WO2021052341A1 - 热管理系统 - Google Patents

热管理系统 Download PDF

Info

Publication number
WO2021052341A1
WO2021052341A1 PCT/CN2020/115441 CN2020115441W WO2021052341A1 WO 2021052341 A1 WO2021052341 A1 WO 2021052341A1 CN 2020115441 W CN2020115441 W CN 2020115441W WO 2021052341 A1 WO2021052341 A1 WO 2021052341A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
flow path
branch
management system
Prior art date
Application number
PCT/CN2020/115441
Other languages
English (en)
French (fr)
Inventor
王奎阳
刘巧凤
董军启
贾世伟
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to EP20865491.3A priority Critical patent/EP3900964B1/en
Priority to US17/419,284 priority patent/US11840122B2/en
Publication of WO2021052341A1 publication Critical patent/WO2021052341A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/034Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from the cooling liquid of the propulsion plant and from an electric heating device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6564Gases with forced flow, e.g. by blowers using compressed gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00935Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising four way valves for controlling the fluid direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This application relates to the technical field of thermal management, and in particular to a thermal management system.
  • the thermal management system of the automobile can realize the cooling, heating, ventilation and air purification of the air in the cabin.
  • the relevant thermal management system is heating, its refrigerant flow path can use the excess heat generated by the motor or battery through the heat exchanger.
  • components that can generate excess heat often have different operating temperature requirements, so it is necessary to set up corresponding heat exchangers to recover the excess heat generated by each component. Therefore, the number of heat exchangers used by the thermal management system for waste heat recovery More.
  • the present application provides a thermal management system to reduce the number of heat exchangers used by the thermal management system for waste heat recovery.
  • a thermal management system includes: a cooling liquid circulation flow path and a refrigerant circulation flow path; the thermal management system includes a first heat exchanger, and the first heat exchanger includes a first heat exchange part capable of performing heat exchange and a second heat exchange part.
  • the second heat exchange part, the flow path of the first heat exchange part is connected to the cooling liquid circulation flow path, the flow path of the second heat exchange part is connected to the refrigerant circulation flow path, and the cooling liquid circulates
  • the flow path includes a first heat exchange component, a second heat exchange component and a first branch;
  • the thermal management system includes a heating mode, in which the refrigerant circulating flow path is connected to form a loop, the first heat exchange assembly, the second heat exchange assembly, and the first heat exchange part
  • the first heat exchange component, the first branch, and the first heat exchange part are connected to form a loop.
  • the coolant flows all the way to the first branch and all the way to the place.
  • the second heat exchange assembly two cooling liquids merge and flow to the first heat exchange part, and the heat of the cooling liquid circulation flow path is transferred to the refrigerant circulation flow path through the first heat exchanger.
  • the cooling liquid circulation flow path further includes a first flow adjustment device, and the first flow adjustment device includes a first interface, a second interface, and a third interface, and the first interface can be connected to the first interface.
  • the heat exchange assembly is in communication, the second interface can be in communication with the second heat exchange assembly, the third interface can be in communication with the first branch, and in the heating mode, the second interface, the The third ports are all in communication with the first ports, and the cooling liquid is divided through the first flow adjusting device after passing through the first heat exchange assembly.
  • the first flow regulating device is a proportional regulating valve.
  • the cooling liquid circulation flow path further includes a second branch.
  • the second branch communicates with the second heat exchange assembly to form a loop, and the cooling liquid passes through the first After the second heat exchange assembly, it flows all the way to the second branch and all the way to the first heat exchange part.
  • the cooling liquid circulation flow path includes a second flow adjustment device
  • the second flow adjustment device includes a fourth interface, a fifth interface, and a sixth interface
  • the fourth interface can be exchanged with the second interface.
  • the thermal assembly is connected, the fifth interface can be communicated with the first heat exchange part, the sixth interface can be communicated with the second branch, and in the heating mode, the fifth interface, the The sixth interface is all connected with the fourth interface, and the cooling liquid passes through the second heat exchange assembly and then flows through the second flow adjustment device.
  • the second flow regulating device is a proportional regulating valve.
  • the refrigerant circulation flow path includes a compressor, a first indoor heat exchanger, a first regulating device, an outdoor heat exchanger, and a third branch.
  • the compressor, The first indoor heat exchanger, the first adjusting device, the outdoor heat exchanger, and the second heat exchange part are connected to form a loop
  • the compressor, the first indoor heat exchanger, The third branch and the second heat exchange part are connected to form a loop, and the refrigerant is divided after passing through the first indoor heat exchanger, and flows all the way to the third branch and all the way to the first regulating device.
  • the refrigerant circulation flow path further includes a second indoor heat exchanger and a second adjusting device
  • the thermal management system further includes a cooling mode, and in the cooling mode:
  • the compressor, the first indoor heat exchanger, the outdoor heat exchanger, the second adjusting device, and the second indoor heat exchanger are connected to form a loop, and the compressor, the first An indoor heat exchanger, the outdoor heat exchanger, the third branch, and the second heat exchange part are connected to form a loop.
  • the refrigerant passes through the outdoor heat exchanger and then diverges, and flows all the way to the third branch. All the way to the second indoor heat exchanger.
  • the refrigerant circulation flow path includes a flow path adjustment device
  • the flow path adjustment device includes a first connection port, a second connection port, a third connection port, and a fourth connection port.
  • the first connection port It can be connected to the outdoor heat exchanger
  • the second connection port can be connected to the second heat exchange part
  • the first adjusting device and the third branch can both be connected to the third connection port
  • the fourth connection port can be connected to the first
  • the two heat exchangers are in communication;
  • the flow path adjusting device includes a first working state and a second working state.
  • the first connection port In the first working state, the first connection port is connected to the second connection port, and the third connection port is connected to the fourth connection port; In the second working state, the first connection port is in communication with the fourth connection port, and the second connection port is not in communication with the third connection port; in the heating mode: the flow path adjusting device is in the first working state; In the cooling mode: the flow path adjusting device is in the second working state.
  • the first adjusting device is a combination valve
  • the first adjusting device includes a throttle unit valve and a conduction unit valve
  • the conduction unit valve is a one-way valve
  • the throttle unit valve and the The conduction unit valves are arranged in parallel;
  • the throttle unit valve is opened, and the conduction unit valve is closed;
  • the throttle unit valve In the cooling mode: the throttle unit valve is closed, and the conduction unit valve is opened.
  • the refrigerant circulation flow path includes a second adjusting device, the second adjusting device is connected to the third branch, the second adjusting device is in a conducting state, or the second adjusting device is in a closed state. Flow state, or the second adjusting device is in a blocking state.
  • the cooling liquid circulation flow path further includes a second heat exchanger
  • the cooling mode further includes a first working mode
  • the first heat exchange assembly in the first working mode: the first heat exchange assembly, the first The branch circuit and the first heat exchange part are in communication to form a loop, and the second heat exchange assembly and the second heat exchanger are in communication to form a loop, and the second heat exchange assembly passes through the second heat exchange The device exchanges heat with the outside world.
  • the cooling mode includes a second working mode, in which the first heat exchange assembly, the second heat exchange assembly, and the first heat exchange part communicate to form a loop, After the coolant passes through the first heat exchange component, it flows all the way to the first branch and the other way to the second heat exchange component. The two coolants merge and flow to the first heat exchange part, and the coolant circulates. The heat of the circuit is transferred to the refrigerant circulation channel through the first heat exchanger.
  • the first heat exchange component includes a battery
  • the thermal management system further includes a battery heat dissipation mode.
  • the battery heat dissipation mode the first heat exchange component, the second heat exchanger, and the first heat exchanger
  • the heat part is connected to form a loop, and the first heat exchange component transfers the heat generated by the battery to the outside through the second heat exchanger.
  • the cooling fluid circulation flow path further includes a heater
  • the first heat exchange component includes a battery
  • the thermal management system further includes a battery heating mode.
  • the first The heat part, the heater, the first heat exchange component, and the first branch are connected to form a loop.
  • the refrigerant flow path further includes a gas-liquid separator, the outlet of the gas-liquid separator can communicate with the inlet of the compressor, and the inlet of the gas-liquid separator can communicate with the second heat exchange
  • the outlet of the second indoor heat exchanger communicates with at least one of the outlets of the second indoor heat exchanger.
  • a thermal management system includes: a refrigerant system, the refrigeration system includes a compressor, a first indoor heat exchanger, a second indoor heat exchanger, an outdoor heat exchanger and a throttling device; a cooling liquid system, the cooling liquid The system includes a first pump, a first heat exchange assembly, and a second heat exchange assembly; a first dual-fluid heat exchanger, the first dual-fluid heat exchanger includes a first heat exchange part and a second heat exchange part that are not connected Hot part
  • the thermal management system includes a heating mode, and in the heating mode:
  • the refrigerant system communicates with the second heat exchange part to form a refrigerant circuit
  • the outlet of the compressor communicates with the inlet of the first indoor heat exchanger
  • the outlet of the first indoor heat exchanger exchanges heat with the outdoor
  • At least one of the first port of the outdoor heat exchanger and the inlet of the second heat exchange part communicates with the inlet of the compressor
  • the outlet of the second heat exchange part communicates with the inlet of the compressor
  • the second port of the outdoor heat exchanger communicates with the inlet of the compressor Connected
  • the throttle device is connected between the outlet of the first indoor heat exchanger and the first port of the outdoor heat exchanger, and/or the throttle device is connected between the outlet of the first indoor heat exchanger and the second port of the outdoor heat exchanger. Between the inlets of the heat section;
  • the cooling liquid system communicates with the first heat exchange part to form a cooling liquid circuit, the cooling liquid system includes a first branch, the first heat exchange component is in communication with a first pump, and the second heat exchange component At least one of the first branch is in communication with the first pump and the first heat exchange part.
  • the coolant circulation flow path further includes a first flow adjustment device, the first flow adjustment device is a three-way proportional control valve, and the first flow adjustment device includes a first interface, a second interface, and a first interface. Three interfaces, the first interface can communicate with the first heat exchange assembly, the second interface can communicate with the first branch, and the third interface can communicate with the second heat exchange assembly;
  • the second interface and the third interface are both connected with the first interface, and the cooling liquid passes through the first heat exchange assembly and then is divided by the first flow adjustment device.
  • the cooling liquid circulation flow path further includes a second branch, and in the heating mode: the second branch and the second heat exchange assembly are connected to form a loop, and the cooling liquid passes through the first After the second heat exchange assembly, it flows all the way to the second branch and all the way to the first heat exchange part.
  • a heat management system including: a compressor, a first indoor heat exchanger, a second indoor heat exchanger, an outdoor heat exchanger, a first throttling device, a second throttling device; a first pump, a first heat exchange Component, a second heat exchange component; a first dual-fluid heat exchanger, the first dual-fluid heat exchanger includes a first heat exchange part and a second heat exchange part that are not connected;
  • the thermal management system includes a heating mode, and in the heating mode:
  • the outlet of the compressor is in communication with the inlet of the first indoor heat exchanger, and the outlet of the first indoor heat exchanger is in communication with at least one of the first port of the outdoor heat exchanger and the inlet of the second heat exchange part,
  • the outlet of the second heat exchange part is in communication with the inlet of the compressor, and the second port of the outdoor heat exchanger is in communication with the inlet of the compressor;
  • the first throttling device is in communication with the outlet of the first indoor heat exchanger Between the first port of the outdoor heat exchanger, the second throttling device is connected between the outlet of the first indoor heat exchanger and the inlet of the second heat exchange part;
  • the thermal management system further includes a first branch, the first heat exchange component is in communication with a first pump, and at least one of the second heat exchange component and the first branch communicates with the first pump and the first heat exchange component. ⁇ Connectivity.
  • the cooling liquid circulation flow path of the present application includes a first heat exchange assembly, a second heat exchange assembly and a first branch.
  • the first heat exchange assembly and the second heat exchange assembly The heat exchange assembly and the first heat exchange part are in communication to form a loop, the first heat exchange assembly, the first branch and the first heat exchange part are in communication to form a loop, and the cooling liquid passes through the first heat exchange assembly.
  • the two-way cooling liquid flows to the first heat exchange part after confluence, which can reduce the number of heat exchangers used by the heat management system for waste heat recovery.
  • Fig. 1 is a schematic diagram of a heating mode of an exemplary embodiment of the present application
  • Fig. 2 is a schematic diagram of a first working mode principle of a refrigeration mode according to an exemplary embodiment of the present application
  • Fig. 3 is a schematic diagram of the second working mode principle of the refrigeration mode of an exemplary embodiment of the present application.
  • FIG. 4 is a schematic diagram of the principle of a battery heat dissipation mode according to an exemplary embodiment of the present application.
  • Fig. 5 is a schematic diagram of the principle of a battery heating mode according to an exemplary embodiment of the present application.
  • thermal management system of the present application can be applied to automotive thermal management systems, such as electric vehicle air conditioning systems, and other thermal management systems such as automotive thermal management systems or commercial thermal management systems.
  • automotive thermal management systems such as electric vehicle air conditioning systems
  • other thermal management systems such as automotive thermal management systems or commercial thermal management systems.
  • the following is a specific automotive thermal management system.
  • the thermal management system is described as an example in conjunction with the accompanying drawings. In the case of no conflict, the following embodiments and features in the implementation manners can be mutually supplemented or combined with each other.
  • the thermal management system includes: a coolant circulation flow path and a refrigerant circulation flow path.
  • the coolant circulation flow path and the refrigerant circulation flow path are isolated from each other and do not circulate.
  • the thermal management system also includes a first heat exchanger 7.
