WO2021052413A1 - 节能信号监听时刻的确定方法、配置方法及相关设备 - Google Patents

节能信号监听时刻的确定方法、配置方法及相关设备 Download PDF

Info

Publication number
WO2021052413A1
WO2021052413A1 PCT/CN2020/115880 CN2020115880W WO2021052413A1 WO 2021052413 A1 WO2021052413 A1 WO 2021052413A1 CN 2020115880 W CN2020115880 W CN 2020115880W WO 2021052413 A1 WO2021052413 A1 WO 2021052413A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
saving signal
monitoring
cdrx
target
Prior art date
Application number
PCT/CN2020/115880
Other languages
English (en)
French (fr)
Inventor
李东儒
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021052413A1 publication Critical patent/WO2021052413A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method for determining the monitoring time of energy-saving signals, a configuration method and related equipment.
  • DRX Discontinuous Reception
  • RRC Radio Resource Control
  • the network device transmits an energy-saving signal to indicate the onduration state of the terminal during the CDRX cycle (wake up or stay in sleep state) ).
  • the network equipment in the related technology indicates the onduration state by configuring a set of energy-saving signal offset or energy-saving signal search space, so the terminal has low flexibility in receiving the energy-saving signal.
  • the embodiments of the present disclosure provide a method for determining the monitoring time of an energy-saving signal, a configuration method and related equipment, so as to solve the problem of low flexibility of the terminal to receive the energy-saving signal.
  • the embodiments of the present disclosure provide a method for determining the monitoring time of an energy-saving signal, which is applied to a terminal and includes:
  • M is an integer greater than 1
  • N is an integer greater than 1.
  • the configuration parameter is an energy-saving signal offset or an energy-saving signal search space.
  • the embodiments of the present disclosure also provide a method for configuring the energy-saving signal monitoring moment, which is applied to a network device, and includes:
  • the M sets of configuration parameters are used by the terminal for the discontinuous reception of the CDRX duration in the connected state, and from the N listening moments corresponding to the M sets of configuration parameters, it is determined that the CDRX continues Time-related target monitoring moment, and at the target monitoring moment, monitoring the energy-saving signal associated with the CDRX duration;
  • M is an integer greater than 1
  • N is an integer greater than 1.
  • the configuration parameter is an energy-saving signal offset or an energy-saving signal search space.
  • the embodiments of the present disclosure also provide a terminal, including:
  • the receiving module is used to receive M sets of configuration parameters sent by the network device;
  • the determining module is used for determining the target listening moment associated with the CDRX duration from among the N listening moments corresponding to the M sets of configuration parameters for the non-continuous reception of the CDRX duration in the connected state;
  • a monitoring module configured to monitor the energy-saving signal associated with the CDRX duration at the target monitoring moment
  • M is an integer greater than 1
  • N is an integer greater than 1.
  • the configuration parameter is an energy-saving signal offset or an energy-saving signal search space.
  • the embodiments of the present disclosure also provide a network device, including:
  • the sending module is configured to send M sets of configuration parameters to the terminal; the M sets of configuration parameters are used for the terminal to determine the duration of non-continuous reception of CDRX in the connected state from the N listening moments corresponding to the M sets of configuration parameters A target monitoring moment associated with the CDRX duration, and at the target monitoring moment, monitoring the energy-saving signal associated with the CDRX duration;
  • M is an integer greater than 1
  • N is an integer greater than 1.
  • the configuration parameter is an energy-saving signal offset or an energy-saving signal search space.
  • embodiments of the present disclosure also provide a terminal, including: a memory, a processor, and a program stored on the memory and capable of running on the processor, and the program is executed when the processor is executed The steps in the method for determining the monitoring time of the energy-saving signal.
  • embodiments of the present disclosure also provide a network device, including: a memory, a processor, and a program stored on the memory and capable of running on the processor.
  • a network device including: a memory, a processor, and a program stored on the memory and capable of running on the processor.
  • the program is executed by the processor, The steps in the method for configuring the monitoring time of the energy-saving signal are implemented.
  • the embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method for determining the monitoring time of the energy-saving signal is implemented. Steps, or the steps of the method for configuring the monitoring time of the energy-saving signal when the computer program is executed by the processor.
  • the embodiments of the present disclosure also provide a readable storage medium, wherein a program is stored on the readable storage medium, and the program is executed by a processor to implement the method for determining the monitoring time of the energy-saving signal, or The configuration method of the energy-saving signal monitoring moment described above.
  • an embodiment of the present disclosure further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled with the processor, and the processor is used to run a program or an instruction to implement the above-mentioned energy-saving signal monitoring The method for determining the time, or the method for configuring the monitoring time of the energy-saving signal described above.
  • the embodiments of the present disclosure also provide a computer program product, the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to realize the determination of the above-mentioned energy-saving signal monitoring time Method, or the method for configuring the monitoring time of the energy-saving signal.
  • the embodiment of the present disclosure configures at least two sets of configuration parameters through the network device, and the terminal can flexibly select the target listening moment associated with the CDRX duration from the N listening moments corresponding to the configured at least two sets of configuration parameters, and at the target listening moment Above, monitor the energy-saving signal associated with the CDRX duration.
  • the terminal can flexibly select the listening time for receiving the energy-saving signal, thereby improving the flexibility of the terminal to receive the energy-saving signal. This can effectively prevent the monitoring moment of the energy-saving signal associated with the CDRX duration from conflicting with other behaviors, resulting in the inability to monitor the energy-saving signal associated with the CDRX duration, thereby improving the reliability of the terminal receiving energy-saving signals.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for determining an energy-saving signal monitoring time provided by an embodiment of the present disclosure
  • Fig. 3 is one of the exemplary diagrams of the wake-up signal sending mode in the method for determining the monitoring time of the energy-saving signal provided by an embodiment of the present disclosure
  • FIG. 4 is a second example diagram of a wake-up signal sending manner in a method for determining an energy-saving signal monitoring time provided by an embodiment of the present disclosure
  • FIG. 5 is one of example diagrams for selecting WUS offset in a method for determining the monitoring time of energy-saving signals provided by an embodiment of the present disclosure
  • FIG. 6 is a second example diagram of WUS offset selection in a method for determining the monitoring time of energy-saving signals provided by an embodiment of the present disclosure
  • FIG. 7 is the third diagram of the selection example of WUS offset in the method for determining the monitoring time of the energy-saving signal provided by an embodiment of the present disclosure
  • FIG. 8 is the fourth diagram of the selection example of WUS offset in the method for determining the monitoring time of the energy-saving signal provided by an embodiment of the present disclosure
  • FIG. 9 is a flowchart of a method for determining an energy-saving signal monitoring moment provided by an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 11 is a structural diagram of a network device provided by an embodiment of the present disclosure.
  • FIG. 12 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • Fig. 13 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the embodiments of the present disclosure are described below with reference to the accompanying drawings.
  • the method for determining the monitoring time of the energy-saving signal, the configuration method, and related equipment provided by the embodiments of the present disclosure can be applied to a wireless communication system.
  • the wireless communication system may adopt a 5G system, or an evolved Long Term Evolution (eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure. As shown in FIG. 1, it includes a terminal 11 and a network device 12.
  • the terminal 11 may be a user terminal or other terminal-side devices. , Such as: mobile phone, tablet computer (Tablet Personal Computer), laptop computer (Laptop Computer), personal digital assistant (personal digital assistant, PDA), mobile Internet device (Mobile Internet Device, MID) or wearable device (Wearable) Device) and other terminal-side devices.
  • PDA personal digital assistant
  • mobile Internet device Mobile Internet Device, MID
  • wearable device wearable device
  • the above-mentioned network device 12 may be a 5G base station, or a later version base station, or a base station in other communication systems, or it is called Node B, Evolved Node B, or Transmission Reception Point (TRP), or access point (Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network device is not limited to a specific technical vocabulary.
  • the aforementioned network device 12 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in the embodiments of the present disclosure, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 2 is a flowchart of a method for determining an energy-saving signal monitoring moment provided by an embodiment of the present disclosure. The method is applied to a terminal, as shown in FIG. 2, and includes the following steps:
  • Step 201 Receive M sets of configuration parameters sent by a network device
  • the network device may send M sets of configuration parameters to the terminal through RRC signaling, where M is an integer greater than 1, and the configuration parameter is the energy-saving signal offset or the energy-saving signal search space.
  • the energy-saving signal can include wake-up signal (WUS) and sleep signal. That is to say, the energy-saving signal offset mentioned above can be understood as the wake-up signal offset (WUS offset), or it can be understood as the sleep signal offset.
  • the energy-saving signal search space described above can be understood as a wake-up signal search space (WUS SS), and can also be understood as a sleep signal search space.
  • the energy-saving signal is WUS and the configuration parameter is WUS offset or WUS SS as an example for detailed description.
  • the energy-saving signal offset is used to indicate the time offset of the monitoring time of the energy-saving signal relative to the start time of the CDRX duration associated with the energy-saving signal.
  • the energy-saving signal search space described above is used to indicate the monitoring period periodicity of the energy-saving signal, the monitoring offset offset, and the monitoring duration.
  • Step 202 Determine the target listening moment associated with the CDRX duration from among the N listening moments corresponding to the M sets of configuration parameters for the non-continuous reception of the CDRX duration in the connected state;
  • a set of configuration parameters corresponds to a monitoring moment.
  • N is an integer greater than 1.
  • the size of N can be set according to actual needs.
  • the foregoing N listening moments can be understood as all or part of the listening moments corresponding to M sets of configuration parameters. It should be understood that when the above configuration parameter is WUS offset, multiple sets of WUS offset should be greater than or equal to the minimum offset specified in the standard protocol.
  • the target listening time associated with the CDRX duration determined by the terminal is a subset or a complete set of the N listening time corresponding to M sets of configuration parameters.
  • Step 203 At the target monitoring moment, monitor the energy-saving signal associated with the CDRX duration.
  • the terminal after the terminal determines the target listening moment, it can monitor the corresponding WUS at the target listening moment. In addition, the terminal does not need to monitor WUS at other listening moments other than the target listening moment associated with the CDRX duration.
  • a CDRX cycle includes the CDRX duration and the opportunity for DRX (Opportunity for DRX).
  • the UE does not receive downlink channel data to save power consumption (sleep period).
  • the PDCCH will be monitored during the CDRX duration; if the CDRX duration is not activated, the PDCCH will be monitored. Time, the PDCCH will not be monitored during the CDRX duration.
  • the embodiment of the present disclosure configures at least two sets of configuration parameters through the network device, and the terminal can flexibly select the target listening moment associated with the CDRX duration from the N listening moments corresponding to the configured at least two sets of configuration parameters, and at the target listening moment Above, monitor the energy-saving signal associated with the CDRX duration.
  • the terminal can flexibly select the listening time for receiving the energy-saving signal, thereby improving the flexibility of the terminal to receive the energy-saving signal. This can effectively prevent the monitoring moment of the energy-saving signal associated with the CDRX duration from conflicting with other behaviors, resulting in the inability to monitor the energy-saving signal associated with the CDRX duration, thereby improving the reliability of the terminal receiving energy-saving signals.
