WO2021051690A1 - 磁码信息识别系统和方法及其应用 - Google Patents

磁码信息识别系统和方法及其应用 Download PDF

Info

Publication number
WO2021051690A1
WO2021051690A1 PCT/CN2019/126695 CN2019126695W WO2021051690A1 WO 2021051690 A1 WO2021051690 A1 WO 2021051690A1 CN 2019126695 W CN2019126695 W CN 2019126695W WO 2021051690 A1 WO2021051690 A1 WO 2021051690A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
code
vehicle
magnetic pole
identification
Prior art date
Application number
PCT/CN2019/126695
Other languages
English (en)
French (fr)
Inventor
杨杰
高涛
周发助
樊宽刚
邓永芳
唐宏
Original Assignee
赣州德业电子科技有限公司
江西理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赣州德业电子科技有限公司, 江西理工大学 filed Critical 赣州德业电子科技有限公司
Publication of WO2021051690A1 publication Critical patent/WO2021051690A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/04Indicating or recording train identities
    • B61L25/046Indicating or recording train identities using magnetic tags

Definitions

  • the invention relates to the technical field of electromagnetic induction, signal recognition and processing, and in particular to a magnetic code information recognition system and method and its application.
  • the increasing maturity of domestic medium and low-speed magnetic levitation technology has promoted the acceleration of its commercialization.
  • the low- and medium-speed magnetic levitation transportation lines that have been commercialized include the Changsha Maglev Special Line and the Beijing Maglev S1 Line. It is reported that on August 21, 2019, the single-day passenger traffic of Beijing Maglev S1 line reached 41,200, a new high in passenger traffic, an increase of 10 thousand from the historical high, an increase of 2.40%, which also means that the maglev train is serving the social crowd. At the same time, the masses have gradually accepted and recognized this new rail transit system. In this context, it also provides the possibility of application and market demand for a new type of magnetic code information identification system and method proposed by the present invention.
  • Passive positioning technology also known as absolute positioning technology
  • absolute positioning technology has certain development and applications in the existing market, such as absolute positioning sensors, freight trains, and mine automatic freight vehicles.
  • speed measurement and positioning function it provides more accurate speed and position information for vehicle operation.
  • speed measurement and positioning function it provides more accurate speed and position information for vehicle operation.
  • speed measurement and positioning function it provides more accurate speed and position information for vehicle operation.
  • speed measurement and positioning function it provides more accurate speed and position information for vehicle operation. It is also a key technology for existing rail transit trains, and provides important technical basis for trains to achieve functions such as drive control, energy-saving operation, and precise parking.
  • the cross-induction loop speed measurement and positioning technology is widely used in the magnetic levitation transportation line.
  • the levitation and guidance of the existing magnetic levitation technology belong to a strong electromagnetic environment, so there is bound to be a certain magnetic field interference to the accuracy of the cross-induction loop.
  • From the perspective of train safety there is still a necessity for the introduction of absolute positioning technology in rail transportation lines. It is not only used as a redundant setting for train speed measurement and positioning, but also combined with the existing cross-induction loop to form a two-level safety guarantee device; it can also be used for trains alone. Provide accurate speed measurement and positioning.
  • the present invention also provides a more accurate positioning recognition method for the absolute positioning technology, and further promotes the popularization and application of the absolute positioning technology to other fields.
  • the operation accuracy of the maglev train is required to be controlled in the millimeter level, so it has high accuracy requirements for the train speed measurement and positioning. It is necessary to achieve the accuracy requirements of the millimeter level, but also to avoid the magnetic field influence on the electromagnetic levitation of the train, and the operating cost must not be too high. .
  • the magnetic code positioning technology with high information recognition accuracy, strong anti-interference ability, strong adaptability, low cost and long life span is extremely important.
  • the present invention is a type of absolute positioning technology that utilizes the characteristics of magnetic codes.
  • the magnetic code information identification can include one-dimensional, two-dimensional, and three-dimensional magnetic codes.
  • the three-dimensional magnetic code identification strategy is to set the magnetic poles "N", “S”, and “S”.
  • “Non-magnetic” represents the values "1", "2", and "0” respectively.
  • the absolute position information and the corresponding numerical sequence form a mapping relationship, and then a kind of three-dimensional magnetic code identification technology of the hardware structure is realized by the magnetic pole characteristics.
  • the present invention proposes a magnetic code information recognition system, method and application, which improves the accuracy of magnetic code recognition, and further promotes the magnetic pole positioning technology to the field of rail transit, especially the application of magnetic levitation trains.
  • the recognition system and the recognition method have the characteristics of high recognition accuracy, strong anti-interference ability, strong adaptability, low cost and long life.
  • one aspect of the present invention provides a magnetic code information identification system, which includes: a vehicle-mounted identifier, the vehicle-mounted identifier adopts a vehicle-mounted identification code with a preset magnetic sheet polarity; a magnetic pole code plate, the The magnetic pole encoding card utilizes the characteristics of the magnetic pole to hide the required information in the magnetic pole encoding matrix sequence; the magnetic pole encoding matrix sequence of the magnetic pole encoding card is read and identified through the interaction between the vehicle-mounted identifier and the magnetic pole encoding card.
  • the identification system presets a magnetic code row/column separation identification device, and the magnetic code row/column separation identification device includes magnetic code row/column separators arranged on both sides of the magnetic pole encoding plate and arranged on the The row/column data capture module on the vehicle identifier, the row/column data capture module is provided with sensor data monitoring front-end equipment.
  • the magnetic code row/column separator is preset by an infrared device, and the magnetic code row/column separator of the magnetic pole code plate is filled with black and painted into rectangular strips and arranged on both sides of the magnetic pole code plate; or
  • the magnetic code row/column separators are preset by a magnetic device, and the magnetic code row/column separators of the magnetic pole code plate are arranged on both sides of the magnetic pole code plate by using permanent magnetic rectangular strips.
  • the vehicle identification code of the vehicle identification device is any one of a permanent magnet identification code or an electromagnetic winding coil.
  • the size of the magnetic sheet of the on-board identification code of the on-board identifier is smaller than the size of the magnetic sheet of the magnetic pole encoding matrix sequence of the magnetic pole encoding plate.
  • the vehicle-mounted identifier is preset with a magnetic pole data capture module with a vehicle-mounted magnetic code recognition sensor, and the type of the vehicle-mounted magnetic code recognition sensor matches the type of the corresponding vehicle-mounted identification code.
  • the vehicle identification code and the vehicle magnetic code identification sensor are both installed on a non-magnetic material fixed plate.
  • the bottom panel of the vehicle-mounted identifier is frosted to facilitate the installation of the vehicle-mounted identifier; and/or, a transparent plastic protective layer is laid on the surface of the vehicle-mounted identifier, and the magnetic code row/column separation identification device Installed in the protective layer; and/or, the base of the vehicle-mounted identifier is installed with a stainless steel fixing plate for fixedly installing the vehicle-mounted identifier.
  • the second aspect of the present invention provides a method for recognizing magnetic code information using the above-mentioned magnetic code information recognition system.
  • the recognizing method includes the following steps: S1) Recognizing and identifying the magnetic pole code matrix sequence information on the magnetic pole code plate by a vehicle-mounted recognizer Read; S2) Identify the magnetic code row/column separators preset on the magnetic pole code plate.
  • the step S1) includes: S101) the vehicle-mounted magnetic code recognition sensor detects and receives in real time the relevant magnetic force/electricity sample data generated by the magnetic field characteristics between the vehicle-mounted identification code and the magnetic pole code matrix sequence of the magnetic pole code plate; S102 ) The on-board information data processing unit of the on-board information recognition system processes the corresponding data; S103) Recognizes the polarity of the corresponding magnetic code and restores the current editing sequence of the recognized magnetic code; S104) Obtains according to the preset magnetic code editing method The corresponding information hidden by the current magnetic pole code plate.
  • the step S2) includes: S201) the magnetic code row/column separator of the magnetic pole code plate is preset by an infrared device; S202) is monitored by the infrared sensor data corresponding to the vehicle identifier corresponding to the infrared device The front-end equipment performs identification processing on the magnetic code row/column separator; or, S203) the magnetic code row/column separator of the magnetic pole code plate is preset by the magnetic device; S204) the vehicle-mounted magnetic device corresponding to the magnetic device The magnetic sensor data monitoring front-end device corresponding to the recognizer performs recognition processing on the magnetic code row/column separator.
  • the counting operation is performed when the magnetic code row/column separator is recognized, and the counting period is the same as the infrared sensor data monitoring front-end device detection period or the magnetic sensor data monitoring
  • the detection cycle of the front-end equipment is synchronized or set in integer multiples.
  • step S1) and step S2) perform signal amplification processing on the real-time data collected by the magnetic pole data capture module and the row/column data capture module; and/or perform threshold subtraction processing on all data;
