WO2021052242A1 - 蓝牙耳机 - Google Patents

蓝牙耳机 Download PDF

Info

Publication number
WO2021052242A1
WO2021052242A1 PCT/CN2020/114635 CN2020114635W WO2021052242A1 WO 2021052242 A1 WO2021052242 A1 WO 2021052242A1 CN 2020114635 W CN2020114635 W CN 2020114635W WO 2021052242 A1 WO2021052242 A1 WO 2021052242A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting portion
bluetooth headset
ear handle
fpc
bottom end
Prior art date
Application number
PCT/CN2020/114635
Other languages
English (en)
French (fr)
Inventor
杨崇文
王汉阳
徐慧梁
曾昭才
徐灏文
鹿麟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20865466.5A priority Critical patent/EP4024886A4/en
Priority to US17/760,635 priority patent/US20220337933A1/en
Publication of WO2021052242A1 publication Critical patent/WO2021052242A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups

Definitions

  • This application relates to the technical field of communication equipment, and in particular to a Bluetooth headset.
  • Bluetooth headsets are loved by users because of their convenience and compactness, and the range of use is becoming wider and wider.
  • the antenna performance of the antenna itself is not good, and in order to meet the demand of compact layout, it is not easy to achieve the requirements of no antenna headroom area or small antenna headroom area, resulting in a decrease in the antenna performance of the antenna.
  • This application provides a bluetooth headset to improve the antenna performance of the bluetooth headset, ensure the communication effect of the bluetooth headset, and meet the requirements of no antenna headroom area or small antenna headroom area.
  • the present application provides a Bluetooth headset, which includes a headset housing and a signal processing component.
  • the headset housing has a cavity, and the signal processing component is located in the cavity.
  • the signal processing components include: flexible circuit board FPC, microphone and antenna radiator.
  • the earphone shell includes: an earplug part and an ear handle part.
  • the FPC is arranged at the ear handle, and the part of the FPC extends along the top end of the ear handle to the earplug part, and the microphone is arranged at the bottom end of the ear handle.
  • the signal end of the microphone is electrically connected with the control module on the FPC.
  • the antenna radiator on the FPC is located at the ear handle.
  • the length of the antenna radiator is 1/4 of the wavelength corresponding to a working frequency band of the antenna radiator.
  • the antenna radiator is electrically connected to the control module through the feeding point on the FPC, and the power is fed.
  • the point is at the top of the earstalk.
  • the first connection part on the FPC is located at the earplug part, and the length of the first connection part is 1/4 of the wavelength.
  • the grounding end of the control module, the first connection part and the grounding point on the FPC share the same ground, and the grounding point is at the ear handle.
  • the grounding point is a preset distance from the feeding point.
  • the second connection part is located at the ear handle part, and the ground terminal of the microphone is electrically connected to the ground point through the second connection part.
  • At least one third connecting portion extends from at least one position on the second connecting portion except the ground point.
  • the third connecting portion is located at the ear handle.
  • the total length of the second connecting portion and the third connecting portion is greater than 1 of the wavelength. /4, the current on the antenna radiator flows from the feeding point to the bottom end of the ear stem, and the parasitic current on the third connection part flows from the connection between the third connection part and the second connection part to the end of the third connection part , The current on the antenna radiator and the parasitic current on the third connection part are not reversed.
  • the total length of the second connecting part and the third connecting part is set to be greater than 1/4 of the wavelength corresponding to one working frequency band of the antenna radiator, and the current on the antenna radiator is from the feeding point Flow to the bottom end of the earstalk, the third connection part is connected to the second connection, the current on the second connection flows from the bottom of the earstalk to the ground point, and the parasitic current on the third connection is from the third connection
  • the connection between the second connecting portion and the third connecting portion flows along the body of the third connecting portion to the end of the third connecting portion.
  • the current on the antenna radiator and the parasitic current on the third connecting portion are not reversed, so that the third connecting portion It becomes the parasitic of the antenna radiator, improves the performance of the antenna radiator, satisfies the demand for compact layout of the Bluetooth headset, and realizes the requirement of no antenna headroom or small antenna headroom, ensuring the good antenna performance of the antenna Bluetooth headset.
  • the antenna radiator and the second connecting part are jointly arranged on the FPC, which saves the space of the Bluetooth headset, reduces the complexity of the assembly process, reduces the layout cost, and further meets the demand for compact layout of the Bluetooth headset.
  • the total length of the second connecting part and the third connecting part is less than or equal to 1/2 of the wavelength, which effectively improves the antenna performance of the Bluetooth headset.
  • the second connection part is provided on the FPC. Furthermore, since the antenna radiator and the second connecting part are jointly arranged on the FPC, compared with the traditional Bluetooth headset, the space of the middle ear handle of the Bluetooth headset is saved, the assembly process of the Bluetooth headset is simplified, and the layout cost is reduced. It meets the demand for compact layout of Bluetooth headsets.
  • any one of the third connecting portions includes: a connecting portion extending from at least one position on the second connecting portion close to the bottom end of the ear stem to a direction close to the top end of the ear stem, fully The space of the ear handle is utilized to realize the compact layout of the Bluetooth headset.
  • the parasitic current on the third connecting portion is in the same direction as the current on the antenna radiator, so that the third connecting portion becomes a parasitic of the antenna radiator, and the performance of the antenna radiator is enhanced.
  • the third connecting part and the second connecting part form a U-shaped structure.
  • the second connecting part and the third connecting part are linear and parallel, which saves the space of the earphone shell and makes the Bluetooth earphone The space is compact, and it is also convenient to lay out the antenna structure of the Bluetooth headset.
  • the third connection part is arranged on the FPC, the process is simple and easy to implement, and the space of the ear handle is saved, so that the Bluetooth headset meets the demands of a compact layout.
  • the third connecting portion is close to the antenna radiator, ensuring that the third connecting portion serves as the parasitic of the antenna radiator to improve antenna performance.
  • the third connecting portion is arranged on the inner wall or the outer wall of the ear handle, which makes full use of the ear handle and saves the space of the ear handle, so that the Bluetooth headset meets the demands of a compact layout.
  • the projection of the third connecting portion on the plane where the FPC is located along the vertical direction of the plane where the FPC is located overlaps with the antenna radiator, so that the Bluetooth headset has good antenna performance.
  • the projection of the third connecting portion on the plane where the FPC is located along the vertical direction of the plane where the FPC is located is adjacent to the antenna radiator, so that the Bluetooth headset has better antenna performance.
  • the projection of the third connecting portion on the plane of the FPC along the vertical direction of the plane where the FPC is located is far from the antenna radiator and close to the second connecting portion, so that the Bluetooth headset has better antenna performance.
  • any third connecting portion includes: a curved connecting portion extending from at least one position on the second connecting portion close to the bottom end of the ear stem to a direction close to the bottom end of the ear stem , It makes full use of the space at the bottom of the ear handle, and realizes the compact layout of the Bluetooth headset.
  • the parasitic current on the third connection part bends and flows from the connection with the second connection part to the end of the third connection part, so that the third connection part becomes the parasitic of the antenna radiator and enhances the antenna radiation. Body performance.
  • any one of the third connecting portions includes: a connecting portion extending from at least one position on the second connecting portion close to the bottom end of the ear stem in a direction close to the top end of the ear stem, and from the first connecting portion At least one position on the two connecting parts close to the bottom end of the ear handle extends in a direction close to the bottom end of the ear handle and is a curved connecting part.
  • any third connecting portion includes: the metal outer wall of the battery, and the connecting portion that connects the metal outer wall of the battery to at least one position on the second connecting portion close to the bottom end of the ear handle, making full use of The space occupied by the battery is saved, the space of the ear handle is saved, and the compact layout of the Bluetooth headset is realized.
  • any one of the third connecting parts includes: a connecting part extending from at least one position on the second connecting part close to the bottom end of the ear stem to the direction close to the top end of the ear stem, and the metal of the battery The outer wall, and the connecting part where the metal outer wall of the battery is connected to at least one position on the second connecting part close to the bottom end of the ear handle part.
  • any third connecting portion includes: a curved connecting portion extending from at least one position on the second connecting portion close to the bottom end of the ear stem to a direction close to the bottom end of the ear stem , The metal outer wall of the battery, and the connecting part where the metal outer wall of the battery is connected to at least one position on the second connecting part close to the bottom end of the ear handle part.
  • any third connecting portion includes: a connecting portion extending from at least one position on the second connecting portion close to the bottom end of the ear stem in a direction close to the top end of the ear stem, and from the second connecting portion to the top end of the ear stem.
  • At least one position on the connecting portion close to the bottom end of the ear handle portion is a curved connecting portion that extends in a direction near the bottom end of the ear handle portion, the metal outer wall of the battery, and the metal outer wall of the battery and the second connecting portion near the ear
  • the signal processing components include speakers and batteries.
  • the loudspeaker is arranged in the earplug part, and the control module on the FPC is electrically connected with the loudspeaker.
  • the battery is arranged on the ear handle, and the battery supplies power to the Bluetooth headset.
  • Figure 1 is a schematic diagram of the structure of a Bluetooth headset
  • FIG. 2 is a schematic diagram of the structure of a signal processing component in the Bluetooth headset shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a Bluetooth headset provided by an embodiment of the application.
  • FIG. 4 is an exploded schematic diagram of a Bluetooth headset provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a signal processing component in a Bluetooth headset provided by an embodiment of the application.
  • FIG. 6a is a schematic diagram of the position of the third connecting part in the Bluetooth headset provided by an embodiment of the application.
  • FIG. 6b is a schematic diagram of the position of the third connecting part in the Bluetooth headset provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of the reflection coefficient S11 curve of the antenna structure in the Bluetooth headset provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a coefficient efficiency curve of an antenna structure in a Bluetooth headset provided by an embodiment of the application.
  • FIG. 9a is a schematic diagram of the position of the third connecting part in the Bluetooth headset provided by an embodiment of the application.
  • FIG. 9b is a schematic diagram of the position of the third connecting part in the Bluetooth headset provided by an embodiment of the application.
  • FIG. 9c is a schematic diagram of the position of the third connecting part in the Bluetooth headset provided by an embodiment of the application.
  • 10 is a schematic diagram of the reflection coefficient S11 curve of the antenna structure in the Bluetooth headset provided by an embodiment of the application;
  • FIG. 11 is a schematic diagram of a coefficient efficiency curve of an antenna architecture in a Bluetooth headset provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of the positional relationship between the projection of the third connecting part on the plane where the FPC is located and the antenna radiator along the vertical direction of the plane where the FPC is located in the Bluetooth headset provided by an embodiment of the application;
  • FIG. 13 is a schematic diagram of the positional relationship between the projection of the third connecting part on the plane where the FPC is located and the antenna radiator along the vertical direction of the plane where the FPC is located in the Bluetooth headset provided by an embodiment of the application;
  • FIG. 14 is a schematic diagram of the positional relationship between the projection of the third connecting part on the plane where the FPC is located and the antenna radiator along the vertical direction of the plane where the FPC is located in the Bluetooth headset provided by an embodiment of the application;
  • 15 is a schematic diagram of the positional relationship between the projection of the third connecting part on the plane where the FPC is located and the antenna radiator along the vertical direction of the plane where the FPC is located in the Bluetooth headset provided by an embodiment of the application;
  • 16 is a schematic diagram of the positional relationship between the projection of the third connecting part on the plane where the FPC is located and the antenna radiator along the vertical direction of the plane where the FPC is located in the Bluetooth headset provided by an embodiment of the application;
  • FIG. 17a is a schematic diagram of the position of the third connecting part in the Bluetooth headset provided by an embodiment of the application.