  • step 202 includes: determining a target monitoring moment associated with the CDRX duration from at least one monitoring moment that does not overlap with the target time among the N monitoring moments;
  • the target time includes at least one of the following:
  • CSI-RS Channel State Information Reference Signal
  • DCI Downlink Control Information
  • the terminal After the terminal initiates random access, it receives the random access feedback and sends back the monitoring moment of the physical uplink control channel.
  • the monitoring moment at which the random access feedback physical uplink control channel is located can be understood as a random access feedback receiving window, and the random access feedback receiving window is scheduled by the random access feedback.
  • the foregoing at least one monitoring moment that does not overlap the target time among the N monitoring moments corresponding to the M sets of configuration parameters can be understood as one or more of the N monitoring moments corresponding to the M sets of configuration parameters that do not conflict with other behaviors. Monitor the moment. Since conflicts are first eliminated before the target monitoring time is determined, the validity of the selected target monitoring time can be ensured, and thus the reliability of receiving the energy-saving signal by the terminal can be further improved.
  • the step of determining the target listening moment associated with the CDRX duration includes: According to preset rules, the target monitoring moment is determined.
  • the target listening moment may be determined from the foregoing N listening moments according to a preset rule. It may also be that the target listening moment is determined according to a preset rule from at least one listening moment that does not overlap the target time among the last N listening moments.
  • different configuration parameters can be configured according to the long and short periods, and the selection can be made according to the type of the cycle in which the CDRX cycle is located.
  • the M sets of configuration parameters include at least one set of configuration parameters associated with the duration of a long CDRX cycle and at least one set of configuration parameters associated with the duration of a short CDRX cycle;
  • the target monitoring time is determined according to a preset rule include:
  • At least one monitoring moment corresponding to at least one set of configuration parameters associated with the duration of the short CDRX cycle is selected as the target monitoring moment.
  • the terminal may first determine whether the current CDRX cycle is a long CDRX cycle or a short CDRX cycle, and then use at least one monitoring moment corresponding to at least one set of associated configuration parameters as the target monitoring moment.
  • the long CDRX cycle selects the target monitoring moment as an example for description: if the long CDRX cycle is associated with L sets of configuration parameters, at least one monitoring moment can be selected from the L monitoring moments corresponding to the L sets of configuration parameters.
  • the target monitoring moment it should be understood that the number of target monitoring moments at this time is less than or equal to L, and L is a positive integer.
  • At least one listening moment as the target listening moment from the P listening moments that do not overlap the target time among the L listening moments corresponding to the L set of configuration parameters. It should be understood that the number of target listening moments at this time is less than or equal to P , P is a positive integer.
  • the determining the target monitoring moment according to a preset rule includes:
  • At least one monitoring moment closest to the SSB is selected as the target monitoring moment, and the SSB is the SSB in the CDRX cycle before the CDRX cycle where the CDRX duration is located.
  • At least one listening moment closest to the SSB may be selected from the above N listening moments as the target listening moment; or at least one listening moment that does not overlap the target time among the N listening moments, At least one monitoring moment closest to the SSB is selected as the target monitoring moment.
  • the terminal will periodically receive the SSB.
  • the time difference between the N monitoring moments in the "Opportunity for DRX" period and the SSB in the "Opportunity for DRX” period can be compared.
  • the monitoring moment with the smallest time difference is selected as the target monitoring moment, and the minimum monitoring moment can be one or more.
  • the number of SSBs within the time of "Opportunity for DRX" may be one or more.
  • the time difference between the monitoring moment corresponding to the configuration parameter and the SSB refers to the time difference between the monitoring moment corresponding to the configuration parameter and the previous SSB of the monitoring moment.
  • the energy saving signal sent by the network device may be used to indicate whether one or more terminals monitor the CDRX duration PDCCH associated with the energy saving signal.
  • the CDRX duration associated with the target monitoring moment is the CDRX duration which is the next CDRX duration of the target monitoring moment.
  • the target monitoring moment includes Q transmission configuration indicator states (Transmission Configuration Indicator states, TCI states), and Q is a positive integer.
  • the network device may send energy-saving signals on beams corresponding to one or more TCI states. Specifically, when determining the best receiving beam of the terminal, the network device can send the energy-saving signal on the TCI state corresponding to the best beam; when the best beam of the terminal is not determined, the network device can use the TCI state corresponding to at least two beams. The energy saving signal is sent on the state. It should be understood that, in this embodiment, each TCI state corresponds to one beam.
  • the above configuration parameter is WUS offsets
  • the network device is configured with two WUS offsets.
  • Each offset occupies one slot, and the 14 OFDM symbols on the slot include 3 TCI states (for example, each TCI state occupies two symbols) .
  • the terminal behavior is to determine a WUS offset according to the method of determining the target listening moment in the foregoing embodiment.
  • WUS is monitored on symbols corresponding to all TCI states.
  • the reason for monitoring the symbols corresponding to multiple TCI states may be that the optimal receiving beam has not been determined. In order to ensure WUS Better signal reception quality requires WUS reception on all candidate beams.
  • WUS is monitored on a symbol corresponding to a certain TCI state. In this case, after the best receiving beam is determined, only WUS on the best beam needs to be monitored.
  • the above configuration parameter is WUS SS
  • the network device is configured with two WUS SS
  • each offset occupies one slot
  • the 14 OFDM symbols on the slot include 3 TCI states
  • the duration of WUS SS indicates these two slots.
  • the terminal behavior is to determine a WUS offset according to the method of determining the target listening moment in the foregoing embodiment.
  • WUS is monitored on symbols corresponding to all TCI states.
  • the reason for monitoring the symbols corresponding to multiple TCI states may be that the optimal receiving beam has not been determined. In order to ensure WUS Better signal reception quality requires WUS reception on all candidate beams.
  • WUS is monitored on a symbol corresponding to a certain TCI state. In this case, after the best receiving beam is determined, only WUS on the best beam needs to be monitored.
  • Solution 1 The terminal receives at least two sets of WUS offset configuration.
  • network devices configure different WUS offsets for long and short CDRX cycles.
  • the long and short CDRX cycles can be configured with at least one set of WUS offset.
  • These WUS offsets can be configured by RRC.
  • the Medium Access Control Control Element (MAC CE) selects a set of offsets for the long CDRX cycle and a set of offsets for the short CDRX cycle.
  • the long CDRX cycle is WUS offset1
  • the short CDRX cycle is WUS offset2
  • the terminal activates one set of offsets by default according to whether it is currently in a long cycle or a short cycle.
  • WUS offset1 is activated in the long CDRX cycle
  • WUS offset2 is activated in the short CDRX cycle.
  • Solution 2 The terminal receives at least two sets of WUS offset configuration. As shown in FIG. 6, when the terminal receives periodic SSB, for example, the terminal performs downlink synchronization according to the received SSB, which also generates power consumption. In order to make the terminal more power-saving, try to keep the time when the SSB is received and the time when the WUS is received as close as possible, so that the terminal can be in a state of high power consumption outside of the active time (including the downlink synchronization according to the SSB). , Monitoring WUS, and the possible slumber time between the two) is shorter.
  • the WUS offset corresponding to the closest WUS offset to the SSB (this SSB needs to be before the WUS offset) is selected and activated to monitor the WUS, and the WUS indicates the subsequent onduration state.
  • the WUS offset that is closest to onduration among the multiple WUS offsets can be activated.
  • the above offset must be greater than or equal to the minimum offset.
  • multiple WUS offsets may also be activated, which is not further limited here. In this way, since WUS is received at the listening time closest to the SSB, the power consumption can be further reduced.
  • Solution 3 The terminal receives the configuration of multiple sets of WUS offsets.
  • multiple sets of WUS offsets have only one WUS offset corresponding monitoring opportunity (Monitoring Occasion, MO) does not overlap with the target time, at this time, it can be activated and the target time does not occur.
  • Solution 4 The terminal receives the configuration of multiple sets of WUS offsets. When there are at least two sets of WUS offsets and the MOs corresponding to the WUS offsets do not overlap with the target time, at this time, you can combine Solution 1 and select the activation and the target time did not occur The WUS offset corresponding to the overlapping MO. As shown in Figure 7, in the long CDRX cycle, if the WUS offset1 associated with onduration conflicts with the random access feedback receiving window.
  • Solution 5 The terminal receives the configuration of multiple sets of WUS offsets. When there are at least two sets of WUS offsets and the MO corresponding to the WUS offset does not overlap with the target time, at this time, you can combine Solution 2 and select the activation and target time not to occur The WUS offset corresponding to the overlapping MO. As shown in Figure 8, in the long CDRX cycle, if the WUS offset1 associated with onduration conflicts with the random access feedback receiving window.
  • the terminal receives at least two sets of WUS SS configurations.
  • the network equipment has different WUS SS for long and short CDRX cycle configurations.
  • the long and short CDRX cycles can be configured with at least one set of WUS SS respectively.
  • These WUS SSs can be configured by RRC.
  • MAC CE selects a set of SSs with a long CDRX cycle and a set of SSs with a short CDRX cycle.
  • the long CDRX cycle selects WUS SS1
  • the short CDRX cycle selects WUS SS2.
  • the terminal is currently in the long cycle. It is still a short cycle to activate one set of SS by default, for example, WUS SS1 is activated in the long CDRX cycle, and WUS SS2 is activated in the short CDRX cycle to determine the effective WUS MO.
  • Solution 7 The terminal receives at least two sets of WUS SS configuration.
  • the terminal receives the periodic SSB, for example, the terminal performs downlink synchronization according to the received SSB, which also generates power consumption.
  • the terminal try to keep the receiving time of SSB and WUS as close as possible, so that the terminal can be in a state of high power consumption outside of active time (including downlink synchronization according to SSB, monitoring WUS, and two The total time of possible slumber between persons) is shorter.
  • select and activate the WUS SS closest to the SSB this SSB needs to be before the WUS SS
  • the WUS indicates the subsequent onduration status.
  • the WUS SS closest to onduration among multiple WUS SSs can be activated.
  • multiple WUS SS may also be activated, which is not further limited here. In this way, since WUS is received at the listening time closest to the SSB, the power consumption can be further reduced.
  • Solution 8 The terminal receives the configuration of multiple sets of WUS SS.
  • multiple sets of WUS SS have only one WUS SS corresponding monitoring opportunity (Monitoring Occasion, MO) does not overlap with the target time, at this time, it can be activated and the target time does not occur.
  • Solution 9 The terminal receives the configuration of multiple sets of WUS SS. When there are at least two sets of WUS SS, the MO corresponding to the WUS SS does not overlap with the target time. In this case, you can combine Solution 6 and select the activation and the target time did not occur. The WUS SS corresponding to the overlapping MO.
  • Solution 10 The terminal receives the configuration of multiple sets of WUS SS. When there are at least two sets of WUS SS, the MO corresponding to the WUS SS does not overlap with the target time. At this time, you can combine Solution 7 and select the activation and the target time did not occur The WUS SS corresponding to the overlapping MO.
  • FIG. 9 is a flowchart of a method for configuring an energy-saving signal monitoring moment provided by an embodiment of the present disclosure. The method is applied to a network device, as shown in FIG. 9, and includes the following steps:
  • Step 901 Send M sets of configuration parameters to the terminal
  • the M sets of configuration parameters are used for the terminal for discontinuous reception of the CDRX duration in the connected state, from the N listening moments corresponding to the M sets of configuration parameters, determine the target listening moment associated with the CDRX duration, and At the target monitoring moment, monitoring the energy-saving signal associated with the CDRX duration;
  • M is an integer greater than 1
  • N is an integer greater than 1.
  • the configuration parameter is an energy-saving signal offset or an energy-saving signal search space.