  • the first heat exchanger/first dual-fluid heat exchanger 7 includes a first heat exchange part 71 and a second heat exchange part 72, and the flow passage of the first heat exchange part 71
  • the flow passages of the second heat exchange part 72 are isolated from each other and not communicated with each other.
  • the flow path of the first heat exchange part 71 is connected to the coolant circulation flow path
  • the flow path of the second heat exchange part 72 is connected to the refrigerant circulation flow path, that is, the flow path of the first heat exchange part 71 is the coolant circulation flow path
  • the flow path of the second heat exchange part 72 is a part of the refrigerant circulation flow path.
  • the coolant flowing through the first heat exchange part 71 and the refrigerant flowing through the second heat exchange part 72 can exchange heat in the first
  • the heat exchange is carried out in the heat exchanger/first dual-channel heat exchanger 7.
  • the cooling liquid can be a mixture of water and ethanol
  • the refrigerant can be a heat exchange medium such as CO 2.
  • the thermal management system also includes a first heat exchange component 8 and a second heat exchange component 9.
  • the first heat exchange assembly 8 includes a battery, and the first heat exchange assembly 8 can transfer the excess heat generated by the battery to the cooling liquid, and can also transfer the heat of the cooling liquid to the battery.
  • the second heat exchange assembly 9 includes components such as a motor and an inverter. The second heat exchange assembly 9 can transfer excess heat generated by the motor and other components to the coolant, and can also transfer the heat of the coolant to the motor and other components.
  • the first heat exchange assembly 8 and the second heat exchange assembly 9 can transfer heat to the cooling liquid differently. Therefore, when the cooling liquid passes through the first heat exchange assembly 8 and the second heat exchange assembly 9, the respective temperature changes are also different.
  • the refrigerant circulation flow path includes a compressor 1, a first indoor heat exchanger 2, a first regulating device 3, an outdoor heat exchanger 4 and a third branch 14.
  • the outlet of the compressor 1 is connected with the inlet of the first indoor heat exchanger 2 through a pipeline, and the outlet of the first indoor heat exchanger 2 is connected with the first port of the first regulating device 3 through a pipeline.
  • the second port is connected to the first port of the outdoor heat exchanger 4 through a pipeline, and the second port of the outdoor heat exchanger 4 is connected to the inlet of the second heat exchange part 72 through a pipeline.
  • One end of the third branch 14 is connected with the outlet of the first indoor heat exchanger 2 through a pipeline, and the other end of the third branch 14 is connected with the inlet of the second heat exchange part 72.
  • the pipeline connecting the outdoor heat exchanger 4 and the second heat exchange part 72 can be connected to the third branch 14 as a junction point. In this way, the refrigerant can be divided into two ways after passing through the first indoor heat exchanger 2, one way It flows to the third branch 14 and flows to the first adjusting device 3 all the way.
  • the second heat exchange part 72 may be provided with two inlets, one inlet is connected to the third branch 14 and the outdoor heat exchanger 4 is directly connected to the other inlet of the second heat exchange part 72 through a pipeline.
  • the cooling liquid circulation flow path includes a first pump 21, a first heat exchange assembly 8, a second heat exchange assembly 9 and a first branch 10.
  • the first heat exchange assembly 8 and the first heat exchange part 71 are connected in series through pipelines, and the first heat exchange assembly 8 is connected to the first branch 10 and the second heat exchange assembly 9 through pipelines.
  • One end of the first branch 10 can communicate with the outlet of the first heat exchange assembly 8
  • the other end of the first branch 10 can communicate with the inlet of the second heat exchange portion 72
  • the first port of the second heat exchange assembly 9 can communicate with The outlet of the first heat exchange assembly 8 can be communicated
  • the second port of the second heat exchange assembly 9 can communicate with the outlet of the first heat exchange part 71.
  • the first pump 21 can be connected to the pipeline between the first heat exchange assembly 8 and the first heat exchange portion 71, or can be connected to the pipeline between the first heat exchange assembly 8 and the second heat exchange assembly 9.
  • the first pump 21 is used to drive the cooling liquid to flow from the first heat exchange assembly 8 to the second heat exchange assembly 9.
  • the cooling liquid flow path can also be connected with a pressure water tank (not shown in the figure) for injecting more cooling liquid into the cooling liquid circulation flow path, increasing the flow rate or increasing the injection volume.
  • the thermal management system of the present application includes a heating mode, which can be used to heat the interior of the vehicle compartment when the external environment temperature is low in winter.
  • the compressor 1, the first indoor heat exchanger 2, the first The regulating device 3, the outdoor heat exchanger 4, and the second heat exchange part 72 are connected to form a loop, and the compressor 1, the first indoor heat exchanger 2, the third branch 14, and the second heat exchange part 72 are connected to form a loop,
  • the refrigerant is divided into two flow paths after passing through the first indoor heat exchanger 2, one flow to the third branch 14 and the other flow to the first adjusting device 3.
  • the refrigerant flows through the outdoor heat exchanger 4 to the second heat exchange section 72, the refrigerant flows through the third branch 14 to the second heat exchange section 72, and the refrigerant flows through the outdoor heat exchanger 4 and the third branch 14
  • the refrigerant flows to the second heat exchange part 72 after being merged.
  • the refrigerant flowing through the outdoor heat exchanger 4 and the refrigerant in the third branch 14 may respectively flow to the second heat exchange part 72.
  • the refrigerant flowing through the outdoor heat exchanger 4 may not pass through the second heat exchange part 72 but directly return to the compressor 1.
  • the first heat exchange assembly 8, the second heat exchange assembly 9 and the first heat exchange part 71 are connected to form a loop, and the first heat exchange assembly 8, the first branch 10 and the first exchange The heat part 71 is connected to form a loop.
  • the cooling liquid flows all the way to the first branch 10 and the other way to the second heat exchange assembly 9.
  • the two cooling liquids merge and flow to the first heat exchange part 71 for cooling.
  • the heat of the liquid circulation flow path is transferred to the refrigerant circulation flow path through the first heat exchanger 7. When the coolant passes through the motor, the temperature will change further.
  • the working principle of the refrigerant flow path is as follows: the refrigerant is compressed into a high-temperature and high-pressure gaseous state by the compressor 1, and when it passes through the first indoor heat exchanger 2, the first indoor heat exchanger 2 is used as a condenser. The refrigerant releases heat.
  • the thermal management system can adjust the indoor ambient temperature.
  • the thermal management system also includes an air duct 16 and a fan 23.
  • the fan 23 sends air into the air duct 16.
  • the first indoor heat exchanger 2 is located in the air duct 16. When the air inside passes through the first indoor heat exchanger 2, it exchanges heat with the refrigerant, and the air is heated and sent into the vehicle compartment.
  • the temperature of the refrigerant decreases again, the refrigerant enters a low-temperature and low-pressure state, and the low-temperature and low-pressure refrigerant enters the outdoor heat exchanger 4 and passes through the outdoor heat exchanger 4 to interact with the external environment.
  • the low-temperature and low-pressure refrigerant entering the third branch 14 merges with the low-temperature and low-pressure refrigerant after passing through the outdoor heat exchanger 4, and then flows to the second heat exchange section 72, where it passes through the second heat exchange The portion 72 absorbs the heat of the coolant flowing into the first heat exchange portion 71 and then returns to the compressor 1 to be compressed again.
  • the refrigerant after 72 merges with the two-way refrigerant that has not passed through the second heat exchange part 72 and then returns to the compressor 1, so as to circulate to form a circuit.
  • the refrigerant flow path further includes a gas-liquid separator 17, and the refrigerant returns to the compressor 1 after passing through the gas-liquid separator 17.
  • the gas-liquid separator 17 may be provided with two pipeline connection inlets for respectively connecting two refrigerants, and the two refrigerants flow into the gas-liquid separator 17 at the same time; it may also be the gas-liquid separator 17. There is only one connection inlet. The two refrigerants first merge and then flow into the gas-liquid separator 17. After the refrigerant is separated from the gas and liquid in the gas-liquid separator 17, the gaseous refrigerant returns to the compressor 1 and is compressed again.
  • the refrigerant flow path may not include the gas-liquid separator 17, for example, the refrigerant is in a gas state rather than a two-phase gas-liquid state before entering the compressor 1, or the compressor 1 has a gas-liquid separation function, etc. happening.
  • the two refrigerants may not merge, but flow to the gas-liquid separator 17 separately and enter the gas-liquid separator 17 at the same time. If the thermal management system does not include the gas-liquid separator 17, the two-way refrigerant The agent can also flow to the compressor 1 separately and enter the compressor 1 at the same time.
  • the refrigerant flow path further includes a flow path adjustment device 18, which is a four-way valve, and includes a first connection port 181, a second connection port 182, a third connection port 183, and a fourth connection port. ⁇ 184.
  • the first connection port 181 can be connected to the second connection port 182 or the fourth connection port 184; the third connection port 183 can be connected to the second connection port 182 or the fourth connection port 184.
  • the first connecting port 181 of the adjusting device can communicate with the outdoor heat exchanger 4, the second connecting port 182 can communicate with the inlet of the second heat exchange portion 72, and the first port of the first adjusting device 3 is connected to the third branch 14 Both can communicate with the third connection port 183, and the fourth connection port 184 can communicate with the outlet of the second heat exchanger 2.
  • the flow path adjusting device 18 includes a first working state and a second working state. In the first working state, the first connection port 181 is in communication with the second connection port 182, and the third connection port 183 is in communication with the fourth connection port 184; In the second working state, the first connection port 181 is in communication with the fourth connection port 184, and the second connection port 182 is not in communication with the third connection port 183.
  • the flow adjustment device 18 In the heating mode, the flow adjustment device 18 is in the first working state, and the refrigerant flows from the outlet of the first indoor heat exchanger 2 into the fourth connection port 184 of the flow adjustment device 18, and flows from the flow adjustment device 18 to the fourth connection port 184.
  • the third connection port 183 flows out, and the refrigerant flows out of the third connection port 183 and then divides into two paths, one to the first port of the first regulating device 3 and the other to the third branch 14; and the refrigerant passes through the outdoor heat exchanger 4 After that, it passes through the flow path adjusting device 18 and flows to the second heat exchange part 72.
  • the refrigerant flow path also includes a second adjusting device 19, the third adjusting device 19 is connected to the third branch 14, and the third adjusting device 19 can have a conducting state, a throttling state, and a resistance.
  • the off state allows it to have the functions of conducting and blocking the third branch 14 and throttling the refrigerant fluid on the third branch 14.
  • heating mode when the temperature of the coolant is high, for example, the temperature of the coolant is higher than 20°C (the temperature can be between 15°C and 25°C, or it can be set according to the actual operating temperature of the coolant.
  • the third adjusting device 19 is in a throttling state, and the refrigerant is throttled and cooled by the third adjusting device 19, so that the temperature of the refrigerant is lowered before entering the second heat exchange portion 72, and more heat of the cooling liquid can be absorbed.
  • the third regulating device 19 is in a conducting state, and when the refrigerant passes through the third regulating device 19, the state does not change.
  • the third adjusting device 19 can also block the third branch 14 so that the refrigerant does not flow into the second heat exchange part 72 through the third branch 14.
  • the working principle of the coolant flow path is as follows: the first pump 21 is activated, and the coolant passing through the first heat exchange assembly 8 is divided into two paths, one flow to the second heat exchange assembly 9 and the other way to the first branch. 10.
  • the first heat exchange assembly 8 includes a battery
  • the second heat exchange assembly 9 includes a motor
  • the operating temperature of the motor is higher and the battery requires a lower operating temperature. Therefore, the cooling liquid will pass through the second heat exchange assembly 9. Be heated.
  • This part of the high-temperature cooling liquid is mixed with the relatively low-temperature cooling liquid passing through the first branch 10 to form a cooling liquid with a suitable temperature.
  • the cooling liquid in this state passes through the first heat exchange part 71, it is with the second heat exchange part 72.
  • the cooling liquid transfers heat to the refrigerant, and when the cooling liquid enters the first heat exchange assembly 8, it just reaches the operating temperature required by the battery.
  • the function of the first branch 10 is to divide and flow a part of the cooling liquid, so that part of the cooling liquid is heated to a high-temperature cooling liquid without passing through the motor, forming a relatively low-temperature and a relatively high-temperature cooling liquid, reducing the flow to the second cooling liquid.
  • the temperature of the cooling liquid of a heat exchange part 71 reduces the possibility that the temperature of the cooling liquid and the refrigerant after the heat exchange is still higher than the operating temperature required by the battery, and controls the temperature of the cooling liquid entering the first heat exchange assembly 8 in an appropriate range In this way, the temperature adjustment mechanism of the cooling liquid circulation flow path itself is formed.
  • the refrigerant absorbs the heat of the coolant to recover the excess heat generated by the first heat exchange assembly 8 and the second heat exchange assembly 9, so as to improve the heating capacity while also adjusting the battery operation. temperature.
  • the coolant flow path may not work.
  • the first heat exchange assembly 8, the second heat exchange assembly 9 and the first heat exchange part 71 are in communication to form a loop, and the first heat exchange assembly 8, the first branch 10 and the first heat exchange part 71 are in communication A loop is formed.
  • the cooling liquid flows all the way to the first branch 10 and all the way to the second heat exchange assembly 9.
  • the two cooling liquids merge and flow to the first heat exchange part 71, which can reduce the heat management system The number of heat exchangers used for waste heat recovery.
  • the cooling liquid circulation flow path further includes a first flow adjustment device 11.
  • the first flow regulating device 11 includes a first interface 111, a second interface 112, and a third interface 113.
  • the first interface 111 can be connected to the first heat exchange assembly 8 through a pipeline, and the second interface 112 passes through the first branch 10
  • the pipeline is connected, and the third interface 113 is connected with the second heat exchange assembly 9.
  • the second interface 112 and the third interface 113 are both connected to the first interface 111, and the cooling liquid flows through the first heat exchange assembly 8 and then is divided by the first flow regulating device 11.
  • the first flow regulating device 11 is a three-way proportional regulating valve, which can regulate the flow of the cooling liquid entering the first branch 10 and flowing to the second heat exchange assembly 9.
  • the first flow adjusting device 11 can also adjust the temperature of the cooling liquid entering the first heat exchange assembly 8 to meet the operating temperature required by the battery.
  • the cooling liquid circulation flow path further includes a second branch circuit 12.
  • the second branch circuit 12 and the second heat exchange assembly 9 are connected to form a loop, and the cooling liquid passes through the second heat exchange assembly 9 After that, it flows all the way to the second branch 12 and all the way to the first heat exchange part 71.
  • a first control valve 22 is provided on the second branch 12 to facilitate the on-off of the second branch 12. It is understandable that the second branch 12 can split the cooling liquid passing through the second heat exchange assembly 9.
