WO2021052433A1 - 一种气体取样测量系统及其使用方法 - Google Patents

一种气体取样测量系统及其使用方法 Download PDF

Info

Publication number
WO2021052433A1
WO2021052433A1 PCT/CN2020/115962 CN2020115962W WO2021052433A1 WO 2021052433 A1 WO2021052433 A1 WO 2021052433A1 CN 2020115962 W CN2020115962 W CN 2020115962W WO 2021052433 A1 WO2021052433 A1 WO 2021052433A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
dilution
sampler
component
analyzer
Prior art date
Application number
PCT/CN2020/115962
Other languages
English (en)
French (fr)
Inventor
王金意
郜时旺
刘练波
牛红伟
郭东方
汪世清
顾兴财
王孟
范旭
周华宾
Original Assignee
华能国际电力股份有限公司
中国华能集团清洁能源技术研究院有限公司
华能(天津)煤气化发电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能国际电力股份有限公司, 中国华能集团清洁能源技术研究院有限公司, 华能(天津)煤气化发电有限公司 filed Critical 华能国际电力股份有限公司
Publication of WO2021052433A1 publication Critical patent/WO2021052433A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/766Chemiluminescence; Bioluminescence of gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N2021/3536Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis using modulation of pressure or density
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation
    • G01N2201/12746Calibration values determination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the field of gas composition analysis, and specifically relates to a gas sampling measurement system and a use method thereof.
  • Gas online continuous monitoring system generally includes sampling and measurement system. Common configurations include: (1) heating extraction sampling + non-dispersive infrared measurement; (2) heating extraction sampling + UV differential absorption measurement; (3) Dilution extraction sampling + UV fluorescence/chemiluminescence measurement, etc.
  • the non-dispersive infrared and ultraviolet differential absorption methods are based on the specific absorption peaks of the target components in the spectrum, and are quantitatively measured according to Lambert Beer’s law.
  • the background absorption of the sample gas and the scattering interference of impurities will affect the accuracy of the test.
  • Infrared analysis is also Affected by moisture, the infrared absorption wavelength range of water molecules is wide, which overlaps with the absorption bands of many components, and the absorption intensity is high. Therefore, changes in the moisture content of the sample gas will have a greater impact on the infrared analysis results.
  • pretreatment methods such as the cold-drying method to remove the moisture in the sample gas, but the condensation process of water will cause the dissolution and loss of some components, such as ammonia, sulfur dioxide, etc., so the cold-drying method
  • the scope of application is relatively small.
  • Other controllable methods are needed to reduce the moisture in the sample gas without affecting the analysis of other components.
  • the infrared method can also be used to quantitatively measure the water content in the gas.
  • Ultraviolet fluorescence method and chemiluminescence method have high analysis specificity, are not easily affected by impurities, and have high measurement accuracy, which is 2 to 3 orders of magnitude higher than infrared and ultraviolet analyzers. However, these two methods are mainly suitable for the measurement of low-concentration components. Not suitable for media with a concentration of more than 20ppm.
  • the gas can be diluted.
  • the dilution extraction sampling method is commonly used, and dry compressed air is generally used as the carrier.
  • the gas first remove the trace SO 2 , NO, CO 2 and water and other impurities, and then pass it into the gas sampler, in the sampler there is a venturi tube, compressed air flows through the venturi tube nozzle, you can draw a certain proportion Dilute the sample gas with the sample gas, and control the size of the venturi nozzle to control the dilution ratio.
  • the size of the venturi nozzle is generally small.
  • the sampler is generally equipped with a filter to avoid the interference of impurities, the nozzle is still easy to be blocked by the impurities in the gas.
  • the dilution factor of the venturi will follow. If the change cannot be corrected in time, the dilution factor used by the gas analyzer when calculating the concentration will get the wrong analysis result. This clogging process can be fast or slow. Therefore, the dilution sampling measurement method needs frequent calibration of the dilution factor in the application.
  • the purpose of the present invention is to provide a gas sampling measurement system and a method of use thereof, to solve the technical problems that the dilution extraction sampling method is easily interfered by impurities, the dilution factor is prone to fluctuate and it is difficult to measure; further the system of the present invention can simultaneously achieve gas Real-time online measurement of water content.
  • a gas sampling measurement system including a splitter, a number of sampling points, a heat tracing pipeline, and a number of single-component gas analyzers;
  • the outlet of the diverter includes several branches;
  • Each sampling point is equipped with a gas sampling probe; the gas sampling probe is connected to the corresponding dilution gas sampler; each branch passes through the corresponding dilution gas sampler, and each branch is located on the pipe wall of the dilution gas sampler Venturi nozzles are installed on it; each branch passes through the dilution gas sampler and then connected to a heating pipeline; the heating pipeline is connected with a number of single-component gas analyzers.
  • thermosensor valve and a multi-component gas analyzer
  • the heating manifold includes a plurality of pipelines with valves, and the plurality of pipelines with valves are connected to the corresponding heat tracing pipeline; the outlets of the plurality of pipelines of the heating manifold are combined into one pipeline to connect the inlet of the multi-component gas analyzer.
  • exhaust gas discharge pipes are connected to multiple pipelines of the heating manifold.
  • air compressors gas storage tanks, freeze dryers, filters and gas purifiers
  • the outlet of the air compressor is connected to the inlet of the gas storage tank, and the outlet of the gas storage tank is connected to the inlet of the diverter through a refrigeration dryer, a filter, and a gas purifier in turn.
  • the number of sampling points is greater than or equal to 2.
  • the single-component gas analyzer is a non-dispersive infrared gas analyzer, an ultraviolet differential gas analyzer, an ultraviolet fluorescent gas analyzer, or a chemiluminescence analyzer.
  • the multi-component gas analyzer is a Fourier infrared spectrum analyzer.
  • a standard gas cylinder is connected to the dilution gas sampler.
  • a standard gas cylinder is connected to the multi-component gas analyzer.
  • a method for using a gas sampling measurement system including the following steps:
  • the purified compressed air is used as the carrier gas and flows into the dilution gas sampler at each sampling point through the splitter; the dilution gas sampler is connected with the gas sampling probe, and the gas pressure in the process pipeline to be measured is higher than the dilution gas sampling
  • the pressure in the chamber of the device, the gas to be measured enters the dilution gas sampler from the gas sampling probe, and both the dilution gas sampler and the gas sampling probe are equipped with heating;
  • the flow divider controls the flow and pressure of the compressed air in each branch of the dilution gas sampler.
