WO2021052301A1 - 一种基于无线控制的井下节流器 - Google Patents

一种基于无线控制的井下节流器 Download PDF

Info

Publication number
WO2021052301A1
WO2021052301A1 PCT/CN2020/115228 CN2020115228W WO2021052301A1 WO 2021052301 A1 WO2021052301 A1 WO 2021052301A1 CN 2020115228 W CN2020115228 W CN 2020115228W WO 2021052301 A1 WO2021052301 A1 WO 2021052301A1
Authority
WO
WIPO (PCT)
Prior art keywords
adapter sleeve
electrical
sleeve
assembly
downhole
Prior art date
Application number
PCT/CN2020/115228
Other languages
English (en)
French (fr)
Inventor
谢军
马辉运
杨健
喻成刚
付玉坤
尹强
李奎
江源
易德正
刘燕烟
钟海峰
刘晓东
Original Assignee
中国石油天然气股份有限公司
四川圣诺油气工程技术服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司, 四川圣诺油气工程技术服务有限公司 filed Critical 中国石油天然气股份有限公司
Priority to US17/606,836 priority Critical patent/US11946349B2/en
Publication of WO2021052301A1 publication Critical patent/WO2021052301A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift
    • E21B43/123Gas lift valves
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/066Valve arrangements for boreholes or wells in wells electrically actuated
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/02Down-hole chokes or valves for variably regulating fluid flow
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells

Definitions

  • the invention relates to the technical field of oil and natural gas production equipment, in particular to a downhole choke based on wireless control.
  • Downhole choke technology has been applied in a large area in the Southwest oil and gas field.
  • the average single well saves more than 1.5 million yuan in investment, and the average single well shortens the construction and commissioning cycle by 15-20 days, realizing the scale-effective development of gas reservoirs.
  • the number of downhole choke salvage and replacement exceeded 200 well times. Among them, it is mainly because of the need for production adjustment to carry out rope operations to fish the downhole choke and replace the nozzles of different mouth diameters.
  • the operation time for a single replacement of the throttle is about 4 to 5 days, requiring material and manpower such as well test trucks, and the operation cycle is long, and the cost and risk are high.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a choke which can remotely choke down the natural gas well.
  • a downhole throttle based on wireless control which includes an air inlet, a throttle assembly, an electrical seal tube, a gas guide tube, a lower adapter sleeve, a head, a female sleeve and Electrical components
  • the air inlet nozzle is connected with a throttle assembly
  • the throttle assembly is connected with an electrical sealing cylinder and an air guide tube
  • the electrical sealing tube is arranged in the air guide tube
  • the electrical sealing tube and the air guide tube are both connected to the lower part
  • the adapter sleeve is connected, the lower adapter sleeve is respectively connected with the sealing head and the female sleeve, the sealing head is located in the female sleeve, and the electrical components are arranged in the electrical sealing cylinder.
  • the throttling assembly includes an upper adapter sleeve, a middle adapter sleeve, a static valve and a moving valve.
  • the upper adapter sleeve is connected to the air inlet and the middle adapter sleeve, respectively, and the middle adapter sleeve is connected to the electrical seal cylinder.
  • the static valve is arranged in the upper adapter sleeve
  • the movable valve is arranged in the upper adapter sleeve and the middle adapter sleeve
  • the movable valve is connected with the middle adapter sleeve through a bearing.
  • the static valve is provided with a plurality of ventilation ducts, the ventilation duct of the static valve is connected with the air inlet, and the movable valve is provided with a plurality of ventilation ducts at the corresponding positions of the static valve, and the middle switch A plurality of ventilation ducts are arranged at the corresponding positions of the sleeve and the moving valve, and the ventilation ducts of the intermediate adapter sleeve are connected with the air guide tube. After the moving valve is deflected, the cross-sectional area of the ventilation duct connecting the static valve and the moving valve is changed.
  • the electrical component includes a motor, a circuit control component, a battery component, and a sensor.
  • the output shaft of the motor is connected to the moving lobe.
  • the motor, battery component and sensor are electrically connected to the circuit control component.
  • the motor, the circuit control component, and the The battery assembly is arranged in the electrical sealed cylinder, the sensor is arranged in the sealing head, and the sensing probe of the sensor passes through the sealing head and is located in the female sleeve.
  • the sensor is an integrated temperature and pressure sensor.
  • a positioning pin for preventing rotation is arranged between the upper adapter sleeve and the static valve.
  • a plurality of ventilation pipes are arranged on the lower adapter sleeve.
  • the opening of the downhole choke can be adjusted remotely and wirelessly on the ground, which has changed the traditional way of shutting in the well and replacing the choke with rope operations, saving a lot of money Manpower, material resources and time costs.
  • the downhole wireless intelligent production adjustment technology is realized through the cooperation of sensors and motors, which satisfies the requirements of digitalization and automation in digital natural gas field technology, and can guide technicians to adjust the output of natural gas wells effectively and quickly according to production needs, and enhance the safety of natural gas well development Performance, improve work quality and operating efficiency, and reduce operating costs.
  • Figure 1 is a cross-sectional view of a downhole choke based on wireless control in an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a throttle assembly in an embodiment of the present invention.
  • Fig. 3 is a cross-sectional view of the lower adapter sleeve, the seal head and the female sleeve in the embodiment of the present invention.