  • FIG. 17b is a schematic diagram of the position of the third connecting part in the Bluetooth headset provided by an embodiment of the application.
  • FIG. 19 is a schematic diagram of the reflection coefficient S11 curve of the antenna structure in the Bluetooth headset provided by an embodiment of the application.
  • 20 is a schematic diagram of a coefficient efficiency curve of an antenna architecture in a Bluetooth headset provided by an embodiment of the application;
  • FIG. 21 is a schematic diagram of the directions of the current on the second connection part, the current on the antenna radiator, and the parasitic current on the third connection part in the Bluetooth headset according to an embodiment of the application;
  • FIG. 22a is a schematic diagram of current distribution on a signal processing component in a Bluetooth headset according to an embodiment of the application;
  • FIG. 22b is a schematic diagram of the current distribution on the signal processing component in the Bluetooth headset provided by an embodiment of the application.
  • FIG. 22c is a schematic diagram of the current distribution on the signal processing component in the Bluetooth headset provided by an embodiment of the application.
  • FIG. 23 is a schematic diagram of the reflection coefficient S11 curve of the antenna architecture in the Bluetooth headset and the antenna architecture in the traditional Bluetooth headset provided by an embodiment of the application;
  • FIG. 24 is a schematic diagram of the coefficient efficiency curve of the antenna architecture in the Bluetooth headset and the antenna architecture in the traditional Bluetooth headset provided by an embodiment of the application.
  • FIG. 1 shows a schematic structural diagram of a Bluetooth headset
  • FIG. 2 shows a schematic structural diagram of a signal processing component 202 in the Bluetooth headset 200 shown in FIG. 1.
  • the Bluetooth headset 200 includes a headset housing 201 and a signal processing component 202.
  • the headset housing 201 has a cavity, and the signal processing component 202 is located in the cavity.
  • the earphone housing 201 includes: an earplug part 2011 and an ear handle part 2012.
  • the signal processing component 202 includes a microphone 2021, a flexible printed circuit (FPC) 2022, and a battery 2023.
  • FPC flexible printed circuit
  • a part of FPC 2022 is arranged in the longitudinal extension of the ear handle 2012 and is close to the battery.
  • the remaining part of FPC 2022 is set in the earplug part 2011.
  • the microphone 2021 is provided at the bottom end of the earstalk 2012, and the ground wire 20243 on the FPC 2022 provided on the earstalk 2012 extends to the bottom of the earstalk 2012 to achieve electrical connection with the ground end of the microphone 2021, thereby ensuring the microphone 2021 Can work normally.
  • the current on the ground wire 20243 on the FPC 2022 of the ear handle flows from the top of the ear handle 2012 to the ground point on the FPC 2022.
  • the battery 2023 is provided in the ear handle 2012, and the battery 2023 supplies power to the microphone 2021.
  • the signal processing component 202 also includes: an antenna architecture of the Bluetooth headset 200.
  • the antenna architecture usually adopts an inverted-F antenna (IFA).
  • the antenna architecture includes a striped antenna radiator 20241 and A transmission axis (cable) 20242 connected to one end of the antenna radiator 20241.
  • the antenna radiator 20241 is located at the ear handle 2012, extends longitudinally, and is close to the battery 2023.
  • the current on the antenna radiator 20241 flows from the connection point with the transmission axis 20242 (ie, the feeding point a1) to the bottom end of the ear stem 2012.
  • the transmission axis 20242 extends from the top end of the ear handle portion 2012 to the earplug portion 2011, and the transmission axis 20242 is used to transmit radio frequency signals.
  • the antenna radiator 20241 is generally parallel to the ground wire 20243 provided on the FPC 2022 of the ear handle portion 2012 and has the same length. At this time, the current on the antenna radiator 20241 and the current on the ground wire 20243 on the FPC 2022 of the ear stem 2012 are equal in magnitude and opposite in phase, resulting in the ground wire 20243 on the FPC 2022 provided on the ear stem 2012 The current of ⁇ will cancel the current on the antenna radiator 20241, so that the IFA cannot radiate, causing the Bluetooth headset 200 to fail to work. In addition, the cost of setting up an IFA independently is higher.
  • the Bluetooth headset 200 can also use a ceramic antenna, which can usually be provided at the top AA of the ear handle 3012. Since the ceramic antenna itself requires a large antenna headroom, the Bluetooth headset 200 cannot meet the demand for compact layout, and it is not easy to achieve the requirements for no antenna headroom or small antenna headroom, and the antenna performance is degraded due to insufficient antenna headroom.
  • this application provides a Bluetooth headset, which can realize the compact layout of the Bluetooth headset, has the characteristics of low cost and space saving, and can also achieve the requirement of no antenna headroom area or small antenna headroom area, which improves Bluetooth The antenna performance of the headset.
  • Fig. 3 shows a schematic structural diagram of a Bluetooth headset provided by an embodiment of the present application.
  • the Bluetooth headset 100 of the present application may include: a headset housing 1 and a signal processing component 2.
  • the earphone housing 1 has a cavity, the signal processing component 2 is located in the cavity, and the earphone housing 1 is used to fix and protect the signal processing component 2.
  • the earphone housing 1 includes: an earplug part 11 and an ear handle part 12.
  • the earplug part 11 is used to partially embed the user's ear.
  • the ear handle 12 is used to facilitate the user to hold for wearing and facilitate the user to touch to achieve corresponding functions.
  • the Bluetooth headset 100 When the user wears the Bluetooth headset 100, the earplug portion 11 is embedded in the user's ear, and the ear handle 12 is located outside the user's ear.
  • connection part between the earplug part 11 and the ear handle part 12 may also use the connection part between the earplug part 11 and the ear handle part 12 As the earplug part 11, the earplug part 11 and the ear stem part 12 are divided.
  • the earphone shell 1 can be integrally formed to avoid damage or loss of components in the Bluetooth earphone 100 due to accidental fall. It can also be detachably connected by multiple parts, such as a snap connection or a threaded connection, to facilitate Bluetooth
  • the headset 100 implements subsequent repairs or maintenance, and can also be non-detachably connected by multiple parts, such as glued connections, to reduce the risk of accidental fall off, so that the reliability of the Bluetooth headset 100 is higher.
  • the earphone housing includes multiple parts as an example.
  • the earphone housing 1 may include three parts: a main housing A, a bottom housing B, and a side housing C. Among them, a part of the main housing A is located at the ear handle portion 12 of the Bluetooth headset 100, and another part of the main housing A is located at the earplug portion 11 of the Bluetooth headset 100.
  • the main housing A forms a first opening at the bottom end of the ear handle portion 12 of the Bluetooth headset 100 and a second opening at the earplug portion 11 of the Bluetooth headset 100.
  • the signal processing component 2 can be inserted into the main housing A from the first opening or the second opening.
  • the bottom shell B is located at the bottom end of the ear handle 12 of the Bluetooth headset 100 and is fixedly connected to the main shell A, and the bottom shell B is installed in the first opening.
  • the side shell C is located at the earplug part 11 of the Bluetooth headset 100 and is fixedly connected to the main shell A, and the side shell C is installed in the second opening.
  • the application may adopt detachable connection or non-detachable connection to realize the connection between the main housing A and the bottom housing B and the connection between the side housing C and the main housing A, which is not limited in this application. .
  • the side shell C is provided with one or more sound holes D (two sound holes are taken as an example in FIG. 3 for illustration), so that the sound inside the earphone shell 1 can be transmitted to the earphone shell through the sound holes D 1External.
  • the present application does not limit the shape, position, and number of the sound holes D.
  • FIG. 3 takes two circular sound holes D as an example for illustration.
  • FIG. 4 shows an exploded schematic diagram of the Bluetooth headset 100 shown in FIG. 3
  • FIG. 5 shows a schematic structural diagram of the signal processing component 2 in the Bluetooth headset 100 shown in FIG. 3.
  • the signal processing component 2 may include: a flexible circuit board FPC 21, a microphone 22, an antenna radiator 23, a control module 24, and a first connection part 25 (not shown in FIGS. 4 and 5), The second connecting portion 26 and the third connecting portion 27.
  • the FPC 21 is disposed on the ear stem 12, and a part of the FPC 21 extends along the top end of the ear stem 12 to the ear plug portion 11. In other words, the FPC 21 extends from the bottom end of the ear stem 12 to the ear plug portion 11 through the top end of the ear stem 12.
  • the FPC 21 may form one or more bending structures on the earplug part 11 and the ear handle part 12.
  • the earphone housing 1 may adopt a "" structure.
  • the FPC 21 is used to place or fix the components in the Bluetooth headset 100.
  • the control module 24 can be fixed on the FPC 21 by welding or gluing.
  • the control module 24 is used to process radio frequency signals.
  • this application does not limit the specific implementation form of the control module 24.
  • the control module 24 may be a system-on-chip (SOC).
  • the control module 24 may include a radio frequency (RF) circuit, which is used to modulate or demodulate a radio frequency signal.
  • RF radio frequency
  • the present application does not limit the location of the control module 24.
  • the control module 24 is located in the earplug part 11.
  • the microphone 22 is provided at the bottom end of the ear handle 12. Among them, this application does not limit the type and quantity of the microphone 22.
  • the microphone 22 can receive the user's voice signal, and the signal terminal of the microphone 22 can be converted into an electrical signal through the electrical connection with the control module 24 and transmitted to the control module 24 so as to control the module 24
  • the electrical signal is processed into a radio frequency signal, so that the microphone 22 can work normally.
  • the microphone 22 may be arranged on the side of the FPC 21 away from the ear handle 12, which helps the microphone 22 to acquire sound signals from the outside of the Bluetooth headset 100.
  • the microphone 22 can be mounted on the FPC 21 by using a fixing member, so that the microphone 22 is coupled to the control module 24.
  • the signal processing component 2 may further include: a speaker 28 and a battery 29.
  • the speaker 28 is provided in the earplug part 11. Among them, this application does not limit the type, number, and position of the speakers 28.
  • the earpiece can receive the electrical signal sent by the control module 24 through the electrical connection with the control module 24. The earpiece then converts the electrical signal into a sound signal and outputs it to the outside of the Bluetooth headset 100, so that the earpiece can work normally.
  • the speaker 28 may be arranged on the side of the FPC 21 away from the earplug part 11 to facilitate the transmission of the sound signal formed by the earpiece to the outside of the Bluetooth headset 100.
  • the speaker 28 may be installed on the FPC 21 by using a fixing member, so that the speaker 28 is coupled to the control module 24.
  • the battery 26 is provided on the ear handle 12.
  • this application does not limit the type, number, shape, and position of the battery 29.
  • the battery 29 may be in a strip shape to be better contained in the earphone housing 1.
  • the power supply terminal of the battery 29 is electrically connected with the power supply terminal of the control module 24, the power supply terminal of the speaker 28 and the power supply of the microphone 22, so that the battery 29 provides power to the Bluetooth headset 100.
  • the power supply terminal of the battery 29 may be located at the top end of the ear handle 12 or at the bottom end of the ear handle 12, which is not limited in this application.
  • FIGS. 4 and 5 take a battery 29 in a strip shape, and the power supply end of the battery 29 is at the top of the ear handle 12 as an example.
  • the antenna structure of the Bluetooth headset 100 of the present application may include: an antenna radiator 23, a first connecting portion 25, a second connecting portion 26, and a third connecting portion 27.
  • the type of the antenna architecture of the Bluetooth headset 100 of the present application may include any one of a single-stage antenna, an inverted-F antenna IFA, and a planar inverted-F antenna (PIFA). It should be noted that when the type of the antenna structure of the Bluetooth headset 100 of the present application is PIFA, the antenna radiator 23 also needs to be connected to the second connecting portion 26.
  • the antenna radiator 23 can be set on the FPC 21 by using manufacturing processes such as insert molding, metal coating, flexible circuit board (ie, steel sheet), or laser direct structuring (LDS), and the antenna radiator 23 is located at the ear handle 12. Among them, this application does not limit the type of the antenna radiator 23.
  • the actual physical length of the first connecting portion 25 is shorter than 1/4 of the aforementioned wavelength, and the actual physical length of the antenna radiator 23 is shorter than 1/4 of the aforementioned wavelength. To be short.
  • the antenna radiator 23 is electrically connected to the control module 24 through the feed point a on the FPC 21, and can receive the radio frequency signal sent by the control module 24, so as to radiate the radio frequency signal through the antenna radiator 23, and can also send radio frequency to the control module 24 Signal so that the control module 24 processes the video signal so that the antenna radiator 23 can communicate normally.
  • the feed point a is a connection point between the antenna radiator 23 and the feed line for energy transmission.
  • the feeding point a can be welded to the FPC 21 by using a metal such as a copper sheet.
  • the present application does not limit the position of the feeding point a.
  • the feeding point a is located at the ear handle 12.
  • the first connecting portion 25 can be set on the FPC 21 by using manufacturing processes such as in-mold injection, metal coating, flexible circuit board (ie, steel sheet), or LDS, and the first connecting portion 25 is located in the earplug portion 11. Among them, the present application does not limit the position and form of the first connecting portion 25.
