WO2021052366A1 - 基于化学计量学分析鉴别藏猪及其肉制品的方法 - Google Patents

基于化学计量学分析鉴别藏猪及其肉制品的方法 Download PDF

Info

Publication number
WO2021052366A1
WO2021052366A1 PCT/CN2020/115619 CN2020115619W WO2021052366A1 WO 2021052366 A1 WO2021052366 A1 WO 2021052366A1 CN 2020115619 W CN2020115619 W CN 2020115619W WO 2021052366 A1 WO2021052366 A1 WO 2021052366A1
Authority
WO
WIPO (PCT)
Prior art keywords
flavor
pork
identifying
tibetan
sample
Prior art date
Application number
PCT/CN2020/115619
Other languages
English (en)
French (fr)
Inventor
张春晖
韩东
李侠
王航
Original Assignee
中国农业科学院农产品加工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业科学院农产品加工研究所 filed Critical 中国农业科学院农产品加工研究所
Publication of WO2021052366A1 publication Critical patent/WO2021052366A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials

Definitions

  • the invention relates to the field of identification of meat and meat products. More specifically, the present invention relates to a method for identifying Vietnamese pigs and their meat products based on chemometric analysis.
  • the existing identification methods of pork varieties mainly include appearance identification method and molecular biology identification method.
  • the appearance identification method mainly relies on the evaluation of the appearance of the pig, which has subjective errors and the identification method is unscientific.
  • Molecular biology requires tedious and complicated processing such as DNA or RNA extraction, PCR reaction, etc. The identification process takes a long time and the cost is relatively high.
  • An object of the present invention is to provide a method for identifying Vietnamese pork and its meat products based on chemometric analysis, which uses gas chromatography-mass spectrometry/sniffing technology to detect volatile flavor components in Vietnamese pork and its meat products, according to the odor activity Value (OAV) is used to screen out the main flavor components, and combined with the partial least square discriminant analysis method to identify Vietnamese pork and its meat products, providing a convenient, fast and accurate identification method for Vietnamese pig identification.
  • OAV odor activity Value
  • a method for identifying Vietnamese pigs and their meat products based on chemometric analysis includes: pretreatment of pork samples; extraction of volatile flavor substances in pork samples, using The gas-chromatography-sniffing-mass spectrometry instrument performs qualitative and quantitative analysis on the volatile flavor substances to obtain their flavor information; the partial least square discriminant analysis method is used to analyze the flavor information to establish the Vietnamese pig’s A discriminant model; acquiring flavor information of an unknown pork sample, and inputting it into the discriminant model, and discriminating whether the unknown pork sample is a Vietnamese pig according to the output result.
  • the pretreatment is specifically: removing visible fat and connective tissue in the pork sample, and cutting it into 5cm ⁇ 4cm ⁇ 3cm After cleaning, take 200-300g and boil it in 400-500g water, and add 1% -1.5% salt to the water.
  • the method for identifying Vietnamese pigs and their meat products based on chemometric analysis is headspace solid phase microextraction, and the extraction head is 50/30 ⁇ m
  • the extraction conditions are: the extraction flask is placed in a constant temperature water bath at 50-60°C, equilibrated for 20-30 minutes, extracted for 40-50 minutes, and adsorbed at 230-250°C for 5-10 minutes.
  • the gas chromatography conditions of the gas-chromatography-sniffing-mass spectrometer are: the carrier gas is helium, and the column flow rate is 1.01mL ⁇ min-1, the injection port adopts a splitless mode, and the temperature is programmed: the initial temperature is kept at 40°C for 3-5min, and the temperature is increased at 5-10°C/min to 150-200°C, and then at 5-10°C/min Raise to 230-250°C, and finally keep it for 1-3min; mass spectrometry conditions are: ionization mode EI, electron energy 70eV, ion source temperature 230-250°C, quadrupole temperature 120-150°C, solvent delay time 3-5min, scanning The mass range is 50-400amu; the temperature of the interface of the olfactory detector is 200°C, during the detection, to prevent the experimenter’s nasal cavity from drying out and letting mois
  • the qualitative analysis is specifically: preliminary identification of flavor components from a mass spectrometry database, or retention index RI 1 calculated by n-alkanes and literature The reported retention index RI 2 is compared to identify the flavor components, or the specific flavor components can be identified directly through the odor description database query and the comparison of related literature reports;
  • the quantitative analysis is specifically: adding 2-formaldehyde before headspace solid phase microextraction
  • the content of volatile flavor components in the pork sample was calculated based on the peak area ratio of the peak area of the sample and the peak area of the internal standard.
  • the present invention includes at least the following beneficial effects: the present invention comprehensively analyzes the composition of flavor substances in Vietnamese pigs and meat products, uses threshold analysis to screen out the main flavor components, and combines with partial least squares discriminant analysis to visually identify pork samples.
  • the identification and analysis of Vietnamese meat and its meat products provide a simple, objective and reliable method.
