WO2021051727A1 - 激光雷达及具有激光雷达的设备 - Google Patents

激光雷达及具有激光雷达的设备 Download PDF

Info

Publication number
WO2021051727A1
WO2021051727A1 PCT/CN2020/070547 CN2020070547W WO2021051727A1 WO 2021051727 A1 WO2021051727 A1 WO 2021051727A1 CN 2020070547 W CN2020070547 W CN 2020070547W WO 2021051727 A1 WO2021051727 A1 WO 2021051727A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
laser
sub
wall
emission
Prior art date
Application number
PCT/CN2020/070547
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN202080005557.8A priority Critical patent/CN112840231B/zh
Priority to PCT/CN2020/070547 priority patent/WO2021051727A1/zh
Priority to PCT/CN2020/117217 priority patent/WO2021057809A1/zh
Priority to CN202080004982.5A priority patent/CN112955786A/zh
Publication of WO2021051727A1 publication Critical patent/WO2021051727A1/zh
Priority to US17/704,088 priority patent/US20220390603A1/en
Priority to US17/857,960 priority patent/US11867837B2/en
Priority to US18/528,696 priority patent/US20240118390A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • This application relates to the technical field of laser detection, in particular to a laser radar and a device with a laser radar.
  • lidar systems that emit laser beams to detect the position and speed of target objects have emerged, and lidar systems have been widely used in various fields, such as ranging, low Flying target tracking and measurement, weapon guidance, atmospheric monitoring, surveying and mapping, early warning, traffic management and other fields, especially in the field of autonomous driving, lidar systems are often used to achieve field-of-view detection and imaging of the surrounding environment of vehicles to enable autonomous driving The vehicle can plan the correct driving route based on the information detected by the lidar system.
  • the flash lidar system is widely used in autonomous vehicles because of its simple structure, low system load, and long optical and mechanical life, so as to realize the detection of the near field around the vehicle.
  • the basic working principle of the Flash lidar system is that the transmitting end illuminates the entire field of view area to be detected by the "flooding" method at the transmitting end, and the receiving end uses the corresponding detector to receive all the echoes in the field of view area. Laser, so as to obtain the detection information in the field of view area by analyzing the echo laser.
  • the above-mentioned Flash lidar system has a limited field of view angle range of the emitted laser light, which causes the detection blind area of the above-mentioned Flash lidar system to be large, and reduces the obstacle avoidance ability of the vehicle applying the above-mentioned Flash lidar system.
  • the existing Flash lidar system has insufficient detection range. Increasing the detection range requires a significant increase in the transmission power, and the system's power consumption, thermal effects, and device costs will all soar.
  • the embodiments of the present application provide a laser radar and a device having the laser radar, which can reduce detection blind areas and effectively improve the utilization rate of the emitted laser energy.
  • a lidar including:
  • the shell defines a transmitting chamber and a receiving chamber
  • the laser emitting device is arranged in the emitting chamber and is used to emit a laser beam to the first target area;
  • a plurality of laser receiving devices are arranged in the receiving chamber, the plurality of laser receiving devices can receive the laser beam reflected in the second target area, the first target area and the second target area at least partially overlap;
  • the second target area is composed of multiple sub-detection areas, each sub-detection area is smaller than the first target area and at least partially overlaps the first target area, and each laser receiving device receives the reflections in each sub-detection area in a one-to-one correspondence. Laser beam.
  • a plurality of laser emitting devices are arranged in the emitting cavity, the first target area is composed of a combination of a plurality of sub emitting areas, and each laser emitting device emits a laser beam into each sub emitting area in a one-to-one correspondence.
  • the number of laser emitting devices is the same as the number of laser receiving devices, and each laser receiving device receives the laser beams emitted by each laser emitting device to the first target area and reflected back in a one-to-one correspondence.
  • the number of laser emitting devices is two, namely a first emitting device and a second emitting device.
  • the first emitting device emits a laser beam toward the first sub-emission area
  • the second emitting device emits a laser beam toward the second sub-emission area.
  • the laser beam is emitted in the area, and the first target area is formed by combining the first sub-emission area and the second sub-emission area;
  • the first receiving device and the second receiving device are used for receiving the laser beam reflected from the first target area.
  • the first receiving device is configured to receive light in the first sub-detection area, and the first sub-detection area is located in the first sub-emission area;
  • the second receiving device is used for receiving light in the second sub-detection area, and the second sub-detection area is located in the second sub-emission area.
  • the first sub-emission area and the second sub-emission area have overlapping portions
  • the lidar also includes a regulating device configured to control the opening and closing of the first emitting device and the second emitting device, so that the first receiving device receives the laser beam emitted by the first emitting device into the first sub-detection area, and the second The second receiving device receives the laser beam emitted by the second emitting device into the second sub-detection area.
  • the housing includes:
  • the outer shell defines an internal cavity, and the outer shell includes a first light-transmitting plate and two second light-transmitting plates;
  • the inner shell is arranged in the inner chamber, the inner shell is connected with the inner wall surface of the outer shell, and the inner shell divides the inner chamber into a transmitting chamber and a receiving chamber;
  • the first light-transmitting plate faces the transmitting chamber, and the laser beams emitted by the first transmitting device and the second transmitting device pass through the first light-transmitting plate and are emitted to the outside of the lidar; both of the second light-transmitting plates face the receiving A cavity, and the first receiving device receives the laser beam passing through one of the second light-transmitting plates, and the second receiving device receives the laser beam passing through the other second light-transmitting plate.
  • the outer housing includes:
  • the peripheral wall plate is located between the two end plates and defines an internal chamber together with the two end plates.
  • the peripheral wall plate includes a transmitting wall, a first receiving wall, and a second receiving wall.
  • the wall and the second receiving wall are respectively located at two ends of the transmitting wall, the first light transmitting plate is arranged on the transmitting wall, and the two second light transmitting plates are arranged on the first receiving wall and the second receiving wall in a one-to-one correspondence;
  • the inner shell is respectively connected to the two end plates and the emission wall, and defines the emission chamber together with the emission wall and the two end plates.
  • the transmitting wall, the first receiving wall, and the second receiving wall are all in the shape of a flat plate, the first receiving wall and the transmitting wall are at a first angle, and the second receiving wall and the transmitting wall are at a second angle.
  • the first included angle is equal to the second included angle, and both are obtuse angles less than one hundred and eighty degrees.
  • the inner housing includes a first plate body and a second plate body.
  • the first plate body and the second plate body are respectively connected to the emission wall and the two end plates, between the first plate body and the second plate body.
  • the surface of the first plate body facing the launching chamber is provided with a first launching device
  • the surface of the second plate body facing the launching chamber is provided with a second launching device.
  • the first receiving device has a first optical path axis
  • the first optical path axis is perpendicular to the second light-transmitting plate intersecting it
  • the second receiving device has a second optical path axis
  • the The second optical path axis is perpendicular to the second light-transmitting plate intersecting it
  • the angle between the first optical path axis and the second optical path axis is greater than forty-five degrees.
  • the first receiving device has a first cone-shaped detection field
  • the first cone-shaped detection field has a first limit edge line close to the transmitting wall
  • the second receiving device has a second cone-shaped detection field.
  • the detection field has a second limit edge line close to the emission wall, the first limit edge line crosses the second limit edge line, and the intersection is located on the side of the emission wall facing the detection object.
  • the second aspect of the embodiments of the present application also provides a device, including:
  • the present application provides a laser radar.
  • the laser radar has a laser emitting device and a laser receiving device independently arranged, and the number of laser receiving devices is at least two. Compared with the structure of the prior art with only one laser receiving device, Adding multiple laser receiving devices can expand the receiving field of view and increase the detection angle of view, thereby reducing the detection blind zone of the lidar.
  • Fig. 1 is a three-dimensional schematic diagram of a lidar in an implementation of this application
  • FIG. 2 is a three-dimensional schematic diagram of a combination of a lidar housing, a laser emitting device, and a laser receiving device in an embodiment of the application;
  • FIG. 3 is a schematic diagram of the first explosion of the lidar in an embodiment of the application.
  • Fig. 4 is a first full cross-sectional schematic diagram of a lidar in an embodiment of the application.
  • FIG. 5 is a schematic diagram of a second explosion of the lidar in an embodiment of the application.
  • Fig. 6 is an exploded schematic diagram of a lidar housing in an embodiment of the application.
  • FIG. 7 is a three-dimensional schematic diagram of a part of the housing of the lidar and the laser emitting device in an embodiment of the application;
  • FIG. 8 is a second full-sectional schematic diagram of the lidar in an embodiment of the application.
  • FIG. 9 is a third full-sectional schematic diagram of the lidar in an embodiment of the application.
  • FIG. 10 is a schematic diagram of a curve of light intensity varying with position in the emission field of view of a laser emitting device in the prior art
  • FIG. 11 is a schematic diagram of a curve of light intensity varying with position in the emitting field of view of a laser emitting device in an embodiment of the application;
  • curve 1 is a schematic curve of the laser receiving device in the prior art
  • curve 2 is an embodiment of the application Schematic curve in
  • FIG. 13 is a schematic diagram of the range of the receiving field of the laser receiving device, where the field of view E is a schematic view of the field of view in the prior art, and the field of view F is a schematic view of the field of view in an embodiment of the application;
  • FIG. 14 is a schematic diagram of a device in an embodiment of this application.
  • Fig. 15 is a schematic diagram of a device in another embodiment of the application.
  • the lidar provided in this application can be applied to any equipment that requires laser detection, such as automobiles.
  • Lidar can detect parameters such as the distance and speed of the car relative to obstacles.
  • Vehicles use the Lidar system to detect nearby moving or approaching obstacles, such as taller vehicles, roadside still life, sudden approaching flying objects, etc. , So that the vehicle can plan a path that can avoid the obstacle based on the detected information, so that the vehicle can avoid collision with the obstacle.
  • the vehicle may be an auto-driving vehicle or a normal vehicle, which is not limited in this application.
  • the method for vehicles to recognize obstacles in the surrounding environment by using the lidar system has been widely used, especially the flash lidar system is widely used in the near-field detection of vehicles.
  • the output power and field of view angle of the light source of the traditional flash lidar system are fixed, which will cause a large blind area in front or on both sides of the vehicle to which the lidar system is applied, thereby reducing the vehicle’s Obstacle avoidance ability. Therefore, in view of the above-mentioned problems, this application proposes a laser radar and a device with the laser radar, which aims to solve the above-mentioned problems.
  • this embodiment provides a laser radar 10, which can increase the detection angle of view, thereby reducing the detection blind area.
  • the laser radar 10 may include a housing 100, a laser emitting device, and multiple (two or more) laser receiving devices.
  • the housing 100 defines an internal chamber 200.
  • the internal chamber 200 can be divided into a transmitting chamber 210 and a receiving chamber 220.
  • the laser emitting device is disposed in the transmitting chamber 210, and each laser receiving device is disposed in the receiving chamber 220.
  • the internal chamber 200 may only be composed of the transmitting chamber 210 and the internal chamber 200, and the internal chamber 200 may also include other spaces in addition to the transmitting chamber 210 and the receiving chamber 220. For example, a part of the space in the internal cavity can be separated to place components such as lidar circuit boards.
  • the circuit board has precision components such as control chips, and the temperature of the laser emitting device is generally high, and the above-mentioned precision components have a greater influence on the temperature, in order to protect the above-mentioned precision components, heat insulation materials can be used separately in the internal cavity
  • the adiabatic cavity is isolated, so that the above-mentioned precision devices are arranged in the adiabatic cavity so as to achieve a good protection effect.
