WO2021049839A9 - 무선 충전 수신기 통합형 배터리 관리 시스템 및 방법 - Google Patents

무선 충전 수신기 통합형 배터리 관리 시스템 및 방법 Download PDF

Info

Publication number
WO2021049839A9
WO2021049839A9 PCT/KR2020/012073 KR2020012073W WO2021049839A9 WO 2021049839 A9 WO2021049839 A9 WO 2021049839A9 KR 2020012073 W KR2020012073 W KR 2020012073W WO 2021049839 A9 WO2021049839 A9 WO 2021049839A9
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
management system
power transmission
battery management
Prior art date
Application number
PCT/KR2020/012073
Other languages
English (en)
French (fr)
Other versions
WO2021049839A1 (ko
Inventor
조현기
이상훈
박재동
이근욱
김지은
박찬하
이성건
양성열
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202080061294.2A priority Critical patent/CN114303300A/zh
Priority to JP2022507575A priority patent/JP7367289B2/ja
Priority to US17/636,122 priority patent/US20220294252A1/en
Priority to EP20862994.9A priority patent/EP4002642A4/en
Publication of WO2021049839A1 publication Critical patent/WO2021049839A1/ko
Publication of WO2021049839A9 publication Critical patent/WO2021049839A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices

Definitions

  • the present invention relates to a wireless charging receiver integrated battery management system and method.
  • the present invention integrates a wireless charging receiver into a battery management system, and controls the power transmission condition of the wireless charging transmitter according to the optimal charging condition calculated based on factors that change depending on the charging environment of the battery, thereby changing the state of each module of the battery.
  • An object of the present invention is to provide a battery system that appropriately performs charging.
  • a battery system includes a battery management system that monitors a state of a battery, and a power receiver that wirelessly receives power from a power transmitter, wherein the battery management system relates to the state of the battery.
  • An optimal charging condition of the battery may be calculated based on data and power transmission performance of the power transmission device.
  • the battery management system of the battery system may communicate with the power transmitter wirelessly.
  • the battery management system of the battery system may wirelessly receive data regarding a power transmission condition from the power transmission device.
  • the power transmission performance of the power transmission apparatus of the battery system may include real-time power transmission efficiency and maximum available transmission power.
  • the data regarding the state of the battery of the battery system may include a maximum available charging current of the battery, a real-time remaining battery capacity, and a remaining battery life.
  • the battery management system and the power receiving device of the battery system according to an embodiment of the present invention may be electrically coupled.
  • the battery management system of the battery system may measure the input voltage and input current of the battery and the output voltage and output current of the power receiving device in real time.
  • the battery management system of the battery system may calculate the optimal charging condition based on at least one of wireless charging efficiency, wireless charging speed, and battery life.
  • the battery management system of the battery system may control the power transmission performance of the power transmission device based on the optimal charging condition.
  • the battery management system of the battery system may adjust the duty and frequency of the power transmitter when a difference value between the calculated optimal charging condition and a preset reference value is greater than or equal to a threshold value.
  • a power transmission device wirelessly transmits data related to a power transmission condition to a transmission circuit for wirelessly transmitting power to a power receiving device, a battery management system, and the battery calculated from the battery management system. It may include a communication unit for wirelessly receiving a power control signal according to the charging optimum condition, and a control unit for adjusting the power transmission condition to be transmitted to the power receiving device based on the power control signal according to the charging optimum condition.
  • a battery management method includes wirelessly transmitting power for supplying a battery from a power transmitting device to a power receiving device, monitoring the state of the battery, and power transmission condition from the power transmitting device It may include receiving data on the battery, and calculating an optimal charging condition of the battery based on the data on the state of the battery and the data on the power transmission condition received from the power transmitter.
  • the battery management method may further include adjusting the power transmission condition of the power transmission device based on the optimal charging condition of the battery.
  • the battery system of the present invention by integrating the wireless charging receiver into the battery management system, and controlling the power transmission condition of the wireless charging transmitter according to the optimal charging condition calculated based on factors that change depending on the charging environment of the battery, Charging can be performed to suit the state of each module.
  • FIG. 1 is a block diagram showing the configuration of a general battery management system.
  • FIG. 2 is a block diagram illustrating a configuration of a battery system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a configuration of an apparatus for transmitting power according to an embodiment of the present invention.
  • 4A is a diagram illustrating a configuration of a battery module according to an embodiment of the present invention.
  • 4B is a diagram illustrating a configuration of an apparatus for transmitting power according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a circuit diagram of a battery cell module assembly according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a specific example of a battery management method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a battery management method according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a hardware configuration of a battery system according to an embodiment of the present invention.
  • first, second, first, or second used in various embodiments may modify various components regardless of order and/or importance, do not limit
  • the first component may be referred to as the second component, and similarly, the second component may also be renamed to the first component.
  • FIG. 1 is a block diagram showing the configuration of a general battery management system.
  • FIG. 1 is a configuration diagram schematically illustrating a battery management system including a battery pack 1 and a host controller 2 included in the upper system according to an embodiment of the present invention.
  • the battery pack 1 is made of one or more battery cells, and is connected in series to the chargeable/dischargeable battery module 10 and the + terminal side or the - terminal side of the battery module 10 .
  • the switching unit 14 for controlling the charge/discharge current flow of the battery module 10, and the voltage, current, and temperature of the battery pack 1 are monitored to control and manage the battery to prevent overcharging and overdischarging.
  • a management system 20 .
  • the switching unit 14 is a semiconductor switching device for controlling the current flow for charging or discharging of the battery module 10 , for example, at least one MOSFET may be used.
  • the BMS 20 may measure or calculate the voltage and current of the gate, source, and drain of the semiconductor switching element in order to monitor the voltage, current, temperature, etc. of the battery pack 1 , and also the semiconductor switching device. Current, voltage, temperature, etc. of the battery pack may be measured using the sensor 12 provided adjacent to the device 14 .
  • the BMS 20 is an interface for receiving measured values of the various parameters described above, and may include a plurality of terminals and a circuit connected to these terminals to process the received values.
  • the BMS 20 may control ON/OFF of the switching element 14 , for example, a MOSFET, and may be connected to the battery module 10 to monitor the state of the battery module 10 .
  • the switching element 14 for example, a MOSFET
  • the host controller 2 may transmit a control signal for the battery module to the BMS 20 . Accordingly, the operation of the BMS 20 may be controlled based on a signal applied from the upper controller.
  • the battery cell of the present invention may be included in a battery pack used in an ESS (Energy Storage System) or a vehicle. However, it is not limited to these uses.
  • FIG. 2 is a block diagram illustrating a configuration of a battery system according to an embodiment of the present invention.
  • a battery system 200 may include a battery management system 210 , a power receiving device 220 , and a power transmitting device 230 .
  • the battery management system 210 and the power receiving device 220 are connected to each other.
  • the power transmitter 230 may wirelessly transmit/receive data to and from the battery management system 210 , and may wirelessly supply power to the power receiver 220 . This will be described later.