  • the second branch 12 can be turned on and off by the first control valve 22 according to actual conditions, and is used to adjust the temperature of the cooling liquid circulating flow path.
  • the cooling liquid circulation flow path further includes a second flow adjustment device 13, and the second flow adjustment device 13 includes a fourth interface 131, a fifth interface 132, and a sixth interface 133.
  • the fourth interface 131 and the second exchange The thermal assembly 9 is connected by a pipeline, and the fifth interface 132 is connected with the first heat exchange part 71 by a pipeline, wherein one end of the first branch 10 can be connected with the fifth interface 132 and the first heat exchange part 71 by a pipeline,
  • the sixth interface 133 is connected to the second branch 12 through a pipeline.
  • the fifth interface 132 and the sixth interface 133 are both connected to the fourth interface 131, and the cooling liquid passes through the second heat exchange assembly 9 and then passes through the second flow adjustment device 13 to be split.
  • the second flow regulating device 13 is a proportional regulating valve, which is used to regulate the coolant flow to the second branch 12 and to the first heat exchange part 71, so that the thermal management system can better regulate the working temperature of the motor and the battery. It should be noted that the adjustment functions of the first branch 10 and the second branch 12 are affected by the amount of coolant injected. Therefore, a pressure water tank can be connected to the cooling liquid circulation flow path for adjusting the injection amount of the cooling liquid, and the flow rate is distributed through the first flow adjustment device 11 and the second flow adjustment device 13.
  • the cooling liquid circulation flow path of this embodiment also includes a third control valve 26, which is connected to the pipeline between the second heat exchange assembly 9 and the second flow adjustment device 13, and the communication of the control pipeline is more convenient. . In other embodiments, the third control valve 26 may also be connected to the pipeline between the second heat exchange assembly 9 and the first flow regulating device 11.
  • the refrigerant circulation flow path further includes a second indoor heat exchanger 5 and a second regulating device 6, and the outlet of the second regulating device 6 can communicate with the inlet of the second indoor heat exchanger 5. It is used to throttle the refrigerant before entering the second indoor heat exchanger 5.
  • the cooling liquid circulation flow path also includes a second heat exchanger 15, a second control valve 25, a third control valve 26, and a second pump 20.
  • the second heat exchanger 15 can be a heat dissipation water tank or an air heat exchanger.
  • the second pump 20 is arranged on the pipeline between the second heat exchange assembly 9 and the second heat exchanger 15, the second control valve 25 is connected to the outlet of the second heat exchanger 15, and the third control valve 26 is connected to the first At the outlet of the second heat exchange assembly 9, in the heating mode, the third control valve 26 is opened, the second control valve 25 is closed, and the second pump 20 can be opened or closed.
  • the thermal management system also includes a cooling mode.
  • the cooling mode includes a first working mode and a second working mode.
  • the first working mode is used to cool the environment in the vehicle compartment when the external environment temperature is high in summer, and at the same time, it can also dissipate the motor and the battery.
  • the thick solid line part is the flow path of the refrigerant
  • the thin solid line part is the flow path of the coolant.
  • compressor 1, first indoor heat exchanger 2, flow adjustment device 18, outdoor heat exchanger 4, first adjustment device 3, second adjustment device 6, and second indoor heat exchanger 5 The gas-liquid separator 17 is connected to form a loop; and, the compressor 1, the first indoor heat exchanger 2, the flow adjustment device 18, the outdoor heat exchanger 4, the first adjustment device 3, the third branch 14, and the second The heat exchange part 72 communicates to form a loop.
  • the refrigerant passes through the first adjusting device 3 and then diverges, flows all the way to the third branch 14 and all the way to the second indoor heat exchanger 5.
  • the refrigerant may not pass through the first adjusting device 3, and the refrigerant may pass through the first adjusting device 3.
  • the first adjusting device 3 is in the on state at this time, and it has multiple functions for switching in different modes.
  • the first regulating device 3 can be a valve that has both the conduction function and the throttling function, or it can be a combined valve of at least two valve components.
  • the first regulating device 3 is a combined valve, including a throttle unit valve 31 and a conduction unit valve 32.
  • the conduction unit valve 32 may be a one-way valve or a two-way control valve.
  • the throttle unit valve 31 is closed and the conduction unit valve 32 is opened to realize the one-way flow of refrigerant, that is, the refrigerant flows from the outdoor heat exchanger 4 to the conduction unit valve 32, and then passes through the conduction unit valve 32. Flow to the second heat exchange part 72.
  • the flow path adjusting device 18 is in the second working state.
  • the working principle of the refrigerant circulation flow path the refrigerant is compressed into a high-temperature and high-pressure gaseous state by the compressor 1, and the high-temperature and high-pressure gaseous refrigerant passes through the first indoor heat exchanger 2 without heat exchange.
  • the air door is blocked from passing through the first indoor heat exchanger 2.
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with the external environment through the outdoor heat exchanger 4.
  • the outdoor heat exchanger 4 is used as a condenser. After the refrigerant releases heat, the temperature decreases and passes through the conduction unit valve 32 of the first regulating device 3.
  • the state of the refrigerant in the conduction unit valve 32 does not change.
  • the third regulating device 19 can be selected to throttle and cool the refrigerant flow path, or not to throttle.
  • the purpose of turning on the third regulating device 19 is to reduce the refrigerant.
  • the temperature makes it absorb more heat of the coolant flowing through the first heat exchange part 71 in the second heat exchange part 72, so as to achieve the purpose of dissipating heat for the motor or battery.
  • the third adjusting device 19 can be turned off to block the third branch 14; or when only a part of the motor or battery heat is taken away, the third adjusting device 19 is in the conduction mode and does not perform Throttling, the refrigerant flows to the second heat exchange part 72 through the third branch 14.
  • the refrigerant exchanges heat with the coolant in the first heat exchange part 71, and absorbs the heat of the coolant flow path, so that the battery will not operate at a high or high temperature in the high temperature environment in summer. Exceeding requirements.
  • the other refrigerant is throttled and cooled by the second adjusting device 6, and then enters the second indoor heat exchanger 5.
  • the second indoor heat exchanger 5 is used as an evaporator, and the refrigerant passes through the first indoor evaporator 5 and the air duct 16 The air exchanges heat, the heat of the air is transferred to the refrigerant, and the air cools down and enters the cabin, which reduces the ambient temperature in the cabin.
  • the last two refrigerants are separated from the gas and liquid by the gas-liquid separator 17 and then returned to the compressor 1 to be compressed again, and so on.
  • the first pump 21 of the coolant circulation flow path is turned on, the first heat exchange assembly 8, the first pump 21, the first flow adjustment device 11, the first branch 10, and the first heat exchange part 71 Connected to form a loop, the first heat exchange assembly 8 transfers the heat of the battery to the cooling liquid, which flows in the flow path under the drive of the first pump 21, and when passing through the first heat exchange part 71, transfers the heat to the second
  • the refrigerant in the heat exchange part 72 and finally the cooling liquid returns to the first heat exchange assembly 8 to absorb the heat of the battery again, and circulate in this way to achieve the purpose of dissipating heat for the battery.
  • the second pump 20 is turned on at the same time, the first control valve 22 is closed, or the fifth port 132, the sixth port 133, and the fourth port 131 of the second flow regulating device 13 are all disconnected, or the first flow regulating device
  • the first interface 111 and the second interface 112 of 11 are not connected to the third interface 113, so that the coolant does not pass through the second branch 12, and the second control valve 25 and the third control valve 26 are both open, and the second heat exchange
  • the component 9, the second heat exchanger 15, and the second pump 20 are connected to form a loop.
  • the second pump 20 drives the coolant to flow, and brings the heat of the motor to the second heat exchanger 15, through the second heat exchanger 15 and the external environment Carry out heat exchange, so as to play a role in cooling the motor.
  • the first heat exchange assembly 8 in the second working mode, the first heat exchange assembly 8, the first pump 21, the first flow adjustment device 11, the second heat exchange assembly 9, the second flow adjustment device 13, and the first heat exchange
  • the part 71 is connected to form a loop, the second control valve 25 is closed, the third control valve 26 is opened, the coolant does not pass through the second heat exchanger 15, and the second interface 112 and the third interface 113 of the first flow regulating device 11 are both connected to the first An interface 111 is connected.
  • the cooling liquid After passing through the first heat exchange assembly 8, the cooling liquid flows all the way to the first branch 10 and the other way to the second heat exchange assembly 9.
  • the two cooling liquids merge and flow to the first heat exchange part 71, and the cooling liquid circulates The heat of the flow path is transferred to the refrigerant circulation flow path through the first heat exchanger/first dual-flow heat exchanger 7.
  • the second pump 20 can be turned on or not turned on. If it is not turned on, the second pump 20 is only used as a pipeline.
  • the first control valve 22 can be closed or opened. When the first control valve 22 is opened, when the coolant flows to the second branch 12, it can maintain the normal working temperature of the motor while cooling the motor and the battery at the same time. .
  • the principle is the same as the working principle of the cooling liquid circulating flow path in the heating mode, that is, the first flow adjusting device 11 and the third flow adjusting device 13 distribute the cooling liquid and adjust the amount of heat transferred from the cooling liquid to the refrigerant.
  • the thermal management system can use the excess heat generated by the motor and the battery to actively defrost the outdoor heat exchanger 4.
  • the thick solid line part is the flow path of the refrigerant
  • the thin solid line part is the flow path of the coolant.
  • the working principle of the refrigerant side is the same as the working principle of the refrigerant in the first working mode.
  • the outdoor evaporator 4 is used as a condenser. When the refrigerant passes through the outdoor heat exchanger 4, it releases heat.
  • the frost on the surface of the outdoor heat exchanger 4 melts.
  • the first heat exchange assembly 8, the first pump 21, the first flow adjustment device 11, the second heat exchange assembly 9, the second flow adjustment device 13, and the first heat exchange part 71 are connected to form a loop ,
  • the second control valve 25 is closed, the coolant does not pass through the second heat exchanger 15, the second interface 112 and the third interface 113 of the first flow regulating device 11 are both connected to the first interface 111, and the coolant passes through the first heat exchange
  • the assembly 8 all the way to the first branch 10 all the way to the second heat exchange assembly 9, the two ways of cooling fluid merge and flow to the first heat exchange part 71 the heat of the cooling fluid circulation flow path is transferred through the first heat exchanger 7 Give the refrigerant circulation flow path.
  • the second pump 20 can be turned on or not turned on. If it is not turned on, the second pump 20 is only used as a pipeline.
  • the first control valve 22 can be closed or opened. When the first control valve 22 is opened, when the coolant flows to the second branch 12, it can maintain the normal working temperature of the motor while cooling the motor and the battery at the same time.
  • the principle of the cooling liquid circulation flow path is the same as the working principle of the cooling liquid circulation flow path in the heating mode, that is, the first flow adjustment device 11 and the third flow adjustment device 13 are used to distribute the cooling liquid and adjust the transfer of the cooling liquid to The amount of heat of the refrigerant.
  • the second indoor heat exchanger 5 is used as an evaporator, which will reduce the temperature of the air entering the compartment. Therefore, you can choose to set a damper to make the air bypass or not pass through the second compartment. In the heat exchanger 5, the refrigerant in the second indoor heat exchanger 5 does not exchange heat.
  • the second regulating device 6 in the second working mode, can also be controlled to turn off, the refrigerant flows from the outdoor heat exchanger 4 to the third branch 14, and the second indoor heat exchanger 5 does not work. Therefore, There will be no cold wind in the compartment.
  • the first heat exchange component 8 includes a battery. During battery charging or rapid charging, the battery is prone to generate more heat, and the battery cannot dissipate heat, which may pose a safety hazard.
  • the thermal management system also includes a battery heat dissipation mode. As shown in Figure 4, in the battery heat dissipation mode: the refrigerant flow path is not working, the first pump 21 is started, the coolant is driven to flow in the pipeline, and the second pump 20 is not working.
  • the second control valve 25 is opened, the first control valve 22 and the third control valve 26 are both closed, the branch where the first control valve 22 and the third control valve 26 are located is not conductive, and the first port of the first flow regulating device 11 111 communicates with the third interface 113, the second interface 112 is closed, the first heat exchange assembly 8, the first pump 21, the first flow regulating device 11, the second heat exchanger 15, the second control valve 25, the first heat exchange
  • the portion 71 is connected to form a loop, and the first heat exchange assembly 8 transfers the heat generated by the battery to the outside through the second heat exchanger 15, so that the battery can dissipate heat during the charging process.
  • the cooling liquid circulation flow path further includes a heater 24, the first heat exchange assembly 8 further includes a battery, and the thermal management system further includes a battery heating mode.
  • the battery heating mode the compressor 1 does not work, the refrigerant circulation flow path is not connected, the first control valve 22 is closed, the second control valve 25 is closed, and the third control valve 26 is closed.
  • each of the three valves is located The branch is not connected.
  • the second pump 20 is not working, the first pump 21 is turned on, driving the coolant to flow, the first interface 111 and the second interface 112 of the first flow regulating device 11 are connected, the third interface 113 is closed, the first heat exchange part 71, heating
  • the device 24, the first heat exchange assembly 8, the first pump 21, the first flow regulating device 11, and the first branch 10 are connected to form a loop.
  • the heater 24 may be an electric heater or a PTC heater, and is used to heat the coolant flowing through the heater 24. For example, when the ambient temperature in winter is relatively low, the working temperature of the battery needs to reach a certain requirement before the car starts. Therefore, the heater 24 can be turned on to increase the temperature of the coolant.
  • the surrounding environment of the battery exchanges heat, and the heat is released to increase the temperature of the surrounding environment of the battery, so that the battery has a proper working temperature.
  • the thermal management system can turn on the heating mode to heat the compartment.
  • the coolant temperature is relatively low.
  • the refrigerant absorbs the heat of the coolant through the first heat exchanger 7 is relatively limited, and the heating effect of the thermal management system is not good or can not heat quickly .
  • the thermal management system can turn on the heater 24 to actively heat the coolant and provide heat to the refrigerant through the first heat exchanger 7. In this way, the thermal management system can not only provide heat to the refrigerant side to improve the heating effect through the heater 24, but also can be used to quickly heat the environment in the vehicle compartment, and can also preheat the battery and the motor.
  • the electric heater 24 is connected between the first heat exchange component 8 and the first heat exchange part 71 to give priority to preheating the battery.
  • the heater 24 can be connected between the first heat exchange portion 71 and the first heat exchange assembly 8, or can be connected to the first branch 10, and the position of the heater 24 can also be as shown in FIG. 5 Any position on the coolant flow path. It should be noted that in other modes, the heater 24 can be selected not to be turned on, and the heater 24 is only used as a conductive flow path.