  • the threshold subtraction processing includes: combining the positive and negative characteristics of the magnetic pole induction data, the sampled data signal threshold will be divided into positive and negative values. Through the function of the positive and negative thresholds, all data is divided into three distinguishing bands, and the data is greater than the positive threshold. In the positive signal area, the data that is between the positive and negative thresholds defaults to the zero signal area, and the data that is less than the negative threshold is the negative signal area.
  • the third aspect of the present invention provides an application of the above-mentioned magnetic code information identification method in the real-time monitoring and positioning of the absolute position/velocity of low- and medium-speed maglev trains, rail transportation lines, and conventional rail transit systems.
  • the magnetic code information identification device of the present invention makes full use of the magnetic field force effect/electromagnetic induction principle of magnetic materials to identify the magnetic poles on the magnetic code plate, sequentially restore the magnetic code editing sequence, and then obtain the original stored information, thereby Realize to provide more accurate position, road condition and other information for train operation control.
  • the hardware structure of this identification method is mainly divided into vehicle-mounted magnetic code recognizer and magnetic pole-encoded card.
  • the magnetic pole-encoded card uses magnetic poles for information encoding and storage, and is laid along the track in turn.
  • the vehicle carries the on-board magnetic code recognizer for scanning along the way. It has the advantages of convenience, high efficiency and high economic value to identify and read information such as location and road conditions.
  • the method can be used for vehicle positioning and speed measurement of low- and medium-speed maglev trains, and road condition information acquisition. It is also suitable for conventional rail transit systems, such as real-time monitoring of absolute position/speed of tube/tunnel transportation equipment.
  • the magnetic code recognition device and method provided by the present invention can realize the precision requirements of millimeter level, and the installation position is convenient, which can effectively avoid the influence of the magnetic field of the electromagnetic suspension of the train.
  • the method combined with the application of the magnetic code positioning technology can also effectively reduce the operating cost of the rail transit system.
  • the novel magnetic code recognition method proposed by the present invention can not only promote the application of magnetic code positioning technology, but also further improve the accuracy of information recognition, and has the characteristics of strong anti-interference ability, strong adaptability, low cost and long life.
  • Fig. 1 is a basic view of a magnetic code recognition device according to an embodiment of the present invention
  • Fig. 1 (a) is a basic view of a magnetic pole coding plate of a vehicle-mounted recognizer according to an embodiment of the present invention
  • (b) is A top view of a vehicle-mounted identifier according to an embodiment of the present invention
  • (c) is a side view of the vehicle-mounted identifier according to an embodiment of the present invention
  • FIG. 2 is a work flow of a magnetic code recognition method according to an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of a magnetic code identification device according to an embodiment of the present invention
  • Figure 4 is a schematic cross-sectional view of a magnetic code identification device according to an embodiment of the present invention.
  • 101-Magnetic Pole Encoding Plate 102-Car Identifier, 1-Magnetic Pole Encoding Plate Backplane, 2-Magnetic Pole Encoding Matrix Sequence, 3-Magnetic Code Row/Column Separator, 4-Magnetic Code Row/Column Data Capture Module, 5-Car Identifier backplane, 6-sensor data monitoring front-end equipment, 7-vehicle identification code, 8 vehicle magnetic code recognition sensor, 9-vehicle magnetic code recognition sensor interface, 10-vehicle magnetic code recognition sensor data line, 11-protection layer, 12 -Stainless steel fixing plate, 13-mounting hole.
  • the present invention provides a magnetic code information recognition system with information recognition accuracy, strong anti-interference ability, strong adaptability, low cost and long service life, including a vehicle-mounted identifier 102 and a magnetic pole code plate 101.
  • the magnetic pole encoding plate 101 uses magnetic pole characteristics to hide the required information in the magnetic pole encoding matrix sequence 2 for storage.
  • the magnetic pole information of the magnetic pole encoding plate 101 is fixed on the magnetic pole encoding plate base plate 1 laid along the track, and the vehicle carries an on-board identifier.
  • 102 Scanning and setting the magnetic pole code plate 101 along the way and reading the information such as location and road conditions. It has the advantages of convenience, efficiency and high economic value. It can be used for vehicle positioning and speed measurement and road condition information acquisition of medium and low speed maglev trains. It is also suitable for Real-time monitoring of the absolute position/speed of conventional rail transit systems, such as tube/tunnel transportation equipment.
  • the vehicle-mounted detection terminal preset on the vehicle-mounted identifier 102 is used to identify and restore the information of the magnetic pole code plate 101 along the track by using the characteristics of the magnetic field.
  • the preset magnetic pole of the vehicle-mounted identifier 102 is known, and the magnetic code of the magnetic pole encoding plate 101 belongs to the magnetic pole encoding matrix sequence 2 to be identified, and the magnetic pole encoding plate 101 is laid along the track in a preset order, and Each magnetic pole code plate 101 corresponds to a fixed-point position on the track. Therefore, the in-vehicle recognizer 102 sequentially recognizes the magnetic pole code plates 101 along the track, and the corresponding position and other information can be obtained.
  • the identification system presets a magnetic code row/column separation identification device
  • the magnetic code row/column separation identification device includes magnetic code row/column separators 3 arranged on both sides of the magnetic pole encoding plate 101 and arranged on
  • the magnetic code row/column data capture module 4 on the vehicle-mounted identifier 102 is provided with a sensor data monitoring front-end device 6 on the magnetic code row/column data capture module 4, and the sensor data monitoring front-end device 6 is provided with a sensor at the front end. Probe.
  • the magnetic code row/column separator 3 can be preset by an infrared device, or can be preset by a magnetic device, and it is not limited to the above two methods.
  • the magnetic code row/column separation device is used in conjunction with the magnetic code information identification sequence to perform timely row/column processing on the information of the magnetic pole encoding matrix sequence 2 of the magnetic pole encoding plate 101, which improves the accuracy of reading the magnetic pole information.
  • the magnetic code row/column separator 3 of the magnetic pole encoding plate 101 is filled with black and painted into rectangular stripes and arranged on both sides of the magnetic pole encoding plate 101.
  • the magnetic code row/column separator 3 of the magnetic pole code plate 101 is arranged on both sides of the magnetic pole code plate 101 by using permanent magnetic rectangular strips.
  • the vehicle-mounted identification code 7 of the vehicle-mounted identifier 102 is a permanent magnetic identification code or an electromagnetic winding coil, and the vehicle-mounted identifier 102 is preset with a magnetic pole data capture module with the vehicle-mounted magnetic code recognition sensor 8.
  • the type of the identification sensor 8 matches the type of the corresponding vehicle identification code 7.
  • the vehicle magnetic code identification sensor 8 of the vehicle identifier 102 is a magnetic sensor, which transmits the corresponding magnetic data to the vehicle information identification system, according to the magnetic force
  • the data characteristics of the time identify the magnetic pole encoding matrix sequence 2 preset on the magnetic pole encoding plate 101, and then restore the known information according to the predetermined arrangement rule of the magnetic pole encoding matrix sequence 2.
  • the vehicle magnetic code identification sensor 8 of the vehicle identifier 102 is a current/voltage sensor, and the current/voltage sensor transmits the corresponding induced power information to the vehicle information
  • the recognition system recognizes the preset magnetic pole encoding matrix sequence 2 on the magnetic pole encoding plate 101 according to the induced electric energy induced by the electromagnetic winding coil on the vehicle identifier 102, and then restores the known information according to the predetermined magnetic pole encoding matrix sequence 2 arrangement rules.
  • the vehicle magnetic code recognition sensor 8 is provided with a vehicle magnetic code recognition sensor interface 9, and the vehicle magnetic code recognition sensor interface 9 is connected to the vehicle magnetic code recognition sensor data line 10.
  • the size of the magnetic sheet of the on-board identification code 7 of the on-board identifier 102 is smaller than the size of the magnetic sheet of the magnetic pole encoding matrix sequence 2 of the magnetic pole encoding plate 101.
  • the vehicle-mounted identification code 7 and the vehicle-mounted magnetic code identification sensor 8 are both installed on a non-magnetic material fixing plate, and the material of the non-magnetic material fixing plate is preferably epoxy resin.
  • the bottom surface of the vehicle-mounted identifier base plate 5 is frosted to facilitate the installation of the vehicle-mounted identifier 102, and the vehicle-mounted identifier 102 is laid on the surface with a protective layer 11 of non-magnetic material, and the magnetic code row/column separation identification device It is installed in the protective layer 11 of non-magnetic material, and the material of the non-magnetic protective layer 11 is a transparent plastic material.
  • the base of the vehicle-mounted identifier 102 is installed with a stainless steel fixing plate 12 for fixing the vehicle-mounted identifier 102, which is convenient for stable installation and maintenance of the vehicle-mounted identifier.
  • the vehicle-mounted identifier bottom plate 5 is provided with a mounting hole 13 for the integrated vehicle-mounted detector, which is fixed to the vehicle's preset detection position by stainless steel bolts.
  • Another aspect of the present invention provides a method for recognizing magnetic code information using the above-mentioned magnetic code information recognition system.
  • the recognizing method includes the following steps: S1) the on-board identifier 102 is used to encode the magnetic pole code matrix sequence 2 on the magnetic pole code plate 101 Recognize and read information; S2) Recognize the magnetic code row/column separator 3 preset on the magnetic pole code plate 101.
