WO2021049789A1 - Wave power generation system using wave amplification breakwater and construction method thereof - Google Patents

Wave power generation system using wave amplification breakwater and construction method thereof Download PDF

Info

Publication number
WO2021049789A1
WO2021049789A1 PCT/KR2020/011433 KR2020011433W WO2021049789A1 WO 2021049789 A1 WO2021049789 A1 WO 2021049789A1 KR 2020011433 W KR2020011433 W KR 2020011433W WO 2021049789 A1 WO2021049789 A1 WO 2021049789A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
concave
vertical direction
wave power
ground
Prior art date
Application number
PCT/KR2020/011433
Other languages
French (fr)
Korean (ko)
Inventor
김상기
Original Assignee
김상기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김상기 filed Critical 김상기
Publication of WO2021049789A1 publication Critical patent/WO2021049789A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/08Tide or wave power plants
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a wave power generation system and a construction method thereof, and more particularly, to a wave power generation system using a wave power amplification breakwater used for wave power generation by amplifying wave power using a wave power amplification breakwater.
  • Tetrapod (TTP) which is widely used to construct a breakwater, is suitable for installing a breakwater (sloping agent) in the form of an inclined toward the open sea.
  • a breakwater constructed using a tetrapod is not suitable for building a wave power generation system because it disperses and absorbs waves.
  • a direct-walled breakwater (upright) must be installed toward the open sea into which waves flow, and a wave power generation device must be installed on the installed breakwater to face the open sea.
  • the breakwater should be installed in consideration of the direction of the wave inflow so that the wave can always flow in a certain direction.
  • wave power generation devices provided on the breakwater must be installed at regular intervals so as not to interfere with each other.
  • Such a conventional wave power generation system has three problems.
  • the first is that some of the waves flowing toward the breakwater drive the wave power generation device to contribute to power generation, but the waves flowing between adjacent wave power generation devices cannot drive the wave power generation device and are reflected or extinguished by hitting the breakwater.
  • power generation efficiency is very low because power generation is performed using only a small portion of the waves flowing in from the open sea.
  • the second is that the wave power generation device is designed in consideration of the situation in which the wave flows in the front toward the wave power generation device, so if the inflow direction of the wave is not constant, the power generation efficiency decreases, and the wave power generation device may be damaged by the wave incident at an angle. will be.
  • Conventional wave power generation devices are generally designed to face the inflow direction of the waves. That is, by arranging the rotation axis of the floating body parallel to the incident surface of the wave, the floating body moves up and down only on the wave incident to the front so that the kinetic energy of the wave can be effectively transmitted.
  • the rotation axis of the floating body and the incident surface of the wave are twisted, so energy of the wave cannot be effectively transmitted, and the rotation axis of the floating body or the floating body may be damaged by the wave.
  • the wave power generation device must be installed at a location where waves with high wave energy are formed in order to increase the efficiency of wave power generation, but there is a problem that the size of the breakwater must be enlarged in order to withstand the waves with high wave power. .
  • the present invention was conceived to solve the problems of the prior art as described above, and wave power generation using a wave power amplification breakwater capable of amplifying wave power by concentrating waves flowing in from the open sea to a specific area and enabling wave power generation using this I would like to present a system.
  • the present invention provides a plurality of first inclined portions inclined so that the left side protrudes forward rather than the right side on the front side, and the 1-1 vertical through hole extending in the vertical direction is formed.
  • 1-1 concrete block a plurality of 1-2 concrete blocks in which a 1-2 inclined part is formed on the front side so that the right side protrudes forward than the left side, and a 1-2 vertical through hole extending in the vertical direction is formed ,
  • a plurality of 2-1 protruding inclined portions inclined so that the central portion protrudes forward and the left and right retreat rearward is formed on the front side, and a plurality of 2-1 vertical through holes extending in the vertical direction are formed.
  • Concrete block a plurality of second through-holes extending in the vertical direction in which the 2-2 concave inclined inclined so that the central part is concave rearward and the left and right protrude forward -2 Concrete block production step to produce concrete blocks;
  • a plurality of 1-1, 1-2, 2-1, 2-2 concrete blocks manufactured in the concrete block manufacturing step are installed on the upper part of the underwater ground, and the 1-1 concrete block and the 1-2-2 Concrete blocks are alternately arranged in a horizontal direction to form a first block layer, and the 2-1 concrete blocks and the 2-2 concrete blocks are alternately arranged in a horizontal direction to form a second block layer, and the The first block layer and the second block layer are alternately stacked in a vertical direction to form a concrete block assembly, and the first block layer and the second block layer have the same structure in plan view, and the concrete block assembly
  • a first protrusion protruding forward and a first concave concave in the rear are alternately formed on the front side, and the first protrusion is formed between the first pro
  • First wave guides inclined from the first protrusion to the first concave inlet are respectively formed, and the through holes in the 1-1, 1-2, 2-1, and 2-2 vertical directions of the concrete block assembly are continuous in the vertical direction.
  • a ground perforation forming step which is positioned over and in which the ground perforated portion is formed in the inserted protective tube; After the step of forming the ground perforation, the vertical reinforcement part formed in the vertical direction is inserted into the protective tube while the lower and side parts of the vertical reinforcement part are wrapped with a waterproofing film, and concrete is poured into the waterproofing film.
  • a concrete column is formed along the study and the ground perforation, but the protective tube is removed before the poured concrete is hardened, so that the waterproofing membrane is in close contact with the underwater ground and the concrete block under the pressure of the poured concrete, and the concrete
  • the pillar is a concrete pillar forming step comprising a first concrete pillar portion extending in the vertical direction while being positioned in the through hole for the concrete pillar, and a second concrete pillar portion extending in the vertical direction while being positioned in the ground drilling portion; After the step of forming the concrete pillar, a standing concrete structure is formed on the upper part of the concrete block assembly, and the second convex portion is formed alternately with a second protruding portion protruding forward and a second concave inlet at the front side.
  • a wave power generating device installed in the second concave portion of the standing concrete structure by using the kinetic energy of the waves concentrated in the first concave portion of the concrete block assembly or the second concave portion of the standing concrete structure Installation stage; It characterized in that it comprises a.
  • the upper surface of the concrete block assembly is located higher than the water surface, the upper end of the protective tube inserted in the ground perforation forming step protrudes from the upper surface of the concrete block assembly, and the ground perforation forming step, It is preferable that the drilling equipment is disposed on the upper surface of the concrete block assembly located higher than the water surface to perform the drilling operation by a dry operation.
  • the central part on the front side A plurality of 2-1 concrete blocks with a 2-1 protruding inclined portion inclined to protrude forward and retreat the left and right sides, and a 2-1 vertical through hole extending in the vertical direction
  • the plurality of 1-1, 1-2, 2-1, 2-2 concrete blocks are installed above the underwater ground, so that the 1-1 concrete block and the 1-2 concrete block
  • the first block layers are alternately arranged in a horizontal direction
  • the 2-1 concrete blocks and the 2-2 concrete blocks are alternately arranged in a horizontal direction to form a second block layer
  • the layer and the second block layer have the same structure in plan view and are alternately stacked in the vertical direction, and a first protrusion protruding forward and a first concave concave in the front are alternately formed, and the first protrusion and the first protrusion are alternately formed.
  • a concrete block assembly in which a first wave guide portion inclined from the first protrusion toward the first concave portion is formed between the first concave portion to guide the waves incident from the open sea to the first concave portion;
  • the first 1-1,1-2,2-1,2-2 vertical through-holes of the concrete block assembly are continuous in the vertical direction, the lower end is blocked by the underwater ground and the upper end is open
  • a plurality of concrete pillars positioned below the through-holes and the through-holes for the concrete pillars, and formed along the ground-perforations formed by drilling the underwater ground;
  • the second protrusion protruding forward and the second concave concave in the rear are formed on the upper part of the concrete block assembly, and the waves incident from the open sea between the second protrusion and the second concave part are alternately formed.
  • the concrete pillar includes a first concrete pillar that extends in the vertical direction while being positioned in the through hole for the concrete pillar and a cross-sectional area that is smaller than the cross-sectional area of the first concrete pillar while being positioned in the ground perforation.
  • the concrete pillar is formed in the vertical direction, the vertical reinforcement portion disposed across the through hole for the concrete pillar and the ground perforation, and the bottom and side portions of the vertical reinforcement portion while surrounding the underwater ground and the concrete block.
  • It comprises a waterproof membrane in close contact and cured concrete poured into the interior of the waterproof membrane; It features.
  • the wave power generation system using the wave power amplifying breakwater according to the present invention amplifies the wave power by concentrating the wave incident from the open sea to a specific part, and uses the wave power to generate wave power, so that the wave power generation efficiency is very high.
  • the structure of the wave power generation system can be constructed simply and easily.
  • the wave power amplifying breakwater of the present invention is constructed in a stacked manner of concrete blocks and is coupled to the underwater ground by a concrete column, so that the construction is simple and structurally very stable and can be installed economically.
  • the wave power generation device can effectively receive wave energy regardless of the incident direction of the wave and is not easily damaged.
  • FIG. 1 is a perspective view of a wave power generation system using a wave power amplifying breakwater according to an embodiment of the present invention
  • FIG. 2 is a conceptual side view of a wave power generation system using the wave power amplifying breakwater of FIG. 1;
  • FIG. 3 is a perspective view showing an enlarged portion of the wave power generation device of the wave power generation system using the wave power amplification breakwater of FIG. 1;
  • FIG. 4 is a diagram conceptually showing a motion of a wave incident on the wave power amplifying breakwater of FIG. 1 in a plane;
  • FIG. 5 is a perspective view of a 1-1, 1-2, 2-1, 2-2 concrete block for forming a wave power amplifying breakwater;
  • FIG. 6 is a perspective conceptual diagram of a state in which the 1-1, 1-2, 2-1, 2-2 concrete blocks of FIG. 5 are stacked to form a concrete block assembly;
  • FIG. 7 is a schematic cross-sectional view of FIG. 6;
  • FIG. 8 is a view of a state in which a ground perforation portion is formed after the formation of the concrete block assembly of FIG. 7;
  • 9 to 12 are views sequentially showing a process of forming a concrete column after the formation of the ground perforation of FIG. 8;
  • FIG. 13 is a view of a state in which the upper part of the concrete block assembly after FIG. 12 is formed with a standing concrete structure.
  • FIG. 1 is a perspective view of a wave power generation system using a wave power amplification breakwater according to an embodiment of the present invention
  • FIG. 2 is a conceptual side view of a wave power generation system using the wave power amplification breakwater of FIG. 1
  • FIG. 3 is a wave power amplification of FIG. It is a perspective view showing an enlarged wave power generation device part of the wave power generation system using a breakwater
  • FIG. 4 is a view conceptually showing the motion of a wave incident toward the wave power amplification breakwater of FIG. 1 in a plane.
