WO2021051698A1 - 油分离器及冷水机组 - Google Patents

油分离器及冷水机组 Download PDF

Info

Publication number
WO2021051698A1
WO2021051698A1 PCT/CN2019/128045 CN2019128045W WO2021051698A1 WO 2021051698 A1 WO2021051698 A1 WO 2021051698A1 CN 2019128045 W CN2019128045 W CN 2019128045W WO 2021051698 A1 WO2021051698 A1 WO 2021051698A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
exhaust
heat exchanger
storage cavity
inlet
Prior art date
Application number
PCT/CN2019/128045
Other languages
English (en)
French (fr)
Inventor
张治平
龙忠铿
罗炽亮
张丙
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021051698A1 publication Critical patent/WO2021051698A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers

Definitions

  • the present disclosure relates to the technical field of water chillers, in particular to an oil separator and water chillers.
  • the conventional vertical oil separator achieves the separation of oil and gas from the compressor exhaust through the effects of collision, rotation, natural sedimentation, and filtration.
  • lubricating oil is needed to realize the functions of lubrication, sealing and cooling.
  • lubricating oil is also used to cool the rotor cavity.
  • a heat exchanger is used in the related art to cool the lubricating oil, and then a low-temperature lubricating oil is used to cool the compressor rotor cavity to achieve the effect of reducing the compressor discharge temperature.
  • the present disclosure relates to an oil separator and a chiller.
  • an oil separator includes
  • the shell is provided with an oil storage cavity
  • the heat exchanger is arranged in the oil storage cavity, and the heat exchanger is configured to exchange heat with the lubricating oil in the oil storage cavity.
  • the heat exchanger is arranged at the bottom of the oil storage cavity.
  • the heat exchanger includes:
  • the heat exchange tube has a refrigerant flow channel; the heat exchange tube is coiled in the oil storage cavity.
  • the heat exchanger is an oil cooler.
  • an exhaust inlet and an exhaust outlet are further provided on the housing, and both the exhaust inlet and the exhaust outlet are in communication with the oil storage cavity.
  • the oil separator further includes:
  • the filter device is located in the oil storage cavity; the filter device is configured to filter out the lubricating oil in the compressor exhaust gas that is transported through the exhaust gas inlet.
  • the filtering device includes:
  • the filter screen is arranged at the position of the exhaust outlet and covers the exhaust outlet, and the filter screen is configured to filter out the lubricating oil in the exhaust of the compressor.
  • the location of the filter device is higher than the heat exchanger.
  • a lubricating oil outlet is further provided at the bottom of the housing, and the lubricating oil outlet is in communication with the bottom of the oil storage cavity.
  • the present disclosure relates to a chiller including the above-mentioned oil separator.
  • the chiller further includes:
  • the condenser is in communication with the refrigerant flow passage of the heat exchanger.
  • the heat exchanger is an oil cooler
  • the outlet of the oil cooler is in communication with the refrigerant inlet of the condenser
  • the inlet of the oil cooler and the refrigerant outlet of the condenser pass through the refrigerant The pipeline is connected.
  • an exhaust inlet and an exhaust outlet are provided on the housing, and the exhaust inlet and the exhaust outlet are both in communication with the oil storage cavity; the chiller further includes:
  • the compressor the exhaust inlet is in communication with the compressor, and the exhaust outlet is in communication with the refrigerant inlet of the condenser.
  • the chiller further includes:
  • the electronic expansion valve is arranged on the refrigerant pipeline
  • a temperature sensor disposed at the exhaust gas inlet, the temperature sensor being configured to detect the temperature of the compressor exhaust
  • the control device is electrically connected to the electronic expansion valve and the temperature sensor; the control device is configured to control the opening of the electronic expansion valve according to the temperature of the compressor discharge gas to adjust the temperature of the heat exchanger .
  • the oil separator provided by the technical solution of the present disclosure, by arranging the heat exchanger in the oil storage cavity of the shell, the lubricating oil filtered by the oil separator is directly exchanged and cooled inside the oil separator. Since the oil separator has separated the lubricating oil and the refrigerant, and the space in the oil storage cavity is large, the refrigerant gas can be quickly discharged without affecting the heat exchange effect of the lubricating oil, so that the cooling effect of the lubricating oil is greatly improved.