  • step S1) is the basic goal of the magnetic code information identification method, and the identification and reading of step S2) is to ensure that step S1) can accurately identify and read The key to reading.
  • the step S1) includes: S101) the vehicle-mounted magnetic code recognition sensor 8 detects in real time the relevant magnetic force/electric energy generated between the vehicle-mounted identification code 7 and the magnetic pole encoding matrix sequence 2 of the magnetic pole encoding plate 101 due to the characteristics of the magnetic field.
  • Sample data S102) The vehicle information data processing unit of the vehicle information recognition system processes the corresponding data;
  • S104 followss The preset magnetic pole encoding matrix sequence 2 editing method obtains the corresponding information hidden by the current magnetic pole encoding plate 101.
  • the on-board magnetic code recognition sensor 8 on the on-board identifier 102 is a magnetic sensor, and the magnetic sensor collects the corresponding magnetic data It is transmitted to the vehicle-mounted information identification system, and the magnetic pole encoding matrix sequence 2 preset on the magnetic pole encoding plate 101 is identified according to the data characteristics between the magnetic forces, and then the known information is restored according to the predetermined magnetic code arrangement rule.
  • the vehicle magnetic code recognition sensor 8 on the vehicle identifier 102 is a current/voltage sensor, and the current/voltage sensor will be the corresponding induced current
  • the information is transmitted to the vehicle-mounted information recognition system, the magnetic pole code matrix sequence 2 preset on the magnetic pole code plate 101 is recognized according to the induced current induced by the electromagnetic winding on the vehicle-mounted identifier 102, and then the known information is restored according to the predetermined magnetic code arrangement rule.
  • the hidden information to be identified may be information such as road conditions at a known fixed point, and the corresponding information is stored by the preset magnetic pole encoding matrix sequence 2.
  • the ultimate goal of the magnetic code information recognition method is to recognize and read the information on the fixed-point magnetic pole code plate 101 by the vehicle-mounted identifier 102, so as to provide efficient and accurate section information for train operation and to estimate train speed information.
  • multiple methods can also be used for recognition, and it is not limited to the above-mentioned recognition method.
  • step S2 when the magnetic code row/column separator 3 of the magnetic pole encoding plate 101 is preset by an infrared device, the infrared sensor data corresponding to the vehicle identifier 102 corresponding to the infrared device monitors the front end The device performs identification processing on the magnetic code row/column separator 3.
  • the magnetic code row/column separator of the magnetic pole coding plate (101) is preset by a magnetic device
  • the magnetic sensor data corresponding to the on-board identifier 102 corresponding to the magnetic device monitors the front-end equipment for the magnetic code row/column separator.
  • Column separator 3 performs identification processing.
  • the counting operation is performed when the magnetic code row/column separator 3 is recognized, and the counting period is synchronized with or is an integer multiple of the detection period of the infrared sensor data monitoring front-end equipment or the magnetic sensor data monitoring front-end equipment Set up. Further, the real-time data collected in step S1) and step S2) is subjected to signal amplification processing by the signal amplification module, and the amplified signal performs threshold subtraction processing on all data;
  • the threshold subtraction processing includes: combining the positive and negative characteristics of the magnetic pole induction data, the sampled data signal threshold will be divided into positive and negative values. Through the function of the positive and negative thresholds, all data is divided into three distinguishing bands, and the data is greater than the positive threshold. In the positive signal area, the data that is between the positive and negative thresholds defaults to the zero signal area, and the data that is less than the negative threshold is the negative signal area.
  • the setting of the threshold will directly affect the accuracy of the identification method of the present invention, and it should be reasonably preset according to the actual working environment. Referring to Figure 2, the identification method of the present invention is applied in the real-time monitoring and positioning of the absolute position/speed of the low-to-medium-speed maglev train and rail transportation system, and its work flow is as follows:
  • the vehicle-mounted identifier 102 sequentially passes through the magnetic pole code plates 101 laid along the road, and obtains corresponding position and other information through the sensors and magnetic code recognition means related to the vehicle-mounted identifier 102.
  • the vehicle-mounted information recognition system receives real-time information data of the magnetic code encoding matrix sequence 2 of the vehicle-mounted detection terminal and the magnetic pole encoding plate 101 along the track detected by the sensor, and the vehicle-mounted information recognition system integrates, screens, and recognizes the corresponding data.
  • the specific working principle of the sensor is: the polarity of the magnetic code of the magnetic pole encoding plate 101 corresponding to the magnetic sheet of the vehicle detection end is known, and the magnetic code of the magnetic pole encoding plate 101 along the track is monitored in real time by the vehicle magnetic code recognition sensor 8. Changes in the magnetic force between the magnets on the detection side.
  • the weak signal of the vehicle magnetic code recognition sensor 8 is amplified by the signal amplifier module for real-time data, and then the detected data is sent to the data storage library in the vehicle information recognition system to do basic data collection for the next step of data screening and recognition .
  • the vehicle-mounted identifier 102 recognizes the magnetic code row/column separator 3 of the magnetic pole code plate 101, and performs row/column processing on the above-mentioned data.
  • the front-end device 4 monitors the magnetic code row/column separator 3 entries on both sides of the magnetic pole encoding plate 101 along the track in real time through the sensor data monitoring front-end device 4, and performs an accumulation operation, and puts the detected time period into the signal amplification module , Amplify the data signal for subsequent data processing and identification.
  • the data collection of the sensor should have a sinusoidal characteristic of "small on both sides and large in the middle".
  • the vehicle-mounted information recognition system Based on the curve characteristics of the magnetic field effect, the vehicle-mounted information recognition system combines the row/column separation period data to store the induction information data of each corresponding magnetic code in each row/column in a matrix group, and then combines the data threshold processing to perform data processing Symbol judgment, such as positive and negative judgment, and data curve trend judgment, such as sine characteristics.
  • the induction data curve of each row/column magnetic code of a set of magnetic pole coding plate 101 with magnetic code row/column separator 3 can be obtained, that is, the induction signal period of each row/column of the magnetic pole coding plate 101 is determined by
  • the monitoring data of the magnetic code row/column separator 3 is separated, which means that the induction signals of each row/column of the magnetic pole code plate 101 are sequentially separated and discrete into independent data matrices, and the independent matrices are sequential.
  • the order of the independent matrix is determined by the direction of train travel (the order of detection by the detection probe).
  • the magnetic code induction data of each row/column is processed by row/column, while considering the interference of the actual adjacent magnetic field and the role of the signal amplification module, Conservative sampling methods should be adopted in the information recognition method, that is, the data at the beginning of the vehicle information recognizer is subtracted. Simply put, all data is unified by the threshold subtraction process, combined with the positive and negative characteristics of the magnetic pole induction data, and the signal threshold of the sampled data Will be divided into positive and negative points.
  • the positive and negative thresholds all the data of the vehicle information recognizer will be divided into three different zones, that is, the positive signal area of the data greater than the positive threshold, and the data between the positive and negative thresholds will default to the zero signal area, which is less than the negative Threshold data negative signal area.
  • the setting of the threshold will directly affect the accuracy of the identification method, and it will be preset according to the actual train operating environment.
  • the vehicle-mounted signal recognition system will further determine the attribution signal interval of the corresponding magnetic induction data matrix. If the magnetic induction data matrix belongs to the negative signal range, it is judged as repulsive force. It can be further concluded that the corresponding magnetic code pole on the magnetic pole code plate 101 is the same polarity as the magnetic sheet of the vehicle identifier 102 on the vehicle detection end; if the magnetic induction data matrix belongs to In the positive signal interval, it is judged to be attractive, and it can be concluded that the corresponding magnetic code magnetic pole on the magnetic pole code plate 101 is opposite to that of the on-board identifier 102 on the vehicle-mounted detection terminal; if the magnetic induction data matrix belongs to the zero-signal interval, then As there is no force, it can be further concluded that the magnetic pole code plate 101 is empty here, that is, it is non-magnetic.
  • the magnetic code magnetism of the magnetic pole code plate 101 is sequentially restored to the currently recognized magnetic code editing sequence according to the sequence of the induction data matrix. Then, according to the preset magnetic code editing method, the corresponding information of the current magnetic pole encoding plate 101 is obtained, including road condition information, train position information, etc., to provide more accurate driving information for the train.
  • a type of passive information reading means identification method using matrix sequence combination information encoding method for example: magnetic poles "N”, “S”, and “non-magnetic” respectively represent the value “1", “2”, “0”, and the absolute positions 001, 011, 111, ... along the track respectively represent the first absolute position, the third absolute position, the seventh absolute position, ..., and