  • the reference signs are as follows: 1-intake nozzle, 2-throttling component, 3-electrical sealing tube, 4-air guide tube, 5-lower adapter sleeve, 6-head, 7-female sleeve, 8-electrical component, 9-locating pin, 201-upper adapter sleeve, 202-middle adapter sleeve, 203-static valve, 204-moving valve, 801-motor, 802-circuit control assembly, 803-battery assembly, 804-sensor.
  • a downhole choke based on wireless control includes an air inlet 1, a throttle assembly 2, an electrical seal cylinder 3, an air guide cylinder 4, a lower adapter sleeve 5, and a head 6 , A female sleeve 7 and an electrical component 8.
  • the air inlet nozzle 1 is connected to a throttle component 2, and the throttle component 2 is connected to an electrical sealing cylinder 3 and an air guide tube 4, and the electrical sealing tube 3 is located in the air guide tube 4 ,
  • the electrical sealing cylinder 3 and the air guide cylinder 4 are both connected to the lower adapter sleeve 5, the lower adapter sleeve 5 is respectively connected to the sealing head 6 and the female sleeve 7, the sealing head 6 is located in the female sleeve 7, so
  • the electrical component 8 is arranged in the electrical sealed cylinder 3.
  • the throttle assembly 2 includes an upper adapter sleeve 201, a middle adapter sleeve 202, a static valve 203, and a moving valve 204.
  • the upper adapter sleeve 201 is connected to the intake nozzle 1 and the center respectively.
  • the sleeve 202 is threadedly connected
  • the middle adapter sleeve 202 is threadedly connected with the electrical seal cylinder 3 and the air guide tube 4
  • the static valve 203 is arranged in the upper adapter sleeve 201
  • the movable valve 204 is arranged on the upper adapter sleeve.
  • the moving flap 204 is connected with the middle adapter sleeve 202 through a bearing.
  • the bearing connected between the moving petal 204 and the middle adapter sleeve 202 is a roller bearing.
  • the static valve 203 is provided with a plurality of ventilation ducts, the ventilation duct of the static valve 203 is connected to the air inlet 1, and the movable valve 204 is provided with a plurality of ventilation ducts at the corresponding positions of the static valve 201, A plurality of ventilation ducts are provided at the corresponding positions of the middle adapter sleeve 202 and the moving valve 204, and the ventilation ducts of the middle adapter sleeve 202 are connected with the air guide tube 4.
  • the electrical component 8 includes a motor 801, a circuit control component 802, a battery component 803, and a sensor 804.
  • the output shaft of the motor 801 is connected to the moving lobe 204.
  • the motor 801, the battery component 803 and the sensor 804 is electrically connected to the circuit control assembly 803, the motor 801, the circuit control assembly 802 and the battery assembly 803 are arranged in the electrical sealed cylinder 3, the sensor 804 is arranged in the sealing head 6, and the sensing probe of the sensor 804 passes through
  • the head is also located in the female sleeve 7.
  • the circuit control component is built with a signal transceiver and an integrated control chip.
  • the sensor 804 is an integrated temperature and pressure sensor.
  • a positioning pin 9 for preventing rotation is provided between the upper adapter sleeve 201 and the static valve 203.
  • the lower adapter sleeve 5 is provided with a plurality of ventilation pipes.
  • a sealing ring and a retaining ring are provided on the connecting circumferential surface of the.
  • the working process of the present invention is as follows: the oil and natural gas at the bottom of the well enters from the inlet nozzle 1, and flows through the vent pipe on the static valve 203 to the vent pipe of the moving valve 204, and then the vent pipe of the moving valve 204 passes through the middle transfer sleeve 202 The vent pipe enters the air guide tube 4, and then the vent pipe passing through the lower adapter sleeve 5 enters the female sleeve 7 to merge into the next production process.
  • the sensor 804 detects the temperature and pressure of the oil and natural gas in the mother sleeve 7. The detected data is transmitted to the control host on the well via the circuit control component 802, and the operation control host sends instructions to the circuit control component 802.
  • the integration of the circuit control component 802 The control chip uses the integrated opening calculation control module to output the throttle opening command to the motor.
  • the motor runs the corresponding angle according to the opening command, and drives the throttle nozzle to the corresponding output opening position.
  • the temperature and pressure sensor built into the throttle detects the temperature and pressure parameters before and after the throttle in real time, and the downhole control chip performs information fusion processing on the real-time production based on the detected parameters, feedbacks and checks whether the production allocation is successfully implemented in accordance with the instructions.