  • the battery management system 210 may monitor the state of the battery. Specifically, the battery management system 210 may measure voltage, current, temperature, SOC, and the like of a battery cell. Also, the battery management system 210 may detect the maximum available charging current of the battery, the real-time remaining battery capacity, and the remaining battery life as data regarding the state of the battery.
  • the battery management system 210 may wirelessly communicate with the power receiving device 220 and the power transmitting device 230 . Accordingly, the battery management system 210 may wirelessly receive data regarding a power transmission condition from the power transmission device 230 .
  • the battery management system 210 may measure the input voltage and input current of the battery and the output voltage and output current of the power receiving device 220 in real time. In this case, the battery management system 210 may wirelessly receive an output voltage and an output current from the power receiving device 220 .
  • the battery management system 210 may calculate the optimal charging condition of the battery based on the measured data regarding the state of the battery and the power transmission performance of the power transmitter 230 .
  • the optimal charging condition may be calculated according to at least one of wireless charging efficiency, wireless charging speed, and battery life.
  • the present invention is not limited thereto, and various criteria may be applied in some cases.
  • the battery management system 210 may control the power transmission performance of the power transmission device 230 based on the calculated optimal charging condition. In this case, for example, the battery management system 210 may control the power transmitter 230 by transmitting a power control signal according to the optimal charging condition to the power transmitter 230 . The battery management system 210 may adjust the duty and frequency of the power transmitter 230 when the difference between the calculated optimal charging condition and the preset reference value is equal to or greater than the threshold.
  • the power receiving device 220 may wirelessly receive power from the power transmitting device 230 . In this case, the power receiving device 220 may wirelessly transmit the received power to the battery management system 210 .
  • the power receiving device 220 may be electrically coupled to the battery management system 210 . That is, according to the battery system 200 according to an embodiment of the present invention, the power receiving device 220 may be integrated into the battery management system 210 to be incorporated in the battery cell module assembly. For example, the power receiving device 220 may be built in the lower end of the battery management system 210 .
  • the power transmitter 230 may wirelessly communicate with the battery management system 210 and the power receiver 220 .
  • the power transmission device 230 transmits data related to power transmission conditions (eg, power transmission amount, maximum available transmission power, etc.) to the battery management system 210 , and controls power from the battery management system 210 . signal can be received.
  • the power transmission performance of the power transmission device 230 used to calculate the optimal charging condition in the battery management system 210 may include real-time power transmission efficiency and maximum available transmission power.
  • the battery system 200 by measuring the input/output voltage and current of the battery, the output voltage and current of the wireless receiver 220, and the power transmission amount of the power transmitter 230, Estimate factors that change depending on the charging environment such as daily distance, alignment state, resonance frequency, and temperature (e.g., coupling, Resonance Quality Factor, etc.), and select the optimal point for wireless charging efficiency, charging speed and battery life. can be controlled
  • FIG. 3 is a block diagram illustrating a configuration of an apparatus for transmitting power according to an embodiment of the present invention.
  • the power transmission apparatus 300 may include a transmission circuit 310 , a communication unit 320 , and a control unit 330 .
  • the transmitting circuit 310 may wirelessly transmit power to the power receiving device 220 .
  • the transmitting circuit 310 may include a coil and transmit power in the form of electromagnetic induction, or transmit power using resonance according to a resonant frequency, as will be described later.
  • the communication unit 320 may wirelessly transmit data regarding the power transmission condition to the battery management system 210 and wirelessly receive a power control signal according to the optimal charging condition of the battery calculated from the battery management system 210 . .
  • the controller 330 may adjust the power transmission condition transmitted to the power receiving device 220 based on the power control signal according to the optimal charging condition received from the battery management system 210 . For example, the controller 330 may adjust the duty or frequency of the power transmitter 300 .
  • the battery system of the present invention by integrating the wireless charging receiver into the battery management system and controlling the power transmission condition of the wireless charging transmitter according to the optimal charging condition calculated based on factors that change depending on the charging environment of the battery, , charging can be performed to suit the state of each module of the battery.
  • 4A is a diagram illustrating a configuration of a battery module according to an embodiment of the present invention.
  • a battery module may include a coil, a battery management system (BMS), and a rectifier (AC/DC).
  • BMS battery management system
  • AC/DC rectifier
  • the coil may be included in the power receiving device, and may receive power wirelessly from the power transmitting device.
  • the coil may receive power in the form of magnetic induction or may receive power using a resonance phenomenon in accordance with a resonance frequency.
  • the battery management system may monitor the state of the battery cell module assembly and control the power transmitter according to the optimal charging condition. Since the function of the battery management system has been described with reference to FIG. 2 , a detailed description thereof will be omitted.
  • the rectifier AC/DC may rectify power received from the power transmitter from alternating current (AC) to direct current (DC).
  • 4B is a diagram illustrating a configuration of an apparatus for transmitting power according to an embodiment of the present invention.
  • an apparatus for transmitting power may include a coil, a controller, and a rectifier (AC/DC).
  • AC/DC rectifier
  • the coil may transmit power wirelessly to the power receiving device.
  • the coil of the power transmitting device may receive power in the form of magnetic induction or may receive power by using a resonance phenomenon in accordance with a resonant frequency.
  • the controller may adjust power transmission conditions transmitted from the power transmission device.
  • the control unit may adjust the power transmission amount, duty, frequency, etc. of the power transmitter, and may control power according to the optimal charging condition based on the power control signal received from the battery management system (BMS) of the battery module.
  • BMS battery management system
  • the rectifier AC/DC may rectify power received from the power transmitter from alternating current (AC) to direct current (DC).
  • FIG. 5 is a diagram illustrating a circuit diagram of a battery cell module according to an embodiment of the present invention.
  • the battery cell module includes a resonant coil 502 , a rectifier and a filter 504 , a cell module assembly (CMA) 506 , and a battery. It may include a management system (BMS) 510 .
  • the battery management system 510 may include a power supply unit 512 , a wireless communication unit 514 , a measurement unit 516 , and an MCU unit 518 .
  • the resonant coil 502 may include an inductor and a capacitor, and may be included in the power receiving device to wirelessly receive power from the power transmitting device.
  • the coil of FIG. 5 may receive power by using a resonance phenomenon in accordance with a resonance frequency. However, it is not limited thereto, and the coil may receive power in the form of magnetic induction.
  • the rectifier and filter 504 may rectify an output voltage and an output current of the power receiver and remove noise.
  • the battery cell module assembly 506 has a structure in which a plurality of battery cells are combined, and the battery management system 510 measures the voltage and current input to the battery cell module assembly to determine the maximum available charging current, real-time remaining capacity, and remaining amount of the battery. A state such as battery life can be estimated.
  • the battery management system 510 may monitor states such as voltage, current, temperature, and SOC of the battery. Also, the battery management system 510 may calculate the optimal charging condition of the battery based on the measured data regarding the state of the battery and the power transmission performance of the power transmitter.
  • the power supply unit 512 supplies power for the battery management system 510 to perform a function.
  • the power supply unit 512 may wirelessly receive power from a power receiving device integrated in the battery management system 510 in addition to supplying power by itself.