  • the internal chamber 200 is composed of a transmitting chamber 210 and a receiving chamber 220.
  • the transmitting chamber 210 and the receiving chamber 220 are divided only by the functions of the two. It should be noted that the transmitting chamber 210 and the receiving chamber 220 can be connected to each other, and only virtual division is performed.
  • the transmitting chamber 210 is in communication with the receiving chamber 220, the laser beam generated by the laser emitting device is easily scattered on the side wall of the internal chamber 200 or reflected on the optical device. When the scattered or reflected laser beam enters the receiving device When inside, it will cause interference and affect the detection accuracy of the lidar 10. Therefore, in a preferred embodiment, the transmitting chamber 210 and the receiving chamber 220 can also be separated by an isolation member, so that the transmitting chamber 210 and the receiving chamber 220 are relatively independent parts.
  • the transmitting chamber 210 and the receiving chamber 220 are two relatively independent parts.
  • the housing 100 of the lidar 10 may include an outer housing 110 and an inner housing 120.
  • the outer housing 110 defines the aforementioned internal cavity 200, and the inner housing 120 separates the aforementioned emission cavity within the internal cavity 200. 210 and the receiving chamber 220.
  • the outer housing 110 may include a first light-transmitting plate 1126 and a second light-transmitting plate 1125.
  • the first light-transmitting plate 1126 faces the emission chamber 210 and is used to transmit the laser beam generated in the emission chamber 210 to the outside of the housing 100.
  • the second light-transmitting plate 1125 faces the receiving cavity 220 and is used to transmit the laser beam reflected from the outside of the casing 100 to the inside of the casing 100.
  • the specific arrangement positions of the first light-transmitting plate 1126 and the second light-transmitting plate 1125 on the outer housing 110 depend on specific conditions.
  • the number of laser emitting devices can be one or more. When the number of laser emitting devices is one, multiple laser receiving devices simultaneously receive the laser beams emitted by the laser emitting devices and emitted via the detected object. When the number of laser emitting devices is multiple, each laser receiving device can also simultaneously receive the laser beams emitted by all laser emitting devices and reflected back by the detected object. In particular, when there are multiple laser emitting devices, the number can be the same as the number of laser receiving devices. At this time, each laser receiving device can only receive the laser beam emitted by one laser emitting device and reflected back by the detected object. .
  • this structure can simplify the system design, reduce the difficulty of solving the back-end of the receiving device, reduce light crosstalk, and is simple and easy to operate when assembling the light adjustment.
  • a laser emitting device fails, there is only one laser. The receiving device is affected, and the detection range of all laser receiving devices will not be affected, so the applicable performance is improved.
  • each laser emitting device is understood as emitting a laser beam to the first target area.
  • the laser beam emitted by one laser emitting device covers the first target area.
  • the sum of the areas covered by the laser beams emitted by each laser emitting device is the first target area. That is, the first target area is composed of a plurality of sub-emission areas, and each laser emitting device emits laser beams into each sub-emission area in a one-to-one correspondence. And each sub-emission area can be partially overlapped, completely overlapped, or not overlapped.
  • the "coincidence" in the above only means the state within the reasonable detection distance of the lidar (for example, the receiving area and the transmitting area are within a distance of the laser The very close part of the radar cannot be overlapped, so the overlap state of this part is not considered).
  • the reasonable detection distance depends on the application scenarios of lidar.
  • each laser receiving device only corresponds to receiving the laser beam emitted by one laser emitting device and reflected back via the detected object, in order to reduce pipeline crosstalk (that is, to prevent the laser beam emitted by the first emitting device from being received by the second receiving device by mistake, The laser beam emitted by the second emitting device is mistakenly received by the first receiving device)
  • each emitting area can be partially overlapped, and each laser receiving device only receives the difference between each sub-emitting area and other emitting areas. The laser beam reflected by the non-overlapping part.
  • each sub-emission area may not overlap.
  • the lidar 10 can also include a regulating device configured to control the opening and closing of the first transmitting device 410 and the second transmitting device 420, so that the first receiving device 310 receives The first emitting device 410 emits the laser beam into the first sub-detection area, and the second receiving device 320 receives the laser beam emitted by the second emitting device 420 into the second sub-detection area. After adding the control device, whether each sub-emitting area is The coincidence is unaffected.
  • the specific adjustment process of the adjustment device may be: within a certain period of time, one of the laser emitting devices is turned on and emits a laser beam, and the other laser emitting devices do not emit a laser beam. At this time, one of the corresponding laser receiving devices is turned on and receives the reflected laser beam emitted by the above-mentioned laser emitting device. In the next time period, the other laser emitting device is turned on to emit the laser beam, and the other laser emitting device does not emit the laser beam. At this time, the laser receiving device corresponding to the laser emitting device is turned on and receives the reflected laser beam emitted by the laser emitting device. In this way, by reducing the interval time period to an appropriate time, a complete detection effect can be achieved.
  • the multiple laser receiving devices in this embodiment are all set in the receiving chamber 220, and the multiple laser receiving devices can receive the laser beam reflected in the second target area, and the first target area and the second target area at least partially overlap.
  • the second target area is composed of multiple sub-detection areas, each sub-detection area is smaller than the first target area and at least partially overlaps the first target area, and each laser receiving device receives each sub-detection area in a one-to-one correspondence. Reflected laser beam inside.
  • the second target area may completely belong to the first target area, or may only partly belong to the first target area. Since the laser receiving device can only receive the laser beam reflected by the first target area, in order to improve the utilization rate of the receiving field of view, preferably, the second target area completely belongs to the first target area.
  • the laser emitting device and the laser receiving device are independently arranged, and the number of laser receiving devices is at least two, which is much more than the structure in the prior art with only one laser receiving device.
  • a laser receiving device can expand the receiving field of view and increase the detection angle of view, thereby reducing the detection blind zone of the lidar 10.
  • the number of laser emitting devices may be two.
  • the two laser emitting devices are referred to as the first emitting device 410 and the second emitting device 420.
  • the first emitting device 410 emits a laser beam toward the first sub-emitting area (that is, the corresponding one of the foregoing multiple sub-emitting areas), and the second emitting device 420 is directed toward the second sub-emitting area (ie, the corresponding one of the foregoing multiple sub-emitting areas)
  • the other one) emits a laser beam, and the first target area is formed by combining the first sub-emission area and the second sub-emission area.
  • the first sub-emission area and the second sub-emission area may partially overlap, completely overlap, or not overlap.
  • the first sub-emission area and the second sub-emission area may partially overlap to achieve full coverage of the overall detection field of view. The specific situation has been explained above, so I won't repeat it here.
  • the number of laser receiving devices can also be two.
  • the two laser receiving devices are called the first receiving device 310 and the second receiving device 320, and the first receiving device 310 and The second receiving device 320 is used for receiving the laser beam reflected from the first target area.
  • the two laser emitting devices may be located between the two laser receiving devices.
  • the first A transmitting device 410 is located between the second transmitting device 420 and the second receiving device 320
  • the second transmitting device 420 is located between the first transmitting device 410 and the first receiving device 310.
  • the laser beam emitted by the first emitting device 410 and the laser beam received by the first receiving device 310 can be directed to the right (refer to the orientation shown in the figure), so that the laser beam emitted by the second emitting device 420 and the second The laser beam received by the receiving device 320 faces to the left (refer to the orientation shown in the figure).
  • the first receiving device 310 is used to receive light in the first sub-detection area, and the first sub-detection area is located in the first sub-emission area.
  • the first sub-detection area may also be The part is located outside the first sub-emission area.
  • the first receiving device can only receive the laser beam reflected by the portion of the first sub-detection area that is located in the first sub-emission area.
  • the second receiving device 320 is configured to receive light in the second sub-detection area, which is located in the second sub-transmission area.
  • the first sub-detection area may be located at the position of the first sub-transmission area excluding the overlapping portion, and the second sub-detection area may be located at the position of the second sub-transmission area excluding the overlapping portion.
  • the lidar 10 in this embodiment may further include a regulating device (not shown in the figure), and the regulating device is configured to control the opening and closing of the first transmitting device 410 and the second transmitting device 420, so that the first receiving device
  • the device 310 receives the laser beam emitted by the first emitting device 410 into the first sub-detection area
  • the second receiving device 320 receives the laser beam emitted by the second emitting device 420 into the second sub-detection area.
  • a specific working principle of the control device has been described above, and will not be repeated here.
  • the regulating device can enable only the first receiving device to receive the light reflected from the detection area when the first transmitting device is turned on; when the second transmitting device is turned on, only the second receiving device to receive the light reflected from the detecting area. Therefore, the problem of light crosstalk is basically solved.
  • the housing 100 may include an outer housing 110 and an inner housing 120.
  • the outer housing 110 defines an inner cavity 200.
  • the outer housing 110 includes a first light-transmitting plate 1126 and two second light-transmitting plates 1126. ⁇ 1125.
  • the inner shell 120 is disposed in the inner chamber 200, the inner shell 120 is connected with the inner wall surface of the outer shell 110, and the inner shell 120 divides the inner chamber 200 into a transmitting chamber 210 and a receiving chamber 220.
  • the inner shell 120 is connected to the two end plates 111 and the emission wall 1123 respectively, and together with the emission wall 1123 and the two end plates 111 to define the emission chamber 210.
  • the first light-transmitting plate 1126 faces the emission chamber 210, and the laser beams emitted by the first emitting device 410 and the second emitting device 420 pass through the first light-transmitting plate 1126 and are emitted to the outside of the lidar 10.
  • the two second light-transmitting plates 1125 both face the receiving cavity 220, and the first receiving device 310 receives the laser beam passing through one of the second light-transmitting plates 1125, and the second receiving device 320 receives the second light-transmitting The laser beam of the plate 1125.
  • the outer shell 110 includes two opposite end plates 111 and a peripheral wall plate 112.
  • the peripheral wall plate 112 is located between the two end plates 111 and defines the internal chamber 200 together with the two end plates 111.
  • the peripheral wall plate 112 includes a transmitting wall 1123, a first receiving wall 1121 and a second receiving wall 1122. Along the circumferential direction of the peripheral wall plate 112, the first receiving wall 1121 and the second receiving wall 1122 are respectively located at two ends of the transmitting wall 1123.
  • the first light-transmitting plate 1126 is disposed on the emission wall 1123, and the first light-transmitting plate 1126 may be a flat plate or a curved plate, depending on the shape of the emission wall 1123. When the first light-transmitting plate 1126 is a flat plate, it can be circular or polygonal. In this embodiment, the first light-transmitting plate 1126 is a rectangular flat plate. The first light-transmitting plate 1126 may completely cover the emission wall 1123 (the first light-transmitting plate 1126 is the emission wall 1123 at this time) or may partially cover the emission wall 1123.
  • Two second light-transmitting plates 1125 are disposed on the first receiving wall 1121 and the second receiving wall 1122 in a one-to-one correspondence.
  • the second light-transmitting plate 1125 may be a flat plate or a curved plate, depending on the shape of the first receiving wall 1121 and the second receiving wall 1122.
  • the second light-transmitting plate 1125 is a flat plate, it can be circular or polygonal.
  • the second light-transmitting plate 1125 is a rectangular flat plate.
  • the first receiving wall 1121, the second receiving wall 1122, and the transmitting wall 1123 may be coplanar.
  • the first receiving wall 1121 and the transmitting wall 1123 form a first included angle c
  • the second receiving wall 1122 and the transmitting wall 1123 form a second included angle d.