  • Figure 1 shows the distribution of main flavor components of different varieties of cooked pork
  • Figure 2 shows the PLS-DA results of the main flavor components of different types of cooked pork.
  • the front legs and hind legs of Du Changda white pigs and Sanmenxia black pigs were provided by Chuying Agriculture and Animal Husbandry Group Co., Ltd., and the front legs and hind legs of Vietnamese pigs were provided by Georgia Woye Co., Ltd.
  • the sample grouping information is shown in Table 1.
  • the cold fresh pork sample was slowly thawed at 4°C to remove the visible fat and connective tissue in the pork sample, and cut it into small pieces of 5cm ⁇ 4cm ⁇ 3cm. After cleaning, take 200-300g and boil it in 400-500g water And add 1% salt to the water, and the water temperature is 100°C (the temperature of the meat center is 85°C) for 30 minutes to obtain a cooked sample. Add 5g of the cooked sample into a 40mL headspace bottle and pour 1 ⁇ L of 2-methyl-3-heptanone solution with a concentration of 0.41 ⁇ g/ ⁇ L as the internal standard. After mixing, seal it and equilibrate in a 60°C water bath for 20 minutes.
  • GC-MS-QP 2000 gas chromatograph mass spectrometer gas chromatography detection conditions are: carrier gas is helium, column flow rate is 1.01mL ⁇ min-1, injection port adopts splitless mode, programmed temperature rise: starting temperature 40 Keep the temperature for 3-5min, increase to 150-200°C at 5-10°C/min, then increase to 230-250°C at 5-10°C/min, and finally keep it for 1-3min; the detection conditions of mass spectrometry are: ionization mode EI, Electronic energy 70eV, ion source temperature 230-250°C, quadrupole temperature 120-150°C, solvent delay time 3-5min, scanning mass range 50-400amu; PEN3 portable electronic nose system's olfactory detector interface temperature is 200 °C, in order to prevent the experimenter’s nasal cavity from drying out, moist air was introduced during the test.
  • carrier gas is helium
  • column flow rate is 1.01mL ⁇ min-1
  • injection port adopts splitless mode
  • OAV i C i /OT i , where OAV i is the odor activity value of flavor component i, and C i is the quality of flavor component i Concentration, OT i is the odor threshold of flavor component i in water, and the flavor component with OAV ⁇ 1 is selected as the main flavor component of the pork sample.
  • Partial least squares discriminant analysis was performed on all flavor components and main flavor components in pork samples.
  • the model verification is shown in Table 2: All flavor components and main flavor components in pork samples are divided into four A component. Among them, the values of R 2 X, R 2 Y and Q 2 are getting closer and closer to 1, indicating that the model is more reliable.
  • the flavor component model verification component 4 in the pork sample its R 2 X and Q 2 values are greater than all flavor substance verification models, and the R 2 Y values of the two verification models are not much different, indicating that the main flavor component model has Better reliability and predictability.
  • Partial least squares discriminant analysis was performed on all flavor components and main flavor components in 3 different varieties of pork, and the discriminant model was established. The results are shown in Table 3. It can be seen from Table 3 that when the principal component number is 4, one Duchangda white pig was wrongly judged as Sanmenxia black pig, and one Sanmenxia black pig was wrongly judged as Duchangda white pig, and the accuracy rate of the discrimination model reached 94.44%; The accuracy of the discriminant model of the two sets of data is more than 90%, indicating that it has a practical predictive effect. Among them, the correct rate of the partial least squares discriminant analysis of the main flavor components reaches 100%, indicating that PLS-DA with the main flavor components is very important. A good way to identify pork.
  • Figure 1 shows the distribution of the main flavor components of different types of cooked pork. It can be seen from Figure 1 that the scatter points of dimethyl disulfide and 2-ethylfuran are closer to Vietnamese pork, and (trans)-2-octanal, hexanal and The scatter of (anti, anti)-2,4-decadienal is closer to Duchangda pork, indicating that the main flavor substances of Vietnamese pork are compounds containing nitrogen and oxygen, and the main flavor substances of Duchangda pork are aldehydes. Substances: (trans)-2-decanal and ethyl caproate are relatively close to Sanmenxia pork, indicating that there is a significant correlation between Sanmenxia pork and these two substances.
  • Figure 2 shows the PLS-DA results of the main flavor components of different types of cooked pork.
  • Each point in the partial least squares discriminant analysis graph represents a sample, and the distance between the points represents the degree of difference between the samples.
  • the cumulative contribution rate of t1 and t2 in the figure exceeds 95.0%, which can reflect the information of the original data.
  • Different types of cooked pork samples are distributed in the first, second and fourth quadrants, which can be well distinguished.
  • the meat samples of the front and hind legs of Sanmenxia pork are clustered together, indicating that the flavors of the front and hind legs of the Sanmenxia pork are similar, and there are certain commonalities.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Seasonings (AREA)