  • the wireless communication unit 514 may wirelessly communicate with the power receiving device and the power receiving device. For example, the wireless communication unit 514 receives data related to the output voltage and output current from the power receiving device, and data related to power transmission conditions (eg, power transmission amount, maximum available transmission power, etc.) from the power transmitting device etc. can be received.
  • power transmission conditions eg, power transmission amount, maximum available transmission power, etc.
  • the measurement unit 516 may measure the state of the battery cell.
  • the measurement unit 516 may function as a sensor for measuring voltage, current, temperature, SOC, and the like of the battery.
  • the measurement unit 516 may detect battery state data, such as a maximum available charging current of the battery, a real-time remaining battery capacity, and a remaining battery life.
  • the MCU unit 518 may calculate the optimal charging condition of the battery based on the data regarding the state of the battery measured by the measurement unit 516 and the power transmission performance of the power transmitter.
  • the optimal charging condition may be calculated according to at least one of wireless charging efficiency, wireless charging speed, and battery life.
  • the MCU 518 may control the power transmission performance of the power transmission device based on the calculated optimal charging condition. For example, the MCU unit 518 may control the power transmission device by transmitting a power control signal according to an optimal charging condition to the power transmission device through the wireless communication unit 514 . In this case, the MCU unit 518 may transmit a signal for adjusting the duty and frequency of the power transmitter when the difference between the calculated optimal charging condition and the preset reference value is equal to or greater than the threshold value.
  • FIG. 6 is a flowchart illustrating a specific example of a battery management method according to an embodiment of the present invention.
  • the power transmitter Power Transmitting Unit, PTU
  • the power receiver Power Receiving Unit, PRU
  • S604 it is checked whether wireless communication between the power transmitter and the power receiver is normally performed.
  • step S602 If wireless communication between the power transmitter and the power receiver is not normally performed, the flow returns to step S602 to rearrange the power transmitter and the power receiver.
  • step S604 an output voltage and an output current of the power receiver are measured (S606).
  • the output voltage and output current of the power receiver may be measured by the battery management system.
  • the input voltage, input current, and temperature of the battery cell are measured ( S608 ).
  • the input voltage, input current, and temperature of the battery cell may be measured by the battery management system.
  • a power transmission condition (transmission power amount in FIG. 6) of the power transmitter is received.
  • the power transmission condition of the power transmitter may be wirelessly received from the power transmitter to the battery management system.
  • step S612 the maximum available charging current (A) of the battery, the real-time remaining capacity (B), and the remaining battery life (C) are calculated.
  • each parameter value may be calculated based on the battery state data measured by the battery management system.
  • real-time power transmission efficiency (D) and maximum available transmission power (E) may be calculated.
  • D real-time power transmission efficiency
  • E maximum available transmission power
  • the output voltage and output current measured by the power receiver may be used.
  • step S616 based on the maximum available current (A), real-time remaining capacity (B), remaining battery life (C), real-time power transmission efficiency (D) and maximum available transmission power (E) calculated in steps S612 and S614 Calculate the filling optimum (O).
  • the charging optimum point O may vary according to at least one of wireless charging efficiency, wireless charging speed, and battery life.
  • the charging optimum point O may be calculated as X1*A+X2*B+X3*C+X4*D+X5*E.
  • X1 to X5 are weights applied to each variable, and may be set by a user according to an environment that affects the state of the battery and power transmission performance.
  • the optimum point cost function e which is the difference between the calculated optimum charging point O and the reference value Ideal O, is calculated.
  • the reference value Ideal O may be a theoretical value calculated according to the charging environment of the battery, but is not limited thereto, and may be an experimental value calculated by experimenting according to the environment.
  • the optimal point cost function (e) is smaller than the control threshold value (YES)
  • the real-time charging optimal point (O) is close to the reference value, and the power transmission condition of the power transmitter, for example, Duty and keep the frequency as it is.
  • the optimal point cost function e is equal to or greater than the control threshold (NO)
  • the power transmission condition of the power transmitter for example, duty and frequency
  • the battery management method by measuring the input/output voltage and current of the battery, the output voltage and current of the power receiver, and the power transmission amount of the power transmitter, the distance between the coils, the alignment state, the resonance frequency It is possible to estimate factors (eg, coupling, resonance quality factor, etc.) that change according to the charging environment such as , temperature, etc., and select and control the optimal points of wireless charging efficiency, charging speed, and battery life.
  • factors eg, coupling, resonance quality factor, etc.
  • FIG. 7 is a flowchart illustrating a battery management method according to an embodiment of the present invention.
  • power to be supplied to the battery is wirelessly transmitted from the power transmitting device to the power receiving device ( S710 ).
  • the battery management system (BMS) monitors the state of the battery (S720).
  • the battery management system may measure voltage, current, temperature, SOC, and the like of the battery cell.
  • the maximum available charging current of the battery, the real-time remaining battery capacity, and the remaining battery life may be detected as data regarding the state of the battery.
  • the battery management system may measure the input voltage and input current of the battery and the output voltage and output current of the power receiving device in real time.
  • the output voltage and the output current may be wirelessly received from the power receiving device.
  • the battery management system may receive data regarding the power transmission condition from the power transmission device.
  • the power transmission condition may include a power transmission amount, real-time transmission efficiency, maximum available transmission power, and the like.
  • the optimal charging condition of the battery is calculated based on the data regarding the state of the battery measured in step S720 and the data regarding the power transmission condition received from the power transmitter in step S730.
  • the optimal charging condition may be calculated according to at least one of wireless charging efficiency, wireless charging speed, and battery life.
  • the present invention is not limited thereto, and various criteria may be applied in some cases.
  • the battery management method may further include adjusting the power transmission condition of the power transmitting apparatus based on the optimal charging condition of the battery calculated in step S740.
  • the duty and frequency of the power transmitter may be adjusted.
  • the wireless charging receiver is integrated into the battery management system, and the power transmission condition of the wireless charging transmitter is controlled according to the optimal charging condition calculated based on factors that change according to the charging environment of the battery. By doing so, charging can be performed to suit the state of each module of the battery.
  • FIG. 8 is a diagram illustrating a hardware configuration of a battery system according to an embodiment of the present invention.
  • the battery system 800 includes a microcontroller (MCU) 810 that controls various processes and each configuration, an operating system program and various programs (eg, a battery pack abnormality diagnosis program or battery pack).
  • MCU microcontroller
  • an input/output interface 830 providing an input interface and an output interface between the memory 820 in which the temperature estimation program), etc. are recorded, and a battery cell module and/or a switching unit (eg, a semiconductor switching element), and a wired/wireless communication network
  • a communication interface 840 capable of communicating with the outside (eg, a higher-level controller) may be provided through the .
  • the computer program according to the present invention may be implemented as a module that is written in the memory 820 and processed by the microcontroller 810 to perform, for example, each of the functional blocks shown in FIGS. 2 and 3 . .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시 예에 따른 배터리 관리 장는 배터리의 상태를 모니터링 하는 배터리 관리 시스템, 및 전력 송신 장치로부터 무선으로 전력을 수신하는 전력 수신 장치를 포함하고, 상기 배터리 관리 시스템은 상기 배터리의 상태에 관한 데이터와 상기 전력 송신 장치의 전력 전송 성능에 기초하여 상기 배터리의 충전 최적 조건을 산출할 수 있다.