Abstract

一种热管理系统,包括冷却液循环流路和制冷剂循环流路。热管理系统包括第一换热器(7),第一换热器(7)包括能够进行热交换的第一换热部(71)和第二换热部(72),第一换热部(71)的流道连接于所述冷却液循环流路,第二换热部(72)的流道连接于制冷剂循环流路,冷却液循环流路包括第一换热组件(8)、第二换热组件(9)和第一支路(10);所述系统包括制热模式,在制热模式下,第一换热组件(8)、第二换热组件(9)和第一换热部(71)连通形成回路,第一换热组件(8)、第一支路(10)和第一换热部(71)连通形成回路,冷却液经第一换热组件(8)后,一路流向第一支路(10),一路流向所述第二换热组件(9),两路冷却液汇合后流向所述第一换热部(71),以减少热管理系统用于余热回收的换热器数量。

Description

热管理系统
本申请要求了申请日为2019年9月16日提交中国专利局、申请号为201910870675.4、发明创造名称为“热管理系统”的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及热管理技术领域,尤其涉及一种热管理系统。
背景技术
汽车的热管理系统可以实现对车厢内空气进行制冷、加热、换气和空气净化等。相关的热管理系统制热时,其制冷剂流路可以通过换热器将电机或电池等部件产生的多余热量进行利用。但是,能产生多余热量的部件往往具有不同的工作温度要求,因此需要分别设置对应的换热器对各个部件产生的多余热量进行回收利用,因此,热管理系统用于余热回收的换热器数量较多。
发明内容
鉴于存在的上述问题,本申请提供了一种热管理系统,以减少热管理系统用于余热回收的换热器数量。
为了达到上述目的,本申请采用以下技术方案:
一种热管理系统,包括:冷却液循环流路和制冷剂循环流路;热管理系统包括第一换热器,所述第一换热器包括能够进行热交换的第一换热部和第二换热部,所述第一换热部的流道连接于所述冷却液循环流路,所述第二换热部的流道连接于所述制冷剂循环流路,所述冷却液循环流路包括第一换热组件、第二换热组件和第一支路;
所述热管理系统包括制热模式,在所述制热模式下:制冷剂循环流路连通形成回路,所述第一换热组件、所述第二换热组件和所述第一换热部连通形成回路,所述第一换热组件、所述第一支路和所述第一换热部连通形成回路,冷却液经第一换热组件后,一路流向第一支路,一路流向所述第二换热组件,两路冷却液汇合后流向所述第一换热部,所述冷却液循环流路的热量通过所述第一换热器传递至所述制冷剂循环流路。
可选的,所述冷却液循环流路还包括第一流量调节装置,所述第一流量调节装置包括第一接口、第二接口和第三接口,所述第一接口能够与所述第一换热组件连通,所述第二接口能够与所述第二换热组件连通,所述第三接口能够与第一支路连通,在所述制热模式下,所述第二接口、所述第三接口均与所述第一接口连通,冷却液经所述第一换热组件后通过第一流量调节装置进行分流。
可选的,所述第一流量调节装置为比例调节阀。
可选的,所述冷却液循环流路还包括第二支路,在所述制热模式下,所述第二支路和所述第二换热组件连通形成回路,冷却液经所述第二换热组件后,一路流向第二支路,一路流向所述第一换热部。
可选的,所述冷却液循环流路包括第二流量调节装置,所述第二流量调节装置包括第四接口、第五接口和第六接口,所述第四接口能够与所述第二换热组件连通,所述第五接口能够与所述第一换热部连通,所述第六接口能够与所述第二支路连通,在所述制热模式下,所述第五接口、所述第六接口均与所述第四接口连通,冷却液经所述第二换热组件后通过第二流量调节装置进行分流。
可选的,所述第二流量调节装置为比例调节阀。
可选的,所述制冷剂循环流路包括压缩机、第一室内换热器、第一调节装置、室外换热器和第三支路,在所述制热模式下,所述压缩机、所述第一室内换热器、所述第一调节装置、所述室外换热器、所述第二换热部连通形成回路,以及,所述压缩机、所述第一室内换热器、所述第三支路、所述第二换热部连通形成回路,制冷剂经所述第一室内换热器后分流,一路流向所述第三支路,一路流向所述第一调节装置。
可选的,所述制冷剂循环流路还包括第二室内换热器和第二调节装置,所述热管理系统还包括制冷模式,在所述制冷模式下:
所述压缩机、所述第一室内换热器、所述室外换热器、所述第二调节装置、所述第二室内换热器连通形成回路,以及,所述压缩机、所述第一室内换热器、所述室外换热器、所述第三支路、所述第二换热部连通形成回路,制冷剂经所述室外换热器后分流,一路流向第三支路,一路流向所述第二室内换热器。
可选的,所述制冷剂循环流路包括流路调节装置,所述流路调节装置包括第一连接口、第二连接口、第三连接口和第四连接口,所述第一连接口能够与室外换热器连通,第二连接口能够与第二换热部连通,所述第一调节装置与第三支路均能够与第三连接口连通,所述第四连接口能够与第二换热器连通;流路调节装置包括第一工作状态与第二工作状态,在第一工作状态下,第一连接口与第二连接口连通,第三连接口与第四连接口连通;在第二工作状态下,第一连接口与第四连接口连通,第二连接口与第三连接口不连通;在所述制热模式下:所述流路调节装置处于第一工作状态;在所述制冷模式下:所述流路调节装置处于第二工作状态。
可选的,所述第一调节装置为组合阀,所述第一调节装置包括节流单元阀和导通单元阀,所述导通单元阀是单向阀,所述节流单元阀和所述导通单元阀并联设置;
在所述制热模式下:所述节流单元阀开启,所述导通单元阀关闭;
在所述制冷模式下:所述节流单元阀关闭,所述导通单元阀开启。
可选的,所述制冷剂循环流路包括第二调节装置,所述第二调节装置连接于第三支路上,所述第二调节装置处于导通状态,或者所述第二调节装置处于节流状态,或者所述第二调节装置处于阻断状态。
可选的,所述冷却液循环流路还包括第二换热器,所述制冷模式还包括第一工作模式,在所述第一工作模式下:所述第一换热组件、所述第一支路和所述第一换热部连通形成回路,以及,所述第二换热组件、所述第二换热器连通形成回路,所述第二换热组件通过所述第二换热器与外界进行热交换。
可选的,所述制冷模式包括第二工作模式,在所述第二工作模式下:所述第一换热组件、所述第二换热组件和所述第一换热部连通形成回路,冷却液经所述第一换热组件后,一路流向第一支路,一路流向所述第二换热组件,两路冷却液汇合后流向所述第一换热部,所述冷却液循环流路的热量通过第一换热器传递给制冷剂循环流路。
可选的,所述第一换热组件包括电池,所述热管理系统还包括电池散热模式,在所述电池散热模式下:所述第一换热组件、第二换热器、第一换热部连通形成回路,所述第一换热组件将电池产生的热量通过第二换热器传递至外界。
可选的,所述冷却液循环流路还包括加热器,所述第一换热组件包括电池,所述热管理系统还包括电池加热模式,在所述电池加热模式下,所述第一换热部、加热器、第一换热组件、第一支路连通形成回路。
可选的,所述制冷剂流路还包括气液分离器,所述气液分离器的出口能够与压缩机的入口连通,所述气液分离器的入口与能够与所述第二换热部的出口和所述第二室内换热器的出口中至少之一连通。
一种热管理系统,包括:制冷剂系统,所制冷系统包括压缩机、第一室内换热器、第二室内换热器、室外换热器及节流装置;冷却液系统,所述冷却液系统包括第一泵、第一换热组件、以及第二换热组件;第一双流道换热器,所述第一双流道换热器包括不相连通的第一换热部和第二换热部;
所述热管理系统包括制热模式,在所述制热模式下:
所述制冷剂系统与所述第二换热部连通形成制冷剂回路,所述压缩机的出口与第一室内换热器的进口连通,所述第一室内换热器的出口与室外换热器的第一端口和第二换热部的进口中的至少一个连通,所述第二换热部的出口与压缩机的进口连通,所述室外换热器的第二端口与压缩机的进口连通;
所述节流装置连通于第一室内换热器的出口与室外换热器的第一端口之间,和/或,所述节流装连通于第一室内换热器的出口与第二换热部的进口之间;
所述冷却液系统与所述第一换热部连通形成冷却液回路,所述冷却液系统包括第一支路,所述第一换热组件与第一泵连通,所述第二换热组件与第一支 路中的至少一个与第一泵和第一换热部连通。
可选的,所述冷却液循环流路还包括第一流量调节装置,所述第一流量调节装置为三通比例调节阀,所述第一流量调节装置包括第一接口、第二接口和第三接口,所述第一接口能够与所述第一换热组件连通,所述第二接口能够与所述第一支路连通,所述第三接口能够与第二换热组件连通;
在所述制热模式下:所述第二接口、所述第三接口均与所述第一接口连通,冷却液经所述第一换热组件后通过第一流量调节装置进行分流。
可选的,所述冷却液循环流路还包括第二支路,在所述制热模式下:所述第二支路和所述第二换热组件连通形成回路,冷却液经所述第二换热组件后,一路流向第二支路,一路流向所述第一换热部。
一种热管理系统,包括:压缩机、第一室内换热器、第二室内换热器、室外换热器、第一节流装置、第二节流装置;第一泵、第一换热组件、第二换热组件;第一双流道换热器,所述第一双流道换热器包括不相连通的第一换热部和第二换热部;
所述热管理系统包括制热模式,在所述制热模式下:
所述压缩机的出口与第一室内换热器的进口连通,所述第一室内换热器的出口与室外换热器的第一端口和第二换热部的进口中的至少一个连通,所述第二换热部的出口与压缩机的进口连通,所述室外换热器的第二端口与压缩机的进口连通;所述第一节流装置连通于第一室内换热器的出口与室外换热器的第一端口之间,所述第二节流装置连通于第一室内换热器的出口与第二换热部的进口之间;
所述热管理系统还包括第一支路,所述第一换热组件与第一泵连通,所述第二换热组件与第一支路中的至少一个与第一泵和第一换热部连通。
由以上技术方案可见:本申请的冷却液循环流路包括第一换热组件、第二换热组件和第一支路,在制热模式下,所述第一换热组件、所述第二换热组件和所述第一换热部连通形成回路,所述第一换热组件、所述第一支路和所述第一换热部连通形成回路,冷却液经第一换热组件后,一路流向第一支路,一路 流向所述第二换热组件,两路冷却液汇合后流向所述第一换热部,可以减少热管理系统用于余热回收的换热器数量。
附图说明
图1是本申请一示例性实施例的制热模式的原理示意图;
图2是本申请一示例性实施例的制冷模式的第一工作模式原理示意图;
图3是本申请一示例性实施例的制冷模式的第二工作模式原理示意图;
图4是本申请一示例性实施例的电池散热模式的原理示意图;
图5是本申请一示例性实施例的电池加热模式的原理示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个;“多个”表示两个及两个以上的数量。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或 者物件及其等同,并不排除其他元件或者物件。
本申请的热管理系统可以应用于汽车热量管理系统,例如应用在电动汽车空调系统,也可以应用于车用热管理系统或商用热管理系统等其他热管理系统,下面以一种具体的车用热管理系统为例结合附图进行说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互补充或相互组合。
