WO2021052089A1 - 一种阻燃聚碳酸酯复合材料及其制备方法 - Google Patents

一种阻燃聚碳酸酯复合材料及其制备方法 Download PDF

Info

Publication number
WO2021052089A1
WO2021052089A1 PCT/CN2020/109976 CN2020109976W WO2021052089A1 WO 2021052089 A1 WO2021052089 A1 WO 2021052089A1 CN 2020109976 W CN2020109976 W CN 2020109976W WO 2021052089 A1 WO2021052089 A1 WO 2021052089A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
polycarbonate
retardant
flame retardant
composite material
Prior art date
Application number
PCT/CN2020/109976
Other languages
English (en)
French (fr)
Inventor
岑茵
黄险波
叶南飚
李明昆
艾军伟
吴俊�
丁超
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2021052089A1 publication Critical patent/WO2021052089A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • C08K5/526Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention relates to the technical field of polymer materials, in particular to a flame-retardant polycarbonate composite material and a preparation method thereof.
  • polycarbonate is widely used in the production of various industrial and civil parts (such as various transparent parts, lampshades, instrument panels, etc.).
  • flame retardant modification is required.
  • the stable state of polycarbonate is weakly acidic, the addition of flame retardants will change the overall pH value and affect the stability of polycarbonate, especially the basic metal elements contained in flame retardants (such as antimony dioxide). ).
  • the free bromine in brominated flame retardants will cause the weakly acidic polycarbonate to decompose during melt processing, thereby reducing its performance and even failing to meet the application standards.
  • the method to improve the thermal stability of flame-retardant polycarbonate is to add a substance.
  • Chinese patent application 2018107637061 discloses a polycarbonate composition in which siloxane is added to improve the flame-retardant polycarbonate.
  • the thermal stability of the composition or, in order to ensure the stability of the flame-retardant polycarbonate, only some neutral and mild flame retardants can be added, resulting in a large amount of addition and a greater impact on other properties of the material.
  • the purpose of the present invention is to provide a flame-retardant polycarbonate composite material, which has the advantage of good thermal stability.
  • Another object of the present invention is to provide a method for preparing the above-mentioned flame-retardant polycarbonate composite material.
  • a flame-retardant polycarbonate composite material in parts by weight, comprising the following components:
  • the weight average molecular weight of the polycarbonate is greater than 26000, the molecular weight distribution index PDI is less than 2.2, the pH of the polycarbonate solution is 6.7-7.1, and the Tg temperature change of multiple cycles is less than 3.3°C.
  • the weight average molecular weight of the polycarbonate is greater than 26,000, the molecular weight distribution index PDI is less than 2.0, the pH of the polycarbonate solution is 6.8-6.9, and the Tg temperature change after multiple cycles is less than 2.1°C.
  • the weight-average molecular weight is greater than 26000 and belongs to the range of medium molecular weight to high molecular weight. In this range, it is difficult to obtain products with a molecular weight distribution index PDI of less than 2.2 and a Tg temperature change of less than 3.3°C after multiple cycles; and, generally speaking, no pH
  • the pH range of the adjusted polycarbonate solution is 6.3-7.3.
  • the present invention uses refined and programmed reaction parameter control to obtain polycarbonate with corresponding molecular weight range and molecular weight distribution; also adjusts the pH of the polycarbonate to 6.7-7.1 by adding hydroxide or acidic substances, and according to different The relationship between molecular weight, molecular weight distribution and pH controls the change of Tg temperature to less than 3.3°C for multiple cycles.
  • the polycarbonate resin meeting the above parameters may be a branched thermoplastic polymer or copolymer obtained by the reaction of a dihydroxy compound or a small amount of a polyhydroxy compound with phosgene or a carbonic acid diester.
  • the production method of the polycarbonate resin is not particularly limited, and the polycarbonate resin produced by the hitherto known phosgene method (interfacial polymerization method) or melting method (transesterification method) can be used.
  • bisphenol A 2,2-bis(4-hydroxyphenyl)propane
  • tetramethylbisphenol A bis(4-hydroxyphenyl) )-P-diisopropylbenzene
  • hydroquinone resorcinol
  • 4,4-dihydroxydiphenyl etc.
  • Compounds in which at least one tetraalkylphosphonium sulfonate is bonded to the aforementioned aromatic dihydroxy compound can also be used.
  • the polycarbonate resin is preferably an aromatic polycarbonate resin derived from 2,2-bis(4-hydroxyphenyl)propane, or from 2,2-bis(4-hydroxyphenyl)propane and other aromatics.
  • the polycarbonate resin may also be a copolymer in which the main composition is an aromatic polycarbonate resin, for example, a copolymer with a siloxane structure-containing polymer or oligomer.
  • a mixture of two or more of the aforementioned polycarbonate resins may be used.
  • Monovalent aromatic hydroxy compounds can be used to adjust the molecular weight of polycarbonate resins, such as m-cresol, p-cresol, m-propyl phenol, p-propyl phenol, p-tert-butyl phenol and p-(long-chain alkyl )-Substituted phenol.
  • the present invention has no particular limitation on the production method of the polycarbonate resin, and the polycarbonate resin produced by the phosgene method (interfacial polymerization method) or the melting method (transesterification method) can be used.