Description

무선 충전 수신기 통합형 배터리 관리 시스템 및 방법
관련출원과의 상호인용
본 출원은 2019년 09월 11일 자 한국 특허 출원 제10-2019-0113168호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 무선 충전 수신기 통합형 배터리 관리 시스템 및 방법에 관한 것이다.
자동차에 사용되는 배터리는 대부분 셀-모듈-팩의 형태로 구성되어 차량에 내장된다. 종래에는 이러한 배터리의 충전과 방전은 배터리 팩의 (+) 및 (-) 단자를 통해 모든 셀을 동시에 방전시키거나, 또는 모든 셀을 동시에 충전시킬 수 밖에 없었다.
그러나, 일반적인 배터리 셀 모듈은 배터리 팩 내부의 위치에 따라 냉각 성능 등에 따른 편차가 존재하므로, 시간이 흐름에 따라 배터리 모듈 간의 수명 편차와 같은 기능 상의 차이가 발생하게 된다.
따라서, 배터리의 모듈별 상태를 실시간으로 파악하고, 각각의 배터리의 상태에 맞는 충전 전류로 충전하는 것이 필요하다.
본 발명은 무선 충전 수신기를 배터리 관리 시스템에 통합하고, 배터리의 충전 환경에 따라 변하는 요인들에 기초하여 산출된 최적 충전 조건에 따라 무선 충전 송신기의 전력 전송 조건을 제어함으로써, 배터리의 모듈별 상태에 적합하도록 충전을 수행하는 배터리 시스템을 제공하는 것을 목적으로 한다.
본 발명의 일 실시 예에 따른 배터리 시스템은 배터리의 상태를 모니터링 하는 배터리 관리 시스템, 및 전력 송신 장치로부터 무선으로 전력을 수신하는 전력 수신 장치를 포함하고, 상기 배터리 관리 시스템은 상기 배터리의 상태에 관한 데이터와 상기 전력 송신 장치의 전력 전송 성능에 기초하여 상기 배터리의 충전 최적 조건을 산출할 수 있다.
본 발명의 일 실시 예에 따른 배터리 시스템의 상기 배터리 관리 시스템은 상기 전력 송신 장치와 무선으로 통신할 수 있다.
본 발명의 일 실시 예에 따른 배터리 시스템의 상기 배터리 관리 시스템은 상기 전력 송신 장치로부터 전력 전송 조건에 관한 데이터를 무선으로 수신할 수 있다.
본 발명의 일 실시 예에 따른 배터리 시스템의 상기 전력 송신 장치의 전력 전송 성능은 실시간 전력 전송 효율 및 최대 가용 전송 전력을 포함할 수 있다.
본 발명의 일 실시 예에 따른 배터리 시스템의 상기 배터리의 상태에 관한 데이터는 배터리의 최대 가용 충전 전류, 실시간 잔존 배터리 용량 및 잔존 배터리 수명을 포함할 수 있다.
본 발명의 일 실시 예에 따른 배터리 시스템의 상기 배터리 관리 시스템과 상기 전력 수신 장치는 전기적으로 커플링 되어 있을 수 있다.
본 발명의 일 실시 예에 따른 배터리 시스템의 상기 배터리 관리 시스템은 상기 배터리의 입력 전압 및 입력 전류와 상기 전력 수신 장치의 출력 전압 및 출력 전류를 실시간으로 측정할 수 있다.
본 발명의 일 실시 예에 따른 배터리 시스템의 상기 배터리 관리 시스템은 무선 충전 효율, 무선 충전 속도, 배터리 수명 중 적어도 하나의 기준에 따라 상기 충전 최적 조건을 산출할 수 있다.
본 발명의 일 실시 예에 따른 배터리 시스템의 상기 배터리 관리 시스템은 상기 충전 최적 조건에 기초하여 상기 전력 송신 장치의 전력 전송 성능을 제어할 수 있다.
본 발명의 일 실시 예에 따른 배터리 시스템의 상기 배터리 관리 시스템은 산출된 상기 충전 최적 조건과 미리 설정된 기준치의 차이값이 임계치 이상일 경우 상기 전력 송신 장치의 듀티와 주파수를 조정할 수 있다.
본 발명의 일 실시 예에 따른 전력 송신 장치는 전력 수신 장치에 무선으로 전력을 송신하는 송신 회로, 배터리 관리 시스템에 전력 전송 조건에 관한 데이터를 무선으로 송신하고, 상기 배터리 관리 시스템으로부터 산출된 배터리의 충전 최적 조건에 따른 전력 제어 신호를 무선으로 수신하는 통신부, 및 상기 충전 최적 조건에 따른 전력 제어 신호에 기초하여 상기 전력 수신 장치로 전송되는 전력 전송 조건을 조정하는 제어부를 포함할 수 있다.
본 발명의 일 실시 예에 따른 배터리 관리 방법은 전력 송신 장치로부터 전력 수신 장치로 배터리에 공급하기 위한 전력을 무선으로 송신하는 단계, 상기 배터리의 상태를 모니터링하는 단계, 상기 전력 송신 장치로부터 전력 전송 조건에 관한 데이터를 수신하는 단계, 및 상기 배터리의 상태에 관한 데이터와 상기 전력 송신 장치로부터 수신한 전력 전송 조건에 관한 데이터에 기초하여 상기 배터리의 충전 최적 조건을 산출하는 단계를 포함할 수 있다.
본 발명의 일 실시 예에 따른 배터리 관리 방법은 상기 배터리의 충전 최적 조건에 기초하여 상기 전력 송신 장치의 전력 전송 조건을 조정하는 단계를 더 포함할 수 있다.
본 발명의 배터리 시스템에 따르면 무선 충전 수신기를 배터리 관리 시스템에 통합하고, 배터리의 충전 환경에 따라 변하는 요인들에 기초하여 산출된 최적 충전 조건에 따라 무선 충전 송신기의 전력 전송 조건을 제어함으로써, 배터리의 모듈별 상태에 적합하도록 충전을 수행할 수 있다.
도 1은 일반적인 배터리 관리 시스템의 구성을 나타내는 블록도이다.
도 2는 본 발명의 일 실시 예에 따른 배터리 시스템의 구성을 나타내는 블록도이다.
도 3은 본 발명의 일 실시 예에 따른 전력 송신 장치의 구성을 나타내는 블록도이다.
도 4a는 본 발명의 일 실시 예에 따른 배터리 모듈의 구성을 나타내는 도면이다.
도 4b는 본 발명의 일 실시 예에 따른 전력 송신 장치의 구성을 나타내는 도면이다.
도 5는 본 발명의 일 실시 예에 따른 배터리 셀 모듈 어셈블리의 회로도를 나타내는 도면이다.
도 6은 본 발명의 일 실시 예에 따른 배터리 관리 방법의 구체적인 예시를 나타내는 흐름도이다.
도 7은 본 발명의 일 실시 예에 따른 배터리 관리 방법을 나타내는 흐름도이다.
도 8은 본 발명의 일 실시 예에 따른 배터리 시스템의 하드웨어 구성을 나타내는 도면이다.
이하, 첨부한 도면을 참조하여 본 발명의 다양한 실시 예들에 대해 상세히 설명하고자 한다. 본 문서에서 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
본 문서에 개시되어 있는 본 발명의 다양한 실시 예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시 예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 다양한 실시 예들은 여러 가지 형태로 실시될 수 있으며 본 문서에 설명된 실시 예들에 한정되는 것으로 해석되어서는 아니 된다.
다양한 실시 예에서 사용된 "제1", "제2", "첫째", 또는 "둘째" 등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 해당 구성 요소들을 한정하지 않는다. 예를 들면, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성 요소로 바꾸어 명명될 수 있다.
본 문서에서 사용된 용어들은 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 다른 실시 예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
도 1은 일반적인 배터리 관리 시스템의 구성을 나타내는 블록도이다.
구체적으로, 도 1은 본 발명의 일 실시예에 따른 배터리팩(1)과 상위 시스템에 포함되어 있는 상위 제어기(2)를 포함하는 배터리 관리 시스템을 개략적으로 나타내는 구성도이다.
도 1에 도시된 바와 같이, 배터리팩(1)은 하나의 이상의 배터리셀로 이루어지고, 충방전 가능한 배터리 모듈(10)과, 배터리 모듈(10)의 +단자 측 또는 -단자 측에 직렬로 연결되어 배터리 모듈(10)의 충방전 전류 흐름을 제어하기 위한 스위칭부(14)와, 배터리팩(1)의 전압, 전류, 온도 등을 모니터링하여, 과충전 및 과방전 등을 방지하도록 제어 관리하는 배터리 관리 시스템(20)을 포함한다.
여기서, 스위칭부(14)는 배터리 모듈(10)의 충전 또는 방전에 대한 전류 흐름을 제어하기 위한 반도체 스위칭 소자로서, 예를 들면, 적어도 하나의 MOSFET이 이용될 수 있다.