  • the compressed air flows through the venturi nozzle in the dilution gas sampler, and the sample gas is mixed with it to realize the dilution of the sample gas;
  • the diluted sample gas is transported to several single-component gas analyzers through the heat tracing pipeline for analysis; the diluted sample gas at each sampling point is connected to the heating collector valve, and the heating collector valve controls the valve to take a certain sample for a certain period of time
  • the sample gas at the selected point is sent to the multi-component gas analyzer for detection, and at the same time, the other sample gas connected to the heating manifold is discharged;
  • the standard gas cylinder of known concentration is connected to the dilution gas sampler, and the gas supply pressure is higher than the gas pressure of the process pipeline to be tested.
  • the self-check phase open the standard gas cylinder to fill the cavity of the dilution gas sampler with standard gas.
  • the concentration of a certain component of the gas is C0; the measurement reading of the single-component gas analyzer to detect the component is C1, and the reading of the multi-component gas analyzer to measure the concentration of the component is C2.
  • the standard gas cylinder of known concentration is connected to the multi-component gas analyzer, and the measurement value of the multi-component gas analyzer is regularly calibrated; the multi-component gas analyzer can measure the water content in the diluted sample gas and multiply it by the dilution The multiple A gives the water content in the airflow to be measured.
  • the present invention has the following beneficial effects:
  • the invention can realize the online measurement of water content in the gas, monitor the dilution ratio of the dilution gas sampler in real time, and can detect and remind the operator to maintain the equipment in time when the difference between the dilution ratio of the sampler and the inherent dilution ratio exceeds a certain range. In order to ensure the continuous, true and reliable measurement data, to ensure the stable operation of the technological process.
  • Figure 1 is a schematic diagram of a gas sampling measurement system.
  • a layer/element when referred to as being "on" another layer/element, the layer/element may be directly on the other layer/element, or there may be an intermediate layer/element between them. element.
  • the layer/element may be located "under” the other layer/element when the orientation is reversed.
  • the present invention provides a gas sampling measurement system, including air compressor 1, gas storage tank 2, refrigeration dryer 3, filter 4, gas purifier 5, splitter 6, dilution gas sampling Device 7, Venturi nozzle 8, gas sampling probe 9, standard gas cylinder 10, first gas analyzer 11, second gas analyzer 12, heat tracing line 13, heating manifold 14, multi-component gas analyzer 15 , Tail gas discharge pipe 16, standard gas cylinder 17.
  • the outlet of the air compressor 1 is connected to the inlet of the gas storage tank 2, and the outlet of the gas storage tank 2 is connected to the inlet of the splitter 6 through the refrigeration dryer 3, the filter 4, and the gas purifier 5 in sequence.
  • the outlet of the diverter 6 includes several branches.
  • each sampling point is provided with a gas sampling probe 9; the gas sampling probe 9 is connected to the corresponding dilution gas sampler 7; the dilution gas sampler 7 is provided with a standard gas cylinder 10.
  • Each branch first passes through the corresponding dilution gas sampler 7, and a venturi nozzle 8 is installed on the pipe wall of each branch in the dilution gas sampler 7.
  • Each branch passes through the dilution gas sampler 7 and then is connected to a heating pipeline 13; the heating pipeline 13 is connected with a first gas analyzer 11, a second gas analyzer 12 and a heating collector valve 14.
  • the heating manifold 14 includes a plurality of pipelines with valves to connect the corresponding heat tracing pipeline 13; the outlets of the multiple pipelines of the heating manifold 14 are combined into one pipeline to connect the inlet of the multi-component gas analyzer 15.
  • a standard gas cylinder 17 is connected to the gas analyzer 15.
  • Exhaust gas discharge pipes 16 are connected to the multiple pipelines of the heating collecting valve 14.
  • the heating collection valve 14 can control the gas of different paths to enter the multi-component gas analyzer 15.
  • the cold dryer 3 is used to remove moisture in the compressed air.
  • the filter 4 is used to remove solid particles in the compressed air.
  • the gas purifier 5 is used to remove impurities such as water, carbon dioxide, sulfur dioxide and the like in the compressed air, and the content of the purified compressed air other than oxygen and nitrogen components is less than 1 ppm.
  • Each sampling point corresponds to a group of gas analyzers (11, 12), and the number of sampling points is not less than 2.
  • the first gas analyzer 11 and the second gas analyzer 12 respectively represent one or more different types in parallel Gas analyzers can measure certain or several gas components, including non-dispersive infrared gas analyzers, ultraviolet differential gas analyzers, ultraviolet fluorescent gas analyzers, chemiluminescence analyzers, etc.
  • the heat tracing pipeline 13 and the heating collector valve 14 have a self-heating function, which can keep the pipeline temperature higher than the boiling point of each component of the gas.
  • the multi-component gas analyzer 15 is a Fourier infrared spectrometer, which can simultaneously measure the content of various components (including water) that have specific absorption in the infrared spectral region.
  • the present invention provides a method for using a gas sampling measurement system, which specifically includes the following steps:
  • the compressed air of the air compressor 1 is stored in the air storage tank 2.
  • the compressed air passes through the air storage tank 2, the refrigeration dryer 3, the filter 4, and the gas purifier 5 to completely remove the solid particles, moisture, carbon dioxide and other impurities in the compressed air ,
  • the purified compressed air is used as the carrier gas and flows into the dilution gas sampler 7 at each sampling point through the flow divider 6.
  • the dilution gas sampler 7 is connected to the gas sampling probe 9.
  • the gas pressure in the process pipeline to be tested is higher than the pressure in the cavity of the dilution gas sampler 7.
  • the gas to be tested enters the dilution gas sampler 7 from the gas sampling probe 9 Among them, both the dilution gas sampler 7 and the gas sampling probe 9 are equipped with heating.
  • the flow divider 6 can control the flow and pressure of the compressed air in each branch entering the dilution gas sampler 7.
  • the compressed air flows through the venturi nozzle 8 in the dilution gas sampler 7, and a certain proportion of sample gas is mixed with it.
  • the dilution factor D of the venturi tube is known, and D is determined by the size of the nozzle 8 of the venturi tube.
  • the diluted sample gas is transported to the first gas analyzer 11 and the second gas analyzer 12 through the heat tracing line 13 for analysis.
  • Each sample point corresponds to a group of gas analyzers (11 and 12), the first gas analyzer
  • the readings of a certain component on the 11 and the second gas analyzer 12 are the values converted using the dilution factor D.