  • the parameters of the polycarbonate product that can be prepared through process adjustment meet the above-mentioned parameter ranges.
  • the molecular weight and molecular weight distribution index of polycarbonate are mainly controlled by controlling process conditions (such as feeding ratio, secondary feeding or multiple feeding, polymerization temperature, and polymerization time).
  • the method for testing the pH value of the polycarbonate solution is to dissolve the polycarbonate in a dichloromethane solvent, filter the solution, and perform acid-base titration of the organic phase to test the pH; the method of the molecular weight distribution index PDI is gel Permeation chromatography.
  • the specific method of gel permeation chromatography analysis is to select 2mg standard sample and the sample to be tested separately in 2ml of dichloromethane. After dissolution, filter with 0.45um pore size microporous membrane filter, and set the elution flow rate to 1.0 ml/min, column temperature and detection temperature is 30°C, after the baseline is stable, use the injection syringe to inject the standard solution and the sample to be tested successively, the injection volume is 100ul, wait for chromatographic elution, compare the data of the sample to be tested and the standard sample Then get the final PDI result.
  • the pH range of the polycarbonate solution is 6.3-7.3; the pH range of the solution is mainly affected by the hydroxide in the raw material, and the type of hydroxide and the content of the hydroxide are the most critical factors.
  • the selection and addition amount of hydroxide can be controlled, and a suitable pH range of the solution can also be obtained through post-treatment and external acid neutralization.
  • the acid may be an organic acid such as citric acid, sulfonic acid, etc., or an organic acid such as phosphoric acid, phosphorous acid, etc.
  • the molecular weight distribution index PDI of polycarbonate, the purity of the monomer during the polymerization process, the residual catalyst, the polymerization time, the polymerization temperature, and the method and process of purifying the essence will all have a decisive influence on the molecular weight and its molecular weight distribution.
  • the PDI of the polymer is greater than 1. The larger the PDI, the wider the distribution, and the smaller the PDI is close to 1, indicating the narrow distribution.
  • the Tg temperature changes after multiple cycles.
  • the glass transition refers to the reversible transition of the amorphous region in an amorphous polymer or semi-crystalline polymer from a hard, relatively brittle glass state to a viscous fluid state or a rubbery state during the heating process. Transition, the glass transition temperature is the temperature at which the glass transition occurs. Therefore, the uniformity of the polycarbonate can be verified by the Tg temperature change of multiple cycles.
  • the homogeneity of the polycarbonate resin means that the mobility of the macromolecular segments tends to be the same during the repeated heating process, and the Tg temperature change is small. In this case, the homogeneity of the polycarbonate resin is good. .
  • Tg temperature change test On the NETSZSCH DSC214 polyma instrument, in accordance with ASTM D3418-15, the starting temperature is set to 20°C and the temperature is kept for 30 minutes and then the heating program is performed. The heating rate is 10°C/min, and the temperature is immediately lowered after the temperature reaches 200°C. After going back and forth three times, a differential process is performed according to the thermal signal of the curve to obtain the initial Tg temperature and the third Tg temperature. The difference between the two temperatures is recorded as the Tg temperature change. Among them, the smaller the temperature change of Tg, the better the stability of the composition; conversely, the greater the temperature change of Tg, the worse the stability.
  • the flame retardant is selected from C1-C16 alkyl sulfonate flame retardant, carbonate flame retardant, phosphorus flame retardant, metal hydroxide flame retardant, borate flame retardant, fluorine- At least one of the silver ion complexes.
  • the C1-C16 alkyl sulfonate flame retardant is selected from potassium perfluorobutane sulfonate, potassium perfluorooctane sulfonate, tetraethyl ammonium perfluoroethane sulfonate, and potassium diphenyl sulfone sulfonate At least one of
  • the carbonate-based flame retardant is selected from at least one of sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, and barium carbonate;
  • the phosphorus flame retardant is selected from phosphine flame retardant, hypophosphite flame retardant, hypophosphite flame retardant, phosphonite flame retardant, phosphonite flame retardant, phosphite Flame retardant, phosphite flame retardant, phosphine oxide flame retardant, hypophosphite flame retardant, hypophosphite flame retardant, phosphonate flame retardant, phosphonate flame retardant, phosphate flame retardant , At least one of polyphosphate flame retardants;
  • the phosphine flame retardant may be phenoxy phosphazene; the phosphate flame retardant may be bisphenol A bis (diphenyl phosphate); and the polyphosphate flame retardant may be melamine polyphosphate.
  • the metal hydroxide flame retardant is selected from at least one of magnesium hydroxide and aluminum hydroxide; the borate flame retardant is selected from anhydrous zinc borate, 3.5 water zinc borate, and alkali metals of boric acid At least one of salt and alkaline earth metal salt of boric acid.
  • the flame retardant is selected from at least one of C1-C16 alkyl sulfonate flame retardants.
  • auxiliary agent is selected from at least one of lubricants, antioxidants, and ultraviolet absorbers.