  • the first included angle c is equal to the second included angle d and both are It is an obtuse angle less than one hundred and eighty degrees.
  • the first included angle c and the second included angle d may both be 170 degrees, 150 degrees, 135 degrees, 120 degrees, or 100 degrees. It should be noted that, in the above, the first included angle c and the second included angle d are the included angles measured from the inside of the housing 100, that is, the first included angle c is the inner wall surface of the first receiving wall 1121 and the transmitter The included angle of the inner wall surface of the wall 1123, and the second included angle d is the included angle between the inner wall surface of the second receiving wall 1122 and the inner wall surface of the transmitting wall 1123.
  • the lidar may further include a homogenizer (ie, a micro-optical system (DIFFUSER or ROE) with a specific structure).
  • a homogenizer ie, a micro-optical system (DIFFUSER or ROE) with a specific structure.
  • the homogenizer is used to adjust the light emitted by the laser emitting device, so that the energy distribution of the light everywhere in the emitting field of view is more uniform.
  • the emitted light emitted by the laser emitting device passes through a specific micro-optical system (DIFFUSER or ROE) to illuminate the field of view in a flooded manner at one time. At this time, the light in the emitted field of view will be distributed in the space according to a certain rule.
  • the graph of the intensity of the light in the emitted field of view versus position at this time is shown in Figure 11. It can be seen that the intensity of light everywhere in the launch field of view becomes more uniform.
  • the light source chip in the laser emitting device in this embodiment may be a vertical cavity surface laser (VCSEL) prepared by a semiconductor process, and the field angle of the emitted light is generally 20-24°.
  • the chip surface is covered with micro-optical devices such as DIFFUSER (diffraction type) or ROE (refraction type) to realize the diffusion of the emitted light and realize the shaping and homogenization of the emitted energy after multiple internal refraction or reflection, and concentrate more energy in the Within the range of the designed exit field of view.
  • DIFFUSER is a diffractive micro-optical structure, which is generally made of polymer organic materials.
  • ROE is a kind of refraction micro-optical element made of glass.
  • the function is similar to that of Diffsuer, but the principle is based on the refraction and reflection of light. It is similar to the micro lens array. It has better high temperature resistance and higher cost. According to the far-field energy distribution curve line type of the light source chip, the corresponding receiving end optical lens parameters are designed to compensate for the uneven energy distribution of the emitting light source.
  • the receiving end optical lens usually has the highest receiving efficiency at the center position, and the receiving efficiency decays faster to the surrounding area, as shown by curve 1 in Figure 12.
  • the receiving end optical lens with poor uniformity is used for reception, and after cooperation with the aforementioned laser emitting device with insufficient energy distribution uniformity, the laser radar can detect uneven detection distance and small detection field of view, that is, the detection field of view in Figure 13 E.
  • the detection distance in the middle is long, and the detection distance on both sides is seriously insufficient.
  • the receiving end optical lens of the laser receiving device can be improved accordingly.
  • the receiving end optical lens of the laser receiving device can use 6 optical lenses, of which 5 glass spherical lenses Compared with a glass aspherical lens (compared to a spherical lens, it has increased the degree of freedom and has a higher-order dimension, equivalent to 1.5-2 glass spherical mirrors).
  • the multi-lens cooperates with each other to correct and effectively compensate the aberrations of the meridian and sagittal surfaces, and Ensuring sufficient resolution (requirements of area array radar) under the premise of large enough light.
  • the defocus of the meridian plane and the sagittal plane causes imaging distortion.
  • the distortion is compressed by means of high-refractive-index materials, and the field of view angle of the internal transmission of the optical path is optimized.
  • the TV distortion is required to be less than -30%.
  • Large-pass light will inevitably lead to a larger angle between the received reflected laser beam and the central optical axis of the receiving end optical lens, and the spherical aberration can be improved by using a lens combination with high and low refractive index changes.
  • High-performance, multi-layer mirror coating and the matching LAS filter passband design ensure that the energy transmission efficiency of the receiving end optical lens is as high as 95%; in order to reduce crosstalk and noise, the lens is coated to ensure the infrared transmission of the single lens The overrate is less than 0.5%.
  • the inner surface of the internal aperture of the optical lens at the receiving end and the inner wall of the structural parts adopt the nano-coating coated with the high and low temperature gradual process, which effectively improves the near-infrared wave band.
  • the light absorption characteristics greatly reduce the influence of stray light on the detection effect.
  • Two negative dispersions and one lens with wavefront shaping are used to eliminate the chromatic aberration of the system, and a symmetrical design lens is used inside the lens to improve the wavefront aberration.
  • the combination of high and low refractive index and different material lenses reduces dispersion effect.
  • Five groups of spherical mirrors and one aspherical mirror cooperate with the curved surface function of the iterative lens design, and iteratively optimize the optical lens uniformity (RI) curve of the receiving end with large transmission function (MTF) and wide bandwidth.
  • RI optical lens uniformity
  • the laser radar detection field of view formed after it is matched with the laser emitting device, such as the field of view F in Fig. 13, and in Fig. 13, the field of view that the laser radar can detect The field angle is larger, and the detectable distance at different angles is more uniform.
  • the above-mentioned functions can also be realized by combining at least 3 glass aspherical mirrors and by high-order Fresnel parameter matching design.
  • Reasonable optimization of the optical lens at the receiving end is beneficial to solve the effect of saturation expansion and halo phenomenon of high and low objects in actual working conditions on the ranging performance.
  • the design depth of field of the optical lens at the receiving end needs to meet the parameter requirements of the lidar. Generally, the near field can be clearly focused and imaged above 0.5m. This also limits the actual number of lenses of the optical lens at the receiving end to be less than two.
  • the imaging method of lidar is to receive and detect the reflected laser beam in the field of view at one time, and the energy efficiency of the reflected laser beam in each area of the detector of the laser receiving device is the same in space.
  • the first receiving device 310 has a first optical path axis 530, the first optical path axis 530 is perpendicular to the second light-transmitting plate 1125 intersecting it, and the second receiving device 320 has The second optical path axis 540, the second optical path axis 540 are perpendicular to the second light-transmitting plate 1125 intersecting therewith, and the included angle a between the first optical path axis 530 and the second optical path axis 540 is greater than forty-five degrees.
  • Such a structure can have a larger field of view compared to the lidar in the prior art.
  • the first receiving device 310 has a first cone-shaped detection field, and the first cone-shaped detection field has an area close to the transmitting wall 1123.
  • the first limit edge line m the second receiving device 320 has a second cone-shaped detection field, the second cone-shaped detection field has a second limit edge line n close to the transmitting wall 1123, the first limit edge line m and the second limit edge
  • the line n crosses, and the cross point is located on the side of the emission wall 1123 facing the probe.
  • the angle b between the first limit edge line m and the second limit edge line n may be at least 1 degree.
  • the distance between the first receiving device 310 and the second receiving device 320 is small, so even if the angle between the first limit edge line and the second limit edge line is small, the front of the lidar 10
  • the blind spot of the field of view will not be too large.
  • the included angle b between the first limit edge line m and the second limit edge line n is 1 degree
  • the distance between the first receiving device and the second receiving device is usually within one decimeter, here Taking the distance of one decimeter, through calculation, the blind spot of the field of view directly in front of the lidar is 5.7 meters.
  • the detection area of lidar may be greater than 5.7 meters.
  • the blind area has a long and narrow space, which has little effect on detection.
  • the detection object that appears in the blind area generally needs to pass through the detectable area first, so even if it is detected Objects appear in the long and narrow blind zone directly in front of the lidar, and their motion parameters can also be obtained indirectly.
  • the inner shell 120 may include a first plate 121 and a second plate 122, and the first plate 121 and the second plate 122 are respectively connected to the emission wall 1123 and the two end plates 111 ,
  • the angle between the first plate 121 and the second plate 122 is an obtuse angle (here refers to the angle between the first plate 121 and the second plate 122 facing the emission chamber 210), and the angle of the first plate 121
  • the surface facing the emission cavity 210 is provided with a first emission device 410
  • the surface of the second plate 122 facing the emission cavity 210 is provided with a second emission device 420.
  • the center axis 510 of the laser beam emitted by the first emitting device 410 can be perpendicular to the first plate 121, and the center of the laser beam emitted by the second emitting device 420
  • the axis 520 is perpendicular to the second board 122.
  • the inner housing 120 may only include the first plate 121 and the second plate 122, and the first plate 121 and the second plate 122 are integrally formed.
  • the first board 121 and the second board 122 may also be boards of the inner housing 120 that are only used for mounting the first launching device 410 and the second launching device 420, and the inner housing 120 also has other parts.
  • the inner housing 120 and the peripheral wall plate 112 are integrally formed. Further, the inner housing 120, the peripheral wall plate 112 and one of the end plates 111 may also be integrally formed. Such a structure can speed up the heat conduction efficiency of the two transmitting devices, and improve the heat dissipation performance of the lidar 10.
  • a plurality of heat dissipation grooves 1124 may be provided on the outer wall surface of the peripheral wall plate 112; and a plurality of heat dissipation ribs 1128 may also be provided on the inner wall surface of the peripheral wall plate 112.
  • the heat dissipation grooves 1124 may be blind grooves or through grooves, and each heat dissipation groove 1124 may be provided in any part of the peripheral wall plate 112 outside the first light transmission plate 1126 and the second light transmission plate 1125.
  • the surface of the first plate body 121 facing the first launching device 410 is provided with a first installation groove 1211, and the first launching device 410 is embedded in the first installation groove 1211.
  • the surface of the second board 122 facing the second launching device 420 is provided with a second installation groove, and the second launching device 420 is embedded in the second installation groove.
  • a first heat-conducting member may be provided in the first installation groove 1211, and the first heat-conducting member is connected to the first installation groove 1211 and the first emitting device 410.
  • a second heat-conducting element is arranged in the second installation groove, and the second heat-conducting element is connected to the second installation groove and the second emitting device 420.
  • the first heat-conducting element and the second heat-conducting element can be made of any material with excellent thermal conductivity.
  • the first heat-conducting element and the second heat-conducting element can also be made of materials with cushioning properties.
  • the first heat-conducting element and the second heat-conducting element can both be thermally conductive silica gel.
  • the shape of the first heat conducting groove depends on the shape of the first emitting device 410.
  • the surface of the first emitting device 410 facing the first plate 121 is rectangular, so the first heat conducting groove is rectangular in cross section. Trough.
  • the first heat-conducting member may be in the shape of a rectangular sheet, and it may be cushioned on the bottom of the first heat-conducting groove.
  • the first heat-conducting member may also be ring-shaped and located between the outer peripheral edge of the first emitting device 410 and the first heat-conducting groove. Within the gap between the side walls of the groove.
  • the first emitting device 410, the first heat conducting groove, and the first heat conducting member may also have other shapes, which will not be repeated here.
  • the second aspect of the embodiments of the present application also provides a device 1, which includes the lidar 10 in any of the foregoing embodiments.
  • the device 1 may be any device 1 capable of performing laser detection, and specifically, the device may be a car.
  • the car includes a car body 20, and the lidar 10 can be installed outside the car body 20 or embedded in the car body 20. When the lidar 10 is installed outside the car body 20, the lidar 10 is preferably installed on the roof of the car body 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达(10),包括:壳体(100),限定出发射腔室(210)以及接收腔室(220);激光发射装置(410、420),设置于发射腔室(210),用于向第一目标区域发射激光束;多个激光接收装置(310、320),设置于接收腔室(220),多个激光接收装置(310、320)可接收第二目标区域内反射的激光束,第一目标区域与第二目标区域至少部分重合;其中,第二目标区域由多个子探测区域组合而成,每个子探测区域均小于第一目标区域且与第一目标区域至少部分重合,各激光接收装置(310、320)一一对应接收各子探测区域内的反射的激光束。激光雷达(10)将激光发射装置(410、420)以及激光接收装置(310、320)独立设置,且激光接收装置(310、320)的数量为多个,相对于仅有一个激光接收装置(310、320)的结构而言,增加多个激光接收装置(310、320)能够增大探测视角,从而减小激光雷达(10)的探测盲区。