Abstract

一种基于无线控制的井下节流器,它包括进气嘴(1)、节流组件(2)、电气密封筒(3)、导气筒(4)、下转接套(5)、封头(6)、母套(7)和电气组件(8),进气嘴(1)与节流组件(2)连接,节流组件(2)与电气密封筒(3)和导气筒(4)连接,电气密封筒(3)和导气筒(4)均与下转接套(5)连接,下转接套(5)分别与封头(6)和母套(7)连接,电气组件(8)设置于电气密封筒(3)内。该井下节流器通过电气组件(8)中的温压一体传感器检测管内温度与压力,电路控制组件(802)控制电机(801)转动节流组件(2)中的动瓣(204)来达到节流效果,实现无线控制井下节流。

Description

一种基于无线控制的井下节流器 技术领域
本发明涉及石油天然气生产设备技术领域,尤其涉及一种基于无线控制的井下节流器。
背景技术
井下节流技术起步较早,早在上世纪四十年代就有国外专家提出了在自喷井中采用井底油嘴来消除油井的激动间歇或减缓激动间歇程度的思路,但是,由于更换井底油嘴和改变嘴子尺寸需要起下油管,比较麻烦,因此这种方法未能得到及时的普及和应用。而国外已有的智能完井工具系统,使用的流量控制装置主要是套管自动开关滑阀之类,未见专门针对气流生产通道井下管串内的节流工具,国内目前也还没有成熟的无线智能井下流体流量控制工具,常用的节流器主要分为活动式井下节流器和固定式井下节流器,它们都是机械式的节流器。
井下节流技术已在西南油气田大面积应用,平均单井节约投资150余万元、平均单井缩短建设投产周期15~20天,实现气藏的规模效益开发。在2002~2018年期间,井下节流器打捞及更换次数超过200井次。其中主要是因调产的需要进行绳索作业打捞井下节流器,更换不同嘴径的油嘴。单次更换节流器的作业时间约为4~5天,需要试井车等物力人力,作业周期长,成本和风险较高。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种可以对天然气井下远程节流控制的节流器。
本发明的目的通过以下技术方案来实现:一种基于无线控制的井下节流器,它包括进气嘴、节流组件、电气密封筒、导气筒、下转接套、封头、母套和电气组件,所述进气嘴与节流组件连接,所述节流组件与电气密封筒和导气筒连接,所述电气密封筒设置于导气筒内,所述电气密封筒和导气筒均与下转接套连接,所述下转接套分别与封头和母套连接,所述封头位于母套内,所述电气组件设置于电气密封筒内。
所述节流组件包括上转接套、中转接套、静瓣和动瓣,所述上转接套分别与进气嘴和中转接套连接,所述中转接套与电气密封筒和导气筒连接,所述静瓣设置于上转接套内,所述动瓣设置于上转接套和中转接套内,所述动瓣通过轴承与中转接套连接。
所述静瓣上设置有多个通气管道,所述静瓣的通气管道与进气嘴相连通,所述动瓣上与静瓣的对应位置上设置有多个通气管道,所述中转接套与动瓣的对应位置上设置有多个通气管道,所述中转接套的通气管道与导气筒相连通。动瓣在发生偏转后,改变了静瓣与动瓣连通的通气管道的横截面积。
所述电气组件包括电机、电路控制组件、电池组件和传感器,所述电机的输出轴与动瓣连接,所述电机、电池组件和传感器与电路控制组件电连接,所述电机、电路控制组件和电池组件设置于电气密封筒内,所述传感器设置于封头内,所述传感器的感应探头穿过封头并位于母套内。
所述传感器为温压一体传感器。
所述上转接套和静瓣之间设置有用于防止转动的定位销。
所述下转接套上设置有多个通气管道。
本发明具有以下优点:
1、只需利用现有井场采气井口装置,即可在地面远程无线控制调节井下节流嘴开度大小,改变了传统关井和采取绳索作业更换节流嘴的方式,节约了大量的人力、物力和时间成本。
2、通过传感器和电机配合实现井下无线智能调产技术,较好地满足了数字化天然气田技术中数字化、自动化要求,可指导技术人员依据生产需要有效快捷的调整天然气井产量,增强天然气井开发安全性,提高工作质量和运行效率,降低运行成本。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本发明实施例中基于无线控制的井下节流器的剖视图;
图2为本发明实施例中节流组件的剖视图;
图3为本发明实施例中下转接套、封头和母套的剖视图。
附图标记如下:1-进气嘴,2-节流组件,3-电气密封筒,4-导气筒,5-下转接套,6-封头,7-母套,8-电气组件,9-定位销,201-上转接套,202-中转接套,203-静瓣,204-动瓣,801-电机,802-电路控制组件,803-电池组件,804-传感器。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
如图1和图3所示,一种基于无线控制的井下节流器,它包括进气嘴1、节流组件2、电气密封筒3、导气筒4、下转接套5、封头6、母套7和电气组件8,所述进气嘴1与节流组件2连接,所述节流组件2与电气密封筒3和导气筒4连接,所述电气密封筒3位于导气筒4内,所述电气密封筒3和导气筒4均与下转接套5连接,所述下转接套5分别与封头6和母套7连接,所述封头6位于母套7内,所述电气组件8设置于电气密封筒3内。
如图2所示,所述节流组件2包括上转接套201、中转接套202、静瓣203和动瓣204,所述上转接套201分别与进气嘴1和中转接套202螺纹连接,所述中转接套202分别与电气密封筒3和导气筒4螺纹连接,所述静瓣203设置于上转接套201内,所述动瓣204设置于上转接套201和中转接套202内,所述动瓣204通过轴承与中转接套202连接。
优选地,动瓣204与中转接套202连接的轴承为滚子轴承。