  • the lubricant is selected from at least one of stearate lubricants, fatty acid lubricants, and stearate lubricants; the stearate lubricant is selected from calcium stearate, At least one of magnesium stearate and zinc stearate; the fatty acid lubricant is selected from at least one of fatty acid, fatty acid derivatives, and fatty acid esters; the stearate lubricant is selected It is selected from at least one of pentaerythritol stearate; preferably, the lubricant is selected from at least one of fatty acid lubricants and stearate lubricants.
  • the ultraviolet absorber is selected from at least one of benzotriazole ultraviolet absorbers, dibenzoic acid ultraviolet absorbers, and HALS compounds.
  • the antioxidant may be a hindered phenol antioxidant or a phosphite antioxidant.
  • Phosphite antioxidants such as antioxidant 168, antioxidant PEPQ, antioxidant PEP-36, antioxidant 9228, etc.
  • the preparation method of the above-mentioned flame-retardant polycarbonate composite material includes the following steps: weigh the polycarbonate, the flame retardant, and the auxiliary agent according to the proportion, and then add them to the twin-screw extruder for extrusion granulation (screw temperature The range is 200-280°C) to obtain a flame-retardant polycarbonate composite material.
  • the present invention has the following beneficial effects
  • the present invention found that by adjusting the weight average molecular weight of the polycarbonate, the molecular weight distribution index PDI, the pH of the polycarbonate solution, and the Tg temperature change for multiple cycles to meet a specific range, the addition of flame retardants can be overcome and the polycarbonate can be reduced.
  • the stability of carbonate (good flame retardant stability).
  • the method has lower cost, has less impact on the performance of the polycarbonate itself, and is more conducive to further other modifications.
  • the sources of the raw materials used in the present invention are as follows, but are not limited by the following raw materials.
  • the following polycarbonate synthesis monomers are bisphenol A and its derivatives
  • Polycarbonate A The weight average molecular weight is about 27500, the molecular weight distribution index PDI is 2.1, the pH of the polycarbonate solution is 7.0, and the Tg temperature change for multiple cycles is 3.0°C. It is prepared by the phosgene method, and the set weight is obtained by controlling the reaction parameters. Average molecular weight, PDI, and pH value controlled by acid-base adjustment to obtain multiple cycles of Tg temperature changes;
  • Polycarbonate B The weight average molecular weight is about 28000, the molecular weight distribution index PDI is 1.7, the pH of the polycarbonate solution is 6.9, and the Tg temperature of multiple cycles is changed to 2.0°C. It is prepared by the phosgene method, and the set weight is obtained by controlling the reaction parameters. Average molecular weight, PDI, and pH control through acid-base adjustment to obtain multiple cycles of Tg temperature changes;
  • Polycarbonate C The weight average molecular weight is about 25000, the molecular weight distribution index PDI is 1.5, the pH of the polycarbonate solution is 7.0, and the Tg temperature of multiple cycles is 3.1°C. It is prepared by the phosgene method, and the set weight is obtained by controlling the reaction parameters. Average molecular weight, PDI, and pH control through acid-base adjustment to obtain multiple cycles of Tg temperature changes;
  • Polycarbonate D The weight average molecular weight is about 27000, the molecular weight distribution index PDI is 2.5, the pH of the polycarbonate solution is 7.2, and the Tg temperature of multiple cycles is 3.2°C. It is prepared by the phosgene method, and the set weight is obtained by controlling the reaction parameters. Average molecular weight, PDI, and pH control through acid-base adjustment to obtain multiple cycles of Tg temperature changes;
  • Polycarbonate E The weight average molecular weight is about 28000, the molecular weight distribution index PDI is 2.6, the pH of the polycarbonate solution is 7.2, and the Tg temperature of multiple cycles is 4.0°C. It is prepared by the phosgene method, and the set weight is obtained by controlling the reaction parameters. Average molecular weight, PDI, and pH control through acid-base adjustment to obtain multiple cycles of Tg temperature changes;
  • Flame retardant B Bisphenol A bis (diphenyl phosphate);
  • Lubricant stearate lubricant, PETS;
  • Antioxidant Antioxidant 168, phosphite antioxidant
  • the preparation method of the flame-retardant polycarbonate composite materials of the Examples and Comparative Examples weigh the polycarbonate, flame retardant, and auxiliary agents according to the proportion, and then add them to the twin-screw extruder for extrusion granulation (screw temperature range Is 200-280°C) to obtain a flame-retardant polycarbonate composite material.
  • Flame-retardant stability Put the composition into an aging box set at 85°C and 85% humidity for accelerated aging for 500h, and then test the flame-retardant performance according to UL-94 standard, 1.5mm; flame-retardant stability The better, the better the stability of the alloy.
  • Table 1 The distribution ratio of each group and the performance test results of the flame-retardant polycarbonate composite material of the embodiment
  • Table 2 The distribution ratio of each group and the performance test results of the flame-retardant polycarbonate composite material of the comparative example
  • Example 1 It can be seen from Example 1 and Example 4 that the preferred polycarbonate B has better flame-retardant stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种阻燃聚碳酸酯复合材料,按重量份计,包括以下组分:聚碳酸酯60‑100份;阻燃剂1‑25份;所述的聚碳酸酯的重均分子量大于26000、分子量分布指数PDI小于2.2,聚碳酸酯溶液pH为6.7‑7.1,多次循环Tg温度变化小于3.3℃。当聚碳酸酯在上述参数范围内时,阻燃剂对聚碳酸酯的稳定性影响较小。