Description

激光雷达及具有激光雷达的设备 技术领域
本申请涉及激光探测的技术领域,尤其涉及一种激光雷达及具有激光雷达的设备。
背景技术
随着光学技术的发展和应用,出现了很多以发射激光光束探测目标物体的位置、速度等特征量的激光雷达系统,且激光雷达系统已被广泛应用于各种领域,例如,测距、低飞目标的跟踪测量、武器制导、大气监测、测绘、预警、交通管理等领域,尤其在自动驾驶领域,激光雷达系统经常被用来实现对车辆周围环境的视场探测和成像,以使自动驾驶的车辆可以根据激光雷达系统探测出的信息规划正确的行驶路线。
目前,flash激光雷达系统因其具有结构简单、系统负载低、光机寿命长等优点,被普遍应用于自动驾驶车辆上,以实现对车辆周围近场的探测。Flash激光雷达系统的基本工作原理是发射端通过“泛光”的方式将出射激光一次性地照亮整个被探测的视场区域,接收端采用相应的探测器接收视场区域内的所有回波激光,从而通过分析回波激光得到视场区域内的探测信息。
但是,上述的Flash激光雷达系统存在出射激光的视场角度范围有限,致使上述Flash激光雷达系统的探测盲区较大,降低了应用上述Flash激光雷达系统的车辆的避障能力。而且,现有的Flash激光雷达系统探测距离不足,增加探测距离需要明显提高发射功率,系统的功耗、热效应及器件成本均会飙升。
发明内容
本申请实施例提供了一种激光雷达及具有该激光雷达的设备,能够减少探测盲区、有效提高出射激光能量的利用率。
根据本申请的一个方面,提供了一种激光雷达,包括:
壳体,限定出发射腔室以及接收腔室;
激光发射装置,设置于发射腔室,用于向第一目标区域发射激光束;
多个激光接收装置,设置于接收腔室,多个激光接收装置可接收第二目标区域内反射的激光束,第一目标区域与第二目标区域至少部分重合;
其中,第二目标区域由多个子探测区域组合而成,每个子探测区域均小于第一目标区域且与第一目标区域至少部分重合,各激光接收装置一一对应接收各子探测区域内的反射的激光束。
根据一些实施例,发射腔室内设置有多个激光发射装置,第一目标区域由多个子发射区域组合而成,各激光发射装置一一对应向各子发射区域内发射激光束。
根据一些实施例,激光发射装置的数量与激光接收装置的数量相同,各激光接收装置一一对应接收各激光发射装置发射至所述第一目标区域并反射回的激光束。
根据一些实施例,激光发射装置的数量为两个,分别为第一发射装置以及第二发射装置,第一发射装置朝第一子发射区域内发射激光束,第二发射装置朝第二子发射区域内发射激光束,第一目标区域由第一子发射区域与第二子发射区域组合而成;
激光接收装置的数量为两个,分别为第一接收装置以及第二接收装置,第一接收装置以及第二接收装置用于接收由第一目标区域内反射回的激光束。
根据一些实施例,第一接收装置用于接收第一子探测区域内的光线,第一 子探测区域位于第一子发射区域内;
第二接收装置用于接收第二子探测区域内的光线,第二子探测区域位于第二子发射区域内。
根据一些实施例,第一子发射区域与第二子发射区域具有重合部分;
激光雷达还包括调控装置,调控装置配置成可控制第一发射装置以及第二发射装置的开闭,以使得第一接收装置接收第一发射装置发射向第一子探测区域内的激光束、第二接收装置接收第二发射装置发射向第二子探测区域内的激光束。
根据一些实施例,壳体包括:
外壳体,限定出内部腔室,外壳体包括第一透光板以及两个第二透光板;
内壳体,设置于内部腔室,内壳体与外壳体的内壁面连接,且内壳体将内部腔室分隔成发射腔室以及接收腔室;
其中,第一透光板面向发射腔室,且第一发射装置以及第二发射装置发射的激光束穿过第一透光板而发射向激光雷达外;两个第二透光板均面向接收腔室,且第一接收装置接收穿过其中一个第二透光板的激光束、第二接收装置接收穿过另一个第二透光板的激光束。
根据一些实施例,外壳体包括:
两个相对的端板;
周壁板,位于两个端板之间,且与两个端板共同限定出内部腔室,周壁板包括发射壁、第一接收壁以及第二接收壁,沿周壁板的周向,第一接收壁以及第二接收壁分别位于发射壁的两端,第一透光板设置于发射壁,两个第二透光板一一对应设置于第一接收壁以及第二接收壁;
其中,内壳体分别连接两个端板以及发射壁,并与发射壁、两个端板共同限定出发射腔室。
根据一些实施例,发射壁、第一接收壁以及第二接收壁均呈平板状,第一接收壁与发射壁之间呈第一夹角、第二接收壁与发射壁之间呈第二夹角,第一夹角等于第二夹角且均呈为小于一百八十度的钝角。
根据一些实施例,内壳体包括第一板体以及第二板体,第一板体以及第二板体均分别连接发射壁以及两个端板,第一板体与第二板体之间呈钝角,第一板体的面向发射腔室的表面设置第一发射装置,第二板体的面向发射腔室的表面设置第二发射装置。
根据一些实施例,所述第一接收装置具有第一光路轴线,所述第一光路轴线垂直于与其相交的所述第二透光板,所述第二接收装置具有第二光路轴线,所述第二光路轴线垂直于与其相交的所述第二透光板,所述第一光路轴线与所述第二光路轴线的夹角大于四十五度。
根据一些实施例,第一接收装置具有第一锥形探测场,第一锥形探测场具有靠近发射壁的第一极限边缘线,第二接收装置具有第二锥形探测场,第二锥形探测场具有靠近发射壁的第二极限边缘线,第一极限边缘线与第二极限边缘线交叉,且交叉点位于发射壁的面向探测物的一侧。
本申请实施例的第二方面还提供了一种设备,包括:
上述任一项的激光雷达。
本申请提供一种激光雷达,该激光雷达将激光发射装置以及激光接收装置独立设置,且激光接收装置的数量至少为两个,相对于现有技术中仅有一个激光接收装置的结构而言,增加多个激光接收装置能够扩大接收视场,增大探测视角,从而减小激光雷达的探测盲区。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一种实施中的激光雷达的立体示意图;
图2为本申请一种实施例中的激光雷达的壳体、激光发射装置以及激光接收装置组合后的立体示意图;
图3为本申请一种实施例中的激光雷达的第一爆炸示意图;
图4为本申请一种实施例中的激光雷达的第一全剖视示意图;
图5为本申请一种实施例中的激光雷达的第二爆炸示意图;
图6为本申请一种实施例中的激光雷达的壳体的爆炸示意图;
图7为本申请一种实施例中的激光雷达的部分壳体以及激光发射装置的立体示意图;
图8为本申请一种实施例中的激光雷达的第二全剖示意图;
图9为本申请一种实施例中的激光雷达的第三全剖示意图;
图10为现有技术中的激光发射装置的发射视场中光线强度随位置变化的曲线示意图;
图11为本申请一种实施例中的激光发射装置的发射视场中光线强度随位置变化的曲线示意图;
图12为激光接收装置的接收视场中接收光线的角度随均匀程度变化的曲线示意图,其中,曲线1为现有技术中的激光接收装置的示意性曲线,曲线2为本申请一种实施例中的示意性曲线;
图13为激光接收装置的接收场的范围示意图,其中,视场E为现有技术中的视场示意图,视场F为本申请一种实施例中的视场示意图;
图14为本申请一种实施例中的设备的示意图;
图15为本申请另一种实施例中的设备的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的激光雷达,可以应用于任何需要进行激光探测的设备上,例如汽车。激光雷达可以探测汽车相对于障碍物之间的距离以及速度等参数,车辆通过激光雷达系统探测附近运动或者靠近的障碍物,如更加高大的车辆、路边的静物、突然靠近的悬空飞行物等,以使车辆能够根据探测到的信息规划能够避开障碍物的路径,以使车辆避免与障碍物发生碰撞。其中的车辆可以是自动驾驶车辆,也可以是普通车辆,对此本申请不做限制。
目前,车辆利用激光雷达系统识别周围环境中的障碍物的方法得到了普及应用,尤其是flash激光雷达系统被广泛应用在车辆的近场探测中。但是,传统的flash激光雷达系统的光源的输出功率、视场角度等都是固定的,这样就会造成应用该激光雷达系统的车辆前方或两侧出现较大面积的盲区,从而降低了车辆的避障能力。因此,针对上述问题,本申请提出了一种激光雷达及具有该激光雷达的设备,旨在解决上述这些问题。
如图1至图9所示,本实施例提供了一种激光雷达10,该激光雷达10能够增大探测视角,从而减小探测盲区。具体地,该激光雷达10可以包括壳体100、激光发射装置以及多个(两个或两个以上)激光接收装置。
壳体100限定出内部腔室200,内部腔室200可以分为发射腔室210以及接收腔室220,激光发射装置设置于发射腔室210内,各激光接收装置设置于接收腔室220内。内部腔室200可以仅由发射腔室210以及内部腔室200构成, 内部腔室200也可以除开发射腔室210以及接收腔室220外还包括其它空间。例如,内部腔室内还可分隔出一部分空间放置激光雷达的电路板等元器件。由于电路板上具有诸如控制芯片等精密器件,而激光发射装置的温度一般较高,而上述精密器件对温度的影响较大,故为了保护上述精密器件,可以利用隔热材料在内部腔室内单独隔离出绝热腔室,让上述精密器件设置于绝热腔室内从而起到良好的保护效果。