  • the target monitoring moment includes Q transmission configuration indication TCI states, and Q is a positive integer.
  • the energy-saving signal is used to indicate whether one or more terminals monitor the CDRX duration PDCCH associated with the energy-saving signal.
  • the energy-saving signal offset is used to indicate the time offset of the monitoring moment of the energy-saving signal relative to the start time of the CDRX duration associated with the energy-saving signal.
  • the energy-saving signal search space is used to indicate the monitoring period periodicity of the energy-saving signal, the monitoring offset offset, and the monitoring duration.
  • this embodiment is used as an implementation manner of a network device corresponding to the embodiment shown in FIG. 2.
  • this embodiment is used as an implementation manner of a network device corresponding to the embodiment shown in FIG. 2.
  • specific implementation manners please refer to the related description of the embodiment shown in FIG. 2 and achieve the same beneficial effects. In order to avoid Repeat the description, so I won’t repeat it here.
  • FIG. 10 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 10, the terminal 1000 includes:
  • the receiving module 1001 is used to receive M sets of configuration parameters sent by a network device
  • the determining module 1002 is configured to determine the target listening moment associated with the CDRX duration from among the N listening moments corresponding to the M sets of configuration parameters for the non-continuous reception of the CDRX duration in the connected state;
  • the monitoring module 1003 is configured to monitor the energy-saving signal associated with the CDRX duration at the target monitoring moment;
  • M is an integer greater than 1
  • N is an integer greater than 1.
  • the configuration parameter is an energy-saving signal offset or an energy-saving signal search space.
  • the determining module 1002 is specifically configured to: determine the target listening moment associated with the CDRX duration from at least one listening moment that does not overlap the target time among the N listening moments;
  • the target time includes at least one of the following:
  • the terminal After the terminal initiates random access, it receives the random access feedback and sends back the monitoring moment of the physical uplink control channel.
  • the determining module 1002 is configured to determine the target listening moment according to a preset rule.
  • the M sets of configuration parameters include at least one set of configuration parameters associated with the long CDRX cycle duration and at least one set of configuration parameters associated with the short CDRX cycle duration; the determining module 1002 is configured to:
  • At least one monitoring moment corresponding to at least one set of configuration parameters associated with the duration of the short CDRX cycle is selected as the target monitoring moment.
  • the determining module 1002 is configured to select at least one monitoring moment closest to the SSB as the target monitoring moment, and the SSB is the SSB in the CDRX cycle before the CDRX cycle where the CDRX duration is located.
  • the target monitoring moment includes Q transmission configuration indication TCI states, and Q is a positive integer.
  • the energy-saving signal is used to indicate whether one or more terminals monitor the CDRX duration PDCCH associated with the energy-saving signal.
  • the energy-saving signal offset is used to indicate the time offset of the monitoring moment of the energy-saving signal relative to the start time of the CDRX duration associated with the energy-saving signal.
  • the energy-saving signal search space is used to indicate the monitoring period periodicity of the energy-saving signal, the monitoring offset offset, and the monitoring duration.
  • the terminal provided in the embodiment of the present disclosure can implement each process implemented by the terminal in the method embodiment of FIG. 10, and to avoid repetition, details are not described herein again.
  • FIG. 11 is a structural diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 11, the network device 1100 includes:
  • the sending module 1101 is used to send M sets of configuration parameters to the terminal;
  • the M sets of configuration parameters are used for the terminal for discontinuous reception of the CDRX duration in the connected state, from the N listening moments corresponding to the M sets of configuration parameters, determine the target listening moment associated with the CDRX duration, and At the target monitoring moment, monitoring the energy-saving signal associated with the CDRX duration;
  • M is an integer greater than 1
  • N is an integer greater than 1.
  • the configuration parameter is an energy-saving signal offset or an energy-saving signal search space.
  • the target monitoring moment includes Q transmission configuration indication TCI states, and Q is a positive integer.
  • the energy-saving signal is used to indicate whether one or more terminals monitor the CDRX duration PDCCH associated with the energy-saving signal.
  • the energy-saving signal offset is used to indicate the time offset of the monitoring moment of the energy-saving signal relative to the start time of the CDRX duration associated with the energy-saving signal.
  • the energy-saving signal search space is used to indicate the monitoring period periodicity of the energy-saving signal, the monitoring offset offset, and the monitoring duration.
  • the network device provided by the embodiment of the present disclosure can implement the various processes implemented by the network device in the method embodiment of FIG. 9. To avoid repetition, details are not described herein again.
  • FIG. 12 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present disclosure.
  • the terminal 1200 includes, but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, a user input unit 1207, an interface unit 1208, a memory 1209, a processor 1210, and a power supply 1211 and other parts.
  • a radio frequency unit 1201 includes, but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, a user input unit 1207, an interface unit 1208, a memory 1209, a processor 1210, and a power supply 1211 and other parts.
  • the terminal structure shown in FIG. 12 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle
  • the radio frequency unit 1201 is used to receive M sets of configuration parameters sent by the network device;
  • the processor 1210 is configured to determine the target listening moment associated with the CDRX duration from among the N listening moments corresponding to the M sets of configuration parameters for the non-continuous reception of the CDRX duration in the connected state;
  • the radio frequency unit 1201 is further configured to monitor the energy-saving signal associated with the CDRX duration at the target monitoring moment;
  • M is an integer greater than 1
  • N is an integer greater than 1.
  • the configuration parameter is an energy-saving signal offset or an energy-saving signal search space.
  • processor 1210 and radio frequency unit 1201 can implement each process implemented by the network device in the method embodiment of FIG. 2. To avoid repetition, details are not described herein again.
  • the radio frequency unit 1201 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 1210; Uplink data is sent to the base station.
  • the radio frequency unit 1201 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1201 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 1202, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1203 can convert the audio data received by the radio frequency unit 1201 or the network module 1202 or stored in the memory 1209 into audio signals and output them as sounds. Moreover, the audio output unit 1203 may also provide audio output related to a specific function performed by the terminal 1200 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 1203 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1204 is used to receive audio or video signals.
  • the input unit 1204 may include a graphics processing unit (GPU) 12041 and a microphone 12042, and the graphics processor 12041 is configured to respond to images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 1206.
  • the image frame processed by the graphics processor 12041 may be stored in the memory 1209 (or other storage medium) or sent via the radio frequency unit 1201 or the network module 1202.
  • the microphone 12042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 1201 in the case of a telephone call mode for output.
  • the terminal 1200 further includes at least one sensor 1205, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 12061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 12061 and/or when the terminal 1200 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 1205 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 1206 is used to display information input by the user or information provided to the user.
  • the display unit 1206 may include a display panel 12061, and the display panel 12061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 1207 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 1207 includes a touch panel 12071 and other input devices 12072.
  • the touch panel 12071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 12071 or near the touch panel 12071. operating).
  • the touch panel 12071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1210, the command sent by the processor 1210 is received and executed.
  • multiple types of resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 12071.
  • the user input unit 1207 may also include other input devices 12072.
  • other input devices 12072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 12071 can cover the display panel 12061.
  • the touch panel 12071 detects a touch operation on or near it, it transmits it to the processor 1210 to determine the type of the touch event, and then the processor 1210 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 12061.
  • the touch panel 12071 and the display panel 12061 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 12071 and the display panel 12061 may be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 1208 is an interface for connecting an external device to the terminal 1200.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1208 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 1200 or may be used to communicate between the terminal 1200 and the external device. Transfer data between.
  • the memory 1209 can be used to store software programs and various data.
  • the memory 1209 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 1209 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1210 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 1209, and calling data stored in the memory 1209. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1210.
  • the terminal 1200 may also include a power supply 1211 (such as a battery) for supplying power to various components.
  • a power supply 1211 (such as a battery) for supplying power to various components.
  • the power supply 1211 may be logically connected to the processor 1210 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 1200 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 1210, a memory 1209, and a computer program stored on the memory 1209 and capable of running on the processor 1210.
  • a terminal including a processor 1210, a memory 1209, and a computer program stored on the memory 1209 and capable of running on the processor 1210.
  • the computer program is executed by the processor 1210,
  • Each process of the foregoing method for determining the monitoring time of the energy-saving signal is realized, and the same technical effect can be achieved. To avoid repetition, details are not described herein again.
  • FIG. 13 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • the network device 1300 includes: a processor 1301, a transceiver 1302, a memory 1303, and a bus interface, where:
  • the transceiver 1302 is configured to send M sets of configuration parameters to the terminal; the M sets of configuration parameters are used for the terminal to receive the duration of non-continuous reception of CDRX in the connected state, from the N listening moments corresponding to the M sets of configuration parameters, Determining a target monitoring moment associated with the CDRX duration, and monitoring the energy-saving signal associated with the CDRX duration at the target monitoring moment;
  • M is an integer greater than 1
  • N is an integer greater than 1.
  • the configuration parameter is the energy-saving signal offset or the energy-saving signal search space.
  • processor 1301 and transceiver 1302 can implement each process implemented by the network device in the method embodiment of FIG. 9. In order to avoid repetition, details are not described herein again.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1301 and various circuits of the memory represented by the memory 1303 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1302 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 1304 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1301 is responsible for managing the bus architecture and general processing, and the memory 1303 can store data used by the processor 1301 when performing operations.
  • an embodiment of the present disclosure also provides a network device, including a processor 1301, a memory 1303, a computer program stored on the memory 1303 and running on the processor 1301, and the computer program is executed by the processor 1301
  • a network device including a processor 1301, a memory 1303, a computer program stored on the memory 1303 and running on the processor 1301, and the computer program is executed by the processor 1301
  • the embodiment of the present disclosure also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is executed by a processor, the configuration of the energy-saving signal monitoring moment on the network device side provided by the embodiment of the present disclosure is implemented
  • Each process of the method embodiment, or when the computer program is executed by the processor realizes the determination of the energy-saving signal monitoring time on the terminal side provided by the embodiment of the present disclosure, and can achieve the same technical effect, in order to avoid repetition , I won’t repeat it here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk).
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种节能信号监听时刻的确定方法、配置方法及相关设备,该方法包括:接收网络设备发送的M套配置参数;针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。