Description

一种阻燃聚碳酸酯复合材料及其制备方法 技术领域
本发明涉及高分子材料技术领域,特别是涉及一种阻燃聚碳酸酯复合材料及其制备方法。
背景技术
目前,聚碳酸酯(PC)被广泛用于生产各种工业、民用制件(如各种透明制件、灯罩、仪表盘等)。为了扩大聚碳酸酯的应用范围,需要进行阻燃改性。但是,由于聚碳酸酯的稳定状态是弱酸性,而阻燃剂的加入会改变整体pH值而影响聚碳酸酯的稳定性,特别是阻燃剂中含有的碱性金属元素(如二氧化锑)、溴系阻燃剂中的游离溴素,会导致弱酸性的聚碳酸酯在熔融加工过程中分解,从而降低其性能,甚至达不到应用的标准。
一般的,提升阻燃聚碳酸酯的热稳定性的方法是添加一种物质,如中国专利申请2018107637061公开了一种聚碳酸酯组合物,其中加入了硅氧烷,提升了阻燃聚碳酸酯组合物的热稳定性。或者,为了保证阻燃聚碳酸酯的稳定性,只能添加一些中性温和的阻燃剂,导致添加量较大、对于材料的其他性能带来较大的影响。
通过控制聚碳酸酯的合成以得到特定参数范围的聚碳酸酯,来提高聚碳酸酯加入阻燃剂后的稳定性的方法至今没有报道。
发明内容
本发明的目的在于,提供一种阻燃聚碳酸酯复合材料,其具有热稳定性好的优点。
本发明的另一目的在于,提供上述阻燃聚碳酸酯复合材料的制备方法。
本发明是通过以下技术方案实现的:
一种阻燃聚碳酸酯复合材料,按重量份计,包括以下组分:
聚碳酸酯              60-100份;
阻燃剂                1-25份;
所述的聚碳酸酯的重均分子量大于26000、分子量分布指数PDI小于2.2,聚碳酸酯溶液pH为6.7-7.1,多次循环Tg温度变化小于3.3℃。
优选的,所述的聚碳酸酯的重均分子量大于26000、分子量分布指数PDI小于2.0,聚碳酸酯溶液pH为6.8-6.9,多次循环Tg温度变化小于2.1℃。
一般情况下重均分子量大于26000属于中等分子量至高分子量范围,在这个 范围内比较难得到分子量分布指数PDI小于2.2、多次循环Tg温度变化小于3.3℃的产品;并且,一般来说,不进行pH调节的聚碳酸酯溶液pH范围的是6.3-7.3。本发明通过精细化、程序化的反应参数控制,以得到相应分子量范围、分子量分布的聚碳酸酯;也通过加入氢氧化物或者酸性物质将聚碳酸酯的pH调节至6.7-7.1,并且根据不同分子量、分子量分布与pH之间的联系,控制多次循环Tg温度变化小于3.3℃。
符合上述参数特征的聚碳酸酯树脂可为由二羟基化合物或其和少量的多羟基化合物与光气(phosgene)或碳酸二酯的反应获得的支化热塑性聚合物或共聚物。不特别限制聚碳酸酯树脂的生产方法,并且可使用由迄今为止已知的光气法(界面聚合法)或熔融法(酯交换法)生产的聚碳酸酯树脂。优选芳族二羟基化合物为原料二羟基化合物,且可示例为2,2-双(4-羟苯基)丙烷(=双酚A)、四甲基双酚A、双(4-羟苯基)-对-二异丙基苯、对苯二酚、间苯二酚、4,4-二羟基二苯等,其中优选双酚A。还可使用其中至少一个四烷基磺酸膦(tetraalkylphosphonium sulfonate)结合至前述芳族二羟基化合物的化合物。前述中,聚碳酸酯树脂优选源于2,2-双(4-羟苯基)丙烷的芳族聚碳酸酯树脂,或源于2,2-双(4-羟苯基)丙烷和其它芳族二羟基化合物的芳族聚碳酸酯共聚物。聚碳酸酯树脂还可为其中主要组成为芳族聚碳酸酯树脂的共聚物,例如,与含硅氧烷结构的聚合物或低聚物的共聚物。此外,可使用两种或更多种的上述聚碳酸酯树脂的混合物。一元芳族羟基化合物可用于调整聚碳酸酯树脂的分子量,例如,间甲基苯酚、对甲基苯酚、间丙基苯酚、对丙基苯酚、对叔丁基苯酚和对-(长链烷基)-取代酚。
本发明对聚碳酸酯树脂的生产方法没有特别限制,且可使用由光气法(界面聚合法)或熔融法(酯交换法)生产的聚碳酸酯树脂。可以通过工艺调节制备得到的聚碳酸酯产品的参数符合上述参数的范围。