Abstract

基于化学计量学分析鉴别藏猪及其肉制品的方法,包括:对猪肉样品进行预处理;提取猪肉样品中的挥发性风味物质,采用气相色谱-嗅闻-质谱联用仪器对挥发性风味物质进行定性分析和定量分析,获得其风味信息;采用偏最小二乘判别分析法对风味信息进行分析,建立藏猪的判别模型;获取未知猪肉样品的风味信息,并将其输入判别模型中,根据输出结果鉴别未知猪肉样品是否为藏猪。基于化学计量学分析鉴别藏猪及其肉制品的方法,具有鉴别便捷、快速、准确等特点。

Description

基于化学计量学分析鉴别藏猪及其肉制品的方法 技术领域
本发明涉及肉及肉制品鉴别领域。更具体地说,本发明涉及一种基于化学计量学分析鉴别藏猪及其肉制品的方法。
背景技术
藏猪是我国优良的地方品种猪之一,也是国家级重点保护品种。由于长期生活在无污染,纯天然的高寒山区,具有皮薄、胴体瘦肉率高、肉质细嫩、风味浓郁等特点。目前,藏猪肉的生产成本高、产量低、品质高,价格也普遍较高,但由于其优良的加工特性,受到广大消费者的青睐。不少商家利用消费者的购买喜好及不够完善的藏猪肉制品监管规则,在市场上制作大量以假乱真和以次充好的藏猪肉制品,使得消费者和真正的藏猪肉商家的利益蒙受损害。因此,急需一种可靠的鉴别方法,识别藏猪及其猪肉制品来规范藏猪肉市场,从而维护商家和消费者的权益。
现有猪肉品种的鉴定方法主要有外貌鉴定法和分子生物学鉴别法,外貌鉴定方法主要靠对猪的外表进行评定,存在主观误差,同时鉴别方法不科学。分子生物学需要进行DNA或者RNA提取、PCR反应等繁琐和复杂的处理,鉴定过程耗时很长,费用相对较高。
发明内容
本发明的一个目的是提供一种基于化学计量学分析鉴别藏猪肉及其肉制品的方法,采用了气相色谱-质谱/嗅闻技术检测藏猪肉及其肉制品中挥发性风味成分,根据气味活性值(OAV)筛选出主要的风味成分,并结合偏最小二乘判别分析法鉴别藏猪肉及其肉制品,为藏猪鉴别提供了一种便捷、快速、准确的鉴别方法。
为了实现根据本发明的目的和其它优点,提供了一种基于化学计量学分析鉴别藏猪及其肉制品的方法,包括:对猪肉样品进行预处理;提取猪肉样品中的挥发性风味物质,采用气相-色谱-嗅闻-质谱联用仪器对所述挥发性风味物质进行定性分析和定量分析,获得其风味信息;采用偏最小二乘判别分析法对所述风味信息进行分析,建立藏猪的判别模型; 获取未知猪肉样品的风味信息,并将其输入所述判别模型中,根据输出结果鉴别所述未知猪肉样品是否为藏猪。
优选的是,所述的基于化学计量学分析鉴别藏猪及其肉制品的方法,还包括,在采用偏最小二乘判别分析法对所述风味信息进行分析前和将未知猪肉样品的风味信息输入所述判别模型前,对所述风味信息进行筛选,具体为:根据猪肉样品中挥发性风味成分在水中的气味阈值,计算气味活性值:OAV i=C i/OT i,式中,OAV i为风味成分i的气味活性值,C i为风味成分i的质量浓度,OT i为风味成分i在水中的气味阈值,选取OAV≥1的风味成分进行后续处理。
优选的是,所述的基于化学计量学分析鉴别藏猪及其肉制品的方法,所述预处理具体为:剔除猪肉样品中的可见脂肪和结缔组织,并将其切成5cm×4cm×3cm的小块,清洗干净后,取200-300g置于400-500g水中煮制,并在水中添加1%-1.5%的食盐,待猪肉中心温度达到85℃时,开始计时,继续煮制30-45min。
优选的是,所述的基于化学计量学分析鉴别藏猪及其肉制品的方法,所述提取猪肉样品中的挥发性风味物质的方法为顶空固相微萃取,其萃取头为50/30μm DVB/CAR/PDMS的纤维,萃取条件为:萃取瓶置于50-60℃的恒温水浴锅中,平衡20-30min,萃取40-50min,230-250℃下吸附5-10min。
优选的是,所述的基于化学计量学分析鉴别藏猪及其肉制品的方法,所述气相-色谱-嗅闻-质谱联用仪器的气相色谱条件为:载气为氦气,柱流量为1.01mL·min-1,进样口采用不分流模式,程序升温:起始温度40℃保持3-5min,以5-10℃/min升至150-200℃,然后以5-10℃/min升至230-250℃,最后保持1-3min;质谱条件为:电离方式EI,电子能量70eV,离子源温度230-250℃,四级杆温度120-150℃,溶剂延迟时间3-5min,扫描质量范围为50-400amu;嗅觉检测器接口温度为200℃,检测时为防止实验员鼻腔干燥通入湿润的空气。