Description

节能信号监听时刻的确定方法、配置方法及相关设备 技术领域
本公开涉及通信技术领域,尤其涉及一种节能信号监听时刻的确定方法、配置方法及相关设备。
背景技术
随着通信技术的发展,在新空口(New Radio,NR)系统中,为了节省电量,提出了非连续接收(Discontinuous Reception,DRX)机制。终端在无线资源控制(Radio Resource Control,RRC)连接态的每一个CDRX周期,在持续时间(onduration)之前,由网络设备传输节能信号指示终端在CDRX周期内onduration的状态(进入唤醒或者保持睡眠状态)。相关技术中的网络设备通过配置一套节能信号偏移量或节能信号搜索空间对onduration的状态进行指示,因此终端接收节能信号的灵活性较低。
发明内容
本公开实施例提供一种节能信号监听时刻的确定方法、配置方法及相关设备,以解决终端接收节能信号的灵活性较低的问题。
第一方面,本公开实施例提供一种节能信号监听时刻的确定方法,应用于终端,包括:
接收网络设备发送的M套配置参数;
针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
第二方面,本公开实施例还提供一种节能信号监听时刻的配置方法,应用于网络设备,包括:
向终端发送M套配置参数;所述M套配置参数用于供所述终端针对连 接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻,并在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
第三方面,本公开实施例还提供一种终端,包括:
接收模块,用于接收网络设备发送的M套配置参数;
确定模块,用于针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
监听模块,用于在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
第四方面,本公开实施例还提供一种网络设备,包括:
发送模块,用于向终端发送M套配置参数;所述M套配置参数用于供所述终端针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻,并在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
第五方面,本公开实施例还提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述节能信号监听时刻的确定方法中的步骤。
第六方面,本公开实施例还提供一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述节能信号监听时刻的配置方法中的步骤。
第七方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上 述节能信号监听时刻的确定方法的步骤,或者所述计算机程序被处理器执行时实现上述节能信号监听时刻的配置方法的步骤。
第八方面,本公开实施例还提供一种可读存储介质,其中,所述可读存储介质上存储有程序,所述程序被处理器执行时实现上述节能信号监听时刻的确定方法,或者实现上述节能信号监听时刻的配置方法。
第九方面,本公开实施例还提供一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述节能信号监听时刻的确定方法,或者实现上述节能信号监听时刻的配置方法。
第十方面,本公开实施例还提供一种计算机程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现上述节能信号监听时刻的确定方法,或者实现上述节能信号监听时刻的配置方法。
本公开实施例通过网络设备配置了至少两套配置参数,终端可以从配置的至少两套配置参数对应的N个监听时刻中灵活的选择与CDRX持续时间关联的目标监听时刻,并在目标监听时刻上,监听与所述CDRX持续时间关联的节能信号。本公开实施例中,终端可以灵活选择接收节能信号的监听时刻,因此提高了终端接收节能信号的灵活性。这样可以有效避免CDRX持续时间关联的节能信号的监听时刻与其他行为发生冲突,导致无法监听CDRX持续时间关联的节能信号,进而提高了终端接收节能信号的可靠性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例可应用的一种网络系统的结构图;
图2是本公开实施例提供的一种节能信号监听时刻的确定方法的流程图;
图3是本公开实施例提供的一种节能信号监听时刻的确定方法中唤醒信 号发送方式的示例图之一;
图4是本公开实施例提供的一种节能信号监听时刻的确定方法中唤醒信号发送方式的示例图之二;
图5是本公开实施例提供的一种节能信号监听时刻的确定方法中WUS offset的选择示例图之一;
图6是本公开实施例提供的一种节能信号监听时刻的确定方法中WUS offset的选择示例图之二;
图7是本公开实施例提供的一种节能信号监听时刻的确定方法中WUS offset的选择示例图之三;
图8是本公开实施例提供的一种节能信号监听时刻的确定方法中WUS offset的选择示例图之四;
图9是本公开实施例提供的一种节能信号监听时刻的确定方法的流程图;
图10是本公开实施例提供的一种终端的结构图;
图11是本公开实施例提供的一种网络设备的结构图;
图12是本公开实施例提供的另一种终端的结构图;
图13是本公开实施例提供的另一种网络设备的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或 说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的一种节能信号监听时刻的确定方法、配置方法及相关设备可以应用于无线通信系统中。该无线通信系统可以为采用5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
请参见图1,图1是本公开实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和网络设备12,其中,终端11可以是用户终端或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。上述网络设备12可以是5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者发送接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备12可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
请参见图2,图2是本公开实施例提供的一种节能信号监听时刻的确定方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201,接收网络设备发送的M套配置参数;
本公开实施例中,网络设备可以通过RRC信令向终端发送M套配置参数,该M为大于1的整数,该配置参数为节能信号偏移量或节能信号搜索空间。其中节能信号可以包括唤醒信号(wake up signal,WUS)和睡眠信号,也就是说,上述节能信号偏移量可以理解为唤醒信号偏移量(WUS offset),也可以理解为睡眠信号偏移量,上述节能信号搜索空间可以理解为唤醒信号搜索空间(wake up signal Search Space,WUS SS),也可以理解为睡眠信号搜 索空间。以下各实施例中,以节能信号为WUS,配置参数为WUS offset或者WUS SS为例进行详细说明。
需要说明的是,上述节能信号偏移量用于指示节能信号监听时刻相对于所述节能信号关联的CDRX持续时间开始时刻的时间偏移量。上述节能信号搜索空间用于指示节能信号的监听周期periodicity、监听偏移量offset和监听时长duration。
步骤202,针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
可选地,在一个CDRX周期内,一套配置参数对应为一个监听时刻。本实施例中,N为大于1的整数,具体地,N的大小可以根据实际需要进行设置。上述N个监听时刻可以理解为M套配置参数对应的所有或者部分监听时刻。应理解,当上述配置参数为WUS offset时,多套WUS offset应当大于或等于标准协议中规定的最小offset。终端确定的与所述CDRX持续时间关联的目标监听时刻是M套配置参数对应的N个监听时刻的子集或者全集。
步骤203,在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号。
本实施例中,在终端确定目标监听时刻后,可以在该目标监听时刻监听对应的WUS。此外,终端不需要在与所述CDRX持续时间关联的非目标监听时刻的其他监听时刻上监听WUS。
需要说明的是,一个CDRX周期包括CDRX持续时间和DRX的机会(Opportunity for DRX),在“Opportunity for DRX”时间内,UE不接收下行信道的数据以节省功耗(休眠期)。在每个“CDRX持续时间”的时间之前,根据关联的目标监听时刻上监听的WUS来决定是否激活该CDRX持续时间,若激活CDRX持续时间,则在CDRX持续时间监听PDCCH;若未激活CDRX持续时间,则在CDRX持续时间不监听PDCCH。
本公开实施例通过网络设备配置了至少两套配置参数,终端可以从配置的至少两套配置参数对应的N个监听时刻中灵活的选择与CDRX持续时间关联的目标监听时刻,并在目标监听时刻上,监听与所述CDRX持续时间关联的节能信号。本公开实施例中,终端可以灵活选择接收节能信号的监听时 刻,因此提高了终端接收节能信号的灵活性。这样可以有效避免CDRX持续时间关联的节能信号的监听时刻与其他行为发生冲突,导致无法监听CDRX持续时间关联的节能信号,进而提高了终端接收节能信号的可靠性。
进一步地,上述步骤202包括:从所述N个监听时刻中与目标时间未重叠的至少一个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
所述目标时间包括以下至少一项:
测量同步信号块(Synchronization Signal and PBCH block,SSB)的时间;
测量信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)的时间;
下行控制信息(Downlink Control Information,DCI)指示的第一目标符号对应的时间,所述第一目标符号为灵活符号(flexible symbol)或上行链路符号(uplink symbol);
DCI指示的第二目标符号对应的时间,所述第二目标符号用于进行物理上行控制信道、物理上行共享信道、物理随机接入信道或探测参考信号的传输;
终端发起随机接入后,接收随机接入反馈物理上行控制信道所在的监听时刻。
本公开实施例中,上述随机接入反馈物理上行控制信道所在的监听时刻可以理解为随机接入反馈接收窗,该随机接入反馈接收窗由随机接入反馈进行指示调度。
上述从M套配置参数对应的N个监听时刻中与目标时间未重叠的至少一个监听时刻可以理解为,M套配置参数对应的N个监听时刻中未与其他行为发生冲突的1个或者多个监听时刻。由于在确定目标监听时刻之前,首先排除了冲突的情况,从而可以保证选取的目标监听时刻的有效性,因此可以进一步提高终端接收节能信号的可靠性。
进一步地,如何确定与所述CDRX持续时间关联的目标监听时刻的方式可以根据实际需要进行设置,在本公开实施例中,可以确定与所述CDRX持续时间关联的目标监听时刻的步骤,包括:按照预设规则,确定所述目标监听时刻。
需要说明的是,本实施例中,可以是从上述N个监听时刻中,按照预设规则确定目标监听时刻。也可以是从上N个监听时刻中与目标时间未重叠的至少一个监听时刻中按照预设规则确定目标监听时刻。