本实施例中,内部腔室200由发射腔室210以及接收腔室220构成。发射腔室210以及接收腔室220仅以两者的功能作用进行划分,应当注意的是,发射腔室210以及接收腔室220两者可以相互连通,仅进行虚拟划分。而当发射腔室210与接收腔室220联通时,由于激光发射装置产生的激光束易在内部腔室200的侧壁上散射或在光学器件上反射,当散射或反射的激光束进入接收装置内时,将造成干扰影响激光雷达10的探测精度。故一种优选地实施例中,发射腔室210与接收腔室220两者也可以利用隔离部件进行分隔,从而使发射腔室210以及接收腔室220为相对独立的部分。
本实施例中,发射腔室210以及接收腔室220为相对独立分隔的两部分。具体地,激光雷达10的壳体100可以包括外壳体110以及内壳体120,外壳体110限定出上述的内部腔室200,内壳体120在内部腔室200内分隔出上述的发射腔室210以及接收腔室220。并且,为了便于使发射腔室210内发射的激光束传送至壳体100外、壳体100外的激光束传送至壳体100内的接收腔室220,外壳体110可以包括第一透光板1126以及第二透光板1125。第一透光板1126面向发射腔室210,用于使发射腔室210内产生的激光束透过并传送至壳体100外。第二透光板1125面向接收腔室220,用于使壳体100外反射回的激光束透过并传送至壳体100内。第一透光板1126以及第二透光板1125在外壳体110上的具体布置位置视具体情况而定。
激光发射装置的数量可以为一个也可以为多个。当激光发射装置的数量为一个时,多个激光接收装置同时接收激光发射装置发出并经由被探测物发射的激光束。当激光发射装置的数量为多个时,每个激光接收装置亦可以同时接收所有激光发射装置发射并经由被探测物反射回的激光束。特别地,激光发射装置为多个时,其数量可以与激光接收装置的数量一致,此时,可以让每个激光接收装置仅对应接收一个激光发射装置发射并经由被探测物反射回的激光束。这样的结构一方面能够简化系统设计、降低接收装置后端的解算难度、减少光线串扰,组装光调时简单易操作,另一方面,当某个激光发射装置出现故障时,也仅有一个激光接收装置受到影响,不会使所有激光接收装置的探测范围均受到影响,故提升了适用性能。
需要注意的是,本实施例中,不管激光发射装置的数量为一个还是多个,各激光发射装置均理解为向第一目标区域发射激光束。当激光发射装置一个时,一个激光发射装置发射的激光束布满第一目标区域,当激光发射装置的数量为多个时,各激光发射装置发射的激光束所覆盖的区域的总和为第一目标区域。即第一目标区域由多个子发射区域组合而成,各激光发射装置一一对应向各子发射区域内发射激光束。而每个子发射区域之间可以部分重合、完全重合或不重合。需要注意的是,由于无论是发射区域还是接收区域,其均呈锥形,故上述中的“重合”仅表示在激光雷达合理的探测距离内的状态(例如,接收区域与发射区域在距离激光雷达极近的部位无法做到重合,故此部位的重合状态不予考虑)。合理的探测距离大小视激光雷达的应用场景而定。
而当每个激光接收装置仅对应接收一个激光发射装置发射并经由被探测物反射回的激光束时,为了减少管线串扰(即防止第一发射装置发射的激光束被第二接收装置误接收、第二发射装置发射的激光束被第一接收装置误接收)一种实施例中,可以让每个发射区域之间部分重合,每个激光接收装置仅接收 每个子发射区域的与其它发射区域的不重合部分所反射的激光束。另一种实施例中,也可以让每个子发射区域均不重合。优选地,又一种实施例中,亦可以使激光雷达10还包括调控装置,调控装置配置成可控制第一发射装置410以及第二发射装置420的开闭,以使得第一接收装置310接收第一发射装置410发射向第一子探测区域内的激光束、第二接收装置320接收第二发射装置420发射向第二子探测区域内的激光束,加入调控装置后,各子发射区域是否重合便不受影响。
调控装置的具体调控过程可以为:在某一时间段内,使其中一个激光发射装置开启并发射激光束,其它激光发射装置不发射激光束。此时,其中一个对应的激光接收装置开启并接收反射回的由上述激光发射装置发射的激光束。下一时间段,使另一个激光发射装置开启发射激光束,其它激光发射装置不发射激光束。此时,对应上述激光发射装置的激光接收装置开启并接收反射回的由上述激光发射装置发射的激光束。如此往复,通过将间隔的时间段调小至合适的时间,便可以起到完整的探测效果。
本实施例中的多个激光接收装置均设置于接收腔室220,多个激光接收装置可接收第二目标区域内反射的激光束,第一目标区域与第二目标区域至少部分重合。需要说明的是,第二目标区域由多个子探测区域组合而成,每个子探测区域均小于第一目标区域且与第一目标区域至少部分重合,各激光接收装置一一对应接收各子探测区域内的反射的激光束。特别地,第二目标区域可以完全属于第一目标区域、也可以仅部分属于第一目标区域。由于激光接收装置仅能接收由第一目标区域反射的激光束,故为了提高接收视场的利用率,优选地,第二目标区域完全属于第一目标区域。
本实施例提供的激光雷达10,将激光发射装置以及激光接收装置独立设置,且激光接收装置的数量至少为两个,相对于现有技术中仅有一个激光接收 装置的结构而言,增加多个激光接收装置能够扩大接收视场,增大探测视角,从而减小激光雷达10的探测盲区。
如图2至图4所示,一种实施例中,激光发射装置的数量可以为两个,为了描述方便,将两个激光发射装置称为第一发射装置410以及第二发射装置420。第一发射装置410朝第一子发射区域(即前述的多个子发射区域中对应的一个)内发射激光束,第二发射装置420朝第二子发射区域(即前述的多个子发射区域中对应的另一个)内发射激光束,第一目标区域由第一子发射区域与第二子发射区域组合而成。第一子发射区域与第二子发射区域可以部分重合、完全重合或不重合。优选地,第一子发射区域与第二子发射区域可以部分重合,实现对整体探测视场的全覆盖。具体情况前文已有阐述,这里不进行赘述。
当激光发射装置为两个时,激光接收装置的数量也可以为两个,为了描述方便,将两个激光接收装置称为第一接收装置310以及第二接收装置320,第一接收装置310以及第二接收装置320用于接收由第一目标区域内反射回的激光束。当激光雷达10具有两个接收装置以及两个发射装置时,一种实施例中,如图8至图9所示,两个激光发射装置可以位于两个激光接收装置之间,具体地,第一发射装置410位于第二发射装置420以及第二接收装置320之间,第二发射装置420位于第一发射装置410以及第一接收装置310之间。并且,此时可以使第一发射装置410发射的激光束以及第一接收装置310接收的激光束朝右边(以图示的方位为参照),使第二发射装置420发射的激光束以及第二接收装置320接收的激光束朝左边(以图示的方位为参照)。
本实施例中,第一接收装置310用于接收第一子探测区域内的光线,第一子探测区域位于第一子发射区域内,当然,在其他实施例中,第一子探测区域也可以部分位于第一子发射区域外,此时,第一接收装置仅能接收第一子探测区域的位于第一子发射区域内的部分所反射的激光束。第二接收装置320用于 接收第二子探测区域内的光线,第二子探测区域位于第二子发射区域内。而当第一子发射区域与第二子发射区域具有重合部分时,为了不使第二发射装置420发射的激光束反射至第一接收装置310、第一发射装置410发射的激光束反射至第二接收装置320,第一子探测区域可以位于第一子发射区域的除去上述重合部分的位置、第二子探测区域可以位于第二子发射区域的除去上述重合部分的位置。特别地,由于光线在探测区域内会形成漫反射,造成光线串扰,故即使采用上述方案,也无法彻底解决光线串扰的问题。优选地,本实施例中的激光雷达10还可以包括调控装置(图中未示出),调控装置配置成可控制第一发射装置410以及第二发射装置420的开闭,以使得第一接收装置310接收第一发射装置410发射向第一子探测区域内的激光束、第二接收装置320接收第二发射装置420发射向第二子探测区域内的激光束。调控装置的一种具体工作原理前文已有阐述,这里不进行赘述。调控装置可以使第一发射装置开启时,仅第一接收装置接收由探测区域内反射回的光线;第二发射装置开启时,仅第二接收装置接收由探测区域内反射回的光线。故基本解决了光线串扰的问题。
如图2至图3所示,壳体100可以包括外壳体110以及内壳体120,外壳体110限定出内部腔室200,外壳体110包括第一透光板1126以及两个第二透光板1125。内壳体120设置于内部腔室200,内壳体120与外壳体110的内壁面连接,且内壳体120将内部腔室200分隔成发射腔室210以及接收腔室220。其中,内壳体120分别连接两个端板111以及发射壁1123,并与发射壁1123、两个端板111共同限定出发射腔室210。
第一透光板1126面向发射腔室210,且第一发射装置410以及第二发射装置420发射的激光束穿过第一透光板1126而发射向激光雷达10外。两个第二透光板1125均面向接收腔室220,且第一接收装置310接收穿过其中一个 第二透光板1125的激光束、第二接收装置320接收穿过另一个第二透光板1125的激光束。
具体地,外壳体110包括两个相对的端板111以及周壁板112。周壁板112位于两个端板111之间,且与两个端板111共同限定出内部腔室200,周壁板112包括发射壁1123、第一接收壁1121以及第二接收壁1122。沿周壁板112的周向,第一接收壁1121以及第二接收壁1122分别位于发射壁1123的两端。