  • the wave power amplification breakwater is installed on the wave power amplification breakwater 10 to amplify the wave power by focusing the waves incident from the open sea to a specific area, and the wave power amplification breakwater 10 to convert the wave energy into electric power. It consists of a wave power generating device (20).
  • the wave power amplifying breakwater 10 will be described first.
  • the wave power amplifying breakwater 10 of this embodiment is a breakwater (upright) installed in an upright structure.
  • the wave power amplifying breakwater 10 is formed to extend in the left and right directions so that the front face faces the open sea, and the protrusion 11 protruding forward and the concave inlet 12 concave to the rear are alternately formed to form a zigzag shape. .
  • a guide portion 13 is formed.
  • the wave guide 13 is a smooth inclined surface in which irregularities are formed or slits for dispersing waves are not formed.
  • the waves incident on the periphery of the concave inlet 12 are concave inlet 12 along the wave guides 13 located on the left and right of each concave inlet 12 And the guided waves overlap each other to form high-amplitude waves. That is, the waves are concentrated to the concave inlet portion 12 to amplify the wave power.
  • FIG. 5 is a perspective view of a 1-1, 1-2, 2-1, 2-2 concrete block for forming a wave power amplifying breakwater
  • FIG. 6 is a perspective view of 1-1, 1-2, 2-1 of FIG. 5 ,2-2 is a perspective conceptual diagram of a state in which concrete blocks are stacked to form a concrete block assembly
  • FIG. 7 is a cross-sectional conceptual diagram of FIG. 6,
  • FIG. 8 is a state in which a ground perforation part is formed after the formation of the concrete block assembly of FIG. 9 to 12 are views sequentially showing the process of forming a concrete column after the formation of the ground perforation of FIG. 8, and
  • FIG. 13 is a state in which the upper part of the concrete block assembly is formed after FIG. 12 It is a drawing of.
  • Concrete blocks 110, 120, 130, and 140 as shown in FIG. 5 are manufactured.
  • the concrete blocks 110, 120, 130, and 140 may have various shapes, but it is preferable that at least two or more vertical through holes extending in the vertical direction are formed.
  • This embodiment fabricates four types of concrete blocks 110, 120, 130, and 140.
  • Each of the 1-1, 1-2, 2-1, and 2-2 concrete blocks 110, 120, 130, and 140 is in the form of a flat concrete block having a width of about 6 m in the left and right direction and a thickness of about 2 m.
  • the 1-1 concrete block 110 is a concrete block in which the 1-1 inclined part 111 inclined so that the left side protrudes forward than the right side is formed on the front side.
  • a plurality of 1-1 up-down through holes 112 for binding to the 1-1, 1-2, 2-1, 2-2 concrete blocks 110, 120, 130, 140 are formed in the vertical direction.
  • the 1-1 concrete block 110 has four through holes 112 in the 1-1 vertical direction, and in addition, the 1-1 concrete block 110 is manufactured and transported by weight reduction.
  • the 1-1 cavity 113 is formed to facilitate construction.
  • the 1-2 concrete block 120 is a concrete block in which a second inclined portion 121 inclined so that the right side protrudes forward than the left side is formed on the front side.
  • a plurality of 1-2 vertical through-holes 122 for binding with the concrete blocks 110, 120, 130, 140 are formed in the vertical direction.
  • 1-2 concrete block 120 of this embodiment four 1-2 vertical through-holes 122 are formed, and in addition, the 1-2 concrete block 120 is lightweighted to manufacture, transport, and The 1-2 cavity 123 is formed to facilitate construction.
  • the 2-1 concrete block 130 is a concrete block in which a 2-1 protruding inclined portion 131 inclined so that the central portion protrudes forward and the left and right retreat rearward is formed on the front side, and a concrete column ( 200) to form a plurality of 2-1 vertical through-holes 132 for binding with other adjacent 1-1, 1-2, 2-1, 2-2 concrete blocks (110, 120, 130, 140) are formed in the vertical direction Has been.
  • the 2-1 concrete block 130 of this embodiment four 2-1 vertical through holes 132 are formed, and in addition, the 2-1 concrete block 130 is lightweighted to manufacture, transport, and The 2-1 cavity 133 is formed to facilitate construction.
  • the 2-2 concrete block 140 is a concrete block in which a 2-2 concave inclined part 141 is formed inclined so that the central part is concave in the rear and the left and right protrude forward, and a concrete pillar ( 200) to form a plurality of 2-2 vertical through-holes 142 for binding with other adjacent 1-1, 1-2, 2-1, 2-2 concrete blocks (110, 120, 130, 140) are formed in the vertical direction Has been.
  • 2-2 concrete block 140 of the present embodiment four 2-2 vertical through holes 142 are formed, and in addition, the 2-2 concrete block 140 is lightweighted to manufacture, transport, A 2-2 cavity 143 is formed to facilitate construction.
  • a plurality of concrete blocks (110, 120, 130, 140) produced in the concrete block manufacturing step are installed on the upper part of the underwater ground 1 as shown in FIGS. 6 and 7, and a plurality of concrete blocks as shown in FIGS. 6 and 7 (110, 120, 130, 140) form a concrete block assembly 100 that is continuously arranged in the horizontal direction and the vertical direction.
  • FIG. 6 is a perspective view of the installed state
  • FIG. 7 is a cross-sectional view of the installed state.
  • the 1-1 concrete blocks 110 and the 1-2 concrete blocks 120 are alternately disposed in the horizontal direction to form the first block layer 100a.
  • the 1-1 concrete block 110 and the 1-2 concrete block 120 are arranged in a horizontal direction, the 1-1 inclined part 111 and the 1st inclined part 111 and the 1st inclined part 111 and the 1st inclined part 111 and the 1st inclined part 111
  • the 1-2 inclined portions 121 are connected in a zigzag shape to form the protruding portion 11 and the concave portion 12 of the wave power amplifying breakwater 10.
  • the second block layer 100b is formed by alternately disposing the 2-1 concrete blocks 130 and the 2-2 concrete blocks 140 in the horizontal direction.
  • the 2-1 concrete block 130 and the 2-2 concrete block 140 are continuously arranged in the horizontal direction, the 2-1 protruding inclined portion 131 and the front surface of the formed second concrete block 100b
  • the 2-2 concave inclined portion 141 is connected in a zigzag shape so that the protrusion 11 and the concave inlet 12 of the wave power amplifying breakwater 10 are repeatedly formed.
  • the first block layer 100a and the second block layer 100b are alternately stacked in the vertical direction to form the concrete block assembly 100.
  • first block layer 100a and the second block layer 100b have the same structure in plan view.
  • the concrete block assembly 100 guides the waves incident from the open sea between the first protrusion and the first concave portion to the first concave portion as the first protrusion protruding forward and the first concave concave in the rear are formed alternately. In order to do so, first wave guide portions inclined from the first protrusion toward the first concave portion are formed, respectively.
  • the structure of the concrete block assembly 100 corresponds to the structure of the protrusion 11, the concave inlet 120, and the wave guide 13 of the wave power amplifying breakwater 10.
  • the 1-1,1-2,2-1,2-2 vertical through-holes 112, 122, 132, 142 of the concrete blocks 110, 120, 130, 140 constituting the concrete block assembly 100 are While continuing in the vertical direction, the lower end is blocked by the underwater ground 1, and the upper end is opened to form a through hole 101 for a concrete column extending in the vertical direction.
  • any one 1-1 vertical through hole 112 is continuous with the 2-2 vertical through hole 142 at the bottom and the 2-2 vertical through hole 142 at the top, Forming the study 101, the other 1-1 up-down through hole 112 is the second through the bottom 2-1 up-down through hole 132 and the upper 2-1 up-down through hole 132 While continuing to form a through hole 101 for the concrete column.
  • any one 1-2 vertical through-hole 122 is continuous with the 2-2 vertical through-hole 142 in the lower and the 2-2 vertical through-hole 142 in the upper part, Forming the study 101, the other 1-2 vertical through-hole 122 is the lower 2-1 vertical through-hole 132 and the upper 2-1 vertical through-hole 132 While continuing to form a through hole 101 for the concrete column.
  • the underwater ground (1) of this embodiment corresponds to an underwater ground that is not artificially created, that is, the sea floor, but according to the embodiment, the underwater ground (1) is a concept including a foundation ground artificially formed for an underwater concrete block structure. .
  • foundation ground is formed on the upper part of the underwater ground (1) and the concrete block assembly 100 is formed thereafter, a foundation ground construction step of forming the foundation ground before the concrete block assembly formation step is further required.
  • the foundation ground may be any one or a combination of the ground sandstone ground, the substituted sandstone ground, the deep mixed ground ground, the soft ground improvement ground ground.
  • the ground is replaced according to the replacement method, consolidation method, dewatering method, drainage method, vibration compaction method, compaction sand pile method, blasting method, chemical injection method, etc. It refers to the ground that has been improved according to the improved soft ground improvement method.
  • the underwater ground 1 located under the through hole 101 for the concrete column is drilled, and the ground hole 102 is a space continuous with the through hole 101 for the concrete column. To form.
  • the protective pipe 103 in the form of extending in the vertical direction is inserted into the underwater ground 1 in the vertical direction through the through hole 101 for the concrete column, while being located under the through hole 101 for the concrete column. Drill the underwater ground (1).
  • the inserted protective pipe 103 is located across the through hole 101 for the concrete column and the ground perforated part 102, and the ground perforated part ( 102) is formed.
  • the protective pipe 103 has a diameter smaller than that of the through hole 103 for a concrete column, and the ground perforation 102 extends in the vertical direction with a cross-sectional area smaller than the cross-sectional area of the through hole 101 for a concrete column.
  • the protective pipe 103 prevents the surrounding underwater ground 1 from collapsing into the ground drilling portion 102 during or after the drilling operation, or various foreign substances from flowing into the ground drilling portion 102.
  • the protective tube 103 serves to protect the waterproof membrane when inserting the vertical reinforcing bars and the waterproof membrane to be described later.
  • the length of the protective pipe 103 is preferably formed to be longer than the sum of the length of the through hole 101 for the concrete column and the length of the ground perforation 102. Accordingly, the waterproof membrane insertion operation can be easily performed.
  • the upper surface of the concrete block assembly 100 is positioned higher than the water surface, and the upper end of the protective tube 103 inserted in the ground perforation formation step protrudes from the upper surface of the concrete block assembly 100 Has been. That is, the upper end of the protective tube 103 is positioned higher than the water surface and is positioned higher than the upper surface of the concrete block assembly 100. Therefore, the operation of inserting a waterproof film or the like into the protective tube 103 can be performed very easily.
  • the protective tube 103 is preferably removed after the step of forming the ground perforation.
  • a drilling equipment is required for drilling the underwater ground (1), and in this embodiment, since the upper surface of the concrete block assembly 100 is located higher than the water surface, the drilling equipment is the upper part of the concrete block assembly 100 If it is placed on the surface to perform drilling, it becomes a dry operation (that is, the wet operation on a barge becomes unnecessary), and working in the same environment as the land operation can increase work efficiency.