聚碳酸酯的分子量和分子量分布指数主要是通过控制工艺条件(如投料比、二次投料或多次投料、聚合温度、聚合时间来控制)。
所述的聚碳酸酯溶液pH值的测试方法为将聚碳酸酯溶解于二氯甲烷溶剂中,将溶液过滤后,进行有机相的酸碱滴定进行测试pH;分子量分布指数PDI的方法为凝胶渗透色谱分析法。
凝胶渗透色谱分析法具体是分别选取2mg标样以及待测样品溶解在2ml的二氯甲烷中,溶解后用0.45um孔径的微孔滤膜的过滤器进行过滤,设定淋洗流速为1.0ml/min,柱温和检测温度为30℃,待基线稳定后用进样针筒先后将标液以及待测进样,进样量为100ul,等色谱淋洗,待测样品与标样对比数据后得到最终的PDI结果。
一般来说,聚碳酸酯溶液pH范围的是6.3-7.3;其中影响溶液的pH值范围主要是原材料中氢氧化物,其中氢氧化物的种类以及氢氧化物的含量为最关键因素,可以通过氢氧化物的选择和添加量进行控制,也可以通过后处理以及外加酸中和得到合适的溶液的pH值范围。酸可以是有机酸如柠檬酸,磺酸等,也可以是有机酸如磷酸,亚磷酸等。
聚碳酸酯的分子量分布指数PDI,聚合过程中单体的纯度,催化剂残留,聚合时间,聚合温度以及提纯精华方式和过程都会对分子量及其分子量的分布具有决定性影响,在相同的分子量水平上,分布指数PDI=1说明是分子量均一的状态,一般来说聚合物的PDI均大于1,PDI越大说明分布宽,PDI约小约接近1,说明分布窄。
多次循环Tg温度变化,玻璃化转变是指无定型聚合物或半结晶聚合物中的无定型区域在升温过程中从硬的、相对脆的玻璃态到粘流态或橡胶态的一种可逆转变,玻璃化转变温度即发生玻璃化转变时的温度。因此可以通过多次循环的Tg温度变化来验证聚碳酸酯的均一性。其中,聚碳酸酯树脂的均一性是指在反复多次升温的过程中,大分子链段的活动能力趋于一致,则Tg温度变化小,这种情况下说明该聚碳酸酯树脂均一性好。
Tg温度变化测试:在耐驰NETSZSCH DSC214 polyma仪器上,按照ASTM D3418-15标准,开始温度设置为20℃恒温30min后进行升温程序,升温速率为10℃/min,升温至200℃后立刻降温程序,从此往返3次后,根据曲线的热信号进行一次微分处理,得到初始的Tg温度以及第三次Tg温度,两个温度差记录为Tg温度变化。其中,Tg温度变化越小,组合物稳定性好;反之,Tg温度变化越大,稳定性越不好。
所述的阻燃剂选自C1-C16烷基磺酸盐阻燃剂、碳酸盐类阻燃剂、磷系阻燃剂、金属氢氧化物阻燃剂、硼酸盐阻燃剂、氟-银离子复合物中的至少一种。
所述的C1-C16烷基磺酸盐阻燃剂选自全氟丁基磺酸钾、全氟辛烷磺酸钾、全氟乙烷磺酸四乙基铵、二苯砜磺酸钾中的至少一种;
所述的碳酸盐类阻燃剂选自碳酸钠、碳酸钾、碳酸镁、碳酸钙、碳酸钡中的至少一种;
所述的磷系阻燃剂选自膦阻燃剂、次亚磷酸酯阻燃剂、次亚磷酸盐阻燃剂、亚膦酸酯阻燃剂、亚膦酸盐阻燃剂、亚磷酸酯阻燃剂、亚磷酸盐阻燃剂、氧化膦阻燃剂、次磷酸酯阻燃剂、次磷酸盐阻燃剂、膦酸酯阻燃剂、膦酸盐阻燃剂、磷酸酯阻燃剂、聚磷酸盐阻燃剂中的至少一种;
其中,所述的膦阻燃剂可以是苯氧基磷腈;磷酸酯阻燃剂可以是双酚A双 (磷酸二苯酯);聚磷酸盐阻燃剂可以是三聚氰胺聚磷酸盐。
所述的金属氢氧化物阻燃剂选自氢氧化镁、氢氧化铝中的至少一种;所述的硼酸盐阻燃剂选自无水硼酸锌、3.5水硼酸锌、硼酸的碱金属盐、硼酸的碱土金属盐中的至少一种。
所述的阻燃剂选自C1-C16烷基磺酸盐阻燃剂中的至少一种。
按重量份计,还包括0.1-5份的助剂;所述的助剂选自润滑剂、抗氧剂、紫外吸收剂中的至少一种。
所述的润滑剂选自硬脂酸盐类润滑剂、脂肪酸类润滑剂、硬脂酸酯类润滑剂中的至少一种;所述的硬脂酸盐类润滑剂选自硬脂酸钙、硬脂酸镁、硬脂酸锌中的至少一种;所述的脂肪酸类润滑剂选自脂肪酸、脂肪酸衍生物、脂肪酸酯中的至少一种;所述的硬脂酸酯类润滑剂选自季戊四醇硬脂酸酯中的至少一种;优选的,所述的润滑剂选自脂肪酸类润滑剂、硬脂酸酯类润滑剂中的至少一种。