优选的是,所述的基于化学计量学分析鉴别藏猪及其肉制品的方法,所述定性分析具体为:由质谱数据库初步鉴定风味成分,或通过正构烷烃计算的保留指数RI 1和文献报道的保留指数RI 2对比,进行风味成分鉴定,或直接通过气味描述数据库查询及相关文献报道对比来鉴定具体风味成分;所述定量分析具体为:在顶空固相微萃取之前加入2-甲基-3-庚酮作为内标,根据样品峰面积和内标峰面积的峰面积比计算猪肉样品中挥发性风味成分的含量,设定各挥发性成分的绝对校订因子为1.0,C i=C is×A i/A is;式中,C i为风味成分 i的质量浓度,C is为内标浓度,A i为风味成分i的色谱峰面积;A is为内标物的色谱峰面积。
本发明至少包括以下有益效果:本发明全面解析了藏猪及肉制品中的风味物质构成,利用阈值分析法筛选出主要的风味成分,并结合偏最小二乘判别分析法直观鉴别猪肉样品,为藏肉及其肉制品的鉴别分析提供一个简单、客观、可靠的方法。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为不同品种蒸煮猪肉主要风味成分分布图;
图2为不同品种蒸煮猪肉的主要风味成分PLS-DA结果。
具体实施方式
下面结合实施例和附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
需要说明的是,下述实施方案中所述实验方法,如无特殊说明,均为常规方法,所述试剂和材料,如无特殊说明,均可从商业途径获得。
1试验材料和方法
1.1试验材料与仪器
杜长大白猪和三门峡黑猪的前腿和后腿由雏鹰农牧集团股份有限公司提供,藏香猪的前腿和后腿由西藏沃野有限公司提供,样品分组信息见表1。
GC-MS-QP 2000气相色谱质谱联用仪(日本岛津公司);PEN3型便携式电子鼻系统(德国Airsense公司);SHA-B型水浴恒温振荡器(江苏荣华仪器制造有限公司)。
表1猪肉样品信息
Figure PCTCN2020115619-appb-000001
1.2样品前处理方法
冷鲜猪肉样品经4℃缓慢解冻,剔除猪肉样品中的可见脂肪和结缔组织,并将其切成5cm×4cm×3cm的小块,清洗干净后,取200-300g置于400-500g水中煮制,并在水中添加1%的食盐,水温100℃(测得肉中心温度为85℃)计时30min获得煮制样品。在40mL顶空瓶中加入5g煮制样品并打入浓度为0.41μg/μL的2-甲基-3-庚酮溶液1μL作为内标物,混匀后密封,置于60℃水浴中平衡20min,插入50/30μm固相微萃取纤维头(DVB/CAR/PDMS),顶空吸附40min。萃取结束后,立即将萃取头插入气相色谱仪的前进样口中进行热解析,于250℃条件下解析5min进样。
1.3挥发性风味成分检测
GC-MS-QP 2000气相色谱质谱联用仪的气相色谱检测条件为:载气为氦气,柱流量为1.01mL·min-1,进样口采用不分流模式,程序升温:起始温度40℃保持3-5min,以5-10℃/min升至150-200℃,然后以5-10℃/min升至230-250℃,最后保持1-3min;质谱检测条件为:电离方式EI,电子能量70eV,离子源温度230-250℃,四级杆温度120-150℃,溶剂延迟时间3-5min,扫描质量范围为50-400amu;PEN3型便携式电子鼻系统的嗅觉检测器接口温度为200℃,检测时为防止实验员鼻腔干燥通入湿润的空气。
1.4挥发性风味成分鉴定
定性分析:通过网上检索对比文献报道的风味成分(气味化合物)保留指数RI、NIST14质谱谱库检索以及同嗅闻数据作对比这3种方法对未知挥发性风味成分进行鉴定。其中,对挥发性风味成分的RI值进行换算,计算公式为:利用正构系列烷烃RI=100N+100n(t Ra-t RN)/(t R(N+n)-t RN);其中N为待测风味成分a左侧低碳数的正构烷烃的碳数;n为a两侧的两个烷烃之间相差的碳数;t R为相应风味成分的保留时间。