  • the concrete pillar 200 is formed along the through hole 101 for the concrete pillar and the ground perforation 102.
  • the step of forming a concrete column in this embodiment is performed in stages as shown in FIGS. 9 to 12.
  • the vertical reinforcement portion 201 formed in the vertical direction is inserted into the through hole 101 and the ground perforation 102 for a concrete column.
  • the vertical reinforcement portion 201 is inserted into the protective pipe 103.
  • the bottom and side portions of the vertical reinforcing bar portion 201 are wrapped with a waterproof membrane 202 and inserted into the through hole 101 and the ground perforation 102 for a concrete column.
  • FIG. 11 is a view of a state in which the protective pipe 103 is slightly raised while a small amount of concrete 203 is poured into the waterproof membrane 202.
  • the lower end of the protective pipe 103 is in a state in which the protective pipe 103 is raised to have a state just out of the ground perforation 102, and the inside of the waterproof membrane 202 is in the ground perforation 102 area.
  • the necessary concrete 203 is poured.
  • the waterproof membrane 202 located in the ground perforation 102 is in close contact with the underwater ground 1 by the pressure of the concrete 203.
  • the protective tube 103 may be removed before the poured concrete 203 is cured.
  • the waterproof membrane 202 is in close contact with the underwater ground 1 and the concrete blocks 110, 120, 130, 140 by the pressure of the concrete 203. Afterwards, it becomes a concrete column 200 through a curing process.
  • the protective tube 103 may be raised to remove the protective tube 103, in this case, the waterproof membrane 202 is applied under the pressure of the concrete 203. It may be difficult to separate the protective tube 103 from the waterproof film 202 because it is strongly adhered to the inside of the protective tube 103.
  • the concrete column 200 is formed in the concrete block assembly 100.
  • the concrete pillar 200 is positioned in the first concrete pillar portion 200a extending in the vertical direction with the first diameter while being positioned in the through hole portion 101 for the concrete pillar, and the second diameter while being positioned in the ground perforation portion 102 It consists of including a second concrete column portion (200b) extending in the vertical direction.
  • a plurality of concrete blocks (110, 120, 130, 140) constituting the concrete block assembly (100) is in a state bound to the underwater ground (1) by the concrete column (200).
  • the concrete column 200 To the underwater ground (1) must be considered together.
  • the concrete block assembly 100 has a remarkably improved stability due to the binding force to the underwater ground 1 by the concrete column 200.
  • the wave power amplifying breakwater 10 capable of responding to waves of high wave power energy.
  • a standing concrete structure 300 is formed on the upper part of the concrete block assembly 100.
  • the plan view structure of the standing concrete structure 300 corresponds to the plan view structure of the concrete block assembly 100.
  • the standing concrete structure 300 guides the waves incident from the open sea between the second protrusion and the second concave portion to the second concave portion as the second protrusion protruding forward and the second concave concave in the rear are formed alternately.
  • a second wave guide portion inclined toward the second concave portion from the second protrusion portion is formed, respectively, and the structure of the standing concrete structure 300 is the protrusion 11, the concave portion 120 of the wave power amplifying breakwater 10, Corresponds to the structure of the wave guide 13.
  • the stand-up concrete structure 300 is to make the upper part of the wave power amplifying breakwater 10 a hydrophilic space or to be utilized as a space for installation of facilities such as a lighthouse.
  • concave portions 12 are repeatedly formed at about 12m intervals.
  • a wave power generating device installation space 12a for installing the wave power generating device 20 is formed on the upper side of the concave inlet 12.
  • Wave power generating device installation space (12a) is formed in the shape of a concave inward groove.
  • a step 12b is formed on the upper side of the wave power amplifying breakwater 10 to access the wave power generation device installation space 12a. Additional structures such as the staircase 12b may be omitted or changed to other structures depending on the embodiment.
  • the wave power generation device installation space 12a is formed in the standing concrete structure 300.
  • the location of the wave power generating device installation space 12a may be changed according to a height protruding above the water surface of the wave power amplifying breakwater 10.
  • Wave power generation generated by using the kinetic energy of the waves concentrated in the concave portion of the wave power amplification breakwater 10 that is, the first concave portion of the concrete block assembly 100 or the second concave portion of the standing concrete structure 300
  • the device 20 is installed in the second concave portion of the standing concrete structure 300.
  • the wave power generation device 20 of this embodiment is a temporary animal-type power generation device that generates power by directly using the vertical vibration of the wave.
  • This wave power generation device 20 is disposed in the concave inlet 12 of the wave power amplifying breakwater 10 and has a hemispherical floating body 22 and a semi-spherical floating body 22 in which the shape of the embarkation portion faces downward. (12) It comprises a floating body guide portion for guiding so as to be movable in the vertical direction, and a power generation portion for generating electric power by using the vertical movement of the hemispherical floating body 22.
  • the hemispherical floating body 22 is a floating body in which the shape of a portion to be embarked on the sea level faces downward and forms a hemispherical shape.
  • the hemispherical floating body 22 enables the wave power to be effectively transmitted irrespective of the direction in which the wave is incident, and minimizes the impact of the wave so that it is not easily damaged by the wave.
  • the floating body guide portion is for guiding the hemispherical floating body 22 so as to be movable in the vertical direction within the concave portion 12.
  • the floating body guide 21 only needs to guide the vertical movement of the hemispherical floating body 22, and thus can be designed in various structures.
  • the floating body guide portion may have a rail structure that guides the hemispherical floating body 22 to linearly move in the vertical direction.
  • the floating body guide part of the present embodiment is a rotation support 21 whose one end is rotatably coupled to the concave inlet 12 of the wave power amplifying breakwater 10 and the other end is coupled to the hemispherical floating body 22.
  • Rotation supports 21 are provided in a pair to hold the left and right sides of the hemispherical floating body 22 and support them so as to be rotatable in the vertical direction.
  • the rotational support 21 of this structure guides the hemispherical floating body 22 to move in the vertical direction while drawing an arc according to the vertical vibration of the wave.
  • the hemispherical floating body 22 When the rotation support 21 is completely rotated upward, the hemispherical floating body 22 can be fixed to the wave power generator installation space 12a. If the hemispherical floating body (22) is stored in the wave power generation device installation space (12a) by rotating the rotation support (21) upward, damage to the wave power generation device (20) from a typhoon can be prevented, and in case of failure, it can be easily accessed and repaired. Or can be replaced.
  • the power generation unit is for generating electric power by using the vertical movement of the hemispherical floating body 22.
  • the power generation unit of this embodiment has one end rotatably coupled to the concave inlet 12 of the wave power amplifying breakwater 10 and the other end rotatably coupled to the hemispherical floating body 22 in the vertical direction of the hemispherical floating body 22 Electric power is generated by using the cylinder member 23 whose length is variable according to the movement.
  • the power generation unit of this embodiment is a device that generates power through the cylinder member 23 whose length is variable according to the movement of the hemispherical floating body 22.
  • the cylinder member 23 may be a hydraulic cylinder through which a fluid filled in the cylinder member 23 enters and exits and transmits kinetic energy.
  • a specific operation method of the cylinder member 23 and a power generation method of the power generation unit may be changed according to embodiments.
  • the wave power generation system using the wave power amplifying breakwater amplifies the wave power by concentrating the wave to the concave portion 12 of the wave power amplification breakwater 10, and uses the amplified wave power to use the wave power generation device 20 ) To enable power generation to take place.
  • Conventional wave power generation systems generally use only some of the waves incident on the wave power generation device to generate power, and in order to maximize the energy of the incident waves, a method such as increasing the contact area of the floating body to the sea surface. Was used.
  • the incident waves are gathered to the concave inlet 12 along the inclined wave guide 13, and the waves collected in the concave inlet overlap each other. It was made to vibrate with a large amplitude.
  • the wave of the concave inlet 12 has a large energy and vibrates with a large amplitude, a large amount of wave energy can be converted into electric power by providing the wave power generation device 20 thereto.
  • the wave power amplification breakwater 10 of the wave power generation system using the wave power amplification breakwater according to an embodiment of the present invention is different from the breakwater constructed using a tetrapod (TTP), 1-1, 1-2, 2-1, 2-2 Since the concrete blocks (110, 120, 130, 140) are simply stacked to form a concrete column (200), it is very easy to construct.
  • TTP tetrapod
  • 1-1, 1-2, 2-1, 2-2 concrete blocks (110, 120, 130, 140) can be stacked to be offset from side to side and bonded to each other, as well as to be bonded to the underwater ground (1) in the vertical direction, making it a sturdy structure. Since is formed, the construction cost can be significantly reduced compared to the method using a large caisson, and the construction period can also be shortened.
  • the wave power generating device 20 is not densely arranged so as to cover all areas where the wave power is incident, but is arranged at regular intervals, so that the number of wave power generating devices 20 does not need to be greatly increased, and the wave power generating device 20 ), the wave is concentrated to the concave portion 12 of the wave power amplifying breakwater 10 installed, so that the wave energy is amplified, so that higher power generation efficiency than the conventional one can be expected.
  • the wave power generation device 20 of this embodiment has high structural stability and can be easily operated, and the shape of the landing portion of the hemispherical floating body 22 is a hemispherical shape, so there is a concern about the damage of the wave power generation device 20 according to the direction of incidence of the wave. There is no.
  • the present invention can be used in the wave power industry.

Abstract

The present invention relates to a wave power generation system using a wave amplification breakwater, the wave power generation system comprising: a wave amplification breakwater which extends in the left-right direction such that the front surface faces the open sea, has protrusion portions protruding forward and recessed portions recessed backward alternately formed on the front surface, and has wave guide portions, which are inclined toward the recessed portions from the protrusion portions, formed between the protrusion portions and recessed portions so as to guide the waves incoming from the open sea, to the recessed portions; and wave power generators which are provided on each recessed portions of the wave amplification breakwater and generate power by means of the motion energy of the waves concentrated on the recessed portions.

Description

파력 증폭 방파제를 이용한 파력 발전 시스템 및 그 시공 방법Wave power generation system using wave power amplification breakwater and construction method thereof
본 발명은 파력 발전 시스템 및 그 시공 방법에 관한 것으로서, 더욱 구체적으로는 파력 증폭 방파제를 이용하여 파력을 증폭시켜 파력 발전에 이용하는 파력 증폭 방파제를 이용한 파력 발전 시스템에 관한 것이다.The present invention relates to a wave power generation system and a construction method thereof, and more particularly, to a wave power generation system using a wave power amplification breakwater used for wave power generation by amplifying wave power using a wave power amplification breakwater.
방파제를 시공하기 위하여 널리 사용되는 테트라포드(TTP)는 외해를 향하여 경사진 형태의 방파제(경사제)를 시공하기에 적합하다. 테트라포드를 이용하여 시공된 방파제는 파도를 분산시켜 흡수하므로 파력 발전 시스템을 구축하기에 적합하지 않다.Tetrapod (TTP), which is widely used to construct a breakwater, is suitable for installing a breakwater (sloping agent) in the form of an inclined toward the open sea. A breakwater constructed using a tetrapod is not suitable for building a wave power generation system because it disperses and absorbs waves.