请参阅图1至图5,热管理系统包括:冷却液循环流路和制冷剂循环流路。冷却液循环流路和制冷剂循环流路相互隔离而不流通。热管理系统还包括第一换热器7,第一换热器/第一双流道换热器7包括第一换热部71和第二换热部72,第一换热部71的流道和第二换热部72的流道相互隔离不连通。第一换热部71的流道连接于冷却液循环流路,第二换热部72的流道连接于制冷剂循环流路,即第一换热部71的流道为冷却液循环流路的一部分,第二换热部72的流道为制冷剂循环流路的一部分,流经第一换热部71的冷却液和流经第二换热部72的制冷剂能够在第一换热器/第一双流道换热器7内进行热交换。其中,冷却液可以是水和乙醇的混合液,制冷剂可以是C02等换热介质。热管理系统还包括第一换热组件8和第二换热组件9。第一换热组件8包括电池,第一换热组件8可以将电池产生的多余热量传递至冷却液,也可以将冷却液的热量传递给电池。第二换热组件9包括电机、逆变器等部件,第二换热组件9可以将电机等部件产生的多余热量传递给冷却液,也可以将冷却液的热量传递给电机等部件。第一换热组件8和第二换热组件9能够传递给冷却液的热量不同,因此,冷却液经过第一换热组件8和第二换热组件9时,各自的温度变化也不同。
如图1所示,粗实线部分为制冷剂的流动路线,细实线部分为冷却液的流动路线。制冷剂循环流路包括压缩机1、第一室内换热器2、第一调节装置3、室外换热器4和第三支路14。压缩机1的出口与第一室内换热器2的进口通过管路连接,第一室内换热器2的出口与第一调节装置3的第一端口通过管路连接,第一调节装置3的第二端口与室外换热器4的第一端口通过管路连接,室外换热器4的第二端口与第二换热部72的进口通过管路连接。第三支路14的一端与第一室内换热器2的出口通过管路连接,第三支路14的另一端与第二换 热部72的进口连接。连接室外换热器4与第二换热部72的管路可以与第三支路14设置连接支点作为汇流点,如此,制冷剂经第一室内换热器2后,可以分成两路,一路流向第三支路14,一路流向第一调节装置3。在其它实施例中,第二换热部72可以设置两个进口,一个进口连接第三支路14,室外换热器4通过管路直接连接第二换热部72的另外一个进口。
冷却液循环流路包括第一泵21、第一换热组件8、第二换热组件9和第一支路10。第一换热组件8和第一换热部71通过管路串联,第一换热组件8通过管路连接第一支路10、第二换热组件9。第一支路10的一端能够与第一换热组件8的出口连通,第一支路10的另一端与第二换热部72的入口能够连通,第二换热组件9的第一端口与第一换热组件8的出口能够连通,第二换热组件9的第二端口与第一换热部71的出口能够连通。第一泵21可以连接在第一换热组件8与第一换热部71之间的管路上,也可以连接在第一换热组件8和第二换热组件9之间的管路上。第一泵21用于驱动冷却液从第一换热组件8流向第二换热组件9。冷却液流路还可以连接一个压力水箱(图中未示出),用于向冷却液循环流路注入更多的冷却液,提高流速或增加注入量。
本申请的热管理系统包括制热模式,可用于在冬季外界环境温度较低时,对车厢内环境进行制热,在制热模式下,压缩机1、第一室内换热器2、第一调节装置3、室外换热器4、第二换热部72连通形成回路,以及,压缩机1、第一室内换热器2、第三支路14、第二换热部72连通形成回路,制冷剂经第一室内换热器2后分成两个流路,一路流向第三支路14,一路流向第一调节装置3。制冷剂经室外换热器4后流向第二换热部72,制冷剂经第三支路14流向第二换热部72,流经室外换热器4后的制冷剂与第三支路14的制冷剂汇合后流向第二换热部72。在其它实施例中,流经室外换热器4后的制冷剂与第三支路14的制冷剂可以分别流向第二换热部72。在其他实施例中,流经室外换热器4后的制冷剂也可以不经过第二换热部72,而是直接回到压缩机1中。
在冷却液循环流路中,第一换热组件8、第二换热组件9和第一换热部71连通形成回路,以及,第一换热组件8、第一支路10和第一换热部71连通形成 回路,冷却液经第一换热组件8后,一路流向第一支路10,一路流向第二换热组件9,两路冷却液汇合后流向第一换热部71,冷却液循环流路的热量通过第一换热器7传递至制冷剂循环流路。其中冷却液经过电机时,温度会进一步变化。
在制热模式下,制冷剂流路的工作原理如下:制冷剂经压缩机1压缩成高温高压的气态,经第一室内换热器2时,第一室内换热器2作为冷凝器使用,制冷剂释放热量。热管理系统能够调节室内环境温度,热管理系统还包括风道16与风机23,风机23将空气送入风道16中,第一室内换热器2位于所述风道16内,风道16内的空气经过第一室内换热器2时,与制冷剂进行热交换,空气被加热后送入车厢内。降温后的制冷剂进入第一调节装置3节流后,制冷剂温度再次降低,制冷剂进入低温低压状态,低温低压的制冷剂进入室外换热器4中,通过室外换热器4与外界环境进行热交换,吸收外界环境的热量;进入第三支路14的低温低压制冷剂与经过室外换热器4后的低温低压的制冷剂汇合后流向第二换热部72,通过第二换热部72吸收流入第一换热部71内冷却液的热量后回到压缩机1再次被压缩。在其它实施例中,也可以只由第三支路14中的制冷剂经过第一换热器7的第二换热部72参与吸收冷却液流路的多余热量,最后经过第二换热部72后的制冷剂与未经过第二换热部72的两路制冷剂汇合后回到压缩机1,如此循环形成回路。
在本实施例中,制冷剂流路还包括气液分离器17,制冷剂经气液分离器17后回到压缩机1。在其它实施例中,气液分离器17可以设置两个管路连接入口,用于分别连接两路制冷剂,两路制冷剂同时流入气液分离器17内;也可以是气液分离器17只有一个连接入口,两路制冷剂先汇合后,再流入气液分离器17,制冷剂在气液分离17内气液分离后,气态制冷剂回到压缩机1,再次被压缩。在另一些实施例中,制冷剂流路也可以不包括气液分离器17,例如,制冷剂进入压缩机1前为气态而非气液两相状态,或压缩机1具有气液分离功能等情况。在另一些实施例中,两路制冷剂也可以不汇合,而是分别流向气液分离器17,同时进入气液分离器17内,若热管理系统不包括气液分离器17,两路制冷剂也 可以分别流向压缩机1,同时进入压缩机1内。
在本实施例中,制冷剂流路还包括流路调节装置18,流路调节装置18为四通阀,包括第一连接口181、第二连接口182、第三连接口183和第四连接口184。第一连接口181可以跟第二连接口182连通,也可以跟第四连接口184连通;第三连接口183可以跟第二连接口182连通,也可以跟第四连接口184。调节装置第一连接口181能够与室外换热器4连通,第二连接口182能够与第二换热部72的入口连通,所述第一调节装置3的第一端口与第三支路14均能够与第三连接口183连通,所述第四连接口184能够与第二换热器2的出口连通。流路调节装置18包括第一工作状态与第二工作状态,在第一工作状态下,第一连接口181与第二连接口182连通,第三连接口183与第四连接口184连通;在第二工作状态下,第一连接口181与第四连接口184连通,第二连接口182与第三连接口183不连通。在制热模式下,流路调节装置18处于第一工作状态,制冷剂从第一室内换热器2的出口流入流路调节装置18的第四连接口184,并从流路调节装置18的第三连接口183流出,制冷剂流出第三连接口183后分成两路,一路流向第一调节装置3的第一端口,一路流向第三支路14;以及,制冷剂经室外换热器4后,通过流路调节装置18,流向第二换热部72。
在本实施例中,制冷剂流路还包括调节装置第二调节装置19,第三调节装置19连接于第三支路14上,第三调节装置19可以具有导通状态、节流状态、阻断状态,使其可以具有导通、阻断第三支路14和对第三支路14上的制冷剂流体节流的功能。在制热模式下,当冷却液的温度较高,例如冷却液的温度高于20℃(该温度值可以是15℃-25℃之间,也可以根据冷却液实际所需的工作温度进行设定),第三调节装置19处于节流状态,制冷剂经第三调节装置19节流降温,使制冷剂的温度在进入第二换热部72之前降低,可以吸收更多冷却液的热量。当冷却液的温度低于20℃时,温度相对低,需要维持电池的工作温度,因此,第三调节装置19处于导通状态,制冷剂经第三调节装置19时,状态不发生变化。在其它实施例中,第三调节装置19还可以阻断第三支路14,使制冷剂不经过第三支路14流入第二换热部72。
在制热模式下,冷却液流路的工作原理如下:第一泵21启动,经过第一换热组件8的冷却液分成两路,一路流向第二换热组件9,一路流向第一支路10,第一换热组件8包括电池,第二换热组件9包括电机时,电机的工作温度较高,电池所需的工作温度较低,因此,冷却液经第二换热组件9后会被加热。此部分高温的冷却液与经过第一支路10相对低温的冷却液混合后,形成温度适宜的冷却液,此状态的冷却液经过第一换热部71时,与经过第二换热部72的制冷剂进行热交换,冷却液将热量传递给制冷剂,冷却液降温,降温后的冷却液进入第一换热组件8时,刚好达到电池所需的工作温度。
需要说明的是,第一支路10的作用为分流出一部分冷却液,使部分冷却液不经过电机而被加热成高温的冷却液,形成相对低温和相对高温的两路冷却液,降低流向第一换热部71的冷却液温度,减小冷却液与制冷剂热交换后温度仍然高于电池所需的工作温度的可能,控制进入第一换热组件8的冷却液温度在一个适宜的范围,如此形成冷却液循环流路自身的温度调节机制。在制热模式下,制冷剂通过吸收冷却液的热量,对第一换热组件8和第二换热组件9产生的多余热量进行回收利用,以提升制热能力的同时,还可以调节电池工作温度。在其它实施例中,不需要提升热管理系统制热能力时,冷却液流路也可以不工作。
在制热模式下,第一换热组件8、第二换热组件9和第一换热部71连通形成回路,第一换热组件8、第一支路10和第一换热部71连通形成回路,冷却液经第一换热组件8后,一路流向第一支路10,一路流向第二换热组件9,两路冷却液汇合后流向第一换热部71,可以减少热管理系统用于余热回收的换热器数量。
在本实施例中,冷却液循环流路还包括第一流量调节装置11。第一流量调节装置11包括第一接口111、第二接口112和第三接口113,第一接口111能够与第一换热组件8通过管路连接,第二接口112与第一支路10通过管路连接,第三接口113与第二换热组件9连接。在制热模式下,第二接口112、第三接口113均与第一接口111导通,冷却液流经第一换热组件8后通过第一流量调节装置11进行分流。第一流量调节装置11为三通比例调节阀,可以调节进入第一 支路10的和流向第二换热组件9的冷却液流量。当较多的冷却液进入第一支路10时,意味着经过第二换热组件2后的高温冷却液在与经过第一支路10的相对低温的冷却液混合后,温度降低的更多。因此,第一流量调节装置11也可以起到调节进入第一换热组件8的冷却液的温度,以满足电池所需的工作温度。
在本实施例中,冷却液循环流路还包括第二支路12,在制热模式下,第二支路12和第二换热组件9连通形成回路,冷却液经第二换热组件9后,一路流向第二支路12,一路流向第一换热部71。在第二支路12上,设置第一控制阀22,方便控制第二支路12的通断。可以理解的是,第二支路12可以分流经过第二换热组件9的冷却液,因此,较少的高温冷却液与第一支路10中温度相对较低的冷却液混合,可以使冷却液在进入第一换热组件8之前的温度不会过高,同时,部分高温的冷却液流回第二换热组件9,仅仅回收部分热量,保证了电机所需的工作温度。第二支路12可根据实际情况通过第一控制阀22进行通断,用于调节冷却液循环流路的温度。