  • the positioning basis on the hardware structure is realized by the magnetic pole characteristics. The positioning of the absolute position of the magnetic pole encoding method is suitable for the identification of this method.
  • the vehicle identification code 7 on the vehicle identifier 102 is a permanent magnetic identification code
  • the vehicle magnetic code identification sensor 8 is a magnetic sensor
  • the magnetic code row/column separator of the magnetic pole code plate 101 3 is preset by the infrared device
  • the sensor data monitoring front-end device 6 is an infrared sensor.
  • the vehicle-mounted identifier 102 is loaded on the running train, and the vehicle's operation drives the vehicle-mounted identifier 102 to scan the magnetic pole code plates 101 laid along the road in turn, and use the relevant sensors and magnetic code recognition methods on the vehicle-mounted identifier 102 to identify and read the magnetic poles.
  • the information on the position and road conditions on the coding plate can be used to provide more accurate position and speed information for the running train.
  • the magnetic pole identification process of the magnetic pole encoding plate 101 the polarity of the magnetic pole encoding matrix sequence 2 of the magnetic pole encoding plate 101 corresponding to the permanent magnetic identification code 7 of the vehicle detection terminal is known, and the vehicle magnetic code identification sensor 8 is a magnetic sensor, which is monitored in real time by the magnetic sensor The magnetic force changes between the magnetic pole encoding matrix sequence 2 of the magnetic pole encoding plate 101 along the track and the permanent magnetic identification code of the vehicle-mounted detection terminal.
  • the interaction force of the static magnetic field between the permanent magnetic materials is mainly used, that is, the principle of "same sex repels each other and opposite sex attracts each other".
  • the above-mentioned magnetic change sampling data is amplified by the weak signal of the on-board magnetic code recognition sensor 8 through the signal amplification module to amplify the real-time data; then the detected data is sent to the data storage library in the on-board information recognition system for the next step of data screening And identify basic data collection.
  • the vehicle-mounted identifier 102 recognizes the magnetic code row/column separator 3 of the magnetic pole code plate 101, and performs row/column processing on the data samples of the magnetic code row/column separator 3.
  • the sensor data monitoring front-end device 6 is an infrared sensor, which monitors the black rectangular entries of the magnetic code row/column separator 3 on both sides of the magnetic pole code plate 101 along the track in real time, and performs an accumulation operation, which will detect the time It is periodically put into the signal amplification module to amplify the data signal, and is also stored in the data storage library in the on-board information identification system for subsequent data processing and identification.
  • the data collected by the on-board magnetic code recognition sensor 8 belongs to a sine curve characteristic of "small on both sides and large in the middle".
  • a set of induced data curves of each row/column magnetic code of the magnetic pole encoding plate 101 with the magnetic code row/column period separator 3 is further obtained, that is, the magnetic pole
  • the induction signal cycle of each row/column of the code plate 101 is separated by the monitoring data of the magnetic code row/column separator 3, which means that the induction signal of each row/column of the magnetic pole code plate 101 of the magnetic pole code plate 101 is sequentially
  • the separation is discrete into independent data matrices, and the obtained independent matrices can be sequential with the direction of train travel (scanning sequence).
  • the magnetic code induction data of each row/column is processed by row/column, while considering the interference of the actual adjacent magnetic field and the role of the signal amplification module, it is used in the vehicle information identification method
  • Conservative sampling methods should be adopted, that is, the data at the beginning of the vehicle information recognizer is subtracted. Simply put, all data is uniformly subtracted from the threshold. Combined with the positive and negative characteristics of the magnetic pole induction data, the threshold of the sampled data signal will be changed from positive to negative. Of points.
  • the positive and negative thresholds all the data of the vehicle information recognizer will be divided into three different zones, that is, the positive signal area of the data greater than the positive threshold, and the data between the positive and negative thresholds will default to the zero signal area, which is less than the negative Threshold data negative signal area.
  • the setting of the threshold will directly affect the accuracy of the identification method, and it will be preset according to the actual train operating environment.
  • the magnetic induction data matrix belongs to the negative signal range, it is judged to be repulsive force, and it can be further concluded that the magnetic poles of the magnetic pole encoding matrix sequence 2 on the magnetic pole encoding plate 101 are the same as the magnetic strips of the vehicle identifier 102; if the magnetic induction data matrix If it belongs to the positive signal interval, it is judged to be attraction, and it can be concluded that the magnetic pole of the corresponding magnetic pole encoding matrix sequence 2 on the magnetic pole encoding plate 101 is opposite to the magnetic sheet of the vehicle-mounted identifier 102; if the magnetic induction data matrix belongs to the zero signal interval , It is regarded as no force, and it can be concluded that the magnetic pole code plate 101 is empty here, that is, it is non-magnetic.
  • the magnetism of the magnetic pole encoding matrix sequence 2 of the magnetic pole encoding plate 101 is sequentially restored to the currently recognized magnetic code editing sequence according to the sequence of the induction data matrix. Then, according to the preset magnetic code editing method, the corresponding information of the current magnetic pole encoding plate 101 is obtained, including road condition information, train position information, etc., to provide more accurate driving information for the train.
  • the embodiments of the present invention can be basically divided into six parts: magnetic pole data monitoring, row/column separation, signal amplification processing, magnetic pole identification judgment, magnetic code sequence restoration, and information extraction.
  • FIG. 3 data collection of magnetic poles and row/column separation are one of the key technologies of the present invention.
  • the acquisition of the threshold value in data processing is still a key data standard, which is related to the recognition accuracy of the present invention.
  • the invention has multiple application schemes according to different collection principles of magnetic code data.
  • Example 2 another data collection method will be explained in detail. However, in the embodiments, it can be understood as only to further illustrate the present invention, but not to limit the content of the present invention.
  • the vehicle-mounted identification code 7 of the vehicle-mounted identifier 102 on the train is an electromagnetic winding coil
  • the vehicle-mounted magnetic code identification sensor 8 is a current/voltage sensor
  • the magnetic code row/column separator 3 is a permanent magnet rectangular bar
  • the sensor data is monitored
  • the front-end equipment 6 is a pressure sensor
  • the vehicle-mounted identifier 102 sequentially passes through the magnetic pole code plates 101 along the track to identify and read the corresponding positioning information one by one.
  • the electromagnetic winding coil on the vehicle-mounted identifier 102 recognizes and reads the magnetic code information on the magnetic pole code plate 101.
  • the identification process of the magnetic pole encoding moment sequence 2 on the magnetic pole encoding plate 101 is as follows: the polarity of the magnetic pole encoding matrix sequence 2 of the magnetic pole encoding plate 101 corresponding to the electromagnetic winding coil of the vehicle identification code 7 is known, and the vehicle
  • the magnetic code recognition sensor 8 is a current/voltage sensor, and the current/voltage sensor is used to monitor the changes in the induced electric energy of the magnetic pole encoding matrix sequence 2 of the magnetic pole encoding plate 101 along the track and the electromagnetic winding coil of the vehicle detection terminal in real time.
  • the principle of "electromagnetic induction” is mainly used to provide the induced electric energy generated by the transverse cutting of the magnetic induction line by the winding coil under a certain magnetic field.
  • the above-mentioned electric energy change sampling data is amplified by the weak signal of the current/voltage sensor through the signal amplification module on the vehicle side; then the detected data is sent to the data storage library in the vehicle information recognition system for the next step of data screening and processing. Identify and do basic data collection.
  • the magnetic code row/column separator 3 of the magnetic pole code plate 101 In the identification of the magnetic code row/column separator 3 of the magnetic pole code plate 101, permanent magnetic materials are used to identify the magnetic field force and row/column processing, that is, the magnetic code row/column separator 3 is set in a permanent magnetic rectangular strip. Both sides of the magnetic pole coding plate 101. Specifically: the row/column separator of the magnetic pole code plate 102 is inlaid with small magnets on both sides of the magnetic pole code plate 101 to form the magnetic code branch/column identifier 3.
  • the sensor data monitoring front-end device 6 is a pressure sensor. The sensor monitors the sensor data in real time and monitors the force change of the front-end equipment 6 ferromagnetic probe.
  • the time interval between the two monitoring points of the force jump is regarded as the magnetic code row/column separator 3 on the magnetic pole coding plate 101.
  • the corresponding descriptions are mainly made on the difference between the magnetic pole data collection of the magnetic pole code plate 101 and the vehicle-mounted identifier 102, and the subsequent processing method of the on-board identifier 102 on the field data obtained by the magnetic code of the magnetic pole code plate 101 is similar to that of the vehicle-mounted identifier 102.
  • the corresponding parts in Embodiment 1 are basically the same, and may include signal amplification, magnetic pole identification, magnetic pole information sequence restoration, and corresponding absolute position information extraction.
  • the on-board identifier 102 scans and recognizes the magnetic pole code plates 101 along the track in sequence, extracts relevant information such as location and road conditions, and continuously provides more accurate location, road conditions and other information for the running trains and the vehicle operation dispatching room, and also saves energy for the trains Safe operation provides basic guarantee.