방파제에 파력 발전 시스템을 구축하기 위해서는 파도가 유입되는 외해를 향하여 직벽 형태의 방파제(직립제)를 설치하고, 설치된 방파제에 외해를 향하도록 파력 발전장치를 설치하여야 한다.In order to establish a wave power generation system on a breakwater, a direct-walled breakwater (upright) must be installed toward the open sea into which waves flow, and a wave power generation device must be installed on the installed breakwater to face the open sea.
방파제는 파도가 항상 일정한 방향으로 유입될 수 있도록 파도의 유입 방향을 고려하여 설치되어야 한다. 아울러 방파제에 마련되는 파력 발전장치는 서로 간섭하지 않도록 일정한 간격으로 이격하여 설치되어야 한다.The breakwater should be installed in consideration of the direction of the wave inflow so that the wave can always flow in a certain direction. In addition, wave power generation devices provided on the breakwater must be installed at regular intervals so as not to interfere with each other.
이와 같은 종래의 파력 발전 시스템은 크게 3가지 문제점을 가지고 있다.Such a conventional wave power generation system has three problems.
첫 번째는 방파제를 향하여 유입되는 파도 중 일부는 파력 발전장치를 구동하여 발전에 기여하나, 인접한 파력 발전장치 사이로 유입되는 파도는 파력 발전장치를 구동하지 못하고 방파제에 부딪혀 반사되거나 소멸된다는 것이다.The first is that some of the waves flowing toward the breakwater drive the wave power generation device to contribute to power generation, but the waves flowing between adjacent wave power generation devices cannot drive the wave power generation device and are reflected or extinguished by hitting the breakwater.
즉, 외해에서 유입되는 파도를 모두 이용하지 못하고 극히 일부만을 이용하여 발전이 이루어지게 되므로 발전 효율이 매우 떨어진다.In other words, power generation efficiency is very low because power generation is performed using only a small portion of the waves flowing in from the open sea.
이와 같은 문제를 해결하기 위하여 파도가 유입되는 면을 촘촘하게 커버하는 파력 발전장치를 설치하면, 파력 발전 시스템의 구조가 지나치게 복잡해지고 유지 보수가 어려우며 파력 발전 시스템을 구축하기 위하여 많은 비용이 소요된다는 문제가 발생한다.In order to solve such a problem, if a wave power generation device is installed that tightly covers the surface of the wave inflow, the structure of the wave power generation system becomes too complex, maintenance is difficult, and it takes a lot of cost to construct a wave power generation system. Occurs.
두 번째는 파도가 파력 발전장치를 향하여 정면으로 유입되는 상황을 고려하여 파력 발전장치가 설계되므로, 파도의 유입 방향이 일정하지 않으면 발전 효율이 떨어지며 비스듬히 입사되는 파도에 의하여 파력 발전장치가 파손될 수 있다는 것이다.The second is that the wave power generation device is designed in consideration of the situation in which the wave flows in the front toward the wave power generation device, so if the inflow direction of the wave is not constant, the power generation efficiency decreases, and the wave power generation device may be damaged by the wave incident at an angle. will be.
종래의 파력 발전장치는 파도의 유입 방향을 정면으로 향하도록 설계되는 것이 일반적이다. 즉, 부유체의 회동축을 파도의 입사면에 나란하게 배치하여 정면으로 입사되는 파도에만 부유체가 상하로 움직이며 파도의 운동 에너지를 효과적으로 전달받을 수 있도록 한다.Conventional wave power generation devices are generally designed to face the inflow direction of the waves. That is, by arranging the rotation axis of the floating body parallel to the incident surface of the wave, the floating body moves up and down only on the wave incident to the front so that the kinetic energy of the wave can be effectively transmitted.
만약 파도의 입사 방향이 바뀌면 부유체의 회동축과 파도의 입사면이 뒤틀린 상태가 되므로 파도의 에너지를 효과적으로 전달받을 수 없을 뿐만 아니라 부유체나 부유체의 회동축이 파도에 의하여 파손될 수 있다.If the incidence direction of the wave is changed, the rotation axis of the floating body and the incident surface of the wave are twisted, so energy of the wave cannot be effectively transmitted, and the rotation axis of the floating body or the floating body may be damaged by the wave.
세 번째는 파력 발전장치는 파력 발전의 효율을 높이기 위하여 높은 파력 에너지를 가진 파도가 형성되는 위치에 설치되어야 하나, 방파제가 높은 파력을 가진 파도에 견디기 위하여는 방파제의 규모가 대형화되어야 한다는 문제가 있다.Third, the wave power generation device must be installed at a location where waves with high wave energy are formed in order to increase the efficiency of wave power generation, but there is a problem that the size of the breakwater must be enlarged in order to withstand the waves with high wave power. .
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 외해에서 유입되는 파도를 특정 부위로 집중시켜 파력을 증폭시키고 이를 이용하여 파력 발전을 할 수 있도록 하는 파력 증폭 방파제를 이용한 파력 발전 시스템을 제시하고자 한다.The present invention was conceived to solve the problems of the prior art as described above, and wave power generation using a wave power amplification breakwater capable of amplifying wave power by concentrating waves flowing in from the open sea to a specific area and enabling wave power generation using this I would like to present a system.
또한 보다 작은 규모로 설치되어 경제성을 높이면서도 높은 파력을 가진 파도를 견딜 수 있는 파력 증폭 방파제를 가진 파력 발전 시스템을 제시하고자 한다.In addition, it is intended to present a wave power generation system with a wave power amplifying breakwater that can withstand waves with high wave power while being installed on a smaller scale to increase economic efficiency.
아울러 이와 같은 파력 증폭 방파제를 이용한 파력 발전 시스템을 시공하기 위한 시공 방법을 제시하고자 한다.In addition, it is intended to present a construction method for constructing a wave power generation system using such a wave power amplifying breakwater.
상기의 과제를 해결하기 위하여 본 발명은, 전면에 좌측이 우측보다 전방으로 돌출되도록 경사진 제1-1경사부가 형성되며 상하방향으로 연장되는 제1-1상하방향 관통구가 형성되는 복수의 제1-1콘크리트 블록, 전면에 우측이 좌측보다 전방으로 돌출되도록 경사진 제1-2경사부가 형성되며 상하방향으로 연장되는 제1-2상하방향 관통구가 형성되는 복수의 제1-2콘크리트 블록, 전면에 중앙부가 전방으로 돌출되고 좌측과 우측이 후방으로 후퇴되도록 경사진 제2-1돌출 경사부가 형성되며 상하방향으로 연장되는 제2-1상하방향 관통구가 형성되는 복수의 제2-1콘크리트 블록, 전면에 중앙부가 후방으로 요입되고 좌측과 우측이 전방으로 돌출되도록 경사진 제2-2요입 경사부가 형성되는 상하방향으로 연장되는 제2-2상하방향 관통구가 형성되는 복수의 제2-2콘크리트 블록을 제작하는 콘크리트 블록 제작 단계 ; 상기 콘크리트 블록 제작 단계에서 제작된 복수의 제1-1,1-2,2-1,2-2콘크리트 블록을 수중 지반의 상부에 설치하되, 상기 제1-1콘크리트 블록과 상기 제1-2콘크리트 블록은 수평방향으로 교대로 배치되어 제1블록층을 형성하고, 상기 제2-1콘크리트 블록과 상기 제2-2콘크리트 블록은 수평방향으로 교대로 배치되어 제2블록층을 형성하고, 상기 제1블록층과 상기 제2블록층은 상하방향으로 교대로 적층되어 콘크리트 블록 집합체를 형성하며, 상기 제1블록층과 상기 제2블록층은 평면도상 구조가 서로 동일한 형태이며, 상기 콘크리트 블록 집합체는 전면에 전방으로 돌출되는 제1돌출부와 후방으로 요입되는 제1요입부가 번갈아 형성되면서 상기 제1돌출부와 상기 제1요입부의 사이에 외해에서 입사되는 파도를 상기 제1요입부로 안내하기 위하여 상기 제1돌출부에서 상기 제1요입부를 향하여 경사진 제1파도 안내부가 각각 형성되며, 상기 콘크리트 블록 집합체의 상기 제1-1,1-2,2-1,2-2상하방향 관통구는 상하방향으로 연속되면서 하단부가 상기 수중 지반에 의하여 막히며 상단부가 개방된 복수의 콘크리트 기둥용 통공부를 형성하는 콘크리트 블록 집합체 형성 단계 ; 상기 콘크리트 블록 집합체 형성 단계 이후, 상하방향으로 연장되는 형태의 보호관을 상기 콘크리트 기둥용 통공부를 통하여 수직 방향으로 상기 수중 지반에 삽입하면서 상기 콘크리트 기둥용 통공부의 하부에 위치한 수중 지반을 천공하여 상기 콘크리트 기둥용 통공부와 연속되는 공간이면서 상기 콘크리트 기둥용 통공부의 단면적보다 작은 단면적으로 상하방향으로 연장되는 지반 천공부를 형성하되, 상기 삽입된 보호관은 상기 콘크리트 기둥용 통공부 및 상기 지반 천공부에 걸쳐 위치되며, 상기 삽입된 보호관의 내부에 상기 지반 천공부가 형성되는 지반 천공부 형성 단계 ; 상기 지반 천공부 형성 단계 이후, 상하방향으로 형성된 상하방향 철근부를 상기 상하방향 철근부의 하부 및 측부를 방수막으로 감싼 상태로 상기 보호관에 삽입하고 상기 방수막의 내부에 콘크리트를 타설하여 상기 콘크리트 기둥용 통공부와 상기 지반 천공부를 따라 콘크리트 기둥을 형성하되, 상기 타설된 콘크리트가 경화되기 전에 상기 보호관을 제거하여 상기 방수막은 상기 타설된 콘크리트의 압력으로 상기 수중 지반 및 상기 콘크리트 블록에 밀착되며, 상기 콘크리트 기둥은 상기 콘크리트 기둥용 통공부에 위치하면서 상하방향으로 연장되는 제1콘크리트 기둥부와 상기 지반 천공부에 위치하면서 상하방향으로 연장되는 제2콘크리트 기둥부를 포함하여 이루어지는 콘크리트 기둥 형성 단계 ; 상기 콘크리트 기둥 형성 단계 이후, 상기 콘크리트 블록 집합체의 상부에 상치 콘크리트 구조물을 형성하되, 상기 상치 콘크리트 구조물은 전면에 전방으로 돌출되는 제2돌출부와 후방으로 요입되는 제2요입부가 번갈아 형성되면서 상기 제2돌출부와 상기 제2요입부의 사이에 외해에서 입사되는 파도를 상기 제2요입부로 안내하기 위하여 상기 제2돌출부에서 상기 제2요입부를 향하여 경사진 제2파도 안내부가 각각 형성되는 상치 콘크리트 구조물 형성 단계 ; 상기 콘크리트 블록 집합체의 제1요입부 또는 상기 상치 콘크리트 구조물의 제2요입부에 집중되는 파도의 운동 에너지를 이용하여 발전하는 파력 발전장치를 상기 상치 콘크리트 구조물의 제2요입부에 설치하는 파력 발전장치 설치 단계 ; 를 포함하여 이루어지는 것을 특징으로 한다.In order to solve the above problems, the present invention provides a plurality of first inclined portions inclined so that the left side protrudes forward rather than the right side on the front side, and the 1-1 vertical through hole extending in the vertical direction is formed. 1-1 concrete block, a plurality of 1-2 concrete blocks in which a 1-2 inclined part is formed on the front side so that the right side protrudes forward than the left side, and a 1-2 vertical through hole extending in the vertical direction is formed , A plurality of 2-1 protruding inclined portions inclined so that the central portion protrudes forward and the left and right retreat rearward is formed on the front side, and a plurality of 2-1 vertical through holes extending in the vertical direction are formed. Concrete block, a plurality of second through-holes extending in the vertical direction in which the 2-2 concave inclined inclined so that the central part is concave rearward and the left and right protrude forward -2 Concrete block production step to produce concrete blocks; A plurality of 1-1, 1-2, 2-1, 2-2 concrete blocks manufactured in the concrete block manufacturing step are installed on the upper part of the underwater ground, and the 1-1 concrete block and the 1-2-2 Concrete blocks are alternately arranged in a horizontal direction to form a first block layer, and the 2-1 concrete blocks and the 2-2 concrete blocks are alternately arranged in a horizontal direction to form a second block layer, and the The first block layer and the second block layer are alternately stacked in a vertical direction to form a concrete block assembly, and the first block layer and the second block layer have the same structure in plan view, and the concrete block assembly A first protrusion protruding forward and a first concave concave in the rear are alternately formed on the front side, and the first protrusion is formed between the first protrusion and the first concave part to guide the wave incident from the open sea to the first concave part. First wave guides inclined from the first protrusion to the first concave inlet are respectively formed, and the through holes in the 1-1, 1-2, 2-1, and 2-2 vertical directions of the concrete block assembly are