또한, BMS(20)는, 배터리팩(1)의 전압, 전류, 온도 등을 모니터링하기 위해서, 반도체 스위칭 소자의 게이트, 소스 및 드레인 등의 전압 및 전류를 측정하거나 계산할 수 있고, 또한, 반도체 스위칭 소자(14)에 인접해서 마련된 센서(12)를 이용하여 배터리팩의 전류, 전압, 온도 등을 측정할 수 있다. BMS(20)는 상술한 각종 파라미터를 측정한 값을 입력받는 인터페이스로서, 복수의 단자와, 이들 단자와 연결되어 입력받은 값들의 처리를 수행하는 회로 등을 포함할 수 있다.
또한, BMS(20)는, 스위칭 소자(14) 예를 들어 MOSFET의 ON/OFF를 제어할 수도 있으며, 배터리 모듈(10)에 연결되어 배터리 모듈(10)의 상태를 감시할 수 있다.
상위 제어기(2)는 BMS(20)로 배터리 모듈에 대한 제어 신호를 전송할 수 있다. 이에 따라, BMS(20)는 상위 제어기로부터 인가되는 신호에 기초하여 동작이 제어될 수 있을 것이다. 본 발명의 배터리 셀이 ESS(Energy Storage System) 또는 차량 등에 이용되는 배터리 팩에 포함된 구성일 수 있다. 다만, 이러한 용도에 한정되는 것은 아니다.
이와 같은 배터리팩(1)의 구성 및 BMS(20)의 구성은 공지된 구성이므로, 보다 구체적인 설명은 생략하기로 한다.
도 2는 본 발명의 일 실시 예에 따른 배터리 시스템의 구성을 나타내는 블록도이다.
도 2를 참조하면, 본 발명의 일 실시 예에 따른 배터리 시스템(200)는 배터리 관리 시스템(210), 전력 수신 장치(220) 및 전력 송신 장치(230)를 포함할 수 있다. 도 2에 나타낸 바와 같이, 본 발명의 일 실시 예에 따른 배터리 시스템(200)에서는 배터리 관리 시스템(210)과 전력 수신 장치(220)가 서로 접속되어 있다. 또한, 전력 송신 장치(230)는 배터리 관리 시스템(210)과 무선으로 데이터를 송수신할 수 있고, 전력 수신 장치(220)에 무선으로 전력을 공급할 수 있다. 이에 관해서는 이하에서 후술한다.
배터리 관리 시스템(210)은 배터리의 상태를 모니터링 할 수 있다. 구체적으로, 배터리 관리 시스템(210)은 배터리 셀의 전압, 전류, 온도, SOC 등을 측정할 수 있다. 또한, 배터리 관리 시스템(210)은 배터리의 상태에 관한 데이터로서 배터리의 최대 가용 충전 전류, 실시간 잔존 배터리 용량 및 잔존 배터리 수명을 검출할 수 있다.
또한, 배터리 관리 시스템(210)은 전력 수신 장치(220) 및 전력 송신 장치(230)와 무선으로 통신할 수 있다. 따라서, 배터리 관리 시스템(210)은 전력 송신 장치(230)로부터 전력 전송 조건에 관한 데이터를 무선으로 수신할 수 있다.
배터리 관리 시스템(210)은 배터리의 입력 전압 및 입력 전류와 전력 수신 장치(220)의 출력 전압 및 출력 전류를 실시간으로 측정할 수 있다. 이 때, 배터리 관리 시스템(210)은 전력 수신 장치(220)로부터 출력 전압 및 출력 전류를 무선으로 수신할 수 있다.
배터리 관리 시스템(210)은 측정한 배터리의 상태에 관한 데이터와 전력 송신 장치(230)의 전력 전송 성능에 기초하여 배터리의 충전 최적 조건을 산출할 수 있다. 이 경우, 충전 최적 조건은 무선 충전 효율, 무선 충전 속도, 배터리 수명 중 적어도 하나의 기준에 따라 산출될 수 있다. 그러나, 이에 제한되는 것은 아니고 경우에 따라 다양한 기준이 적용될 수 있을 것이다.
배터리 관리 시스템(210)은 산출된 충전 최적 조건에 기초하여 전력 송신 장치(230)의 전력 전송 성능을 제어할 수 있다. 이 때, 예를 들면, 배터리 관리 시스템(210)은 전력 송신 장치(230)에 충전 최적 조건에 따른 전력 제어 신호를 전송하여 전력 송신 장치(230)를 제어할 수 있다. 배터리 관리 시스템(210)은 산출된 충전 최적 조건과 미리 설정된 기준치의 차이값이 임계치 이상일 경우 전력 송신 장치(230)의 듀티와 주파수를 조정할 수 있다.
전력 수신 장치(220)는 전력 송신 장치(230)로부터 무선으로 전력을 수신할 수 있다. 이 때, 전력 수신 장치(220)는 수신한 전력을 무선으로 배터리 관리 시스템(210)에 전송할 수 있다.
또한, 전력 수신 장치(220)는 배터리 관리 시스템(210)과 전기적으로 커플링될 수 있다. 즉, 본 발명의 일 실시 예에 따른 배터리 시스템(200)에 따르면, 전력 수신 장치(220)를 배터리 관리 시스템(210)에 통합하여 배터리 셀 모듈 어셈블리에 함께 내장할 수 있다. 예를 들면, 전력 수신 장치(220)는 배터리 관리 시스템(210)의 하단에 내장될 수 있다.
전력 송신 장치(230)는 배터리 관리 시스템(210)과 전력 수신 장치(220)와 무선으로 통신할 수 있다. 이 경우, 전력 송신 장치(230)는 배터리 관리 시스템(210)에 전력 전송 조건(예를 들면, 전력 전송량, 최대 가용 전송 전력 등)에 관한 데이터를 송신하고, 배터리 관리 시스템(210)으로부터 전력 제어 신호를 수신할 수 있다.
또한, 배터리 관리 시스템(210)에서 충전 최적 조건 산출에 이용하는 전력 송신 장치(230)의 전력 전송 성능은 실시간 전력 전송 효율 및 최대 가용 전송 전력을 포함할 수 있다.
이와 같이, 본 발명의 일 실시 예에 따른 배터리 시스템(200)에 따르면, 배터리의 입출력 전압 및 전류, 무선 수신부(220)의 출력 전압 및 전류, 전력 송신 장치(230)의 전력 전송량을 측정함으로써 코일간 거리와 정렬 상태, 공명 주파수, 온도 등의 충전 환경에 따라 변하는 요소들(예를 들면, Coupling, Resonance Quality Factor 등)을 추정하고, 무선 충전 효율, 충전 속도, 배터리 수명의 최적점을 선택하여 제어할 수 있다.
도 3은 본 발명의 일 실시 예에 따른 전력 송신 장치의 구성을 나타내는 블록도이다.
본 발명의 일 실시 예에 따른 전력 송신 장치(300)는 송신 회로(310), 통신부(320) 및 제어부(330)를 포함할 수 있다.
송신 회로(310)는 전력 수신 장치(220)에 무선으로 전력을 송신할 수 있다. 예를 들면, 송신 회로(310)는 후술하는 바와 같이, 코일을 포함하고 전자기 유도의 형태로 전력을 송신하거나, 공진 주파수에 따른 공명을 이용하여 전력을 송신할 수 있다.
통신부(320)는 배터리 관리 시스템(210)에 전력 전송 조건에 관한 데이터를 무선으로 송신하고, 배터리 관리 시스템(210)으로부터 산출된 배터리의 충전 최적 조건에 따른 전력 제어 신호를 무선으로 수신할 수 있다.
제어부(330)는 배터리 관리 시스템(210)으로부터 수신한 충전 최적 조건에 따른 전력 제어 신호에 기초하여 전력 수신 장치(220)로 전송되는 전력 전송 조건을 조정할 수 있다. 예를 들면, 제어부(330)는 전력 송신 장치(300)의 듀티 또는 주파수 등을 조정할 수 있다.
이와 같이, 본 발명의 배터리 시스템에 따르면 무선 충전 수신기를 배터리 관리 시스템에 통합하고, 배터리의 충전 환경에 따라 변하는 요인들에 기초하여 산출된 최적 충전 조건에 따라 무선 충전 송신기의 전력 전송 조건을 제어함으로써, 배터리의 모듈별 상태에 적합하도록 충전을 수행할 수 있다.
도 4a는 본 발명의 일 실시 예에 따른 배터리 모듈의 구성을 나타내는 도면이다.
도 4a를 참조하면, 본 발명의 일 실시 예에 따른 배터리 모듈은 코일, 배터리 관리 시스템(BMS) 및 정류기(AC/DC)를 포함할 수 있다.
코일은 전력 수신 장치에 포함되며, 전력 송신 장치로부터 무선으로 전력을 수신할 수 있다. 이 때, 코일은 자기 유도의 형태로 전력을 수신하거나, 또는 공진 주파수에 맞추어 공명 현상을 이용하여 전력을 수신할 수 있다.
배터리 관리 시스템(BMS)은 배터리 셀 모듈 어셈블리의 상태를 모니터링하고 충전 최적 조건에 따라 전력 송신 장치를 제어할 수 있다. 배터리 관리 시스템의 기능에 관해서는 도 2에서 설명하였으므로 구체적인 설명은 생략한다.
정류기(AC/DC)는 전력 송신 장치로부터 수신한 전력을 교류(AC)에서 직류(DC)로 정류할 수 있다.
도 4b는 본 발명의 일 실시 예에 따른 전력 송신 장치의 구성을 나타내는 도면이다.
