WO2021051368A1 - 功率控制方法、装置及设备 - Google Patents

功率控制方法、装置及设备 Download PDF

Info

Publication number
WO2021051368A1
WO2021051368A1 PCT/CN2019/106869 CN2019106869W WO2021051368A1 WO 2021051368 A1 WO2021051368 A1 WO 2021051368A1 CN 2019106869 W CN2019106869 W CN 2019106869W WO 2021051368 A1 WO2021051368 A1 WO 2021051368A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling period
scheduling
uplink data
carrier
receiving channel
Prior art date
Application number
PCT/CN2019/106869
Other languages
English (en)
French (fr)
Inventor
丁正虎
曾勇梅
朱江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/106869 priority Critical patent/WO2021051368A1/zh
Priority to CN201980099631.4A priority patent/CN114270946B/zh
Priority to EP19945523.9A priority patent/EP4024960A4/en
Publication of WO2021051368A1 publication Critical patent/WO2021051368A1/zh
Priority to US17/697,251 priority patent/US20220210732A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3209Monitoring remote activity, e.g. over telephone lines or network connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a power control method, device and equipment.
  • the power consumption of the mobile communication network is also continuously increasing.
  • the power consumption of the wireless communication network mainly comes from the network equipment (for example, the base station).
  • the transmission channel of the network device is usually turned off at intervals to save the power consumption of the network device.
  • the power consumption of the transmission channel accounts for a relatively high proportion of the total power consumption of the network equipment. Therefore, turning off the transmission channel at intervals can effectively save the power consumption of the network equipment.
  • the power consumption of the transmission channel accounts for a relatively small proportion of the total power consumption of the network device, turning off the transmission channel at intervals cannot effectively reduce the power consumption of the network device.
  • the embodiments of the present application provide a power control method, device, and equipment, which reduce the power consumption of a base station.
  • an embodiment of the present application provides a power control method.
  • the network device determines whether the first receiving channel has uplink data to be received in the first scheduling period, and if it is determined that the first receiving channel does not exist in the first scheduling period For the uplink data to be received, the network device controls the state of the first receiving channel in the first scheduling period to be the off state.
  • the network device determines that there is no uplink data to be received in the first receiving channel in the first scheduling period, and the network device controls the first receiving channel in the first scheduling period.
  • the state within the cycle is the off state.
  • the receiving channel is in the off state, the power consumption of the device in the receiving channel can be reduced, thereby reducing the power consumption of the network device.
  • the first receiving channel includes a receiving end and a low-noise amplifier; the network device can control the state of the first receiving channel in the first scheduling period to be in the off state in the following manner: Before starting, the network device controls to turn off the receiving end and/or the low noise amplifier.
  • the power consumption of the first receiving channel can be reduced, thereby reducing the power consumption of the network device.
  • the network device is a baseband unit BBU; the network device can control the receiving end and/or the low noise amplifier to be turned off in the following manner:
  • the BBU sends first information to the processing chip, the first information is used to instruct the processing chip to turn off the receiving end and/or the low noise amplifier.
  • the BBU sends the first information to the processing chip, and the processing chip can turn off the receiving end and/or the low noise amplifier according to the first information, that is, the BBU can perform the processing on the receiving end and/or the low noise amplifier through the processing chip.
  • the unified control makes it simple to control the receiving end and/or the low noise amplifier.
  • the BBU sends second information to the receiving end and/or the low noise amplifier, and the second information is used to instruct the receiving end and/or the low noise amplifier to set the state to the off state.
  • the BBU sends the second information to the receiving end and/or the low noise amplifier respectively, so as to realize the control of the receiving end and/or the low noise amplifier respectively, so that the flexibility of controlling the receiving end and/or the low noise amplifier is achieved. Higher.
  • the network device before the network device determines whether there is uplink data to be received on the first receiving channel in the first scheduling period, the network device performs aggregation scheduling on the uplink data to be received by the first receiving channel, and the aggregation scheduling is used for aggregation scheduling. For scheduling the uplink data in at least one scheduling period to other scheduling periods.
  • the idle state scheduling period is increased, so that the first receiving channel can be turned off in more scheduling periods, and the first receiving channel's Power consumption, thereby reducing the power consumption of network equipment.
  • the first receiving channel corresponds to a single carrier; the network device may perform aggregation scheduling on the uplink data to be received by the first receiving channel in the following manner: the network device determines that the single carrier is in the first of the second scheduling period Whether the uplink data can be delayed to the third scheduling period; if so, the network device schedules the first uplink data to the third scheduling period, which is located after the second scheduling period.
  • the first uplink data of a single carrier in the second scheduling period can be delayed to the third scheduling period
  • the first uplink data is scheduled to the third scheduling period, and the above is repeated in the third scheduling period.
  • the process that is, the data in the third scheduling period may be scheduled to other scheduling periods. Repeat the above process to increase the idle state scheduling period, so that the first receiving channel can be turned off in more scheduling periods, and the first receiving channel can be reduced.
  • the power consumption of a receiving channel further reduces the power consumption of the network equipment, and the above-mentioned scheduling method is simple, making the complexity of the aggregation scheduling lower.
  • the service priority corresponding to the first uplink data is less than or equal to the preset service priority
  • the priority of the initial transmission bearer is less than or equal to the preset bearer priority
  • the delay of the first uplink data in the third scheduling period is less than or equal to the preset delay
  • the sum of the amount of resources occupied by the first uplink data and the amount of resources occupied by the uplink data of the single carrier in the third scheduling period is less than or equal to the preset amount of resources.
  • the uplink data with lower service priority is aggregated and scheduled, and the time delay of the first uplink data and the amount of resources occupied by the first uplink data are referred to when the aggregation scheduling is performed. Therefore, it can be realized Perform precise aggregation scheduling on the first uplink data to prevent aggregation scheduling from having an excessive impact on service delay. And through the above method, it is possible to aggregate and schedule the uplink data in multiple scheduling periods, increase the idle state scheduling period, so that the first receiving channel can be turned off in more scheduling periods, and the power consumption of the first receiving channel can be reduced. , Thereby reducing the power consumption of network equipment.
  • the third scheduling period is adjacent to the second scheduling period.
  • the second scheduling period is adjacent to the second scheduling period and a scheduling period after the second scheduling period is determined as the third scheduling period, and the method of determining the third scheduling period is simple, so that the complexity of convergent scheduling is low. .
  • the data on multiple scheduling periods can be aggregated into one scheduling period. Period, which can effectively increase the idle state scheduling period.
  • the first receiving channel corresponds to at least two carriers; the network device may perform aggregation scheduling on the uplink data to be received corresponding to the first receiving channel in the following manner: The uplink data corresponding to at least one carrier is aggregated and scheduled, and the aggregated scheduling is used to schedule the uplink data of the at least two carriers on different scheduling periods to the same scheduling period.
  • the uplink data of the at least two carriers on different scheduling periods can be scheduled to the same scheduling period, thereby increasing idle states.
  • the scheduling period makes it possible to turn off the first receiving channel in more scheduling periods, reducing the power consumption of the first receiving channel, and thereby reducing the power consumption of the network device.
  • the network device may perform aggregation scheduling on the uplink data corresponding to at least one of the at least two carriers in the following manner: if each carrier in the first carrier set is in the uplink of the fourth scheduling period The data can be delayed by one scheduling period, and the uplink data of each carrier in the first carrier set in the fourth scheduling period is scheduled to the next scheduling period of the fourth scheduling period; wherein, the first carrier set includes: at least two carriers In the fourth scheduling period, there is a carrier with uplink data.
  • the above process by delaying the uplink data of each carrier in the first carrier set in the fourth scheduling cycle by one scheduling cycle, the above process is repeated in the next scheduling cycle, that is, the data scheduled to the next scheduling cycle may change Continue scheduling to other scheduling periods and repeat the above process to increase the idle state scheduling period, so that the first receiving channel can be shut down in more scheduling periods, reducing the power consumption of the first receiving channel, and thereby reducing network equipment
  • the power consumption is high, and the above-mentioned scheduling method is simple, making the complexity of convergent scheduling low.
  • the uplink data of each carrier in the first carrier set in the fourth scheduling period is scheduled to the next scheduling period of the fourth scheduling period:
  • the service priority corresponding to the uplink data of each carrier in the first carrier set in the fourth scheduling period is less than or equal to the preset service priority
  • the priority of the initial transmission bearer is less than or equal to the preset bearer priority
  • the delay of the uplink data in the fourth scheduling period of each carrier in the first carrier set in the fourth scheduling period is less than or equal to the preset time delay
  • the sum of the amount of resources occupied by the uplink data of each carrier in the fourth scheduling period in the first carrier set and the amount of resources occupied by the uplink data of at least two carriers in the next scheduling period of the fourth scheduling period is less than or equal to the preset Resources.
  • the uplink data with lower service priority is aggregated and scheduled, and the time delay of the first uplink data and the amount of resources occupied by the first uplink data are referred to when the aggregated scheduling is performed.
  • Accurate aggregation and scheduling of uplink data prevents aggregation and scheduling from having an excessive impact on service delay.
  • the first receiving channel corresponds to at least two carriers; the time domain position of the invalid scheduling period corresponding to each carrier in the at least two carriers is the same, and the invalid scheduling period is a scheduling period in which uplink data transmission is not performed.
  • the uplink data in multiple scheduling periods can be aggregated.
  • Scheduling increasing the scheduling period in the idle state, so that the receiving channel can be turned off in more scheduling periods, reducing the power consumption of the receiving channel, and thereby reducing the power consumption of the network device.
  • the first receiving channel corresponds to at least two carriers; when the durations of the scheduling periods corresponding to the at least two carriers are different, the network device further determines the duration of the scheduling period of at least one of the at least two carriers.
  • the update is performed, and the duration of the scheduling period corresponding to at least two carriers after the update is the same. In this way, it is convenient to converge and schedule the uplink data on at least two carriers.
  • an embodiment of the present application provides a power control device, which is applied to a network device, and the device includes a judgment module and a control module, wherein:
  • the judgment module is configured to judge whether there is uplink data to be received in the first receiving channel in the first scheduling period
  • the control module is configured to determine that there is no uplink data to be received in the first receiving channel in the first scheduling period by the judging module, and control the first receiving channel to be in the first scheduling period
  • the state is the off state.
  • the first receiving channel includes a receiving end and a low noise amplifier; the control module is specifically configured to:
  • control to turn off the receiving end and/or the low noise amplifier Before the start of the first scheduling period, control to turn off the receiving end and/or the low noise amplifier.
  • the network device is a baseband unit BBU; the device further includes a sending module, wherein:
  • the sending module is configured to send first information to a processing chip, where the first information is used to instruct the processing chip to turn off the receiving end and/or the low noise amplifier; or,
  • the sending module is configured to send second information to the receiving end and/or the low noise amplifier, where the second information is used to instruct the receiving end and/or the low noise amplifier to set the state to off Off state.
  • the device further includes a scheduling module, wherein:
  • the scheduling module is configured to perform aggregation scheduling on the uplink data to be received on the first receiving channel before the judging module determines whether there is uplink data to be received on the first receiving channel in the first scheduling period.
  • Convergent scheduling is used to schedule uplink data in at least one scheduling period to other scheduling periods.
  • the first receiving channel corresponds to a single carrier; the scheduling module is specifically configured to:
  • the scheduling module determines that the first uplink data to be received by the single carrier in the second scheduling period can be delayed to the third scheduling period:
  • the service priority corresponding to the first uplink data is less than or equal to the preset service priority
  • the priority of the initial transmission bearer is less than or equal to a preset bearer priority
  • the delay of the first uplink data in the third scheduling period is less than or equal to a preset delay
  • the sum of the amount of resources occupied by the first uplink data and the amount of resources occupied by the uplink data of the single carrier in the third scheduling period is less than or equal to a preset amount of resources.
  • the third scheduling period is adjacent to the second scheduling period; or,
  • the first receiving channel corresponds to at least two carriers; the scheduling module is specifically configured to:
  • Convergent scheduling is performed on the uplink data corresponding to at least one of the at least two carriers, where the convergent scheduling is used to schedule the uplink data of the at least two carriers on different scheduling periods to the same scheduling period.
  • the scheduling module is specifically configured to:
  • the uplink data of each carrier in the first carrier set in the fourth scheduling period can be delayed by one scheduling period, the uplink data of each carrier in the first carrier set in the fourth scheduling period is scheduled to the fourth scheduling The next scheduling cycle of the cycle;
  • the first carrier set includes: a carrier having uplink data in the fourth scheduling period among the at least two carriers.
  • the scheduling module schedules the uplink data of each carrier in the first carrier set in the fourth scheduling period to the next one in the fourth scheduling period Scheduling cycle:
  • the service priority corresponding to the uplink data of each carrier in the fourth scheduling period in the first carrier set is less than or equal to a preset service priority
  • the priority of the initial transmission bearer is less than or equal to the preset bearer priority
  • the delay of uplink data in the fourth scheduling period of each carrier in the first carrier set in the fourth scheduling period is less than or equal to a preset time delay
  • the amount of resources occupied by the uplink data of each carrier in the fourth scheduling period in the first carrier set and the resources occupied by the uplink data of the at least two carriers in the next scheduling period of the fourth scheduling period The sum of the amounts is less than or equal to the preset resource amount.
  • the first receiving channel corresponds to at least two carriers; the time domain position of the invalid scheduling period corresponding to each carrier in the at least two carriers is the same, and the invalid scheduling period is not performed The scheduling period of uplink data transmission.
  • the first receiving channel corresponds to at least two carriers; the device further includes an update module, wherein:
  • the update module is configured to update the duration of the scheduling period of at least one of the at least two carriers when the durations of the scheduling periods corresponding to the at least two carriers are different, and the updated at least two The duration of the scheduling period corresponding to the carrier is the same.
  • an embodiment of the present application provides a power control device, including a memory and a processor, the memory stores program instructions, the processor executes the program instructions in the memory, and executes the following steps:
  • controlling the state of the first receiving channel in the first scheduling period to be an off state If it is determined that there is no uplink data to be received in the first receiving channel in the first scheduling period, controlling the state of the first receiving channel in the first scheduling period to be an off state.
  • the first receiving channel includes a receiving end and a low-noise amplifier; the processor is specifically configured to:
  • control to turn off the receiving end and/or the low noise amplifier Before the start of the first scheduling period, control to turn off the receiving end and/or the low noise amplifier.
  • the network device is a BBU; the power control apparatus may further include a sending module, where:
  • the sending module is configured to send first information to a processing chip, where the first information is used to instruct the processing chip to turn off the receiving end and/or the low noise amplifier; or,
  • the sending module is configured to send second information to the receiving end and/or the low noise amplifier, where the second information is used to instruct the receiving end and/or the low noise amplifier to set the state to off Off state.
  • the processor is further configured to wait for the first receiving channel before the processor determines whether there is uplink data to be received in the first receiving channel in the first scheduling period.