  • the first connection part 25 is the main ground of the Bluetooth headset 100, and the ground terminal of the control module 24, the first connection part 25 and the ground point b on the FPC 21 share the same ground.
  • the length of the first connecting portion 25 is 1/4 of the aforementioned wavelength, and is used to form the radiator of the antenna radiator 23, so that the total length of the antenna radiator 23 and the first ground wire together meet the requirement of 1/2 wavelength.
  • the communication process of the Bluetooth headset 100 is used to form the radiator of the antenna radiator 23, so that the total length of the antenna radiator 23 and the first ground wire together meet the requirement of 1/2 wavelength.
  • the grounding point b is located at the ear handle 12, and the grounding point b is separated from the feeding point a by a predetermined distance.
  • the preset distance can be set according to the design rule of the antenna, which is not limited in this application. Among them, this application does not limit the location of the grounding point b.
  • the ground point b is located at the ear handle 12.
  • the grounding point b is located outside the feeding point a as an example for illustration.
  • the second connecting portion 26 can be provided by manufacturing processes such as in-mold injection molding, metal coating, flexible circuit board (ie, steel sheet), or LDS, and the second connecting portion 26 is located at the ear handle portion 12. Among them, the present application does not limit the position and form of the second connecting portion 26. Since the grounding point b, the first connecting portion 25 and the grounding end of the control module 24 share the same ground, the grounding end of the microphone 22 is electrically connected to the grounding point b through the second connecting portion 26. Therefore, in the Bluetooth headset 100 of the present application, the microphone 22 It can be connected to the same ground with the control module 24 to minimize common ground interference.
  • the second connection part 26 may be provided on the FPC 21. Furthermore, since the antenna radiator 23 and the second connection part 26 are jointly provided on the FPC 21, compared with the traditional Bluetooth headset 200, the Bluetooth headset 100 is saved. The space of the handle of the middle ear simplifies the assembly process of the Bluetooth headset 100, reduces the layout cost, and satisfies the demand for compact layout of the Bluetooth headset 100.
  • One or more third connecting portions 27 extend from at least one position on the second connecting portion 26 except for the ground point b, and the third connecting portions 27 are located at the ear handle portion 12.
  • the number of the extended third connecting portion 27 may be one or multiple, which is not limited in this application.
  • the third connecting portion 27 in FIG. 5 uses three connecting portions of the connecting portion 271, the connecting portion 272, and the connecting portion 273 as examples for illustration.
  • the third connecting portion 27 may be manufactured by in-mold injection molding, metal coating, flexible circuit board (ie, steel sheet), or LDS. Among them, the present application does not limit the position and form of the third connecting portion 27. And the total length of the second connecting portion 26 and the third connecting portion 27 is greater than 1/4 of the aforementioned wavelength. Wherein, the present application does not limit the respective lengths of the second connecting portion 26 and the third connecting portion 27.
  • the total length of the second connecting portion 26 and the third connecting portion 27 is greater than 1/4 of the foregoing wavelength and less than or equal to 1/2 of the foregoing wavelength.
  • the second connecting portion 26, the third connecting portion 27 and the antenna radiator 23 may be parallel and have the same length.
  • the current on the second connection part 26 flows from the bottom end of the ear handle part 12 to the ground point b, and the current on the antenna radiator 23 flows from the feeding point a to the bottom end of the ear handle part 12, so that the second connection The current on the portion 26 cancels the current on the antenna radiator 23.
  • the third connecting portion 27 is connected to the second connecting portion 26, the total length of the second connecting portion 26 and the third connecting portion 27 is greater than 1/4 of the aforementioned wavelength, and the parasitic current on the third connecting portion 27 is from the third connecting portion
  • the connection between the second connecting portion 26 and the second connecting portion 26 flows to the end of the third connecting portion 27, and the current on the antenna radiator 23 and the parasitic current on the third connecting portion 27 are not reversed, so that the current on the third connecting portion 27
  • the parasitic current will not offset the current on the antenna radiator 23, but will increase the current on the antenna radiator 23, so that the third connecting portion 27 becomes the parasitic of the antenna radiator 23, which effectively improves the antenna performance of the Bluetooth headset 100 and ensures the Bluetooth The communication effect of the headset 100.
  • the realization form that the current on the antenna radiator 23 and the parasitic current on the third connecting portion 27 are not reversed include multiple forms.
  • the parasitic current on the third connecting portion 27 may be in the same direction as the current on the antenna radiator 23, or the direction of the parasitic current on the third connecting portion 27 may be at an acute angle to the direction of the current on the antenna radiator 23,
  • the parasitic current on the third connection part 27 may bend and flow from the connection point of the third connection part 27 and the second connection part 26 to the end of the third connection part 27.
  • the total length of the second connecting part and the third connecting part is set to be greater than 1/4 of the wavelength corresponding to a working frequency band of the antenna radiator, and the current on the antenna radiator flows from the feeding point to The bottom end of the ear handle, the third connecting part is connected to the second connecting part, the current on the second connecting part flows from the bottom end of the ear handle to the ground point, and the parasitic current on the third connecting part is from the third connecting part
  • the connection with the second connection part flows along the body of the third connection part to the end of the third connection part.
  • the current on the antenna radiator and the parasitic current on the third connection part are not reversed, so that the third connection part becomes
  • the parasitism of the antenna radiator improves the performance of the antenna radiator, satisfies the compact layout of the Bluetooth headset, and realizes the requirement of no antenna clearance area or small antenna clearance area, and ensures good antenna performance of the antenna Bluetooth headset.
  • the antenna radiator and the second connecting part are jointly arranged on the FPC, which saves the space of the Bluetooth headset, reduces the complexity of the assembly process, reduces the layout cost, and further meets the demand for compact layout of the Bluetooth headset.
  • any one of the third connecting portions 27 in the present application may include multiple ways.
  • the first embodiment, the second embodiment, and the third embodiment are used to respectively describe the specific structure of any one of the third connecting portions 27 in detail.
  • any one of the third connecting portions 27 may include: connecting portions extending from one or more positions on the second connecting portion 26 close to the bottom end of the ear stem 12 in a direction close to the top end of the ear stem 12 , The space of the ear handle 12 is fully utilized, and the compact layout of the Bluetooth headset 100 is realized.
  • the shape of the third connecting portion 27, the number of the third connecting portion 27, the connecting position of the third connecting portion 27 and the second connecting portion 26, and the distance between the third connecting portion 27 and the second connecting portion 26 are discussed in this application.
  • the included angle is not limited, as long as the total length of the second connecting portion 26 and the third connecting portion 27 is greater than 1/4 of the aforementioned wavelength, and the current on the antenna radiator 23 is not opposite to the parasitic current on the third connecting portion 27.
  • the parasitic current on the third connecting portion 27 may be in the same direction as the current on the antenna radiator 23, so that the third connecting portion 27 becomes a parasitic of the antenna radiator 23, and the performance of the antenna radiator 23 is enhanced.
  • the third connecting portion 27 and the second connecting portion 26 form a U-shaped structure.
  • the second connecting portion 26 and the third connecting portion 27 are linear and parallel, so that the Bluetooth
  • the compact space of the headset 100 also helps to lay out the antenna structure of the Bluetooth headset 100.
  • the specific positions of the third connecting portion 27 may include multiple types.
  • two feasible implementation manners are used to give examples of the specific arrangement of the third connecting portion 27.
  • the third connecting portion 27 can be set in the FPC 21 by using manufacturing processes such as in-mold injection, metal coating, flexible circuit board (ie, steel sheet), or LDS. Above, the process is simple and easy to implement, which saves the space of the ear handle 12, so that the Bluetooth headset 100 meets the demands of a compact layout.
  • the third connecting portion 27 in FIGS. 6a and 6b is a connecting portion 27a extending from one position of the second connecting portion 26 and a connecting portion extending from another position of the second connecting portion 26 27b
  • These two connecting parts are taken as an example for illustration.
  • the connecting portion 27a is connected to the end of the second connecting portion 26
  • the connecting portion 27b is connected to the side of the second connecting portion 26, and the connecting portion 27a, the connecting portion 27b, the second connecting portion 26 and the antenna radiator 23 are parallel to each other.
  • the diagonal lines in the connecting portion 27a, the connecting portion 27b, the second connecting portion 26, and the antenna radiator 23 are not the connecting portion 27a, the connecting portion 27b, the second connecting portion 26, and the The respective hatching lines of the antenna radiators 23 are for the convenience of distinguishing the connecting portion 27a, the connecting portion 27b, the second connecting portion 26 and the antenna radiator 23.
  • this application does not limit the specific position of the third connecting portion 27 on the FPC 21.
  • the third connecting portion 27 is close to the antenna radiator 23 to ensure that the third connecting portion 27 serves as a parasitic of the antenna radiator 23 to improve antenna performance.
  • the reflection coefficient S11 curve of the antenna structure in the Bluetooth headset 100 of the present application is illustrated with reference to FIG. 7.
  • the abscissa is the frequency
  • the unit is megahertz (GHz)
  • the ordinate is the reflection coefficient S11
  • the unit is dBa.
  • the reflection coefficient S11 is one of the S parameters (that is, the scattering parameter), which represents the return loss characteristics, and the dB value and impedance characteristics of the loss are generally viewed through a network analyzer. This parameter indicates whether the matching degree between the antenna and the front-end circuit is good or not.
  • the S11 value of antenna A at a certain frequency point is -1
  • the S11 value of antenna B at the same frequency point is -3
  • the matching degree of antenna B is better than that of antenna A.
  • curve 1 shows the S11 curve based on the structure of the Bluetooth headset 200 shown in Figs. 1 and 2
  • curve 2 shows the S11 curve based on the structure of the Bluetooth headset 100 shown in Figs. 6a and 6b.
  • the S11 value when the operating frequency of the antenna radiator 23 is 2.4 GHz, the S11 value is -7.83dBa.
  • the S11 value is -13.226dBa.
  • the S11 value of curve 2 in the 2.4GHz-2.5GHz operating frequency band is smaller. It can be seen that the antenna radiator 23 corresponding to curve 2 has a wider bandwidth. The antenna performance is better.
  • the coefficient efficiency curve of the antenna structure in the Bluetooth headset 100 of the present application is illustrated with reference to FIG. 8.
  • the abscissa is the frequency
  • the unit is megahertz (GHz)
  • the ordinate is the coefficient efficiency, the unit is dB.
  • curve 1 shows a coefficient efficiency curve based on the structure of the Bluetooth headset 200 shown in Figs. 1 and 2
  • curve 2 shows a coefficient efficiency curve based on the structure of the Bluetooth headset 100 shown in Figs. 6a and 6b.
  • the coefficient efficiency value of curve 2 in the 2.4GHz-2.5GHz operating frequency band is smaller. It can be seen that the antenna efficiency corresponding to curve 2 is higher and the antenna performance better.
  • the third connecting portion 27 can be provided by manufacturing processes such as insert molding, flexible circuit board (ie, steel sheet), or LDS.
  • the ear handle portion 12 is fully utilized, and the space of the ear handle portion 12 is saved, so that the Bluetooth headset 100 satisfies the requirements of a compact layout.
  • the third connecting portion 27 in FIG. 9a, FIG. 9b, and FIG. 9c uses a connecting portion extending from a position of the second connecting portion 26 as an example.
  • the third connecting portion 27 is connected to the end of the second connecting portion 26, and the third connecting portion 27 and the second connecting portion 26 are parallel to each other.
  • the Y direction is the length direction of the FPC 21 is straight
  • the X direction is the vertical direction of the plane where the FPC 21 is located
  • the X direction is perpendicular to the Y direction.
  • FIGS. 9a, 9b, and 9c the diagonal lines in the third connecting portion 27, the second connecting portion 26, and the antenna radiator 23 are not the third connecting portion 27, the second connecting portion 26 and the antenna.
  • the respective hatching lines of the radiators 23 are for the convenience of distinguishing the third connecting portion 27, the second connecting portion 26 and the antenna radiator 23.
  • the reflection coefficient S11 curve of the antenna structure in the Bluetooth headset 100 of the present application is illustrated with reference to FIG. 10.
  • the abscissa is the frequency
  • the unit is megahertz (GHz)
  • the ordinate is the reflection coefficient S11
  • the unit is dBa.
  • curve 1 shows the S11 curve based on the structure of the Bluetooth headset 200 shown in Figures 1 and 2
  • curve 2 shows the S11 curve based on the structure of the Bluetooth headset 100 shown in Figures 9a, 9b, and 9c .
  • the S11 value is -13.953dBa.
  • the S11 value is -9.2301dBa.