  • the diluted sample gas of each sampling point is connected to the heating collecting valve 14.
  • the heating collecting valve 14 controls the valve to send the sample gas of a certain sampling point to the multi-component gas analyzer 15 for detection at a certain period of time.
  • the other sample gas of the heating collecting valve 14 is discharged into the exhaust gas discharge pipe 16.
  • the heating collector valve 14 alternately enters the gas flow of the multi-component gas analyzer 15 according to a program (and can also be manually controlled), and cyclically analyzes the components of the sample gas at each sampling point.
  • the standard gas cylinder 10 of known concentration is connected to the dilution gas sampler 7.
  • the concentration of the standard gas component used by each dilution gas sampler 7 can be different.
  • the gas supply pressure is higher than the gas pressure of the process pipeline to be tested.
  • the standard gas cylinder 10 is opened to fill the cavity of the dilution gas sampler 7 with standard gas, and the concentration of a certain component of the standard gas is C0.
  • the first gas analyzer 11 is the analyzer of the component, and the measurement reading is C1.
  • the multi-component gas analyzer 15 can also measure the concentration of the component, and the corresponding reading is C2.
  • the multi-component gas analyzer 15 can measure the water content in the diluted sample gas, and then multiply it by the dilution factor A to obtain the water content in the gas stream to be measured.
  • the compressed air is stored in the air storage tank 2, the air storage pressure is 2Mpa, the compressed air passes through the air storage tank 2, the refrigeration dryer 3, the filter 4, the gas purifier 5, and the purified gas removes oxygen,
  • the concentration of impurities outside the nitrogen is less than 0.5 ppm, and the purified compressed air is used as the carrier gas, and flows into the dilution gas sampler 7 at the inlet and outlet sampling points of the sulfur dioxide absorption tower through the splitter 6.
  • the gas enters the dilution gas sampler 7 from the gas sampling probe 9 from the sampling point. Both the dilution gas sampler 7 and the gas sampling probe 9 are equipped with heating, and the heating temperature is 135°C.
  • the flow divider 6 controls the flow and pressure of the compressed air supplied to the dilution gas sampler 7 at each sampling point.
  • the pressure is 0.3MPa and the flow is 3L/min.
  • the carrier gas flows through the venturi nozzle 8, and a certain proportion of the sample gas is drawn from it. Mixing to achieve the dilution of the sample gas, the dilution multiples of the venturi 8 of the dilution gas sampler 7 at the inlet and outlet sampling points are 50 and 20, respectively.
  • the diluted sample gas is transported to the first gas analyzer 11 (sulfur dioxide analyzer) and the second gas analyzer 12 (nitrogen oxide analyzer) corresponding to the inlet and outlet sampling points through the heating pipeline 13 for analysis.
  • the diluted sample gas from the inlet and outlet sampling points is connected to the heating collector valve 14.
  • the heating collector valve 14 switches the gas flow every 30 minutes. Each time it switches, the inlet or outlet sample gas flows into the multi-component gas analyzer 15 (Fourier Leaf infrared analyzer) in the measurement.
  • the standard gas cylinder 10 containing 2% sulfur dioxide, 100ppm nitric oxide and 100ppm nitrogen dioxide (the remaining gas is nitrogen) is connected to the dilution gas sampler 7 at the inlet sampling point.
  • the reading of the first gas analyzer 11 is 1.95% sulfur dioxide, and the corresponding reading of the multi-component gas analyzer 15 is 398ppm sulfur dioxide.
  • the multi-component gas analyzer 15 measured that the water content in the sample gas after dilution was 600 ppm. By calculating with the dilution factor of 48.99, it can be seen that the water content at the inlet of the absorption tower in the process system is 2.94%.
  • the compressed air is stored in the air storage tank 2, the pressure is 4Mpa, the compressed air passes through the air storage tank 2, the refrigeration dryer 3, the filter 4, the gas purifier 5, the purified gas except for oxygen and nitrogen
  • the impurity concentration is less than 1ppm, and the purified compressed air is used as the carrier gas, and flows into the inlet and outlet of the carbon dioxide absorption tower and the dilution gas sampler 7 at the three sampling points in the middle section through the splitter 6.
  • the gas enters the dilution gas sampler 7 from the gas sampling probe 9 from the sampling point. Both the dilution gas sampler 7 and the gas sampling probe 9 are equipped with heating, and the heating temperature is 150°C.
  • the flow divider 6 controls the flow and pressure of the compressed air supplied to the dilution gas sampler 7 at each sampling point.
  • the pressure is 0.4MPa, and the flow is 5L/min.
  • the carrier gas flows through the venturi nozzle 8, and a certain proportion of sample gas is drawn from it and mixed with it.
  • the dilution multiples of the venturi 8 of the dilution gas sampler 7 at the inlet and outlet of the carbon dioxide absorption tower and the middle sampling point are 20, 50, and 20, respectively.
  • the diluted sample gas is transported to the first gas analyzer 11 (carbon dioxide analyzer) and the second gas analyzer 12 (parallel sulfur dioxide and nitrogen oxide analyzers) corresponding to the sampling point through the heat tracing pipeline 13 for analysis.
  • the diluted sample gas obtained by the dilution gas sampler 7 at the 3 sampling points is connected to the heating collector valve 14.
  • the heating collector valve 14 switches the gas flow every 15 minutes, and each switch causes one of the 3 sampling points to flow.
  • Enter the multi-component gas analyzer 15 Frourier infrared analyzer
  • a standard gas cylinder 10 containing 15% carbon dioxide, 30ppm sulfur dioxide, 10ppm nitric oxide and 10ppm nitrogen dioxide (the rest is nitrogen) is connected to the dilution gas sampler 7 at the inlet sampling point of the absorption tower.
  • the inlet At the sampling point the standard gas cylinder 10 is opened to fill the chamber of the dilution gas sampler 7 with standard gas.
  • the reading of the first gas analyzer 11 is 14% carbon dioxide, which has a deviation of more than 5% from the concentration of the standard gas, and the first gas analyzer 11 is calibrated to correct its reading to 15%.
  • the corresponding reading of the multi-component gas analyzer 15 is 7490ppm carbon dioxide.
  • the dilution factor of the gas sampler at this time is calculated to be 20.02, which is less than 3% from the inherent dilution factor of the sampler 20. There is no need to calibrate the dilution factor.
  • the multi-component gas analyzer 15 measured that the water content concentration in the sample gas after dilution was 2000 ppm. By calculating with the dilution factor of 20.02, it can be known that the water content at the inlet of the absorption tower in the process system is 2%.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种气体取样测量系统及方法,包括分流器(6)、若干采样点、伴热管线(13)、若干单组分气体分析仪(15);分流器(6)的出口包括若干支路;每个采样点设置一个气体取样探头(9);气体取样探头(9)连通对应的稀释型气体取样器(7);每个支路穿过对应的稀释型气体取样器(7),每个支路位于稀释型气体取样器(7)中的管壁上安装有文丘里管喷嘴(8);每个支路穿过稀释型气体取样器(7)后连接伴热管线(13);伴热管线(13)上连接有若干单组分气体分析仪(15)。实现了气体中水含量的在线测量,实时监测稀释型气体取样器(7)的稀释倍数,在取样器稀释倍数与固有稀释倍数的差异超过一定范围时,可及时发现并提醒操作人员进行设备维护,以保证测量数据连续、真实、可靠,保证工艺流程的稳定运行。