  • the received uplink data is aggregated and scheduled, and the aggregated scheduling is used to schedule the uplink data in at least one scheduling period to other scheduling periods.
  • the first receiving channel corresponds to a single carrier; the processor is specifically configured to:
  • the processor determines that the first uplink data to be received by the single carrier in the second scheduling period can be delayed to the third scheduling period:
  • the service priority corresponding to the first uplink data is less than or equal to the preset service priority
  • the priority of the initial transmission bearer is less than or equal to a preset bearer priority
  • the delay of the first uplink data in the third scheduling period is less than or equal to a preset delay
  • the sum of the amount of resources occupied by the first uplink data and the amount of resources occupied by the uplink data of the single carrier in the third scheduling period is less than or equal to a preset amount of resources.
  • the third scheduling period is adjacent to the second scheduling period; or,
  • the first receiving channel corresponds to at least two carriers; the processor is configured to:
  • Convergent scheduling is performed on the uplink data corresponding to at least one of the at least two carriers, where the convergent scheduling is used to schedule the uplink data of the at least two carriers on different scheduling periods to the same scheduling period.
  • the processor is configured to:
  • the uplink data of each carrier in the first carrier set in the fourth scheduling period can be delayed by one scheduling period, the uplink data of each carrier in the first carrier set in the fourth scheduling period is scheduled to the fourth scheduling The next scheduling cycle of the cycle;
  • the first carrier set includes: a carrier having uplink data in the fourth scheduling period among the at least two carriers.
  • the processor schedules the uplink data of each carrier in the first carrier set in the fourth scheduling period to the next one in the fourth scheduling period Scheduling cycle:
  • the service priority corresponding to the uplink data of each carrier in the fourth scheduling period in the first carrier set is less than or equal to a preset service priority
  • the priority of the initial transmission bearer is less than or equal to the preset bearer priority
  • the delay of uplink data in the fourth scheduling period of each carrier in the first carrier set in the fourth scheduling period is less than or equal to a preset time delay
  • the amount of resources occupied by the uplink data of each carrier in the fourth scheduling period in the first carrier set and the resources occupied by the uplink data of the at least two carriers in the next scheduling period of the fourth scheduling period The sum of the amounts is less than or equal to the preset resource amount.
  • the first receiving channel corresponds to at least two carriers; the time domain position of the invalid scheduling period corresponding to each carrier in the at least two carriers is the same, and the invalid scheduling period is not performed The scheduling period of uplink data transmission.
  • the first receiving channel corresponds to at least two carriers; when the durations of the scheduling periods corresponding to the at least two carriers are different, the processor is further configured to: The duration of the scheduling period of at least one of the two carriers is updated, and the duration of the scheduling period corresponding to the at least two carriers after the update is the same.
  • an embodiment of the present application provides a network device, including the power control apparatus described in any one of the third aspect.
  • an embodiment of the present application provides a storage medium, the storage medium is used to store a computer program, and when the computer program is executed by a computer or a processor, it is used to implement the power control method of any one of the first aspect .
  • inventions of the present application provide a computer program product.
  • the computer program product includes instructions that, when the instructions are executed, cause a computer to execute the power control method described in any one of the first aspects.
  • embodiments of the present application provide a system on a chip or a system chip, the system on a chip or a system chip may be applied to a terminal device, and the system on a chip or a system chip includes: at least one communication interface, at least one processing The communication interface, the memory, and the processor are interconnected by a bus.
  • the processor executes the instructions stored in the memory so that the terminal device can execute any one of the Power control method.
  • the power control method, device, and device provided in the embodiments of the present application are directed to any first receiving channel in the network device, and the network device determines whether there is uplink data to be received in the first receiving channel in the first scheduling period; A receiving channel does not have uplink data to be received in the first scheduling period, and the network device controls the state of the first receiving channel in the first scheduling period to be an off state. When the receiving channel is in the off state, the power consumption of the device in the receiving channel can be reduced, thereby reducing the power consumption of the network device.
  • FIG. 1A is an architecture diagram of a network device provided by an embodiment of this application.
  • FIG. 1B is an architecture diagram of a network device provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of an RU provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of the structure of a radio frame provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a possible communication scenario provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of a power control method provided by an embodiment of this application.
  • FIG. 6A is a schematic diagram of a scheduling period provided by an embodiment of this application.
  • FIG. 6B is a schematic diagram of another scheduling period provided by an embodiment of this application.
  • FIG. 6C is a schematic diagram of another scheduling period provided by an embodiment of the application.
  • FIG. 7A is a schematic diagram of a process of convergence scheduling provided by an embodiment of this application.
  • FIG. 7B is a schematic diagram of another convergence scheduling process provided by an embodiment of this application.
  • FIG. 7C is a schematic diagram of another convergence scheduling process provided by an embodiment of this application.
  • FIG. 8A is a schematic diagram of still another scheduling period provided by an embodiment of this application.
  • FIG. 8B is a schematic diagram of another scheduling period provided by an embodiment of this application.
  • FIG. 8C is a schematic diagram of another scheduling period provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another convergence scheduling process provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a power control device provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another power control device provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of yet another power control device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of still another power control device according to an embodiment of the application.
  • Terminal equipment It is a kind of equipment with wireless transceiver function. Terminal devices can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial Wireless terminals in industrial control, in-vehicle terminal equipment, wireless terminals in self-driving (self-driving), wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, wearable terminal equipment, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal equipment involved in the embodiments of the present application may also be referred to as a terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station , Remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile.
  • Network equipment It is a kind of equipment with wireless transceiver function. Including but not limited to: evolutionary base station (Evolutional Node B, eNB or eNodeB) in a long term evolution (LTE) system, or the network equipment may be a gNB or a transmission reception point in a 5G communication system point, TRP), micro base station, etc., or network equipment can be relay stations, access points, in-vehicle equipment, wearable devices, and network equipment in the future evolution of the Public Land Mobile Network (PLMN), or other A base station in a network where multiple technologies are converged, or in a variety of other evolved networks.
  • the 5G communication system can also be called a new radio (NR) system.
  • the network equipment may be a base station (Base Station, BS), the base station may provide communication services to multiple mobile stations (Mobile Station, MS), and the base station may also be connected to core network equipment.
  • the base station includes a baseband unit (Baseband Unit, BBU) and a remote radio unit (English: Remote Radio Unit, RRU), and the BBU may also be referred to as a network device.
  • the base station may include a BBU and an active antenna processing unit (AAU), where the AAU includes an RRU and an antenna, for example, when the RRU and the antenna are integrated, it may be referred to as an AAU.
  • AAU active antenna processing unit
  • BBU and RRU can be placed in different places, for example: RRU is remote, placed in a high-traffic area, BBU placed in the central computer room.
  • the BBU and RRU can also be placed in the same computer room.
  • the BBU and RRU may also be different components under one rack.
  • FIG. 1A is an architecture diagram of a network device provided by an embodiment of this application.
  • the network equipment includes a baseband unit (BBU) and a radio unit (RU).
  • the radio frequency unit includes M sending channels and N receiving channels. M can be 8, 16, 32, 64, etc. N can be 8, 16, 32, 64, etc.
  • the BBU is connected to each sending channel and each receiving channel respectively.
  • the BBU can schedule uplink data. For example, the BBU can perform aggregation scheduling on uplink data to increase the proportion of idle uplink scheduling periods.
  • the network device can send downlink data to the terminal device through the sending channel, and the network device can receive the uplink data sent by the terminal device through the receiving channel.
  • the network equipment may also include a common public radio interface (CPRI) or an evolved common public radio interface (eCPRI), and the BBU can communicate with the receiving channel and the sending channel through CPRI or eCPRI Connected, the CPRI interface can be located in the RU.
  • the BBU can control the state of the receiving channel to be the off state or the on state.
  • the receiving channel includes one or more devices, and the state of the device includes the power-on state (the state after the device is powered on) and the power-off state (the state after the device is powered off). If there is a device in the receiving channel that is in the power-off state, the state of the receiving channel is the off state.
  • the state of the receiving channel is the on state.
  • turning off the receiving channel refers to turning off at least one device in the receiving channel
  • turning off the device in the receiving channel refers to powering off the devices in the receiving channel and turning off the devices in the receiving channel.
  • Power can also be referred to as setting the state of the device in the receiving channel to the power-off state.
  • FIG. 1B is an architecture diagram of a network device provided by an embodiment of this application. Based on the architecture of the network device shown in FIG. 1A, please refer to FIG. 1B.
  • the network device also includes a processing chip, a BBU is connected to the processing chip, and the processing chip is respectively connected to each sending channel and each receiving channel.
  • the processing chip may be located inside the RU or outside the RU.
  • the network device can control the state of the receiving channel to be the off state or the on state through the processing chip.
  • the network device may also include CPRI, the processing chip may be connected to the receiving channel and the sending channel through the CPRI, and the CPRI interface may be located in the RU.
  • FIG. 2 is a schematic structural diagram of an RU provided by an embodiment of the application.
  • the RU includes a sending channel, a receiving channel, a digital processing unit, and a duplexer.
  • the transmit channel includes a transmit end (TX) and a power amplifier (PA).
  • the transmit end is used to obtain the data to be transmitted from the network device and transmit the data to be transmitted to the PA.
  • the PA can treat The sent data is subjected to power amplification processing, and the amplified data is transmitted to the duplexer.
  • the receiving channel includes the receiving end (RX) and low noise amplifier (LNA).
  • the LNA can receive data from the duplexer, perform low noise amplification processing on the received data, and perform low noise amplification processing The subsequent data is sent to the receiving end.
  • the digital processing unit is used for digital intermediate frequency processing.
  • digital intermediate frequency processing may include digital pre-distortion (DPD) processing, crest factor reduction (CFR) processing, and digital up converter (DUC) Processing, digital down converter (digital down converter, DDC) processing, etc.
  • the duplexer can provide the RF channel receiving signal and transmitting signal multiplexing function, so that the receiving signal and the transmitting signal can share the same antenna channel, and the receiving signal and the transmitting signal can share the same antenna channel.
  • the transmitted signal provides filtering function.
  • the carrier can be an LTE carrier or an NR carrier.
  • the types of carriers configured on different receiving channels in the network equipment may be the same or different. For example, assuming that there are 32 receiving channels in a network device, the carriers configured on the 32 receiving channels may all be LTE carriers, or the carriers configured on the 32 receiving channels may all be NR carriers, or the 32 receiving channels In the channel, a part of the carrier configured on the receiving channel is an LTE carrier, and the carrier configured on a part of the receiving channel is an NR carrier.
  • Multi-carrier scenario If the number of carriers configured on the receiving channel of the network device is greater than 1, it is called a multi-carrier scenario.
  • the multiple carriers may all be LTE carriers, or all of the multiple carriers may be NR carriers, or some of the multiple carriers may be LTE carriers, and the other may be NR carriers.
  • the multi-carrier scenario may be referred to as a multi-carrier single-mode scenario.
  • the multi-carrier scenario may also be referred to as a multi-carrier multi-mode scenario.
  • the carrier configuration corresponding to different receiving channels in the network equipment can be the same or different.
  • the carrier configuration can include the carrier type, the number of carriers, and so on.
  • Scheduling cycle The cycle for scheduling uplink data.
  • the scheduling period of the network device is different.
  • the scheduling period is the basic time unit scheduled under the corresponding system.
  • the basic time unit for scheduling may be a subframe
  • the basic time unit for scheduling The unit can be a time slot.
  • the scheduling period is usually the basic time unit scheduled under the LTE system, and the basic time unit scheduled under the LTE system is usually an integer multiple of the basic time unit scheduled under the NR system, for example, a multi-carrier multi-mode scenario
  • the scheduling period may be a subframe.
  • FIG. 3 is a schematic diagram of the structure of a radio frame provided by an embodiment of the application.
  • a radio frame includes multiple subframes.
  • One subframe can include two time slots.
  • one subframe includes 14 symbols, and for an extended CP, one subframe includes 12 symbols. symbol.
  • the duration of a radio frame may be 10 milliseconds
  • the duration of a subframe may be 1 millisecond
  • the duration of a time slot may be 0.5 milliseconds.
  • FIG. 3 is only a schematic diagram illustrating the structure of the wireless frame in the form of an example, and is not a limitation on the structure of the wireless frame.
  • one subframe may include two time slots
  • one subframe may also include 1, 2, 4, 8, 16 time slots, and so on.
  • Convergence scheduling For any receiving channel, the uplink data of the receiving channel in at least one scheduling period is scheduled to other scheduling periods of the receiving channel.
  • the receiving channel also has uplink data to be received in other scheduling periods.
  • the uplink data of at least two scheduling periods can be aggregated into one scheduling period, thereby increasing idle scheduling periods.
  • convergent scheduling can refer to: initially, receiving channel 1 has uplink data to be received in scheduling period 1 and scheduling period 2, and then the uplink data of receiving channel 1 in scheduling period 1 can be scheduled to scheduling period 2. , So that the receiving channel 1 does not have uplink data to be received in the scheduling period 1, that is, the scheduling period 1 corresponding to the receiving channel 1 is switched to the idle state.
  • the technical solution shown in this application can be applied to the fifth generation mobile communication technology (The 5th Generation mobile communication technology, referred to as 5G) system, and can also be applied to the LTE system.
  • the vehicles in the LTE communication system can be applied to all (vehicle to X) systems. , V2X) system, device to device (D2D) system, machine type communication (MTC) system, etc., can also be applied to universal mobile telecommunications system (UMTS) terrestrial wireless access UMTS terrestrial radio access network (UTRAN) system, or global system for mobile communication (GSM)/enhanced data rate for GSM evolution (EDGE) system radio access network ( GSM EDGE radio access network, GERAN) architecture.
  • UMTS universal mobile telecommunications system
  • UTRAN Universal Terrestriality
  • GSM global system for mobile communication
  • EDGE enhanced data rate for GSM evolution
  • GSM EDGE radio access network GSM EDGE radio access network
  • GERAN global system for mobile communication
  • FIG. 4 is a schematic diagram of a possible communication scenario provided by an embodiment of the application.
  • the network device 401 and the terminal device 402 can interact.
  • the network device 401 can receive uplink data sent by the terminal device 402 through a receiving channel, and the network device 401 can send downlink data to the terminal device 402 through a sending channel.
  • the network device 401 can set the receiving channel to the off state or the on state according to the uplink data sent by the terminal device. When the receiving channel is in the off state, the power consumption of the device in the receiving channel can be reduced, thereby reducing the network equipment Power consumption.
  • Fig. 4 only illustrates a scenario in the form of an example.
  • the method shown in this application can also be applied to other communication scenarios.
  • other communication scenarios may include more network devices and/or more terminal devices.
  • the embodiments of the present application do not specifically limit the applicable communication scenarios.
  • FIG. 5 is a schematic flowchart of a power control method provided by an embodiment of the application. Referring to Figure 5, the method may include:
  • S501 The network device determines whether there is uplink data to be received in the first receiving channel in the first scheduling period.
  • the first receiving channel is any receiving channel in the network device.
  • the first receiving channel may be any receiving channel in the RU in the network device.