第一透光板1126设置于发射壁1123,第一透光板1126可以为平面板也可以为曲面板,具体可以视发射壁1123的形状而定。第一透光板1126为平面板时,其可以为圆形或多边形,本实施例中,第一透光板1126为呈矩形的平板。第一透光板1126可以完全覆盖发射壁1123(此时第一透光板1126即为发射壁1123)也可以部分覆盖发射壁1123。
两个第二透光板1125一一对应设置于第一接收壁1121以及第二接收壁1122。同样地,第二透光板1125可以为平面板也可以为曲面板,具体视第一接收壁1121以及第二接收壁1122的形状而定。第二透光板1125为平面板时,其可以为圆形或多边形,本实施例中,第二透光板1125为呈矩形的平板。
当发射壁1123、第一接收壁1121以及第二接收壁1122均呈平板状时,第一接收壁1121、第二接收壁1122以及发射壁1123可以共平面。为了减少第一子接收区域以及第二子接收区域之间的重叠大小,从而增大激光雷达整体的探测视场,本实施例中,如图1、图2、图8以及图9所示,第一接收壁1121与发射壁1123之间呈第一夹角c、第二接收壁1122与发射壁1123之间呈第二夹角d,第一夹角c等于第二夹角d且均呈为小于一百八十度的钝角,例如,第一夹角c与第二夹角d均可以为170度、150度、135度、120度或100度等。需要注意的是,上述中,第一夹角c以及第二夹角d均为由壳体100内部测量所得到的夹角,即第一夹角c为第一接收壁1121的内壁面与发射壁1123 的内壁面的夹角,第二夹角d为第二接收壁1122的内壁面与发射壁1123的内壁面之间的夹角。
如图10至图11所示,受硬件限制,现有技术中,激光发射装置发射的光线在发射视场内不同位置的光线强度具有差异,这种差异对激光雷达的探测精度有一定影响。图10中可以看出,位于发射视场中心位置的光线强度较低,位于发射视场的靠近边缘的部位光线强度较高。为了提升发射视场中各处的光线的均匀程度,一种实施例中,可以使激光雷达还包括匀光器(即具有特定结构的微光学系统(DIFFUSER或ROE))。匀光器用于对激光发射装置发射的光线进行调节,以使得发射视场中各处的光线能量分布得更加均匀。由激光发射装置发射的出射光经特定的微光学系统(DIFFUSER或ROE)后以泛光出射的方式一次性照亮视场,此时发射视场内的光线会按照一定的规律分布在空间的特定区域内,此时发射视场内光线的强度随位置变化的曲线图如图11所示。可以看到,发射视场内各处的光线强度变得更加均匀。
具体地,本实施例中激光发射装置中的光源芯片可以为半导体工艺制备的垂直腔面激光器(VCSEL),其出射光的视场角一般为20-24°。芯片表面覆盖DIFFUSER(衍射型)或ROE(折射型)等微光学器件,实现对出射光的扩散并通过内部多次折射或反射后实现出射能量的整形和匀化出射,集中更多的能量在设计的出射视场角范围内。DIFFUSER是一种衍射型微光学结构,材质一般为高分子有机物。ROE是一种玻璃材质的折射型微光学元件,实现的功能与Diffsuer类似但原理是基于光的折射和反射,类似于微透镜阵列,其耐高温特性更优异,成本更高。根据光源芯片的远场能量分布曲线线型,设计相应的接收端光学镜头参数补偿发射光源的能量分布不均匀性。
如图12至图13所示,接收端光学镜头通常为中心位置处接收效率最高,往周围区域的接收效率衰减较快,即图12中的曲线1所示。采用均匀度差的 接收端光学镜头进行接收,与前述能量分布均匀性不足的激光发射装置进行配合后,激光雷达能够进行探测的距离不均匀、探测视场小,即图13中的探测视场E,中间的探测距离远,两侧的探测距离严重不足。
一种实施例中,为了获取更加均匀的探测,激光接收装置的接收端光学镜头可以进行相应的改进,具体地,激光接收装置的接收端光学镜头可以采用6片光学透镜,其中5片玻璃球面镜和1片玻璃非球面镜(相比球面镜提高了自由度,具有高阶维度,相当于1.5-2片玻璃球面镜),多透镜相互配合实现矫正并有效补偿了子午面和弧矢面的像差,并在足够大通光的前提下保证足够的分辨率(面阵雷达的要求)。子午面与弧矢面的离焦造成成像失真,通过高折射率材质,优化光路内部传输的视场角等方式压缩畸变,一般要求TV畸变小于-30%。大通光必然导致接收的反射的激光束与接收端光学镜头的中心光轴夹角较大,通过使用高低折射率变化的透镜组合方式,改善球差。高性能、多层镜面镀膜涂覆配合适配的LAS滤光片通带设计保证接收端光学镜头的能量传输效率高达95%;为了降低串扰和噪声,在透镜上镀膜保证单片透镜的红外透过率小于0.5%。由于传统的阳极氧化等黑化工艺对红外波段的反射率仍然较高,接收端光学镜头内部光阑内表面及结构件内壁采用高低温渐变工艺涂覆的纳米涂层,有效改善近红外波段的吸光特性大幅降低了杂散光对探测效果的影响。使用2个负色散和1个具有波面整形的透镜消除系统色差,透镜内部采用尽可能的对称设计的透镜改善波前像差。高低折射率、不同材质透镜组合降低色散效应。5组球面镜加1个非球面镜相互配合迭代透镜设计的曲面函数,迭代优化实现大通光、高传输函数(MTF)和宽带宽的接收端光学镜头均匀度(RI)曲线。
激光接收装置的接收端光学镜头的参数优化后,其与激光发射装置匹配后形成的激光雷达探测视场的图例如附图13中的视场范围F,图13中,激光雷 达能够探测的视场角更大,且在不同角度上能够探测的距离更加均匀。
理论上实现上述功能也可以通过至少3片玻璃非球面镜组合,通过高阶菲涅尔参数匹配设计实现。通过对接收端光学镜头的合理优化,有利于解决实际工况中高低物体的饱和膨胀及光晕现象对测距性能的影响。接收端光学镜头的设计景深需要满足激光雷达的参数需求,一般为近场0.5m以上可清晰聚焦成像,这一点也限制了接收端光学镜头的实际透镜数量不可能少于2片。激光雷达的成像方式为一次性接收探测视场内反射的激光束且激光接收装置的探测器的各区域接收反射的激光束的能量效率在空间上是相同的。
一种实施例中,如图3以及图8所示,第一接收装置310具有第一光路轴线530,第一光路轴线530垂直于与其相交的第二透光板1125,第二接收装置320具有第二光路轴线540,第二光路轴线540垂直于与其相交的第二透光板1125,第一光路轴线530与第二光路轴线540的夹角a大于四十五度。这样的结构相对于现有技术中的激光雷达而言能够具有更大的视场角。
为了不使得激光雷达10具有视场盲区,本实施例中,如图2以及图9所示,第一接收装置310具有第一锥形探测场,第一锥形探测场具有靠近发射壁1123的第一极限边缘线m,第二接收装置320具有第二锥形探测场,第二锥形探测场具有靠近发射壁1123的第二极限边缘线n,第一极限边缘线m与第二极限边缘线n交叉,且交叉点位于发射壁1123的面向探测物的一侧。第一极限边缘线m与第二极限边缘线n的夹角b最小可以为1度。由于激光雷达10的尺寸较小,第一接收装置310以及第二接收装置320之间的间距较小,故即使第一极限边缘线与第二极限边缘线的夹角较小时,激光雷达10前方的视场盲区也不会过大。示例性的,当第一极限边缘线m与第二极限边缘线n的夹角b为1度时,由于第一接收装置以及第二接收装置之间的间距通常为在一分米以内,这里取间距一分米,通过计算,激光雷达正前方的视场盲区最远 为5.7米。一方面,激光雷达的探测区域可能大于5.7米,另一方面,盲区的空间狭长,对探测影响不大,又一方面,出现在盲区内的探测物一般需先经过可探测区,故即使探测物出现在激光雷达正前方的狭长盲区内,其运动参数也能够间接获取。
如图2至图4所示,内壳体120可以包括第一板体121以及第二板体122,第一板体121以及第二板体122均分别连接发射壁1123以及两个端板111,第一板体121与第二板体122之间的夹角呈钝角(这里指第一板体121与第二板体122的面向发射腔室210的夹角),第一板体121的面向发射腔室210的表面设置第一发射装置410,第二板体122的面向发射腔室210的表面设置第二发射装置420。当第一发射装置410以及第二发射装置420安装完成后,可以使第一发射装置410发射的激光束的中心轴线510垂直于第一板体121,第二发射装置420发射的激光束的中心轴线520垂直于第二板体122。这样,在设计内壳体120的形状时,可以通过调整第一板体121与第二板体122之间的夹角从而控制第一发射装置410以及第二发射装置420最终的发射视场,降低了设计难度。
内壳体120可以仅包括第一板体121以及第二板体122,且第一板体121与第二板体122一体成型。同时,第一板体121以及第二板体122也可以为内壳体120的仅用于安装第一发射装置410以及第二发射装置420的板体,内壳体120还具有其他部分。
为了提高散热效率,本实施例中,内壳体120与周壁板112一体设置,进一步地,还可以为内壳体120、周壁板112以及其中一个端板111一体成型。这样的结构可以加快两个发射装置的热传导效率,提升激光雷达10的散热性能。一种实施例中,为了更好地进行散热,周壁板112的外壁面上还可以设置多个散热槽1124;周壁板112的内壁面上还可以设置有多个散热筋1128。具 体地,散热槽1124可以为盲槽或通槽,且各散热槽1124可以设置于周壁板112的位于第一透光板1126以及第二透光板1125之外的任何部位。