Description

一种气体取样测量系统及其使用方法 【技术领域】
本发明属于气体成分分析领域,具体涉及一种气体取样测量系统及其使用方法。
【背景技术】
化工、电力、钢铁等各类工业系统需要使用气体连续在线监测技术监控各气体组分的变化情况,以保证工艺流程连续稳定运行,或对外排放达标。气体在线连续监测系统一般包括取样和测量系统两部分,常用的配置包括:(1)加热抽取式取样+非色散红外法测量;(2)加热抽取式取样+紫外差分吸收法测量;(3)稀释抽取式取样+紫外荧光/化学发光法测量等。
非色散红外、紫外差分吸收法基于目标组分在光谱中的特异性吸收谱峰,根据朗伯比尔定律进行定量测量,样品气的背景吸收以及杂质的散射干扰都会影响测试的精度,红外分析还受到水分的影响,由于水分子的红外吸收波长范围宽,会与很多组分的吸收波段发生重叠,且吸收强度较高,因此样品气中水分含量的变化会对红外分析结果产生较大影响,为了减少水的影响可以采用预处理的方法,例如采用冷干法去除样品气中的水分,但是水的冷凝过程会造成部分组分的溶解和损失,例如氨气、二氧化硫等,因此冷干法的适用范围较小。需要其他可控的方法降低样品气中的水分,同时不影响其他组分的分析。当样品气中的水分降到合适的浓度范围,红外法也可以用来定量测量气体中的水含量。
紫外荧光法和化学发光法分析特异性高,不易受到杂质影响,测量精度高,可比红外、紫外分析仪高2~3个数量级,然而,这两种方法主要适用于低浓度组 分的测量,不适用于浓度超过20ppm的介质。
要使用红外进行在线水分含量的测量,或应用紫外荧光法和化学发光法高组分浓度样品气时,可以对气体进行稀释,目前普遍采用稀释抽取式取样法,一般采用干燥的压缩空气作为载气,先去除其中微量的SO 2、NO、CO 2和水等杂质,然后将其通入气体取样器,在取样器中有文丘里管,压缩空气流过文丘里管喷嘴,可以抽取一定比例的样品气进行稀释,控制文丘里管喷嘴的尺寸,就可以控制稀释比例。
然而文丘里管喷嘴的尺寸普遍较小,尽管在取样器中一般都配有过滤器避免杂质干扰,喷嘴还是很容易被气体中的杂质堵塞,一旦发生堵塞,文丘里管的稀释倍数也随之变化,如不能及时修正,气体分析仪计算浓度时所使用的稀释倍数,就会得到错误的分析结果,这种堵塞的过程有快有慢,因此稀释取样测量法在应用中需要频繁校准稀释倍数,而目前还缺乏有效方法实时获取精确的稀释倍数。
【发明内容】
本发明的目的在于提供一种气体取样测量系统及其使用方法,以解决稀释抽取式取样法易受杂质干扰,稀释倍数易发生波动且难于测量的技术问题;进一步的本发明系统能够同时实现气体中水分的实时在线测量。
为达到上述目的,本发明采用以下技术方案予以实现:
一种气体取样测量系统,包括分流器、若干采样点、伴热管线、若干单组分气体分析仪;
分流器的出口包括若干支路;
每个采样点设置一个气体取样探头;气体取样探头连通对应的稀释型气体取样器;每个支路穿过对应的稀释型气体取样器,每个支路位于稀释型气体取样器 中的管壁上安装有文丘里管喷嘴;每个支路穿过稀释型气体取样器后连接伴热管线;伴热管线上连接有若干单组分气体分析仪。
进一步的,还包括加热集阀和多组分气体分析仪;
加热集阀包括多个带阀门的管路,多个带阀门的管路连接对应的伴热管线;加热集阀的多个管路出口汇合成一个管路连接多组分气体分析仪的入口。
进一步的,加热集阀的多个管路上均连接有尾气排放管。
进一步的,还包括空压机、储气罐、冷干机、过滤器和气体净化器;
空压机的出口连接储气罐的入口,储气罐的出口依次通过冷干机、过滤器、气体净化器连接分流器的入口。
进一步的,取样点的个数大于或等于2。
进一步的,单组分气体分析仪为非色散红外气体分析仪、紫外差分气体分析仪、紫外荧光气体分析仪或化学发光法分析仪。
进一步的,多组分气体分析仪为傅里叶红外光谱分析仪。
进一步的,稀释型气体取样器上连接有标准气瓶。
进一步的,多组分气体分析仪上连接有标准气瓶。
一种气体取样测量系统的使用方法,包括以下步骤:
净化后的压缩空气作为载气,经分流器流入各个取样点上的稀释型气体取样器中;稀释型气体取样器与气体取样探头相连,待测工艺管道中的气体压力高于稀释型气体取样器腔体的压力,待测气体从由气体取样探头进入稀释型气体取样器中,稀释型气体取样器和气体取样探头均带伴热;
分流器控制进入稀释型气体取样器的各支路压缩空气的流量和压力,压缩空气流经稀释型气体取样器中的文丘里管喷嘴,抽取样品气与其混合,实现样品气 的稀释;
稀释后的样品气经伴热管线输送到若干单组分气体分析仪中进行分析;各取样点稀释后的样品气接入加热集阀中,加热集阀控制阀门在某段时间将某一取样点的样品气送入多组分气体分析仪进行检测,同时使接入加热集阀的其他各路样品气排出;