  • the first scheduling period may be a scheduling period after the current scheduling period.
  • the first scheduling period may be a scheduling period subsequent to the current scheduling period.
  • the network device schedules the uplink data sent by the terminal device. For example, the network device can schedule the time domain resource used by the terminal device to send the uplink data (the time domain resource has a corresponding relationship with the scheduling period), so the network device can learn about it.
  • the scheduling period in which terminal equipment within the scheduling range sends uplink data.
  • S502 The network device controls the state of the first receiving channel in the first scheduling period to be in the on state.
  • the network device may not change the state of the devices in the first receiving channel.
  • the states of the devices in the first receiving channel are all in the power-on state.
  • the components included in the first receiving channel may be a receiving end and an LNA.
  • the network device sets the state of the first receiving channel to the on state before the first scheduling period starts.
  • the state of the first receiving channel is the off state
  • the state of at least one device in the first receiving channel is the power off state
  • the network device can set the state of the devices in the power off state in the first receiving channel to the up state.
  • the electrical state realizes that the state of the first receiving channel is set to the on state.
  • the BBU may send a third message to the device in the power-off state in the first receiving channel, so that the device in the power-off state is powered on according to the third message .
  • the BBU can send a fourth message to the processing chip, and the processing chip controls the power-off device in the first receiving channel to power on according to the fourth message.
  • S503 The network device controls the state of the first receiving channel in the first scheduling period to be an off state.
  • the network device may not change the state of the devices in the first receiving channel.
  • the state of the first receiving channel is the off state
  • the states of the devices in the first receiving channel are all in the off state.
  • the network device sets the state of the first receiving channel to the off state before the first scheduling period of the network device starts.
  • the network device may set the state of at least one device in the first receiving channel to the power-off state, In other words, the network device may turn off at least one device in the first receiving channel, so that the state of the at least one device in the first receiving channel is switched to the power-off state.
  • the BBU can send the second information to the receiving end and/or the low noise amplifier in the first receiving channel, so as to power off the receiving end and/or the low noise amplifier.
  • the BBU sends the first information to the processing chip to instruct the processing chip to turn off the receiving end and/or the low noise amplifier.
  • the network device determines whether the first receiving channel has uplink data to be received in the first scheduling period; if it is determined that the first receiving channel is There is no uplink data to be received in the first scheduling period, and the network device controls the state of the first receiving channel in the first scheduling period to be an off state. When the receiving channel is in the off state, the power consumption of the device in the receiving channel can be reduced, thereby reducing the power consumption of the network device.
  • the network device can also perform aggregation scheduling on the uplink data, so that there is no uplink data in more scheduling periods, so that the receiving channel can be used in more Can be in the off state during the scheduling period.
  • the process of converging and scheduling uplink data is also different.
  • the process of converging and scheduling uplink data by network equipment in different application scenarios will be described respectively.
  • the network device can perform the aggregation scheduling of uplink data in any scheduling period. In the following, the process of the network device performing the aggregation scheduling of the uplink data in any scheduling period is described as an example.
  • the uplink data can be aggregated and scheduled through the following two feasible implementation methods. It should be noted that, in the following, the scheduling process of the uplink data to be received by any receiving channel is taken as an example for description.
  • the network device sets an invalid scheduling period and an effective scheduling period in multiple scheduling periods.
  • the invalid scheduling period is a period when uplink data transmission is not performed
  • the effective scheduling period is a period when uplink data transmission is performed. That is, during the invalid scheduling period, the network device does not receive uplink data, and during the effective scheduling period, the network device can receive uplink data.
  • the network device schedules the uplink data to be transmitted within the effective scheduling period. For example, the network device may schedule the uplink data to be transmitted in the effective scheduling period closest to the current moment.
  • the invalid scheduling period and the effective scheduling period can be set at intervals.
  • FIG. 6A is a schematic diagram of a scheduling period provided by an embodiment of this application.
  • T0, T2, T4, T6, and T8 are invalid scheduling periods
  • T1, T3, T5, T7, and T9 are valid scheduling periods.
  • the invalid scheduling period and the effective scheduling period are set at equal intervals. For example, when the terminal device has uplink data to be sent in the scheduling period T0, the network device schedules the uplink data to the scheduling period T1. When the terminal device has uplink data to be sent in the scheduling period T2, the network device schedules the uplink data to the scheduling period T3.
  • FIG. 6B is a schematic diagram of another scheduling period provided by an embodiment of the application.
  • T0, T3, T6, and T9 are invalid scheduling periods
  • T1, T2, T4, T5, T7, and T8 are valid scheduling periods.
  • the invalid scheduling period and the effective scheduling period are set at unequal intervals. For example, when the terminal device has uplink data to be sent in the scheduling period T1 or T2, the network device schedules the uplink data to the scheduling period T3. When the terminal device has uplink data to be sent in the scheduling period T4 or T5, the network device schedules the uplink data to the scheduling period T6.
  • FIG. 6C is a schematic diagram of another scheduling period provided by an embodiment of the application.
  • T1, T3, T4, T6, and T8 are invalid scheduling periods
  • T0, T2, T5, T7, and T9 are valid scheduling periods.
  • the invalid scheduling period and the effective scheduling period are set at unequal intervals. For example, when the terminal device has uplink data to be sent in the scheduling period T1, the network device schedules the uplink data to the scheduling period T2. When the terminal device has uplink data to be sent in the scheduling period T3 or T4, the network device schedules the uplink data to the scheduling period T5.
  • Figures 6A to 6C are only examples of the invalid scheduling period and the effective scheduling period, and are not a limitation on the invalid scheduling period and the effective scheduling period. In the actual application process, it can be based on actual needs. Set the effective scheduling period and the invalid scheduling period. For example, when the amount of uplink data is large, you can set more effective scheduling periods, and when the amount of uplink data is small, you can set fewer effective scheduling periods. In the actual application process, the settings of the effective scheduling period and the invalid scheduling period can also be adjusted according to actual needs. For example, in different time periods, the settings of the effective scheduling period and the invalid scheduling period are different. The embodiment of the present application does not specifically limit the setting of the effective scheduling period and the invalid scheduling period.
  • the uplink data in multiple scheduling periods can be aggregated and scheduled, and the idle state scheduling period is increased, so that the receiving channel can be shut down in more scheduling periods. Reduce the power consumption of the receiving channel, thereby reducing the power consumption of the network device.
  • the network device determines whether the first uplink data of the single carrier in the second scheduling period can be delayed to the third scheduling period. If so, the network device schedules the first uplink data to the third scheduling period, which is located in the second scheduling period. after that.
  • the second scheduling period may be a scheduling period allocated for the first uplink data when the network device initially schedules the first uplink data. That is, when the terminal device requests to transmit the first uplink data, the scheduling period allocated by the network device for the first uplink data is the second scheduling period.
  • the second scheduling period may also be a scheduling period allocated for the first uplink data after the network device performs aggregation scheduling on the first uplink data at least once. For example, suppose that after the terminal device requests the transmission of the first uplink data, the network device allocates a scheduling period (not the second scheduling period) for the first uplink data, and after one or more aggregation scheduling, the network device provides the first uplink data The second scheduling period is allocated.
  • Condition 1 The service priority corresponding to the first uplink data is less than or equal to the preset service priority.
  • Condition 2 If there is an initial transmission bearer in the first uplink data, the priority of the initial transmission bearer is less than or equal to the preset bearer priority.
  • the delay of the first uplink data in the third scheduling period is less than or equal to the preset delay.
  • the time delay of the first uplink data in the third scheduling period refers to the length of time between the moment when the terminal device requests to send the first uplink data and the third scheduling period.
  • the sum of the amount of resources occupied by the first uplink data and the amount of resources occupied by the uplink data of the single carrier in the third scheduling period is less than or equal to the preset amount of resources.
  • the uplink data of a single carrier in the third scheduling period refers to the uplink data that has been determined to be sent in the third retrieval period before this aggregation scheduling.
  • the third scheduling period is adjacent to the second scheduling period, that is, the third scheduling period is a scheduling period subsequent to the second scheduling period. Or, there is second uplink data to be received in the third scheduling period. That is, the third scheduling period is a scheduling period after the second scheduling period and there is uplink data to be received.
  • the third scheduling period may be a scheduling period that is located after the second scheduling period, has uplink data to be received, and is closest to the second scheduling period.
  • FIG. 7A is a schematic diagram of a process of convergence scheduling provided by an embodiment of this application.
  • the third scheduling period is a scheduling period after the second scheduling period. Referring to FIG. 7A, assuming that the current scheduling period is T0 and the second scheduling period is T1, since the third scheduling period is a scheduling period after the second scheduling period, it can be determined that the third scheduling period is T2. Before the convergence scheduling, there is the first uplink data data1 to be received in the second scheduling period T1, and there is no uplink data to be received in the third scheduling period T2. After the network device determines that the first uplink data data1 can be scheduled from the second scheduling period T1 to the second scheduling period T2, the first uplink data data1 is scheduled from the second scheduling period T1 to the third scheduling period T2. After the above-mentioned aggregation scheduling is completed, there is no uplink data to be received in the second scheduling period T1, and the first uplink data data1 to be received in the third scheduling period T2.
  • FIG. 7B is a schematic diagram of another convergence scheduling process provided by an embodiment of this application.
  • the third scheduling period is a scheduling period after the second scheduling period. Referring to FIG. 7B, assuming that the current scheduling period is T0 and the second scheduling period is T1, since the third scheduling period is a scheduling period after the second scheduling period, it can be determined that the third scheduling period is T2. Before convergent scheduling, there is first uplink data data1 to be received in the second scheduling period T1, and uplink data data2 to be received in the third scheduling period T2. After the network device determines that the first uplink data data1 can be scheduled from the second scheduling period T1 to the second scheduling period T2, the first uplink data data1 is scheduled from the second scheduling period 1 to the third scheduling period T2. After the above-mentioned aggregation scheduling is completed, there is no uplink data to be received in the second scheduling period T1, and the first uplink data data1 and the uplink data data2 to be received in the third scheduling period T2.
  • FIG. 7C is a schematic diagram of another convergence scheduling process provided by an embodiment of the application.
  • the third scheduling period is a scheduling period that is located after the second scheduling period, has uplink data to be received, and is closest to the second scheduling period. Please refer to Figure 7C. Assuming that the current scheduling period is T0 and the second scheduling period is T1, the uplink data to be received in each scheduling period is shown in Figure 7C. Since the third scheduling period is located after the second scheduling period There is uplink data to be received and the scheduling period closest to the second scheduling period. Therefore, it can be determined that the third scheduling period is T3. Before convergent scheduling, there is first uplink data data1 to be received in the second scheduling period T1, and uplink data data2 to be received in the third scheduling period T3.
  • the network device determines that the first uplink data data1 can be scheduled from the second scheduling period T1 to the third scheduling period T3
  • the first uplink data data1 is scheduled from the second scheduling period T1 to the third scheduling period T3.
  • the uplink data with lower service priority is aggregated and scheduled, and the time delay of the first uplink data and the amount of resources occupied by the first uplink data are referred to when the aggregated scheduling is performed.
  • the first uplink data is accurately aggregated and scheduled to prevent the aggregated scheduling from having an excessive impact on the service delay.
  • the uplink data can be aggregated and scheduled through the following two feasible implementation methods.
  • the scheduling process of the uplink data to be received by any receiving channel is taken as an example for description, and at least two carriers are configured on the receiving channel.
  • the at least two carriers described below are the carriers configured by the arbitrary receiving channel.
  • the network device sets a corresponding invalid scheduling period for each of the at least two carriers, and the time domain position of the invalid scheduling period corresponding to each of the at least two carriers is the same.
  • the network device schedules the uplink data to be transmitted within the effective scheduling period. For example, the network device may schedule the uplink data to be transmitted in the effective scheduling period closest to the current moment.
  • the invalid scheduling period and the effective scheduling period can be set at intervals.
  • the following describes possible scheduling period settings with reference to Figs. 8A-8C.
  • FIG. 8A is a schematic diagram of still another scheduling period provided by an embodiment of the application.
  • the carriers configured for the receiving channel include carrier 1 and carrier 2, and carrier 1 and carrier 2 correspond to the time domain location information of the invalid scheduling period.
  • T0, T2, T4, T6, and T8 of carrier 1 and carrier 2 are invalid scheduling periods
  • T1, T3, T5, T7, and T9 of carrier 1 and carrier 2 are valid scheduling periods.
  • the invalid scheduling period and the effective scheduling period are set at equal intervals.
  • the network device schedules the uplink data to the scheduling period T1.
  • the network device schedules the uplink data to the scheduling period T3.
  • FIG. 8B is a schematic diagram of another scheduling period provided by an embodiment of the application.
  • the carriers configured for the receiving channel include carrier 1 and carrier 2, and carrier 1 and carrier 2 correspond to the time domain location information of the invalid scheduling period.
  • T0, T3, T6, and T9 of carrier 1 and carrier 2 are invalid scheduling periods
  • T1, T2, T4, T5, T7, and T8 of carrier 1 and carrier 2 are valid scheduling periods.
  • the invalid scheduling period and the effective scheduling period are set at unequal intervals.
  • the network device schedules the uplink data to the scheduling period T3.
  • the network device schedules the uplink data to the scheduling period T6.
  • FIG. 8C is a schematic diagram of another scheduling period provided by an embodiment of the application.
  • the carriers configured for the receiving channel include carrier 1 and carrier 2, and carrier 1 and carrier 2 correspond to the time domain location information of the invalid scheduling period.
  • T1, T3, T4, T6, and T8 of carrier 1 and carrier 2 are invalid scheduling periods
  • T0, T2, T5, T7, and T9 corresponding to carrier 1 or carrier 2 are valid scheduling periods.
  • the invalid scheduling period and the effective scheduling period are set at unequal intervals.
  • the network device schedules the uplink data to the scheduling period T2.
  • the network device schedules the uplink data to the scheduling period T5.
  • Figures 8A-8C are only examples of the setting of invalid scheduling period and effective scheduling period, and are not a limitation on the setting of invalid scheduling period and effective scheduling period. In the actual application process, it can be based on actual needs.
  • the effective scheduling period and the invalid scheduling period are set, which is not specifically limited in the embodiment of the present application.
  • Convergence scheduling is performed to increase the idle state scheduling period, so that the receiving channel can be turned off in more scheduling periods, reducing the power consumption of the receiving channel, and thereby reducing the power consumption of the network device.
  • the network device performs aggregate scheduling on the uplink data corresponding to at least one of the at least two carriers, so as to schedule the uplink data of the at least two carriers on different scheduling periods to the same scheduling period.
  • the network equipment performs aggregation scheduling on the uplink data corresponding to at least one of the at least two carriers, so that the scheduling period corresponding to each carrier in which the uplink data exists is as the same as possible.
  • the uplink data corresponding to at least one of the at least two carriers can be aggregated and scheduled through the following feasible implementation: if the uplink data of each carrier in the first carrier set can be delayed by one scheduling period in the fourth scheduling period, the Each carrier in the first carrier set is scheduled from the uplink data of the fourth scheduling period to the next scheduling period of the fourth scheduling period; wherein, the first carrier set includes: at least two carriers have uplink data in the fourth scheduling period.