在一可选实施例中,可以按照长短周期配置各自不同的配置参数,并按照CDRX周期所处的周期类型进行选择。例如,所述M套配置参数包括与长CDRX周期持续时间关联的至少一套配置参数以及与短CDRX周期持续时间关联的至少一套配置参数;所述按照预设规则,确定所述目标监听时刻包括:
若所述终端处于长CDRX周期,选取与所述长CDRX周期持续时间关联的至少一套配置参数对应的至少一个监听时刻作为所述目标监听时刻;
若所述终端处于短CDRX周期,选取与所述短CDRX周期持续时间关联的至少一套配置参数对应的至少一个监听时刻作为所述目标监听时刻。
在本实施例中,终端可以首先判断当前所处的CDRX周期为长CDRX周期还是短CDRX周期,然后从关联的至少一套配置参数对应的至少一个监听时刻作为目标监听时刻。本公开实施例中,以长CDRX周期选取目标监听时刻为例进行说明:若长CDRX周期关联有L套配置参数,可以从L套配置参数对应的L个监听时刻中,选取至少一个监听时刻作为目标监听时刻,应理解,此时目标监听时刻的数量小于或等于L,L为正整数。也可以从L套配置参数对应的L个监听时刻中与目标时间未重叠的P个监听时刻中,选取至少一个监听时刻作为目标监听时刻,应理解,此时目标监听时刻的数量小于或等于P,P为正整数。
进一步地,在另一可选实施例中,所述按照预设规则,确定所述目标监听时刻包括:
针对CDRX持续时间,选取距离SSB最近的至少一个监听时刻作为所述目标监听时刻,所述SSB为所述CDRX持续时间所在CDRX周期的前一个CDRX周期内的SSB。
本公开实施例中,可以从上述N个监听时刻中,选取距离SSB最近的至少一个监听时刻作为所述目标监听时刻;也可以N个监听时刻中与目标时间未重叠的至少一个监听时刻中,选取距离SSB最近的至少一个监听时刻作为所述目标监听时刻。
需要说明的是,本实施例中,终端将会周期性接收SSB,具体的可以比较“Opportunity for DRX”的时间内的N个监听时刻与“Opportunity for DRX”的时间内的SSB之间的时间差,选取时间差最小的监听时刻作为目标监听时刻,该最小的监听时刻可以为一个也可以为多个。应理解,“Opportunity for DRX”的时间内的SSB的数量可以为一个或者多个。配置参数对应的监听时刻与SSB之间的时间差是指:配置参数对应的监听时刻与该监听时刻的前一个SSB之间的时间差。
应理解,在本公开实施例中,网络设备所发送的节能信号可以用于指示一个或多个终端是否监听与所述节能信号关联的CDRX持续时间的PDCCH。
在本公开实施例中,上述目标监听时刻所关联的CDRX持续时间为CDRX持续时间为目标监听时刻的下一个CDRX持续时间。
进一步地,所述目标监听时刻包括Q个传输配置指示状态(Transmission Configuration Indicator states,TCI states),Q为正整数。
换句话说,在本公开实施例中,网络设备可以在一个或者多个TCI state所对应的波束(beam)上发送节能信号。具体地,在确定终端的最佳接收波束时,网络设备可以在最佳波束对应的TCI state上发送节能信号;在未确定终端的最佳波束时,网络设备可以在至少两个波束对应的TCI state上发送节能信号。应理解,本实施例中,每个TCI state对应一个波束。
例如,上述配置参数为WUS offsets,网络设备配置了两个WUS offsets每个offset占用一个slot,slot上14个OFDM符号中包括了3个TCI states(例如,每个TCI state占用了两个符号)。此时终端行为是根据上述实施例中目标监听时刻的确定方式,确定一个WUS offset。在一实施例中,如图3所示,在所有的TCI state对应的符号上监听WUS,其中,监听多个TCI states对应的符号的原因可以是由于未确定最佳的接收beam,为了保证WUS信号更好的接收质量,需要在所有候选波束上进行WUS接收。在另一实施例中,如图4所示,在某一个TCI state对应的符号上监听WUS,这种情况是在确定了最佳的接收波束后,只需要监听最佳beam上的WUS。
例如,上述配置参数为WUS SS,网络设备配置了两个WUS SS,每个offset占用一个slot,slot上14个OFDM符号中包括了3个TCI states,通过 WUS SS的duration指示这两个slots。此时终端行为是根据上述实施例中目标监听时刻的确定方式,确定一个WUS offset。在一实施例中,如图3所示,在所有的TCI state对应的符号上监听WUS,其中,监听多个TCI states对应的符号的原因可以是由于未确定最佳的接收beam,为了保证WUS信号更好的接收质量,需要在所有候选波束上进行WUS接收。在另一实施例中,如图4所示,在某一个TCI state对应的符号上监听WUS,这种情况是在确定了最佳的接收波束后,只需要监听最佳beam上的WUS。
为了更好的理解本公开,以下将以网络设备通过RRC配置多套WUS offset或多套WUS SS为例详细说明本公开的实现过程。
方案1:终端接收至少两套WUS offset的配置。如图5所示,网络设备为长短CDRX周期配置各自不同的WUS offset。其中,长短CDRX周期可以分别配置至少一套WUS offset。这些WUS offsets可由RRC进行配置,媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)选择长CDRX周期的一套offset和短CDRX周期的一套offset,例如,长CDRX周期为WUS offset1,短CDRX周期为WUS offset2,终端根据当前处在长周期还是短周期来默认激活其中一套offset,例如在长CDRX周期激活WUS offset1,在短CDRX周期激活WUS offset2。
方案2:终端接收至少两套WUS offset的配置。如图6所示,终端在接收周期性SSB时,例如终端根据接收的SSB进行下行同步,也会产生功耗。为了让终端更省电,尽量让接收SSB的时刻与接收WUS的时刻距离较近,这样可以使得终端在激活时间(active time)之外,处于功耗较大的状态(包括根据SSB进行下行同步,监听WUS,以及二者之间的可能的微睡的时间)的总时间更短。于是选取并激活距离SSB(该SSB需要在WUS offset前)最近的WUS offset对应的时刻监听WUS,该WUS对之后的onduration状态进行指示。可选地,当存在多个WUS offset与SSB的距离一样,可以激活多个WUS offset中距离onduration最近的WUS offset。另外,上述offset要大于等于最小offset。当然在图6之外的其他实施例中,也可以激活多个WUS offset,在此不做进一步的限定。这样,由于在距离SSB最近的监听时刻接收WUS,因此,可以进一步降低电能的消耗。
方案3:终端接收多套WUS offset的配置,当多套WUS offset仅有一个WUS offset对应的监听时机(Monitoring Occasion,MO)与目标时间未发生重叠时,此时,可以激活与目标时间未发生重叠的MO所对应的WUS offset。
方案4:终端接收多套WUS offset的配置,当多套WUS offset存在至少两个WUS offset对应的MO与目标时间未发生重叠时,此时,可以结合方案1,并选择激活与目标时间未发生重叠的MO所对应的WUS offset。如图7所示,在长CDRX周期中,若onduration关联的WUS offset1与随机接入反馈接收窗冲突。
方案5:终端接收多套WUS offset的配置,当多套WUS offset存在至少两个WUS offset对应的MO与目标时间未发生重叠时,此时,可以结合方案2,并选择激活与目标时间未发生重叠的MO所对应的WUS offset。如图8所示,在长CDRX周期中,若onduration关联的WUS offset1与随机接入反馈接收窗冲突。
方案6:终端接收至少两套WUS SS的配置。网络设备为长短CDRX周期的配置各自不同的WUS SS。其中,长短CDRX周期可以分别配置至少一套WUS SS。这些WUS SS可由RRC进行配置,MAC CE选择长CDRX周期的一套SS和短CDRX周期的一套SS,例如,长CDRX周期选择WUS SS1,短CDRX周期选择WUS SS2,终端根据当前处在长周期还是短周期来默认激活其中一套SS,例如即在长CDRX周期激活WUS SS1,在短CDRX周期激活WUS SS2,从而确定有效的WUS MO。
方案7:终端接收至少两套WUS SS的配置。终端在接收周期性SSB时,例如终端根据接收的SSB进行下行同步,也会产生功耗。为了让终端更省电,尽量让接收SSB时刻与接收WUS时刻距离较近,这样可以使得终端在active time之外,处于功耗较大的状态(包括根据SSB进行下行同步,监听WUS,以及二者之间的可能的微睡的时间)的总时间更短。于是选取并激活距离SSB(该SSB需要在WUS SS前)最近的WUS SS,从而确定有效WUS MO。该WUS对之后的onduration状态进行指示。可选地,当存在多个WUS SS与SSB的距离一样,可以激活多个WUS SS中距离onduration最近的WUS SS。当然在其他实施例中,也可以激活多个WUS SS,在此不做进一步的限定。这 样,由于在距离SSB最近的监听时刻接收WUS,因此,可以进一步降低电能的消耗。
方案8:终端接收多套WUS SS的配置,当多套WUS SS仅有一个WUS SS对应的监听时机(Monitoring Occasion,MO)与目标时间未发生重叠时,此时,可以激活与目标时间未发生重叠的MO所对应的WUS SS。
方案9:终端接收多套WUS SS的配置,当多套WUS SS存在至少两个WUS SS对应的MO与目标时间未发生重叠时,此时,可以结合方案6,并选择激活与目标时间未发生重叠的MO所对应的WUS SS。
方案10:终端接收多套WUS SS的配置,当多套WUS SS存在至少两个WUS SS对应的MO与目标时间未发生重叠时,此时,可以结合方案7,并选择激活与目标时间未发生重叠的MO所对应的WUS SS。
请参见图9,图9是本公开实施例提供的一种节能信号监听时刻的配置方法的流程图,该方法应用于网络设备,如图9所示,包括以下步骤:
步骤901,向终端发送M套配置参数;
所述M套配置参数用于供所述终端针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻,并在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
可选地,所述目标监听时刻包括Q个传输配置指示TCI状态,Q为正整数。
可选地,所述节能信号用于指示一个或多个终端是否监听与所述节能信号关联的CDRX持续时间的PDCCH。
可选地,所述节能信号偏移量用于指示节能信号监听时刻相对于所述节能信号关联的CDRX持续时间开始时刻的时间偏移量。
可选地,所述节能信号搜索空间用于指示节能信号的监听周期periodicity、监听偏移量offset和监听时长duration。
需要说明的是,本实施例作为图2所示的实施例对应的网络设备的实施 方式,其具体的实施方式可以参见图2所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
请参见图10,图10是本公开实施例提供的一种终端的结构图,如图10所示,终端1000包括:
接收模块1001,用于接收网络设备发送的M套配置参数;
确定模块1002,用于针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
监听模块1003,用于在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
可选地,所述确定模块1002具体用于:从所述N个监听时刻中与目标时间未重叠的至少一个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
所述目标时间包括以下至少一项:
测量同步信号块SSB的时间;
测量信道状态信息参考信号CSI-RS的时间;
下行控制信息DCI指示的第一目标符号对应的时间,所述第一目标符号为灵活符号或上行链路符号;
DCI指示的第二目标符号对应的时间,所述第二目标符号用于进行物理上行控制信道、物理上行共享信道、物理随机接入信道或探测参考信号的传输;
终端发起随机接入后,接收随机接入反馈物理上行控制信道所在的监听时刻。
可选地,所述确定模块1002用于:按照预设规则,确定所述目标监听时刻。
可选地,所述M套配置参数包括与长CDRX周期持续时间关联的至少一套配置参数以及与短CDRX周期持续时间关联的至少一套配置参数;所述 确定模块1002用于:
选取与所述长CDRX周期持续时间关联的至少一套配置参数对应的至少一个监听时刻作为所述目标监听时刻;
若所述终端处于短CDRX周期,选取与所述短CDRX周期持续时间关联的至少一套配置参数对应的至少一个监听时刻作为所述目标监听时刻。
可选地,所述确定模块1002用于:选取距离SSB最近的至少一个监听时刻作为所述目标监听时刻,所述SSB为所述CDRX持续时间所在CDRX周期的前一个CDRX周期内的SSB。
可选地,所述目标监听时刻包括Q个传输配置指示TCI状态,Q为正整数。
可选地,所述节能信号用于指示一个或多个终端是否监听与所述节能信号关联的CDRX持续时间的PDCCH。
可选地,所述节能信号偏移量用于指示节能信号监听时刻相对于所述节能信号关联的CDRX持续时间开始时刻的时间偏移量。
可选地,所述节能信号搜索空间用于指示节能信号的监听周期periodicity、监听偏移量offset和监听时长duration。
本公开实施例提供的终端能够实现图10的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
请参见图11,图11是本公开实施例提供的一种网络设备的结构图,如图11所示,网络设备1100包括:
发送模块1101,用于向终端发送M套配置参数;
所述M套配置参数用于供所述终端针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻,并在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
可选地,所述目标监听时刻包括Q个传输配置指示TCI状态,Q为正整数。
可选地,所述节能信号用于指示一个或多个终端是否监听与所述节能信号关联的CDRX持续时间的PDCCH。
可选地,所述节能信号偏移量用于指示节能信号监听时刻相对于所述节能信号关联的CDRX持续时间开始时刻的时间偏移量。
可选地,所述节能信号搜索空间用于指示节能信号的监听周期periodicity、监听偏移量offset和监听时长duration。
本公开实施例提供的网络设备能够实现图9的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
图12为实现本公开各个实施例的一种终端的硬件结构示意图。
该终端1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209、处理器1210、以及电源1211等部件。本领域技术人员可以理解,图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
射频单元1201,用于接收网络设备发送的M套配置参数;
处理器1210,用于针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
射频单元1201,还用于在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
应理解,本实施例中,上述处理器1210和射频单元1201能够实现图2的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
应理解的是,本公开实施例中,射频单元1201可用于收发信息或通话过程中,信号的接收和发送,具体地,将来自基站的下行数据接收后,给处理器1210处理;另外,将上行的数据发送给基站。通常,射频单元1201包括但不 限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1201还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1202为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1203可以将射频单元1201或网络模块1202接收的或者在存储器1209中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1203还可以提供与终端1200执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1203包括扬声器、蜂鸣器以及受话器等。
输入单元1204用于接收音频或视频信号。输入单元1204可以包括图形处理器(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1206上。经图形处理器12041处理后的图像帧可以存储在存储器1209(或其它存储介质)中或者经由射频单元1201或网络模块1202进行发送。麦克风12042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1201发送到移动通信基站的格式输出。
终端1200还包括至少一种传感器1205,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板12061的亮度,接近传感器可在终端1200移动到耳边时,关闭显示面板12061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1205还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1206用于显示由用户输入的信息或提供给用户的信息。显示单元1206可包括显示面板12061,可以采用液晶显示器(Liquid Crystal Display, LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板12061。
用户输入单元1207可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1207包括触控面板12071以及其他输入设备12072。触控面板12071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板12071上或在触控面板12071附近的操作)。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1210,接收处理器1210发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板12071。除了触控面板12071,用户输入单元1207还可以包括其他输入设备12072。具体地,其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步地,触控面板12071可覆盖在显示面板12061上,当触控面板12071检测到在其上或附近的触摸操作后,传送给处理器1210以确定触摸事件的类型,随后处理器1210根据触摸事件的类型在显示面板12061上提供相应的视觉输出。虽然在图12中,触控面板12071与显示面板12061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板12071与显示面板12061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1208为外部装置与终端1200连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1208可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1200内的一个或多个元件或者可以用于在终端1200和外部装置之间传输数据。
存储器1209可用于存储软件程序以及各种数据。存储器1209可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1209可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1210是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器1209内的软件程序和/或模块,以及调用存储在存储器1209内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1210可包括一个或多个处理单元;可选地,处理器1210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
终端1200还可以包括给各个部件供电的电源1211(比如电池),可选地,电源1211可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1200包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种终端,包括处理器1210,存储器1209,存储在存储器1209上并可在所述处理器1210上运行的计算机程序,该计算机程序被处理器1210执行时实现上述节能信号监听时刻的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图13,图13是本公开实施例提供的另一种网络设备的结构图,如图13所示,该网络设备1300包括:处理器1301、收发机1302、存储器1303和总线接口,其中:
收发机1302用于,向终端发送M套配置参数;所述M套配置参数用于供所述终端针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻,并在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信 号偏移量或节能信号搜索空间。
应理解,本实施例中,上述处理器1301和收发机1302能够实现图9的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1301代表的一个或多个处理器和存储器1303代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1302可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1304还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1301负责管理总线架构和通常的处理,存储器1303可以存储处理器1301在执行操作时所使用的数据。
可选地,本公开实施例还提供一种网络设备,包括处理器1301,存储器1303,存储在存储器1303上并可在所述处理器1301上运行的计算机程序,该计算机程序被处理器1301执行时实现上述节能信号监听时刻的配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的网络设备侧的节能信号监听时刻的配置方法实施例的各个过程,或者该计算机程序被处理器执行时实现本公开实施例提供的终端侧的节能信号监听时刻的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下, 由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (34)