所述静瓣203上设置有多个通气管道,所述静瓣203的通气管道与进气嘴1相连通,所述动瓣204上与静瓣201的对应位置上设置有多个通气管道,所述中转接套202与动瓣204的对应位置上设置有多个通气管道,所述中转接套202的通气管道与导气筒4相连通。
如图1所示,所述电气组件8包括电机801、电路控制组件802、电池组件803和传感器804,所述电机801的输出轴与动瓣204连接,所述电机801、电池组件803和传感器804与电路控制组件803电连接,所述电机801、电路控制组件802和电池组件803设置于电气密封筒3内,所述传感器804设置于封头6内,所述传感器804的感应探头穿过封头并位于母套7内。所述电路控制组件内置有信号收发器和集成控制芯片。
所述传感器804为温压一体传感器。
所述上转接套201和静瓣203之间设置有用于防止转动的定位销9。
所述下转接套5上设置有多个通气管道。
优选地,进气嘴1、上转接套201、中转接套202、静瓣203、动瓣204、电气密封筒3、导气筒4、下转接套5、封头6和母套7的连接圆周面上均设置有密封圈和挡圈。
本发明的工作过程如下:井底的石油天然气从进气嘴1进入,经过静瓣203上的通气管道流向动瓣204的通气管道,再由动瓣204的通气管道经过中转接套202的通气管道进入导气管4中,之后经过下转接套5的通气管道进入母套7内从而汇入下一道生产程序。传感器804对母套7中的石油天然气的温度和压力进行检测,检测到的数据经电路控制组件802传输到井上的控制主机,操作控制主机向电路控制组件802发送指令,电路控制组件802的集成控制芯片利用集成的开度推算控制模块向电机输出节流器开度指令,电机按照开度指令运行相应的角度,驱动节流油嘴到达对应产量开度位置。同时,节流器内置的温度压力传感器实时检测节流器前后的温度压力参数,井下控制芯片依据检测参数对实时产量进行信息融合处理,反馈并检验配产是否按照指令成功实施。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种基于无线控制的井下节流器,其特征在于,包括进气嘴(1)、节流组件(2)、电气密封筒(3)、导气筒(4)、下转接套(5)、封头(6)、母套(7)和电气组件(8),所述进气嘴(1)与节流组件(2)连接,所述节流组件(2)与电气密封筒(3)和导气筒(4)连接,所述电气密封筒(3)设置于导气筒(4)内,所述电气密封筒(3)和导气筒(4)均与下转接套(5)连接,所述下转接套(5)分别与封头(6)和母套(7)连接,所述封头(6)位于母套(7)内,所述电气组件(8)设置于电气密封筒(3)内。
  2. 根据权利要求1所述的基于无线控制的井下节流器,其特征在于,所述节流组件(2)包括上转接套(201)、中转接套(202)、静瓣(203)和动瓣(204),所述上转接套(201)分别与进气嘴(1)和中转接套(202)连接,所述中转接套(202)分别与电气密封筒(3)和导气筒(4)连接,所述静瓣(203)设置于上转接套(201)内,所述动瓣(204)设置于上转接套(201)和中转接套(202)内,所述动瓣(204)通过轴承与中转接套(202)连接。
  3. 根据权利要求2所述的基于无线控制的井下节流器,其特征在于,所述静瓣(203)上设置有多个通气管道,所述静瓣(203)的通气管道与进气嘴(1)相连通,所述动瓣(204)上与静瓣(201)的对应位置上设置有多个通气管道,所述中转接套(202)与动瓣(204)的对应位置上设置有多个通气管道,所述中转接套(202)的通气管道与导气筒(4)相连通。
  4. 根据权利要求1所述的基于无线控制的井下节流器,其特征在于,所述电气组件(8)包括电机(801)、电路控制组件(802)、电池组件(803)和传感器(804),所述电机(801)的输出轴与动瓣(204)连接,所述电机(801)、电池组件(803)和传感器(804)与电路控制组件(803)电连接,所述电机(801)、电路控制组件(802)和电池组件(803)设置于电气密封筒(3)内,所述传感器(804)设置于封头(6)内,所述传感器(804)的感应探头穿过封头并位于母套(7)内。
  5. 根据权利要求4所述的基于无线控制的井下节流器,其特征在于,所述传感器(804)为温压一体传感器。
  6. 根据权利要求1所述的基于无线控制的井下节流器,其特征在于,所述上转接套(201)和静瓣(203)之间设置有用于防止转动的定位销(9)。
  7. 根据权利要求1所述的基于无线控制的井下节流器,其特征在于,所述下转接套(5)上设置有多个通气管道。
PCT/CN2020/115228 2019-09-19 2020-09-15 一种基于无线控制的井下节流器 WO2021052301A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/606,836 US11946349B2 (en) 2019-09-19 2020-09-15 Downhole throttling device based on wireless control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910889181.0A CN110500066B (zh) 2019-09-19 2019-09-19 一种基于无线控制的井下节流器
CN201910889181.0 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021052301A1 true WO2021052301A1 (zh) 2021-03-25