  • the carrier of the data if the uplink data of each carrier in the first carrier set can be delayed by one scheduling period in the fourth scheduling period, the Each carrier in the first carrier set is scheduled from the uplink data of the fourth scheduling period to the next scheduling period of the fourth scheduling period; wherein, the first carrier set includes: at least two carriers have uplink data in the fourth scheduling period.
  • the carrier of the data is if the uplink data of each carrier in the first carrier set can be delayed by one scheduling period in the fourth scheduling period, the Each carrier in the first carrier set is scheduled from the uplink data of the fourth scheduling period to the
  • the uplink data of each carrier in the first carrier set in the fourth scheduling period is scheduled to the next scheduling period of the fourth scheduling period:
  • Condition 1 The service priority corresponding to the uplink data of each carrier in the fourth scheduling period in the first carrier set is less than or equal to the preset service priority.
  • Condition 2 If there is a carrier in the first carrier set and there is an initial transmission bearer in the uplink data of the fourth scheduling period, the priority of the initial transmission bearer is less than or equal to the preset bearer priority.
  • Condition 3 The delay of the uplink data in the fourth scheduling period of each carrier in the first carrier set in the fourth scheduling period is less than or equal to the preset time delay.
  • the time delay of the uplink data in the fourth scheduling period refers to the length of time between the time when the terminal device requests to send the uplink data and the fourth scheduling period.
  • Condition 4 The sum of the amount of resources occupied by the uplink data of each carrier in the fourth scheduling period in the first carrier set and the amount of resources occupied by the uplink data of the at least two carriers in the next scheduling period of the fourth scheduling period is less than or Equal to the preset amount of resources.
  • multiple logical processing units may be provided in the network device, and the multiple logical processing units may respectively schedule uplink data corresponding to different carriers in at least two carriers.
  • the multiple logical processing units can communicate with each other. For example, each logical processing unit can send corresponding uplink data information to other logical processing units.
  • the uplink data information may include whether the carrier corresponding to the logical processing unit has uplink data in the fourth scheduling period, the service priority corresponding to the uplink data, the priority of the initial transmission bearer, the delay in the fourth scheduling period, and the amount of resources occupied. One or more of. In this way, each logical processing unit can determine whether the above four conditions can be met based on the received data.
  • FIG. 9 is a schematic diagram of another convergence scheduling process provided by an embodiment of the application.
  • the carriers configured for the receiving channel include Carrier 1, Carrier 2, and Carrier 3.
  • the current scheduling period is T0
  • carrier 1 has corresponding uplink data data1 in scheduling period T1
  • carrier 2 has corresponding uplink data data2 in scheduling period T1
  • carrier 3 does not exist in scheduling period T1
  • For the corresponding uplink data there is corresponding uplink data data data3 in the scheduling period T2.
  • the network device determines that the uplink data data1 and the uplink data data2 meet the above four conditions, the uplink data data1 and the uplink data data2 can be scheduled to the scheduling period T2.
  • the convergence scheduling there is no uplink data in the scheduling period T1, and in the scheduling period 2, there are uplink data data1, uplink data data2, and uplink data data3.
  • the uplink data with lower service priority is aggregated and scheduled, and the time delay of the first uplink data and the amount of resources occupied by the first uplink data are referred to when the aggregated scheduling is performed.
  • the first uplink data is accurately aggregated and scheduled to prevent the aggregated scheduling from having an excessive impact on the service delay.
  • the network device may first update the duration of the scheduling period of at least one of the at least two carriers, and the duration of the scheduling period corresponding to the at least two carriers after the update is the same. Then perform uplink data scheduling according to the technical solution shown in the multi-carrier single-mode scenario.
  • the duration of the scheduling period of the first carrier may be updated, where the scheduling period of the first carrier is shorter.
  • At least two carriers include carrier 1 and carrier 2, the scheduling period of carrier 1 is scheduling period 1, the scheduling period of carrier 2 is scheduling period 2, and the duration of scheduling period 1 is N times the duration of scheduling period 2, then The scheduling period of carrier 2 can be expanded by N so that the duration of the updated scheduling period 2 is the same as the duration of the scheduling period 1.
  • FIG. 10 is a schematic structural diagram of a power control device provided by an embodiment of the application.
  • the power control device is located in the network equipment.
  • the power control device 10 may include a judgment module 11 and a control module 12, where:
  • the judgment module 11 is configured to judge whether there is uplink data to be received in the first receiving channel in the first scheduling period
  • the control module 12 is configured to determine that the first receiving channel does not have uplink data to be received in the first scheduling period in the judgment module, and control the first receiving channel to be in the first scheduling period
  • the state inside is the off state.
  • the judgment module 11 may execute S501 in the embodiment of FIG. 5, and the control module 12 may execute S502-S503 in the embodiment of FIG. 5.
  • the power control device provided in the embodiments of the present application can execute the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects are similar, and details are not described herein again.
  • the first receiving channel includes a receiving end and a low-noise amplifier; the control module 12 is specifically configured to:
  • control to turn off the receiving end and/or the low noise amplifier Before the start of the first scheduling period, control to turn off the receiving end and/or the low noise amplifier.
  • FIG. 11 is a schematic structural diagram of another power control device provided by an embodiment of the application.
  • the power control device is located in a network device, and the network device may be a BBU.
  • the power control device 10 may further include a sending module 13, wherein,
  • the sending module 13 is configured to send first information to a processing chip, where the first information is used to instruct the processing chip to turn off the receiving end and/or the low noise amplifier; or,
  • the sending module 13 is configured to send second information to the receiving end and/or the low noise amplifier, where the second information is used to instruct the receiving end and/or the low noise amplifier to set the state to Off state.
  • the device further includes a scheduling module 14, wherein:
  • the scheduling module 14 is configured to perform aggregation scheduling on the uplink data to be received on the first receiving channel before the judging module 11 determines whether there is uplink data to be received on the first receiving channel in the first scheduling period,
  • the aggregation scheduling is used to schedule uplink data in at least one scheduling period to other scheduling periods.
  • the first receiving channel corresponds to a single carrier; the scheduling module 14 is specifically configured to:
  • the scheduling module 14 determines that the first uplink data to be received by the single carrier in the second scheduling period can be delayed to the third scheduling period:
  • the service priority corresponding to the first uplink data is less than or equal to the preset service priority
  • the priority of the initial transmission bearer is less than or equal to a preset bearer priority
  • the delay of the first uplink data in the third scheduling period is less than or equal to a preset delay
  • the sum of the amount of resources occupied by the first uplink data and the amount of resources occupied by the uplink data of the single carrier in the third scheduling period is less than or equal to a preset amount of resources.
  • the third scheduling period is adjacent to the second scheduling period; or,
  • the first receiving channel corresponds to at least two carriers; the scheduling module 14 is specifically configured to:
  • Convergent scheduling is performed on the uplink data corresponding to at least one of the at least two carriers, where the convergent scheduling is used to schedule the uplink data of the at least two carriers on different scheduling periods to the same scheduling period.
  • the scheduling module 14 is specifically configured to:
  • the uplink data of each carrier in the first carrier set in the fourth scheduling period can be delayed by one scheduling period, the uplink data of each carrier in the first carrier set in the fourth scheduling period is scheduled to the fourth scheduling The next scheduling cycle of the cycle;
  • the first carrier set includes: a carrier having uplink data in the fourth scheduling period among the at least two carriers.
  • the scheduling module 14 schedules the uplink data of each carrier in the first carrier set in the fourth scheduling period to the lower end of the fourth scheduling period.
  • the service priority corresponding to the uplink data of each carrier in the fourth scheduling period in the first carrier set is less than or equal to a preset service priority
  • the priority of the initial transmission bearer is less than or equal to the preset bearer priority
  • the delay of uplink data in the fourth scheduling period of each carrier in the first carrier set in the fourth scheduling period is less than or equal to a preset time delay
  • the amount of resources occupied by the uplink data of each carrier in the fourth scheduling period in the first carrier set and the resources occupied by the uplink data of the at least two carriers in the next scheduling period of the fourth scheduling period The sum of the amounts is less than or equal to the preset resource amount.
  • the first receiving channel corresponds to at least two carriers; the time domain position of the invalid scheduling period corresponding to each carrier in the at least two carriers is the same, and the invalid scheduling period is not performed The scheduling period of uplink data transmission.
  • the power control device 10 may further include an update module 15, where:
  • the update module 15 is configured to update the scheduling period of at least one of the at least two carriers when the scheduling periods corresponding to the at least two carriers have different durations, and the updated at least two carriers The duration of the scheduling period corresponding to the two carriers is the same, and the first receiving channel corresponds to at least two carriers.
  • the power control device provided in the embodiments of the present application can execute the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of another power control device provided by an embodiment of the application.
  • the power control device can be applied to network equipment.
  • the power control device 20 may include a memory 21 and a processor 22.
  • the processor 22 and the memory 21 communicate through a communication bus 23, the memory 21 stores program instructions, and the processor 22 executes the information in the memory 21.
  • controlling the state of the first receiving channel in the first scheduling period to be an off state If it is determined that there is no uplink data to be received in the first receiving channel in the first scheduling period, controlling the state of the first receiving channel in the first scheduling period to be an off state.
  • the processor 22 in the embodiment of the present application may have the functions of the judgment module and the control module in the embodiments of FIG. 10-11.
  • the power control device shown in the embodiment of the present application can execute the technical solution shown in the foregoing method embodiment, and its implementation principles and beneficial effects are similar, and details are not described herein again.
  • the first receiving channel includes a receiving end and a low-noise amplifier; the processor 22 is specifically configured to:
  • control to turn off the receiving end and/or the low noise amplifier Before the start of the first scheduling period, control to turn off the receiving end and/or the low noise amplifier.
  • FIG. 13 is a schematic structural diagram of still another power control device according to an embodiment of the application.
  • the network equipment is a BBU; based on the embodiment shown in FIG. 12, referring to FIG. 13, the power control apparatus 20 may further include a transmitter 24, where:
  • the transmitter 24 is configured to send first information to the processing chip, where the first information is used to instruct the processing chip to turn off the receiving end and/or the low noise amplifier; or,
  • the transmitter 24 is configured to send second information to the receiving end and/or the low noise amplifier, where the second information is used to instruct the receiving end and/or the low noise amplifier to set the state to Off state.
  • the processor 22 is further configured to: before the processor 22 determines whether there is uplink data to be received in the first receiving channel in the first scheduling period, perform a The uplink data to be received by the channel is aggregated and scheduled, and the aggregated scheduling is used to schedule the uplink data in at least one scheduling period to other scheduling periods.
  • the first receiving channel corresponds to a single carrier; the processor 22 is specifically configured to:
  • the processor 22 determines that the first uplink data to be received by the single carrier in the second scheduling period can be delayed to the third scheduling period:
  • the service priority corresponding to the first uplink data is less than or equal to the preset service priority
  • the priority of the initial transmission bearer is less than or equal to a preset bearer priority
  • the delay of the first uplink data in the third scheduling period is less than or equal to a preset delay
  • the sum of the amount of resources occupied by the first uplink data and the amount of resources occupied by the uplink data of the single carrier in the third scheduling period is less than or equal to a preset amount of resources.
  • the third scheduling period is adjacent to the second scheduling period; or,
  • the first receiving channel corresponds to at least two carriers; the processor 22 is configured to:
  • Convergent scheduling is performed on the uplink data corresponding to at least one of the at least two carriers, where the convergent scheduling is used to schedule the uplink data of the at least two carriers on different scheduling periods to the same scheduling period.
  • the processor 22 is configured to:
  • the uplink data of each carrier in the first carrier set in the fourth scheduling period can be delayed by one scheduling period, the uplink data of each carrier in the first carrier set in the fourth scheduling period is scheduled to the fourth scheduling The next scheduling cycle of the cycle;
  • the first carrier set includes: a carrier having uplink data in the fourth scheduling period among the at least two carriers.
  • the processor 22 schedules the uplink data of each carrier in the first carrier set in the fourth scheduling period to the lower end of the fourth scheduling period.
  • the service priority corresponding to the uplink data of each carrier in the fourth scheduling period in the first carrier set is less than or equal to a preset service priority
  • the priority of the initial transmission bearer is less than or equal to the preset bearer priority
  • the delay of uplink data in the fourth scheduling period of each carrier in the first carrier set in the fourth scheduling period is less than or equal to a preset time delay
  • the amount of resources occupied by the uplink data of each carrier in the fourth scheduling period in the first carrier set and the resources occupied by the uplink data of the at least two carriers in the next scheduling period of the fourth scheduling period The sum of the amounts is less than or equal to the preset resource amount.
  • the first receiving channel corresponds to at least two carriers; the time domain position of the invalid scheduling period corresponding to each carrier in the at least two carriers is the same, and the invalid scheduling period is not performed The scheduling period of uplink data transmission.
  • the first receiving channel corresponds to at least two carriers; when the durations of the scheduling periods corresponding to the at least two carriers are different, the processor 22 is further configured to: The duration of the scheduling period of at least one of the two carriers is updated, and the duration of the scheduling period corresponding to the at least two carriers after the update is the same.
  • the power control device shown in the embodiment of the present application can execute the technical solution shown in the foregoing method embodiment, and its implementation principles and beneficial effects are similar, and details are not described herein again.
  • the foregoing processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), application specific integrated circuits (ASICs) )Wait.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps in the embodiment of the service processing method disclosed in this application can be directly embodied as executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the embodiment of the present application provides a network device, and the network device may include the power control apparatus 20 shown in FIG. 11-12.
  • the power control apparatus 20 may be provided in the BBU.
  • An embodiment of the present application provides a storage medium, where the storage medium is used to store a computer program, and the computer program is used to implement the power control method described in the foregoing embodiment.
  • the embodiment of the present application provides a computer program product.
  • the computer program product includes instructions. When the instructions are executed, the computer is caused to execute the above-mentioned power control method.
  • An embodiment of the present application provides a system on a chip or a system chip, the system on a chip or a system chip may be applied to a terminal device, and the system on a chip or a system chip includes: at least one communication interface, at least one processor, and at least one The memory, the communication interface, the memory, and the processor are interconnected by a bus, and the processor executes the instructions stored in the memory so that the terminal device can execute the above-mentioned power control method.
  • All or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps including the above-mentioned method embodiments; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state hard disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.
  • These computer program instructions can be provided to the processing unit of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing equipment to generate a machine, so that the instructions executed by the processing unit of the computer or other programmable data processing equipment can be used to generate It is a device that realizes the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the term “include” and its variations may mean non-limiting inclusion; the term “or” and its variations may mean “and/or”.
  • the terms “first”, “second”, etc. in this application are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence.
  • “plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.