continuous in the vertical direction. A concrete block assembly forming step of forming a through hole for a plurality of concrete columns with the lower end of which is blocked by the underwater ground and the upper end of which is open; After the step of forming the concrete block assembly, a protective tube extending in the vertical direction is inserted into the underwater ground in a vertical direction through the through hole for the concrete column, and the underwater ground located under the through hole for the concrete column is drilled, and the A ground perforation part extending in the vertical direction is formed in a space continuous with the through hole for a concrete column and a cross-sectional area smaller than the cross-sectional area of the through hole for the concrete column, and the inserted protective tube is the through hole for the concrete column and the ground perforation. A ground perforation forming step which is positioned over and in which the ground perforated portion is formed in the inserted protective tube; After the step of forming the ground perforation, the vertical reinforcement part formed in the vertical direction is inserted into the protective tube while the lower and side parts of the vertical reinforcement part are wrapped with a waterproofing film, and concrete is poured into the waterproofing film. A concrete column is formed along the study and the ground perforation, but the protective tube is removed before the poured concrete is hardened, so that the waterproofing membrane is in close contact with the underwater ground and the concrete block under the pressure of the poured concrete, and the concrete The pillar is a concrete pillar forming step comprising a first concrete pillar portion extending in the vertical direction while being positioned in the through hole for the concrete pillar, and a second concrete pillar portion extending in the vertical direction while being positioned in the ground drilling portion; After the step of forming the concrete pillar, a standing concrete structure is formed on the upper part of the concrete block assembly, and the second convex portion is formed alternately with a second protruding portion protruding forward and a second concave inlet at the front side. Forming a top-level concrete structure in which a second wave guide portion inclined from the second protrusion toward the second concave portion is formed between the protrusion and the second concave portion in order to guide the waves incident from the open sea to the second concave portion; A wave power generating device installed in the second concave portion of the standing concrete structure by using the kinetic energy of the waves concentrated in the first concave portion of the concrete block assembly or the second concave portion of the standing concrete structure Installation stage; It characterized in that it comprises a.
상기에 있어서, 상기 콘크리트 블록 집합체의 상부 표면은 수면보다 높게 위치되며, 상기 지반 천공부 형성 단계에서 삽입된 보호관의 상단은 상기 콘크리트 블록 집합체의 상부 표면으로부터 돌출되며, 상기 지반 천공부 형성 단계는, 천공 장비가 수면보다 높게 위치한 상기 콘크리트 블록 집합체의 상부 표면에 배치되어 건식 작업으로 천공 작업을 수행하는 것이 바람직하다.In the above, the upper surface of the concrete block assembly is located higher than the water surface, the upper end of the protective tube inserted in the ground perforation forming step protrudes from the upper surface of the concrete block assembly, and the ground perforation forming step, It is preferable that the drilling equipment is disposed on the upper surface of the concrete block assembly located higher than the water surface to perform the drilling operation by a dry operation.
본 발명의 다른 사상으로, 전면에 좌측이 우측보다 전방으로 돌출되도록 경사진 제1-1경사부가 형성되며 상하방향으로 연장되는 제1-1상하방향 관통구가 형성되는 복수의 제1-1콘크리트 블록, 전면에 우측이 좌측보다 전방으로 돌출되도록 경사진 제1-2경사부가 형성되며 상하방향으로 연장되는 제1-2상하방향 관통구가 형성되는 복수의 제1-2콘크리트 블록, 전면에 중앙부가 전방으로 돌출되고 좌측과 우측이 후방으로 후퇴되도록 경사진 제2-1돌출 경사부가 형성되며 상하방향으로 연장되는 제2-1상하방향 관통구가 형성되는 복수의 제2-1콘크리트 블록, 전면에 중앙부가 후방으로 요입되고 좌측과 우측이 전방으로 돌출되도록 경사진 제2-2요입 경사부가 형성되는 상하방향으로 연장되는 제2-2상하방향 관통구가 형성되는 복수의 제2-2콘크리트 블록를 포함하여 이루어지며, 상기 복수의 제1-1,1-2,2-1,2-2콘크리트 블록이 수중 지반의 상부에 설치되어 상기 제1-1콘크리트 블록과 상기 제1-2콘크리트 블록은 수평방향으로 교대로 배치되어 제1블록층을 형성하고, 상기 제2-1콘크리트 블록과 상기 제2-2콘크리트 블록은 수평방향으로 교대로 배치되어 제2블록층을 형성하고, 상기 제1블록층과 상기 제2블록층은 평면도상 구조가 서로 동일한 형태로서 상하방향으로 교대로 적층되며, 전면에 전방으로 돌출되는 제1돌출부와 후방으로 요입되는 제1요입부가 번갈아 형성되면서 상기 제1돌출부와 상기 제1요입부의 사이에 외해에서 입사되는 파도를 상기 제1요입부로 안내하기 위하여 상기 제1돌출부에서 상기 제1요입부를 향하여 경사진 제1파도 안내부가 각각 형성되는 콘크리트 블록 집합체 ; 상기 콘크리트 블록 집합체의 상기 제1-1,1-2,2-1,2-2상하방향 관통구가 상하방향으로 연속되면서 하단부가 상기 수중 지반에 의하여 막히며 상단부가 개방된 복수의 콘크리트 기둥용 통공부와 상기 콘크리트 기둥용 통공부의 하부에 위치하며 상기 수중 지반이 천공되어 형성된 지반 천공부를 따라 형성된 복수의 콘크리트 기둥 ; 상기 콘크리트 블록 집합체의 상부에 형성되되 전면에 전방으로 돌출되는 제2돌출부와 후방으로 요입되는 제2요입부가 번갈아 형성되면서 상기 제2돌출부와 상기 제2요입부의 사이에 외해에서 입사되는 파도를 상기 제2요입부로 안내하기 위하여 상기 제2돌출부에서 상기 제2요입부를 향하여 경사진 제2파도 안내부가 각각 형성되는 상치 콘크리트 구조물 ; 상기 상치 콘크리트 구조물의 제2요입부에 마련되어 상기 콘크리트 블록 집합체의 제1요입부 또는 상기 상치 콘크리트 구조물의 제2요입부에 집중되는 파도의 운동 에너지를 이용하여 발전하는 파력 발전장치 ; 를 포함하여 이루어지며, 상기 콘크리트 기둥은 상기 콘크리트 기둥용 통공부에 위치하면서 상하방향으로 연장되는 제1콘크리트 기둥부와 상기 지반 천공부에 위치하면서 상기 제1콘크리트 기둥부의 단면적보다 작은 단면적으로 상하방향으로 연장되는 제2콘크리트 기둥부를 포함하여 이루어지며 ; 상기 콘크리트 기둥은, 상하방향으로 형성되어 상기 콘크리트 기둥용 통공부와 상기 지반 천공부에 걸쳐 배치된 상하방향 철근부와, 상기 상하방향 철근부의 하부 및 측부를 감싸면서 상기 수중 지반 및 상기 콘크리트 블록에 밀착된 방수막과, 상기 방수막의 내부에 타설되어 양생된 콘크리트를 포함하여 이루어지는 것 ; 을 특징으로 한다.In another idea of the present invention, a plurality of 1-1 concretes in which the 1-1 inclined portion inclined so that the left side protrudes forward than the right side is formed on the front side and the 1-1 vertical through hole extending in the vertical direction is formed Block, a plurality of 1-2 concrete blocks in which a 1-2 inclined part is formed on the front side so that the right side protrudes forward than the left side, and a 1-2 vertical through hole extending in the vertical direction is formed, the central part on the front side A plurality of 2-1 concrete blocks with a 2-1 protruding inclined portion inclined to protrude forward and retreat the left and right sides, and a 2-1 vertical through hole extending in the vertical direction, the front side A plurality of 2-2 concrete blocks having 2-2 vertically extending through holes extending in the vertical direction in which the 2-2 concave inclined part is formed inclined so that the central part is concave backward and the left and right protrude forward. And the plurality of 1-1, 1-2, 2-1, 2-2 concrete blocks are installed above the underwater ground, so that the 1-1 concrete block and the 1-2 concrete block The first block layers are alternately arranged in a horizontal direction, and the 2-1 concrete blocks and the 2-2 concrete blocks are alternately arranged in a horizontal direction to form a second block layer, and the first block The layer and the second block layer have the same structure in plan view and are alternately stacked in the vertical direction, and a first protrusion protruding forward and a first concave concave in the front are alternately formed, and the first protrusion and the first protrusion are alternately formed. A concrete block assembly in which a first wave guide portion inclined from the first protrusion toward the first concave portion is formed between the first concave portion to guide the waves incident from the open sea to the first concave portion; For a plurality of concrete columns in which the first 1-1,1-2,2-1,2-2 vertical through-holes of the concrete block assembly are continuous in the vertical direction, the lower end is blocked by the underwater ground and the upper end is open A plurality of concrete pillars positioned below the through-holes and the through-holes for the concrete pillars, and formed along the ground-perforations formed by drilling the underwater ground; The second protrusion protruding forward and the second concave concave in the rear are formed on the upper part of the concrete block assembly, and the waves incident from the open sea between the second protrusion and the second concave part are alternately formed. 2 a standing concrete structure in which second wave guide portions inclined from the second protrusion to the second concave portion are formed to guide the concave portion; A wave power generating device provided in the second concave portion of the standing concrete structure and generating power using the kinetic energy of the waves concentrated in the first concave portion of the concrete block assembly or the second concave portion of the standing concrete structure; The concrete pillar includes a first concrete pillar that extends in the vertical direction while being positioned in the through hole for the concrete pillar and a cross-sectional area that is smaller than the cross-sectional area of the first concrete pillar while being positioned in the ground perforation. It is made including a second concrete column portion extending to; The concrete pillar is formed in the vertical direction, the vertical reinforcement portion disposed across the through hole for the concrete pillar and the ground perforation, and the bottom and side portions of the vertical reinforcement portion while surrounding the underwater ground and the concrete block. It comprises a waterproof membrane in close contact and cured concrete poured into the interior of the waterproof membrane; It features.