  • the heat exchanger is arranged in the oil storage cavity of the shell, even if part of the refrigerant is mixed in the lubricating oil, when the lubricating oil enters the heat exchange tube to exchange heat, the refrigerant gas will not be deposited in the bend of the heat exchange tube. The breakage can be discharged smoothly, thereby optimizing the heat exchange effect of the lubricating oil.
  • Figure 1 is a schematic structural diagram of an oil separator provided by some embodiments of the present disclosure
  • Figure 2 is a schematic structural diagram of a chiller provided by some embodiments of the present disclosure.
  • Fig. 3 is a schematic structural diagram of a chiller provided by other embodiments of the present disclosure.
  • the present disclosure relates to an oil separator 100 including a housing 10 and a heat exchanger 40.
  • An oil storage cavity 30 is provided in the housing 10.
  • the heat exchanger 40 is arranged in the oil storage cavity 30, and the heat exchanger 40 is used to exchange heat with the filtered lubricating oil.
  • the oil separator 100 provided by the technical solution of the present disclosure directly exchanges heat and cools the lubricating oil filtered by the oil separator 100 inside the oil separator 100 by arranging the heat exchanger in the oil storage cavity 30 of the housing 10
  • the oil separator 100 has separated the lubricating oil and the refrigerant, and the space in the oil storage cavity 30 is large, so that the refrigerant gas can be quickly discharged without affecting the heat exchange effect of the lubricating oil, so that the cooling effect of the lubricating oil is greatly improved.
  • the heat exchanger 40 is provided at the bottom of the oil storage cavity 30.
  • the heat exchanger 40 is arranged at the bottom of the oil storage cavity 30, so that the heat exchanger 40 is completely immersed in the lubricating oil after the lubricating oil accumulates to a certain height, thereby increasing the heat.
  • the exchange efficiency greatly improves the cooling effect of the lubricating oil.
  • the heat exchanger 40 includes heat exchange tubes in which refrigerant flows, and the heat exchange tubes are coiled in the oil storage cavity 30.
  • the oil separator 100 provided by the technical solution of the present disclosure forms a heat exchanger by arranging a heat exchange tube coil in an oil storage cavity 30, a refrigerant circulates inside the heat exchange tube, and the refrigerant absorbs the heat of the lubricating oil and then evaporates to further absorb the heat of the lubricating oil , Thereby cooling the lubricating oil.
  • the above technical solution utilizes the space in the oil separator 100 to integrate the heat exchanger and the oil separator 100 into one body, thereby saving installation space of the equipment.
  • the heat exchanger 40 is an oil cooler.
  • the oil cooler is arranged in the oil storage cavity 30 of the housing 10 to directly exchange heat and cool the lubricating oil filtered by the oil separator 100 inside the oil separator 100. Since the oil separator 100 has separated the lubricating oil and the refrigerant, and the space in the oil storage cavity 30 is large, the refrigerant gas can be quickly discharged without affecting the heat exchange effect of the lubricating oil, so that the cooling effect of the lubricating oil is greatly improved.
  • an exhaust inlet 11 and an exhaust outlet 12 are further provided on the housing 10, and the exhaust inlet 11 and the exhaust outlet 12 are respectively communicated with the oil storage cavity 30.
  • the exhaust gas of the compressor 1 enters the oil storage cavity 30 from the exhaust gas inlet 11 by setting the exhaust gas inlet 11 and the exhaust gas outlet 12. After the oil separator 100 filters out the lubricating oil, the compressor 1 exhaust gas is discharged from the exhaust outlet 12, and the compressor 1 exhaust gas will not accumulate in the oil storage chamber 30. Therefore, the influence of the lubricating oil on the heat exchange effect is reduced or even avoided , Improve the cooling effect of lubricating oil.
  • the oil separator 100 further includes a filter device 20, which is located in the oil storage cavity 30.
  • the filter device 20 is used to filter out the lubricating oil in the exhaust of the compressor 1, and the lubrication filtered by the filter device 20 The oil is stored in the oil storage cavity 30.
  • the oil separator 100 provided by the technical solution of the present disclosure filters out the lubricating oil in the exhaust of the compressor 1 by providing a filter device 20, and the filtered lubricating oil drips into the oil storage cavity 30 and directly exchanges heat with the heat exchanger 40 Cooling greatly improves the heat exchange effect of the lubricating oil.
  • the location of the filter device 20 is higher than the heat exchanger 40.