  • the S11 value of curve 2 in the 2.4GHz-2.5GHz operating frequency band is smaller. It can be seen that the antenna bandwidth corresponding to curve 2 is wider and the antenna performance is better. Great.
  • the coefficient efficiency curve of the antenna structure in the Bluetooth headset 100 of the present application is illustrated with reference to FIG. 11.
  • the abscissa is the frequency
  • the unit is megahertz (GHz)
  • the ordinate is the coefficient efficiency, the unit is dB.
  • curve 1 shows the coefficient efficiency curve based on the structure shown in FIG. 1 and FIG. 2
  • curve 2 shows the coefficient efficiency curve based on the structure shown in FIG. 9a, FIG. 9b, and FIG. 9c.
  • the coefficient efficiency value of curve 2 in the 2.4GHz-2.5GHz operating frequency band is smaller. It can be seen that the antenna efficiency corresponding to curve 2 is higher and the antenna performance better.
  • FIGS. 12-16 three possible embodiments are adopted to illustrate the specific positions of the third connecting portion 27 on the inner wall or the outer wall of the ear handle portion 12.
  • FIGS. 12-16 do not show that the second connection part 26 is connected to the third connection part 27, and the antenna radiator 23 is located on the right side of the second connection part 26 on the FPC 21, and the second connection
  • the section 26, the third connecting section 27 and the antenna radiator 23 are parallel and have the same length as an example for illustration.
  • the projection of the third connecting portion 27 on the plane where the FPC 21 is located along the vertical direction of the plane where the FPC 21 is located (that is, the X direction in FIG. 9a) has an overlapping area with the antenna radiator 23 , So that the Bluetooth headset 100 has good antenna performance.
  • this application does not limit the size and position of the overlapping area.
  • the projection of the third connecting portion 27 on the plane of the FPC 21 along the vertical direction of the plane of the FPC 21 is adjacent to the antenna radiator 23, so that The Bluetooth headset 100 has better antenna performance.
  • the application does not limit the distance between the projection and the antenna radiator 23.
  • the projection of the third connecting portion 27 on the plane where the FPC 21 is located along the vertical direction of the plane where the FPC 21 is located is mapped on the right side of the antenna radiator 23.
  • the projection of the third connecting portion 27 on the plane where the FPC 21 is located along the vertical direction of the plane where the FPC 21 is located is mapped between the second connecting portion 26 and the antenna radiator 23.
  • the projection of the third connecting portion 27 on the plane where the FPC 21 is located along the vertical direction of the plane where the FPC 21 is located is far away from the antenna radiator 23 and is close to the antenna radiator 23.
  • the second connecting portion 26 enables the Bluetooth headset 100 to have better antenna performance. The application does not limit the distance between the projection and the antenna radiator 23.
  • the projection of the third connecting portion 27 on the plane where the antenna radiator 23 is located along the vertical direction of the plane where the antenna radiator 23 is located is mapped on the left side of the second connecting portion 26.
  • any one of the third connecting portions 27 may include: from one or more positions on the second connecting portion 26 close to the bottom end of the ear handle 12
  • the curved connecting portion extending in the direction close to the bottom end of the ear handle portion 12 makes full use of the space at the bottom end of the ear handle portion 12 to realize the compact layout of the Bluetooth headset 100.
  • the parasitic current on the third connecting portion 27 flows from the connection with the second connecting portion 26 along the body of the third connecting portion 27 to the end of the third connecting portion 27, so that the third connecting portion 27 becomes antenna radiation.
  • the parasitic of the body 23 enhances the performance of the antenna radiator 23.
  • FIGS. 17a and 17b take the third connecting portion 27 as an example that extends from a position on the second connecting portion 26 close to the bottom end of the ear handle 12 as an example.
  • the diagonal lines in the third connecting portion 27, the second connecting portion 26 and the antenna radiator 23 are not the third connecting portion 27, the second connecting portion 26 and the antenna radiator 23.
  • the respective corresponding hatching lines are used to facilitate the distinction between the third connecting portion 27, the second connecting portion 26 and the antenna radiator 23.
  • any one of the third connecting portions 27 may include: the metal outer wall of the battery 29, and the metal outer wall of the battery 29 and the second connecting portion 26 close to the ear handle 12
  • the connecting part connected to at least one position at the bottom end makes full use of the space occupied by the battery 29, saves the space of the ear handle part 12, and realizes the compact layout of the Bluetooth headset 100.
  • the present application does not limit the thickness, material, and area of the metal outer wall.
  • the metal outer wall can be made of copper foil.
  • FIG. 18 takes the third connecting portion 27 as the entire metal outer wall of the battery 29 as an example for illustration.
  • the oblique lines in the second connecting portion 26 and the antenna radiator 23 are not the hatching lines corresponding to the second connecting portion 26 and the antenna radiator 23, but to facilitate the distinction between the second connecting portions. 26 and 23 of the antenna radiator.
  • the reflection coefficient S11 curve of the antenna structure in the Bluetooth headset 100 of the present application is illustrated with reference to FIG. 19.
  • the abscissa is the frequency
  • the unit is megahertz (GHz)
  • the ordinate is the reflection coefficient S11
  • the unit is dBa.
  • curve 1 shows the S11 curve based on the structure shown in FIG. 1 and FIG. 2
  • curve 2 shows the S11 curve based on the structure shown in FIG. 18.
  • the S11 value when the operating frequency of the antenna radiator 23 is 2.4 GHz, the S11 value is -15.501dBa.
  • the S11 value When the operating frequency of the antenna radiator 23 is 2.5 GHz, the S11 value is -15.621dBa.
  • the S11 value of curve 2 in the 2.4GHz-2.5GHz operating frequency band is smaller. It can be seen that the antenna bandwidth corresponding to curve 2 is wider and the antenna performance is better. Great.
  • the coefficient efficiency curve of the antenna structure in the Bluetooth headset 100 of the present application is illustrated with reference to FIG. 20.
  • the abscissa is the frequency
  • the unit is megahertz (GHz)
  • the ordinate is the coefficient efficiency, the unit is dB.
  • curve 1 shows the coefficient efficiency curve based on the structure shown in FIG. 1 and FIG. 2
  • curve 2 shows the coefficient efficiency curve based on the structure shown in FIG. 18.
  • the coefficient efficiency value of curve 2 in the 2.4GHz-2.5GHz operating frequency band is smaller. It can be seen that the antenna efficiency corresponding to curve 2 is higher and the antenna performance better.
  • the third connecting portion 27 can be combined arbitrarily to obtain the third connecting portion 27 in the present application.
  • any third connecting portion 27 may include: from at least one position on the second connecting portion 26 close to the bottom end of the ear handle 12 toward the ear handle 12 A connecting portion extending in the direction of the top end of the second connecting portion 26, and a curved connecting portion extending from at least one position on the second connecting portion 26 close to the bottom end of the ear stem 12 in a direction close to the bottom end of the ear stem 12.
  • the third connecting portion 27 adopts the implementation form of the combination of the first embodiment and the second embodiment as an example.
  • the directions of the current on the second connecting portion 26, the current on the antenna radiator 23, and the parasitic current on the third connecting portion 27 will be illustrated.
  • the current I1 on the second connecting portion 26 flows from the bottom end of the ear handle portion 12 to the ground point b.
  • the current I2 on the antenna radiator 23 flows from the feeding point a to the bottom end of the ear stem 12.
  • the third connecting portion 27 includes two parts, a connecting portion 271 and a connecting portion 272, respectively. Among them, the parasitic current I31 on the connecting portion 271 flows from the connecting portion of the connecting portion 271 and the second connecting portion 26 to the end of the connecting portion 271.
  • the parasitic current I32 on the connecting portion 272 flows from the connection point of the connecting portion 272 and the second connecting portion 26 to the end of the connecting portion 272 along the body of the connecting portion 272 bends. It can be seen that the current I1 is opposite to the current I2, the parasitic current I31 is in the same direction as the current I2, and the parasitic current I32 is not opposite to the current I2.
  • any one of the third connecting portions 27 may include: from at least one position on the second connecting portion 26 close to the bottom end of the ear handle portion 12 toward the ear handle portion
  • the connecting part extending in the direction of the top end of 12, the metal outer wall of the battery 29, and the connecting part connecting the metal outer wall of the battery 29 and the second connecting part 26 close to the bottom end of the ear handle 12 at least.
  • the present application combines the second embodiment and the third embodiment.
  • Any one of the third connecting portions 27 may include: from at least one position on the second connecting portion 26 close to the bottom end of the ear handle portion 12 toward the ear handle portion The connecting portion extending in the direction of the bottom end of 12 and being curved, the metal outer wall of the battery 29 and the connecting portion connecting the metal outer wall of the battery 29 and the second connecting portion 26 close to the bottom end of the ear handle portion 12.
  • any third connecting portion 27 may include: at least one position on the second connecting portion 26 close to the bottom end of the ear handle 12
  • the connecting portion extending in the direction close to the top end of the ear stem 12 is a curved connection extending from at least one position on the second connecting portion 26 close to the bottom end of the ear stem 12 to the direction close to the bottom end of the ear stem 12 Part, the metal outer wall of the battery 29, and the connecting part where the metal outer wall of the battery 29 is connected to at least one position on the second connecting part 26 close to the bottom end of the ear handle part 12.
  • the Bluetooth headset 100 of the present application has good antenna performance, the following will start from the three aspects of the current distribution on the signal processing component 2, the reflection coefficient S11 of the antenna structure, and the coefficient efficiency of the antenna structure of the Bluetooth headset 100 of the present application.
  • the antenna performance of the conventional Bluetooth headset 200 is the same as the antenna performance of the Bluetooth headset 100 of the present application.
  • the second connecting portion 26, the third connecting portion 27, and the antenna radiator 23 are parallel and equal in length.
  • the signal processing components in the Bluetooth headset 100 2 shows the distribution of current.
  • FIG. 22a shows an antenna architecture in which there is a second connection part 26 and an antenna radiator 23 in the Bluetooth headset 100, and there is no third connection part 27, and the antenna architecture shown in FIG. 22a is similar to that shown in FIGS. 1 and 2 It shows that the antenna structure of the Bluetooth headset 200 is similar.
  • FIG. 22b shows that the second connection part 26, the antenna radiator 23, and the antenna structure adopting the third connection part 27 of the second embodiment exist in the Bluetooth headset 100 of the present application.
  • Fig. 22c shows an antenna structure in which the second connection part 26, the antenna radiator 23 and the third connection part 27 of the third embodiment are used in the Bluetooth headset 100 of the present application.
  • the current distribution on the signal processing component 2 in FIG. 22b has a wider range and stronger intensity.
  • the current distribution range on the signal processing component 2 is the widest and the intensity is the strongest. Therefore, compared with the traditional Bluetooth headset 200, the Bluetooth headset 100 of the present application, because the third connecting portion 27 becomes a parasitic of the antenna radiator 23, effectively improves the antenna performance of the Bluetooth headset 100.
  • a working frequency band of the antenna radiator 23 is 2.4GHz-2.5GHz, based on the antenna architecture shown in Figure 22a, Figure 22b-22c, and in conjunction with Figure 23, the reflection coefficient S11 of the antenna architecture The curve shows.
  • the abscissa is the frequency, the unit is megahertz (GHz), and the ordinate is the reflection coefficient S11, the unit is dBa.
  • curve 1 shows the S11 curve based on the antenna architecture shown in Fig. 22a
  • curve 2 shows the S11 curve based on the antenna architecture shown in Fig. 22b
  • curve 3 shows the S11 curve based on the antenna architecture shown in Fig. 22c S11 curve.
  • the antenna performance corresponding to curve 2 is good
  • the antenna performance corresponding to curve 3 is the best. Therefore, compared with the traditional Bluetooth headset 200, the antenna performance of the Bluetooth headset 100 of the present application is effectively improved.
  • curve 1 shows the system efficiency curve based on the antenna architecture shown in Figure 22a
  • curve 2 shows the system efficiency curve based on the antenna architecture shown in Figure 22b
  • curve 3 shows the system efficiency curve based on the antenna architecture shown in Figure 22c
  • the system efficiency curve of the antenna architecture Compared with curve 1, the antenna performance corresponding to curve 2 is good, and the antenna performance corresponding to curve 3 is the best. Therefore, compared with the traditional Bluetooth headset 200, the antenna performance of the Bluetooth headset 100 of the present application is effectively improved.
  • the introduced third connecting portion 27 becomes a parasitic of the antenna radiator 23, which enhances the antenna performance of the Bluetooth headset 100 of the present application, and enables the Bluetooth headset 100 of the present application to communicate well.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Headphones And Earphones (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供一种蓝牙耳机。该蓝牙耳机包括:天线辐射体、第一连接部、第二连接部和第三连接部。天线辐射体和第一连接部的长度均为天线辐射体的一个工作频段对应的波长的1/4,天线辐射体上的电流从馈电点流向耳柄部的底端,第二连接部上的电流从耳柄部的底端流向接地点,馈电点位于耳柄部的顶端,接地点与馈电点相距预设距离。第二连接部和第三连接部的总长度大于前述波长的1/4,第三连接部与第二连接部相连接,第三连接部上的寄生电流从第三连接部与第二连接部的连接处流向第三连接部的端部,天线辐射体上的电流与第三连接部上的寄生电流不反向,使得第三连接部成为天线辐射体的寄生,提升蓝牙耳机的天线性能。