도 4b를 참조하면, 본 발명의 일 실시 예에 따른 전력 송신 장치는 코일, 제어부(Controller) 및 정류기(AC/DC)를 포함할 수 있다.
코일은 전력 수신 장치에 무선으로 전력을 송신할 수 있다. 전력 수신 장치와 마찬가지로, 전력 송신 장치의 코일은 자기 유도의 형태로 전력을 수신하거나, 또는 공진 주파수에 맞추어 공명 현상을 이용하여 전력을 수신할 수 있다.
제어부는 전력 송신 장치에서 송신되는 전력 전송 조건을 조정할 수 있다. 예를 들면, 제어부는 전력 송신 장치의 전력 전송량, 듀티, 주파수 등을 조절할 수 있으며, 배터리 모듈의 배터리 관리 시스템(BMS)으로부터 수신한 전력 제어 신호에 기초하여 최적 충전 조건에 따라 전력을 제어할 수 있다.
정류기(AC/DC)는 전력 송신 장치로부터 수신한 전력을 교류(AC)에서 직류(DC)로 정류할 수 있다.
도 5는 본 발명의 일 실시 예에 따른 배터리 셀 모듈의 회로도를 나타내는 도면이다.
도 5를 참조하면, 본 발명의 일 실시 예에 따른 배터리 셀 모듈은 공진 코일(Resonant Coil)(502), 정류기 및 필터(504), 셀 모듈 어셈블리(Cell Module Assembly, CMA)(506) 및 배터리 관리 시스템(BMS)(510)를 포함할 수 있다. 또한, 배터리 관리 시스템(510)은 전원부(512), 무선 통신부(514), 측정부(516) 및 MCU 부(518)를 포함할 수 있다.
공진 코일(502)은 인덕터와 커패시터를 포함할 수 있으며, 전력 수신 장치에 포함되어 전력 송신 장치로부터 무선으로 전력을 수신할 수 있다. 도 5의 코일은 공진 주파수에 맞추어 공명 현상을 이용하여 전력을 수신할 수 있다. 그러나, 이에 제한되는 것은 아니며, 코일은 자기 유도의 형태로 전력을 수신할 수도 있다.
정류기 및 필터(504)는 전력 수신기의 출력 전압과 출력 전류를 정류하고 노이즈를 제거할 수 있다.
배터리 셀 모듈 어셈블리(506)는 배터리 셀들이 복수 개로 결합된 구조로서, 배터리 관리 시스템(510)에서 배터리 셀 모듈 어셈블리에 입력되는 전압과 전류를 측정하여 배터리의 최대 가용 충전 전류, 실시간 잔존 용량, 잔존 배터리 수명 등의 상태를 추정할 수 있다.
배터리 관리 시스템(510)은 배터리의 전압, 전류, 온도, SOC 등의 상태를 모니터링 할 수 있다. 또한, 배터리 관리 시스템(510)은 측정한 배터리의 상태에 관한 데이터와 전력 송신 장치의 전력 전송 성능에 기초하여 배터리의 충전 최적 조건을 산출할 수 있다.
전원부(512)는 배터리 관리 시스템(510)이 기능을 수행하기 위한 전원을 공급한다. 또한, 전원부(512)는 자체적으로 전원을 공급하는 것 외에도 배터리 관리 시스템(510)에 통합된 전력 수신 장치로부터 무선으로 전력을 수신할 수 있다.
무선 통신부(514)는 전력 수신 장치 및 전력 수신 장치와 무선으로 통신할 수 있다. 예를 들면, 무선 통신부(514)는 전력 수신 장치로부터 출력 전압 및 출력 전류에 관한 데이터를 수신하고, 전력 송신 장치로부터 전력 전송 조건(예를 들면, 전력 전송량, 최대 가용 전송 전력 등)에 관한 데이터 등을 수신할 수 있다.
측정부(516)는 배터리 셀의 상태를 측정할 수 있다. 예를 들면, 측정부(516)는 배터리의 전압, 전류, 온도, SOC 등을 측정하는 센서로서 기능할 수 있다. 또한, 측정부(516)는 배터리의 최대 가용 충전 전류, 실시간 잔존 배터리 용량 및 잔존 배터리 수명 등의 배터리의 상태 데이터를 검출할 수 있다.
MCU부(518)는 측정부(516)에서 측정한 배터리의 상태에 관한 데이터와 전력 송신 장치의 전력 전송 성능에 기초하여 배터리의 충전 최적 조건을 산출할 수 있다. 이 경우, 충전 최적 조건은 무선 충전 효율, 무선 충전 속도, 배터리 수명 중 적어도 하나의 기준에 따라 산출될 수 있다.
또한, MCU부(518)는 산출된 충전 최적 조건에 기초하여 전력 송신 장치의 전력 전송 성능을 제어할 수 있다. 예를 들면, MCU부(518)는 무선 통신부(514)를 통해 전력 송신 장치에 충전 최적 조건에 따른 전력 제어 신호를 전송하여 전력 송신 장치를 제어할 수 있다. 이 때, MCU부(518)는 산출된 충전 최적 조건과 미리 설정된 기준치의 차이값이 임계치 이상일 경우 전력 송신 장치의 듀티와 주파수를 조정하는 신호를 송신할 수 있다.
도 6은 본 발명의 일 실시 예에 따른 배터리 관리 방법의 구체적인 예시를 나타내는 흐름도이다.
도 6을 참조하면, 먼저 배터리의 충전이 시작되면 전력 송신기(Power Transmitting Unit, PTU)와 전력 수신기(Power Receiving Unit, PRU)을 정렬한다(S602). 그리고, 전력 송신기와 전력 수신기 간의 무선 통신이 정상적으로 이루어지는지 여부를 체크한다(S604).
만약, 전력 송신기와 전력 수신기 간의 무선 통신이 정상적으로 이루어지지 않는다면, 단계 S602로 돌아가 전력 송신기와 전력 수신기를 다시 정렬한다. 단계 S604에서 전력 송신기와 전력 수신기 간의 무선 통신이 정상적으로 이루어지는 것이 확인되면, 전력 수신기의 출력 전압과 출력 전류를 측정한다(S606). 이 때, 전력 수신기의 출력 전압과 출력 전류는 배터리 관리 시스템에서 측정할 수 있다.
그리고, 배터리 셀의 입력 전압, 입력 전류 및 온도를 측정한다(S608). 이 때, 배터리 셀의 입력 전압, 입력 전류 및 온도는 배터리 관리 시스템에서 측정할 수 있다. 단계 S610에서는 전력 송신기의 전력 전송 조건(도 6에서는 전송 전력량)을 수신한다. 이 때, 전력 송신기의 전력 전송 조건은 전력 송신기로부터 배터리 관리 시스템으로 무선으로 수신될 수 있다.
단계 S612에서는 배터리의 최대 가용 충전 전류(A), 실시간 잔존 용량(B) 및 잔존 배터리 수명(C)을 산출한다. 이 경우, 배터리 관리 시스템에서 측정한 배터리의 상태 데이터에 기초하여 각 파라미터 값들을 산출할 수 있다.
그리고, 전력 송신기로부터 수신한 전력 전송 조건에 기초하여, 실시간 전력 전송 효율(D) 및 최대 가용 전송 전력(E)을 산출할 수 있다. 이 때, 전력 수신기에서 측정한 출력 전압과 출력 전류를 이용할 수 있다.
단계 S616에서는 단계 S612와 단계 S614에서 산출된 최대 가용 전류(A), 실시간 잔존 용량(B), 잔존 배터리 수명(C), 실시간 전력 전송 효율(D) 및 최대 가용 전송 전력(E)에 기초하여 충전 최적점(O)을 계산한다. 여기서, 충전 최적점 O는 무선 충전 효율, 무선 충전 속도, 배터리 수명 중 적어도 하나의 기준에 따라 달라질 수 있다.
또한, 도 6에 나타낸 바와 같이, 충전 최적점 O는 X1*A+X2*B+X3*C+X4*D+X5*E로 산출될 수 있다. 이 때, X1 내지 X5는 각 변수에 적용되는 가중치이며, 배터리의 상태와 전력 전송 성능에 영향을 미치는 환경에 따라 사용자에 의해 설정될 수 있다.
그리고, 단계 S616에서는 산출된 충전 최적점(O)과 기준치(Ideal O)의 차이값인 최적점 비용 함수(e)를 계산한다. 이 때, 기준치(Ideal O)는 배터리의 충전 환경에 따라 산출된 이론값일 수 있으며, 이에 제한되는 것은 아니고 환경에 따라 실험하여 산출된 실험값일 수 있다.
만약, 최적점 비용 함수(e)가 제어 임계값보다 작은 경우(YES), 실시간으로 산출된 충전 최적점(O)이 기준치에 근접한 것으로서 전력 송신기의 전력 전송 조건, 예를 들면, 듀티(Duty)와 주파수를 현상태로 유지한다.
반면, 최적점 비용 함수(e)가 제어 임계값 이상인 경우(NO), 전력 송신기의 전력 전송 조건, 예를 들면, 듀티와 주파수를 변경하고, 다시 단계 S606 내지 S610으로 돌아가서 측정을 수행한다.
이와 같이, 본 발명의 일 실시 예에 따른 배터리 관리 방법에 따르면, 배터리의 입출력 전압 및 전류, 전력 수신기의 출력 전압 및 전류, 전력 송신기의 전력 전송량을 측정함으로써, 코일간 거리와 정렬 상태, 공명 주파수, 온도 등의 충전 환경에 따라 변하는 요소들(예를 들면, Coupling, Resonance Quality Factor 등)을 추정하고, 무선 충전 효율, 충전 속도, 배터리 수명의 최적점을 선택하여 제어할 수 있다.