Abstract

本申请实施例提供一种功率控制方法、装置及设备,该方法包括:网络设备判断第一接收通道在第一调度周期中是否存在待接收的上行数据;若判断所述第一接收通道在所述第一调度周期中不存在待接收的上行数据,所述网络设备控制所述第一接收通道在所述第一调度周期内的状态为关断状态。降低了网络设备的功耗。

Description

功率控制方法、装置及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种功率控制方法、装置及设备。
背景技术
目前,随着移动通信的性能以及效率的不断提升,移动通信网络的功耗也不断提升。
无线通信网络的功耗主要来源于网络设备(例如,基站)。在相关技术中,通常间隔性地关断网络设备的发送通道以节省网络设备的功耗。在传统的网络设备中,发送通道的功耗在网络设备的总功耗中的占比较高,因此,间隔性地关断发送通道可以有效地节省网络设备的功耗。然而,当发送通道的功耗在网络设备的总功耗中的占比较小时,间隔性地关断发送通道无法有效的降低网络设备的功耗。
发明内容
本申请实施例提供一种功率控制方法、装置及设备,降低了基站的功耗。
第一方面,本申请实施例提供一种功率控制方法,网络设备判断第一接收通道在第一调度周期中是否存在待接收的上行数据,若判断第一接收通道在第一调度周期中不存在待接收的上行数据,网络设备控制第一接收通道在第一调度周期内的状态为关断状态。
在上述过程中,针对网络设备中的任意一个第一接收通道,在网络设备判断第一接收通道在第一调度周期中不存在待接收的上行数据,网络设备控制第一接收通道在第一调度周期内的状态为关断状态。在接收通道为关断状态时,可以减小该接收通道中器件的功耗,进而降低网络设备的功耗。
在一种可能的实施方式中,第一接收通道包括接收端和低噪声放大器;网络设备可以通过如下方式控制第一接收通道在第一调度周期内的状态为关断状态:在第一调度周期开始之前,网络设备控制关断接收端和/或低噪声放大器。
在上述过程中,网络设备控制关断接收端和/或低噪声放大器之后,可以降低第一接收通道的功耗,进而降低网络设备的功耗。
在一种可能的实施方式中,网络设备为基带单元BBU;网络设备可以通过如下方式控制关断接收端和/或低噪声放大器:
一种方式:BBU向处理芯片发送第一信息,第一信息用于指示处理芯片关断接收端和/或低噪声放大器。在该种方式中,BBU向处理芯片发送第一信息,处理芯片可以根据第一信息关断接收端和/或低噪声放大器,即,BBU可以通过处理芯片对接收端和/或低噪声放大器进行统一的控制,使得对接收端和/或低噪声放大器的控制方式简单。
另一种方式:BBU向接收端和/或低噪声放大器发送第二信息,第二信息用于指示接收端和/或低噪声放大器将状态设置为关断状态。在该种方式中,BBU分别向接收端和/或低噪声放大器发送第二信息,以实现分别控制接收端和/或低噪声放大器,使得对接收端和 /或低噪声放大器进行控制的灵活性较高。
在一种可能的实施方式中,网络设备判断第一接收通道在第一调度周期中是否存在待接收的上行数据之前,网络设备对第一接收通道待接收的上行数据进行汇聚调度,汇聚调度用于将至少一个调度周期上的上行数据调度至其它调度周期。
在上述过程中,通过对第一接收通道待接收的上行数据进行汇聚调度,增多空闲状态的调度周期,使得可以在更多的调度周期中关断第一接收通道,降低该第一接收通道的功耗,进而降低网络设备的功耗。
在一种可能的实施方式中,第一接收通道对应单载波;网络设备可以通过如下方式对第一接收通道待接收的上行数据进行汇聚调度:网络设备判断单载波在第二调度周期的第一上行数据是否可延时至第三调度周期;若是,网络设备将第一上行数据调度至第三调度周期,第三调度周期位于第二调度周期之后。
在上述过程中,在确定单载波在第二调度周期的第一上行数据可延时至第三调度周期时,则将第一上行数据调度至第三调度周期,在第三调度周期时重复上述过程,即,第三调度周期的数据可能会调度至其它调度周期,重复上述过程,可以实现增多空闲状态的调度周期,使得可以在更多的调度周期中关断第一接收通道,降低该第一接收通道的功耗,进而降低网络设备的功耗,并且上述调度方式简单,使得汇聚调度的复杂性较低。
在一种可能的实施方式中,在如下条件均被满足时,判断单载波在第二调度周期中待接收的第一上行数据可延时至第三调度周期:
第一上行数据对应的业务优先级小于或等于预设业务优先级;
若第一上行数据中存在初传承载,初传承载的优先级小于或等于预设承载优先级;
第一上行数据在第三调度周期的时延小于或等于预设时延;
第一上行数据占用的资源量、与单载波在第三调度周期的上行数据占用的资源量之和小于或等于预设资源量。
在上述汇聚调度的过程中,对业务优先级较低的上行数据进行汇聚调度,且在进行汇聚调度时参考第一上行数据的时延、以及第一上行数据占用的资源量,因此,可以实现对第一上行数据进行精准的汇聚调度,避免汇聚调度对业务时延进行过大影响。且通过上述方法可以实现对多个调度周期中的上行数据进行汇聚调度,增多空闲状态的调度周期,使得可以在更多的调度周期中关断第一接收通道,降低第一接收通道的功耗,进而降低网络设备的功耗。
在一种可能的实施方式中,第三调度周期与第二调度周期相邻。在该种方式中,将第二调度周期相邻的、且为与第二调度周期之后的一个调度周期确定为第三调度周期,确定第三调度周期的方式简单,使得汇聚调度的复杂性低。
在一种可能的实施方式中,第三调度周期中存在待接收的第二上行数据。在该种方式中,由于第三调度周期中存在待接收的第二上行数据,因此,将第一上行数据调度至第三调度周期后,可以使得将多个调度周期上的数据汇聚到一个调度周期,进而可以有效的增加空闲状态的调度周期。
在一种可能的实施方式中,第一接收通道对应至少两个载波;网络设备可以通过如下方式对第一接收通道对应的待接收的上行数据进行汇聚调度:网络设备对至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,汇聚调度用于将至少两个载波在不同调度 周期上的上行数据调度至同一调度周期。
在上述过程中,通过对至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,即可实现将至少两个载波在不同调度周期上的上行数据调度至同一调度周期,进而增多空闲状态的调度周期,使得可以在更多的调度周期中关断第一接收通道,降低第一接收通道的功耗,进而降低网络设备的功耗。
在一种可能的实施方式中,网络设备可以通过如下方式对至少两个载波中的至少一个载波对应的上行数据进行汇聚调度:若第一载波集合中的每个载波在第四调度周期的上行数据均可延迟一个调度周期,将第一载波集合中的每个载波在第四调度周期的上行数据调度至第四调度周期的下一个调度周期;其中,第一载波集合包括:至少两个载波中在第四调度周期上具有上行数据的载波。
在上述过程中,通过将第一载波集合中的每个载波在第四调度周期的上行数据延迟一个调度周期,在下一个调度周期时重复上述过程,即,调度至下一个调度周期的数据可能会继续调度至其它调度周期,重复上述过程,可以实现增多空闲状态的调度周期,使得可以在更多的调度周期中关断第一接收通道,降低该第一接收通道的功耗,进而降低网络设备的功耗,并且上述调度方式简单,使得汇聚调度的复杂性较低。
在一种可能的实施方式中,在如下条件均被满足时,将第一载波集合中的每个载波在第四调度周期的上行数据调度至第四调度周期的下一个调度周期:
第一载波集合中每个载波在第四调度周期的上行数据对应的业务优先级均小于或等于预设业务优先级;
若第一载波集合中存在载波在第四调度周期的上行数据中存在初传承载,初传承载的优先级小于或等于预设承载优先级;
第一载波集合中每个载波在第四调度周期的上行数据在第四调度周期的时延均小于或等于预设时延;
第一载波集合中每个载波在第四调度周期的上行数据占用的资源量、与至少两个载波在第四调度周期的下一个调度周期的上行数据占用的资源量之和小于或等于预设资源量。
在上述过程中,对业务优先级较低的上行数据进行汇聚调度,且在进行汇聚调度时参考第一上行数据的时延、以及第一上行数据占用的资源量,因此,可以实现对第一上行数据进行精准的汇聚调度,避免汇聚调度对业务时延进行过大影响。且通过上述方法可以实现对多个调度周期中的上行数据进行汇聚调度,增多空闲状态的调度周期,使得可以在更多的调度周期中关断接收通道,降低该接收通道的功耗,进而降低网络设备的功耗。
在一种可能的实施方式中,第一接收通道对应至少两个载波;至少两个载波中每个载波对应的无效调度周期的时域位置相同,无效调度周期为不进行上行数据传输的调度周期。
在上述过程中,通过为至少两个载波设置无效调度周期,以及至少两个载波中每个载波对应的无效调度周期的时域位置相同,即可实现对多个调度周期中的上行数据进行汇聚调度,增多空闲状态的调度周期,使得可以在更多的调度周期中关断接收通道,降低该接收通道的功耗,进而降低网络设备的功耗。
在一种可能的实施方式中,第一接收通道对应至少两个载波;在至少两个载波对应的调度周期的时长不同时,网络设备还对至少两个载波中至少一个载波的调度周期的时长进行更新,更新后的至少两个载波对应的调度周期的时长相同。这样,便于对至少两个载波 上的上行数据进行汇聚调度。
第二方面,本申请实施例提供一种功率控制装置,应用于网络设备,所述装置包括判断模块和控制模块,其中,
所述判断模块用于,判断第一接收通道在第一调度周期中是否存在待接收的上行数据;
所述控制模块用于,在所述判断模块判断所述第一接收通道在所述第一调度周期中不存在待接收的上行数据,控制所述第一接收通道在所述第一调度周期内的状态为关断状态。
在一种可能的实施方式中,所述第一接收通道包括接收端和低噪声放大器;所述控制模块具体用于:
在所述第一调度周期开始之前,控制关断所述接收端和/或所述低噪声放大器。
在一种可能的实施方式中,所述网络设备为基带单元BBU;所述装置还包括发送模块,其中,
所述发送模块用于,向处理芯片发送第一信息,所述第一信息用于指示所述处理芯片关断所述接收端和/或所述低噪声放大器;或者,
所述发送模块用于,向所述接收端和/或所述低噪声放大器发送第二信息,所述第二信息用于指示所述接收端和/或所述低噪声放大器将状态设置为关断状态。
在一种可能的实施方式中,所述装置还包括调度模块,其中,
所述调度模块用于,在所述判断模块判断第一接收通道在第一调度周期中是否存在待接收的上行数据之前,对所述第一接收通道待接收的上行数据进行汇聚调度,所述汇聚调度用于将至少一个调度周期上的上行数据调度至其它调度周期。
在一种可能的实施方式中,所述第一接收通道对应单载波;所述调度模块具体用于:
判断所述单载波在第二调度周期的第一上行数据是否可延时至第三调度周期;
若是,将所述第一上行数据调度至第三调度周期,所述第三调度周期位于所述第二调度周期之后。
在一种可能的实施方式中,在如下条件均被满足时,所述调度模块判断所述单载波在第二调度周期中待接收的第一上行数据可延时至第三调度周期:
所述第一上行数据对应的业务优先级小于或等于预设业务优先级;
若所述第一上行数据中存在初传承载,所述初传承载的优先级小于或等于预设承载优先级;
所述第一上行数据在所述第三调度周期的时延小于或等于预设时延;
所述第一上行数据占用的资源量、与所述单载波在所述第三调度周期的上行数据占用的资源量之和小于或等于预设资源量。
在一种可能的实施方式中,所述第三调度周期与所述第二调度周期相邻;或者,
所述第三调度周期中存在待接收的第二上行数据。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;所述调度模块具体用于:
对所述至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,所述汇聚调度用于将所述至少两个载波在不同调度周期上的上行数据调度至同一调度周期。
在一种可能的实施方式中,所述调度模块具体用于:
若第一载波集合中的每个载波在第四调度周期的上行数据均可延迟一个调度周期,将 第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期;
其中,所述第一载波集合包括:所述至少两个载波中在所述第四调度周期上具有上行数据的载波。
在一种可能的实施方式中,在如下条件均被满足时,所述调度模块将第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期:
所述第一载波集合中每个载波在所述第四调度周期的上行数据对应的业务优先级均小于或等于预设业务优先级;
若所述第一载波集合中存在载波在所述第四调度周期的上行数据中存在初传承载,所述初传承载的优先级小于或等于预设承载优先级;
所述第一载波集合中每个载波在所述第四调度周期的上行数据在所述第四调度周期的时延均小于或等于预设时延;
所述第一载波集合中每个载波在所述第四调度周期的上行数据占用的资源量、与所述至少两个载波在所述第四调度周期的下一个调度周期的上行数据占用的资源量之和小于或等于预设资源量。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;所述至少两个载波中每个载波对应的无效调度周期的时域位置相同,所述无效调度周期为不进行上行数据传输的调度周期。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;所述装置还包括更新模块,其中,
所述更新模块用于,在所述至少两个载波对应的调度周期的时长不同时,对所述至少两个载波中至少一个载波的调度周期的时长进行更新,更新后的所述至少两个载波对应的调度周期的时长相同。
第三方面,本申请实施例提供一种功率控制装置,包括存储器和处理器,存储器中存储有程序指令,处理器执行存储器中的程序指令,并执行如下步骤:
判断第一接收通道在第一调度周期中是否存在待接收的上行数据;
若判断所述第一接收通道在所述第一调度周期中不存在待接收的上行数据,控制所述第一接收通道在所述第一调度周期内的状态为关断状态。
在一种可能的实施方式中,所述第一接收通道包括接收端和低噪声放大器;处理器具体用于:
在所述第一调度周期开始之前,控制关断所述接收端和/或所述低噪声放大器。
在一种可能的实施方式中,网络设备为BBU;所述功率控制装置还可以包括发送模块,其中,
所述发送模块用于,向处理芯片发送第一信息,所述第一信息用于指示所述处理芯片关断所述接收端和/或所述低噪声放大器;或者,
所述发送模块用于,向所述接收端和/或所述低噪声放大器发送第二信息,所述第二信息用于指示所述接收端和/或所述低噪声放大器将状态设置为关断状态。
在一种可能的实施方式中,所述处理器还用于,在所述处理器判断第一接收通道在第一调度周期中是否存在待接收的上行数据之前,对所述第一接收通道待接收的上行数据进 行汇聚调度,所述汇聚调度用于将至少一个调度周期上的上行数据调度至其它调度周期。
在一种可能的实施方式中,所述第一接收通道对应单载波;所述处理器具体用于:
判断所述单载波在第二调度周期的第一上行数据是否可延时至第三调度周期;
若是,将所述第一上行数据调度至第三调度周期,所述第三调度周期位于所述第二调度周期之后。
在一种可能的实施方式中,在如下条件均被满足时,所述处理器判断所述单载波在第二调度周期中待接收的第一上行数据可延时至第三调度周期:
所述第一上行数据对应的业务优先级小于或等于预设业务优先级;
若所述第一上行数据中存在初传承载,所述初传承载的优先级小于或等于预设承载优先级;
所述第一上行数据在所述第三调度周期的时延小于或等于预设时延;
所述第一上行数据占用的资源量、与所述单载波在所述第三调度周期的上行数据占用的资源量之和小于或等于预设资源量。
在一种可能的实施方式中,所述第三调度周期与所述第二调度周期相邻;或者,
所述第三调度周期中存在待接收的第二上行数据。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;所述处理器具有用于:
对所述至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,所述汇聚调度用于将所述至少两个载波在不同调度周期上的上行数据调度至同一调度周期。
在一种可能的实施方式中,所述处理器具有用于:
若第一载波集合中的每个载波在第四调度周期的上行数据均可延迟一个调度周期,将第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期;
其中,所述第一载波集合包括:所述至少两个载波中在所述第四调度周期上具有上行数据的载波。
在一种可能的实施方式中,在如下条件均被满足时,所述处理器将第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期:
所述第一载波集合中每个载波在所述第四调度周期的上行数据对应的业务优先级均小于或等于预设业务优先级;
若所述第一载波集合中存在载波在所述第四调度周期的上行数据中存在初传承载,所述初传承载的优先级小于或等于预设承载优先级;
所述第一载波集合中每个载波在所述第四调度周期的上行数据在所述第四调度周期的时延均小于或等于预设时延;
所述第一载波集合中每个载波在所述第四调度周期的上行数据占用的资源量、与所述至少两个载波在所述第四调度周期的下一个调度周期的上行数据占用的资源量之和小于或等于预设资源量。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;所述至少两个载波中每个载波对应的无效调度周期的时域位置相同,所述无效调度周期为不进行上行数据传输的调度周期。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;在所述至少两个载波对应的调度周期的时长不同时,所述处理器还用于,对所述至少两个载波中至少一个载波的调度周期的时长进行更新,更新后的所述至少两个载波对应的调度周期的时长相同。
第四方面,本申请实施例提供一种网络设备,包括第三方面任一项所述的功率控制装置。
第五方面,本申请实施例提供一种存储介质,所述存储介质用于存储计算机程序,所述计算机程序被计算机或处理器执行时用于实现第一方面任一项所述的功率控制方法。
第六方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括指令,当所述指令被执行时,使得计算机执行上述第一方面任一项所述的功率控制方法。
第七方面,本申请实施例提供一种芯片上系统或系统芯片,所述芯片上系统或系统芯片可应用于终端设备,所述芯片上系统或系统芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,所述通信接口、存储器和处理器通过总线互联,所述处理器通过执行所述存储器中存储的指令,使得所述终端设备可执行如本申请第一方面任一所述功率控制方法。
本申请实施例提供的功率控制方法、装置及设备,针对网络设备中的任意一个第一接收通道,网络设备判断第一接收通道在第一调度周期中是否存在待接收的上行数据;若判断第一接收通道在第一调度周期中不存在待接收的上行数据,网络设备控制第一接收通道在第一调度周期内的状态为关断状态。在接收通道为关断状态时,可以减小该接收通道中器件的功耗,进而降低网络设备的功耗。
附图说明
图1A为本申请实施例提供的一种网络设备的架构图;
图1B为本申请实施例提供的一种网络设备的架构图;
图2为本申请实施例提供的RU的结构示意图;
图3为本申请实施例提供的无线帧的结构示意图;
图4为本申请实施例提供的一种可能的通信场景的示意图;
图5为本申请实施例提供的一种功率控制方法的流程示意图;
图6A为本申请实施例提供的一种调度周期的示意图;
图6B为本申请实施例提供的另一种调度周期的示意图;
图6C为本申请实施例提供的又一种调度周期的示意图;
图7A为本申请实施例提供的一种汇聚调度的过程示意图;
图7B为本申请实施例提供的另一种汇聚调度的过程示意图;
图7C为本申请实施例提供的又一种汇聚调度的过程示意图;
图8A为本申请实施例提供的再一种调度周期的示意图;
图8B为本申请实施例提供的另一种调度周期的示意图;
图8C为本申请实施例提供的又一种调度周期的示意图;
图9为本申请实施例提供的另一种汇聚调度的过程示意图;
图10为本申请实施例提供的一种功率控制装置的结构示意图;
图11为本申请实施例提供的另一种功率控制装置的结构示意图;
图12为本申请实施例提供的又一种功率控制装置的结构示意图;
图13为本申请实施例的再一种功率控制装置的结构示意图。
具体实施方式
为了便于理解,首先对本申请所涉及的概念进行说明。