  • the lubricating oil filtered by the filter device 20 drops to the position of the heat exchanger 40 under its own gravity to exchange heat.
  • the filter device 20 includes a filter screen 201 disposed at the position of the exhaust outlet 12, and the filter screen 201 is used to filter out the lubricating oil in the exhaust gas of the compressor 1.
  • the filter screen 201 is arranged at the position of the exhaust outlet 12 to better filter out the lubricating oil in the exhaust of the compressor 1 and improve the oil content effect.
  • a lubricating oil outlet 13 is further provided at the bottom of the housing 10, and the lubricating oil outlet 13 is in communication with the bottom of the oil storage cavity 30.
  • the oil separator 100 provided by the technical solution of the present disclosure connects the lubricating oil outlet 13 with the bottom of the oil storage cavity 30 so that the discharged lubricating oil is lubricating oil with a lower temperature at the bottom of the oil storage cavity 30.
  • a chiller including the above-mentioned oil separator 100.
  • the chiller further includes a condenser 50, and the condenser 50 is in communication with the oil separator 100.
  • the heat exchanger 40 is an oil cooler, the outlet 42 of the oil cooler is in communication with the refrigerant inlet 51 of the condenser 50, and the inlet 41 of the oil cooler is in communication with the refrigerant outlet 52 of the condenser 50 through the refrigerant pipe 60.
  • the housing 10 is provided with an exhaust inlet 11 and an exhaust outlet 12. The exhaust inlet 11 and the exhaust outlet 12 are respectively communicated with the oil storage chamber 30, the exhaust inlet 11 is also communicated with the compressor 1, and the exhaust outlet 12 is also communicated with the refrigerant inlet 51 of the condenser 50.
  • the chiller provided by the technical solution of the present disclosure separates the exhaust gas from the compressor 1 through the oil separator 100.
  • the high-temperature refrigerant gas is discharged into the condenser 50, and the high-temperature lubricating oil accumulates in the oil separator. ⁇ 100 Bottom.
  • the condensed refrigerant liquid is taken from the bottom of the condenser 50, after throttling and depressurization, it becomes a low-temperature refrigerant gas-liquid mixture and then sent to the oil cooler to cool down the lubricating oil outside the oil cooler and absorb the heat of the lubricating oil
  • the evaporated refrigerant gas is then sent to the condenser again to form a cycle, so as to achieve continuous cooling of the lubricating oil. Therefore, the temperature of the lubricating oil entering the rotor cavity of the compressor 1 is reduced, a better cooling effect of the compressor is realized, the operating range of the compressor 1 is improved, and the application range is wider;
  • the chiller further includes an electronic expansion valve 70, a temperature sensor 80, and a control device.
  • the electronic expansion valve 70 is provided on the refrigerant pipe 60.
  • the temperature sensor 80 is provided at the position of the exhaust gas inlet 11, and the temperature sensor 80 is used to detect the temperature of the exhaust gas of the compressor 1.
  • the control device 90 is connected to the electronic expansion valve 70 and the temperature sensor 80 respectively. The control device 90 is used to control the opening degree of the electronic expansion valve 70 according to the temperature of the discharge of the compressor 1 to adjust the temperature of the oil cooler.
  • the chiller provided by the technical solution of the present disclosure detects the exhaust gas temperature through a temperature sensor, and realizes the dynamic adjustment of the opening degree of the electronic expansion valve through the actual detection value and the set value. If the exhaust gas temperature is higher than the set value, increase the opening of the electronic expansion valve, and the flow of low-temperature refrigerant into the built-in oil cooler will increase, so that the temperature of the lubricating oil at the bottom of the oil separator 100 will drop lower and the low-temperature lubricating oil can be better By cooling the rotor cavity of the compressor 1, the exhaust temperature can be reduced accordingly.
  • the exhaust temperature is lower than the set value, reduce the opening of the electronic expansion valve, and the low-temperature refrigerant flow into the built-in oil cooler is reduced, which weakens the temperature drop of the lubricating oil at the bottom of the oil separator 100, and the medium-temperature lubricating oil is cooled and compressed.
  • the rotor cavity of engine 1 is not as effective as low-temperature lubricating oil, and the exhaust temperature can be increased accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)