已知浓度的标准气瓶与稀释型气体取样器相连,供气压力高于待测工艺管道的气压,在自检阶段,打开标准气瓶使稀释型气体取样器的腔体充满标准气体,标准气某一组分浓度为C0;单组分气体分析仪为检测该组分的测量读数为C1,多组分气体分析仪测量该组分浓度的读数为C2,当C1与C0值的偏差超过设定值时,校准单组分气体分析仪,使C1等于C0;计算气体取样器的稀释倍数A=C1/C2;当A值与稀释型气体取样器中文丘里管稀释倍数D的偏差超过设定阈值时,发出警报,提示进行设备检查,及时清理或更换稀释型气体取样器中的文丘里管;
已知浓度的标准气瓶与多组分气体分析仪相连,定期对多组分气体分析仪的测量值进行校准;多组分气体分析仪能够测量稀释样品气中的水含量,再乘以稀释倍数A得出待测气流中的水含量。
与现有技术相比,本发明具有以下有益效果:
本发明可以实现气体中水含量的在线测量,实时监测稀释型气体取样器的稀释倍数,在取样器稀释倍数与固有稀释倍数的差异超过一定范围时,可及时发现并提醒操作人员进行设备维护,以保证测量数据连续、真实、可靠,保证工艺流程的稳定运行。
【附图说明】
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为气体取样测量系统的示意图。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本发明公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、 “第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
请参阅图1所示,本发明提供一种气体取样测量系统,包括空压机1,储气罐2,冷干机3,过滤器4,气体净化器5,分流器6,稀释型气体取样器7,文丘里管喷嘴8,气体取样探头9,标准气瓶10,第一气体分析仪11,第二气体分析仪12,伴热管线13,加热集阀14,多组分气体分析仪15,尾气排放管16,标准气瓶17。
空压机1的出口连接储气罐2的入口,储气罐2的出口依次通过冷干机3、过滤器4、气体净化器5连接分流器6的入口。分流器6的出口包括若干支路。
待测工艺管道中多个采样点,每个采样点设置一个气体取样探头9;气体取样探头9连通对应的稀释型气体取样器7;稀释型气体取样器7上设置有标准气瓶10。每个支路首先穿过对应的稀释型气体取样器7,每个支路位于稀释型气体取样器7中的管壁上安装有文丘里管喷嘴8。每个支路穿过稀释型气体取样器7后连接伴热管线13;伴热管线13上连接有第一气体分析仪11、第二气体分析仪12和加热集阀14。加热集阀14包括多个带阀门的管路以连接对应的伴热管线13;加热集阀14的多个管路出口汇合成一个管路连接多组分气体分析仪15的入口, 多组分气体分析仪15连接有标准气瓶17。加热集阀14的多个管路上均连接有尾气排放管16。加热集阀14能够控制不同路的气体进入多组分气体分析仪15。
冷干机3用于除压缩空气中的水分。过滤器4用于除压缩空气中的固体颗粒物。气体净化器5用于除压缩空气中的水、二氧化碳、二氧化硫等杂质,净化后的压缩空气除氧气和氮气以外的组分含量均低于1ppm。
每个取样点对应1组气体分析仪(11、12),取样点个数不少于2个,第一气体分析仪11和第二气体分析仪12分别代表一个或多个并联的不同种的气体分析仪,可以测量某种和某几种气体组分,具体包括非色散红外气体分析仪、紫外差分气体分析仪、紫外荧光气体分析仪、化学发光法分析仪等。
伴热管线13和加热集阀14具有自加热功能,可以保持管路温度高于气体各组分的沸点。
多组分气体分析仪15为傅里叶红外光谱分析仪,可以同时测量红外光谱区有特异性吸收的各类组分(包含水)的含量。
本发明提供一种气体取样测量系统的使用方法,具体包括以下步骤:
空压机1压缩空气存于储气罐2中,压缩空气经过储气罐2、冷干机3、过滤器4、气体净化器5,完全去除压缩空气中的固体颗粒物、水分和二氧化碳等杂质,净化后的压缩空气作为载气,经分流器6流入各个取样点上的稀释型气体取样器7中。稀释型气体取样器7与气体取样探头9相连,待测工艺管道中的气体压力高于稀释型气体取样器7腔体的压力,待测气体从由气体取样探头9进入稀释型气体取样器7中,稀释型气体取样器7和气体取样探头9均带伴热。分流器6可控制进入稀释型气体取样器7的各支路压缩空气的流量和压力,压缩空气流经稀释型气体取样器7中的文丘里管喷嘴8,抽取一定比例的样品气与其混合, 实现样品气的稀释,已知文丘里管稀释倍数D,D由文丘里管喷嘴8的尺寸决定。
稀释后的样品气经伴热管线13输送到第一气体分析仪11和第二气体分析仪12中进行分析,每个样品点对应一组气体分析仪(11和12),第一气体分析仪11和第二气体分析仪12上某一组分的读数为使用稀释倍数D折算后的数值。各取样点稀释后的样品气接入加热集阀14中,加热集阀14控制阀门在某段时间将某一取样点的样品气送入多组分气体分析仪15进行检测,同时使接入加热集阀14的其他各路样品气排入尾气排放管16。加热集阀14按程序(也可以手动控制)轮换进入多组分气体分析仪15的气流,循环进行各个取样点样品气的组分分析。