도 7은 본 발명의 일 실시 예에 따른 배터리 관리 방법을 나타내는 흐름도이다.
도 7을 참조하면, 먼저 전력 송신 장치로부터 전력 수신 장치로 배터리에 공급하기 위한 전력을 무선으로 송신한다(S710). 그리고 배터리 관리 시스템(BMS)에서는 배터리의 상태를 모니터링 한다(S720).
이 경우, 배터리 관리 시스템은 배터리 셀의 전압, 전류, 온도, SOC 등을 측정할 수 있다. 또한, 배터리의 상태에 관한 데이터로서 배터리의 최대 가용 충전 전류, 실시간 잔존 배터리 용량 및 잔존 배터리 수명을 검출할 수 있다.
또한, 단계 S720에서 배터리 관리 시스템은 배터리의 입력 전압 및 입력 전류와 전력 수신 장치의 출력 전압 및 출력 전류를 실시간으로 측정할 수 있다. 이 때, 전력 수신 장치로부터 출력 전압 및 출력 전류를 무선으로 수신할 수 있다.
다음으로, 단계 S730에서 배터리 관리 시스템은 전력 송신 장치로부터 전력 전송 조건에 관한 데이터를 수신할 수 있다. 예를 들면, 전력 전송 조건은 전력 전송량, 실시간 전송 효율, 최대 가용 전송 전력 등을 포함할 수 있다.
그리고, 단계 S720에서 측정한 배터리의 상태에 관한 데이터와 단계 S730에서 전력 송신 장치로부터 수신한 전력 전송 조건에 관한 데이터에 기초하여 배터리의 충전 최적 조건을 산출한다. 이 경우, 충전 최적 조건은 무선 충전 효율, 무선 충전 속도, 배터리 수명 중 적어도 하나의 기준에 따라 산출될 수 있다. 그러나, 이에 제한되는 것은 아니며, 경우에 따라 다양한 기준이 적용될 수 있을 것이다.
또한, 도 7에는 나타내지 않았으나, 본 발명의 일 실시 예에 따른 배터리 관리 방법은 단계 S740에서 산출된 배터리의 충전 최적 조건에 기초하여 전력 송신 장치의 전력 전송 조건을 조정하는 단계를 더 포함할 수 있다. 이 때, 산출된 충전 최적 조건과 미리 설정된 기준치의 차이값이 임계치 이상일 경우 전력 송신 장치의 듀티와 주파수를 조정할 수 있다.
이와 같이, 본 발명의 배터리 관리 방법에 따르면 무선 충전 수신기를 배터리 관리 시스템에 통합하고, 배터리의 충전 환경에 따라 변하는 요인들에 기초하여 산출된 최적 충전 조건에 따라 무선 충전 송신기의 전력 전송 조건을 제어함으로써, 배터리의 모듈별 상태에 적합하도록 충전을 수행할 수 있다.
도 8은 본 발명의 일 실시 예에 따른 배터리 시스템의 하드웨어 구성을 나타내는 도면이다.
도 8에 나타낸 바와 같이, 배터리 시스템(800)는 각종 처리 및 각 구성을 제어하는 마이크로컨트롤러(MCU; 810)와, 운영 체제 프로그램 및 각종 프로그램(예로서, 배터리 팩의 이상 진단 프로그램 또는 배터리 팩의 온도 추정 프로그램) 등이 기록되는 메모리(820)와, 배터리 셀 모듈 및/또는 스위칭부(예로써, 반도체 스위칭 소자)와의 사이에서 입력 인터페이스 및 출력 인터페이스를 제공하는 입출력 인터페이스(830)와, 유무선 통신망을 통해 외부(예로써, 상위 제어기)와 통신 가능한 통신 인터페이스(840)를 구비할 수 있다. 이와 같이, 본 발명에 따른 컴퓨터 프로그램은 메모리(820)에 기록되고, 마이크로 컨트롤러(810)에 의해 처리됨으로써 예를 들면 도 2 및 도 3에서 도시한 각 기능 블록들을 수행하는 모듈로서 구현될 수도 있다.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 배터리의 상태를 모니터링 하는 배터리 관리 시스템; 및
    전력 송신 장치로부터 무선으로 전력을 수신하는 전력 수신 장치를 포함하고,
    상기 배터리 관리 시스템은 상기 배터리의 상태에 관한 데이터와 상기 전력 송신 장치의 전력 전송 성능에 기초하여 상기 배터리의 충전 최적 조건을 산출하는 배터리 시스템.
  2. 청구항 1에 있어서,
    상기 배터리 관리 시스템은 상기 전력 송신 장치와 무선으로 통신하는 배터리 시스템.
  3. 청구항 2에 있어서,
    상기 배터리 관리 시스템은 상기 전력 송신 장치로부터 전력 전송 조건에 관한 데이터를 무선으로 수신하는 배터리 시스템.
  4. 청구항 3에 있어서,
    상기 전력 송신 장치의 전력 전송 성능은 실시간 전력 전송 효율 및 최대 가용 전송 전력을 포함하는 배터리 시스템.
  5. 청구항 1에 있어서,
    상기 배터리의 상태에 관한 데이터는 배터리의 최대 가용 충전 전류, 실시간 잔존 배터리 용량 및 잔존 배터리 수명을 포함하는 배터리 시스템.
  6. 청구항 1에 있어서,
    상기 배터리 관리 시스템과 상기 전력 수신 장치는 전기적으로 커플링되어 있는 배터리 시스템.
  7. 청구항 1에 있어서,
    상기 배터리 관리 시스템은 상기 배터리의 입력 전압 및 입력 전류와 상기 전력 수신 장치의 출력 전압 및 출력 전류를 실시간으로 측정하는 배터리 시스템.
  8. 청구항 1에 있어서,
    상기 배터리 관리 시스템은 무선 충전 효율, 무선 충전 속도, 배터리 수명 중 적어도 하나의 기준에 따라 상기 충전 최적 조건을 산출하는 배터리 시스템.
  9. 청구항 1에 있어서,
    상기 배터리 관리 시스템은 상기 충전 최적 조건에 기초하여 상기 전력 송신 장치의 전력 전송 성능을 제어하는 배터리 시스템.
  10. 청구항 1에 있어서,
    상기 배터리 관리 시스템은 산출된 상기 충전 최적 조건과 미리 설정된 기준치의 차이값이 임계치 이상일 경우 상기 전력 송신 장치의 듀티와 주파수를 조정하는 배터리 시스템.
  11. 전력 수신 장치에 무선으로 전력을 송신하는 송신 회로;
    배터리 관리 시스템에 전력 전송 조건에 관한 데이터를 무선으로 송신하고, 상기 배터리 관리 시스템으로부터 산출된 배터리의 충전 최적 조건에 따른 전력 제어 신호를 무선으로 수신하는 통신부; 및
    상기 충전 최적 조건에 따른 전력 제어 신호에 기초하여 상기 전력 수신 장치로 전송되는 전력 전송 조건을 조정하는 제어부를 포함하는 전력 송신 장치.
  12. 전력 송신 장치로부터 전력 수신 장치로 배터리에 공급하기 위한 전력을 무선으로 송신하는 단계;
    상기 배터리의 상태를 모니터링하는 단계;
    상기 전력 송신 장치로부터 전력 전송 조건에 관한 데이터를 수신하는 단계; 및
    상기 배터리의 상태에 관한 데이터와 상기 전력 송신 장치로부터 수신한 전력 전송 조건에 관한 데이터에 기초하여 상기 배터리의 충전 최적 조건을 산출하는 단계를 포함하는 배터리 관리 방법.
  13. 청구항 12에 있어서,
    상기 배터리의 충전 최적 조건에 기초하여 상기 전력 송신 장치의 전력 전송 조건을 조정하는 단계를 더 포함하는 배터리 관리 방법.
PCT/KR2020/012073 2019-09-11 2020-09-07 무선 충전 수신기 통합형 배터리 관리 시스템 및 방법 WO2021049839A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080061294.2A CN114303300A (zh) 2019-09-11 2020-09-07 集成无线充电接收器的电池管理系统和方法
JP2022507575A JP7367289B2 (ja) 2019-09-11 2020-09-07 無線充電受信器統合型バッテリー管理システムおよび方法
US17/636,122 US20220294252A1 (en) 2019-09-11 2020-09-07 Wireless charging receiver integrated battery management system and method
EP20862994.9A EP4002642A4 (en) 2019-09-11 2020-09-07 METHOD AND SYSTEM FOR INTEGRATED BATTERY MANAGEMENT IN A WIRELESS CHARGING RECEIVER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0113168 2019-09-11
KR1020190113168A KR20210031335A (ko) 2019-09-11 2019-09-11 무선 충전 수신기 통합형 배터리 관리 시스템 및 방법