  1. 一种节能信号监听时刻的确定方法,应用于终端,包括:
    接收网络设备发送的M套配置参数;
    针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
    在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
    其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
  2. 根据权利要求1所述的方法,其中,所述从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻包括:
    从所述N个监听时刻中与目标时间未重叠的至少一个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
    所述目标时间包括以下至少一项:
    测量同步信号块SSB的时间;
    测量信道状态信息参考信号CSI-RS的时间;
    下行控制信息DCI指示的第一目标符号对应的时间,所述第一目标符号为灵活符号或上行链路符号;
    DCI指示的第二目标符号对应的时间,所述第二目标符号用于进行物理上行控制信道、物理上行共享信道、物理随机接入信道或探测参考信号的传输;
    终端发起随机接入后,接收随机接入反馈物理上行控制信道所在的监听时刻。
  3. 根据权利要求1或2所述的方法,其中,所述确定与所述CDRX持续时间关联的目标监听时刻的步骤,包括:
    按照预设规则,确定所述目标监听时刻。
  4. 根据权利要求3所述的方法,其中,所述M套配置参数包括与长CDRX周期持续时间关联的至少一套配置参数以及与短CDRX周期持续时间关联的至少一套配置参数;所述按照预设规则,确定所述目标监听时刻包括:
    若所述终端处于长CDRX周期,选取与所述长CDRX周期持续时间关联的至少一套配置参数对应的至少一个监听时刻作为所述目标监听时刻;
    若所述终端处于短CDRX周期,选取与所述短CDRX周期持续时间关联的至少一套配置参数对应的至少一个监听时刻作为所述目标监听时刻。
  5. 根据权利要求3所述的方法,其中,所述按照预设规则,确定所述目标监听时刻包括:
    选取距离SSB最近的至少一个监听时刻作为所述目标监听时刻,所述SSB为所述CDRX持续时间所在CDRX周期的前一个CDRX周期内的SSB。
  6. 根据权利要求1所述的方法,其中,所述目标监听时刻包括Q个传输配置指示TCI状态,Q为正整数。
  7. 根据权利要求1所述的方法,其中,所述节能信号用于指示一个或多个终端是否监听与所述节能信号关联的CDRX持续时间的PDCCH。
  8. 根据权利要求1所述的方法,其中,所述节能信号偏移量用于指示节能信号监听时刻相对于所述节能信号关联的CDRX持续时间开始时刻的时间偏移量。
  9. 根据权利要求1所述的方法,其中,所述节能信号搜索空间用于指示节能信号的监听周期periodicity、监听偏移量offset和监听时长duration。
  10. 一种节能信号监听时刻的配置方法,应用于网络设备,包括:
    向终端发送M套配置参数;所述M套配置参数用于供所述终端针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻,并在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
    其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
  11. 根据权利要求10所述的方法,其中,所述目标监听时刻包括Q个传输配置指示TCI状态,Q为正整数。
  12. 根据权利要求10所述的方法,其中,所述节能信号用于指示一个或多个终端是否监听与所述节能信号关联的CDRX持续时间的PDCCH。
  13. 根据权利要求10所述的方法,其中,所述节能信号偏移量用于指示节 能信号监听时刻相对于所述节能信号关联的CDRX持续时间开始时刻的时间偏移量。
  14. 根据权利要求10所述的方法,其中,所述节能信号搜索空间用于指示节能信号的监听周期periodicity、监听偏移量offset和监听时长duration。
  15. 一种终端,包括:
    接收模块,用于接收网络设备发送的M套配置参数;
    确定模块,用于针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
    监听模块,用于在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
    其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
  16. 根据权利要求15所述的终端,其中,所述确定模块1002具体用于:从所述N个监听时刻中与目标时间未重叠的至少一个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻;
    所述目标时间包括以下至少一项:
    测量同步信号块SSB的时间;
    测量信道状态信息参考信号CSI-RS的时间;
    下行控制信息DCI指示的第一目标符号对应的时间,所述第一目标符号为灵活符号或上行链路符号;
    DCI指示的第二目标符号对应的时间,所述第二目标符号用于进行物理上行控制信道、物理上行共享信道、物理随机接入信道或探测参考信号的传输;
    终端发起随机接入后,接收随机接入反馈物理上行控制信道所在的监听时刻。
  17. 根据权利要求15或16所述的终端,其中,所述确定模块1002用于:按照预设规则,确定所述目标监听时刻。
  18. 根据权利要求17所述的终端,其中,所述M套配置参数包括与长 CDRX周期持续时间关联的至少一套配置参数以及与短CDRX周期持续时间关联的至少一套配置参数;所述确定模块1002用于:
    选取与所述长CDRX周期持续时间关联的至少一套配置参数对应的至少一个监听时刻作为所述目标监听时刻;
    若所述终端处于短CDRX周期,选取与所述短CDRX周期持续时间关联的至少一套配置参数对应的至少一个监听时刻作为所述目标监听时刻。
  19. 根据权利要求17所述的终端,其中,所述确定模块1002用于:选取距离SSB最近的至少一个监听时刻作为所述目标监听时刻,所述SSB为所述CDRX持续时间所在CDRX周期的前一个CDRX周期内的SSB。
  20. 根据权利要求15所述的终端,其中,所述目标监听时刻包括Q个传输配置指示TCI状态,Q为正整数。
  21. 根据权利要求15所述的终端,其中,所述节能信号用于指示一个或多个终端是否监听与所述节能信号关联的CDRX持续时间的PDCCH。
  22. 根据权利要求15所述的终端,其中,所述节能信号偏移量用于指示节能信号监听时刻相对于所述节能信号关联的CDRX持续时间开始时刻的时间偏移量。
  23. 根据权利要求15所述的终端,其中,所述节能信号搜索空间用于指示节能信号的监听周期periodicity、监听偏移量offset和监听时长duration。
  24. 一种网络设备,包括:
    发送模块,用于向终端发送M套配置参数;所述M套配置参数用于供所述终端针对连接态的非连续接收CDRX持续时间,从M套配置参数对应的N个监听时刻中,确定与所述CDRX持续时间关联的目标监听时刻,并在所述目标监听时刻上,监听与所述CDRX持续时间关联的节能信号;
    其中,M为大于1的整数,N为大于1的整数;所述配置参数为节能信号偏移量或节能信号搜索空间。
  25. 根据权利要求24所述的网络设备,其中,所述目标监听时刻包括Q个传输配置指示TCI状态,Q为正整数。
  26. 根据权利要求24所述的网络设备,其中,所述节能信号用于指示一个或多个终端是否监听与所述节能信号关联的CDRX持续时间的PDCCH。
  27. 根据权利要求24所述的网络设备,其中,所述节能信号偏移量用于指示节能信号监听时刻相对于所述节能信号关联的CDRX持续时间开始时刻的时间偏移量。
  28. 根据权利要求24所述的网络设备,其中,所述节能信号搜索空间用于指示节能信号的监听周期periodicity、监听偏移量offset和监听时长duration。
  29. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至9中任一项所述的节能信号监听时刻的确定方法中的步骤。
  30. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求10至14中任一项所述的节能信号监听时刻的配置方法中的步骤。
  31. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的节能信号监听时刻的确定方法的步骤,或者所述计算机程序被处理器执行时实现如权利要求10至14中任一项所述的节能信号监听时刻的配置方法的步骤。
  32. 一种可读存储介质,其中,所述可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至9中任一项所述的节能信号监听时刻的确定方法的步骤,或者所述程序被处理器执行时实现如权利要求10至14中任一项所述的节能信号监听时刻的配置方法的步骤。
  33. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至9中任一项所述的节能信号监听时刻的确定方法,或者实现如权利要求10至14中任一项所述的节能信号监听时刻的配置方法。
  34. 一种计算机程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至9中任一项所述的节能信号监听时刻的确定方法,或者实现如权利要求10至14中任一项所述的节能信号监听时刻的配置方法。
PCT/CN2020/115880 2019-09-19 2020-09-17 节能信号监听时刻的确定方法、配置方法及相关设备 WO2021052413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910889358.7A CN112533232B (zh) 2019-09-19 2019-09-19 一种节能信号监听时刻的确定方法、配置方法及相关设备
CN201910889358.7 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021052413A1 true WO2021052413A1 (zh) 2021-03-25