Abstract

一种磁码信息识别系统和方法及其应用,磁码信息识别系统包括车载识别器(102)和磁极编码牌(101),车载识别器(102)采用预设磁片极性的车载识别码(7),磁极编码牌(101)利用磁极特性将所需信息隐藏于磁极编码矩阵序列(2)中,通过车载识别器(102)与磁极编码牌(101)的相互作用对磁极编码牌(101)的磁极编码矩阵序列(2)进行读取和识别。磁极编码牌(101)利用磁极进行信息编码存储,依次沿轨道铺设,由运行车辆携带车载识别器(102)进行沿途扫描识别读取位置、路况等信息,具备便捷、高效和经济价值高等优势。该方法可应用于中低速磁悬浮列车的车辆定位测速、路况信息获取等功能,也适用于常规轨道交通系统中绝对位置/速度的实时监测。

Description

磁码信息识别系统和方法及其应用 技术领域
本发明涉及电磁感应、信号识别与处理技术领域,具体地涉及一种磁码信息识别系统和方法及其应用。
背景技术
国内中低速磁悬浮技术的日益成熟,推动了其商业化步伐的加快,现已实现商业化的中低磁悬浮运输线有长沙磁浮专线、北京磁浮S1线。据悉,2019年8月21日北京磁浮S1线单日客运量达4.12万人次,再创客运量新高,比历史最高值增加0.10万人次,增幅2.40%,这也意味着磁悬浮列车在服务社会人群的同时,也逐步让群众接受和认可这一新式的轨道交通体系。在此背景下,也为本发明提出的一种新型磁码信息识别系统及方法提供了应用的可能和市场需求。
无源定位技术,又称为绝对定位技术,在现有市场中具有一定的发展和应用,如绝对定位传感器、货运列车、矿山自动货运车等。在测速定位功能上,为车辆运行提供了较为精准的速度和位置信息,也是现有轨道交通列车的一项关键技术,为列车实现驱动控制、节能运行、精准停靠等功能提供了重要技术依据。
现有的测速定位技术方法存在很多种手段,其中,在磁悬浮运输线中较为广泛应用的莫过于交叉感应回线测速定位技术。但是现有磁悬浮技术的悬浮和导向属于一种电磁强磁环境,因而对交叉感应回线 的精度必然存在一定的磁场干扰。而从列车安全的角度考虑,轨道运输线依然存在绝对定位技术引入的必要性,既作为列车测速定位的冗余设置,配合现有交叉感应回线构成两级安全保障设备;又可以单独为列车提供精准的测速定位。而本发明也为所述的绝对定位技术提供了一种较为精准的定位识别方法,进一步推动绝对定位技术向其它领域的推广与应用。磁悬浮列车的运行精度要求控制在毫米量级,因而对列车测速定位具有较高的精度要求,既要实现毫米级别的精准要求,又要避免对列车电磁悬浮的磁场影响,同时运行成本不能过高。
综合上述,信息识别精度高,且具备抗干扰能力强、适应能力强、低成本寿命长等特点的磁码定位技术具有极其重要的意义。
发明内容
本发明为利用磁码特性实现的一类绝对定位技术,磁码信息标识可以包含磁码的一维、二维、三维,例如三维磁码标识策略就是将磁极“N”,“S”,“无磁性”分别代表数值“1”,“2”,“0”,其绝对位置的信息与对应数值序列构成映射关系,而后由磁极特性实现硬件结构的一类三维磁码标识技术。
有鉴于此,本发明提出了一种磁码信息识别系统、方法以及应用,提高了磁码识别的精度,将磁极定位技术进一步推广到轨道交通领域,特别是磁悬浮列车的应用,该磁码信息识别系统和识别方法具有识别精度高,且具备抗干扰能力强、适应能力强、低成本寿命长的特点。
为了实现上述目的,本发明一方面提供一种磁码信息识别系统,该识别系统包括:车载识别器,所述车载识别器采用预设磁片极性的 车载识别码;磁极编码牌,所述磁极编码牌利用磁极特性将所需信息隐藏于磁极编码矩阵序列中;通过所述车载识别器与磁极编码牌的相互作用对磁极编码牌的磁极编码矩阵序列进行读取和识别。
优选地,所述识别系统预设磁码行/列分隔识别设备,该磁码行/列分隔识别设备包括设置于所述磁极编码牌两侧的磁码行/列分隔符和设置于所述车载识别器上的行/列数据捕获模块,该行/列数据捕获模块设置有传感器数据监测前端设备。
优选地,所述磁码行/列分隔符由红外设备预设,所述磁极编码牌的磁码行/列分隔符采用黑色填涂成矩形条设置于所述磁极编码牌的两侧;或者所述磁码行/列分隔符由磁性设备预设,所述磁极编码牌的磁码行/列分隔符采用永磁矩形条设置于所述磁极编码牌的两侧。
优选地,所述车载识别器的车载识别码为永磁识别码或者电磁绕组线圈中的任意一种。优选地,所述车载识别器的车载识别码的磁片尺寸小于所述磁极编码牌的磁极编码矩阵序列的磁片尺寸。优选地,所述车载识别器预设带有车载磁码识别传感器的磁极数据捕捉模块,该车载磁码识别传感器的类型与相应的所述车载识别码的类型相匹配。优选地,所述车载识别码和车载磁码识别传感器均安设于非磁性材料固定板上。
优选地,所述车载识别器的底面板磨砂处理以便于所述车载识别器的安装;并且/或者,所述车载识别器在表面铺设透明塑胶保护层,所述磁码行/列分隔识别设备安装于该保护层之内;并且/或者,所述车载识别器的底座安装有用于固定安装所述车载识别器的不锈钢固定板。
本发明第二方面提供一种利用上述磁码信息识别系统进行磁码信息识别的方法,该识别方法包括以下步骤:S1)由车载识别器对磁极编码牌上的磁极编码矩阵序列信息进行识别与读取;S2)对磁极编码牌上预设的磁码行/列分隔符进行识别。
优选地,所述步骤S1)包括:S101)车载磁码识别传感器实时检测接收由车载识别码与磁极编码牌的磁极编码矩阵序列之间因磁场特性而产生的相关磁力/电能的样本数据;S102)车载信息识别系统的车载信息数据处理单元对相应的数据进行处理;S103)识别出相应磁码的极性,还原当前识别磁码的编辑序列;S104)按照预先设定的磁码编辑方法获取当前磁极编码牌隐藏的相应信息。
优选地,所述步骤S2)包括:S201)所述磁极编码牌的磁码行/列分隔符由红外设备预设;S202)由红外设备相对应的所述车载识别器相应的红外传感器数据监测前端设备对所述磁码行/列分隔符进行识别处理;或者,S203)所述磁极编码牌的磁码行/列分隔符由磁性设备预设;S204)由磁性设备相对应的所述车载识别器相应的磁力传感器数据监测前端设备对所述磁码行/列分隔符进行识别处理。
优选地,在所述步骤S202)和步骤S204)中,识别所述磁码行/列分隔符时进行计数操作,所述计数周期与所述红外传感器数据监测前端设备检测周期或磁力传感器数据监测前端设备的检测周期同步或者呈整数倍设置。
优选地,在所述步骤S1)和步骤S2)中:对磁极数据捕获模块和行/列数据捕获模块采集到的实时数据进行信号放大处理;并且/或者,对所有数据进行阈值减法处理;
所述阈值减法处理包括:结合磁极感应数据的正负性,其采样数据信号阈值将有正负之分,通过正负阈值的作用,将所有数据分为三个区分带,大于正阈值的数据正值信号区,处于正负阈值之间的数据默认为零信号区,小于负阈值的数据负值信号区。
本发明第三方面提供一种上述磁码信息识别方法在中低速磁悬浮列车、轨道运输线和常规轨道交通系统的绝对位置/速度的实时监测和定位中的应用。
通过上述技术方案,本发明的磁码信息识别装置充分利用磁性材料的磁场作用力效应/电磁感应原理进行识别磁码牌上的磁极,依次还原磁码编辑序列,进而获取原有存储信息,从而实现为列车的运行控制提供较为精准的位置、路况等信息。本套识别方法的硬件结构主要分为车载磁码识别器和磁极编码牌,其中磁极编码牌利用磁极进行信息编码存储,并依次沿轨道铺设,由运行车辆携带车载磁码识别器进行沿途扫描设别和读取位置、路况等信息,具备便捷、高效和经济价值高等优势。在应用领域方面,该方法可以用于中低速磁悬浮列车的车辆定位测速、路况信息获取等功能,也适用于常规轨道交通系统,如管/洞道运输设备的绝对位置/速度的实时监测等。本发明提供的磁码识别装置和方法可以实现毫米级别的精准要求,且安装位置便捷可有效避免列车电磁悬浮的磁场影响。本方法配合磁码定位技术的应用也可有效降低轨道交通系统的运行成本。本发明提出的新型磁码识别方法不仅可以推动磁码定位技术的应用,也可进一步提高信息识别精度,且具备抗干扰能力强、适应能力强、低成本寿命长的特点。
附图说明
图1为根据本发明的一种实施方式的磁码识别装置的基本视图;在图1中(a)为本发明的一种实施方式的车载识别器的磁极编码牌基本视图,(b)为本发明的一种实施方式的车载识别器的俯视图,(c)为本发明的一种实施方式的车载识别器的侧视图;图2为根据本发明一种实施方式的磁码识别方法工作流程图;图3为根据本发明一种实施方式的磁码识别装置的结构示意图;图4为根据本发明一种实施方式的磁码识别装置工作截面示意图。
附图标记说明
101-磁极编码牌,102-车载识别器,1-磁极编码牌底板,2-磁极编码矩阵序列,3-磁码行/列分隔符,4-磁码行/列数据捕获模块,5-车载识别器底板,6-传感器数据监测前端设备,7-车载识别码,8车载磁码识别传感器,9-车载磁码识别传感器接口,10-车载磁码识别传感器数据线,11-保护层,12-不锈钢固定板,13-安装孔。
具体实施方式
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