Description

蓝牙耳机
本申请要求于2019年09月17日提交中国专利局、申请号为201910877504.4、申请名称为“蓝牙耳机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通讯设备技术领域,尤其涉及一种蓝牙耳机。
背景技术
目前,蓝牙耳机因其便捷和小巧等优点,深受用户的喜爱,使用范围越来越广。然而,传统蓝牙耳机中,天线自身的天线性能不佳,且为了满足布局紧凑的诉求,不易实现无天线净空区或者小天线无净空区的需求,导致天线的天线性能下降。
发明内容
本申请提供一种蓝牙耳机,以提升蓝牙耳机的天线性能,确保蓝牙耳机的通信效果,满足无天线净空区域或者小天线净空区域的需求。
本申请提供一种蓝牙耳机,包括:耳机外壳和信号处理组件,耳机外壳具有腔体,信号处理组件位于腔体内。信号处理组件包括:柔性电路板FPC、麦克风和天线辐射体。耳机外壳包括:耳塞部和耳柄部。FPC设置在耳柄部,且FPC的部分沿耳柄部的顶端延伸至耳塞部,麦克风设置在耳柄部的底端。麦克风的信号端与FPC上的控制模块电连接。FPC上的天线辐射体位于耳柄部,天线辐射体的长度为天线辐射体的一个工作频段对应的波长的1/4,天线辐射体通过FPC上的馈电点与控制模块电连接,馈电点位于耳柄部的顶端。FPC上的第一连接部位于耳塞部,第一连接部的长度为波长的1/4,控制模块的接地端、第一连接部和FPC上的接地点共地,接地点位于耳柄部,接地点与馈电点相距预设距离。第二连接部位于耳柄部,麦克风的接地端通过第二连接部与接地点电连接。从第二连接部上除接地点之外的至少一个位置处延伸有至少一个第三连接部,第三连接部位于耳柄部,第二连接部和第三连接部的总长度大于波长的1/4,天线辐射体上的电流从馈电点流向耳柄部的底端,第三连接部上的寄生电流从第三连接部与第二连接部的连接处流向第三连接部的端部,天线辐射体上的电流与第三连接部上的寄生电流不反向。
通过本申请提供的蓝牙耳机,通过第二连接部和第三连接部的总长度设置为大于天线辐射体的一个工作频段对应的波长的1/4,且天线辐射体上的电流从馈电点流向耳柄部的底端,第三连接部与第二连接部相连接,第二连接部上的电流从耳柄部的底端流向接地点,第三连接部上的寄生电流从第三连接部与第二连接部的连接处沿着第三连接部的本体流向第三连接部的端部,天线辐射体上的电流与第三连接部上的寄生电流不反向,使得第三连接部成为天线辐射体的寄生,提升了天线辐射体的性能,满足了蓝牙耳机布局紧凑的诉求,实现了无天线净空区或者小天线净空区的需求,确保了天线蓝牙耳机良好的天线性能。另外,将天线辐射体和第二连接部共同设置在FPC上,节省了蓝牙耳机的空间,减少了组装工序的复杂度,降低了布局成本,进一步满足了蓝牙耳机布局紧凑的诉求。
在一种可能的设计中,第二连接部和第三连接部的总长度小于或等于波长的1/2,有效改善蓝牙耳机的天线性能。
在一种可能的设计中,第二连接部设置在FPC上。进而,由于天线辐射体和第二连接部共同设置在FPC上,与传统的蓝牙耳机相比,节省了蓝牙耳机中耳柄部的空间,且简化了蓝牙耳机的组装工序,降低了布局成本,满足了蓝牙耳机布局紧凑的诉求。
在一种可能的设计中,所任意一个述第三连接部包括:从第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的顶端的方向延伸的连接部,充分利用了耳柄部的空间,实现了蓝牙耳机的紧凑布局。
在一种可能的设计中,第三连接部上的寄生电流与天线辐射体上的电流同向,使得第三连接部成为天线辐射体的寄生,增强天线辐射体的性能。
在一种可能的设计中,第三连接部与第二连接部构成U型结构,这样,第二连接部和第三连接部均呈直线状且平行,节省了耳机外壳的空间,使得蓝牙耳机的空间紧凑,还便于布局蓝牙耳机的天线架构。
在一种可能的设计中,第三连接部设置在FPC上,工艺简单易行,节省了耳柄部的空间,使得蓝牙耳机满足紧凑布局的诉求。
在一种可能的设计中,第三连接部紧挨天线辐射体,确保第三连接部作为天线辐射体的寄生以提高天线性能。
在一种可能的设计中,第三连接部设置在耳柄部的内壁或者外壁上,充分利用了耳柄部,节省了耳柄部的空间,使得蓝牙耳机满足紧凑布局的诉求。
在一种可能的设计中,第三连接部沿FPC所在平面的垂直方向在FPC所在平面上的投影与天线辐射体有重叠区域,使得蓝牙耳机具有良好的天线性能。
在一种可能的设计中,第三连接部沿FPC所在平面的垂直方向在FPC所在平面上的投影紧邻天线辐射体,使得蓝牙耳机具有较佳的天线性能。
在一种可能的设计中,第三连接部沿FPC所在平面的垂直方向在FPC所在平面上的投影远离天线辐射体且紧邻第二连接部,使得蓝牙耳机具有较佳的天线性能。
在一种可能的设计中,任意一个第三连接部包括:从第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的底端的方向延伸且呈弯曲状的连接部,充分利用了耳柄部的底端的空间,实现了蓝牙耳机的紧凑布局。
在一种可能的设计中,第三连接部上的寄生电流从与第二连接部的连接处弯曲流向第三连接部的端部,使得第三连接部成为天线辐射体的寄生,增强天线辐射体的性能。
在一种可能的设计中,任意一个第三连接部包括:从第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的顶端的方向延伸的连接部,以及从第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的底端的方向延伸且呈弯曲状的连接部。
在一种可能的设计中,任意一个第三连接部包括:电池的金属外壁,以及电池的金属外壁与第二连接部上靠近耳柄部的底端的至少一个位置相连接的连接部,充分利用了电池的占用空间,节省了耳柄部的空间,实现了蓝牙耳机的紧凑布局。
在一种可能的设计中,任意一个第三连接部包括:从第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的顶端的方向延伸的连接部,电池的金属外壁,以及电池的金属外壁与第二连接部上靠近耳柄部的底端的至少一个位置相连接的连接部。
在一种可能的设计中,任意一个第三连接部包括:从第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的底端的方向延伸且呈弯曲状的连接部,电池的金属外壁,以及电池的金属外壁与第二连接部上靠近耳柄部的底端的至少一个位置相连接的连接部。
在一种可能的设计中,任意一个第三连接部包括:从第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的顶端的方向延伸的连接部,从第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的底端的方向延伸且呈弯曲状的连接部,电池的金属外壁,以及电池的金属外壁与第二连接部上靠近耳柄部的底端的至少一个位置相连接的连接部。
在一种可能的设计中,信号处理组件包括:扬声器和电池。其中,扬声器设置在耳塞部,FPC上的控制模块与扬声器电连接。电池设置在耳柄部,电池向蓝牙耳机供电。
附图说明
图1为一种蓝牙耳机的结构示意图;
图2为图1所示蓝牙耳机中信号处理组件的结构示意图;
图3为本申请一实施例提供的蓝牙耳机的结构示意图;
图4为本申请一实施例提供的蓝牙耳机的爆炸示意图;
图5为本申请一实施例提供的蓝牙耳机中信号处理组件的结构示意图;
图6a为本申请一实施例提供的蓝牙耳机中第三连接部的位置示意图;
图6b为本申请一实施例提供的蓝牙耳机中第三连接部的位置示意图;
图7为本申请一实施例提供的蓝牙耳机中天线架构的反射系数S11曲线示意图;
图8为本申请一实施例提供的蓝牙耳机中天线架构的系数效率曲线示意图;
图9a为本申请一实施例提供的蓝牙耳机中第三连接部的位置示意图;
图9b为本申请一实施例提供的蓝牙耳机中第三连接部的位置示意图;
图9c为本申请一实施例提供的蓝牙耳机中第三连接部的位置示意图;
图10为本申请一实施例提供的蓝牙耳机中天线架构的反射系数S11曲线示意图;
图11为本申请一实施例提供的蓝牙耳机中天线架构的系数效率曲线示意图;
图12为本申请一实施例提供的蓝牙耳机中第三连接部沿FPC所在平面的垂直方向在FPC所在平面上的投影与天线辐射体之间位置关系的示意图;
图13为本申请一实施例提供的蓝牙耳机中第三连接部沿FPC所在平面的垂直方向在FPC所在平面上的投影与天线辐射体之间位置关系的示意图;
图14为本申请一实施例提供的蓝牙耳机中第三连接部沿FPC所在平面的垂直方向在FPC所在平面上的投影与天线辐射体之间位置关系的示意图;
图15为本申请一实施例提供的蓝牙耳机中第三连接部沿FPC所在平面的垂直方向在FPC所在平面上的投影与天线辐射体之间位置关系的示意图;
图16为本申请一实施例提供的蓝牙耳机中第三连接部沿FPC所在平面的垂直方向在FPC所在平面上的投影与天线辐射体之间位置关系的示意图;
图17a为本申请一实施例提供的蓝牙耳机中第三连接部的位置示意图;
图17b为本申请一实施例提供的蓝牙耳机中第三连接部的位置示意图;
图18为本申请一实施例提供的蓝牙耳机中第三连接部的位置示意图;
图19为本申请一实施例提供的蓝牙耳机中天线架构的反射系数S11曲线示意图;
图20为本申请一实施例提供的蓝牙耳机中天线架构的系数效率曲线示意图;
图21为本申请一实施例提供的蓝牙耳机中第二连接部上的电流、天线辐射体上的电流和第三连接部上的寄生电流的方向示意图;
图22a为本申请一实施例提供的蓝牙耳机中信号处理组件上电流的分布示意图;
图22b为本申请一实施例提供的蓝牙耳机中信号处理组件上电流的分布示意图;
图22c为本申请一实施例提供的蓝牙耳机中信号处理组件上电流的分布示意图;
图23为本申请一实施例提供的蓝牙耳机中天线架构以及传统的蓝牙耳机中天线架构的反射系数S11曲线示意图;
图24为本申请一实施例提供的蓝牙耳机中天线架构以及传统的蓝牙耳机中天线架构的系数效率曲线示意图。
具体实施方式
图1示出了一种蓝牙耳机的结构示意图,图2示出了图1所示蓝牙耳机200中信号处理组件202的结构示意图。如图1和图2所示,蓝牙耳机200包括:耳机外壳201和信号处理组件202,耳机外壳201具有腔体,信号处理组件202位于腔体内。耳机外壳201包括:耳塞部2011和耳柄部2012。
如图2所示,信号处理组件202包括:麦克风2021、柔性电路板(flexible printed circuit,FPC)2022和电池2023。其中,FPC 2022的一部分设于耳柄部2012纵向延伸,且紧靠电池。FPC 2022的剩余部分设于耳塞部2011。麦克风2021设于耳柄部2012的底端,设于耳柄部2012的FPC 2022上的地线20243延伸至耳柄部2012的底端,实现与麦克风2021的接地端的电连接,从而确保麦克风2021可以正常工作。耳柄部的FPC 2022上的地线20243上的电流从耳柄部2012的顶端流向FPC 2022上的接地点。电池2023设于耳柄部2012,电池2023向麦克风2021供电。
如图2所示,信号处理组件202还包括:蓝牙耳机200的天线架构,该天线架构通常采用倒F天线(inverted-F antenna IFA),该天线架构包括:呈条状的天线辐射体20241以及与天线辐射体20241的一端相连接的传输轴线(cable)20242。其中,天线辐射体20241位于耳柄部2012,纵向延伸,且紧靠电池2023。天线辐射体20241上的电流从与传输轴线20242的连接点(即馈电点a1)流向耳柄部2012的底端。传输轴线20242从耳柄部2012的顶端延伸至耳塞部2011,传输轴线20242用于传输射频信号。
天线辐射体20241通常与设于耳柄部2012的FPC 2022上的地线20243平行且等长。此时,天线辐射体20241上的电流与设于耳柄部2012的FPC 2022上的地线20243上的电流大小相等且相位相反,导致设于耳柄部2012的FPC 2022上的地线20243上的电流会抵消该天线辐射体20241上的电流,使得该IFA便无法辐射,导致蓝牙耳机200无法工作。另外,独立设置IFA的成本较高。
基于图1和图2所示蓝牙耳机200的结构,如图2所示,蓝牙耳机200除了前述的天线架构,还可以采用陶瓷天线,陶瓷天线通常可以设于耳柄部3012的顶端AA处。由于陶瓷天线本身需要大天线净空区,因此,蓝牙耳机200无法满足布局紧凑的诉求,不易实现无天线净空区或者小天线净空区的需求,且由于天线净空区不够而导致天线性能下降。
为了解决上述问题,本申请提供一种蓝牙耳机,可实现蓝牙耳机的布局紧凑诉求,具有成本低、节约空间的特点,还可实现天线无天线净空区需求或者小天线净空区需求,提高了蓝牙耳机的天线性能。
下面结合本申请实施例中的附图,对本申请的蓝牙耳机的技术方案进行描述。
图3示出了本申请一实施例提供的蓝牙耳机的结构示意图。如图3所示,本申请的蓝牙耳机100可以包括:耳机外壳1和信号处理组件2。耳机外壳1具有腔体,信号处理组件2位于腔体内,耳机外壳1用于固定并保护信号处理组件2。
耳机外壳1包括:耳塞部11和耳柄部12。耳塞部11用于部分嵌入用户耳部。耳柄部12用于方便用户手持以实现佩戴以及方便用户触摸以实现相应功能。用户佩戴蓝牙耳机100时,耳塞部11的部分嵌入用户耳部,耳柄部12位于用户耳部外侧。
需要说明的是,除了图3中将耳塞部11和耳柄部12之间的连接部作为耳柄部12的划分方式,本申请也可以将耳塞部11和耳柄部12之间的连接部作为耳塞部11,实现耳塞部11和耳柄部12的划分。
其中,耳机外壳1可以一体成型,以避免由于意外跌落而导致蓝牙耳机100中的零部件发生损坏或者丢失,也可以由多个部分可拆卸连接,如扣合连接或螺纹连接等,以便于蓝牙耳机100实现后续维修或者维护,也可以由多个部分不可拆卸连接,如胶接等,以降低意外脱落的风险,使得蓝牙耳机100的可靠性更高。
为了便于说明,结合图3,对耳机外壳包括多个部分进行举例示意。