定量分析:本实验只需对比定量关系,因此选取内标法进行半定量对比分析。每种风味成分浓度计算公式为:C i=C is×A i/A is;式中,C i为风味成分i的质量浓度,C is为内标浓度,A i为风味成分i的色谱峰面积;A is为内标物的色谱峰面积。
1.5主要风味成分筛选
根据猪肉样品中挥发性风味成分在水中的气味阈值,计算气味活性值:OAV i=C i/OT i,式中,OAV i为风味成分i的气味活性值,C i为风味成分i的质量浓度,OT i为风味成分i在水中的气味阈值,选取OAV≥1的风味成分为猪肉样品的主要风味成分。
1.6数据处理
使用XLSTAT(2016)软件对不同猪肉品种和其主要风味成分进行偏最小二乘判别法分析,转换到第一主成分和第二主成分,并获得相应的散点图,根据散点图分析不同猪肉的香气差异。
2结果
2.1猪肉及其肉制品中风味物质的PLS-DA验证及判别
分别对猪肉样品中的全部风味成分和主要风味成分进行偏最小二乘判别分析(PLS-DA),其模型验证如表2所示:猪肉样品中全部风味成分和主要风味成分均被分给四个组分。其中,R 2X、R 2Y和Q 2值越来越接近1,说明模型可靠性越强。同时,对于猪肉样品中风味成分模型验证组分4而言,其R 2X和Q 2值均大于全部风味物质验证模型,两者验证模型R 2Y值相差不大,说明主要风味成分模型具有较好的可靠性和预测度。
表2猪肉样品中风味物质的验证模型(验证集n=54)
Figure PCTCN2020115619-appb-000002
分别对3个不同品种猪肉中的全部风味成分和主要风味成分进行偏最小二乘法判别分析,建立其判别模型,其结果见表3。由表3可知,在主成分数为4时,有1个杜长大白猪被错判为三门峡黑猪,1个三门峡黑猪被错判为杜长大白猪,判别模型正确率达到94.44%;两组数据的判别模型准确均超过90%,说明具有实际的预测效果,其中,主要风味成分的偏最小二乘法判别分析的正确率到达100%,说明以主要风味成分进行PLS-DA是一个很好的鉴别猪肉的方法。
表3猪肉样品中风味成分PLS-DA判别结果
Figure PCTCN2020115619-appb-000003
Figure PCTCN2020115619-appb-000004
2.2不同品种猪肉的主要风味成分分布及PLS-DA结果
图1为不同品种蒸煮猪肉主要风味成分分布图,由图1可知,二甲基二硫醚和2-乙基呋喃的散点更接近藏猪肉,(反)-2-辛醛、己醛和(反,反)-2,4-癸二烯醛的散点更加接近杜长大猪肉,说明藏猪肉主要的风味物质为含氮和氧的化合物,杜长大猪肉主要的风味物质是醛类物质;(反)-2-癸醛和己酸乙酯与三门峡猪肉比较接近,说明三门峡猪肉和这两种物质存在显著相关性。
图2为不同品种蒸煮猪肉的主要风味成分PLS-DA结果。偏最小二乘判别分析图中的每个点代表一个样品,点与点之间的距离表示样品之间的差异程度。图中t1和t2累积贡献率超过95.0%,能够反映原始数据的信息。不同品种的蒸煮猪肉样品分别分布于第一、二和四象限,可以很好的被区分开。三门峡猪肉前腿和后腿肉样点聚集在一起,说明这三门峡猪肉前腿和后腿肉中风味物质相似,存在一定的共性,同理杜长大前腿和后腿肉样也是如此;藏猪肉样、三门峡猪肉样和杜长大猪肉样点的距离较远,说明样品中风味物质存在显著差异,可以很好的将不同的猪肉样品区分开来。
3结论
(1)利用气相色谱-质谱/嗅闻对蒸煮猪肉样品进行检测,并运用偏最小二乘判别分析方法,结果显示藏猪肉主要的风味物质为含氮和氧的化合物,杜长大猪肉主要的风味物质是醛类物质,三门峡猪肉与(反)-2-癸醛和己酸乙酯存在显著相关性。
(2)基于不同品种蒸煮猪肉的偏最小二乘判别分析可知,不同品种蒸煮猪肉能够被清晰地区分开来,且被归为3个组别,分别为藏猪前腿和后腿肉,三门峡前腿和后腿肉、杜长大前腿和后腿肉。每个组别均呈现较为相似的风味组成,不同组别之间的整体风味差 异较大。
(3)运用2组不同的风味组分数据,并对其进行偏最小二乘法判别分析,结果显示主要风味成分PLS-DA可靠性、预测度和正确度均优于全部风味成分的PLS-DA,说明猪肉样品中主要风味成分及PLS-DA可以有效的区分和鉴别不同品种的猪肉。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (6)