所述的紫外吸收剂选自苯并三挫类紫外吸收剂、二苯甲酸类紫外吸收剂、HALS类化合物中的至少一种。
抗氧剂可以是受阻酚类抗氧剂、亚磷酸酯抗氧剂。
亚磷酸酯抗氧剂,如抗氧剂168,抗氧剂PEPQ,抗氧剂PEP-36,抗氧剂9228等。
上述的阻燃聚碳酸酯复合材料的制备方法,包括以下步骤:按照配比称量聚碳酸酯、阻燃剂、助剂混合均匀,后加入双螺杆挤出机中挤出造粒(螺杆温度范围是200-280℃),得到阻燃聚碳酸酯复合材料。
与现有技术相比,本发明具有如下有益效果
本发明发现,通过调整聚碳酸酯的重均分子量、分子量分布指数PDI、聚碳酸酯溶液pH为、多次循环Tg温度变化,使其符合特定范围时,能够克服阻燃剂的加入而降低聚碳酸酯的稳定性(阻燃稳定性好)。相比于通过加入其他物质来获得稳定的阻燃聚碳酸酯复合材料,本方法成本更低,对于聚碳酸酯本身的性能影响更小,更有利于进一步的其他改性。
具体实施方式
本发明通过以下实施例来进一步说明本发明,但是本发明不受以下实施例限制。
本发明所用原料来源如下,但是不受以下原料限制。
下列聚碳酸酯的合成单体为双酚A及其衍生物
聚碳酸酯A:重均分子量约27500、分子量分布指数PDI为2.1,聚碳酸酯溶液pH为7.0,多次循环Tg温度变化为3.0℃,光气法制备,通过控制反应参 数得到设定的重均分子量、PDI,再通过酸碱调节控制pH值以得到多次循环Tg温度变化;
聚碳酸酯B:重均分子量约28000、分子量分布指数PDI为1.7,聚碳酸酯溶液pH为6.9,多次循环Tg温度变化为2.0℃,光气法制备,通过控制反应参数得到设定的重均分子量、PDI,再通过酸碱调节控制pH以得到多次循环Tg温度变化;
聚碳酸酯C:重均分子量约25000、分子量分布指数PDI为1.5,聚碳酸酯溶液pH为7.0,多次循环Tg温度变化为3.1℃,光气法制备,通过控制反应参数得到设定的重均分子量、PDI,再通过酸碱调节控制pH以得到多次循环Tg温度变化;
聚碳酸酯D:重均分子量约27000、分子量分布指数PDI为2.5,聚碳酸酯溶液pH为7.2,多次循环Tg温度变化为3.2℃,光气法制备,通过控制反应参数得到设定的重均分子量、PDI,再通过酸碱调节控制pH以得到多次循环Tg温度变化;
聚碳酸酯E:重均分子量约28000、分子量分布指数PDI为2.6,聚碳酸酯溶液pH为7.2,多次循环Tg温度变化为4.0℃,光气法制备,通过控制反应参数得到设定的重均分子量、PDI,再通过酸碱调节控制pH以得到多次循环Tg温度变化;
阻燃剂A:苯氧基磷腈;
阻燃剂B:双酚A双(磷酸二苯酯);
润滑剂:硬脂酸酯类润滑剂,PETS;
抗氧剂:抗氧剂168,亚磷酸酯抗氧剂;
实施例和对比例阻燃聚碳酸酯复合材料的制备方法:按照配比称量聚碳酸酯、阻燃剂、助剂混合均匀,后加入双螺杆挤出机中挤出造粒(螺杆温度范围是200-280℃),得到阻燃聚碳酸酯复合材料。
各项性能测试方法:
(1)阻燃等级:按照UL-94标准,1.5mm。
(2)阻燃稳定性:将组合物放入温度设定为85℃湿度为85%的老化箱中进行加速老化500h,再按照UL-94标准,1.5mm测试阻燃性能;阻燃稳定性越好,说明合金的稳定性越好。
(3)长期性能稳定性:按照UL 746B的f1标准。
表1:实施例阻燃聚碳酸酯复合材料的各组分配比及各项性能测试结果
Figure PCTCN2020109976-appb-000001
表2:对比例阻燃聚碳酸酯复合材料的各组分配比及各项性能测试结果
Figure PCTCN2020109976-appb-000002
NG表示测试不通过。
从实施例1和实施例4可以看出,优选的聚碳酸酯B其阻燃稳定性更好。
从对比例1-3可以看出,不选用本发明范围内的聚碳酸酯,加入阻燃剂后稳定性差,体现在阻燃性能、阻燃稳定性、长期性能稳定性都很差。