终端设备:是一种具有无线收发功能的设备。终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,简称VR)终端设备、增强现实(augmented reality,简称AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、可穿戴终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
网络设备:是一种具有无线收发功能的设备。包括但不限于:长期演进(long term evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者,网络设备可以是5G通信系统中的gNB或者传输和接收点(transmission reception point,TRP)、微基站等,或者网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备,或者在其他多种技术融合的网络中,或者在其他各种演进网络中的基站等。5G通信系统还可以称为新空口(new radio,NR)系统。例如,网络设备可以为基站(Base Station,BS),基站可以向多个移动台(Mobile Station,MS)提供通信服务,基站还可以连接到核心网设备。其中,基站包含基带单元(Baseband Unit,BBU)和远端射频单元(英文:Remote Radio Unit,RRU),也可以将BBU称为网络设备。或者,基站可以包括BBU和有源天线处理单元(active antenna unit,AAU),其中,AAU包括RRU和天线,例如,在RRU和天线集成在一起时,可以称为AAU。BBU和RRU可以放置在不同的地方,例如:RRU拉远,放置于高话务量的区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。
为了便于理解,下面,结合图1A-图1B对网络设备的架构进行说明。
图1A为本申请实施例提供的一种网络设备的架构图。请参见图1A,网络设备包括基带单元(baseband unit,BBU)和射频单元(radio unit,RU)。射频单元中包括M条发送通道和N条接收通道。M可以为8、16、32、64等。N可以为8、16、32、64等。BBU分别与每条发送通道和每条接收通道连接。BBU可以对上行数据进行调度,例如,BBU可以对上行数据进行汇聚调度,以增加空闲上行调度周期的比例。网络设备可以通过发送通道向终端设备发送下行数据,网络设备可以通过接收通道接收终端设备发送的上行数据。 可选的,网络设备中还可以包括通用公共无线电接口(common public radio interface,CPRI)或者演进通用公共无线电接口(evolution common public radio interface,eCPRI),BBU可以通过CPRI或eCPRI与接收通道和发送通道连接,CPRI接口可以位于RU中。在本申请中,BBU可以控制接收通道的状态为关断状态或者导通状态。接收通道中包括一个或多个器件,器件的状态包括上电状态(器件上电后的状态)和断电状态(器件断电后的状态)。在接收通道中存在器件为断电状态,则该接收通道的状态为关断状态,在接收通道中的所有器件均为上电状态时,则接收通道的状态为导通状态。在本申请的下述描述中,关断接收通道是指关断接收通道中的至少一个器件,关断接收通道中的器件是指将接收通道中的器件断电,将接收通道中的器件断电还可以称为将接收通道中的器件的状态设置为断电状态。
图1B为本申请实施例提供的一种网络设备的架构图。在图1A所示的网络设备的架构的基础上,请参见图1B,网络设备还包括处理芯片,BBU和处理芯片连接,处理芯片分别与每条发送通道和每条接收通道连接。可选的,处理芯片可以位于RU内部,也可以位于RU外部。网络设备可以通过处理芯片控制接收通道的状态为关断状态或者导通状态。可选的,网络设备中还可以包括CPRI,处理芯片可以通过CPRI与接收通道和发送通道连接,CPRI接口可以位于RU中。
在图1A-图1B的基础上,下面,结合图2,对RU的结构进行说明。图2为本申请实施例提供的RU的结构示意图。请参见图2,RU中包括发送通道、接收通道、数字处理单元和双工器。其中,发送通道中包括发送端(transmit end,TX)和功率放大器(power amplifier,PA),发送端用于获取网络设备的待发送的数据,并将待发送的数据传输至PA,PA可以对待发送的数据进行功率放大处理,并将放大处理后的数据传输至双工器。接收通道中包括接收端(receive end,RX)和低噪声放大器(low noise amplifier,LNA),LNA可以从双工器接收数据,对接收到的数据进行低噪声放大处理,并将低噪声放大处理后的数据发送至接收端。数字处理单元用于数字中频处理,例如,数字中频处理可以包括数字预失真(digital pre-distortion,DPD)处理、削峰(crest factor reduction,CFR)处理、数字上变频(digital up converter,DUC)处理,数字下变频器(digital down converter,DDC)处理等,双工器可以提供射频通道接收信号和发射信号复用功能,可使接收信号与发射信号可以共用一个天线通道,并对接收信号和发射信号提供滤波功能。
单载波场景:若网络设备的接收通道上配置的载波个数为1,则称为单载波场景。该载波可以为LTE载波,也可以为NR载波。网络设备中的不同接收通道上配置的载波的类型可以相同,也可以不同。例如,假设网络设备中存在32条接收通道,该32条接收通道上配置的载波可以均为LTE载波,或者,该32条接收通道上配置的载波可以均为NR载波,或者,该32条接收通道中一部分接收通道上配置的载波为LTE载波,一部分接收通道上配置的载波为NR载波。
多载波场景:若网络设备的接收通道上配置的载波个数大于1,则称为多载波场景。该多个载波可以全部为LTE载波,或者,该多个载波可以全部为NR载波,或者,该多个载波中的一部分载波为LTE载波,另一部分为NR载波。当该多个载波全部为LTE载波或者NR载波时,该多载波场景可以称为多载波单模场景。当该多个载波中的一部分载波为LTE载波,另一部分为NR载波时,该多载波场景还可以称为多载波多模场景。网络设 备中不同接收通道对应的载波配置可以相同,也可以不同,其中,载波配置可以包括载波类型、载波数量等。
调度周期:对上行数据进行调度的周期。在不同的场景(单载波场景或者多载波场景)下,网络设备的调度周期不同。在单载波场景、以及多载波单模场景下,调度周期为对应的系统下调度的基本时间单元,例如,对于LTE系统,调度的基本时间单元可以为子帧,对于NR系统,调度的基本时间单元可以为时隙。在多载波多模场景下,调度周期通常为LTE系统下调度的基本时间单元,LTE系统下调度的基本时间单元通常为NR系统下调度的基本时间单元的整数倍,例如,多载波多模场景下,调度周期可以为子帧。
下面,结合图3,对基本时间单元进行说明。图3为本申请实施例提供的无线帧的结构示意图。请参见图3,无线帧中包括多个子帧,一个子帧可以包括两个时隙,对于常规循环前缀(cyclic prefix),一个子帧包括14个符号,对于扩展CP,一个子帧包括12个符号。例如,一个无线帧的时长可以为10毫秒,一个子帧的时长可以为1毫秒,一个时隙的时长可以为0.5毫秒。图3只是以示例的形式示意无线帧的结构示意图,并非对无线帧的结构进行的限定。在LTE系统中,一个子帧可以包括两个时隙,在NR系统中,一个子帧还可以包括1、2、4、8、16个时隙等。
汇聚调度:针对任意一个接收通道,将该接收通道在至少一个调度周期上的上行数据调度至该接收通道的其它调度周期。可选的,该接收通道在其它调度周期上也存在待接收的上行数据,这样,可以实现将至少两个调度周期上的上行数据汇聚至一个调度周期上,进而可以增多空闲的调度周期。例如,汇聚调度可以是指:初始时,接收通道1在调度周期1和调度周期2上均存在待接收的上行数据,则可以将接收通道1在调度周期1上的上行数据调度至调度周期2,以使接收通道1在调度周期1上不存在待接收的上行数据,即,将接收通道1对应的调度周期1切换为空闲状态。
本申请所示的技术方案可以应用于第五代移动通信技术(The 5th Generation mobile communication technology,简称5G)系统,也可以应用于LTE系统,例如,LTE通信系统中的车辆到所有(vehicle to X,V2X)系统、设备到设备(device to device,D2D)系统、机器型通信(machine type communication,MTC)系统等,还可以应用于通用移动通信系统(universal mobile telecommunications system,UMTS)陆地无线接入网(UMTS terrestrial radio access network,UTRAN)系统,或者全球移动通信系统(global system for mobile communication,GSM)/增强型数据速率GSM演进(enhanced data rate for GSM evolution,EDGE)系统的无线接入网(GSM EDGE radio access network,GERAN)架构。本申请所示的技术方案还可以应用于其它通信系统,例如5G系统的演进通信系统等,本申请对此不作限定。
下面,结合图4,对本申请中的通信方法所适用的场景进行说明。
图4为本申请实施例提供的一种可能的通信场景的示意图。请参见图4,包括网络设备401和终端设备402。网络设备401和终端设备402之间可以交互,网络设备401可以通过接收通道接收终端设备402发送的上行数据,网络设备401可以通过发送通道向终端设备402发送下行数据。网络设备401可以根据终端设备发送的上行数据,将接收通道设置为关断状态或者导通状态,在接收通道为关断状态时,可以减小该接收通道中器件的功耗,进而降低网络设备的功耗。
图4只是以示例的形式示意一种场景,本申请所示的方法还可以应用于其它通信场景,例如,其它通信场景中可能包括更多个网络设备和/或更多个终端设备。本申请实施例对适用的通信场景不作具体限定。
下面,通过具体实施例对本申请所示的功率控制方法进行说明。需要说明的是,下面几个实施例可以相互结合,对于相同或相似的内容,在不同的实施例中不再重复说明。
图5为本申请实施例提供的一种功率控制方法的流程示意图。请参见图5,该方法可以包括:
S501、网络设备判断第一接收通道在第一调度周期中是否存在待接收的上行数据。
若是,则执行S502。
若否,则执行S503。
第一接收通道为网络设备中的任意一个接收通道。例如,第一接收通道可以为网络设备中的RU中的任意一条接收通道。
第一调度周期可以为当前调度周期之后的调度周期,例如,第一调度周期可以为当前调度周期的后一个调度周期。
由网络设备对终端设备发送的上行数据进行调度,例如,网络设备可以调度终端设备发送上行数据所使用的时域资源(该时域资源与调度周期具有对应关系),因此,网络设备可以获知其调度范围内的终端设备在哪个调度周期发送上行数据。
S502、网络设备控制第一接收通道在第一调度周期内的状态为导通状态。
若在当前调度周期内,第一接收通道的状态为导通状态,则网络设备可以不改变第一接收通道中的器件的状态。在第一接收通道的状态为导通状态时,第一接收通道中各器件的状态均为上电状态。第一接收通道中包括的器件可以为接收端和LNA。
若在当前调度周期内,第一接收通道的状态为关断状态,则网络设备在第一调度周期开始之前,网络设备将第一接收通道的状态设置为导通状态。在第一接收通道的状态为关断状态时,第一接收通道中存在至少一个器件的状态为断电状态,则网络设备可以将第一接收通道中处于断电状态的器件的状态设置为上电状态,进而实现将第一接收通道的状态设置为导通状态。可选的,当网络设备的架构如图1A所示时,则BBU可以向第一接收通道中处于断电状态的器件发送第三消息,以使处于断电状态的器件根据第三消息上电。当网络设备的架构如图1B所示时,则BBU可以向处理芯片发送第四消息,处理芯片根据第四消息控制第一接收通道中处于断电状态的器件上电。
S503、网络设备控制第一接收通道在第一调度周期内的状态为关断状态。
若在当前调度周期内,第一接收通道的状态为关断状态,则网络设备可以不改变第一接收通道中的器件的状态。在第一接收通道的状态为关断状态时,第一接收通道中各器件的状态均为断电状态。
若在当前调度周期内,第一接收通道的状态为导通状态,在网络设备第一调度周期开始之前,网络设备将第一接收通道的状态设置为关断状态。在第一接收通道的状态为导通状态时,第一接收通道中各器件的状态均为上电状态,则网络设备可以将第一接收通道中的至少一个器件的状态设置为断电状态,换句话说,网络设备可以关断第一接收通道中的至少一个器件,以使第一接收通道中的至少一个器件的状态切换为断电状态。当网络设备的架构如图1A所示时,则BBU可以向第一接收通道中的接收端和/或低噪声放大器发送 第二信息,以使接收端和/或低噪声放大器断电。当网络设备的架构如图1B所示时,BBU向处理芯片发送第一信息,以指示处理芯片关断接收端和/或低噪声放大器。
本申请实施例提供的功率控制方法,针对网络设备中的任意一个第一接收通道,网络设备判断第一接收通道在第一调度周期中是否存在待接收的上行数据;若判断第一接收通道在第一调度周期中不存在待接收的上行数据,网络设备控制第一接收通道在第一调度周期内的状态为关断状态。在接收通道为关断状态时,可以减小该接收通道中器件的功耗,进而降低网络设备的功耗。
在上述任意一个实施例的基础上,为了进一步降低网络设备的功耗,网络设备还可以对上行数据进行汇聚调度,以使更多的调度中期中不存在上行数据,进而使得接收通道在更多的调度周期中可以处于关断状态。当应用场景(单载波场景或者多载波场景)不同时,对上行数据进行汇聚调度的过程也不同,下面,分别对不同应用场景下,网络设备对上行数据进行汇聚调度的过程进行说明。需要说明的是,网络设备在任意个调度周期均可以进行上行数据的汇聚调度,下文中,以网络设备在任意调度周期对上行数据进行汇聚调度的过程为例进行说明。
在单载波场景下,可以通过如下两种可行实现方式对上行数据进行汇聚调度。需要说明的是,下文中,以对任意接收通道待接收的上行数据的调度过程为例进行说明。
一种可行的实现方式:
网络设备在多个调度周期中设置无效调度周期和有效调度周期,无效调度周期为不进行上行数据传输的周期,有效调度周期为进行上行数据传输的周期。即,在无效调度周期内,网络设备不接收上行数据,在有效调度周期内,网络设备可以接收上行数据。在网络设备进行上行数据调度时,网络设备将上行数据调度至有效调度周期内进行传输。例如,网络设备可以将上行数据调度至距离当前时刻最近的有效调度周期内进行传输。
无效调度周期和有效调度周期可以间隔性设置,下面,结合图6A-图6C,介绍可能的调度周期设置。
图6A为本申请实施例提供的一种调度周期的示意图。请参见图6A,T0、T2、T4、T6和T8为无效调度周期,T1、T3、T5、T7和T9为有效调度周期。无效调度周期和有效调度周期等间隔设置。例如,当终端设备在调度周期T0中存在待发送的上行数据时,则网络设备将该上行数据调度至调度周期T1。当终端设备在调度周期T2中存在待发送的上行数据时,则网络设备将该上行数据调度至调度周期T3。
图6B为本申请实施例提供的另一种调度周期的示意图。请参见图6B,T0、T3、T6和T9为无效调度周期,T1、T2、T4、T5、T7和T8为有效调度周期。无效调度周期和有效调度周期非等间隔设置。例如,当终端设备在调度周期T1或T2中存在待发送的上行数据时,则网络设备将该上行数据调度至调度周期T3。当终端设备在调度周期T4或T5中存在待发送的上行数据时,则网络设备将该上行数据调度至调度周期T6。
图6C为本申请实施例提供的又一种调度周期的示意图。请参见图6C,T1、T3、T4、T6和T8为无效调度周期,T0、T2、T5、T7和T9为有效调度周期。无效调度周期和有效调度周期非等间隔设置。例如,当终端设备在调度周期T1中存在待发送的上行数据时,则网络设备将该上行数据调度至调度周期T2。当终端设备在调度周期T3或T4中存在待发送的上行数据时,则网络设备将该上行数据调度至调度周期T5。
需要说明的是,图6A-图6C只是以示例的形式示意无效调度周期和有效调度周期的设置,并非对无效调度周期和有效调度周期的设置的限定,在实际应用过程中,可以根据实际需要设置有效调度周期和无效调度周期,例如,在上行数据量较大时,可以设置较多的有效调度周期,在上行数据量较少时,可以设置较少的有效调度周期。在实际应用过程中,还可以根据实际需要调整有效调度周期和无效调度周期的设置,例如,在不同的时段,有效调度周期和无效调度周期的设置不同。本申请实施例对有效调度周期和无效调度周期的设置不作具体限定。
在该种实现方式中,通过设置无效调度周期,即可实现对多个调度周期中的上行数据进行汇聚调度,增多空闲状态的调度周期,使得可以在更多的调度周期中关断接收通道,降低该接收通道的功耗,进而降低网络设备的功耗。
另一种可行的实现方式:
网络设备判断单载波在第二调度周期的第一上行数据是否可延时至第三调度周期,若是,网络设备将第一上行数据调度至第三调度周期,第三调度周期位于第二调度周期之后。
第二调度周期可能为网络设备初始调度第一上行数据时,为第一上行数据分配的调度周期。即,在终端设备请求传输第一上行数据时,网络设备为第一上行数据分配的调度周期为第二调度周期。
第二调度周期还可能为网络设备对第一上行数据进行了至少一次汇聚调度之后,为第一上行数据分配的调度周期。例如,假设终端设备请求传输第一上行数据之后,网络设备为第一上行数据分配了一个调度周期(不是第二调度周期),在经过一次或者多次汇聚调度之后,网络设备为第一上行数据分配了第二调度周期。
在如下条件均被满足时,判断单载波在第二调度周期中待接收的第一上行数据可延时至第三调度周期:
条件1:第一上行数据对应的业务优先级小于或等于预设业务优先级。
条件2:若第一上行数据中存在初传承载,初传承载的优先级小于或等于预设承载优先级。
条件3:第一上行数据在第三调度周期的时延小于或等于预设时延。第一上行数据在第三调度周期的时延是指:终端设备请求发送第一上行数据的时刻与第三调度周期之间的时长。
条件4:第一上行数据占用的资源量、与单载波在第三调度周期的上行数据占用的资源量之和小于或等于预设资源量。单载波在第三调度周期的上行数据是指在本次汇聚调度之前,已经确定在第三调取周期发送的上行数据。
需要说明的是,上述只是以示例的形式示意判断第一上行数据可延时至第三调度周期的条件,在实际应用过程中,可以根据实际需要设置该条件,本申请实施例对此不作具体限定。
可选的,第三调度周期与第二调度周期相邻,即,第三调度周期为第二调度周期的后一个调度周期。或者,第三调度周期中存在待接收的第二上行数据。即,第三调度周期为位于第二调度周期之后、且存在待接收的上行数据的调度周期。例如,第三调度周期可以为位于第二调度周期之后的、存在待接收的上行数据、且距离第二调度周期最近的一个调度周期。
下面,结合图7A-图7C,汇聚调度的过程进行说明。
图7A为本申请实施例提供的一种汇聚调度的过程示意图。其中,第三调度周期为第二调度周期的后一个调度周期。请参见图7A,假设当前的调度周期为T0,第二调度周期为T1,由于第三调度周期为第二调度周期的后一个调度周期,因此,可以确定第三调度周期为T2。在汇聚调度之前,第二调度周期T1上存在待接收的第一上行数据data1,第三调度周期T2上不存在待接收的上行数据。在网络设备确定可以将第一上行数据data1从第二调度周期T1调度至第二调度周期T2后,将第一上行数据data1从第二调度周期T1调度至第三调度周期T2。完成上述汇聚调度之后,第二调度周期T1上不存在待接收的上行数据,第三调度周期T2上存在待接收的第一上行数据data1。
图7B为本申请实施例提供的另一种汇聚调度的过程示意图。其中,第三调度周期为第二调度周期的后一个调度周期。请参见图7B,假设当前的调度周期为T0,第二调度周期为T1,由于第三调度周期为第二调度周期的后一个调度周期,因此,可以确定第三调度周期为T2。在汇聚调度之前,第二调度周期T1上存在待接收的第一上行数据data1,第三调度周期T2上存在待接收的上行数据data2。在网络设备确定可以将第一上行数据data1从第二调度周期T1调度至第二调度周期T2后,将第一上行数据data1从第二调度周期1调度至第三调度周期T2。完成上述汇聚调度之后,第二调度周期T1上不存在待接收的上行数据,第三调度周期T2上存在待接收的第一上行数据data1和上行数据data2。