  1. 基于化学计量学分析鉴别藏猪及其肉制品的方法,其特征在于,包括:
    对猪肉样品进行预处理;
    提取猪肉样品中的挥发性风味物质,采用气相-色谱-嗅闻-质谱联用仪器对所述挥发性风味物质进行定性分析和定量分析,获得其风味信息;
    采用偏最小二乘判别分析法对所述风味信息进行分析,建立藏猪的判别模型;
    获取未知猪肉样品的风味信息,并将其输入所述判别模型中,根据输出结果鉴别所述未知猪肉样品是否为藏猪。
  2. 如权利要求1所述的基于化学计量学分析鉴别藏猪及其肉制品的方法,其特征在于,还包括,在采用偏最小二乘判别分析法对所述风味信息进行分析前和将未知猪肉样品的风味信息输入所述判别模型前,对所述风味信息进行筛选,具体为:根据猪肉样品中挥发性风味成分在水中的气味阈值,计算气味活性值:OAV i=C i/OT i,式中,OAV i为风味成分i的气味活性值,C i为风味成分i的质量浓度,OT i为风味成分i在水中的气味阈值,选取OAV≥1的风味成分进行后续处理。
  3. 如权利要求1或2所述的基于化学计量学分析鉴别藏猪及其肉制品的方法,其特征在于,所述预处理具体为:剔除猪肉样品中的可见脂肪和结缔组织,并将其切成5cm×4cm×3cm的小块,清洗干净后,取200-300g置于400-500g水中煮制,并在水中添加1%-1.5%的食盐,待猪肉中心温度达到85℃时,开始计时,继续煮制30-45min。
  4. 如权利要求1或2所述的基于化学计量学分析鉴别藏猪及其肉制品的方法,其特征在于,所述提取猪肉样品中的挥发性风味物质的方法为顶空固相微萃取,其萃取头为50/30μm DVB/CAR/PDMS的纤维,萃取条件为:萃取瓶置于50-60℃的恒温水浴锅中,平衡20-30min,萃取40-50min,230-250℃下吸附5-10min。
  5. 如权利要求1或2所述的基于化学计量学分析鉴别藏猪及其肉制品的方法,其特征在于,所述气相-色谱-嗅闻-质谱联用仪器的气相色谱条件为:载气为氦气,柱流量为1.01mL·min -1,进样口采用不分流模式,程序升温:起始温度40℃保持3-5min,以5-10℃/min升至150-200℃,然后以5-10℃/min升至230-250℃,最后保持1-3min;质谱条件为:电离方式EI,电子能量70eV,离子源温度230-250℃,四级杆温度120-150℃,溶剂 延迟时间3-5min,扫描质量范围为50-400amu;嗅觉检测器接口温度为200℃,检测时为防止实验员鼻腔干燥通入湿润的空气。
  6. 如权利要求4所述的基于化学计量学分析鉴别藏猪及其肉制品的方法,其特征在于,所述定性分析具体为:由质谱数据库初步鉴定风味成分,或通过正构烷烃计算的保留指数RI 1和文献报道的保留指数RI 2对比,进行风味成分鉴定,或直接通过气味描述数据库查询及相关文献报道对比来鉴定具体风味成分;所述定量分析具体为:在顶空固相微萃取之前加入2-甲基-3-庚酮作为内标,根据样品峰面积和内标峰面积的峰面积比计算猪肉样品中挥发性风味成分的含量,设定各挥发性成分的绝对校订因子为1.0,C i=C is×A i/A is;式中,C i为风味成分i的质量浓度,C is为内标浓度,A i为风味成分i的色谱峰面积;A is为内标物的色谱峰面积。
PCT/CN2020/115619 2019-09-19 2020-09-16 基于化学计量学分析鉴别藏猪及其肉制品的方法 WO2021052366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910887608.3A CN110487947A (zh) 2019-09-19 2019-09-19 基于化学计量学分析鉴别藏猪及其肉制品的方法
CN201910887608.3 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021052366A1 true WO2021052366A1 (zh) 2021-03-25