Claims (8)

  1. 一种阻燃聚碳酸酯复合材料,其特征在于,按重量份计,包括以下组分:
    聚碳酸酯              60-100份;
    阻燃剂                1-25份;
    所述的聚碳酸酯的重均分子量大于26000、分子量分布指数PDI小于2.2,聚碳酸酯溶液pH为6.7-7.1,多次循环Tg温度变化小于3.3℃。
  2. 根据权利要求1所述的阻燃聚碳酸酯复合材料,其特征在于,所述的聚碳酸酯的重均分子量大于26000、分子量分布指数PDI小于2.0,聚碳酸酯溶液pH为6.8-6.9,多次循环Tg温度变化小于2.1℃。
  3. 根据权利要求1或2所述的阻燃聚碳酸酯复合材料,其特征在于,所述的聚碳酸酯溶液pH值的测试方法为将聚碳酸酯溶解于二氯甲烷溶剂中,将溶液过滤后,进行有机相的酸碱滴定进行测试pH;分子量分布指数PDI的方法为凝胶渗透色谱分析法。
  4. 根据权利要求1或2所述的阻燃聚碳酸酯复合材料,其特征在于,所述的阻燃剂选自C1-C16烷基磺酸盐阻燃剂、碳酸盐类阻燃剂、磷系阻燃剂、金属氢氧化物阻燃剂、硼酸盐阻燃剂、氟-银离子复合物中的至少一种。
  5. 根据权利要求4所述的阻燃聚碳酸酯复合材料,其特征在于,所述的C1-C16烷基磺酸盐阻燃剂选自全氟丁基磺酸钾、全氟辛烷磺酸钾、全氟乙烷磺酸四乙基铵、二苯砜磺酸钾中的至少一种;所述的碳酸盐类阻燃剂选自碳酸钠、碳酸钾、碳酸镁、碳酸钙、碳酸钡中的至少一种;所述的磷系阻燃剂选自膦阻燃剂、次亚磷酸酯阻燃剂、次亚磷酸盐阻燃剂、亚膦酸酯阻燃剂、亚膦酸盐阻燃剂、亚磷酸酯阻燃剂、亚磷酸盐阻燃剂、氧化膦阻燃剂、次磷酸酯阻燃剂、次磷酸盐阻燃剂、膦酸酯阻燃剂、膦酸盐阻燃剂、磷酸酯阻燃剂、聚磷酸盐阻燃剂中的至少一种;所述的金属氢氧化物阻燃剂选自氢氧化镁、氢氧化铝中的至少一种;所述的硼酸盐阻燃剂选自无水硼酸锌、3.5水硼酸锌、硼酸的碱金属盐、硼酸的碱土金属盐中的至少一种。
  6. 根据权利要求4所述的阻燃聚碳酸酯复合材料,其特征在于,所述的阻燃剂选自C1-C16烷基磺酸盐阻燃剂中的至少一种。
  7. 根据权利要求1或2所述的阻燃聚碳酸酯复合材料,其特征在于,按重量份计,还包括0.1-5份的助剂;所述的助剂选自润滑剂、抗氧剂、紫外吸收剂中的至少一种。
  8. 权利要求7所述的阻燃聚碳酸酯复合材料的制备方法,其特征在于,包括以下步骤:按照配比称量聚碳酸酯、阻燃剂、助剂混合均匀,后加入双螺杆挤出机中挤出造粒(螺杆温度范围是200-280℃),得到阻燃聚碳酸酯复合材料。
PCT/CN2020/109976 2019-09-18 2020-08-19 一种阻燃聚碳酸酯复合材料及其制备方法 WO2021052089A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910882520.2A CN110746756B (zh) 2019-09-18 2019-09-18 一种阻燃聚碳酸酯复合材料及其制备方法
CN201910882520.2 2019-09-18

Publications (1)

Publication Number Publication Date
WO2021052089A1 true WO2021052089A1 (zh) 2021-03-25