如图3所示,耳机外壳1可以包括主壳体A、底部壳体B以及侧部壳体C三个部分。其中,主壳体A的一部分位于蓝牙耳机100的耳柄部12,主壳体A的另一部分位于蓝牙耳机100的耳塞部11。主壳体A在蓝牙耳机100的耳柄部12的底端形成第一开口,在蓝牙耳机100的耳塞部11处形成第二开口。信号处理组件2可以自第一开口或第二开口装入主壳体A的内部。底部壳体B位于蓝牙耳机100的耳柄部12的底端并固定连接主壳体A,底部壳体B安装于第一开口。侧部壳体C位于蓝牙耳机100的耳塞部11并固定连接主壳体A,侧部壳体C安装于第二开口。
其中,本申请可采用可拆卸连接或者不可拆卸连接实现主壳体A与底部壳体B之间的连接以及侧部壳体C与主壳体A之间的连接,本申请对此不做限定。
另外,侧部壳体C设有一个或多个出音孔D(图3中以两个出音孔为例进行示意),使得耳机外壳1内部的声音能够经出音孔D传输至耳机外壳1外部。其中,本申请对出音孔D的形状、位置以及数量均不做限定。为了便于说明,图3中以2个圆形的出音孔D为例进行示意。
图4示出了图3所示蓝牙耳机100的爆炸示意图,图5示出了图3所示蓝牙耳机100中信号处理组件2的结构示意图。如图4和图5所示,信号处理组件2可以包括:柔性电路板FPC 21、麦克风22、天线辐射体23、控制模块24、第一连接部25(图4和图5中未示意)、第二连接部26和第三连接部27。
FPC 21设置在耳柄部12,且FPC 21的部分沿耳柄部12的顶端延伸至耳塞部11。也就是说,FPC 21自耳柄部12的底端,经耳柄部12的顶端延伸至耳塞部11。FPC 21可以在耳塞部11和耳柄部12形成一个或者多个弯折结构。例如,耳机外壳1可采用“「”结构。FPC 21用于放置或者固定蓝牙耳机100中的元器件。
控制模块24可通过焊接或者胶粘等方式固定在FPC 21上。控制模块24用于处理射频信号。其中,本申请对控制模块24的具体实现形式不做限定。例如,控制模块24可以为系统级芯片(system on chip,SOC)。通常,控制模块24可以包括:射频(RF)电路,该射频电路用于调制或者解调射频信号。另外,本申请对控制模块24的位置不做限定。可选地,控制模块24位于耳塞部11。
麦克风22设置在耳柄部12的底端。其中,本申请对此麦克风22的类型和数量均不做限定。在用户佩戴蓝牙耳机100时,麦克风22可以接收用户的声音信号,且麦克风22的信号端通过与控制模块24的电连接,可将声音信号转换为电信号传输给控制模块24,以便控制模块24将电信号处理为射频信号,使得麦克风22可以正常工作。
为了方便获取用户的声音信号,可选地,麦克风22可以设置在FPC 21上远离耳柄部12的一侧,有助于麦克风22从蓝牙耳机100的外部获取声音信号。另外,麦克风22可以采用固定件安装在FPC 21上,以便麦克风22耦合连接控制模块24。
另外,继续结合图4和图5,本申请中,信号处理组件2还可以包括:扬声器28和电池29。
扬声器28设置在耳塞部11。其中,本申请对扬声器28的类型、数量和位置均不做限定。在用户佩戴蓝牙耳机100时,听筒通过与控制模块24的电连接,可以接收控制模块24发送的电信号。听筒再将电信号转换为声音信号,并输出到蓝牙耳机100的外部,使得听筒可以正常工作。
为了方便用户听清声音信号,可选地,扬声器28可以设置在FPC 21上远离耳塞部11的一侧,有助于听筒形成的声音信号传输到蓝牙耳机100的外部。另外,扬声器28可以采用固定件安装在FPC 21上,以便扬声器28耦合连接控制模块24。
电池26设置在耳柄部12。其中,本申请对电池29的类型、数量、形状和位置均不做限定。可选地,电池29可以呈条状,以更好地容纳在耳机外壳1内部。电池29的供电端通过分别与控制模块24的供电端、扬声器28的供电端和麦克风22的供电电连接,使得电池29向蓝牙耳机100提供电能。另外,电池29的供电端可以位于耳柄部12的顶端,也可以位于耳柄部12的底端,本申请对此也不做限定。为了便于说明,图4和图5中以呈条状的电池29,且电池29的供电端于耳柄部12的顶端为例进行示意。
本申请的蓝牙耳机100的天线架构可以包括:天线辐射体23、第一连接部25、第二连接部26和第三连接部27。可选地,本申请的蓝牙耳机100的天线架构的类型可以包括:单级天线、倒F天线IFA和平面倒F天线(planar inverted-F antenna,PIFA)中的任意一种。需要说明的是,当本申请的蓝牙耳机100的天线架构的类型为PIFA时,天线辐射体23还需要与第二连接部26相连接。
天线辐射体23可采用模内注塑(insert molding)、涂覆金属、柔性电路板(即钢片)或者激光直接成型(laser direct structuring,LDS)等制作工艺设置在FPC 21上,且天线辐射体23位于耳柄部12。其中,本申请对天线辐射体23的类型不做限定。
天线辐射体23的长度为天线辐射体23的一个工作频段对应的波长的1/4。由于天线辐射体23可在一个工作频段或者多个工作频段正常通信,因此,本申请可以从天线辐射体23正常通信时的工作频段中任选一个工作频段,并选择工作频段中的任意一个频点,将该频点代入到公式c=f*λ中,计算得到出波长。其中,f为频点,单位为赫兹(Hz)。λ为波长,单 元为米(m)。c为光速,c=3×10^8米/赫兹(m/Hz)。从而,本申请可以设置天线辐射体23的长度为该波长的1/4。
需要说明的是,受到路径周围介质的影响,通常,第一连接部25实际的物理长度要比前述波长的1/4要短,天线辐射体23实际的物理长度要比前述波长的1/4要短。
天线辐射体23通过FPC 21上的馈电点a与控制模块24电连接,可接收控制模块24发送的射频信号,以便通过天线辐射体23将射频信号辐射出去,还可向控制模块24发送射频信号,以便控制模块24对视频信号进行处理,使得天线辐射体23可以正常通信。本领域技术人员可以理解,馈电点a为天线辐射体23与馈线能量互相传输的连接点。通常,馈电点a可以采用如铜片等金属焊接在FPC 21上。其中,本申请对馈电点a的位置不做限定。可选地,馈电点a位于耳柄部12。
第一连接部25可采用模内注塑、涂覆金属、柔性电路板(即钢片)或者LDS等制作工艺设置在FPC 21上,且第一连接部25位于耳塞部11。其中,本申请对第一连接部25的位置和形态均不做限定。第一连接部25为蓝牙耳机100的主地,且控制模块24的接地端、第一连接部25和FPC 21上的接地点b共地。且第一连接部25的长度为前述波长的1/4,用于构成天线辐射体23的辐射体,使得天线辐射体23和第一接地线的总长度共同满足1/2波长的要求,实现蓝牙耳机100的通信过程。
接地点b位于耳柄部12,且接地点b与馈电点a相距预设距离。其中,预设距离可根据天线的设计规则进行设置,本申请对此不做限定。其中,本申请对接地点b的位置不做限定。可选地,接地点b位于耳柄部12。为了便于说明,图5中以接地点b位于馈电点a的外侧为例进行示意。
第二连接部26可采用模内注塑、涂覆金属、柔性电路板(即钢片)或者LDS等制作工艺进行设置,且第二连接部26位于耳柄部12。其中,本申请对第二连接部26的位置和形态均不做限定。由于接地点b、第一连接部25和控制模块24的接地端共地,麦克风22的接地端通过第二连接部26与接地点b电连接,因此,本申请的蓝牙耳机100中,麦克风22和控制模块24可以共接一个地,将共地干扰降到最低。
可选地,第二连接部26可以设置在FPC 21上,进而,由于天线辐射体23和第二连接部26共同设置在FPC 21上,与传统的蓝牙耳机200相比,节省了蓝牙耳机100中耳柄部的空间,且简化了蓝牙耳机100的组装工序,降低了布局成本,满足了蓝牙耳机100布局紧凑的诉求。
从第二连接部26上除接地点b之外的至少一个位置处延伸有一个或者多个第三连接部27,且第三连接部27位于耳柄部12。也就是说,针对第二连接部26上除接地点b之外的任意一个位置,延伸的第三连接部27的数量可以为一个,也可以为多个,本申请对此不做限定。为了便于说明,图5中第三连接部27以连接部271、连接部272和连接部273三个连接部为例进行示意。
本申请中,第三连接部27可采用模内注塑、涂覆金属、柔性电路板(即钢片)或者LDS等制作工艺。其中,本申请对第三连接部27的位置和形态均不做限定。且第二连接部26和第三连接部27的总长度大于前述波长的1/4。其中,本申请对第二连接部26和第三连接部27各自的长度不做限定。
为了进一步改善天线性能,可选地,第二连接部26和第三连接部27的总长度大于前述波长的1/4且小于或等于前述波长的1/2。另外,为了进一步满足蓝牙耳机100布局紧凑的诉 求,可选地,第二连接部26、第三连接部27与天线辐射体23三者可以平行且等长。
本申请中,第二连接部26上的电流从耳柄部12的底端流向接地点b,天线辐射体23上的电流从馈电点a流向耳柄部12的底端,使得第二连接部26上的电流会抵消天线辐射体23上的电流。第三连接部27与第二连接部26相连接,第二连接部26和第三连接部27的总长度大于前述波长的1/4,且第三连接部27上的寄生电流从第三连接部27与第二连接部26的连接处流向第三连接部27的端部,天线辐射体23上的电流与第三连接部27上的寄生电流不反向,使得第三连接部27上的寄生电流不会抵消天线辐射体23上的电流,反而会增强天线辐射体23上的电流,从而第三连接部27成为天线辐射体23的寄生,有效提高了蓝牙耳机100的天线性能,保证蓝牙耳机100的通信效果。
其中,天线辐射体23上的电流与第三连接部27上的寄生电流不反向的实现形式包括多种形式。例如,第三连接部27上的寄生电流可以与天线辐射体23上的电流同向,或者,第三连接部27上的寄生电流的方向可以与天线辐射体23上的电流的方向成锐角,或者,第三连接部27上的寄生电流可以从第三连接部27与第二连接部26的连接处弯曲流向第三连接部27的端部。
本申请提供的蓝牙耳机,通过第二连接部和第三连接部的总长度设置为大于天线辐射体的一个工作频段对应的波长的1/4,且天线辐射体上的电流从馈电点流向耳柄部的底端,第三连接部与第二连接部相连接,第二连接部上的电流从耳柄部的底端流向接地点,第三连接部上的寄生电流从第三连接部与第二连接部的连接处沿着第三连接部的本体流向第三连接部的端部,天线辐射体上的电流与第三连接部上的寄生电流不反向,使得第三连接部成为天线辐射体的寄生,提升了天线辐射体的性能,满足了蓝牙耳机布局紧凑的诉求,实现了无天线净空区或者小天线净空区的需求,确保了天线蓝牙耳机良好的天线性能。另外,将天线辐射体和第二连接部共同设置在FPC上,节省了蓝牙耳机的空间,减少了组装工序的复杂度,降低了布局成本,进一步满足了蓝牙耳机布局紧凑的诉求。
在上述图3-图5所示实施例的基础上,本申请中任意一个第三连接部27的实现方式可以包括多种。下面,采用实施例一、实施例二和实施例三,分别对任意一个第三连接部27的具体结构进行详细描述。
实施例一
实施例一中,任意一个第三连接部27可以包括:从第二连接部26上靠近耳柄部12的底端的一个或者多个位置处向靠近耳柄部12的顶端的方向延伸的连接部,充分利用了耳柄部12的空间,实现了蓝牙耳机100的紧凑布局。
其中,本申请对第三连接部27的形状,第三连接部27的数量,第三连接部27与第二连接部26的连接位置以及第三连接部27与第二连接部26之间的夹角不做限定,只需满足第二连接部26和第三连接部27的总长度大于前述波长的1/4且天线辐射体23上的电流与第三连接部27上的寄生电流不反向即可。可选地,第三连接部27上的寄生电流可以与天线辐射体23上的电流同向,使得第三连接部27成为天线辐射体23的寄生,增强天线辐射体23的性能。
为了节省耳机外壳1的空间,可选地,第三连接部27与第二连接部26构成U型结构,这样,第二连接部26和第三连接部27均呈直线状且平行,使得蓝牙耳机100的空间紧凑,还有助于布局蓝牙耳机100的天线架构。
本申请中,第三连接部27的具体位置可以包括多种。下面,采用两种可行的实现 方式,对第三连接部27的具体设置进行举例。
一种可行的实现方式中,如图6a和图6b所示,第三连接部27可采用模内注塑、涂覆金属、柔性电路板(即钢片)或者LDS等制作工艺进行设置在FPC 21上,工艺简单易行,节省了耳柄部12的空间,使得蓝牙耳机100满足紧凑布局的诉求。为了便于说明,图6a和图6b中以第三连接部27以从第二连接部26的一个位置处延伸出的连接部27a和从第二连接部26的另一个位置处延伸出的连接部27b这两个连接部为例进行示意。其中,连接部27a与第二连接部26的端部相连接,连接部27b与第二连接部26的侧边相连接,且连接部27a、连接部27b、第二连接部26与天线辐射体23相互平行。
需要说明的是,图6a和图6b中,连接部27a、连接部27b、第二连接部26和天线辐射体23中的斜线并不是连接部27a、连接部27b、第二连接部26和天线辐射体23各自对应的剖面线,而是为了便于区分连接部27a、连接部27b、第二连接部26和天线辐射体23的。
其中,本申请对第三连接部27在FPC 21上的具体位置不做限定。可选地,第三连接部27紧挨天线辐射体23,确保第三连接部27作为天线辐射体23的寄生以提高天线性能。
下面,假设天线辐射体23的一个工作频段为2.4GHz-2.5GHz,结合图7,对本申请的蓝牙耳机100中的天线架构的反射系数S11曲线进行示意。图7中,横坐标为频率,单位为兆赫兹(GHz),纵坐标为反射系数S11,单位为dBa。其中,反射系数S11是S参数(即散射参数)中的一个,表示回波损耗特性,一般通过网络分析仪来看其损耗的dB值和阻抗特性。此参数表示天线跟前端电路的匹配程度好不好,反射系数S11的值越大,表示天线本身反射回来的能量越大,这样天线的匹配就越差。例如,天线A在某一频点的S11值为-1,天线B在相同频点的S11值为-3,天线B比天线A的匹配程度要好。