图7C为本申请实施例提供的又一种汇聚调度的过程示意图。其中,第三调度周期为位于第二调度周期之后的、存在待接收的上行数据、且距离第二调度周期最近的一个调度周期。请参见图7C,假设当前的调度周期为T0,第二调度周期为T1,各调度周期上存在的待接收的上行数据如图7C所示,由于第三调度周期为位于第二调度周期之后的、存在待接收的上行数据、且距离第二调度周期最近的一个调度周期,因此,可以确定第三调度周期为T3。在汇聚调度之前,第二调度周期T1上存在待接收的第一上行数据data1,第三调度周期T3上存在待接收的上行数据data2。在网络设备确定可以将第一上行数据data1从第二调度周期T1调度至第三调度周期T3后,将第一上行数据data1从第二调度周期T1调度至第三调度周期T3。完成上述汇聚调度之后,第二调度周期T1上不存在待接收的上行数据,第三调度周期T3上存在待接收的第一上行数据data1和上行数据data2。
在该种实现方式中,对业务优先级较低的上行数据进行汇聚调度,且在进行汇聚调度时参考第一上行数据的时延、以及第一上行数据占用的资源量,因此,可以实现对第一上行数据进行精准的汇聚调度,避免汇聚调度对业务时延进行过大影响。且通过上述方法可以实现对多个调度周期中的上行数据进行汇聚调度,增多空闲状态的调度周期,使得可以在更多的调度周期中关断接收通道,降低该接收通道的功耗,进而降低网络设备的功耗。
在多载波单模场景下,可以通过如下两种可行实现方式对上行数据进行汇聚调度。需要说明的是,下文中,以对任意接收通道待接收的上行数据的调度过程为例进行说明,该接收通道上配置了至少两个载波。换句话说,下文所述的至少两个载波为该任意接收通道配置的载波。
一种可行的实现方式:
网络设备为至少两个载波中每个载波设置对应的无效调度周期,至少两个载波中每个载波对应的无效调度周期的时域位置相同。在网络设备进行上行数据调度时,网络设备将 上行数据调度至有效调度周期内进行传输。例如,网络设备可以将上行数据调度至距离当前时刻最近的有效调度周期内进行传输。
无效调度周期和有效调度周期可以间隔性设置,下面,结合图8A-图8C,介绍可能的调度周期设置。
图8A为本申请实施例提供的再一种调度周期的示意图。请参见图8A,假设为接收通道配置的载波包括载波1和载波2,载波1和载波2对应的无效调度周期的时域位置消息。例如,载波1和载波2的T0、T2、T4、T6和T8为无效调度周期,载波1和载波2的T1、T3、T5、T7和T9为有效调度周期。无效调度周期和有效调度周期等间隔设置。例如,当终端设备在调度周期T0中存在载波1或者载波2对应的待发送的上行数据时,则网络设备将该上行数据调度至调度周期T1。当终端设备在调度周期T2中存在载波1或者载波2对应的待发送的上行数据时,则网络设备将该上行数据调度至调度周期T3。
图8B为本申请实施例提供的另一种调度周期的示意图。请参见图8B,假设为接收通道配置的载波包括载波1和载波2,载波1和载波2对应的无效调度周期的时域位置消息。例如,载波1和载波2的T0、T3、T6和T9为无效调度周期,载波1和载波2的T1、T2、T4、T5、T7和T8为有效调度周期。无效调度周期和有效调度周期非等间隔设置。例如,当终端设备在调度周期T1或T2中存在载波1或者载波2对应的待发送的上行数据时,则网络设备将该上行数据调度至调度周期T3。当终端设备在调度周期T4或T5中存在载波1或者载波2对应的待发送的上行数据时,则网络设备将该上行数据调度至调度周期T6。
图8C为本申请实施例提供的又一种调度周期的示意图。请参见图8C,假设为接收通道配置的载波包括载波1和载波2,载波1和载波2对应的无效调度周期的时域位置消息。例如,载波1和载波2的T1、T3、T4、T6和T8为无效调度周期,载波1或者载波2对应的T0、T2、T5、T7和T9为有效调度周期。无效调度周期和有效调度周期非等间隔设置。例如,当终端设备在调度周期T1中存在载波1或者载波2对应的待发送的上行数据时,则网络设备将该上行数据调度至调度周期T2。当终端设备在调度周期T3或T4中存在载波1或者载波2对应的待发送的上行数据时,则网络设备将该上行数据调度至调度周期T5。
需要说明的是,图8A-图8C只是以示例的形式示意无效调度周期和有效调度周期的设置,并非对无效调度周期和有效调度周期的设置的限定,在实际应用过程中,可以根据实际需要设置有效调度周期和无效调度周期,本申请实施例对此不作具体限定。
在该种实现方式中,通过为至少两个载波设置无效调度周期,以及至少两个载波中每个载波对应的无效调度周期的时域位置相同,即可实现对多个调度周期中的上行数据进行汇聚调度,增多空闲状态的调度周期,使得可以在更多的调度周期中关断接收通道,降低该接收通道的功耗,进而降低网络设备的功耗。
另一种可行的实现方式:
网络设备对至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,以将至少两个载波在不同调度周期上的上行数据调度至同一调度周期。换句话说,网络设备对至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,以使每个载波对应的、存在上行数据的调度周期尽可能的相同。
可以通过如下可行的实现方式至少两个载波中的至少一个载波对应的上行数据进行 汇聚调度:若第一载波集合中的每个载波在第四调度周期的上行数据均可延迟一个调度周期,将第一载波集合中的每个载波在第四调度周期的上行数据调度至第四调度周期的下一个调度周期;其中,第一载波集合包括:至少两个载波中在第四调度周期上具有上行数据的载波。
在如下条件均被满足时,将第一载波集合中的每个载波在第四调度周期的上行数据调度至第四调度周期的下一个调度周期:
条件1:第一载波集合中每个载波在第四调度周期的上行数据对应的业务优先级均小于或等于预设业务优先级。
条件2:若第一载波集合中存在载波在第四调度周期的上行数据中存在初传承载,初传承载的优先级小于或等于预设承载优先级。
条件3:第一载波集合中每个载波在第四调度周期的上行数据在第四调度周期的时延均小于或等于预设时延。上行数据在第四调度周期的时延是指:终端设备请求发送该上行数据的时刻与第四调度周期之间的时长。
条件4:第一载波集合中每个载波在第四调度周期的上行数据占用的资源量、与至少两个载波在第四调度周期的下一个调度周期的上行数据占用的资源量之和小于或等于预设资源量。
需要说明的是,上述只是以示例的形式示意判断第一上行数据可延时至第三调度周期的条件,在实际应用过程中,可以根据实际需要设置该条件,本申请实施例对此不作具体限定。
在实际应用过程中,网络设备中可以设置有多个逻辑处理单元,该多个逻辑处理单元可以分别对至少两个载波中不同载波对应的上行数据进行调度。该多个逻辑处理单元在对不同载波对应的上行数据进行调度之前,该多个逻辑处理单元之间可以相互通信,例如,每个逻辑处理单元可以向其它逻辑处理单元发送对应的上行数据信息,上行数据信息可以包括该逻辑处理单元对应的载波在第四调度周期是否存在上行数据、上行数据对应的业务优先级、初传承载的优先级、在第四调度周期的时延、占用的资源量中的一种或多种。这样,每个逻辑处理单元可以根据接收到的数据判断上述4个条件是否可以被满足。
下面,结合图9,汇聚调度的过程进行说明。
图9为本申请实施例提供的另一种汇聚调度的过程示意图。请参见图9,为接收通道配置的载波包括载波1、载波2和载波3。假设当前的调度周期为T0,在汇聚调度之前,载波1在调度周期T1上存在对应的上行数据data1,载波2在调度周期T1上存在对应的上行数据data2,载波3在调度周期T1上不存在对应的上行数据,在调度周期T2上存在对应的上行数据data3。假设网络设备判断上行数据data1和上行数据data2满足上述4个条件,则可以将上行数据data1和上行数据data2调度至调度周期T2。在汇聚调度之后,在调度周期T1中不存在上行数据,在调度周期2上,存在上行数据data1、上行数据data2和上行数据data3。
在该种实现方式中,对业务优先级较低的上行数据进行汇聚调度,且在进行汇聚调度时参考第一上行数据的时延、以及第一上行数据占用的资源量,因此,可以实现对第一上行数据进行精准的汇聚调度,避免汇聚调度对业务时延进行过大影响。且通过上述方法可以实现对多个调度周期中的上行数据进行汇聚调度,增多空闲状态的调度周期,使得可以 在更多的调度周期中关断接收通道,降低该接收通道的功耗,进而降低网络设备的功耗。
在多载波多模场景下,网络设备可以先对至少两个载波中至少一个载波的调度周期的时长进行更新,更新后的至少两个载波对应的调度周期的时长相同。再根据多载波单模场景下所示的技术方案进行上行数据调度。可选的,在多载波多模场景下,可以对第一载波的调度周期的时长进行更新,其中,第一载波的调度周期较短。例如,至少两个载波中包括载波1和载波2,载波1的调度周期为调度周期1,载波2的调度周期为调度周期2,调度周期1的时长为调度周期2的时长的N倍,则可以对载波2的调度周期扩大N个,以使更新后的调度周期2的时长与调度周期1的时长相同。
图10为本申请实施例提供的一种功率控制装置的结构示意图。该功率控制装置位于网络设备。请参见图10,该功率控制装置10可以包括判断模块11和控制模块12,其中,
所述判断模块11用于,判断第一接收通道在第一调度周期中是否存在待接收的上行数据;
所述控制模块12用于,在所述判断模块判断所述第一接收通道在所述第一调度周期中不存在待接收的上行数据,控制所述第一接收通道在所述第一调度周期内的状态为关断状态。
可选的,判断模块11可以执行图5实施例中的S501,控制模块12可以执行图5实施例中的S502-S503。
本申请实施例提供的功率控制装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述第一接收通道包括接收端和低噪声放大器;所述控制模块12具体用于:
在所述第一调度周期开始之前,控制关断所述接收端和/或所述低噪声放大器。
图11为本申请实施例提供的另一种功率控制装置的结构示意图。该功率控制装置位于网络设备,网络设备可以为BBU。在图10所示实施例的基础上,请参见图11,功率控制装置10还可以包括发送模块13,其中,
所述发送模块13用于,向处理芯片发送第一信息,所述第一信息用于指示所述处理芯片关断所述接收端和/或所述低噪声放大器;或者,
所述发送模块13用于,向所述接收端和/或所述低噪声放大器发送第二信息,所述第二信息用于指示所述接收端和/或所述低噪声放大器将状态设置为关断状态。
在一种可能的实施方式中,所述装置还包括调度模块14,其中,
所述调度模块14用于,在所述判断模块11判断第一接收通道在第一调度周期中是否存在待接收的上行数据之前,对所述第一接收通道待接收的上行数据进行汇聚调度,所述汇聚调度用于将至少一个调度周期上的上行数据调度至其它调度周期。
在一种可能的实施方式中,所述第一接收通道对应单载波;所述调度模块14具体用于:
判断所述单载波在第二调度周期的第一上行数据是否可延时至第三调度周期;
若是,将所述第一上行数据调度至第三调度周期,所述第三调度周期位于所述第二调度周期之后。
在一种可能的实施方式中,在如下条件均被满足时,所述调度模块14判断所述单载 波在第二调度周期中待接收的第一上行数据可延时至第三调度周期:
所述第一上行数据对应的业务优先级小于或等于预设业务优先级;
若所述第一上行数据中存在初传承载,所述初传承载的优先级小于或等于预设承载优先级;
所述第一上行数据在所述第三调度周期的时延小于或等于预设时延;
所述第一上行数据占用的资源量、与所述单载波在所述第三调度周期的上行数据占用的资源量之和小于或等于预设资源量。
在一种可能的实施方式中,所述第三调度周期与所述第二调度周期相邻;或者,
所述第三调度周期中存在待接收的第二上行数据。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;所述调度模块14具体用于:
对所述至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,所述汇聚调度用于将所述至少两个载波在不同调度周期上的上行数据调度至同一调度周期。
在一种可能的实施方式中,所述调度模块14具体用于:
若第一载波集合中的每个载波在第四调度周期的上行数据均可延迟一个调度周期,将第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期;
其中,所述第一载波集合包括:所述至少两个载波中在所述第四调度周期上具有上行数据的载波。
在一种可能的实施方式中,在如下条件均被满足时,所述调度模块14将第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期:
所述第一载波集合中每个载波在所述第四调度周期的上行数据对应的业务优先级均小于或等于预设业务优先级;
若所述第一载波集合中存在载波在所述第四调度周期的上行数据中存在初传承载,所述初传承载的优先级小于或等于预设承载优先级;
所述第一载波集合中每个载波在所述第四调度周期的上行数据在所述第四调度周期的时延均小于或等于预设时延;
所述第一载波集合中每个载波在所述第四调度周期的上行数据占用的资源量、与所述至少两个载波在所述第四调度周期的下一个调度周期的上行数据占用的资源量之和小于或等于预设资源量。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;所述至少两个载波中每个载波对应的无效调度周期的时域位置相同,所述无效调度周期为不进行上行数据传输的调度周期。
在一种可能的实施方式中,功率控制装置10还可以包括更新模块15,其中,
所述更新模块15用于,在所述至少两个载波对应的调度周期的时长不同时,对所述至少两个载波中至少一个载波的调度周期的时长进行更新,更新后的所述至少两个载波对应的调度周期的时长相同,所述第一接收通道对应至少两个载波。
本申请实施例提供的功率控制装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图12为本申请实施例提供的又一种功率控制装置的结构示意图。该功率控制装置可以应用于网络设备。请参见图12,功率控制装置20可以包括存储器21和处理器22,示例性的,处理器22和存储器21通过通信总线23通信,存储器21中存储有程序指令,处理器22执行存储器21中的程序指令,并执行如下步骤:
判断第一接收通道在第一调度周期中是否存在待接收的上行数据;
若判断所述第一接收通道在所述第一调度周期中不存在待接收的上行数据,控制所述第一接收通道在所述第一调度周期内的状态为关断状态。
可选的,本申请实施例中的处理器22可以具有图10-图11实施例中的判断模块和控制模块的功能。
本申请实施例所示的功率控制装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述第一接收通道包括接收端和低噪声放大器;处理器22具体用于:
在所述第一调度周期开始之前,控制关断所述接收端和/或所述低噪声放大器。
图13为本申请实施例的再一种功率控制装置的结构示意图。网络设备为BBU;在图12所示实施例的基础上,请参见图13,所述功率控制装置20还可以包括发送器24,其中,
所述发送器24用于,向处理芯片发送第一信息,所述第一信息用于指示所述处理芯片关断所述接收端和/或所述低噪声放大器;或者,
所述发送器24用于,向所述接收端和/或所述低噪声放大器发送第二信息,所述第二信息用于指示所述接收端和/或所述低噪声放大器将状态设置为关断状态。
在一种可能的实施方式中,所述处理器22还用于,在所述处理器22判断第一接收通道在第一调度周期中是否存在待接收的上行数据之前,对所述第一接收通道待接收的上行数据进行汇聚调度,所述汇聚调度用于将至少一个调度周期上的上行数据调度至其它调度周期。
在一种可能的实施方式中,所述第一接收通道对应单载波;所述处理器22具体用于:
判断所述单载波在第二调度周期的第一上行数据是否可延时至第三调度周期;
若是,将所述第一上行数据调度至第三调度周期,所述第三调度周期位于所述第二调度周期之后。
在一种可能的实施方式中,在如下条件均被满足时,所述处理器22判断所述单载波在第二调度周期中待接收的第一上行数据可延时至第三调度周期:
所述第一上行数据对应的业务优先级小于或等于预设业务优先级;
若所述第一上行数据中存在初传承载,所述初传承载的优先级小于或等于预设承载优先级;
所述第一上行数据在所述第三调度周期的时延小于或等于预设时延;
所述第一上行数据占用的资源量、与所述单载波在所述第三调度周期的上行数据占用的资源量之和小于或等于预设资源量。
在一种可能的实施方式中,所述第三调度周期与所述第二调度周期相邻;或者,
所述第三调度周期中存在待接收的第二上行数据。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;所述处理器22具 有用于:
对所述至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,所述汇聚调度用于将所述至少两个载波在不同调度周期上的上行数据调度至同一调度周期。
在一种可能的实施方式中,所述处理器22具有用于:
若第一载波集合中的每个载波在第四调度周期的上行数据均可延迟一个调度周期,将第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期;
其中,所述第一载波集合包括:所述至少两个载波中在所述第四调度周期上具有上行数据的载波。
在一种可能的实施方式中,在如下条件均被满足时,所述处理器22将第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期:
所述第一载波集合中每个载波在所述第四调度周期的上行数据对应的业务优先级均小于或等于预设业务优先级;
若所述第一载波集合中存在载波在所述第四调度周期的上行数据中存在初传承载,所述初传承载的优先级小于或等于预设承载优先级;
所述第一载波集合中每个载波在所述第四调度周期的上行数据在所述第四调度周期的时延均小于或等于预设时延;
所述第一载波集合中每个载波在所述第四调度周期的上行数据占用的资源量、与所述至少两个载波在所述第四调度周期的下一个调度周期的上行数据占用的资源量之和小于或等于预设资源量。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;所述至少两个载波中每个载波对应的无效调度周期的时域位置相同,所述无效调度周期为不进行上行数据传输的调度周期。
在一种可能的实施方式中,所述第一接收通道对应至少两个载波;在所述至少两个载波对应的调度周期的时长不同时,所述处理器22还用于,对所述至少两个载波中至少一个载波的调度周期的时长进行更新,更新后的所述至少两个载波对应的调度周期的时长相同。
本申请实施例所示的功率控制装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
可选的,上述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的业务处理方法实施例中的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例提供一种网络设备,该网络设备可以包括图11-图12所示的功率控制装置20。可选的,当网络设备的结构如图1A-图1B所示时,功率控制装置20可以设置在BBU中。
本申请实施例提供一种存储介质,所述存储介质用于存储计算机程序,所述计算机程序用于实现上述实施例所述的功率控制方法。
本申请实施例提供一种计算机程序产品,所述计算机程序产品包括指令,当所述指令被执行时,使得计算机执行上述功率控制方法。
本申请实施例提供一种芯片上系统或系统芯片,所述芯片上系统或系统芯片可应用于终端设备,所述芯片上系统或系统芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,所述通信接口、存储器和处理器通过总线互联,所述处理器通过执行所述存储器中存储的指令,使得所述终端设备可执行上述功率控制方法。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在本申请中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”。本本申请中术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。

