) | Procedimiento para hacer funcionar una instalación de energía e�lica e instalación de energía e�lica | |
TW201814156A (zh) | 風力發電裝置或風力發電裝置的控制方法 | |
WO2008059090A1 (es) | Método de reducción de cargas en un aerogenerador | |
KR101062580B1 (ko) | 회전날개의 개폐각이 자동 조절되는 수직형 풍력발전기 | |
ES2398020A2 (es) | Métodos y sistemas para aliviar las cargas producidas en los aerogeneradores por las asimetrías del viento. | |
ES2358140A1 (es) | Métodos de control de aerogeneradores para mejorar la producción de energía. | |
ES2696303T3 (es) | Método de control de un aerogenerador | |
AU2013224698B2 (en) | A wind turbine system | |
CA2977711A1 (en) | Method for operating a wind turbine | |
ES2407955B1 (es) | Procedimiento de control de un aerogenerador | |
WO2013127899A1 (en) | Method of operating a wind turbine | |
JP6756489B2 (ja) | 風力発電装置の制御方法 | |
KR102018579B1 (ko) | 풍력터빈 제어시스템의 피치제어기 | |
US20120256423A1 (en) | Device of floating wind turbine capable of counterbalancing torques therein | |
EP3351789A1 (en) | Wind power generation system or method of operating wind power generation system | |
TWI708892B (zh) | 風力發電裝置 | |
KR20190042141A (ko) | 풍력발전기 날개 각도의 자동 조절장치 | |
EP2686547B1 (en) | Downwind turbine with free yaw system | |
JP2017180153A (ja) | 風力発電装置またはウィンドファーム | |
Zada et al. | WINDMILL WITH SELF DEVIATING DUE TO WIND SPEED TURBINE BLADES GEOMETRY | |
JP2020051301A (ja) | 風力発電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20865453 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022516594 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020865453 Country of ref document: EP Effective date: 20220419 |