在本实施例中,冷却液循环流路还包括第二流量调节装置13,第二流量调节装置13包括第四接口131、第五接口132和第六接口133,第四接口131与第二换热组件9通过管路连接,第五接口132与第一换热部71通过管路连接,其中第一支路10的一端可以与第五接口132和第一换热部71通过管路连接,第六接口133与第二支路12通过管路连接。在制热模式下,第五接口132、第六接口133均与第四接口131连通,冷却液经第二换热组件9后通过第二流量调节装置13进行分流。第二流量调节装置13为比例调节阀,用于调节流向第二支路12和流向第一换热部71的冷却液流量,使热管理系统能更好地调节电机和电池的工作温度。需要说明的是,上述第一支路10和第二支路12的调节功能受到冷却液注入量的影响。因此,可在冷却液循环流路上连接压力水箱,用于调节冷却液的注入量,通过第一流量调节装置11和第二流量调节装置13进行流量的分配。本实施例的冷却液循环流路还包括第三控制阀26,第三控制阀26连接于第二换热组件9和第二流量调节装置13之间的管路上,控制管路的连通更加方便。在另外一些实施例中,第三控制阀26也可以连接于第二换热 组件9和第一流量调节装置11之间的管路上。
如图2、图3所示,制冷剂循环流路还包括第二室内换热器5和第二调节装置6,第二调节装置6的出口能够与第二室内换热器5的进口连通,用于对进入第二室内换热器5之前的制冷剂进行节流。冷却液循环流路还包括第二换热器15、第二控制阀25、第三控制阀26和第二泵20,第二换热器15可以是散热水箱,也可以是空气换热器,第二泵20设置在第二换热组件9的和第二换热器15之间的管路上,第二控制阀25连接在第二换热器15出口处,第三控制阀26连接于第二换热组件9出口处,在制热模式下,第三控制阀26开启,第二控制阀25关闭,第二泵20可以开启也可以关闭。热管理系统还包括制冷模式,在本实施例中,制冷模式包括第一工作模式和第二工作模式。
第一工作模式用于在夏季外界环境温度较高时,可以对车厢内环境进行制冷,同时还可以对电机和电池进行散热。如图2所示,粗实线部分为制冷剂的流动路线,细实线部分为冷却液流动的路线。在第一工作模式下:压缩机1、第一室内换热器2、流路调节装置18、室外换热器4、第一调节装置3、第二调节装置6、第二室内换热器5、气液分离器17连通形成回路;以及,压缩机1、第一室内换热器2、流路调节装置18、室外换热器4、第一调节装置3、第三支路14、第二换热部72连通形成回路。制冷剂经第一调节装置3后分流,一路流向第三支路14,一路流向第二室内换热器5,在其它实施例中,制冷剂也可以不经过第一调节装置3,制冷剂经室外换热器4后直接分流。而在本实施例中,第一调节装置3此时为导通状态,其具有多个功能用于在不同的模式切换。可以理解的是,第一调节装置3可以是一个阀件,同时具有导通功能和节流功能,也可以是至少两个阀件的组合阀。在本实施例中,第一调节装置3为组合阀,包括节流单元阀31和导通单元阀32,导通单元阀32可以是单向阀,也可以是双向的控制阀。在制冷模式下,节流单元阀31关闭,导通单元阀32开启,实现制冷剂的单向流通,即制冷剂由室外换热器4流向导通单元阀32,经导通单元阀32后流向第二换热部72。在制冷模式下,流路调节装置18处于第二工作状态。
在第一工作模式下,制冷剂循环流路的工作原理:制冷剂经压缩机1压缩成高温高压的气态,高温高压气态制冷剂经第一室内换热器2不进行换热,例如,可以通过风门阻挡空气经过第一室内换热器2。高温高压的气态制冷剂经室外换热器4与外界环境进行热交换,室外换热器4作为冷凝器使用,制冷剂释放热量后温度降低,并通过第一调节装置3的导通单元阀32后分成两个流路,制冷剂在导通单元阀32内的状态不发生变化。低温的制冷剂进入第二换热部72之前,可以选择第三调节装置19对制冷剂流路进行节流降温,也可以不进行节流,开启第三调节装置19的目的是为了降低制冷剂温度,使其在第二换热部72内吸收更多流经第一换热部71的冷却液的热量,达到为电机或电池进行散热的目的。当电机或电池不需要散热时,第三调节装置19可以关闭,阻断第三支路14;或只需带走一部分电机或电池的热量时,第三调节装置19为导通模式,不进行节流,制冷剂通过第三支路14流向第二换热部72。制冷剂在第二换热部72中,与第一换热部71内的冷却液进行热交换,吸收冷却液流路的热量,从而使电池在夏季高温环境下,工作温度不会太高或超出要求。另一路制冷剂经第二调节装置6节流降温后,进入第二室内换热器5,第二室内换热器5作为蒸发器使用,制冷剂通过第一室内蒸发器5与风道16内的空气进行热交换,空气的热量传递给制冷剂,空气降温后进入车厢内,使车厢内的环境温度降低。最后两路制冷剂经气液分离器17气液分离后回到压缩机1内再次被压缩,如此循环。
在第一工作模式下:冷却液循环流路的第一泵21开启,第一换热组件8、第一泵21、第一流量调节装置11、第一支路10、第一换热部71连通形成回路,第一换热组件8将电池的热量传递至冷却液,冷却液在第一泵21的驱动下在流路中流动,经过第一换热部71时,将热量传递至第二换热部72内的制冷剂,最后冷却液回到第一换热组件8中,再次吸收电池的热量,如此循环,以达到为电池散热的目的。第二泵20同时开启,第一控制阀22关闭,也可以是第二流量调节装置13的第五接口132、第六接口133与第四接口131均断开,也可以是第一流量调节装置11的第一接口111与第二接口112均与第三接口113不连通,使冷却液不经过第二支路12,而第二控制阀25与第三控制阀26均打开, 第二换热组件9、第二换热器15、第二泵20连通形成回路,第二泵20驱动冷却液流动,将电机的热量带至第二换热器15,通过第二换热器15与外界环境进行热交换,从而起到给电机散热的作用。
在其它实施例中,在第二工作模式下,第一换热组件8、第一泵21、第一流量调节装置11、第二换热组件9、第二流量调节装置13和第一换热部71连通形成回路,第二控制阀25关闭,第三控制阀26打开,冷却液不经过第二换热器15,第一流量调节装置11的第二接口112、第三接口113均与第一接口111连通,冷却液经第一换热组件8后,一路流向第一支路10,一路流向第二换热组件9,两路冷却液汇合后流向第一换热部71,冷却液循环流路的热量通过第一换热器/第一双流道换热器7传递给制冷剂循环流路。第二泵20可以开启也可以选择不开启,不开启的情况下,第二泵20仅作为管路使用。第一控制阀22可以关闭,也可以打开,第一控制阀22打开时,当冷却液流向第二支路12时,给电机和电池同时散热的时候,可以起到维持电机正常工作温度的作用。其原理与制热模式下,冷却液循环流路的工作原理相同,即,通过第一流量调节装置11和第三流量调节装置13来分配冷却液,调节冷却液传递给制冷剂的热量大小。
冬季外界环境温度较低时,制热模式下室外换热器4长期使用后其表面容易结霜,影响其换热性能。热管理系统在第二工作模式下,可利用电机和电池产生的多余热量可以对室外换热器4进行主动除霜。如图3所示,粗实线部分为制冷剂的流动路线,细实线部分为冷却液的流动路线。在第二工作模式下:制冷剂侧的工作原理与第一工作模式下制冷剂的工作原理相同,将室外蒸发器4作为冷凝器使用,制冷剂经室外换热器4的时候,释放热量,室外换热器4表面的结霜融化。在冷却液循环流路中,第一换热组件8、第一泵21、第一流量调节装置11、第二换热组件9、第二流量调节装置13和第一换热部71连通形成回路,第二控制阀25关闭,冷却液不经过第二换热器15,第一流量调节装置11的第二接口112、第三接口113均与第一接口111连通,冷却液经第一换热组件8后,一路流向第一支路10,一路流向第二换热组件9,两路冷却液汇合后 流向第一换热部71,冷却液循环流路的热量通过第一换热器7传递给制冷剂循环流路。第二泵20可以开启也可以选择不开启,不开启的情况下,第二泵20仅作为管路使用。第一控制阀22可以关闭,也可以打开,第一控制阀22打开时,当冷却液流向第二支路12时,给电机和电池同时散热的时候,可以起到维持电机正常工作温度的作用,冷却液循环流路的原理与制热模式下的冷却液循环流路的工作原理相同,即,通过第一流量调节装置11和第三流量调节装置13来分配冷却液,调节冷却液传递给制冷剂的热量大小。需要说明的是,在除霜过程中,第二室内换热器5作为蒸发器使用,会降低进入车厢的内的空气温度,因此可以选择通过设置风门,使空气绕过或不经过第二室内换热器5,第二室内换热器5内的制冷剂不进行换热。
在其它实施例中,在第二工作模式下,也可以控制第二调节装置6关闭,制冷剂从室外换热器4流向第三支路14,第二室内换热器5不工作,因此,车厢内不会吹冷风。
第一换热组件8包括电池,在电池充电或快速充电过程中,电池容易产生较多的热量,电池不能散热,会有安全隐患。热管理系统还包括电池散热模式,如图4所示,在电池散热模式下:制冷剂流路不工作,第一泵21启动,驱动冷却液在管路中流动,第二泵20不工作,第二控制阀25开启,第一控制阀22、第三控制阀26均关闭,第一控制阀22、第三控制阀26所在的支路不导通,第一流量调节装置11的第一接口111和第三接口113连通,第二接口112关闭,第一换热组件8、第一泵21、第一流量调节装置11、第二换热器15、第二控制阀25、第一换热部71连通形成回路,第一换热组件8将电池产生的热量通过第二换热器15传递至外界,使电池在充电过程中进行散热。
如图5所示,冷却液循环流路还包括加热器24,第一换热组件8还包括电池,热管理系统还包括电池加热模式。在电池加热模式下,压缩机1不工作,制冷剂循环流路不连通,第一控制阀22关闭,第二控制阀25关闭,第三控制阀26关闭,相应地,三个阀各自所在的支路不连通。第二泵20不工作,第一泵21开启,驱动冷却液流动,第一流量调节装置11的第一接口111和第二接口 112连通,第三接口113关闭,第一换热部71、加热器24、第一换热组件8、第一泵21、第一流量调节装置11、第一支路10连通形成回路。加热器24可以是电加热器或PTC加热器,用于对流经加热器24的冷却液进行加热。例如,冬季环境温度比较低的时候,汽车启动前,需要使电池的工作温度达到一定要求,因此,可以通过开启加热器24,使冷却液升温,冷却液流经第一换热组件8时与电池周围环境进行热交换,释放热量以提升电池周围环境温度,使电池具有合适的工作温度。
冬季环境温度比较低的时候,热管理系统可以开启制热模式对车厢进行制热。然而,汽车刚启动时,冷却液温度相对较低,在制热模式下,制冷剂通过第一换热器7吸收冷却液的热量比较有限,热管理系统制热效果不佳或不能快速制热。此时,热管理系统可以开启加热器24,主动加热冷却液并通过第一换热器7提供热量给制冷剂。如此,热管理系统通过加热器24不仅可以提供热量给制冷剂侧以提升制热效果,还可以用于对车厢内环境进行快速制热,还可以对电池和电机进行预热。在本实施例中,电加热24连接于第一换热组件8和第一换热部71之间,对电池进行优先预热。在其它实施例中,加热器24可以连接于第一换热部71与第一换热组件8之间,也可以连接于第一支路10上,加热器24的位置还可以是图5中冷却液流动路线上任一位置。需要说明的是,在其它模式中,加热器24可以选择不开启,加热器24仅作为导通的流路使用。