Abstract

一种油分离器及冷水机组。该油分离器包括:壳体(10),壳体(10)内设置有储油腔(30);换热器(40),换热器(40)设置在储油腔(30)内,换热器(40)被构造为与储油腔(30)内的润滑油换热。

Description

油分离器及冷水机组
本申请是以CN申请号为201910872778.4,申请日为2019年9月16日的申请为 基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及冷水机组技术领域,具体涉及一种油分离器及冷水机组。
背景技术
常规立式油分离器通过碰撞、旋分、自然沉降、过滤等作用,实现压缩机排气的油、气分离。压缩机在运行过程中,需要润滑油来实现润滑、密封以及冷却降温等作用。人们为了能够降低压缩机排气温度,拓宽压缩机运行范围,除了给电机喷液外,也采用润滑油给转子腔进行冷却降温。为了实现较好的油冷效果,相关技术中采用换热器来给润滑油降温,再通过低温润滑油来冷却压缩机转子腔,实现降低压缩机排气温度效果。
发明内容
本公开涉及了一种油分离器及冷水机组。
根据本公开涉及一种油分离器,包括
壳体,设置有储油腔;
换热器,设置在所述储油腔内,所述换热器被构造为与所述储油腔内的润滑油换热。
在一些实施例中,所述换热器设置在所述储油腔的底部。
在一些实施例中,所述换热器包括:
换热管,具有冷媒流道;所述换热管盘设在所述储油腔内。
在一些实施例中,所述换热器为油冷却器。
在一些实施例中,所述壳体上还设置有排气入口和排气出口,所述排气入口、所述排气出口均与所述储油腔连通。
在一些实施例中,所述油分离器还包括:
过滤装置,位于所述储油腔内;所述过滤装置被构造为滤除经由所述排气入口输 送的压缩机排气中的润滑油。
在一些实施例中,所述过滤装置包括:
滤网,所述滤网设置在所述排气出口位置处且覆盖所述排气出口,所述滤网被构造为滤除压缩机排气中的润滑油。
在一些实施例中,所述过滤装置的位置高于所述换热器。
在一些实施例中,所述壳体底部还设置有润滑油出口,所述润滑油出口与所述储油腔底部连通。
根据本公开的另一个方面,本公开涉及一种冷水机组,包括上述的油分离器。
在一些实施例中,所述冷水机组还包括:
冷凝器,与所述换热器的冷媒流道连通。
在一些实施例中,所述换热器为油冷却器,所述油冷却器的出口与所述冷凝器的冷媒入口连通,所述油冷却器的入口与所述冷凝器的冷媒出口通过冷媒管路连通。
在一些实施例中,所述壳体上设置有排气入口和排气出口,所述排气入口、所述排气出口均与所述储油腔连通;所述冷水机组还包括:
压缩机,所述排气入口与所述压缩机连通,所述排气出口与所述冷凝器的冷媒入口连通。
在一些实施例中,所述冷水机组还包括:
电子膨胀阀,设置于所述冷媒管路上;
温度传感器,设置于所述排气入口处,所述温度传感器被构造为检测压缩机排气的温度;以及
控制装置,与所述电子膨胀阀和温度传感器均电连接;所述控制装置被构造为根据压缩机排气的温度,控制所述电子膨胀阀的开度,以调节所述换热器的温度。
本公开技术方案提供的油分离器,通过将换热器设置在壳体的储油腔内,将油分离器过滤出的润滑油直接在油分离器内部换热冷却。由于油分离器已经将润滑油和冷媒分离,且在储油腔内空间较大,冷媒气体得以快速排出,不会影响润滑油的换热效果,使润滑油的冷却效果大大提高。并且,由于换热器设置在壳体的储油腔内,即便润滑油中混有部分制冷剂,润滑油进入换热管中换热时,制冷剂气体也不会淤积在换热管的弯折处,而是得以顺畅排出,从而优化了润滑油的换热效果。
附图说明
图1是本公开一些实施例提供的油分离器的结构示意图;
图2是本公开一些实施例提供的冷水机组的结构示意图;
图3是本公开另一些实施例提供的冷水机组的结构示意图。
具体实施方式
下面结合图1至图3对本公开的技术方案做进一步说明。
如图1所示,在一些实施例中,本公开涉及一种油分离器100,包括壳体10和换热器40。壳体10内设置有储油腔30。换热器40设置在储油腔30内,换热器40用于与过滤出的润滑油换热。本公开技术方案提供的油分离器100,通过将换热器设置在壳体10的储油腔30内,将油分离器100过滤出的润滑油直接在油分离器100内部换热冷却,由于油分离器100已经将润滑油和冷媒分离,且在储油腔30内空间较大,冷媒气体得以快速排出,不会影响润滑油的换热效果,使润滑油的冷却效果大大提高。
在一些实施例中,换热器40设置在储油腔30的底部。本公开技术方案提供的油分离器100通过将换热器40设置在储油腔30的底部,从而在润滑油积累到一定高度后便使换热器40全部浸没在润滑油中,从而提高热交换效率,大大提高润滑油的冷却效果。