一种实施例中,第一板体121的面向第一发射装置410的表面设置有第一安装槽1211,第一发射装置410嵌于第一安装槽1211。第二板体122的面向第二发射装置420的表面设置有第二安装槽,第二发射装置420嵌于第二安装槽。这样的结构一方面能够使得两个发射装置安装得更加牢靠,另一方面,也能增加内壳体120与两个发射装置之间的接触面积,从而提成散热性能。进一步地,第一安装槽1211内还可以设置有第一导热件,第一导热件连接第一安装槽1211以及第一发射装置410。第二安装槽内设置有第二导热件,第二导热件连接第二安装槽以及第二发射装置420。第一导热件以及第二导热件可以为任何具有优良导热性能的材质。同时,第一导热件以及第二导热件还可以选用具有缓冲性能的材质,例如,第一导热件以及第二导热件可以均为导热硅胶。
第一导热槽的形状视第一发射装置410的形状而定,本实施例中,第一发射装置410的面向第一板体121的表面呈矩形,故第一导热槽为横截面呈矩形的槽体。此时,第一导热件可以呈矩形的片状,且垫于第一导热槽的槽底,第一导热件也可以为环形,且位于第一发射装置410的外周边缘与第一导热槽的槽侧壁之间的间隙内。当然,第一发射装置410、第一导热槽以及第一导热件还可以为其他形状,这里不做赘述。
如图14至15所示,本申请实施例的第二方面还提供了一种设备1,该设备1包括上述任一实施例中的激光雷达10。该设备1可以为任意具有进行激光探测的设备1,具体地,该设备可以为汽车。汽车包括汽车本体20,激光雷达10可以安装于汽车本体20的外部或嵌入于汽车本体20内。当激光雷达10设置于汽车本体20外时,激光雷达10优选为设置于汽车本体20的车顶。
本实施例的附图中相同或相似的标号对应相同或相似的部件;在本申请的 描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种激光雷达,其特征在于,包括:
    壳体,限定出发射腔室以及接收腔室;
    激光发射装置,设置于所述发射腔室,用于向第一目标区域发射激光束;
    多个激光接收装置,设置于所述接收腔室,所述多个激光接收装置可接收第二目标区域内反射的所述激光束,所述第一目标区域与所述第二目标区域至少部分重合;
    其中,所述第二目标区域由多个子探测区域组合而成,每个所述子探测区域均小于所述第一目标区域且与所述第一目标区域至少部分重合,各所述激光接收装置一一对应接收各所述子探测区域内的反射的所述激光束。
  2. 如权利要求1所述的激光雷达,其特征在于,
    所述发射腔室内设置有多个所述激光发射装置,所述第一目标区域由多个子发射区域组合而成,各所述激光发射装置一一对应向各所述子发射区域内发射所述激光束。
  3. 如权利要求2所述的激光雷达,其特征在于,
    所述激光发射装置的数量与所述激光接收装置的数量相同,各所述激光接收装置一一对应接收各所述激光发射装置发射至所述第一目标区域并反射回的所述激光束。
  4. 如权利要求3所述的激光雷达,其特征在于,
    所述激光发射装置的数量为两个,分别为第一发射装置以及第二发射装置,所述第一发射装置朝第一子发射区域内发射所述激光束,所述第二发射装置朝 第二子发射区域内发射所述激光束,所述第一目标区域由所述第一子发射区域与所述第二子发射区域组合而成;
    所述激光接收装置的数量为两个,分别为第一接收装置以及第二接收装置,所述第一接收装置以及所述第二接收装置均用于接收由所述第一目标区域内反射回的所述激光束。
  5. 如权利要求4所述的激光雷达,其特征在于,
    所述第一接收装置用于接收第一子探测区域内的光线,所述第一子探测区域位于所述第一子发射区域内;
    所述第二接收装置用于接收第二子探测区域内的光线,所述第二子探测区域位于所述第二子发射区域内。
  6. 如权利要求5所述的激光雷达,其特征在于,
    所述第一子发射区域与所述第二子发射区域具有重合部分;
    所述激光雷达还包括调控装置,所述调控装置配置成可控制所述第一发射装置以及所述第二发射装置的开闭,以使得所述第一接收装置接收所述第一发射装置发射向所述第一子探测区域内的所述激光束、所述第二接收装置接收所述第二发射装置发射向所述第二子探测区域内的所述激光束。
  7. 如权利要求6所述的激光雷达,其特征在于,所述壳体包括:
    外壳体,限定出内部腔室,所述外壳体包括第一透光板以及两个第二透光板;
    内壳体,设置于所述内部腔室,所述内壳体与所述外壳体的内壁面连接,且所述内壳体将所述内部腔室分隔成所述发射腔室以及所述接收腔室;
    其中,所述第一透光板面向所述发射腔室,且所述第一发射装置以及所述第二发射装置发射的所述激光束穿过所述第一透光板而发射向所述激光雷达外;两个所述第二透光板均面向所述接收腔室,且所述第一接收装置接收穿过其中一个所述第二透光板的所述激光束、所述第二接收装置接收穿过另一个所述第二透光板的所述激光束。
  8. 如权利要求7所述的激光雷达,其特征在于,所述外壳体包括:
    两个相对的端板;
    周壁板,位于两个所述端板之间,且与两个所述端板共同限定出所述内部腔室,所述周壁板包括发射壁、第一接收壁以及第二接收壁,沿所述周壁板的周向,所述第一接收壁以及所述第二接收壁分别位于所述发射壁的两端,所述第一透光板设置于所述发射壁,两个所述第二透光板一一对应设置于所述第一接收壁以及所述第二接收壁;
    其中,所述内壳体分别连接两个所述端板以及所述发射壁,并与所述发射壁、两个所述端板共同限定出所述发射腔室。
  9. 如权利要求8所述的激光雷达,其特征在于,
    所述发射壁、所述第一接收壁以及所述第二接收壁均呈平板状,所述第一接收壁与所述发射壁之间呈第一夹角、所述第二接收壁与所述发射壁之间呈第二夹角,所述第一夹角等于所述第二夹角且均呈为小于一百八十度的钝角。
  10. 如权利要求9所述的激光雷达,其特征在于,
    所述内壳体包括第一板体以及第二板体,所述第一板体以及所述第二板体均分别连接所述发射壁以及两个所述端板,所述第一板体与所述第二板体之间 的面向所述发射腔室的夹角呈钝角,所述第一板体的面向所述发射腔室的表面设置所述第一发射装置,所述第二板体的面向所述发射腔室的表面设置所述第二发射装置。
  11. 如权利要求9所述的激光雷达,其特征在于,
    所述第一接收装置具有第一光路轴线,所述第一光路轴线垂直于与其相交的所述第二透光板,所述第二接收装置具有第二光路轴线,所述第二光路轴线垂直于与其相交的所述第二透光板,所述第一光路轴线与所述第二光路轴线的夹角大于四十五度。
  12. 如权利要求9所述的激光雷达,其特征在于,
    所述第一接收装置具有第一锥形探测场,所述第一锥形探测场具有靠近所述发射壁的第一极限边缘线,所述第二接收装置具有第二锥形探测场,所述第二锥形探测场具有靠近所述发射壁的第二极限边缘线,所述第一极限边缘线与所述第二极限边缘线交叉,且交叉点位于所述发射壁的面向探测物的一侧。
  13. 一种设备,其特征在于,包括:
    权利要求1-12任一项所述的激光雷达。
PCT/CN2020/070547 2019-09-26 2020-01-06 激光雷达及具有激光雷达的设备 WO2021051727A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202080005557.8A CN112840231B (zh) 2020-01-06 2020-01-06 激光雷达及具有激光雷达的设备
PCT/CN2020/070547 WO2021051727A1 (zh) 2020-01-06 2020-01-06 激光雷达及具有激光雷达的设备
PCT/CN2020/117217 WO2021057809A1 (zh) 2019-09-26 2020-09-23 激光雷达及其控制方法和具有激光雷达的设备
CN202080004982.5A CN112955786A (zh) 2019-09-26 2020-09-23 激光雷达及其控制方法和具有激光雷达的设备
US17/704,088 US20220390603A1 (en) 2019-09-26 2022-03-25 Lidar, method for controlling the same, and apparatus including lidar
US17/857,960 US11867837B2 (en) 2020-01-06 2022-07-05 LiDAR and device having LiDAR
US18/528,696 US20240118390A1 (en) 2020-01-06 2023-12-04 Lidar and device having lidar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070547 WO2021051727A1 (zh) 2020-01-06 2020-01-06 激光雷达及具有激光雷达的设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/857,960 Continuation-In-Part US11867837B2 (en) 2020-01-06 2022-07-05 LiDAR and device having LiDAR