参阅图1-图4,本发明提供了一种信息识别精度、具备抗干扰能力强、适应能力强、低成本寿命长的磁码信息识别系统,包括车载识别器102和磁极编码牌101,所述磁极编码牌101利用磁极特性将所需信息隐藏于磁极编码矩阵序列2中存储,磁极编码牌101的磁极信 息等均固定于沿轨道铺设的磁极编码牌底板1,由运行车辆携带车载识别器102对磁极编码牌101进行沿途扫描设别和读取位置、路况等信息,具备便捷、高效和经济价值高等优势,可以运用于中低速磁悬浮列车的车辆定位测速、路况信息获取等,也适用于常规轨道交通系统,如管/洞道运输设备的绝对位置/速度的实时监测。
本发明中,运用车载识别器102上预设的车载检测端利用磁场特性对轨道沿线的磁极编码牌101进行识别和信息还原。其中,所述的车载识别器102的预设磁极为已知,而磁极编码牌101的磁码属于待识别的磁极编码矩阵序列2,磁极编码牌101按照预设顺序进行轨道沿线的铺设,且每一个磁极编码牌101对应一个轨道定点位置。因此,由车载识别器102对轨道沿线的磁极编码牌101依次进行识别,即可获取相应的位置等信息。
进一步地,所述识别系统预设磁码行/列分隔识别设备,该磁码行/列分隔识别设备包括设置于所述磁极编码牌101两侧的磁码行/列分隔符3和设置于所述车载识别器102上的磁码行/列数据捕获模块4,该磁码行/列数据捕获模块4上设置有传感器数据监测前端设备6,所述传感器数据监测前端设备6前端设有感应探头。
根据本发明的一种优选的实施方式,磁码行/列分隔符3可由红外设备预设,也可以由磁性设备预设,亦不仅限于以上两种方法。该磁码行/列分隔设备配合磁码信息识别序列协同使用,对磁极编码牌101的磁极编码矩阵序列2的信息进行及时的分行/分列处理,提高了磁极信息的读取准确率。
具体地,磁码行/列分隔符3由红外设备预设时,磁极编码牌101 的磁码行/列分隔符3采用黑色填涂成矩形条设置于所述磁极编码牌101的两侧。磁码行/列分隔符3由磁性设备预设时,磁极编码牌101的磁码行/列分隔符3采用永磁矩形条设置于所述磁极编码牌101两侧。
进一步地,所述车载识别器102的车载识别码7为永磁识别码或者电磁绕组线圈,所述车载识别器102预设带有车载磁码识别传感器8的磁极数据捕捉模块,该车载磁码识别传感器8的类型与相应的所述车载识别码7的类型相匹配。具体地,当所述车载识别码7为永磁识别码时,车载识别器102的车载磁码识别传感器8为磁力传感器,该磁力传感器将相应的磁力数据传输到车载信息识别系统,根据磁力之间的数据特性识别所述磁极编码牌101上预设的磁极编码矩阵序列2,再按照预定的磁极编码矩阵序列2的排列规则还原已知信息。
具体地,当所述车载识别码7为电磁绕组线圈时,所述车载识别器102的车载磁码识别传感器8为电流/电压传感器,该电流/电压传感器将相应的感应电能信息传输到车载信息识别系统,根据车载识别器102上的电磁绕组线圈感应的感应电能识别磁极编码牌101上预设的磁极编码矩阵序列2,然后按照预定的磁极编码矩阵序列2的排列规则还原已知信息。所述车载磁码识别传感器8设有车载磁码识别传感器接口9,所述车载磁码识别传感器接口9连接车载磁码识别传感器数据线10。
为了避免相邻磁码之间的相互干扰,车载识别器102的车载识别码7的磁片尺寸小于磁极编码牌101的磁极编码矩阵序列2的磁片尺寸。优选地,车载识别码7和车载磁码识别传感器8均安设于非磁性 材料固定板上,所述非磁性材料固定板的材料优选为环氧树脂。
优选地,所述车载识别器底板5的底面磨砂处理以便于车载识别器102的安装,所述车载识别器102在表面铺设非磁性材料的保护层11,所述磁码行/列分隔识别设备安装于该非磁性材料的保护层11之内,所述非磁性保护层11的材料为透明的塑胶材料。车载识别器102的底座安装有用于固定安装车载识别器102的不锈钢固定板12,便于车载识别器的稳定安装和维护。车载识别器底板5上开设有用于整体车载检测器的安装孔13,由不锈钢螺栓固定于车辆预设检测位置。
本发明另一方面提供一种利用上述磁码信息识别系统进行磁码信息识别的方法,该识别方法包括以下步骤:S1)由车载识别器102对磁极编码牌101上的磁极编码矩阵序列2的信息进行识别与读取;S2)对磁极编码牌101上预设的磁码行/列分隔符3进行识别处理。
在本发明的上述两个步骤中的识别、读取和处理,步骤S1)是所述磁码信息识别方法的基本目标,而步骤S2)的识别与读取是保障步骤S1)能够准确识别和读取的关键。
具体地,所述步骤S1)包括:S101)车载磁码识别传感器8实时检测接收由车载识别码7与磁极编码牌101的磁极编码矩阵序列2之间因磁场特性而产生的相关磁力/电能的样本数据;S102)车载信息识别系统的车载信息数据处理单元对相应的数据进行处理;S103)识别出相应磁极编码矩阵序列2的磁码极性,还原当前识别磁码的编辑序列;S104)按照预先设定的磁极编码矩阵序列2编辑方法获取当前磁极编码牌101隐藏的相应信息。
根据所述识别方法的磁场特性,利用磁场之间的特性“同性相斥, 异性相吸”,则有车载识别器102上的车载磁码识别传感器8为磁力传感器,磁力传感器将相应的磁力数据传输到车载信息识别系统,根据磁力之间的数据特性识别磁极编码牌101上预设的磁极编码矩阵序列2,而后按照预定磁码排列规则还原已知信息。
根据所述识别方法的磁场特性,利用磁场之间的特性“电磁感应定律”,则有车载识别器102上的车载磁码识别传感器8为电流/电压传感器,电流/电压传感器将相应的感应电流信息传输到车载信息识别系统,根据车载识别器102上的电磁绕组感应的感应电流识别磁极编码牌101上预设的磁极编码矩阵序列2,而后按照预定磁码排列规则还原已知信息。
所述待识别的隐藏信息可以是已知定点的路况等信息,而相应信息由预设磁极编码矩阵序列2存储。所述磁码信息识别方法的最终目的就是由车载识别器102对定点的磁极编码牌101上的信息进行识别和读取,为列车运行提供高效、准确的路段信息以及推算列车运行速度信息等。在磁码序列和磁码行/列分隔识别的两阶层识别中亦可采用多种手段进行识别,不限于上述识别方法。
具体地,在步骤S2)中,所述磁极编码牌101的磁码行/列分隔符3由红外设备预设时,由红外设备相对应的所述车载识别器102相应的红外传感器数据监测前端设备对所述磁码行/列分隔符3进行识别处理。所述磁极编码牌(101)的磁码行/列分隔符由磁性设备预设时,由磁性设备相对应的所述车载识别器102相应的磁力传感器数据监测前端设备对所述磁码行/列分隔符3进行识别处理。
进一步地,在识别所述磁码行/列分隔符3时进行计数操作,所 述计数周期与所述红外传感器数据监测前端设备检测周期或磁力传感器数据监测前端设备的检测周期同步或者呈整数倍设置。进一步地,对步骤S1)和步骤S2)中采集到的实时数据经过信号放大模块进行信号放大处理,放大后信号对所有数据进行阈值减法处理;
所述阈值减法处理包括:结合磁极感应数据的正负性,其采样数据信号阈值将有正负之分,通过正负阈值的作用,将所有数据分为三个区分带,大于正阈值的数据正值信号区,处于正负阈值之间的数据默认为零信号区,小于负阈值的数据负值信号区。特别的,阈值的设定将直接影响本发明的识别方法的准确性,应根据实际工作环境进行合理化预设。参阅图2所示,本发明的识别方法在中低速磁悬浮列车和轨道运输交通系统的绝对位置/速度的实时监测和定位中的应用,其工作流程如下:
根据磁场特性的信息识别原理,车载识别器102依次经过沿路铺设的磁极编码牌101,通过车载识别器102相关的传感器与磁码识别手段,进而获取相应的位置等信息。通过车载信息识别系统实时接收传感器检测到的车载检测端与轨道沿线的磁极编码牌101的磁码编码矩阵序列2信息数据,由车载信息识别系统对相应数据进行整合和筛选、识别。而传感器的具体工作原理是:车载检测端的磁片对应的磁极编码牌101的磁码的极性为已知,通过车载磁码识别传感器8实时监测轨道沿线的磁极编码牌101的磁码与车载检测端的磁片之间的磁力变化。同时,车载磁码识别传感器8的弱信号通过信号放大器模块对实时数据进行放大处理,随后将检测数据输送到车载信息识别系统中的数据存储库,为下一步数据筛选和识别做基本的数据收集。 与此同时,就是车载识别器102对磁极编码牌101的磁码行/列分隔符3的识别,对上述数据进行分行/列处理。具体地,通过传感器数据监测前端设备4实时监测轨道沿线的磁极编码牌101两侧的磁码行/列分隔符3的条目,并进行累加操作,将检测的时间周期放入到信号放大模块中,对数据信号进行放大处理,以备后续的数据处理和识别。
根据所述的磁场识别原理,在传感器的数据采集中均应是“两边小,中间大“的正弦曲线特性。车载信息识别系统依据磁场效应的曲线特性,同时结合行/列分隔周期的数据,将每一行/列的每一个相应磁码的感应信息数据进行矩阵组存储,而后结合数据阈值处理,进行数据的符号判断,如正负性判断,以及数据曲线趋势判断,如正弦特性等。
由上述操作便可得到一组带有磁码行/列分隔符3的磁极编码牌101的各行/列磁码的感应数据曲线,即磁极编码牌101的每行/列的感应信号周期均由磁码行/列分隔符3的监测数据分隔开,也就意味着磁极编码牌101的每行/列的感应信号依次分隔离散为独立数据矩阵,且独立矩阵具备先后顺序性。其中,独立矩阵的顺序性由列车行进方向(检测探头的检测的先后顺序)确定独立矩阵的先后顺序性。