如图7所示,曲线1示出了基于图1和图2所示蓝牙耳机200结构的S11曲线,曲线2示出了基于图6a和图6b所示蓝牙耳机100结构的S11曲线。曲线2中,在天线辐射体23的工作频点为2.4GHz时,S11值为-7.863dBa。在天线辐射体23的工作频点为2.5GHz时,S11值为-13.226dBa。与曲线1在2.4GHz-2.5GHz工作频段上的S11值相比,曲线2在2.4GHz-2.5GHz工作频段上的S11值要小,可见,曲线2对应的天线辐射体23频宽更宽,天线性能更好。
下面,假设天线辐射体23的一个工作频段为2.4GHz-2.5GHz,结合图8,对本申请的蓝牙耳机100中的天线架构的系数效率曲线进行示意。图8中,横坐标为频率,单位为兆赫兹(GHz),纵坐标为系数效率,单位为dB。
如图8所示,曲线1示出了基于图1和图2所示蓝牙耳机200结构的系数效率曲线,曲线2示出了基于图6a和图6b所示蓝牙耳机100结构的系数效率曲线。与曲线1在2.4GHz-2.5GHz工作频段上的系数效率值相比,曲线2在2.4GHz-2.5GHz工作频段上的系数效率值要小,可见,曲线2对应的天线效率更高,天线性能更好。
另一种可行的实现方式中,如图9a、图9b和图9c所示,第三连接部27可采用模内注塑(insert molding)、柔性电路板(即钢片)或者LDS等制作工艺设置在耳柄部12上,如耳柄部12的内壁或者外壁上,充分利用了耳柄部12,节省了耳柄部12的空间,使得蓝牙耳机100满足紧凑布局的诉求。为了便于说明,图9a、图9b和图9c中第三连接部27以从第二连接部26的一个位置处延伸得到的连接部为例进行示意。其中,第三连接部27与第二连接部26的端部相连接,且第三连接部27与第二连接部26相互平行。Y方向为FPC 21的长度方向直,X方向为FPC 21所在平面的垂直方向,X方向与Y方向垂。
需要说明的是,图9a、图9b和图9c中,第三连接部27、第二连接部26和天线辐射体23中的斜线并不是第三连接部27、第二连接部26和天线辐射体23各自对应的剖面线,而是为了便于区分第三连接部27、第二连接部26和天线辐射体23的。
下面,假设天线辐射体23的一个工作频段为2.4GHz-2.5GHz,结合图10,对本申请的蓝牙耳机100中的天线架构的反射系数S11曲线进行示意。图10中,横坐标为频率,单位为兆赫兹(GHz),纵坐标为反射系数S11,单位为dBa。
如图10所示,曲线1示出了基于图1和图2所示蓝牙耳机200结构的S11曲线,曲线2示出了基于图9a、图9b和图9c所示蓝牙耳机100结构的S11曲线。曲线2中,在天线辐射体23的工作频点为2.4GHz时,S11值为-13.953dBa。在天线辐射体23的工作频点为2.5GHz时,S11值为-9.2301dBa。与曲线1在2.4GHz-2.5GHz工作频段上的S11值相比,曲线2在2.4GHz-2.5GHz工作频段上的S11值要小,可见,曲线2对应的天线频宽更宽,天线性能更好。
下面,假设天线辐射体23的一个工作频段为2.4GHz-2.5GHz,结合图11,对本申请的蓝牙耳机100中的天线架构的系数效率曲线进行示意。图11中,横坐标为频率,单位为兆赫兹(GHz),纵坐标为系数效率,单位为dB。
如图11所示,曲线1示出了基于图1和图2所示结构的系数效率曲线,曲线2示出了基于图9a、图9b和图9c所示结构的系数效率曲线。与曲线1在2.4GHz-2.5GHz工作频段上的系数效率值相比,曲线2在2.4GHz-2.5GHz工作频段上的系数效率值要小,可见,曲线2对应的天线效率更高,天线性能更好。
其中,本申请对第三连接部27在耳柄部12的内壁或者外壁上的具体位置不做限定。下面,结合图12-图16,采用三种可行的实施例,对第三连接部27在耳柄部12的内壁或者外壁上的具体位置进行举例。为了便于说明,图12-图16中未示意出第二连接部26与第三连接部27相连接,且以天线辐射体23在FPC 21上位于第二连接部26的右侧,第二连接部26、第三连接部27和天线辐射体23平行且等长为例进行示意。
一种可行的实施例中,可选地,第三连接部27沿FPC 21所在平面的垂直方向(即图9a中的X方向)在FPC 21所在平面上的投影与天线辐射体23有重叠区域,使得蓝牙耳机100具有良好的天线性能。其中,本申请对重叠区域的大小和位置不做限定。
如图12所示,第三连接部27沿FPC 21所在平面的垂直方向在FPC 21所在平面上的全部投影映射在天线辐射体23内。如图13所示,第三连接部27沿FPC 21所在平面的垂直方向在FPC 21所在平面上的部分投影映射在天线辐射体23内。
另一种可行的实施例中,可选地,第三连接部27沿FPC 21所在平面的垂直方向(即图9a中的X方向)在FPC 21所在平面上的投影紧邻天线辐射体23,使得蓝牙耳机100具有较佳的天线性能。其中,本申请对该投影和天线辐射体23之间的距离不做限定。
如图14所示,第三连接部27沿FPC 21所在平面的垂直方向在FPC 21所在平面上的投影映射在天线辐射体23的右侧。如图15所示,第三连接部27沿FPC 21所在平面的垂直方向在FPC 21所在平面上的投影映射在第二连接部26和天线辐射体23的中间。
另一种可行的实施例中,可选地,第三连接部27沿FPC 21所在平面的垂直方向(即图9a中的X方向)在FPC 21所在平面上的投影远离天线辐射体23且紧邻第二连接部26,使得蓝牙耳机100具有较佳的天线性能。其中,本申请对该投影和天线辐射体23之间的 距离不做限定。
如图16所示,第三连接部27沿天线辐射体23所在平面的垂直方向在天线辐射体23所在平面上的投影映射在第二连接部26的左侧。
实施例二
实施例二中,如图17a和图17b所示,可选地,任意一个第三连接部27可以包括:从第二连接部26上靠近耳柄部12的底端的一个或者多个位置处向靠近耳柄部12的底端的方向延伸且呈弯曲状的连接部,充分利用了耳柄部12的底端的空间,实现了蓝牙耳机100的紧凑布局。并且,第三连接部27上的寄生电流从与第二连接部26的连接处沿着第三连接部27的本体弯曲流向第三连接部27的端部,使得第三连接部27成为天线辐射体23的寄生,增强天线辐射体23的性能。
其中,本申请对第三连接部27的弯曲变形程度不做限定,只需满足第二连接部26和第三连接部27的总长度大于前述波长的1/4即可。为了便于说明,图17a和图17b中以第三连接部27为从第二连接部26上靠近耳柄部12的底端的一个位置处延伸为例进行示意。
需要说明的是,图17a和图17b中,第三连接部27、第二连接部26和天线辐射体23中的斜线并不是第三连接部27、第二连接部26和天线辐射体23各自对应的剖面线,而是为了便于区分第三连接部27、第二连接部26和天线辐射体23的。
实施例三
实施例三中,如图18所示,可选地,任意一个第三连接部27可以包括:电池29的金属外壁,以及电池29的金属外壁与第二连接部26上靠近耳柄部12的底端的至少一个位置相连接的连接部,充分利用了电池29的占用空间,节省了耳柄部12的空间,实现了蓝牙耳机100的紧凑布局。
其中,本申请对金属外壁的厚度、材质和面积均不做限定。例如,金属外壁可以采用铜箔材质。为了便于说明,图18中以第三连接部27为电池29的整个金属外壁为例进行示意。
需要说明的是,图18中,第二连接部26和天线辐射体23中的斜线并不是第二连接部26和天线辐射体23各自对应的剖面线,而是为了便于区分第二连接部26和天线辐射体23的。
下面,假设天线辐射体23的一个工作频段为2.4GHz-2.5GHz,结合图19,对本申请的蓝牙耳机100中的天线架构的反射系数S11曲线进行示意。图19中,横坐标为频率,单位为兆赫兹(GHz),纵坐标为反射系数S11,单位为dBa。
如图19所示,曲线1示出了基于图1和图2所示结构的S11曲线,曲线2示出了基于图18所示结构的S11曲线。曲线2中,在天线辐射体23的工作频点为2.4GHz时,S11值为-15.501dBa。在天线辐射体23的工作频点为2.5GHz时,S11值为-15.621dBa。与曲线1在2.4GHz-2.5GHz工作频段上的S11值相比,曲线2在2.4GHz-2.5GHz工作频段上的S11值要小,可见,曲线2对应的天线频宽更宽,天线性能更好。
下面,假设天线辐射体23的一个工作频段为2.4GHz-2.5GHz,结合图20,对本申请的蓝牙耳机100中的天线架构的系数效率曲线进行示意。图20中,横坐标为频率,单位为兆赫兹(GHz),纵坐标为系数效率,单位为dB。
如图20所示,曲线1示出了基于图1和图2所示结构的系数效率曲线,曲线2示出了基于图18所示结构的系数效率曲线。与曲线1在2.4GHz-2.5GHz工作频段上的系数效率值相比,曲线2在2.4GHz-2.5GHz工作频段上的系数效率值要小,可见,曲线2对应的天线效率更高,天线性能更好。
需要说明的是,第三连接部27除了上述三个实施例之外,本申请还可以将上述三个实施例进行任意组合,得到第三连接部27。
例如,本申请将实施例一和实施例二进行组合,任意一个第三连接部27可以包括:从第二连接部26上靠近耳柄部12的底端的至少一个位置处向靠近耳柄部12的顶端的方向延伸的连接部,以及从第二连接部26上靠近耳柄部12的底端的至少一个位置处向靠近耳柄部12的底端的方向延伸且呈弯曲状的连接部。
下面,以第二连接部26、第三连接部27和天线辐射体23平行且等长,第三连接部27采用实施例一和实施例二组合的实现形式为例,结合图21,对第二连接部26上的电流、天线辐射体23上的电流和第三连接部27上的寄生电流的方向示意图进行说明。
如图21所示,第二连接部26上的电流I1从耳柄部12的底端流向接地点b。天线辐射体23上的电流I2从馈电点a流向耳柄部12的底端。第三连接部27包括两部分,分别为连接部271和连接部272。其中,连接部271上的寄生电流I31从连接部271与第二连接部26的连接处流向连接部271的端部。连接部272上的寄生电流I32从连接部272与第二连接部26的连接处沿着连接部272的本体弯曲流向连接部272的端部。可见,电流I1与电流I2反向,寄生电流I31与电流I2同向,寄生电流I32与电流I2不反向。
又如,本申请将实施例一和实施例三进行组合,任意一个第三连接部27可以包括:从第二连接部26上靠近耳柄部12的底端的至少一个位置处向靠近耳柄部12的顶端的方向延伸的连接部,电池29的金属外壁,以及电池29的金属外壁与第二连接部26上靠近耳柄部12的底端的至少一个位置相连接的连接部。
又如,本申请将实施例二和实施例三进行组合,任意一个第三连接部27可以包括:从第二连接部26上靠近耳柄部12的底端的至少一个位置处向靠近耳柄部12的底端的方向延伸且呈弯曲状的连接部,电池29的金属外壁,以及电池29的金属外壁与第二连接部26上靠近耳柄部12的底端的至少一个位置相连接的连接部。
又如,本申请将实施例一、实施例二和实施例三进行组合,任意一个第三连接部27可以包括:从第二连接部26上靠近耳柄部12的底端的至少一个位置处向靠近耳柄部12的顶端的方向延伸的连接部,从第二连接部26上靠近耳柄部12的底端的至少一个位置处向靠近耳柄部12的底端的方向延伸且呈弯曲状的连接部,电池29的金属外壁,以及电池29的金属外壁与第二连接部26上靠近耳柄部12的底端的至少一个位置相连接的连接部。
为了进一步解释本申请的蓝牙耳机100具有良好的天线性能,下面,从信号处理组件2上电流的分布、天线架构的反射系数S11以及本申请蓝牙耳机100的天线架构的系数效率三方面入手,比较传统的蓝牙耳机200的天线性能与本申请的蓝牙耳机100的天线性能。
第一方面,为了便于说明,以第二连接部26、第三连接部27和天线辐射体23平行且等长例,结合图22a、图22b-图22c,分别对蓝牙耳机100中信号处理组件2上电流的分布进行示意。
其中,图22a示出了蓝牙耳机100中存在第二连接部26和天线辐射体23,且无第三连接 部27的天线架构,且图22a所示的天线架构与图1和和图2所示蓝牙耳机200的天线架构类似。图22b示出了本申请的蓝牙耳机100中存在第二连接部26、天线辐射体23以及采用实施例二的第三连接部27的天线架构。图22c示出了本申请的蓝牙耳机100中存在第二连接部26、天线辐射体23和采用实施例三的第三连接部27的天线架构。
如图22a、图22b和图22c所示,与图22a中信号处理组件2上电流的分布相比,图22b中信号处理组件2上电流的分布范围较广,且强度较强。图22c中信号处理组件2上电流的分布范围最广,且强度最强。因此,相较于传统的蓝牙耳机200而言,本申请的蓝牙耳机100,由于第三连接部27成为天线辐射体23的寄生,有效提高了蓝牙耳机100的天线性能。
第二方面,为了便于说明,假设天线辐射体23的一个工作频段为2.4GHz-2.5GHz,基于图22a、图22b-图22c所示的天线架构,结合图23,对天线架构的反射系数S11曲线进行示意。图23中,横坐标为频率,单位为兆赫兹(GHz),纵坐标为反射系数S11,单位为dBa。
如图23所示,曲线1示出了基于图22a所示天线架构的S11曲线,曲线2示出了基于图22b所示天线架构的S11曲线,曲线3示出了基于图22c所示天线架构的S11曲线。相较于曲线1而言,曲线2对应的天线性能良好,曲线3对应的天线性能最优。因此,相较于传统的蓝牙耳机200而言,本申请的蓝牙耳机100的天线性能得到了有效改善。
第三方面,为了便于说明,假设天线辐射体23的一个工作频段为2.4GHz-2.5GHz,基于图22a、图22b-图22c所示结构,结合图24,对天线架构的系数效率曲线进行示意。图24中,横坐标为频率,单位为兆赫兹(GHz),纵坐标为系数效率,单位为dB。
如图24所示,曲线1示出了基于图22a所示天线架构的系统效率曲线,曲线2示出了基于图22b所示天线架构的系统效率曲线,曲线3示出了基于图22c所示天线架构的系统效率曲线。相较于曲线1而言,曲线2对应的天线性能良好,曲线3对应的天线性能最优。因此,相较于传统的蓝牙耳机200而言,本申请的蓝牙耳机100的天线性能得到了有效改善。
综上,引入的第三连接部27成为了天线辐射体23的寄生,增强了本申请的蓝牙耳机100的天线性能,使得本申请的蓝牙耳机100能够良好通信。