Family

ID=68558668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115619 WO2021052366A1 (zh) 2019-09-19 2020-09-16 基于化学计量学分析鉴别藏猪及其肉制品的方法

Country Status (2)

Country Link
CN (1) CN110487947A (zh)
WO (1) WO2021052366A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487947A (zh) * 2019-09-19 2019-11-22 中国农业科学院农产品加工研究所 基于化学计量学分析鉴别藏猪及其肉制品的方法
CN113189251B (zh) * 2021-04-01 2023-02-28 浙江工商大学 基于风味指纹图谱和偏最小二乘法回归分析的鲟鱼肉熟化程度评价方法
CN115436510B (zh) * 2022-08-29 2023-06-02 中国农业科学院北京畜牧兽医研究所 基于气相色谱-静电场轨道阱高分辨质谱进行畜禽肉中风味化合物差异鉴别的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235057A (zh) * 2013-04-27 2013-08-07 江南大学 一种利用气相色谱-质谱不解析化合物鉴别白酒原产地的方法
CN106680400A (zh) * 2017-01-25 2017-05-17 青岛市食品药品检验研究院 顶空气相色谱质谱联用定性定量测定植物油掺假的方法
CN106770796A (zh) * 2017-01-25 2017-05-31 青岛市食品药品检验研究院 顶空气相色谱质谱联用测定调和油调和比例的方法
CN106950293A (zh) * 2017-02-09 2017-07-14 上海应用技术大学 一种中药鸡汤的香气差异比较方法
CN109696501A (zh) * 2019-01-31 2019-04-30 中国农业科学院农产品加工研究所 肉或肉制品特征挥发性风味物质鉴别方法
CN110487947A (zh) * 2019-09-19 2019-11-22 中国农业科学院农产品加工研究所 基于化学计量学分析鉴别藏猪及其肉制品的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235057A (zh) * 2013-04-27 2013-08-07 江南大学 一种利用气相色谱-质谱不解析化合物鉴别白酒原产地的方法
CN106680400A (zh) * 2017-01-25 2017-05-17 青岛市食品药品检验研究院 顶空气相色谱质谱联用定性定量测定植物油掺假的方法
CN106770796A (zh) * 2017-01-25 2017-05-31 青岛市食品药品检验研究院 顶空气相色谱质谱联用测定调和油调和比例的方法
CN106950293A (zh) * 2017-02-09 2017-07-14 上海应用技术大学 一种中药鸡汤的香气差异比较方法
CN109696501A (zh) * 2019-01-31 2019-04-30 中国农业科学院农产品加工研究所 肉或肉制品特征挥发性风味物质鉴别方法
CN110487947A (zh) * 2019-09-19 2019-11-22 中国农业科学院农产品加工研究所 基于化学计量学分析鉴别藏猪及其肉制品的方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHEN NA, CHEN XIAOE; FANG XUBO; WANG MINGYUE; YUAN GAOFENG: "Analysis of Volatile Compounds of Fish Oil Based on Electronic Nose and GC-MS", JOURNAL OF THE CHINESE CEREALS AND OILS ASSOCIATION, vol. 32, no. 10, 1 October 2017 (2017-10-01), pages 179 - 184, XP055793686 *
HAN DONG, MI SI, ZHANG CHUN-HUI, LI JUAN, SONG HUAN-LU, FAUCONNIER MARIE-LAURE, TYTECA EVA: "Characterization and Discrimination of Chinese Marinated Pork Hocks by Volatile Compound Profiling Using Solid Phase Microextraction Gas Chromatography-Mass Spectrometry/Olfactometry, Electronic Nose and Chemometrics", MOLECULES, vol. 24, no. 7, pages 1385, XP055793711, DOI: 10.3390/molecules24071385 *
HUANG YE-CHUAN, LI FENG, HUANG TIAN, SUN JUAN: "Study on formation law of volatile flavor compounds in bacon using electronic nose and GC-MS", SCIENCE AND TECHNOLOGY OF FOOD INDUSTRY, vol. 35, 1 January 2014 (2014-01-01), pages 73 - 80, XP055793681, DOI: 10.13386/j.issn1002-0306.2014.06.016 *
LI XINFU, ZHU JIANCAI, LI CONG, YE HUA, WANG ZHOUPING, WU XIANG, XU BAOCAI: "Evolution of Volatile Compounds and Spoilage Bacteria in Smoked Bacon during Refrigeration Using an E-Nose and GC-MS Combined with Partial Least Squares Regression", MOLECULES, vol. 23, no. 12, pages 3286, XP055793690, DOI: 10.3390/molecules23123286 *
PAVLIDIS DIMITRIOS E., ATHANASIOS MALLOUCHOS, DANILO ERCOLINI, EFSTATHIOS Z. PANAGOU, GEORGE-JOHN E. NYCHAS: "A Volatilomics Approach for Off-Line Discrimination of Minced Beef and Pork Meat and Their Admixture Using HS-SPME GC/MS in Tandem with Multivariate Data Analysis", MEAT SCIENCE, vol. 151, pages 43 - 53, XP055793708, DOI: 10.1016/j.meatsci.2019.01.003 *
SANTANDER ROCÍO, CREIXELL WERNER, SÁNCHEZ ELIZABETH, TOMIC GERDA, SILVA JOSÉ R., ACEVEDO CRISTIAN A.: "Recognizing Age at Slaughter of Cattle from Beef Samples Using GC/MS–SPME Chromatographic Method", FOOD AND BIOPROCESS TECHNOLOGY ; AN INTERNATIONAL JOURNAL, SPRINGER-VERLAG, NEW YORK, vol. 6, no. 12, 1 December 2013 (2013-12-01), New York, pages 3345 - 3352, XP055793701, ISSN: 1935-5130, DOI: 10.1007/s11947-012-0998-z *
TIAN HUAIXIANG, LI FENGHUA, QIN LAN, YU HAIYAN, MA XIA: "Quality Evaluation of Beef Seasonings Using Gas Chromatography-Mass Spectrometry and Electronic Nose: Correlation with Sensory Attributes and Classification According to Grade Level", FOOD ANALYTICAL METHODS, SPRINGER NEW YORK LLC, US, vol. 8, no. 6, 1 July 2015 (2015-07-01), US, pages 1522 - 1534, XP055793689, ISSN: 1936-9751, DOI: 10.1007/s12161-014-0031-4 *
WANG QIAN, LI LU, WANG JIAYI, ZHANG JUAN, WANG YUANYIFEI, DING WU: "Rapid Detection of Ningxia Small-Tailed Han Sheep Meat Adulterated with Duck by Electronic Nose Combined with GC-MS", FOOD SCIENCE, vol. 38, no. 20, 1 January 2017 (2017-01-01), pages 222 - 228, XP055793688, ISSN: 1002-6630, DOI: 10.7506/spkx1002-6630-201720032 *
WEI JINMEI, WAN KUN, LUO YUZHU, ZHANG LI: "The Global Volatile Signature of Veal via Solid-phase Microextraction and Gas Chromatography-mass Spectrometry", HAN-GUG CHUGSAN SIGPUM HAG-HOEJI - KOREAN SOCIETY FOR FOOD SCIENCE OF ANIMAL RESOURCES, HAN-GUG CHUGSAN SIGPUM HAG-HOEJI, KR, vol. 34, no. 5, 31 October 2014 (2014-10-31), KR, pages 700 - 708, XP055793704, ISSN: 1225-8563, DOI: 10.5851/kosfa.2014.34.5.700 *