Claims (20)

  1. 一种热管理系统,其特征在于,包括:冷却液循环流路和制冷剂循环流路;所述热管理系统包括第一换热器(7),所述第一换热器(7)包括能够进行热交换的第一换热部(71)和第二换热部(72),所述第一换热部(71)的流道能够与所述冷却液循环流路连通,所述第二换热部(72)的流道能够与所述制冷剂循环流路连通,所述冷却液循环流路包括第一换热组件(8)、第二换热组件(9)和第一支路(10);
    所述热管理系统包括制热模式,在所述制热模式下:制冷剂循环流路连通形成回路,所述第一换热组件(8)、所述第二换热组件(9)和所述第一换热部(71)连通形成回路,所述第一换热组件(8)、所述第一支路(10)和所述第一换热部(71)连通形成回路,冷却液经第一换热组件(8)后,一路流向第一支路(10),一路流向所述第二换热组件(9),流经第一支路后(10)后的冷却液与流经所述第二换热组件(9)后的冷却液汇合后流向所述第一换热部(71),所述冷却液循环流路的热量通过所述第一换热器(7)传递至所述制冷剂循环流路。
  2. 如权利要求1所述的一种热管理系统,其特征在于,所述冷却液循环流路还包括第一流量调节装置(11),所述第一流量调节装置(11)包括第一接口(111)、第二接口(112)和第三接口(113),所述第一接口(111)能够与所述第一换热组件(8)连通,所述第二接口(112)能够与所述第一支路(10)连通,所述第三接口(113)能够与第二换热组件(9)连通;
    在所述制热模式下:所述第二接口(112)、所述第三接口(113)均与所述第一接口(111)连通,冷却液经所述第一换热组件(8)后通过第一流量调节装置(11)进行分流。
  3. 如权利要求2所述的一种热管理系统,其特征在于,所述第一流量调节装置(11)为比例调节阀。
  4. 如权利要求1所述的一种热管理系统,其特征在于,所述冷却液循环流路还包括第二支路(12),在所述制热模式下:所述第二支路(12)和所述第二换热组件(9)连通形成回路,冷却液经所述第二换热组件(9)后,一路流向第二支路(12),一路流向所述第一换热部(71)。
  5. 如权利要求4所述的一种热管理系统,其特征在于,所述冷却液循环流路包括第二流量调节装置(13),所述第二流量调节装置(13)包括第四接口(131)、第五接口(132)和第六接口(133),所述第四接口(131)能够与所述第二换热组件(9)连通,所述第五接口(132)能够与所述第一换热部(71)相连,所述第六接口(133)能够与所述第二支路(12)连通;
    在所述制热模式下:所述第五接口(132)、所述第六接口(133)均与所述第四接口(131)连通,冷却液经所述第二换热组件(9)后通过第二流量调节装置(13)进行分流。
  6. 如权利要求5所述的一种热管理系统,其特征在于,所述第二流量调节装置(13)为比例调节阀。
  7. 如权利要求1至6任一项所述的一种热管理系统,其特征在于,所述制冷剂循环流路包括压缩机(1)、第一室内换热器(2)、第一调节装置(3)、室外换热器(4)和第三支路(14),在所述制热模式下:所述压缩机(1)、所述第一室内换热器(2)、所述第一调节装置(3)、所述室外换热器(4)、所述第二换热部(72)连通形成回路,以及,所述压缩机(1)、所述第一室内换热器(2)、所述第三支路(14)、所述第二换热部(72)连通形成回路,制冷剂流经所述第一室内换热器(2)后分流,一路流向所述第三支路(14),一路流向所述第一调节调节装置(3)。
  8. 如权利要求7所述的一种热管理系统,其特征在于,所述制冷剂循环流路还包括第二室内换热器(5)和第二调节装置(6);
    所述热管理系统还包括制冷模式,在所述制冷模式下:所述压缩机(1)、 所述第一室内换热器(2)、所述室外换热器(4)、所述第二调节装置(6)、所述第二室内换热器(5)连通形成回路,以及,所述压缩机(1)、所述第一室内换热器(2)、所述室外换热器(4)、所述第三支路(14)、所述第二换热部(72)连通形成回路,制冷剂经所述室外换热器(4)后分流,一路流向第三支路(14),一路流向所述第二室内换热器(5)。
  9. 如权利要求8所述的一种热管理系统,其特征在于,所述制冷剂循环流路还包括流路调节装置(18),所述流路调节装置(18)包括第一连接口(181)、第二连接口(182)、第三连接口(183)和第四连接口(184),所述第一连接口(181)能够与室外换热器(4)连通,第二连接口(182)能够与第二换热部(72)连通,所述第一调节装置(3)与第三支路(14)均能够与第三连接口(183)连通,所述第四连接口(184)能够与第二换热器(2)连通;流路调节装置(18)包括第一工作状态与第二工作状态,在第一工作状态下,第一连接口(181)与第二连接口(182)连通,第三连接口(183)与第四连接口(184)连通;在第二工作状态下,第一连接口(181)与第四连接口(184)连通,第二连接口(182)与第三连接口(183)不连通;在所述制热模式下:所述流路调节装置(18)处于第一工作状态;在所述制冷模式下:所述流路调节装置(18)处于第二工作状态。
  10. 如权利要求8所述的一种热管理系统,其特征在于,所述第一调节装置(3)为组合阀,所述第一调节装置(3)包括节流单元阀(31)和导通单元阀(32),所述导通单元阀(32)是单向阀,所述节流单元阀(31)和所述导通单元阀(32)并联设置;
    在所述制热模式下:所述节流单元阀(31)开启,所述导通单元阀(32)关闭;
    在所述制冷模式下:所述节流单元阀(31)关闭,所述导通单元阀(32)开启。
  11. 如权利要求8所述的一种热管理系统,其特征在于,所述制冷剂循环流路包括第二调节装置(19),所述第二调节装置(19)连接于第三支路(14)上,所述第二调节装置(19)处于导通状态,或者所述第二调节装置(19)处于节流状态,或者所述第二调节装置(19)处于阻断状态。
  12. 如权利要求8所述的一种热管理系统,其特征在于,所述冷却液循环流路还包括第二换热器(15),所述制冷模式还包括第一工作模式,
    在所述第一工作模式下:所述第一换热组件(8)、所述第一支路(10)和所述第一换热部(71)连通形成回路,以及,所述第二换热组件(9)、所述第二换热器(15)连通形成回路,所述第二换热组件(9)通过所述第二换热器(15)与外界进行热交换。
  13. 如权利要求8所述的一种热管理系统,其特征在于,所述制冷模式包括第二工作模式,在所述第二工作模式下:所述第一换热组件(8)、所述第二换热组件(9)和所述第一换热部(71)连通形成回路,冷却液经所述第一换热组件(8)后,一路流向第一支路(10),一路流向所述第二换热组件(9),两路冷却液汇合后流向所述第一换热部(71),所述冷却液循环流路的热量通过第一换热器(7)传递给制冷剂循环流路。
  14. 如权利要求12所述的一种热管理系统,其特征在于,所述第一换热组件(8)包括电池,所述热管理系统还包括电池散热模式,在所述电池散热模式下:所述第一换热组件(8)、第二换热器(15)、第一换热部(71)连通形成回路,所述第一换热组件(8)将电池产生的热量通过第二换热器(15)传递至外界。
  15. 如权利要求12所述的一种热管理系统,其特征在于,所述冷却液循环流路还包括加热器(24),所述第一换热组件(8)包括电池,所述热管理系统还包括电池加热模式,在所述电池加热模式下:所述第一换热部(71)、加热器、第一换热组件(8)、第一支路(10)连通形成回路。
  16. 如权利要求12所述的一种热管理系统,其特征在于,所述制冷剂流路还包括气液分离器(17),所述气液分离器(17)的出口能够与压缩机(1)的入口连通,所述气液分离器(17)的入口与能够与所述第二换热部(72)的出口和所述第二室内换热器(5)的出口中至少之一连通。
  17. 一种热管理系统,其特征在于,包括:
    制冷剂系统,所制冷系统包括压缩机(1)、第一室内换热器(2)、第二室内换热器(5)、室外换热器(4)及节流装置(3、6);
    冷却液系统,所述冷却液系统包括第一泵(21)、第一换热组件(8)、以及第二换热组件(9);
    第一双流道换热器(7),所述第一双流道换热器(7)包括不相连通的第一换热部(71)和第二换热部(72);
    所述热管理系统包括制热模式,在所述制热模式下:
    所述制冷剂系统与所述第二换热部(72)连通形成制冷剂回路,所述压缩机(1)的出口与第一室内换热器(2)的进口连通,所述第一室内换热器(2)的出口与室外换热器(4)的第一端口和第二换热部(72)的进口中的至少一个连通,所述第二换热部(72)的出口与压缩机(1)的进口连通,所述室外换热器(4)的第二端口与压缩机(1)的进口连通;
    所述节流装置(3、6)连通于第一室内换热器(2)的出口与室外换热器(4)的第一端口之间,和/或,所述节流装(3、6)连通于第一室内换热器(2)的出口与第二换热部(72)的进口之间;
    所述冷却液系统与所述第一换热部(71)连通形成冷却液回路,所述冷却液系统包括第一支路(10),所述第一换热组件(8)与第一泵(21)连通,所述第二换热组件(20)与第一支路(10)中的至少一个与第一泵(21)和第一换热部(71)连通。
  18. 如权利要求17所述的一种热管理系统,其特征在于,所述冷却液循环流路还包括第一流量调节装置(11),所述第一流量调节装置(11)为三通比例调 节阀,所述第一流量调节装置(11)包括第一接口(111)、第二接口(112)和第三接口(113),所述第一接口(111)能够与所述第一换热组件(8)连通,所述第二接口(112)能够与所述第一支路(10)连通,所述第三接口(113)能够与第二换热组件(9)连通;
    在所述制热模式下:所述第二接口(112)、所述第三接口(113)均与所述第一接口(111)连通,冷却液经所述第一换热组件(8)后通过第一流量调节装置(11)进行分流。
  19. 如权利要求17所述的一种热管理系统,其特征在于,所述冷却液循环流路还包括第二支路(12),在所述制热模式下:所述第二支路(12)和所述第二换热组件(9)连通形成回路,冷却液经所述第二换热组件(9)后,一路流向第二支路(12),一路流向所述第一换热部(71)。
  20. 一种热管理系统,其特征在于,包括:
    压缩机(1)、第一室内换热器(2)、第二室内换热器(5)、室外换热器(4)、第一节流装置(3)、第二节流装置(6);
    第一泵(21)、第一换热组件(8)、第二换热组件(9);
    第一双流道换热器(7),所述第一双流道换热器(7)包括不相连通的第一换热部(71)和第二换热部(72);
    所述热管理系统包括制热模式,在所述制热模式下:
    所述压缩机(1)的出口与第一室内换热器(2)的进口连通,所述第一室内换热器(2)的出口与室外换热器(4)的第一端口和第二换热部(72)的进口中的至少一个连通,所述第二换热部(72)的出口与压缩机(1)的进口连通,所述室外换热器(4)的第二端口与压缩机(1)的进口连通;所述第一节流装置(3)连通于第一室内换热器(2)的出口与室外换热器(4)的第一端口之间,所述第二节流装置连通于第一室内换热器(2)的出口与第二换热部(72)的进口之间;
    所述热管理系统还包括第一支路(10),所述第一换热组件(8)与第一泵 (21)连通,所述第二换热组件(20)与第一支路(10)中的至少一个与第一泵(21)和第一换热部(71)连通。
PCT/CN2020/115441 2019-09-16 2020-09-16 热管理系统 WO2021052341A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20865491.3A EP3900964B1 (en) 2019-09-16 2020-09-16 Thermal management system
US17/419,284 US11840122B2 (en) 2019-09-16 2020-09-16 Thermal management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910870675.4A CN112498046B (zh) 2019-09-16 2019-09-16 热管理系统
CN201910870675.4 2019-09-16