已知浓度的标准气瓶10与稀释型气体取样器7相连,每个稀释型气体取样器7所使用的标准气体组分浓度可以不同,供气压力高于待测工艺管道的气压,在自检阶段,打开标准气瓶10使稀释型气体取样器7的腔体充满标准气体,标准气某一组分浓度为C0。第一气体分析仪11为该组分的分析仪,测量读数为C1,多组分气体分析仪15也可测量该组分浓度,对应的读数为C2,当C1与C0值的偏差超过设定值时,校准第一气体分析仪11,使C1等于C0。计算气体取样器的稀释倍数A=C1/C2。当A值与稀释型气体取样器7中文丘里管稀释倍数D的偏差超过一定范围时,系统向操作人员发出警报,提示进行设备检查,及时清理或更换稀释型气体取样器7中的文丘里管8。已知浓度的标准气瓶17与多组分气体分析仪15相连,定期对多组分气体分析仪15的测量值进行校准。
多组分气体分析仪15可测量稀释样品气中的水含量,再乘以稀释倍数A就可得出待测气流中的水含量。
实施例1:
打开空压机1,压缩空气存于储气罐2中,储气压力2Mpa,压缩空气经过 储气罐2、冷干机3、过滤器4、气体净化器5,净化后气体中除氧气、氮气外的杂质浓度低于0.5ppm,净化后的压缩空气作为载气,经分流器6流入二氧化硫吸收塔进出口取样点上的稀释型气体取样器7中。气体从取样点由气体取样探头9进入稀释型气体取样器7中,稀释型气体取样器7和气体取样探头9均带伴热,伴热温度135℃。分流器6控制供给各取样点上稀释型气体取样器7的压缩空气的流量和压力,压力为0.3MPa,流量3L/min,载气流经文丘里管喷嘴8,从中抽取一定比例的样品气与其混合,实现样品气的稀释,进出口取样点上稀释型气体取样器7的文丘里管8的稀释倍数分别为50和20。
稀释后的样品气经伴热管线13输送到进出口取样点对应的第一气体分析仪11(二氧化硫分析仪)和第二气体分析仪12(氮氧化物分析仪)中进行分析。同时进出口取样点来的稀释样品气均接入加热集阀14中,加热集阀14每30分钟切换一次气流,每次切换使进口或出口样品气流入多组分气体分析仪15(傅里叶红外分析仪)中进行测量。
含有2%二氧化硫、100ppm一氧化氮和100ppm二氧化氮(余气为氮气)的标准气瓶10接于进口取样点的稀释型气体取样器7上,在自检阶段,打开标准气瓶10使稀释型气体取样器7的腔室内充满标准气体。第一气体分析仪11读数为1.95%二氧化硫,多组分气体分析仪15对应的读数为398ppm二氧化硫,计算此时气体取样器的稀释倍数A=C1/C2=48.99,与取样器固有稀释倍数50,相差小于3%,无需校准稀释倍数。
多组分气体分析仪15测得稀释后样品气中的水含量为600ppm,通过与稀释倍数48.99计算可知工艺系统中吸收塔进口的水含量为2.94%。
实施例2:
打开空压机1,压缩空气存于储气罐2中,压力4Mpa,压缩空气经过储气罐2、冷干机3、过滤器4、气体净化器5,净化后气体中除氧气、氮气外的杂质浓度低于1ppm,净化后的压缩空气作为载气,经分流器6流入二氧化碳吸收塔进出口和中段3个取样点上的稀释型气体取样器7中。气体从取样点由气体取样探头9进入稀释型气体取样器7中,稀释型气体取样器7和气体取样探头9均带伴热,伴热温度150℃。分流器6控制供给各取样点稀释型气体取样器7的压缩空气的流量和压力,压力0.4MPa,流量5L/min,载气流经文丘里管喷嘴8,从中抽取一定比例的样品气与其混合,实现样品气的稀释,实现样品气的稀释,已知二氧化碳吸收塔进出口以及中段取样点上稀释型气体取样器7的文丘里管8的稀释倍数分别为20、50、20。
稀释后的样品气经伴热管线13输送到取样点对应的第一气体分析仪11(二氧化碳分析仪)和第二气体分析仪12(并联的二氧化硫、氮氧化物分析仪)中进行分析。3个取样点上稀释型气体取样器7取得的稀释后的样品气均接入加热集阀14中,加热集阀14每15分钟切换一次气流,每次切换使3个取样点中的一路气流进入多组分气体分析仪15(傅里叶红外分析仪)中进行测量。
含有15%二氧化碳、30ppm二氧化硫、10ppm一氧化氮和10ppm二氧化氮(余气为氮气)的标准气瓶10接于吸收塔进口取样点的稀释型气体取样器7上,在自检阶段,进口取样点打开标准气瓶10使稀释型气体取样器7的腔室内充满标准气体。第一气体分析仪11读数为14%二氧化碳,该值与标气浓度偏差超过5%,对第一气体分析仪11进行校准使其读数修正为15%。多组分气体分析仪15对应的读数为7490ppm二氧化碳,计算此时气体取样器的稀释倍数为20.02,与取样器固有稀释倍数20,相差小于3%,无需校准稀释倍数。
多组分气体分析仪15测得稀释后样品气中的水含量浓度为2000ppm,通过与稀释倍数20.02计算可知工艺系统中吸收塔进口的水含量为2%。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