상기와 같이 본 발명에 의한 파력 증폭 방파제를 이용한 파력 발전 시스템은, 외해에서 입사되는 파도를 특정 부위로 집중시켜 파력을 증폭하고 이를 이용하여 파력 발전을 하므로 파력 발전 효율이 매우 높다.As described above, the wave power generation system using the wave power amplifying breakwater according to the present invention amplifies the wave power by concentrating the wave incident from the open sea to a specific part, and uses the wave power to generate wave power, so that the wave power generation efficiency is very high.
아울러 파도의 입사면 전체에 파력 발전장치를 배치하지 않아도 되므로 파력 발전 시스템의 구조가 간단하고 쉽게 구축할 수 있다.In addition, since it is not necessary to arrange the wave power generation device on the entire incident surface of the wave, the structure of the wave power generation system can be constructed simply and easily.
또한 본 발명의 파력 증폭 방파제는 콘크리트 블록의 적층식으로 구축되면서 콘크리트 기둥에 의하여 수중 지반에 결합되어 시공이 간단하고 구조적으로 매우 안정적이면서 경제적으로 설치 가능하다.In addition, the wave power amplifying breakwater of the present invention is constructed in a stacked manner of concrete blocks and is coupled to the underwater ground by a concrete column, so that the construction is simple and structurally very stable and can be installed economically.
또한 파력 발전장치는 파도의 입사 방향에 무관하게 파력 에너지를 효과적으로 전달받을 수 있으며 쉽게 파손되지 않는다.In addition, the wave power generation device can effectively receive wave energy regardless of the incident direction of the wave and is not easily damaged.
도 1은 본 발명의 일 실시례에 의한 파력 증폭 방파제를 이용한 파력 발전 시스템의 사시도, 1 is a perspective view of a wave power generation system using a wave power amplifying breakwater according to an embodiment of the present invention,
도 2는 도 1의 파력 증폭 방파제를 이용한 파력 발전 시스템의 개념 측면도, 2 is a conceptual side view of a wave power generation system using the wave power amplifying breakwater of FIG. 1;
도 3은 도 1의 파력 증폭 방파제를 이용한 파력 발전 시스템의 파력 발전장치 부위를 확대하여 도시한 사시도, 3 is a perspective view showing an enlarged portion of the wave power generation device of the wave power generation system using the wave power amplification breakwater of FIG. 1;
도 4는 도 1의 파력 증폭 방파제를 향하여 입사되는 파도의 평면상 움직임을 개념적으로 도시한 도면,FIG. 4 is a diagram conceptually showing a motion of a wave incident on the wave power amplifying breakwater of FIG. 1 in a plane;
도 5는 파력 증폭 방파제를 형성하기 위한 제1-1,1-2,2-1,2-2콘크리트 블록의 사시도,5 is a perspective view of a 1-1, 1-2, 2-1, 2-2 concrete block for forming a wave power amplifying breakwater;
도 6은 도 5의 제1-1,1-2,2-1,2-2콘크리트 블록이 적층되어 콘크리트 블록 집합체를 형성한 상태의 사시 개념도,6 is a perspective conceptual diagram of a state in which the 1-1, 1-2, 2-1, 2-2 concrete blocks of FIG. 5 are stacked to form a concrete block assembly;
도 7은 도 6의 단면 개념도,7 is a schematic cross-sectional view of FIG. 6;
도 8은 도 7의 콘크리트 블록 집합체 형성 이후 지반 천공부를 형성한 상태의 도면,8 is a view of a state in which a ground perforation portion is formed after the formation of the concrete block assembly of FIG. 7;
도 9 내지 도 12는 도 8의 지반 천공부 형성 이후 콘크리트 기둥을 형성하는 과정을 순서대로 도시한 도면,9 to 12 are views sequentially showing a process of forming a concrete column after the formation of the ground perforation of FIG. 8;
도 13은 도 12 이후 콘크리트 블록 집합체의 상부에 상치 콘크리트 구조물을 형성한 상태의 도면.13 is a view of a state in which the upper part of the concrete block assembly after FIG. 12 is formed with a standing concrete structure.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시례를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시례에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 부여하였다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art can easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and similar reference numerals are assigned to similar parts throughout the specification. When a part of the specification "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.
도 1은 본 발명의 일 실시례에 의한 파력 증폭 방파제를 이용한 파력 발전 시스템의 사시도이며, 도 2는 도 1의 파력 증폭 방파제를 이용한 파력 발전 시스템의 개념 측면도이며, 도 3은 도 1의 파력 증폭 방파제를 이용한 파력 발전 시스템의 파력 발전장치 부위를 확대하여 도시한 사시도이며, 도 4는 도 1의 파력 증폭 방파제를 향하여 입사되는 파도의 평면상 움직임을 개념적으로 도시한 도면이다.1 is a perspective view of a wave power generation system using a wave power amplification breakwater according to an embodiment of the present invention, FIG. 2 is a conceptual side view of a wave power generation system using the wave power amplification breakwater of FIG. 1, and FIG. 3 is a wave power amplification of FIG. It is a perspective view showing an enlarged wave power generation device part of the wave power generation system using a breakwater, and FIG. 4 is a view conceptually showing the motion of a wave incident toward the wave power amplification breakwater of FIG. 1 in a plane.
본 발명의 일 실시례에 의한 파력 증폭 방파제는 외해에서 입사되는 파도를 특정 부위로 집중시켜 파력을 증폭하는 파력 증폭 방파제(10)와, 파력 증폭 방파제(10)에 설치되어 파력 에너지를 전력으로 전환하는 파력 발전장치(20)로 이루어진다.The wave power amplification breakwater according to an embodiment of the present invention is installed on the wave power amplification breakwater 10 to amplify the wave power by focusing the waves incident from the open sea to a specific area, and the wave power amplification breakwater 10 to convert the wave energy into electric power. It consists of a wave power generating device (20).
파력 증폭 방파제(10)에 대하여 먼저 설명한다. 본 실시례의 파력 증폭 방파제(10)는 직립 구조로 설치되는 방파제(직립제)이다.The wave power amplifying breakwater 10 will be described first. The wave power amplifying breakwater 10 of this embodiment is a breakwater (upright) installed in an upright structure.
본 파력 증폭 방파제(10)는 전면이 외해를 향하도록 좌우방향으로 연장되어 형성되며, 전면에 전방으로 돌출되는 돌출부(11)와 후방으로 요입되는 요입부(12)가 지그재그 형태를 이루도록 번갈아 형성된다.The wave power amplifying breakwater 10 is formed to extend in the left and right directions so that the front face faces the open sea, and the protrusion 11 protruding forward and the concave inlet 12 concave to the rear are alternately formed to form a zigzag shape. .
파력 증폭 방파제(10)의 돌출부(11)와 요입부(12)의 사이에는 외해에서 입사되는 파도를 요입부(12)로 안내하기 위하여 돌출부(11)에서 요입부(12)를 향하여 경사진 파도 안내부(13)가 형성된다.Waves inclined from the protrusion 11 toward the concave inlet 12 between the protrusion 11 and the concave inlet 12 of the wave power amplification breakwater 10 in order to guide the wave incident from the open sea to the concave inlet 12 A guide portion 13 is formed.
파도 안내부(13)는 요철이 형성되거나 파도를 분산시키기 위한 슬릿 등이 형성되어 있지 않은 매끄러운 경사면이다.The wave guide 13 is a smooth inclined surface in which irregularities are formed or slits for dispersing waves are not formed.
파력 증폭 방파제(10)의 전면으로 입사되는 파도 중 요입부(12)의 주변으로 입사되는 파도는 각 요입부(12)의 좌측과 우측에 위치한 파도 안내부(13)를 따라서 요입부(12)로 안내되며, 안내된 파도는 서로 중첩되어 높은 진폭의 파도를 형성하게 된다. 즉, 파도가 요입부(12)로 집중되어 파력이 증폭된다.Among the waves incident on the front of the wave power amplification breakwater 10, the waves incident on the periphery of the concave inlet 12 are concave inlet 12 along the wave guides 13 located on the left and right of each concave inlet 12 And the guided waves overlap each other to form high-amplitude waves. That is, the waves are concentrated to the concave inlet portion 12 to amplify the wave power.
이와 같은 파력 증폭 방파제(10)의 시공 방법을 설명한다.A method of constructing such a wave power amplifying breakwater 10 will be described.
도 5는 파력 증폭 방파제를 형성하기 위한 제1-1,1-2,2-1,2-2콘크리트 블록의 사시도이며, 도 6은 도 5의 제1-1,1-2,2-1,2-2콘크리트 블록이 적층되어 콘크리트 블록 집합체를 형성한 상태의 사시 개념도이며, 도 7은 도 6의 단면 개념도이며, 도 8은 도 7의 콘크리트 블록 집합체 형성 이후 지반 천공부를 형성한 상태의 도면이며, 도 9 내지 도 12는 도 8의 지반 천공부 형성 이후 콘크리트 기둥을 형성하는 과정을 순서대로 도시한 도면이며, 도 13은 도 12 이후 콘크리트 블록 집합체의 상부에 상치 콘크리트 구조물을 형성한 상태의 도면이다.5 is a perspective view of a 1-1, 1-2, 2-1, 2-2 concrete block for forming a wave power amplifying breakwater, and FIG. 6 is a perspective view of 1-1, 1-2, 2-1 of FIG. 5 ,2-2 is a perspective conceptual diagram of a state in which concrete blocks are stacked to form a concrete block assembly, FIG. 7 is a cross-sectional conceptual diagram of FIG. 6, and FIG. 8 is a state in which a ground perforation part is formed after the formation of the concrete block assembly of FIG. 9 to 12 are views sequentially showing the process of forming a concrete column after the formation of the ground perforation of FIG. 8, and FIG. 13 is a state in which the upper part of the concrete block assembly is formed after FIG. 12 It is a drawing of.