Claims (21)

  1. 一种功率控制方法,其特征在于,
    网络设备判断第一接收通道在第一调度周期中是否存在待接收的上行数据;
    若判断所述第一接收通道在所述第一调度周期中不存在待接收的上行数据,所述网络设备控制所述第一接收通道在所述第一调度周期内的状态为关断状态。
  2. 根据权利要求1所述的方法,其特征在于,所述第一接收通道包括接收端和低噪声放大器;所述网络设备控制所述第一接收通道在所述第一调度周期内的状态为关断状态,包括:
    在所述第一调度周期开始之前,所述网络设备控制关断所述接收端和/或所述低噪声放大器。
  3. 根据权利要求2所述的方法,其特征在于,所述网络设备为基带单元BBU;所述网络设备控制关断所述接收端和/或所述低噪声放大器,包括:
    所述BBU向处理芯片发送第一信息,所述第一信息用于指示所述处理芯片关断所述接收端和/或所述低噪声放大器;或者,
    所述BBU向所述接收端和/或所述低噪声放大器发送第二信息,所述第二信息用于指示所述接收端和/或所述低噪声放大器将状态设置为关断状态。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述网络设备判断第一接收通道在第一调度周期中是否存在待接收的上行数据之前,还包括:
    所述网络设备对所述第一接收通道待接收的上行数据进行汇聚调度,所述汇聚调度用于将至少一个调度周期上的上行数据调度至其它调度周期。
  5. 根据权利要求4所述的方法,其特征在于,所述第一接收通道对应单载波;所述网络设备对所述第一接收通道待接收的上行数据进行汇聚调度,包括:
    所述网络设备判断所述单载波在第二调度周期的第一上行数据是否可延时至第三调度周期;
    若是,所述网络设备将所述第一上行数据调度至第三调度周期,所述第三调度周期位于所述第二调度周期之后。
  6. 根据权利要求5所述的方法,其特征在于,在如下条件均被满足时,判断所述单载波在第二调度周期中待接收的第一上行数据可延时至第三调度周期:
    所述第一上行数据对应的业务优先级小于或等于预设业务优先级;
    若所述第一上行数据中存在初传承载,所述初传承载的优先级小于或等于预设承载优先级;
    所述第一上行数据在所述第三调度周期的时延小于或等于预设时延;
    所述第一上行数据占用的资源量、与所述单载波在所述第三调度周期的上行数据占用的资源量之和小于或等于预设资源量。
  7. 根据权利要求5或6所述的方法,其特征在于,
    所述第三调度周期与所述第二调度周期相邻;或者,
    所述第三调度周期中存在待接收的第二上行数据。
  8. 根据权利要求4所述的方法,其特征在于,所述第一接收通道对应至少两个载波;所述网络设备对所述第一接收通道对应的待接收的上行数据进行汇聚调度,包括:
    所述网络设备对所述至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,所述汇聚调度用于将所述至少两个载波在不同调度周期上的上行数据调度至同一调度周期。
  9. 根据权利要求8所述的方法,其特征在于,所述网络设备对所述至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,包括:
    若第一载波集合中的每个载波在第四调度周期的上行数据均可延迟一个调度周期,将第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期;
    其中,所述第一载波集合包括:所述至少两个载波中在所述第四调度周期上具有上行数据的载波。
  10. 根据权利要求9所述的方法,其特征在于,在如下条件均被满足时,将第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期:
    所述第一载波集合中每个载波在所述第四调度周期的上行数据对应的业务优先级均小于或等于预设业务优先级;
    若所述第一载波集合中存在载波在所述第四调度周期的上行数据中存在初传承载,所述初传承载的优先级小于或等于预设承载优先级;
    所述第一载波集合中每个载波在所述第四调度周期的上行数据在所述第四调度周期的时延均小于或等于预设时延;
    所述第一载波集合中每个载波在所述第四调度周期的上行数据占用的资源量、与所述至少两个载波在所述第四调度周期的下一个调度周期的上行数据占用的资源量之和小于或等于预设资源量。
  11. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一接收通道对应至少两个载波;所述至少两个载波中每个载波对应的无效调度周期的时域位置相同,所述无效调度周期为不进行上行数据传输的调度周期。
  12. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一接收通道对应至少两个载波;在所述至少两个载波对应的调度周期的时长不同时,所述方法还包括:
    对所述至少两个载波中至少一个载波的调度周期的时长进行更新,更新后的所述至少两个载波对应的调度周期的时长相同。
  13. 一种功率控制装置,其特征在于,应用于网络设备,所述装置包括判断模块和控制模块,其中,
    所述判断模块用于,判断第一接收通道在第一调度周期中是否存在待接收的上行数据;
    所述控制模块用于,在所述判断模块判断所述第一接收通道在所述第一调度周期中不存在待接收的上行数据,控制所述第一接收通道在所述第一调度周期内的状态为关断状态。
  14. 根据权利要求13所述的装置,其特征在于,所述第一接收通道包括接收端和低噪声放大器;所述控制模块具体用于:
    在所述第一调度周期开始之前,控制关断所述接收端和/或所述低噪声放大器。
  15. 根据权利要求14所述的装置,其特征在于,所述网络设备为基带单元BBU;所述装置还包括发送模块,其中,
    所述发送模块用于,向处理芯片发送第一信息,所述第一信息用于指示所述处理芯片关断所述接收端和/或所述低噪声放大器;或者,
    所述发送模块用于,向所述接收端和/或所述低噪声放大器发送第二信息,所述第二信息用于指示所述接收端和/或所述低噪声放大器将状态设置为关断状态。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,所述装置还包括调度模块,其中,
    所述调度模块用于,在所述判断模块判断第一接收通道在第一调度周期中是否存在待接收的上行数据之前,对所述第一接收通道待接收的上行数据进行汇聚调度,所述汇聚调度用于将至少一个调度周期上的上行数据调度至其它调度周期。
  17. 根据权利要求16所述的装置,其特征在于,所述第一接收通道对应单载波;所述调度模块具体用于:
    判断所述单载波在第二调度周期的第一上行数据是否可延时至第三调度周期;
    若是,将所述第一上行数据调度至第三调度周期,所述第三调度周期位于所述第二调度周期之后。
  18. 根据权利要求16所述的装置,其特征在于,所述第一接收通道对应至少两个载波;所述调度模块具体用于:
    对所述至少两个载波中的至少一个载波对应的上行数据进行汇聚调度,所述汇聚调度用于将所述至少两个载波在不同调度周期上的上行数据调度至同一调度周期。
  19. 根据权利要求18所述的装置,其特征在于,所述调度模块具体用于:
    若第一载波集合中的每个载波在第四调度周期的上行数据均可延迟一个调度周期,将第一载波集合中的每个载波在第四调度周期的上行数据调度至所述第四调度周期的下一个调度周期;
    其中,所述第一载波集合包括:所述至少两个载波中在所述第四调度周期上具有上行数据的载波。
  20. 根据权利要求13-15任一项所述的装置,其特征在于,所述第一接收通道对应至少两个载波;所述装置还包括更新模块,其中,
    所述更新模块用于,在所述至少两个载波对应的调度周期的时长不同时,对所述至少两个载波中至少一个载波的调度周期的时长进行更新,更新后的所述至少两个载波对应的调度周期的时长相同。
  21. 一种计算机可读存储介质,其特征在于,所述存储介质用于存储计算机程序,所述计算机程序被计算机或处理器执行时用于实现权利要求1-12任一项所述的功率控制方法。
PCT/CN2019/106869 2019-09-20 2019-09-20 功率控制方法、装置及设备 WO2021051368A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/106869 WO2021051368A1 (zh) 2019-09-20 2019-09-20 功率控制方法、装置及设备
CN201980099631.4A CN114270946B (zh) 2019-09-20 2019-09-20 功率控制方法、装置及设备
EP19945523.9A EP4024960A4 (en) 2019-09-20 2019-09-20 ENERGY CONTROL METHOD, APPARATUS AND DEVICE
US17/697,251 US20220210732A1 (en) 2019-09-20 2022-03-17 Power control method and apparatus, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106869 WO2021051368A1 (zh) 2019-09-20 2019-09-20 功率控制方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/697,251 Continuation US20220210732A1 (en) 2019-09-20 2022-03-17 Power control method and apparatus, and device

Publications (1)

Publication Number Publication Date
WO2021051368A1 true WO2021051368A1 (zh) 2021-03-25

Family

ID=74883404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106869 WO2021051368A1 (zh) 2019-09-20 2019-09-20 功率控制方法、装置及设备

Country Status (4)

Country Link
US (1) US20220210732A1 (zh)
EP (1) EP4024960A4 (zh)
CN (1) CN114270946B (zh)
WO (1) WO2021051368A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123102A1 (zh) * 2021-12-29 2023-07-06 新华三技术有限公司 一种调度周期调整方法及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238757A (zh) * 2010-04-30 2011-11-09 电信科学技术研究院 一种通过专用数据无线承载进行前转数据传输的方法和设备
CN103595519A (zh) * 2013-11-19 2014-02-19 四川平安都市通讯科技有限公司 无线链路汇聚方法和无线通信设备
WO2015198269A1 (en) * 2014-06-25 2015-12-30 Telefonaktiebolaget L M Ericsson (Publ) Improved monitoring of radio blocks in extended radio coverage
CN109756955A (zh) * 2017-11-01 2019-05-14 北京展讯高科通信技术有限公司 一种终端及其电路控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147450A1 (en) * 2010-05-26 2011-12-01 Nokia Siemens Networks Oy A method and apparatus for controlling a power amplifier to perform discontinuos transmission (dtx)
CN107318151B (zh) * 2016-04-26 2020-11-03 大唐移动通信设备有限公司 一种射频天线开关的控制方法和装置
WO2018138854A1 (ja) * 2017-01-27 2018-08-02 富士通株式会社 基地局、無線通信システム、無線端末、及び無線通信方法
CN108462971B (zh) * 2017-02-22 2020-07-31 大唐移动通信设备有限公司 一种上报上行控制信息的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238757A (zh) * 2010-04-30 2011-11-09 电信科学技术研究院 一种通过专用数据无线承载进行前转数据传输的方法和设备
CN103595519A (zh) * 2013-11-19 2014-02-19 四川平安都市通讯科技有限公司 无线链路汇聚方法和无线通信设备
WO2015198269A1 (en) * 2014-06-25 2015-12-30 Telefonaktiebolaget L M Ericsson (Publ) Improved monitoring of radio blocks in extended radio coverage
CN109756955A (zh) * 2017-11-01 2019-05-14 北京展讯高科通信技术有限公司 一种终端及其电路控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024960A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123102A1 (zh) * 2021-12-29 2023-07-06 新华三技术有限公司 一种调度周期调整方法及网络设备
CN116686353A (zh) * 2021-12-29 2023-09-01 新华三技术有限公司 一种调度周期调整方法及网络设备

Also Published As

Publication number Publication date
EP4024960A4 (en) 2022-08-31
CN114270946A (zh) 2022-04-01
US20220210732A1 (en) 2022-06-30
EP4024960A1 (en) 2022-07-06
CN114270946B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US11324020B2 (en) Data scheduling and transmission for different logical channels
US20220361284A1 (en) Communication method and apparatus
US10623981B2 (en) Information transmission method, apparatus, and system
WO2018227636A1 (zh) 一种业务传输方法、设备及系统
US8594646B2 (en) Wireless device, processing system and method of operating a wireless device
EP3557940B1 (en) Communication method, terminal device and computer readable medium
CN113133026A (zh) 一种非连续接收状态配置方法、终端及网络侧设备
WO2023051188A1 (zh) 分组管理方法和通信装置
CN111587600B (zh) 用于在多带宽部分上通信的方法、设备和计算机可读存储介质
WO2022116090A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021098510A1 (zh) 通信方法、设备和存储介质
US20220210732A1 (en) Power control method and apparatus, and device
CN110574444B (zh) 省电信号的参数动态变更方法、装置、终端和介质
WO2023051264A1 (zh) 一种载波聚合系统的配置方法、相关设备和装置及系统
WO2022141009A1 (zh) 寻呼消息发送的方法和装置
TWI753391B (zh) 一種發送和接收輔助指示信令的方法、設備及電腦可存儲介質
WO2021088016A1 (zh) 通信方法、设备及存储介质
WO2023001022A1 (zh) 节点状态控制方法、装置及相关设备
WO2024020786A1 (zh) 用于无线通信的方法、网络设备及终端设备
CN114902748B (zh) 辅助载波的睡眠指示方法、装置、终端及存储介质
US20230209649A1 (en) Communication Method and Apparatus
CN110831166B (zh) 数据传输方法及装置、网络侧设备和终端设备
WO2023202350A1 (zh) 数据传输的方法和装置
JP2024519474A (ja) スマート信号増幅器の作動モード構成方法、装置及び機器
CN116724630A (zh) 资源选择方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019945523

Country of ref document: EP

Effective date: 20220329