  1. 一种气体取样测量系统,其特征在于,包括分流器(6)、若干采样点、伴热管线(13)、若干单组分气体分析仪;
    分流器(6)的出口包括若干支路;
    每个采样点设置一个气体取样探头(9);气体取样探头(9)连通对应的稀释型气体取样器(7);每个支路穿过对应的稀释型气体取样器(7),每个支路位于稀释型气体取样器(7)中的管壁上安装有文丘里管喷嘴(8);每个支路穿过稀释型气体取样器(7)后连接伴热管线(13);伴热管线(13)上连接有若干单组分气体分析仪。
  2. 根据权利要求1所述的一种气体取样测量系统,其特征在于,还包括加热集阀(14)和多组分气体分析仪(15);
    加热集阀(14)包括多个带阀门的管路,多个带阀门的管路连接对应的伴热管线(13);加热集阀(14)的多个管路出口汇合成一个管路连接多组分气体分析仪(15)的入口。
  3. 根据权利要求2所述的一种气体取样测量系统,其特征在于,加热集阀(14)的多个管路上均连接有尾气排放管(16)。
  4. 根据权利要求1所述的一种气体取样测量系统,其特征在于,还包括空压机(1)、储气罐(2)、冷干机(3)、过滤器(4)和气体净化器(5);
    空压机(1)的出口连接储气罐(2)的入口,储气罐(2)的出口依次通过冷干机(3)、过滤器(4)、气体净化器(5)连接分流器(6)的入口。
  5. 根据权利要求1所述的一种气体取样测量系统,其特征在于,取样点的个数大于或等于2。
  6. 根据权利要求1所述的一种气体取样测量系统,其特征在于,单组分气体分析仪为非色散红外气体分析仪、紫外差分气体分析仪、紫外荧光气体分析仪或化学发光法分析仪。
  7. 根据权利要求1所述的一种气体取样测量系统,其特征在于,多组分气体分析仪(15)为傅里叶红外光谱分析仪。
  8. 根据权利要求1所述的一种气体取样测量系统,其特征在于,稀释型气体取样器(7)上连接有标准气瓶。
  9. 根据权利要求2所述的一种气体取样测量系统,其特征在于,多组分气体分析仪(15)上连接有标准气瓶。
  10. 一种气体取样测量系统的使用方法,其特征在于,基于权利要求1至9中任一项所述的一种气体取样测量系统,包括以下步骤:
    净化后的压缩空气作为载气,经分流器(6)流入各个取样点上的稀释型气体取样器(7)中;稀释型气体取样器(7)与气体取样探头(9)相连,待测工艺管道中的气体压力高于稀释型气体取样器(7)腔体的压力,待测气体从由气体取样探头(9)进入稀释型气体取样器(7)中,稀释型气体取样器(7)和气体取样探头(9)均带伴热;
    分流器(6)控制进入稀释型气体取样器(7)的各支路压缩空气的流量和压力,压缩空气流经稀释型气体取样器(7)中的文丘里管喷嘴(8),抽取样品气与其混合,实现样品气的稀释;
    稀释后的样品气经伴热管线(13)输送到若干单组分气体分析仪中进行分析;各取样点稀释后的样品气接入加热集阀(14)中,加热集阀(14)控制阀门在某 段时间将某一取样点的样品气送入多组分气体分析仪(15)进行检测,同时使接入加热集阀(14)的其他各路样品气排出;
    已知浓度的标准气瓶与稀释型气体取样器(7)相连,供气压力高于待测工艺管道的气压,在自检阶段,打开标准气瓶使稀释型气体取样器(7)的腔体充满标准气体,标准气某一组分浓度为C0;单组分气体分析仪为检测该组分的测量读数为C1,多组分气体分析仪(15)测量该组分浓度的读数为C2,当C1与C0值的偏差超过设定值时,校准单组分气体分析仪,使C1等于C0;计算气体取样器的稀释倍数A=C1/C2;当A值与稀释型气体取样器(7)中文丘里管稀释倍数D的偏差超过设定阈值时,发出警报,提示进行设备检查,及时清理或更换稀释型气体取样器(7)中的文丘里管(8);
    已知浓度的标准气瓶与多组分气体分析仪(15)相连,定期对多组分气体分析仪(15)的测量值进行校准;多组分气体分析仪(15)能够测量稀释样品气中的水含量,再乘以稀释倍数A得出待测气流中的水含量。
PCT/CN2020/115962 2019-09-19 2020-09-17 一种气体取样测量系统及其使用方法 WO2021052433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910889290.2 2019-09-19
CN201910889290.2A CN110530814B (zh) 2019-09-19 2019-09-19 一种气体取样测量系统及其使用方法