Publications (1)

Publication Number Publication Date
WO2021051727A1 true WO2021051727A1 (zh) 2021-03-25

Family

ID=74883411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070547 WO2021051727A1 (zh) 2019-09-26 2020-01-06 激光雷达及具有激光雷达的设备

Country Status (2)

Country Link
CN (1) CN112840231B (zh)
WO (1) WO2021051727A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640827A (zh) * 2021-08-02 2021-11-12 安徽皖仪科技股份有限公司 一种激光雷达自动避障系统及自动避障方法
CN116466328A (zh) * 2023-06-19 2023-07-21 深圳市矽赫科技有限公司 一种Flash智能光学雷达装置及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825987A (zh) * 2021-09-17 2023-03-21 华为技术有限公司 激光雷达、探测设备和车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327737A (ja) * 1995-06-05 1996-12-13 Koito Mfg Co Ltd 距離測定装置
JPH08327738A (ja) * 1995-06-05 1996-12-13 Koito Mfg Co Ltd 距離測定装置
CN103608696A (zh) * 2012-05-22 2014-02-26 韩国生产技术研究院 3d扫描系统和获得3d图像的方法
JP5697478B2 (ja) * 2011-02-21 2015-04-08 三菱電機株式会社 レーザレーダ装置
CN105659108A (zh) * 2013-08-20 2016-06-08 谷歌公司 具有共享发射/接收路径的旋转光检测和测距平台的设备和方法
CN206161860U (zh) * 2016-09-20 2017-05-10 艾普柯微电子(上海)有限公司 一种距离传感器及装有距离传感器的电子终端
CN108414999A (zh) * 2017-12-01 2018-08-17 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN110412602A (zh) * 2019-07-02 2019-11-05 北醒(北京)光子科技有限公司 一种激光雷达探测方法及激光雷达
US20190377093A1 (en) * 2018-06-08 2019-12-12 Honeywell International Inc. Lidar air data system with multiply interrogated transmitters

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327737A (ja) * 1995-06-05 1996-12-13 Koito Mfg Co Ltd 距離測定装置
JPH08327738A (ja) * 1995-06-05 1996-12-13 Koito Mfg Co Ltd 距離測定装置
JP5697478B2 (ja) * 2011-02-21 2015-04-08 三菱電機株式会社 レーザレーダ装置
CN103608696A (zh) * 2012-05-22 2014-02-26 韩国生产技术研究院 3d扫描系统和获得3d图像的方法
CN105659108A (zh) * 2013-08-20 2016-06-08 谷歌公司 具有共享发射/接收路径的旋转光检测和测距平台的设备和方法
CN206161860U (zh) * 2016-09-20 2017-05-10 艾普柯微电子(上海)有限公司 一种距离传感器及装有距离传感器的电子终端
CN108414999A (zh) * 2017-12-01 2018-08-17 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
US20190377093A1 (en) * 2018-06-08 2019-12-12 Honeywell International Inc. Lidar air data system with multiply interrogated transmitters
CN110412602A (zh) * 2019-07-02 2019-11-05 北醒(北京)光子科技有限公司 一种激光雷达探测方法及激光雷达

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640827A (zh) * 2021-08-02 2021-11-12 安徽皖仪科技股份有限公司 一种激光雷达自动避障系统及自动避障方法
CN113640827B (zh) * 2021-08-02 2024-02-09 安徽皖仪科技股份有限公司 一种激光雷达自动避障系统及自动避障方法
CN116466328A (zh) * 2023-06-19 2023-07-21 深圳市矽赫科技有限公司 一种Flash智能光学雷达装置及系统

Also Published As

Publication number Publication date
CN112840231B (zh) 2023-03-10
CN112840231A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2021051727A1 (zh) 激光雷达及具有激光雷达的设备
US11522335B2 (en) Transmitting device with a scanning mirror covered by a collimating cover element
WO2021057809A1 (zh) 激光雷达及其控制方法和具有激光雷达的设备
CN108549085B (zh) 一种发射镜头、面阵激光雷达及移动平台
US11662438B2 (en) Optical scanning apparatus and lidar with extinction component
WO2023213238A1 (zh) 光学整形模组、装置及激光雷达系统
JP7312979B2 (ja) レーザートランシーバーモジュールおよびその光学調整方法、レーザーレーダーおよび自動運転装置
CN112219130B (zh) 一种测距装置
CN112888957B (zh) 激光发射装置、激光雷达和智能感应设备
US20240003739A1 (en) Optical receiving device and optical sensing device
WO2022110062A1 (zh) 光学测距装置及其光学窗口、可移动设备
WO2022006752A1 (zh) 激光接收装置、激光雷达及智能感应设备
WO2022147652A1 (zh) 激光雷达及具有激光雷达的设备
CN113075644B (zh) 激光雷达及具有激光雷达的设备
US11867837B2 (en) LiDAR and device having LiDAR
CN111708108A (zh) 投射透镜、发射模组及电子设备
US20240175986A1 (en) Optical system and lidar
US20240045031A1 (en) Lidar and lidar design method
CN220438638U (zh) 一种紧凑型车载激光雷达发射镜头
CN213658966U (zh) 一种增强激光雷达接收的标点及装置
CN115629466A (zh) 光学系统、收发装置及激光雷达
CN117784090A (zh) 一种激光雷达装置
CN117665719A (zh) 一种激光发射系统、激光雷达及终端设备
CN118091607A (zh) 一种用于激光雷达光芯片的出光转向和垂向控制的装置
CN115524857A (zh) 光学系统及具有此的激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20866249

Country of ref document: EP

Kind code of ref document: A1