Family

ID=69276687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109976 WO2021052089A1 (zh) 2019-09-18 2020-08-19 一种阻燃聚碳酸酯复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110746756B (zh)
WO (1) WO2021052089A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031801A1 (en) 2021-09-01 2023-03-09 Novartis Ag Bifunctional degraders comprising a tead binder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746756B (zh) * 2019-09-18 2021-08-20 金发科技股份有限公司 一种阻燃聚碳酸酯复合材料及其制备方法
CN111875943A (zh) * 2020-08-07 2020-11-03 宁波耀众模塑科技有限公司 一种聚氨酯发泡产品阻用燃剂用含碳高分子材料混合物
CN113637309B (zh) * 2021-08-17 2022-08-19 金发科技股份有限公司 一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069286A (ja) * 2000-09-01 2002-03-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物
JP2007246810A (ja) * 2006-03-17 2007-09-27 Nippon A & L Kk 光学用樹脂成形品およびそれからなる導光板、拡散板
CN101889041A (zh) * 2007-10-18 2010-11-17 沙伯基础创新塑料知识产权有限公司 基于异山梨醇的聚碳酸酯、其制备方法和由其形成的制品
US20150315725A1 (en) * 2013-01-18 2015-11-05 Kuraray Co., Ltd. Flame-retardant fiber, method for producing same, fabric using flame-retardant fiber, and resin composite material using flame-retardant fiber
CN105504745A (zh) * 2015-12-25 2016-04-20 金发科技股份有限公司 一种聚碳酸酯复合材料
CN107793722A (zh) * 2016-11-22 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN107849229A (zh) * 2015-07-09 2018-03-27 沙特基础工业全球技术有限公司 具有改善的阻燃性的聚碳酸酯组合物
CN109825056A (zh) * 2019-01-21 2019-05-31 金发科技股份有限公司 一种聚碳酸酯合金及其制备方法
CN110746756A (zh) * 2019-09-18 2020-02-04 金发科技股份有限公司 一种阻燃聚碳酸酯复合材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069286A (ja) * 2000-09-01 2002-03-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物
JP2007246810A (ja) * 2006-03-17 2007-09-27 Nippon A & L Kk 光学用樹脂成形品およびそれからなる導光板、拡散板
CN101889041A (zh) * 2007-10-18 2010-11-17 沙伯基础创新塑料知识产权有限公司 基于异山梨醇的聚碳酸酯、其制备方法和由其形成的制品
US20150315725A1 (en) * 2013-01-18 2015-11-05 Kuraray Co., Ltd. Flame-retardant fiber, method for producing same, fabric using flame-retardant fiber, and resin composite material using flame-retardant fiber
CN107849229A (zh) * 2015-07-09 2018-03-27 沙特基础工业全球技术有限公司 具有改善的阻燃性的聚碳酸酯组合物
CN105504745A (zh) * 2015-12-25 2016-04-20 金发科技股份有限公司 一种聚碳酸酯复合材料
CN107793722A (zh) * 2016-11-22 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN109825056A (zh) * 2019-01-21 2019-05-31 金发科技股份有限公司 一种聚碳酸酯合金及其制备方法
CN110746756A (zh) * 2019-09-18 2020-02-04 金发科技股份有限公司 一种阻燃聚碳酸酯复合材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031801A1 (en) 2021-09-01 2023-03-09 Novartis Ag Bifunctional degraders comprising a tead binder

Also Published As

Publication number Publication date
CN110746756A (zh) 2020-02-04
CN110746756B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2021052089A1 (zh) 一种阻燃聚碳酸酯复合材料及其制备方法
CN106883575B (zh) 聚碳酸酯树脂组合物和成型品
JP5978555B2 (ja) ポリカーボネート樹脂組成物及びその成形品
WO2020151553A1 (zh) 一种聚碳酸酯合金及其制备方法
WO2016197915A1 (zh) 一种聚碳酸酯组合物及其制备方法
CN110643165A (zh) 高性能抗紫外环保阻燃pc/abs复合材料及制备方法
JP5655657B2 (ja) Led信号用部材
JP2013049847A (ja) 自動車内装品
JP6188272B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP2016156031A (ja) ポリカーボネート樹脂組成物及び成形品
CN114031915A (zh) 一种稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用
CN110628197B (zh) 一种薄壁阻燃聚碳酸酯/聚对苯二甲酸乙二醇酯合金及其制备方法
CN112724630A (zh) 一种红外线透过的阻燃聚碳酸酯组合物及其制备方法和应用
US20220073736A1 (en) Polycarbonate composition, preparation method and application thereof
KR20120100523A (ko) 내스크래치성 및 투명성이 우수한 열가소성 난연 수지 조성물
EP2763848B1 (de) Prozess zur herstellung metallisierter mehrschichtkörper aus speziellen polycarbonaten
WO2013050542A2 (de) Polycarbonatzusammensetzungen mit guter metallisierbarkeit
JP2003096289A (ja) 熱可塑性樹脂組成物
JP6698273B2 (ja) ポリカーボネート樹脂組成物および成形品
JP5978554B2 (ja) ポリカーボネート樹脂組成物及び成形品
CN113801453B (zh) 一种无卤阻燃透明pc材料及其制品
CN117551342A (zh) 一种聚碳酸酯材料及其制备方法和应用
JP6044058B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP2013084584A (ja) Led照明用部材
JP2012207183A (ja) ポリカーボネート樹脂組成物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864769

Country of ref document: EP

Kind code of ref document: A1