Publications (1)

Publication Number Publication Date
WO2021052433A1 true WO2021052433A1 (zh) 2021-03-25

Family

ID=68669303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115962 WO2021052433A1 (zh) 2019-09-19 2020-09-17 一种气体取样测量系统及其使用方法

Country Status (2)

Country Link
CN (1) CN110530814B (zh)
WO (1) WO2021052433A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567203A (zh) * 2021-07-28 2021-10-29 国能濮阳热电有限公司 烟气测量装置
CN114034742A (zh) * 2021-11-16 2022-02-11 国网江苏省电力有限公司电力科学研究院 一种成盘电力电缆导体材料检测系统及方法
CN114486810A (zh) * 2022-02-11 2022-05-13 迈射智能科技(上海)有限公司 一种基于多组分标气系统的油样混油系统及检测方法
CN114965895A (zh) * 2022-05-31 2022-08-30 南京港能环境科技有限公司 一种集成式气体浓度检测装置
CN115541520A (zh) * 2022-09-23 2022-12-30 北京市计量检测科学研究院 评价cems预处理装置二氧化硫丢失率的系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530814B (zh) * 2019-09-19 2023-08-22 华能国际电力股份有限公司 一种气体取样测量系统及其使用方法
CN113820303A (zh) * 2020-06-18 2021-12-21 青岛理工大学 一种一氧化氮光谱在线检测装置及分析方法
CN112439327B (zh) * 2020-11-02 2022-11-15 天津博硕科技有限公司 一种标准混合气体的制备装置及制备方法
CN113960267B (zh) * 2021-12-20 2022-03-18 东营科宏化工有限公司 一种乙酸邻叔丁基环己酯合成香料的品质分析装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201314915Y (zh) * 2008-11-11 2009-09-23 天津世纪动力科技发展有限公司 一种摩托车及发动机排气污染物测量装置
CN103018080A (zh) * 2012-11-23 2013-04-03 清华大学 一种机动车尾气排放沿程多点采样分析系统
JP2014199204A (ja) * 2013-03-29 2014-10-23 日本碍子株式会社 フィルタの評価方法
CN205844040U (zh) * 2016-08-04 2016-12-28 深圳市诺安环境安全股份有限公司 一种VOCs稀释采样探头
CN110530814A (zh) * 2019-09-19 2019-12-03 华能国际电力股份有限公司 一种气体取样测量系统及其使用方法
CN210720146U (zh) * 2019-09-19 2020-06-09 华能国际电力股份有限公司 一种气体取样测量系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518872A (ja) * 1991-07-11 1993-01-26 Horiba Ltd ガス分析方法
US5756360A (en) * 1995-09-29 1998-05-26 Horiba Instruments Inc. Method and apparatus for providing diluted gas to exhaust emission analyzer
JP6069034B2 (ja) * 2013-03-07 2017-01-25 株式会社堀場製作所 排ガスサンプリング装置
CN204027887U (zh) * 2014-08-26 2014-12-17 天津市环境保护科学研究院 一种可调节抽取式稀释采样仪
CN109781495A (zh) * 2018-12-27 2019-05-21 西安交通大学 一种烟气稀释采样控制系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201314915Y (zh) * 2008-11-11 2009-09-23 天津世纪动力科技发展有限公司 一种摩托车及发动机排气污染物测量装置
CN103018080A (zh) * 2012-11-23 2013-04-03 清华大学 一种机动车尾气排放沿程多点采样分析系统
JP2014199204A (ja) * 2013-03-29 2014-10-23 日本碍子株式会社 フィルタの評価方法
CN205844040U (zh) * 2016-08-04 2016-12-28 深圳市诺安环境安全股份有限公司 一种VOCs稀释采样探头
CN110530814A (zh) * 2019-09-19 2019-12-03 华能国际电力股份有限公司 一种气体取样测量系统及其使用方法
CN210720146U (zh) * 2019-09-19 2020-06-09 华能国际电力股份有限公司 一种气体取样测量系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567203A (zh) * 2021-07-28 2021-10-29 国能濮阳热电有限公司 烟气测量装置
CN113567203B (zh) * 2021-07-28 2024-03-05 国能濮阳热电有限公司 烟气测量装置
CN114034742A (zh) * 2021-11-16 2022-02-11 国网江苏省电力有限公司电力科学研究院 一种成盘电力电缆导体材料检测系统及方法
CN114486810A (zh) * 2022-02-11 2022-05-13 迈射智能科技(上海)有限公司 一种基于多组分标气系统的油样混油系统及检测方法
CN114486810B (zh) * 2022-02-11 2024-03-15 迈射智能科技(上海)有限公司 一种基于多组分标气系统的油样混油系统及检测方法
CN114965895A (zh) * 2022-05-31 2022-08-30 南京港能环境科技有限公司 一种集成式气体浓度检测装置
CN114965895B (zh) * 2022-05-31 2024-03-26 南京港能环境科技有限公司 一种集成式气体浓度检测装置
CN115541520A (zh) * 2022-09-23 2022-12-30 北京市计量检测科学研究院 评价cems预处理装置二氧化硫丢失率的系统及方法

Also Published As

Publication number Publication date
CN110530814B (zh) 2023-08-22
CN110530814A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021052433A1 (zh) 一种气体取样测量系统及其使用方法
US10241096B2 (en) Non-methane total hydrocarbons analysis apparatus and method for the same
CN104407161B (zh) 烟气在线监测系统及监测方法
US5637809A (en) Vacuum extraction sampling system
CN109946123A (zh) 一种大气气溶胶在线捕集及化学成分检测的方法与装置
CN205720136U (zh) 一种在线式过程气体采样分析装置
CN210487693U (zh) 一种正压式污染源voc在线监测系统
CN106442890A (zh) 多通道快速换气的双泵式气体检测装置
CN112697747A (zh) 一种六氟化硫气体中分解物、水分和纯度检测装置和方法
CN210774922U (zh) 一种带有采样系统的露点仪
CN208588715U (zh) 一种用于船舶尾气脱硫装置的烟气检测装置
CN107051242B (zh) 一种动态配气仪及其配气方法
CN116165342A (zh) 一种具备自动标定功能的炉窑燃烧烟气监测系统及方法
US20040149007A1 (en) Sample handling system with solvent washing
CN111912942A (zh) 一种炉窑燃烧烟气在线监测系统和监测方法
CN205506777U (zh) 一种催化剂性能测试系统
CN210720146U (zh) 一种气体取样测量系统
CN210923465U (zh) 一种燃煤电厂二氧化碳在线监测系统
WO2023093203A1 (zh) 分形态大气汞监测设备及监测方法
KR101547167B1 (ko) 가스 시료의 메탈에 대한 온라인 모니터링 시스템
CN213903313U (zh) 一种六氟化硫气体中矿物油含量检测装置
CN212808040U (zh) 利用连续进样分析技术的烟气中氨在线检测装置
CN205091251U (zh) 高集成cems原位分析仪系统
CN106841530A (zh) 基于化学气氛传感器的固体发动机状态监测装置
CN110553995A (zh) 一种燃煤电厂二氧化碳在线监测系统及工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866023

Country of ref document: EP

Kind code of ref document: A1