具体地,在磁码行/列分隔识别设备的信号辅助下,将每行/列的磁码感应数据进行分行/列处理,同时考虑实际相邻磁场的干扰以及信号放大模块的作用,在车载信息识别方法中应采取保守取样手段,即在车载信息识别器的始端数据进行减法操作,简单讲就是对所有数据统一进行阈值的减法处理,结合磁极感应数据的正负性,其采样数 据信号阈值将由正负之分。届时,通过正负阈值的作用,将车载信息识别器的所有数据分为了三个区分带,即大于正阈值的数据正值信号区,正负阈值之间的数据默认为零信号区,小于负阈值的数据负值信号区。特别的,阈值的设定将直接影响该套识别方法的准确性,将根据实际列车运行环境进行预设。
车载信号识别系统进一步将判断相应的磁力感应数据矩阵的归属信号区间即可。若磁力感应数据矩阵归属到负信号区间,则判断为斥力,进一步可断定磁极编码牌101上对应的磁码磁极与车载检测端的车载识别器102的磁片极性相同;若磁力感应数据矩阵归属到正信号区间,则判断为吸力,进一步可断定磁极编码牌101上对应的磁码磁极与车载检测端的车载识别器102的磁片极性相反;若磁力感应数据矩阵归属到零信号区间,则视为无作用力,进一步可断定磁极编码牌101此处为空,即无磁性。
由上述数据处理将磁极编码牌101的磁码磁性按照感应数据矩阵的顺序性依次还原当前识别的磁码编辑序列。而后按照预先设定的磁码编辑方法获取当前磁极编码牌101的相应信息,包括路况信息、列车位置信息等,为列车提供较为精准的行车信息。
根据实际需求本发明的应用工作原理和传感器等硬件实现有所不同,这也构成了本发明具备适应能力强的一大特点。在本发明中涉及不同的工作原理和应用方法将在以下的实施例中具体阐释。
实施例1
针对所述的磁码标识策略,采用矩阵序列组合信息编码方式的一类被动式信息读取手段的识别方法,例如:磁极“N”,“S”,“无 磁性”分别代表数值“1”,“2”,“0”,而轨道沿线的绝对位置001、011、111、……,分别表示列车行进的第一个绝对位置,第三个绝对位置,第7个绝对位置、……,而由磁极特性实现硬件结构上的定位依据。诸如此类的磁极编码方式的绝对位置的定位均适用于本方法的识别。
本实施例中的磁码信息识别系统中,车载识别器102上的车载识别码7为永磁识别码,车载磁码识别传感器8为磁力传感器;磁极编码牌101的磁码行/列分隔符3由红外设备预设,传感器数据监测前端设备6为红外传感器。
本发明的具体实施方法如下:
通过车载识别器102装载在运行列车上,由车辆的运行带动车载识别器102依次扫描沿路铺设的磁极编码牌101,利用车载识别器102上相关的传感器与磁码识别手段,识别和读取磁极编码牌上的位置、路况等信息,进而为运行列车提供较为精准的位置和速度信息等。
磁极编码牌101磁极识别过程:车载检测端的永磁识别码7对应的磁极编码牌101的磁极编码矩阵序列2的极性为已知,车载磁码识别传感器8为磁力传感器,通过磁力传感器实时监测轨道沿线的磁极编码牌101的磁极编码矩阵序列2与车载检测端的永磁识别码之间的磁力变化。在此,主要利用永磁材料之间的静磁场的相互作用力,即“同性相斥,异性相吸”的原理。将上述中的磁力变化采样数据由车载磁码识别传感器8的弱信号通过信号放大模块对实时数据进行放大处理;随后将检测数据输送到车载信息识别系统中的数据存储库,为下一步数据筛选和识别做基本的数据收集。
与此同时,车载识别器102对磁极编码牌101的磁码行/列分隔符3的识别,对所述磁码行/列分隔符3的数据样本进行分行/列处理。具体而言:传感器数据监测前端设备6为红外传感器,红外传感器实时监测轨道沿线的磁极编码牌101两侧的磁码行/列分隔符3的黑色矩形条目,并进行累加操作,将检测的时间周期放入到信号放大模块中对数据信号进行放大处理,同样存储到车载信息识别系统中的数据存储库,以备后续的数据处理和识别。
根据所述的磁场识别原理,车载磁码识别传感器8采集到的数据属于一种是“两边小,中间大“的正弦曲线特性。结合上述感应磁力样本数据和行/列分隔的时间周期样本数据,进一步得到一组带有磁码行/列周期分隔符3的磁极编码牌101的各行/列磁码的感应数据曲线,即磁极编码牌101的每行/列的感应信号周期均由磁码行/列分隔符3的监测数据分隔开,也就意味着磁极编码牌101的磁极编码牌101每行/列的感应信号依次分隔离散为独立数据矩阵,并且随着列车行进方向(扫描的先后顺序)可使获得的独立矩阵具备先后顺序性。
在磁码行/列分隔识别设备的信号辅助下,将每行/列的磁码感应数据进行分行/列处理,同时考虑实际相邻磁场的干扰以及信号放大模块的作用,在车载信息识别方法中应采取保守取样手段,即在车载信息识别器的始端数据进行减法操作,简单讲就是对所有数据统一进行阈值的减法处理,结合磁极感应数据的正负性,其采样数据信号阈值将由正负之分。届时,通过正负阈值的作用,将车载信息识别器的所有数据分为了三个区分带,即大于正阈值的数据正值信号区,正负阈值之间的数据默认为零信号区,小于负阈值的数据负值信号区。特 别的,阈值的设定将直接影响该套识别方法的准确性,将根据实际列车运行环境进行预设。
进一步判断相应的磁力感应数据矩阵的归属信号区间。若磁力感应数据矩阵归属到负信号区间,则判断为斥力,进一步可断定磁极编码牌101上对应的磁极编码矩阵序列2的磁极与车载识别器102的磁片极性相同;若磁力感应数据矩阵归属到正信号区间,则判断为吸力,进一步可断定磁极编码牌101上对应的磁极编码矩阵序列2的磁极与车载识别器102的磁片极性相反;若磁力感应数据矩阵归属到零信号区间,则视为无作用力,进一步可断定磁极编码牌101此处为空,即无磁性。由上述数据处理办法将磁极编码牌101的磁极编码矩阵序列2的磁性按照感应数据矩阵的顺序性依次还原当前识别的磁码编辑序列。而后按照预先设定的磁码编辑方法获取当前磁极编码牌101的相应信息,包括路况信息、列车位置信息等,为列车提供较为精准的行车信息。
综合上述,本发明的实施例基本可分为:磁极数据监测、行/列分隔、信号放大处理、磁极识别判断、磁码序列还原和信息提取等六大部分展开,参阅图3。在技术手段中,磁极磁性的数据采集和行/列分隔为本发明的关键技术之一。另外,在数据处理中的阈值的获取依然是一个关键性的数据标准,关系到本发明的识别精准度。
实施例2
本发明依据磁码数据的采集原理不同而具备多种应用方案。在实施例2中,将具体阐释另外一种数据采集手段。但在实施例中可以理解为只是为了进一步说明本发明,并不能理解为对本发明内容的限定。
本实施例中列车搭载的车载识别器102的车载识别码7为电磁绕组线圈,车载磁码识别传感器8为电流/电压传感器;磁码行/列分隔符3采用永磁矩形条,传感器数据监测前端设备6为压力传感器,该车载识别器102依次通过轨道沿线的磁极编码牌101,逐一识别和读取相应的定位信息。而车载识别器102上的电磁绕组线圈对磁极编码牌101上的磁码信息的识别与读取。
参阅图2所示,磁极编码牌101上的磁极编码矩序列2的识别过程如下:车载识别码7的电磁绕组线圈对应的磁极编码牌101的磁极编码矩阵序列2的极性为已知,车载磁码识别传感器8为电流/电压传感器,通过电流/电压传感器实时监测轨道沿线的磁极编码牌101的磁极编码矩阵序列2与车载检测端的电磁绕组线圈的感应电能的变化。在此,主要利用一定磁场下提供绕组线圈横向切割磁感线产生的感应电能,即“电磁感应”原理。将上述的电能变化采样数据由电流/电压传感器的弱信号通过车载端的信号放大模块对实时数据进行放大处理;随后将检测数据输送到车载信息识别系统中的数据存储库,为下一步数据筛选和识别做基本的数据收集。
在磁极编码牌101的磁码行/列分隔符3的识别中,采用永磁材料对磁场作用力进行识别和分行/列处理,即磁码行/列分隔符3采用永磁矩形条设置于所述磁极编码牌101两侧。具体而言:磁极编码牌102的行/列分隔符由一块块小磁体镶嵌到磁极编码牌101的两侧,构成磁码分行/列识别符3,传感器数据监测前端设备6为压力传感器,压力传感器实时监测传感器数据监测前端设备6铁磁性探头的受力变化情况,两个受力跳变的监测点之间的时间间隔即视为磁极编码牌 101上一个磁码行/列分隔符3的监测周期,并进行累加操作,将检测的时间周期放入信号放大模块中,对数据信号进行放大处理,同样存储到车载信息识别系统中的数据存储库,以备后续的数据处理和识别。
在实施例2中主要针对磁极编码牌101和车载识别器102的磁极数据采集的不同进行的相应说明,而后的车载识别器102对磁极编码牌101的磁码获取的现场数据的后续处理办法与实施例1中的相对应的部分基本相同,可包括信号放大、磁极磁性的识别、磁极信息序列还原和对应绝对位置信息的提取。通过车载识别器102对轨道沿线的磁极编码牌101的依次扫描和识别,提取相关位置、路况等信息,持续为运行列车和车辆运行调度室提供较为精准的位置、路况等信息,也为列车节能安全运行的提供了基本保障。
以上结合附图详细描述了本发明实施例的可选实施方式,但是,本发明实施例并不限于上述实施方式中的具体细节,在本发明实施例的技术构思范围内,可以对本发明实施例的技术方案进行多种简单变型,这些简单变型均属于本发明实施例的保护范围,只要其不违背本发明实施例的思想,其同样应当视为本发明实施例所公开的内容。