Publications (1)

Publication Number Publication Date
WO2021052341A1 true WO2021052341A1 (zh) 2021-03-25

Family

ID=74883170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115441 WO2021052341A1 (zh) 2019-09-16 2020-09-16 热管理系统

Country Status (4)

Country Link
US (1) US11840122B2 (zh)
EP (1) EP3900964B1 (zh)
CN (2) CN115214304A (zh)
WO (1) WO2021052341A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427758A (zh) * 2022-01-28 2022-05-03 内蒙古中电储能技术有限公司 一种太阳能供应系统及其工作方法
US20220234422A1 (en) * 2021-01-26 2022-07-28 Toyota Jidosha Kabushiki Kaisha Vehicle cooling system
WO2023026870A1 (ja) * 2021-08-27 2023-03-02 株式会社デンソー 熱管理システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372794B2 (ja) * 2019-09-18 2023-11-01 サンデン株式会社 車両用空気調和装置
CN113212105B (zh) * 2021-06-16 2022-03-18 广州小鹏汽车科技有限公司 热管理系统及其控制方法和车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108043A1 (de) * 2012-08-30 2014-05-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Temperierungsanordnung
EP3069912A1 (en) * 2013-11-13 2016-09-21 Panasonic Intellectual Property Management Co., Ltd. Vehicular air-conditioning device, and constituent units of same
JP2017052506A (ja) * 2016-10-06 2017-03-16 パナソニックIpマネジメント株式会社 車両用ヒートポンプ装置および車両用空調装置
WO2018155886A1 (ko) * 2017-02-21 2018-08-30 한온시스템 주식회사 차량용 히트펌프 시스템
CN108705915A (zh) * 2018-08-02 2018-10-26 威马智慧出行科技(上海)有限公司 一种用于电动车辆的热管理系统
CN109774409A (zh) * 2018-12-26 2019-05-21 爱驰汽车有限公司 汽车热管理系统
CN209274301U (zh) * 2018-08-02 2019-08-20 威马智慧出行科技(上海)有限公司 一种用于电动车辆的热管理系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2897016A1 (fr) * 2006-02-09 2007-08-10 Vehicules Electr Societe Par A Vehicule automobile electrique ou hybride a systeme de conditionnement thermique valorisant les sources de bas niveau
JP5396246B2 (ja) 2009-11-18 2014-01-22 株式会社日立製作所 車両用空調装置
DE102010013000A1 (de) * 2010-03-26 2011-09-29 Daimler Ag Verfahren zum Betreiben eines elektrischen Energieerzeugungssystems in einem Fahrzeug
DE102012006632A1 (de) * 2012-03-31 2013-10-02 Volkswagen Aktiengesellschaft Verfahren und System zur Wärmeübertragung für ein Fahrzeug
JP6064753B2 (ja) * 2013-04-05 2017-01-25 株式会社デンソー 車両用熱管理システム
CN105655667B (zh) * 2015-12-31 2019-07-19 北京长城华冠汽车科技股份有限公司 一种新能源汽车的热管理系统及其调节方法和新能源汽车
KR101846908B1 (ko) 2016-10-31 2018-04-10 현대자동차 주식회사 차량용 히트 펌프 시스템
CN108571834B (zh) 2017-03-08 2021-09-28 杭州三花研究院有限公司 一种热管理系统
CN109974318B (zh) * 2017-12-27 2021-03-12 杭州三花研究院有限公司 一种热管理系统
CN207800847U (zh) * 2018-01-18 2018-08-31 珠海长欣汽车智能系统有限公司 一种新能源汽车的电池箱加热装置
CN209381733U (zh) * 2018-09-11 2019-09-13 蔚来汽车有限公司 电动汽车的热管理系统
CN110103665A (zh) * 2019-05-07 2019-08-09 上海理工大学 带电池和电机电控热管理的新能源汽车热泵空调系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108043A1 (de) * 2012-08-30 2014-05-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Temperierungsanordnung
EP3069912A1 (en) * 2013-11-13 2016-09-21 Panasonic Intellectual Property Management Co., Ltd. Vehicular air-conditioning device, and constituent units of same
JP2017052506A (ja) * 2016-10-06 2017-03-16 パナソニックIpマネジメント株式会社 車両用ヒートポンプ装置および車両用空調装置
WO2018155886A1 (ko) * 2017-02-21 2018-08-30 한온시스템 주식회사 차량용 히트펌프 시스템
CN108705915A (zh) * 2018-08-02 2018-10-26 威马智慧出行科技(上海)有限公司 一种用于电动车辆的热管理系统
CN209274301U (zh) * 2018-08-02 2019-08-20 威马智慧出行科技(上海)有限公司 一种用于电动车辆的热管理系统
CN109774409A (zh) * 2018-12-26 2019-05-21 爱驰汽车有限公司 汽车热管理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3900964A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220234422A1 (en) * 2021-01-26 2022-07-28 Toyota Jidosha Kabushiki Kaisha Vehicle cooling system
WO2023026870A1 (ja) * 2021-08-27 2023-03-02 株式会社デンソー 熱管理システム
CN114427758A (zh) * 2022-01-28 2022-05-03 内蒙古中电储能技术有限公司 一种太阳能供应系统及其工作方法

Also Published As

Publication number Publication date
CN112498046A (zh) 2021-03-16
CN115214304A (zh) 2022-10-21
EP3900964A1 (en) 2021-10-27
EP3900964A4 (en) 2022-04-13
EP3900964B1 (en) 2023-11-29
US11840122B2 (en) 2023-12-12
CN112498046B (zh) 2022-06-17
US20220072927A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2021052341A1 (zh) 热管理系统
WO2021083067A1 (zh) 一种热管理系统
WO2018161907A1 (zh) 一种热管理系统
WO2020253570A1 (zh) 一种热管理系统
WO2019001330A1 (zh) 热管理系统
WO2019001385A1 (zh) 一种热管理系统及一种流量控制装置
WO2019001351A1 (zh) 一种热管理系统
US11358438B2 (en) Automotive air conditioning system
CN111231612A (zh) 热管理系统
US20230391160A1 (en) Thermal management system
WO2020063678A1 (zh) 空调系统及其控制方法
EP3982054A1 (en) Heat exchanger and heat exchange system
CN211892770U (zh) 热管理系统
WO2022068606A1 (zh) 热管理系统
CN113263889B (zh) 热管理系统
CN214112339U (zh) 热管理系统
WO2023051746A1 (zh) 热管理系统及其控制方法
CN217574780U (zh) 热管理系统
CN111251816A (zh) 车辆、车载空调系统及其控制方法
WO2021052445A1 (zh) 热管理系统
WO2023160198A1 (zh) 汽车热管理系统及新能源汽车
WO2022253122A1 (zh) 阀组集成模块、热管理系统及车辆
CN115320326A (zh) 热管理系统
CN115320325A (zh) 热管理系统
CN114889396A (zh) 热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020865491

Country of ref document: EP

Effective date: 20210722

NENP Non-entry into the national phase

Ref country code: DE