Also Published As

Publication number Publication date
CN110487947A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021052366A1 (zh) 基于化学计量学分析鉴别藏猪及其肉制品的方法
Yang et al. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis
Park et al. Analysis of ethanol in soy sauce using electronic nose for halal food certification
CN106053628A (zh) 一种快速定性定量茶叶中香气成分的方法
CN107085051B (zh) 一种黄花梨红木树种指纹图谱的构建方法及鉴别方法
CN104316635A (zh) 水果风味品质的快速鉴别方法
CN104267112A (zh) 一种快速分析樱桃酒香气成分的方法
CN110687240A (zh) 一种快速鉴定火腿产地的方法
Masi et al. PTR‐TOF‐MS analysis of volatile compounds in olive fruits
CN117269395A (zh) 奇楠沉香的气质指纹图谱的构建方法及其指纹图谱
Qi et al. Gas chromatography-mass spectrometry analysis reveals the differences in volatile components of royal jelly from different honeybee stocks
Šanda et al. Profiling and characterization of volatile secretions from the European stink bug Graphosoma lineatum (Heteroptera: Pentatomidae) by two-dimensional gas chromatography/time-of-flight mass spectrometry
Zhou et al. Flavor and sensory profile of Chinese traditional fish noodles produced by different silver carp (Hypophthalmichthys molitrix) mince ingredients
CN109470779A (zh) 一种天然中蜂荔枝蜜和天然意蜂荔枝蜜指纹图谱的构建方法及鉴别应用
CN103822980B (zh) 一种金华火腿品质的快速判别方法
Duan et al. Investigation into the characteristic volatile flavor of old duck
Narváez-Rivas et al. Evolution of volatile hydrocarbons from subcutaneous fat during ripening of Iberian dry-cured ham. A tool to differentiate between ripening periods of the process
Li et al. Characterization of Volatile Compounds in Donkey Meat by Gas Chromatography–Ion Mobility Spectrometry (GC–IMS) Combined with Chemometrics
Ma et al. GC‐IMS‐Based Preliminary Analysis of Volatile Flavor Compounds in Ejiao at Different Processing Stages
CN115950979B (zh) 一种用于复杂基质烟草提取物产地溯源的方法
Liu et al. Recognition and identification of compounds contributing to off-flavor of egg white powder by molecular sensory science approach
CN116183786A (zh) 一种用于烟草中痕量糯米香特征关键香气化合物的鉴定方法
CN111579664B (zh) 一种基于气味识别鉴定侧柏炭炮制质量的方法和应用
Self et al. Analysis of decomposition in 23 seafood products by liquid chromatography with high‐resolution mass spectrometry with sensory‐driven modeling
CN109470785B (zh) 一种天然中蜂龙眼蜜和天然意蜂龙眼蜜指纹图谱的构建方法及鉴别应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864669

Country of ref document: EP

Kind code of ref document: A1