Family

ID=74883399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115880 WO2021052413A1 (zh) 2019-09-19 2020-09-17 节能信号监听时刻的确定方法、配置方法及相关设备

Country Status (2)

Country Link
CN (1) CN112533232B (zh)
WO (1) WO2021052413A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3928650A1 (en) 2020-06-22 2021-12-29 SAS Access Equip Motos France Accessorized garment
CN114327101A (zh) * 2021-12-06 2022-04-12 深圳市千分一智能技术有限公司 信号同步接收方法、装置、主动笔及计算机可读存储介质
WO2023097442A1 (zh) * 2021-11-30 2023-06-08 Oppo广东移动通信有限公司 节能信号的传输方法、装置、设备及存储介质
WO2024066806A1 (zh) * 2022-09-29 2024-04-04 荣耀终端有限公司 连接态的非连续接收的调整方法和调整装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230022550A (ko) * 2021-08-09 2023-02-16 삼성전자주식회사 Ss/pbch 블록 및 데이터의 수신 간격에 기반하여 통신 회로를 제어하는 전자 장치 및 전자 장치의 동작 방법
CN116828570A (zh) * 2022-03-22 2023-09-29 维沃移动通信有限公司 唤醒信号的检测方法及设备
WO2023240538A1 (zh) * 2022-06-16 2023-12-21 北京小米移动软件有限公司 一种传输配置信息的方法、装置以及可读存储介质
CN117440477A (zh) * 2022-07-12 2024-01-23 华为技术有限公司 通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164938A (zh) * 2013-04-24 2015-12-16 爱立信(中国)通信有限公司 具有tdm限制的drx方法及使用该drx方法的用户设备
WO2018187969A1 (en) * 2017-04-12 2018-10-18 Qualcomm Incorporated Dynamic low latency configuration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3420779A1 (en) * 2017-05-05 2019-01-02 Telefonaktiebolaget LM Ericsson (PUBL) Wake-up monitoring for discontinuous reception mode in a wireless communication system
CN110034874B (zh) * 2018-01-11 2020-11-17 维沃移动通信有限公司 一种资源监听方法、终端及基站
CN109923904B (zh) * 2019-02-11 2022-07-29 北京小米移动软件有限公司 信道监听方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164938A (zh) * 2013-04-24 2015-12-16 爱立信(中国)通信有限公司 具有tdm限制的drx方法及使用该drx方法的用户设备
WO2018187969A1 (en) * 2017-04-12 2018-10-18 Qualcomm Incorporated Dynamic low latency configuration

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Updated feature lead summary of Wake-up signal configurations and procedures in NB-IoT", 3GPP DRAFT; R1-1807560, vol. RAN WG1, 24 May 2018 (2018-05-24), Busan, Korea, pages 1 - 19, XP051463235 *
QUALCOMM INCORPORATED: "PDCCH-based power saving channel design", 3GPP DRAFT; R1-1907294 PDCCH-BASED POWER SAVING CHANNEL DESIGN, vol. RAN WG1, 4 May 2019 (2019-05-04), Reno, USA, pages 1 - 16, XP051709317 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3928650A1 (en) 2020-06-22 2021-12-29 SAS Access Equip Motos France Accessorized garment
WO2023097442A1 (zh) * 2021-11-30 2023-06-08 Oppo广东移动通信有限公司 节能信号的传输方法、装置、设备及存储介质
CN114327101A (zh) * 2021-12-06 2022-04-12 深圳市千分一智能技术有限公司 信号同步接收方法、装置、主动笔及计算机可读存储介质
WO2024066806A1 (zh) * 2022-09-29 2024-04-04 荣耀终端有限公司 连接态的非连续接收的调整方法和调整装置

Also Published As

Publication number Publication date
CN112533232B (zh) 2022-06-10
CN112533232A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2021052413A1 (zh) 节能信号监听时刻的确定方法、配置方法及相关设备
WO2020216293A1 (zh) 信道监听方法、终端及网络设备
EP3998713A1 (en) Transmitting antenna switching method and terminal device
JP7181987B2 (ja) ページング指示方法、装置及びシステム
CN108712566B (zh) 一种语音助手唤醒方法及移动终端
US20220104132A1 (en) Pdcch monitoring method and terminal
US11936474B2 (en) Transmission antenna switching method and terminal device
WO2020063344A1 (zh) 配置方法、接收方法、终端及网络侧设备
CN111600692B (zh) 一种信道监听方法、信息传输方法、终端及网络设备
WO2019062509A1 (zh) 寻呼方法、终端及网络侧设备
WO2021179966A1 (zh) 信号传输方法、信息指示方法和通信设备
US20210105651A1 (en) Measurement gap processing method, terminal, and network node
JP2023502946A (ja) セカンダリセルScell休止指示処理方法、端末及びネットワーク機器
US20220272636A1 (en) Power-saving signal monitoring method and terminal
US20220217634A1 (en) Method for receiving power saving signal, method for transmitting power saving signal, and related device
WO2019242538A1 (zh) 信息传输方法、网络设备及终端
WO2019154066A1 (zh) 下行信道的接收方法、发送方法、终端和基站
WO2021197123A1 (zh) 休眠行为处理方法、指示方法、终端及网络设备
WO2021057778A1 (zh) Pdcch监听控制方法及相关设备
WO2021204048A1 (zh) 资源指示方法和通信设备
WO2020228614A1 (zh) 检测位置的确定方法、配置方法、终端及网络侧设备
WO2019242478A1 (zh) Ph的计算方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865503

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20865503

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20865503

Country of ref document: EP

Kind code of ref document: A1