Claims (12)

  1. 一种磁码信息识别系统,该识别系统包括:
    车载识别器(102),所述车载识别器(102)采用预设磁片极性的车载识别码(7);
    磁极编码牌(101),所述磁极编码牌(101)利用磁极特性将所需信息隐藏于磁极编码矩阵序列(2)中;
    通过所述车载识别器(102)与磁极编码牌(101)的相互作用对磁极编码牌(101)的磁极编码矩阵序列进行读取和识别。
  2. 根据权利要求1所述的识别系统,其特征在于,所述识别系统预设磁码行/列分隔识别设备,该磁码行/列分隔识别设备包括设置于所述磁极编码牌(101)两侧的磁码行/列分隔符(3)和设置于所述车载识别器(102)上的磁码行/列数据捕获模块(4),该磁码行/列数据捕获模块(4)设置有传感器数据监测前端设备(6)。
  3. 根据权利要求2所述的识别系统,其特征在于,所述磁码行/列分隔符(3)由红外设备预设,所述磁极编码牌(101)的磁码行/列分隔符(3)采用黑色填涂成矩形条设置于所述磁极编码牌(101)的两侧;或者,所述磁码行/列分隔符(3)由磁性设备预设,所述磁极编码牌(101)的磁码行/列分隔符(3)采用永磁矩形条设置于所述磁极编码牌(101)两侧。
  4. 根据权利要求1所述的识别系统,其特征在于,所述车载识别器(102)的车载识别码(7)为永磁识别码或电磁绕组线圈中的任意一种;并且,所述车载识别器(102)的车载识别码(7)的磁片尺寸小于所述磁极编码牌(101)的磁极编码矩阵序列(2)的磁片尺寸。
  5. 根据权利要求4所述的识别系统,其特征在于,所述车载识别器(102)预设带有车载磁码识别传感器(8)的磁极数据捕捉模块,该车载磁码识别传感器(8)的类型与相应的所述车载识别码(7)的类型相匹配;并且/或者,所述车载识别码(7)和车载磁码识别传感器(8)均安设于非磁性材料固定板上。
  6. 根据权利要求2所述的识别系统,其特征在于,所述车载识别器(102)的底面板磨砂处理以便于所述车载识别器(102)的安装;并且/或者,所述车载识别器(102)在表面铺设非磁性材料的保护层(11),所述磁码行/列分隔识别设备安装于该非磁性材料的保护层(11)之内;并且/或者,所述车载识别器(102)的底座安装有用于固定安装所述车载识别器(102)的不锈钢固定板(12)。
  7. 利用权利要求1-6中任意一项所述的磁码信息识别系统进行磁码信息识别的方法,该识别方法包括以下步骤:
    S1)由车载识别器(102)对磁极编码牌(101)上的磁极编码矩阵序列(2)的信息进行识别与读取;S2)对磁极编码牌(101)上预设的磁码行/列分隔符(3)进行识别处理。
  8. 根据权利要求7所述的识别方法,其特征在于,所述步骤S1)包括:S101)车载磁码识别传感器(8)实时检测接收由车载识别码(7)与磁极编码牌(101)的磁极编码矩阵序列(2)之间因磁场特性而产生的相关磁力/电能的样本数据;S102)车载信息识别系统的车载信息数据处理单元对相应的数据进行处理;S103)识别出相应磁极编码矩阵序列(2)的磁码极性,还原当前识别磁码的编辑序列;S104)按照预先设定的磁极编码矩阵序列(2)编辑方法获取当前磁 极编码牌(101)隐藏的相应信息。
  9. 根据权利要求7所述的识别方法,其特征在于,所述步骤S2)包括:S201)所述磁极编码牌(101)的磁码行/列分隔符(3)由红外设备预设;S202)由红外设备相对应的所述车载识别器(102)相应的红外传感器数据监测前端设备对所述磁码行/列分隔符(3)进行识别处理;或者,S203)所述磁极编码牌(101)的磁码行/列分隔符由磁性设备预设;S204)由磁性设备相对应的所述车载识别器(102)相应的磁力传感器数据监测前端设备对所述磁码行/列分隔符(3)进行识别处理。
  10. 根据权利要求9所述的识别方法,其特征在于,在所述步骤S202)和/或步骤S204)中,识别所述磁码行/列分隔符(3)时进行计数操作,所述计数周期与所述红外传感器数据监测前端设备检测周期或磁力传感器数据监测前端设备的检测周期同步或者呈整数倍设置。
  11. 根据权利要求7所述的识别方法,其特征在于,在所述步骤S1)和步骤S2)中:对采集到的实时数据经过信号放大模块进行信号放大处理;并且/或者,对所有数据进行阈值减法处理;
    所述阈值减法处理包括:结合磁极感应数据的正负性,其采样数据信号阈值将有正负之分,通过正负阈值的作用,将所有数据分为三个区分带,大于正阈值的数据正值信号区,处于正负阈值之间的数据默认为零信号区,小于负阈值的数据负值信号区。
  12. 权利要求7所述的磁码信息识别方法在中低速磁悬浮列车和轨道运输交通系统的绝对位置/速度的实时监测和定位中的应用。
PCT/CN2019/126695 2019-09-19 2019-12-19 磁码信息识别系统和方法及其应用 WO2021051690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910886325.7A CN110696878B (zh) 2019-09-19 2019-09-19 磁码信息识别系统和方法应用
CN201910886325.7 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021051690A1 true WO2021051690A1 (zh) 2021-03-25

Family

ID=69195726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126695 WO2021051690A1 (zh) 2019-09-19 2019-12-19 磁码信息识别系统和方法及其应用

Country Status (2)

Country Link
CN (1) CN110696878B (zh)
WO (1) WO2021051690A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111291395B (zh) * 2020-02-05 2022-07-19 北卡科技有限公司 一种基于智能计算的信息隐藏方法
CN111307154B (zh) * 2020-02-27 2023-02-21 南京大学 一种基于磁铁阵列扫描的室内行人追踪系统及其工作方法
CN113011209B (zh) * 2021-04-08 2022-07-08 浙江新凯迪数字科技股份有限公司 体育产业工业互联网系统及转运箱信息获取方法
CN116793339B (zh) * 2023-08-29 2023-11-07 深圳智荟物联技术有限公司 车辆定位方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654515A (ja) * 1992-01-07 1994-02-25 Shicoh Eng Co Ltd リニア磁気エンコ−ダ内蔵リニア直流モ−タ
CN103234564A (zh) * 2013-04-15 2013-08-07 山东联友通信科技发展有限公司 基于二维磁编码的定位方法及定位系统
CN108229628A (zh) * 2018-01-03 2018-06-29 江西理工大学 基于三维磁码的列车定位标识方法
CN108225162A (zh) * 2016-12-13 2018-06-29 大银微系统股份有限公司 绝对位置感测读头装置
CN208736432U (zh) * 2018-07-20 2019-04-12 江苏多维科技有限公司 一种用于检测电梯绝对位置的磁编码器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654515A (ja) * 1992-01-07 1994-02-25 Shicoh Eng Co Ltd リニア磁気エンコ−ダ内蔵リニア直流モ−タ
CN103234564A (zh) * 2013-04-15 2013-08-07 山东联友通信科技发展有限公司 基于二维磁编码的定位方法及定位系统
CN108225162A (zh) * 2016-12-13 2018-06-29 大银微系统股份有限公司 绝对位置感测读头装置
CN108229628A (zh) * 2018-01-03 2018-06-29 江西理工大学 基于三维磁码的列车定位标识方法
CN208736432U (zh) * 2018-07-20 2019-04-12 江苏多维科技有限公司 一种用于检测电梯绝对位置的磁编码器

Also Published As

Publication number Publication date
CN110696878A (zh) 2020-01-17
CN110696878B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2021051690A1 (zh) 磁码信息识别系统和方法及其应用
CN111572598A (zh) 高速磁浮列车定位方法和系统
CN1483623A (zh) 移动体探测系统
CN201820353U (zh) 基于rfid的高速公路车辆监控系统
CN112733981A (zh) 一种基于磁动力直线驱动技术的智能物流系统
CN109584612A (zh) 停车场巡检机器人及装置
CN205632525U (zh) 自动过分相地面感应装置车载磁场检测装置
CN216546216U (zh) 一种磁浮列车绝对定位系统
CN209617166U (zh) 高速磁浮列车定位系统
CN203288097U (zh) 地面停车场停车泊位引导系统
CN109668564A (zh) 一种轨道小车的定位装置和定位方法
CN202389408U (zh) 一种铁路列车计轴装置
CN101386306B (zh) 车轴计轴传感装置
CN204650759U (zh) 一种无线地磁车辆检测器led式智能主机
CN108229628B (zh) 基于三维磁码的列车定位标识方法
CN208938119U (zh) 基于二维码技术的铁钢包号识别系统
CN111347885A (zh) 智轨无线公交电车系统
CN212047378U (zh) 一种磁轨枕检测装置
CN110091765A (zh) 基于电子标签的过分相方法、电子标签、阅读器及系统
CN203588461U (zh) 一种自动车型分类检测系统
CN203376785U (zh) 基于车载复合型标签的开放式停车场收费系统
CN107380214B (zh) 一种矿山电力机车识别装置及识别方法
CN204791530U (zh) 一种基于电子车牌技术的公交车道占道检测系统
CN206058527U (zh) 一种基于车联网的交通告警控制系统
CN212859449U (zh) 一种配套资源的移动机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945985

Country of ref document: EP

Kind code of ref document: A1