Family

ID=68592476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115228 WO2021052301A1 (zh) 2019-09-19 2020-09-15 一种基于无线控制的井下节流器

Country Status (3)

Country Link
US (1) US11946349B2 (zh)
CN (1) CN110500066B (zh)
WO (1) WO2021052301A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500066B (zh) * 2019-09-19 2020-06-16 中国石油天然气股份有限公司西南油气田分公司工程技术研究院 一种基于无线控制的井下节流器
CN111963117B (zh) * 2020-09-08 2022-07-05 中国石油天然气股份有限公司 井下节流器及其控制方法
CN113417612A (zh) * 2021-08-05 2021-09-21 中国石油天然气股份有限公司 一种井下节流施工作业方法及井下节流器
CN113447292B (zh) * 2021-08-05 2022-11-08 中国石油天然气股份有限公司 一种无线控制井下节流器性能检测方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083401A (en) * 1977-05-27 1978-04-11 Gearhart-Owen Industries, Inc. Apparatus and methods for testing earth formations
CN201428440Y (zh) * 2009-02-18 2010-03-24 韩兴刚 小直径天然气井井下节流器
CN202170785U (zh) * 2011-08-03 2012-03-21 北京金科龙石油技术开发有限公司 一种后置式井下节流器
CN202187750U (zh) * 2011-08-03 2012-04-11 北京金科龙石油技术开发有限公司 一种预置式井下节流器
CN206338053U (zh) * 2016-12-16 2017-07-18 中国石油化工股份有限公司江汉油田分公司石油工程技术研究院 一种气井可紧急关断的智能井下节流阀
CN209053599U (zh) * 2018-11-28 2019-07-02 四川航天烽火伺服控制技术有限公司 一种井下可调式节流器
CN110500066A (zh) * 2019-09-19 2019-11-26 中国石油天然气股份有限公司西南油气田分公司工程技术研究院 一种基于无线控制的井下节流器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6148843A (en) * 1996-08-15 2000-11-21 Camco International Inc. Variable orifice gas lift valve for high flow rates with detachable power source and method of using
RU2273727C2 (ru) 2000-01-24 2006-04-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Нефтяная скважина и способ работы ствола нефтяной скважины
US7073594B2 (en) * 2000-03-02 2006-07-11 Shell Oil Company Wireless downhole well interval inflow and injection control
WO2004088090A1 (en) 2003-03-28 2004-10-14 Shell Internationale Research Maatschappij B.V. Surface flow controlled valve and screen
DE602004003059D1 (de) * 2004-09-10 2006-12-14 Schlumberger Technology Bv Hydraulisch betätigte Vorrichtung zur Absicherung eines Werkzeugs in einem Bohrloch
NO20080452L (no) * 2008-01-24 2009-07-27 Well Technology As A method and an apparatus for controlling a well barrier
RU2385409C2 (ru) 2008-05-13 2010-03-27 ООО Научно-исследовательский институт "СибГеоТех" Способ добычи флюида из пластов одной скважины электроприводным насосом с электрическим клапаном и установка для его реализации (варианты)
US20100243243A1 (en) * 2009-03-31 2010-09-30 Schlumberger Technology Corporation Active In-Situ Controlled Permanent Downhole Device
EP2561178B1 (en) 2010-05-26 2019-08-28 Services Petroliers Schlumberger Intelligent completion system for extended reach drilling wells
RU2475643C2 (ru) 2010-12-30 2013-02-20 Государственное образовательное учреждение высшего профессионального образования Уфимский государственный нефтяной технический университет (ГОУ ВПО УГНТУ) Способ и устройство для контроля и управления процессом одновременно-раздельной эксплуатации многопластовых обсаженных скважин (варианты) и исполнительный модуль в составе устройства (варианты)
US20130048290A1 (en) * 2011-08-29 2013-02-28 Halliburton Energy Services, Inc. Injection of fluid into selected ones of multiple zones with well tools selectively responsive to magnetic patterns
GB2499593B8 (en) * 2012-02-21 2018-08-22 Tendeka Bv Wireless communication
EP3027846B1 (en) * 2013-07-31 2018-10-10 Services Petroliers Schlumberger Sand control system and methodology
US9416621B2 (en) * 2014-02-08 2016-08-16 Baker Hughes Incorporated Coiled tubing surface operated downhole safety/back pressure/check valve
RU150456U1 (ru) 2014-06-16 2015-02-20 Общество с ограниченной ответственностью Научно-производственная фирма "ВНИИГИС - Забойные телеметрические комплексы" (ООО НПФ "ВНИИГИС - ЗТК") Устройство контроля и управления с беспроводным индуктивным каналом связи для многоствольной скважины
US20160290099A1 (en) * 2015-04-01 2016-10-06 Schlumberger Technology Corporation Shape memory material gas lift valve actuator
WO2017058256A1 (en) * 2015-10-02 2017-04-06 Halliburton Energy Services, Inc. Remotely operated and multi-functional down-hole control tools
MY197839A (en) * 2016-10-31 2023-07-20 Halliburton Energy Services Inc Wireless activation of wellbore completion assemblies
CN106988709B (zh) * 2017-05-22 2019-06-18 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种井下实时可调节流工艺
CN207795189U (zh) * 2017-12-28 2018-08-31 中国石油天然气股份有限公司 一种气井智能节流系统
US11702913B2 (en) * 2021-04-16 2023-07-18 Silverwell Technology Ltd. Wellbore system having an annulus safety valve
US11808145B2 (en) * 2021-10-29 2023-11-07 Halliburton Energy Services, Inc. Downhole telemetry during fluid injection operations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083401A (en) * 1977-05-27 1978-04-11 Gearhart-Owen Industries, Inc. Apparatus and methods for testing earth formations
CN201428440Y (zh) * 2009-02-18 2010-03-24 韩兴刚 小直径天然气井井下节流器
CN202170785U (zh) * 2011-08-03 2012-03-21 北京金科龙石油技术开发有限公司 一种后置式井下节流器
CN202187750U (zh) * 2011-08-03 2012-04-11 北京金科龙石油技术开发有限公司 一种预置式井下节流器
CN206338053U (zh) * 2016-12-16 2017-07-18 中国石油化工股份有限公司江汉油田分公司石油工程技术研究院 一种气井可紧急关断的智能井下节流阀
CN209053599U (zh) * 2018-11-28 2019-07-02 四川航天烽火伺服控制技术有限公司 一种井下可调式节流器
CN110500066A (zh) * 2019-09-19 2019-11-26 中国石油天然气股份有限公司西南油气田分公司工程技术研究院 一种基于无线控制的井下节流器