参见图1和图2,在一些实施例中,换热器40包括有内部流通冷媒的换热管,换热管盘设在储油腔30内。本公开技术方案提供的油分离器100通过将换热管盘设在储油腔30内形成换热器,换热管内部流通冷媒,冷媒吸收润滑油的热量后蒸发从而进一步吸收润滑油的热量,从而冷却润滑油。并且,上述技术方案利用油分离器100中的空间,将换热器与油分离器100集成于一体,节省了设备的安装空间。
在一些实施例中,换热器40为油冷却器。本公开技术方案提供的油分离器100,通过将油冷却器设置在壳体10的储油腔30内,将油分离器100过滤出的润滑油直接在油分离器100内部换热冷却。由于油分离器100已经将润滑油和冷媒分离,且在储油腔30内空间较大,冷媒气体得以快速排出,不会影响润滑油的换热效果,使润滑油的冷却效果大大提高。
参见图1和图2,在一些实施例中,壳体10上还设置有排气入口11和排气出口12,排气入口11、排气出口12分别与储油腔30连通。本公开技术方案提供的油分离器100,通过设置排气入口11和排气出口12使压缩机1排气从排气入口11进入储油腔30内。油分离器100将润滑油滤除后,压缩机1排气从排气出口12排出,压缩机 1排气不会聚积在储油腔30中,因此,降低甚至避免了润滑油影响换热效果,提高了润滑油的冷却效果。
在一些实施例中,油分离器100还包括过滤装置20,过滤装置20位于储油腔30内,过滤装置20用于滤除压缩机1排气中的润滑油,过滤装置20过滤出的润滑油储存在储油腔30内。本公开技术方案提供的油分离器100,通过设置过滤装置20将压缩机1排气中的润滑油滤除,过滤出的润滑油滴落到储油腔30中直接与换热器40换热冷却,大大提高了润滑油的换热效果。
在一些实施例中,过滤装置20的位置高于换热器40。过滤装置20过滤出的润滑油在自身重力下滴落至换热器40所在的位置,进行换热。
在一些实施例中,过滤装置20包括滤网201,滤网201设置在排气出口12位置处,滤网201用于滤除压缩机1排气中的润滑油。本公开技术方案提供的油分离器100,将滤网201设置在排气出口12位置处,更好地滤除了压缩机1排气中的润滑油,提高油分效果。
在一些实施例中,壳体10底部还设置有润滑油出口13,润滑油出口13与储油腔30底部连通。本公开技术方案提供的油分离器100,通过将润滑油出口13与储油腔30底部连通,使得排出的润滑油是储油腔30底部温度较低的润滑油。
根据本公开的另一个方面,公开了一种冷水机组,包括上述的油分离器100。
在一些实施例中,冷水机组还包括冷凝器50,冷凝器50与油分离器100连通。换热器40为油冷却器,油冷却器的出口42与冷凝器50的冷媒入口51连通,油冷却器的入口41与冷凝器50的冷媒出口52通过冷媒管路60连通。壳体10上设置有排气入口11和排气出口12。排气入口11、排气出口12分别与储油腔30连通,排气入口11还与压缩机1连通,排气出口12还与冷凝器50的冷媒入口51连通。
如图2所示,本公开技术方案提供的冷水机组,通过油分离器100对压缩机1排气进行油、气分离,高温冷媒气体排入冷凝器50中,高温润滑油则积聚在油分离器100底部。从冷凝器50底部取冷凝后的冷媒液体,经过节流降压后,成为低温冷媒气液混合物后送入油冷却器中,以对油冷却器外部的润滑油进行冷却降温,吸收润滑油热量后的蒸发的冷媒气体则再次送入冷凝器中,形成一个循环,从而实现对润滑油的持续冷却降温。从而使进入压缩机1转子腔润滑油的温度降低,实现更好的压缩机冷却效果,提升了压缩机1的运行范围,应用范围更宽;
在一些实施例中,冷水机组还包括电子膨胀阀70、温度传感器80和控制装置。 电子膨胀阀70设置在冷媒管路60上。温度传感器80设置在排气入口11位置处,温度传感器80用于检测压缩机1排气的温度。控制装置90分别连接电子膨胀阀70和温度传感器80。控制装置90用于根据压缩机1排气的温度,控制电子膨胀阀70的开度,以调节油冷却器的温度。
本公开技术方案提供的冷水机组,通过温度传感器检测排气温度,通过实际检测值大小与设定值大小,实现了动态调整电子膨胀阀开度。如果排气温度高于设定值,则增加电子膨胀阀开度,进入内置油冷却器中的低温冷媒流量增多,使得油分离器100底部润滑油温度降得更低,低温润滑油能够更好冷却压缩机1转子腔,排气温度则能够相应降低。如果排气温度低于设定值,则减小电子膨胀阀开度,进入内置油冷却器中的低温冷媒流量降低,削弱了油分离器100底部润滑油温度降得幅度,中温润滑油冷却压缩机1转子腔效果不如低温润滑油,排气温度则得以相应上升。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (14)