(1) 콘크리트 블록 제작 단계(1) Concrete block production stage
도 5와 같은 콘크리트 블록(110, 120, 130, 140)을 제작한다.Concrete blocks 110, 120, 130, and 140 as shown in FIG. 5 are manufactured.
콘크리트 블록(110, 120, 130, 140)의 형태는 다양하게 형성될 수 있지만, 적어도 상하방향으로 연장되는 상하방향 관통구가 둘 이상 형성되는 것이 바람직하다.The concrete blocks 110, 120, 130, and 140 may have various shapes, but it is preferable that at least two or more vertical through holes extending in the vertical direction are formed.
본 실시예는 4가지 형태의 콘크리트 블록(110, 120, 130, 140)을 제작한다.This embodiment fabricates four types of concrete blocks 110, 120, 130, and 140.
제1-1,1-2,2-1,2-2콘크리트 블록(110,120,130,140) 각각은 좌우방향 폭이 약 6m이고 두께가 약 2m인 납작한 콘크리트 블록 형태이다.Each of the 1-1, 1-2, 2-1, and 2-2 concrete blocks 110, 120, 130, and 140 is in the form of a flat concrete block having a width of about 6 m in the left and right direction and a thickness of about 2 m.
제1-1콘크리트 블록(110)은 전면에 좌측이 우측보다 전방으로 돌출되게 경사진 제1-1경사부(111)가 형성되는 콘크리트 블록으로서, 내측에 콘크리트 기둥(200)을 형성하여 인접한 다른 제1-1,1-2,2-1,2-2콘크리트 블록(110,120,130,140)과 결속시키기 위한 복수의 제1-1상하방향 관통구(112)가 상하방향으로 형성되어 있다.The 1-1 concrete block 110 is a concrete block in which the 1-1 inclined part 111 inclined so that the left side protrudes forward than the right side is formed on the front side. A plurality of 1-1 up-down through holes 112 for binding to the 1-1, 1-2, 2-1, 2-2 concrete blocks 110, 120, 130, 140 are formed in the vertical direction.
본 실시례의 제1-1콘크리트 블록(110)에는 4개의 제1-1상하방향 관통구(112)가 형성되어 있으며, 이와 더불어 제1-1콘크리트 블록(110)을 경량화하여 제작, 운반, 시공을 용이하게 하기 위한 제1-1공동(113)이 형성되어 있다.In this embodiment, the 1-1 concrete block 110 has four through holes 112 in the 1-1 vertical direction, and in addition, the 1-1 concrete block 110 is manufactured and transported by weight reduction. The 1-1 cavity 113 is formed to facilitate construction.
제1-2콘크리트 블록(120)은 전면에 우측이 좌측보다 전방으로 돌출되게 경사진 제2경사부(121)가 형성되는 콘크리트 블록으로서, 내측에 콘크리트 기둥(200)을 형성하여 인접한 다른 제1-1,1-2,2-1,2-2콘크리트 블록(110,120,130,140)과 결속시키기 위한 복수의 제1-2상하방향 관통구(122)가 상하방향으로 형성되어 있다.The 1-2 concrete block 120 is a concrete block in which a second inclined portion 121 inclined so that the right side protrudes forward than the left side is formed on the front side. -1,1-2,2-1,2-2 A plurality of 1-2 vertical through-holes 122 for binding with the concrete blocks 110, 120, 130, 140 are formed in the vertical direction.
본 실시례의 제1-2콘크리트 블록(120)에는 4개의 제1-2상하방향 관통구(122)가 형성되어 있으며, 이와 더불어 제1-2콘크리트 블록(120)을 경량화하여 제작, 운반, 시공을 용이하게 하기 위한 제1-2공동(123)이 형성되어 있다.In the 1-2 concrete block 120 of this embodiment, four 1-2 vertical through-holes 122 are formed, and in addition, the 1-2 concrete block 120 is lightweighted to manufacture, transport, and The 1-2 cavity 123 is formed to facilitate construction.
제2-1콘크리트 블록(130)은 전면에 중앙부가 전방으로 돌출되고 좌측과 우측이 후방으로 후퇴되도록 경사진 제2-1돌출 경사부(131)가 형성되는 콘크리트 블록으로서, 내측에 콘크리트 기둥(200)을 형성하여 인접한 다른 제1-1,1-2,2-1,2-2콘크리트 블록(110,120,130,140)과 결속시키기 위한 복수의 제2-1상하방향 관통구(132)가 상하방향으로 형성되어 있다.The 2-1 concrete block 130 is a concrete block in which a 2-1 protruding inclined portion 131 inclined so that the central portion protrudes forward and the left and right retreat rearward is formed on the front side, and a concrete column ( 200) to form a plurality of 2-1 vertical through-holes 132 for binding with other adjacent 1-1, 1-2, 2-1, 2-2 concrete blocks (110, 120, 130, 140) are formed in the vertical direction Has been.
본 실시례의 제2-1콘크리트 블록(130)에는 4개의 제2-1상하방향 관통구(132)가 형성되어 있으며, 이와 더불어 제2-1콘크리트 블록(130)을 경량화하여 제작, 운반, 시공을 용이하게 하기 위한 제2-1공동(133)이 형성되어 있다.In the 2-1 concrete block 130 of this embodiment, four 2-1 vertical through holes 132 are formed, and in addition, the 2-1 concrete block 130 is lightweighted to manufacture, transport, and The 2-1 cavity 133 is formed to facilitate construction.
제2-2콘크리트 블록(140)은 전면에 중앙부가 후방으로 요입되고 좌측과 우측이 전방으로 돌출되도록 경사진 제2-2요입 경사부(141)가 형성되는 콘크리트 블록으로서, 내측에 콘크리트 기둥(200)을 형성하여 인접한 다른 제1-1,1-2,2-1,2-2콘크리트 블록(110,120,130,140)과 결속시키기 위한 복수의 제2-2상하방향 관통구(142)가 상하방향으로 형성되어 있다.The 2-2 concrete block 140 is a concrete block in which a 2-2 concave inclined part 141 is formed inclined so that the central part is concave in the rear and the left and right protrude forward, and a concrete pillar ( 200) to form a plurality of 2-2 vertical through-holes 142 for binding with other adjacent 1-1, 1-2, 2-1, 2-2 concrete blocks (110, 120, 130, 140) are formed in the vertical direction Has been.
본 실시례의 제2-2콘크리트 블록(140)에는 4개의 제2-2상하방향 관통구(142)가 형성되어 있으며, 이와 더불어 제2-2콘크리트 블록(140)을 경량화하여 제작, 운반, 시공을 용이하게 하기 위한 제2-2공동(143)이 형성되어 있다.In the 2-2 concrete block 140 of the present embodiment, four 2-2 vertical through holes 142 are formed, and in addition, the 2-2 concrete block 140 is lightweighted to manufacture, transport, A 2-2 cavity 143 is formed to facilitate construction.
(2) 콘크리트 블록 집합체 형성 단계(2) Concrete block assembly formation step
콘크리트 블록 제작 단계에서 제작된 복수의 콘크리트 블록(110, 120, 130, 140)을 도 6 및 도 7과 같이 수중 지반(1)의 상부에 설치하여, 도 6 및 도 7과 같이 복수의 콘크리트 블록(110, 120, 130, 140)이 수평방향 및 상하방향으로 연속하여 배치된 콘크리트 블록 집합체(100)를 형성한다.A plurality of concrete blocks (110, 120, 130, 140) produced in the concrete block manufacturing step are installed on the upper part of the underwater ground 1 as shown in FIGS. 6 and 7, and a plurality of concrete blocks as shown in FIGS. 6 and 7 (110, 120, 130, 140) form a concrete block assembly 100 that is continuously arranged in the horizontal direction and the vertical direction.
도 6은 설치된 상태의 사시도이며, 도 7은 설치된 상태의 단면도이다.6 is a perspective view of the installed state, and FIG. 7 is a cross-sectional view of the installed state.
이때 제1-1콘크리트 블록(110)과 제1-2콘크리트 블록(120)을 수평방향으로 교대로 배치하여 제1블록층(100a)를 형성한다. 제1-1콘크리트 블록(110)과 제1-2콘크리트 블록(120)을 수평방향으로 연속되게 배치하면, 형성된 제1블록층(100a)의 전면에는 제1-1경사부(111)와 제1-2경사부(121)가 지그재그 형태로 연결되어 파력 증폭 방파제(10)의 돌출부(11)와 요입부(12)를 형성하게 된다.At this time, the 1-1 concrete blocks 110 and the 1-2 concrete blocks 120 are alternately disposed in the horizontal direction to form the first block layer 100a. When the 1-1 concrete block 110 and the 1-2 concrete block 120 are arranged in a horizontal direction, the 1-1 inclined part 111 and the 1st inclined part 111 and the 1st inclined part 111 and the 1st inclined part 111 The 1-2 inclined portions 121 are connected in a zigzag shape to form the protruding portion 11 and the concave portion 12 of the wave power amplifying breakwater 10.
제2-1콘크리트 블록(130)과 제2-2콘크리트 블록(140)을 수평방향으로 번갈아 배치하여 제2블록층(100b)을 형성한다. 제2-1콘크리트 블록(130)과 제2-2콘크리트 블록(140)을 수평방향으로 연속되게 배치하면, 형성된 제2콘크리트 블록(100b)의 전면에는 제2-1돌출 경사부(131)와 제2-2요입 경사부(141)가 지그재그 형태로 연결되어 파력 증폭 방파제(10)의 돌출부(11)와 요입부(12)가 반복되어 형성된다.The second block layer 100b is formed by alternately disposing the 2-1 concrete blocks 130 and the 2-2 concrete blocks 140 in the horizontal direction. When the 2-1 concrete block 130 and the 2-2 concrete block 140 are continuously arranged in the horizontal direction, the 2-1 protruding inclined portion 131 and the front surface of the formed second concrete block 100b The 2-2 concave inclined portion 141 is connected in a zigzag shape so that the protrusion 11 and the concave inlet 12 of the wave power amplifying breakwater 10 are repeatedly formed.
이와 같은 제1블록층(100a)과 제2블록층(100b)은 상하방향으로 교대로 적층되어 콘크리트 블록 집합체(100)를 형성한다.The first block layer 100a and the second block layer 100b are alternately stacked in the vertical direction to form the concrete block assembly 100.
또한 제1블록층(100a)과 제2블록층(100b)은 평면도상 구조가 서로 동일한 형태이다.In addition, the first block layer 100a and the second block layer 100b have the same structure in plan view.