Also Published As

Publication number Publication date
CN110500066A (zh) 2019-11-26
US11946349B2 (en) 2024-04-02
US20220205346A1 (en) 2022-06-30
CN110500066B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2021052301A1 (zh) 一种基于无线控制的井下节流器
CN204312036U (zh) 一种压差式井下节流器气嘴
CN204345034U (zh) 一种压缩天然气用先导式电磁阀
CN110469298B (zh) 一种基于无线控制的笼套式井下节流器
CN209261524U (zh) 一种防冲蚀钻完井一体化的新型井口装置
CN207813574U (zh) 一种油井井口不停产更换流程装置
CN206310064U (zh) 一种排气阀及输水系统
CN206432842U (zh) 除尘风机的电机冷却装置
RU2773879C1 (ru) Скважинное дроссельное устройство на основе беспроводного управления
CN210105821U (zh) 一种柱塞辅助间歇气举排液采气的井口装置
CN113417612A (zh) 一种井下节流施工作业方法及井下节流器
CN203939652U (zh) 一种油气回收真空泵
CN204532250U (zh) 远程高压开井紧急切断装置
CN109958405A (zh) 油井井口不停产更换流程装置
CN203835784U (zh) 核电机组混凝土蜗壳泵的停机密封装置
CN202532001U (zh) 一种恒温温控阀的阀芯组件
CN207315319U (zh) 一种盖板式天然气井口管线节流装置
CN205173102U (zh) 一种水气两用型阀岛
CN219733453U (zh) 一种附着式悬臂掘进机自动高压气水喷雾装置
CN109701782A (zh) 铅笔喷漆装置
CN220227978U (zh) 一种压力控制插装式电磁阀
CN117128359B (zh) 一种具有双向压力监测功能的双板式球阀
CN213182154U (zh) 一种安装梅花管端口的降耗密封圈
CN209457931U (zh) 一种石油定向仪器的指令下发系统的机械结构
CN214273625U (zh) 一种下行通讯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865397

Country of ref document: EP

Kind code of ref document: A1