Publications (2)

Publication Number Publication Date
WO2021049839A1 WO2021049839A1 (ko) 2021-03-18
WO2021049839A9 true WO2021049839A9 (ko) 2021-10-28

Family

ID=74867286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012073 WO2021049839A1 (ko) 2019-09-11 2020-09-07 무선 충전 수신기 통합형 배터리 관리 시스템 및 방법

Country Status (6)

Country Link
US (1) US20220294252A1 (ko)
EP (1) EP4002642A4 (ko)
JP (1) JP7367289B2 (ko)
KR (1) KR20210031335A (ko)
CN (1) CN114303300A (ko)
WO (1) WO2021049839A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210016795A (ko) * 2019-08-05 2021-02-17 주식회사 엘지화학 에너지 허브 장치 및 에너지 관리 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792310B1 (ko) * 2005-04-07 2008-01-07 엘에스전선 주식회사 피드백 제어가 가능한 무접점 충전 시스템
KR101976176B1 (ko) * 2012-05-17 2019-05-08 엘지전자 주식회사 이동 단말기
JP2015053754A (ja) * 2013-09-05 2015-03-19 日立マクセル株式会社 非接触充電システム及び二次電池パック
KR102152691B1 (ko) * 2013-09-13 2020-09-08 엘지이노텍 주식회사 충전 제어 장치, 충전 제어 방법 및 이를 구비한 무선전력 수신장치
JP6065895B2 (ja) * 2014-11-28 2017-01-25 トヨタ自動車株式会社 非接触送受電システム
JP6438773B2 (ja) * 2015-01-13 2018-12-19 ローム株式会社 ワイヤレス受電装置、電子機器、ワイヤレス送電装置からの最大送信電力の検出方法
KR102154779B1 (ko) * 2015-03-10 2020-09-10 삼성전자주식회사 무선 충전 방법 및 장치
KR102574139B1 (ko) * 2016-07-07 2023-09-05 삼성전자주식회사 무선 충전 모드를 변경하는 장치 및 방법
US10523041B2 (en) * 2016-07-07 2019-12-31 Integrated Device Technology, Inc. Battery management integrated circuit
KR102399604B1 (ko) * 2017-08-28 2022-05-18 삼성전자주식회사 배터리 관리 장치 및 시스템

Also Published As

Publication number Publication date
JP2022541858A (ja) 2022-09-27
JP7367289B2 (ja) 2023-10-24
EP4002642A1 (en) 2022-05-25
EP4002642A4 (en) 2023-05-10
KR20210031335A (ko) 2021-03-19
US20220294252A1 (en) 2022-09-15
WO2021049839A1 (ko) 2021-03-18
CN114303300A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2011152639A2 (ko) 배터리 팩 그리고 배터리 팩의 충전 방법
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
WO2013109032A1 (en) Wireless power transmitter, wireless power receiver, and control methods thereof
WO2012144674A1 (ko) 착탈 가능한 배터리 모듈, 이를 이용한 배터리 스트링을 위한 전하 균일 방법 및 장치
WO2013119070A1 (ko) 양방향 디씨-디씨 컨버터를 이용한 배터리 관리 시스템의 셀 밸런싱 회로 장치
WO2012008693A2 (ko) 무선 전력 통신용 코어 어셈블리와 그를 구비하는 무선 전력 통신용 전력 공급 장치, 그리고 무선 전력 통신용 코어 어셈블리 제조 방법
WO2014137199A1 (en) Wireless power transmitter and method for controlling same
EP2617119A2 (en) Apparatus for wireless power transmission and reception
WO2018074809A1 (ko) 셀 밸런싱 시스템 및 제어방법
WO2021002658A1 (ko) 배터리 관리 시스템 및 관리 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2021096250A1 (ko) 무선 배터리 관리 시스템, 무선 배터리 관리 방법 및 전기 차량
WO2020159300A1 (ko) 배터리 시스템 및 슬레이브 배터리 관리 시스템
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2020166827A1 (ko) 슬레이브 bms 점검 시스템 및 방법
WO2013035987A1 (en) Wireless power apparatus and operation method thereof
WO2018097512A1 (ko) 배터리 충전제어 알고리즘
WO2020149537A1 (ko) 배터리 충전 시스템 및 배터리 충전 방법
WO2014123350A1 (ko) 저발열 무선 전력 수신 장치 및 방법
WO2015199466A1 (ko) 무선전력전송 시스템
WO2021107323A1 (ko) 배터리 셀 이상 퇴화 진단 장치 및 방법
WO2022265358A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2021049839A9 (ko) 무선 충전 수신기 통합형 배터리 관리 시스템 및 방법
WO2020166840A1 (ko) 배터리 셀 이상 판단 장치 및 방법
WO2013133555A1 (ko) 무선 제어 방식의 배터리 에너지 저장장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507575

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020862994

Country of ref document: EP

Effective date: 20220216

ENP Entry into the national phase

Ref document number: 2020862994

Country of ref document: EP

Effective date: 20220216

NENP Non-entry into the national phase

Ref country code: DE