  1. 一种油分离器,包括:
    壳体(10),设置有储油腔(30);
    换热器(40),设置在所述储油腔(30)内,所述换热器(40)被构造为与所述储油腔(30)内的润滑油换热。
  2. 根据权利要求1所述的油分离器,其中,所述换热器(40)设置在所述储油腔(30)的底部。
  3. 根据权利要求1所述的油分离器,其中,所述换热器(40)包括:
    换热管(43),具有冷媒流道(431);所述换热管(43)盘设在所述储油腔(30)内。
  4. 根据权利要求3所述的油分离器,其中,所述换热器(40)为油冷却器。
  5. 根据权利要求1所述的油分离器,其中,所述壳体(10)上还设置有排气入口(11)和排气出口(12),所述排气入口(11)、所述排气出口(12)均与所述储油腔(30)连通。
  6. 根据权利要求5所述的油分离器,还包括:
    过滤装置(20),位于所述储油腔(30)内;所述过滤装置(20)被构造为滤除经由所述排气入口(11)输送的压缩机(1)排气中的润滑油。
  7. 根据权利要求6所述的油分离器,其中,所述过滤装置(20)包括:
    滤网(201),设置在所述排气出口(12)位置处且覆盖所述排气出口(12),所述滤网(201)被构造为滤除压缩机排气中的润滑油。
  8. 根据权利要求6所述的油分离器,其中,所述过滤装置(20)的位置高于所述换热器(40)。
  9. 根据权利要求1所述的油分离器,其中,所述壳体(10)底部还设置有润滑油出口(13),所述润滑油出口(13)与所述储油腔(30)底部连通。
  10. 一种冷水机组,包括权利要求1至9中任一项所述的油分离器(100)。
  11. 根据权利要求10所述的冷水机组,还包括:
    冷凝器(50),与所述换热器(40)的冷媒流道(431)连通。
  12. 根据权利要求11所述的冷水机组,其中,所述换热器(40)为油冷却器,所述油冷却器的出口(42)与所述冷凝器(50)的冷媒入口(51)连通,所述油冷却器的入口(41)与所述冷凝器(50)的冷媒出口(52)通过冷媒管路(60)连通。
  13. 根据权利要求12所述的冷水机组,其中,所述壳体(10)上设置有排气入口(11)和排气出口(12),所述排气入口(11)、所述排气出口(12)均与所述储油腔(30)连通;所述冷水机组还包括:
    压缩机(1),所述排气入口(11)与所述压缩机(1)连通,所述排气出口(12)与所述冷凝器(50)的冷媒入口(51)连通。
  14. 根据权利要求13所述的冷水机组,还包括:
    电子膨胀阀(70),设置于所述冷媒管路(60)上;
    温度传感器(80),设置于所述排气入口(11)处,所述温度传感器(80)被构造为检测压缩机排气的温度;以及
    控制装置(90),与所述电子膨胀阀(70)和温度传感器(80)均连接;所述控制装置(90)被构造为根据压缩机(1)排气的温度,控制所述电子膨胀阀(70)的开度,以调节所述换热器(40)的温度。
PCT/CN2019/128045 2019-09-16 2019-12-24 油分离器及冷水机组 WO2021051698A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910872778.4A CN110530079A (zh) 2019-09-16 2019-09-16 带油冷却功能的油分离器及冷水机组
CN201910872778.4 2019-09-16