Claims (20)

  1. 一种蓝牙耳机,其特征在于,包括:耳机外壳和信号处理组件,所述耳机外壳具有腔体,所述信号处理组件位于所述腔体内;
    所述信号处理组件包括:柔性电路板FPC、麦克风和天线辐射体;所述耳机外壳包括:耳塞部和耳柄部;所述FPC设置在所述耳柄部,且所述FPC的部分沿所述耳柄部的顶端延伸至所述耳塞部,所述麦克风设置在所述耳柄部的底端;
    所述麦克风的信号端与所述FPC上的控制模块电连接;所述FPC上的天线辐射体位于所述耳柄部,所述天线辐射体的长度为所述天线辐射体的一个工作频段对应的波长的1/4,所述天线辐射体通过所述FPC上的馈电点与所述控制模块电连接,所述馈电点位于所述耳柄部的顶端;
    所述FPC上的第一连接部位于所述耳塞部,所述第一连接部的长度为所述波长的1/4,所述控制模块的接地端、所述第一连接部和所述FPC上的接地点共地,所述接地点位于所述耳柄部,所述接地点与所述馈电点相距预设距离;
    第二连接部位于所述耳柄部,所述麦克风的接地端通过所述第二连接部与所述接地点电连接;从所述第二连接部上除所述接地点之外的至少一个位置处延伸有至少一个第三连接部,所述第三连接部位于所述耳柄部,所述第二连接部和所述第三连接部的总长度大于所述波长的1/4,所述天线辐射体上的电流从所述馈电点流向所述耳柄部的底端,所述第三连接部上的寄生电流从所述第三连接部与所述第二连接部的连接处流向所述第三连接部的端部,所述天线辐射体上的电流与所述第三连接部上的寄生电流不反向。
  2. 根据权利要求1所述的蓝牙耳机,其特征在于,所述第二连接部和所述第三连接部的总长度小于或等于所述波长的1/2。
  3. 根据权利要求1或2所述的蓝牙耳机,其特征在于,所述第二连接部设置在所述FPC上。
  4. 根据权利要求1-3任一项所述的蓝牙耳机,其特征在于,所任意一个述第三连接部包括:从所述第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的顶端的方向延伸的连接部。
  5. 根据权利要求4所述的蓝牙耳机,其特征在于,所述第三连接部上的寄生电流与所述天线辐射体上的电流同向。
  6. 根据权利要求4或5所述的蓝牙耳机,其特征在于,所述第三连接部与所述第二连接部构成U型结构。
  7. 根据权利要求4-6任一项所述的蓝牙耳机,其特征在于,所述第三连接部设置在所述FPC上。
  8. 根据权利要求7所述的蓝牙耳机,其特征在于,所述第三连接部紧挨所述天线辐射体。
  9. 根据权利要求4-6任一项所述的蓝牙耳机,其特征在于,所述第三连接部设置在所述耳柄部的内壁或者外壁上。
  10. 根据权利要求9所述的蓝牙耳机,其特征在于,所述第三连接部沿所述FPC所在平面的垂直方向在所述FPC所在平面上的投影与所述天线辐射体有重叠区域。
  11. 根据权利要求9所述的蓝牙耳机,其特征在于,所述第三连接部沿所述FPC所在 平面的垂直方向在所述FPC所在平面上的投影紧邻所述天线辐射体。
  12. 根据权利要求9所述的蓝牙耳机,其特征在于,所述第三连接部沿所述FPC所在平面的垂直方向在所述FPC所在平面上的投影远离所述天线辐射体且紧邻所述第二连接部。
  13. 根据权利要求1-3任一项所述的蓝牙耳机,其特征在于,任意一个所述第三连接部包括:从所述第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的底端的方向延伸且呈弯曲状的连接部。
  14. 根据权利要求13所述的蓝牙耳机,其特征在于,所述第三连接部上的寄生电流从与所述第二连接部的连接处弯曲流向所述第三连接部的端部。
  15. 根据权利要求1-3任一项所述的蓝牙耳机,其特征在于,任意一个所述第三连接部包括:从所述第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的顶端的方向延伸的连接部,以及从所述第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的底端的方向延伸且呈弯曲状的连接部。
  16. 根据权利要求1-3任一项所述的蓝牙耳机,其特征在于,任意一个所述第三连接部包括:电池的金属外壁,以及所述电池的金属外壁与所述第二连接部上靠近耳柄部的底端的至少一个位置相连接的连接部。
  17. 根据权利要求1-3任一项所述的蓝牙耳机,其特征在于,任意一个所述第三连接部包括:从所述第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的顶端的方向延伸的连接部,电池的金属外壁,以及所述电池的金属外壁与所述第二连接部上靠近耳柄部的底端的至少一个位置相连接的连接部。
  18. 根据权利要求1-3任一项所述的蓝牙耳机,其特征在于,任意一个所述第三连接部包括:从所述第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的底端的方向延伸且呈弯曲状的连接部,电池的金属外壁,以及所述电池的金属外壁与所述第二连接部上靠近耳柄部的底端的至少一个位置相连接的连接部。
  19. 根据权利要求1-3任一项所述的蓝牙耳机,其特征在于,任意一个所述第三连接部包括:从所述第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的顶端的方向延伸的连接部,从所述第二连接部上靠近耳柄部的底端的至少一个位置处向靠近耳柄部的底端的方向延伸且呈弯曲状的连接部,电池的金属外壁,以及所述电池的金属外壁与所述第二连接部上靠近耳柄部的底端的至少一个位置相连接的连接部。
  20. 根据权利要求1-19中任一项所述的蓝牙耳机,其特征在于,所述信号处理组件包括:扬声器和电池;
    其中,所述扬声器设置在所述耳塞部,所述FPC上的控制模块与所述扬声器电连接;所述电池设置在所述耳柄部,所述电池向所述蓝牙耳机供电。
PCT/CN2020/114635 2019-09-17 2020-09-11 蓝牙耳机 WO2021052242A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20865466.5A EP4024886A4 (en) 2019-09-17 2020-09-11 BLUETOOTH EARPHONE
US17/760,635 US20220337933A1 (en) 2019-09-17 2020-09-11 Bluetooth Earphone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910877504.4A CN112533096B (zh) 2019-09-17 2019-09-17 蓝牙耳机
CN201910877504.4 2019-09-17

Publications (1)

Publication Number Publication Date
WO2021052242A1 true WO2021052242A1 (zh) 2021-03-25

Family

ID=74883691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114635 WO2021052242A1 (zh) 2019-09-17 2020-09-11 蓝牙耳机

Country Status (4)

Country Link
US (1) US20220337933A1 (zh)
EP (1) EP4024886A4 (zh)
CN (2) CN114824737A (zh)
WO (1) WO2021052242A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079433A (zh) * 2021-04-02 2021-07-06 北京有竹居网络技术有限公司 耳机
CN113410615A (zh) * 2021-05-26 2021-09-17 潍坊歌尔电子有限公司 线控蓝牙耳机天线和蓝牙耳机
EP4250480A1 (en) * 2022-03-21 2023-09-27 LG Electronics Inc. Wireless earbud

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886219B (zh) * 2019-11-30 2022-05-10 华为技术有限公司 无线耳机
CN115348495A (zh) * 2021-05-12 2022-11-15 华为技术有限公司 蓝牙耳机
US20230110268A1 (en) * 2021-10-08 2023-04-13 Google Llc Coated High Permeability Metal Shield For Reducing Electronic Noise In Wearable Devices
CN116367027A (zh) * 2021-12-27 2023-06-30 北京小米移动软件有限公司 蓝牙信号发射设备、控制方法、装置、设备及介质
CN116417782A (zh) * 2021-12-31 2023-07-11 荣耀终端有限公司 一种无线耳机及终端天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785414A (zh) * 2017-03-20 2017-05-31 合肥联宝信息技术有限公司 耦合天线
US20180026338A1 (en) * 2016-07-21 2018-01-25 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN108281759A (zh) * 2017-12-18 2018-07-13 歌尔股份有限公司 一种电子设备
CN209056590U (zh) * 2018-10-17 2019-07-02 歌尔科技有限公司 天线装置及电子设备
CN110061356A (zh) * 2019-03-05 2019-07-26 惠州Tcl移动通信有限公司 一种天线及智能终端
CN110165378A (zh) * 2019-06-03 2019-08-23 广州由我科技股份有限公司 一种天线结构及耳机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270915B2 (en) * 2007-01-06 2012-09-18 Apple Inc. Antenna and button assembly for wireless devices
US20080166006A1 (en) * 2007-01-06 2008-07-10 Apple Inc Light diffuser
EP2302737B1 (en) * 2009-09-21 2014-08-20 Sennheiser Communications A/S A portable communication device comprising an antenna
CN103219581A (zh) * 2012-01-19 2013-07-24 启碁科技股份有限公司 宽频天线
DK2835863T3 (da) * 2013-08-09 2020-03-02 Oticon As Høreanordning med RF antenne
US9866945B2 (en) * 2016-01-12 2018-01-09 Apple Inc. Antennas for wireless earbuds
DK3506656T3 (da) * 2017-12-29 2023-05-01 Gn Hearing As Høreinstrument omfattende et parasitisk batteri antenne-element
CN207910054U (zh) * 2018-01-16 2018-09-25 东莞市普尔信通讯器材有限公司 一种2.4g高性能pcb终端天线
CN108711668B (zh) * 2018-04-25 2019-12-13 歌尔股份有限公司 天线装置及电子设备
CN208638655U (zh) * 2018-08-04 2019-03-22 瑞声科技(新加坡)有限公司 扬声器模组
US10764666B1 (en) * 2018-08-13 2020-09-01 Amazon Technologies, Inc. Capacitance loaded antenna for ear-worn electronic device
CN208675488U (zh) * 2018-10-24 2019-03-29 歌尔科技有限公司 无线耳机
CN110198505B (zh) * 2019-05-31 2020-10-13 歌尔科技有限公司 一种无线耳机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180026338A1 (en) * 2016-07-21 2018-01-25 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN106785414A (zh) * 2017-03-20 2017-05-31 合肥联宝信息技术有限公司 耦合天线
CN108281759A (zh) * 2017-12-18 2018-07-13 歌尔股份有限公司 一种电子设备
CN209056590U (zh) * 2018-10-17 2019-07-02 歌尔科技有限公司 天线装置及电子设备
CN110061356A (zh) * 2019-03-05 2019-07-26 惠州Tcl移动通信有限公司 一种天线及智能终端
CN110165378A (zh) * 2019-06-03 2019-08-23 广州由我科技股份有限公司 一种天线结构及耳机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024886A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079433A (zh) * 2021-04-02 2021-07-06 北京有竹居网络技术有限公司 耳机
CN113410615A (zh) * 2021-05-26 2021-09-17 潍坊歌尔电子有限公司 线控蓝牙耳机天线和蓝牙耳机
EP4250480A1 (en) * 2022-03-21 2023-09-27 LG Electronics Inc. Wireless earbud

Also Published As

Publication number Publication date
CN112533096A (zh) 2021-03-19
EP4024886A1 (en) 2022-07-06
CN114824737A (zh) 2022-07-29
EP4024886A4 (en) 2022-09-14
US20220337933A1 (en) 2022-10-20
CN112533096B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2021052242A1 (zh) 蓝牙耳机
EP2723101B1 (en) Bte hearing aid having a balanced antenna
CN108281759B (zh) 一种电子设备
JP6722865B2 (ja) 補聴器
EP3726854A2 (en) Hearing device with two-half loop antenna
US11838711B2 (en) Bluetooth earphone
CN107645053B (zh) 天线结构及具有该天线结构的无线通信装置
CN112582779B (zh) 一种天线及蓝牙无线耳机
CN207800895U (zh) 一种电子设备
TW393807B (en) A multi-frequency antenna
JP2004363848A (ja) アンテナ実装基板及びそれを備えたpcカード
WO2010126309A2 (ko) Sar 및 hac 특성 개선을 위한 휴대용 단말기 안테나
CN115377663A (zh) 无线耳机
CN209526213U (zh) 天线主板和天线装置
CN106058452A (zh) 一种耳机天线
WO2020011698A1 (en) Headphone device with antenna arrangement
CN219610742U (zh) 一种用于入耳式蓝牙耳机的波束赋形天线
CN219303942U (zh) 一种三合一天线结构和移动设备
CN217011144U (zh) 无线耳机
TW201414087A (zh) 天線結構
CN220774752U (zh) 一种loop天线
CN114552173B (zh) 天线结构和电子设备
CN220672853U (zh) 一种叠层耦合4g天线结构
CN217387525U (zh) 一种智能手表的双天线装置
CN117319871A (zh) 耳机壳组件和耳机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865466

Country of ref document: EP

Effective date: 20220331