Publications (1)

Publication Number Publication Date
WO2021051698A1 true WO2021051698A1 (zh) 2021-03-25

Family

ID=68668935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128045 WO2021051698A1 (zh) 2019-09-16 2019-12-24 油分离器及冷水机组

Country Status (2)

Country Link
CN (1) CN110530079A (zh)
WO (1) WO2021051698A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530079A (zh) * 2019-09-16 2019-12-03 珠海格力电器股份有限公司 带油冷却功能的油分离器及冷水机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048539A (zh) * 1973-06-20 1975-04-30
JPS6298170A (ja) * 1985-10-23 1987-05-07 新明和工業株式会社 油分離器
CN104197563A (zh) * 2014-08-21 2014-12-10 浙江大学 一种制冷装置
CN208751091U (zh) * 2018-09-19 2019-04-16 张家港市江南利玛特设备制造有限公司 一种油分离冷却装置
CN110530079A (zh) * 2019-09-16 2019-12-03 珠海格力电器股份有限公司 带油冷却功能的油分离器及冷水机组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042271A (en) * 1990-01-22 1991-08-27 Kent-Moore Corporation Refrigerant handling system with compressor oil separation
KR200447291Y1 (ko) * 2009-02-04 2010-01-14 주식회사 메가콤 컴프레서 오일과 압축공기의 분리장치
CN102538325A (zh) * 2012-02-03 2012-07-04 中国科学院理化技术研究所 一种润滑油与制冷剂分离的冷凝捕集分离器
CN203068891U (zh) * 2013-01-15 2013-07-17 珠海格力电器股份有限公司 立式油分离器
CN108954996A (zh) * 2018-09-30 2018-12-07 珠海格力电器股份有限公司 油分离装置及设有其的热交换系统
CN211261373U (zh) * 2019-09-16 2020-08-14 珠海格力电器股份有限公司 油分离器及冷水机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048539A (zh) * 1973-06-20 1975-04-30
JPS6298170A (ja) * 1985-10-23 1987-05-07 新明和工業株式会社 油分離器
CN104197563A (zh) * 2014-08-21 2014-12-10 浙江大学 一种制冷装置
CN208751091U (zh) * 2018-09-19 2019-04-16 张家港市江南利玛特设备制造有限公司 一种油分离冷却装置
CN110530079A (zh) * 2019-09-16 2019-12-03 珠海格力电器股份有限公司 带油冷却功能的油分离器及冷水机组

Also Published As

Publication number Publication date
CN110530079A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
EP2543941B1 (en) Chiller
CN104596162B (zh) 一种内置油分离器式冷凝器
TW201807367A (zh) 排氣裝置、製冷空調機組和不凝性氣體的排氣方法
JP3617083B2 (ja) 受液器一体型冷媒凝縮器
JP2005114353A (ja) 受液器一体型冷媒凝縮器
JP2013119373A (ja) 車両用コンデンサ
WO2021051698A1 (zh) 油分离器及冷水机组
CN106440593A (zh) 变频器冷却系统、空调机组及控制方法
CN211261373U (zh) 油分离器及冷水机组
TW202338274A (zh) 節能器及包括該節能器之製冷系統
CN206257825U (zh) 微机控制热虹吸经济器螺杆式乙二醇机组
US11566797B2 (en) Heat pump
WO2024021698A1 (zh) 壳管式换热器及空调机组
WO2023109130A1 (zh) 多级压缩机及空调机组
US5396784A (en) Oil management system for screw compressor utilized in refrigeration system
CN211345950U (zh) 油分离装置、冷凝器以及制冷系统
JPH08219590A (ja) 受液器一体型冷媒凝縮器
CN107436059A (zh) 一种结构简化的储液器
CN214250231U (zh) 油分离器、空调系统
CN211716931U (zh) 气液分离器及冷水机组
CN209399558U (zh) 空调器
WO2021082206A1 (zh) 储液分油装置、压缩机组件、热交换系统和电器设备
JP5787564B2 (ja) 気液分離および油分離が可能な分離器
JP2019035558A (ja) 油分離器
CN216814395U (zh) 空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945910

Country of ref document: EP

Kind code of ref document: A1