따라서 콘크리트 블록 집합체(100)는 전면에 전방으로 돌출되는 제1돌출부와 후방으로 요입되는 제1요입부가 번갈아 형성되면서 제1돌출부와 제1요입부의 사이에 외해에서 입사되는 파도를 제1요입부로 안내하기 위하여 제1돌출부에서 제1요입부를 향하여 경사진 제1파도 안내부가 각각 형성된다. 이와 같은 콘크리트 블록 집합체(100)의 구조는 파력 증폭 방파제(10)의 돌출부(11), 요입부(120, 파도 안내부(13)의 구조에 대응된다.Therefore, the concrete block assembly 100 guides the waves incident from the open sea between the first protrusion and the first concave portion to the first concave portion as the first protrusion protruding forward and the first concave concave in the rear are formed alternately. In order to do so, first wave guide portions inclined from the first protrusion toward the first concave portion are formed, respectively. The structure of the concrete block assembly 100 corresponds to the structure of the protrusion 11, the concave inlet 120, and the wave guide 13 of the wave power amplifying breakwater 10.
콘크리트 블록 집합체(100)를 이루는 콘크리트 블록(110, 120, 130, 140)의 제1-1,1-2,2-1,2-2상하방향 관통구(112, 122, 132, 142)는 상하방향으로 연속되면서 하단부가 수중 지반(1)에 의하여 막히며 상단부가 개방되면서 상하방향으로 연장되는 콘크리트 기둥용 통공부(101)를 형성한다.The 1-1,1-2,2-1,2-2 vertical through- holes 112, 122, 132, 142 of the concrete blocks 110, 120, 130, 140 constituting the concrete block assembly 100 are While continuing in the vertical direction, the lower end is blocked by the underwater ground 1, and the upper end is opened to form a through hole 101 for a concrete column extending in the vertical direction.
즉 어느 하나의 제1-1상하방향 관통구(112)는 하부의 제2-2상하방향 관통구(142) 및 상부의 제2-2상하방향 관통구(142)와 연속되면서 콘크리트 기둥용 통공부(101)를 형성하며, 다른 하나의 제1-1상하방향 관통구(112)는 하부의 제2-1상하방향 관통구(132) 및 상부의 제2-1상하방향 관통구(132)와 연속되면서 콘크리트 기둥용 통공부(101)를 형성한다.That is, any one 1-1 vertical through hole 112 is continuous with the 2-2 vertical through hole 142 at the bottom and the 2-2 vertical through hole 142 at the top, Forming the study 101, the other 1-1 up-down through hole 112 is the second through the bottom 2-1 up-down through hole 132 and the upper 2-1 up-down through hole 132 While continuing to form a through hole 101 for the concrete column.
또한 어느 하나의 제1-2상하방향 관통구(122)는 하부의 제2-2상하방향 관통구(142) 및 상부의 제2-2상하방향 관통구(142)와 연속되면서 콘크리트 기둥용 통공부(101)를 형성하며, 다른 하나의 제1-2상하방향 관통구(122)는 하부의 제2-1상하방향 관통구(132) 및 상부의 제2-1상하방향 관통구(132)와 연속되면서 콘크리트 기둥용 통공부(101)를 형성한다.In addition, any one 1-2 vertical through-hole 122 is continuous with the 2-2 vertical through-hole 142 in the lower and the 2-2 vertical through-hole 142 in the upper part, Forming the study 101, the other 1-2 vertical through-hole 122 is the lower 2-1 vertical through-hole 132 and the upper 2-1 vertical through-hole 132 While continuing to form a through hole 101 for the concrete column.
본 실시예의 수중 지반(1)은 인위적으로 조성되지 않은 수중 지반, 즉 해저면에 해당하지만, 실시예에 따라서 수중 지반(1)은 수중 콘크리트 블록 구조물을 위하여 인공적으로 조성한 기초 지반을 포함하는 개념이다.The underwater ground (1) of this embodiment corresponds to an underwater ground that is not artificially created, that is, the sea floor, but according to the embodiment, the underwater ground (1) is a concept including a foundation ground artificially formed for an underwater concrete block structure. .
수중 지반(1)의 상부에 기초 지반이 조성되고 그 이후 콘크리트 블록 집합체(100)를 형성한다면, 콘크리트 블록 집합체 형성 단계 이전에 기초 지반을 조성하는 기초 지반 조성 단계가 더 필요하다.If the foundation ground is formed on the upper part of the underwater ground (1) and the concrete block assembly 100 is formed thereafter, a foundation ground construction step of forming the foundation ground before the concrete block assembly formation step is further required.
기초 지반은, 기초 사석 지반, 치환 사석 지반, 심층혼합처리 지반, 연약지반개량처리된 지반 중 어느 하나 또는 이들을 복합한 것일 수 있다.The foundation ground may be any one or a combination of the ground sandstone ground, the substituted sandstone ground, the deep mixed ground ground, the soft ground improvement ground ground.
연약지반개량처리된 지반이란, 지반이 연약하여 필요한 지지력을 얻을 수 없을 때 치환공법, 압밀공법, 탈수공법, 배수공법, 진동다짐공법, 다짐모래 말뚝공법, 폭파공법, 약액주입공법 등에 따라 지반을 개량하는 연약지반개량공법에 따라 개량 처리된 지반을 말한다.When the ground is soft and the necessary support cannot be obtained, the ground is replaced according to the replacement method, consolidation method, dewatering method, drainage method, vibration compaction method, compaction sand pile method, blasting method, chemical injection method, etc. It refers to the ground that has been improved according to the improved soft ground improvement method.
(3) 지반 천공부 형성 단계(3) Ground perforation formation step
콘크리트 블록 집합체 형성 단계 이후, 도 8과 같이 콘크리트 기둥용 통공부(101)의 하부에 위치한 수중 지반(1)을 천공하여 콘크리트 기둥용 통공부(101)와 연속되는 공간인 지반 천공부(102)를 형성한다.After the step of forming the concrete block assembly, as shown in FIG. 8, the underwater ground 1 located under the through hole 101 for the concrete column is drilled, and the ground hole 102 is a space continuous with the through hole 101 for the concrete column. To form.
본 실시예에서는, 상하방향으로 연장되는 형태의 보호관(103)을 콘크리트 기둥용 통공부(101)를 통하여 수직 방향으로 수중 지반(1)에 삽입하면서 콘크리트 기둥용 통공부(101)의 하부에 위치한 수중 지반(1)을 천공한다.In this embodiment, the protective pipe 103 in the form of extending in the vertical direction is inserted into the underwater ground 1 in the vertical direction through the through hole 101 for the concrete column, while being located under the through hole 101 for the concrete column. Drill the underwater ground (1).
이와 같이 지반 천공부(102)를 형성하면, 삽입된 보호관(103)은 콘크리트 기둥용 통공부(101) 및 지반 천공부(102)에 걸쳐 위치되며, 보호관(103)의 내부에 지반 천공부(102)가 형성된다.When the ground perforation part 102 is formed in this way, the inserted protective pipe 103 is located across the through hole 101 for the concrete column and the ground perforated part 102, and the ground perforated part ( 102) is formed.
이때 보호관(103)은 콘크리트 기둥용 통공부(103)보다 작은 직경을 가지며, 지반 천공부(102)는 콘크리트 기둥용 통공부(101)의 단면적보다 작은 단면적으로 상하방향으로 연장된다.At this time, the protective pipe 103 has a diameter smaller than that of the through hole 103 for a concrete column, and the ground perforation 102 extends in the vertical direction with a cross-sectional area smaller than the cross-sectional area of the through hole 101 for a concrete column.
이때 보호관(103)은 천공 작업 도중 혹은 천공 후에 주변의 수중 지반(1)이 지반 천공부(102)로 붕괴되거나 혹은 각종 이물질이 지반 천공부(102)로 유입되는 것을 방지한다. At this time, the protective pipe 103 prevents the surrounding underwater ground 1 from collapsing into the ground drilling portion 102 during or after the drilling operation, or various foreign substances from flowing into the ground drilling portion 102.
또한 보호관(103)은 후술하는 상하방향 철근부 및 방수막을 삽입할 때 방수막을 보호하는 역할을 한다.In addition, the protective tube 103 serves to protect the waterproof membrane when inserting the vertical reinforcing bars and the waterproof membrane to be described later.
보호관(103)의 길이는 콘크리트 기둥용 통공부(101)의 길이와 지반 천공부(102)의 길이의 합보다 길게 형성되는 것이 바람직하다. 이에 의하여 방수막 삽입 작업을 간편하게 진행할 수 있다.The length of the protective pipe 103 is preferably formed to be longer than the sum of the length of the through hole 101 for the concrete column and the length of the ground perforation 102. Accordingly, the waterproof membrane insertion operation can be easily performed.
즉 도 8에 도시된 바와 같이 콘크리트 블록 집합체(100)의 상부 표면은 수면보다 높게 위치되며, 지반 천공부 형성 단계에서 삽입된 보호관(103)의 상단은 콘크리트 블록 집합체(100)의 상부 표면으로부터 돌출되어 있다. 즉 보호관(103)의 상단은 수면보다 높게 위치되며 또한 콘크리트 블록 집합체(100)의 상부 표면보다 높게 위치된다. 따라서 보호관(103)으로 방수막 등을 삽입하는 작업이 매우 간편하게 이루어질 수 있다.That is, as shown in FIG. 8, the upper surface of the concrete block assembly 100 is positioned higher than the water surface, and the upper end of the protective tube 103 inserted in the ground perforation formation step protrudes from the upper surface of the concrete block assembly 100 Has been. That is, the upper end of the protective tube 103 is positioned higher than the water surface and is positioned higher than the upper surface of the concrete block assembly 100. Therefore, the operation of inserting a waterproof film or the like into the protective tube 103 can be performed very easily.
한편 보호관(103)은 지반 천공부 형성 단계 이후 제거되는 것이 바람직하다. Meanwhile, the protective tube 103 is preferably removed after the step of forming the ground perforation.
한편 수중 지반(1)을 천공하는 작업을 위하여는 천공 장비가 필요하며, 본 실시예는 콘크리트 블록 집합체(100)의 상부 표면은 수면보다 높게 위치하므로, 천공 장비가 콘크리트 블록 집합체(100)의 상부 표면에 배치되어 천공 작업을 수행한다면 이는 건식 작업이 되어(즉 바지선에서 작업하는 습식 작업이 불필요하게 됨.), 육상 작업과 동일한 환경에서 작업하여 작업 효율을 높일 수 있다.Meanwhile, a drilling equipment is required for drilling the underwater ground (1), and in this embodiment, since the upper surface of the concrete block assembly 100 is located higher than the water surface, the drilling equipment is the upper part of the concrete block assembly 100 If it is placed on the surface to perform drilling, it becomes a dry operation (that is, the wet operation on a barge becomes unnecessary), and working in the same environment as the land operation can increase work efficiency.
(4) 콘크리트 기둥 형성 단계(4) Concrete pillar formation stage
지반 천공부 형성 단계 이후, 콘크리트 기둥용 통공부(101)와 지반 천공부(102)를 따라 콘크리트 기둥(200)을 형성한다.After the ground perforation forming step, the concrete pillar 200 is formed along the through hole 101 for the concrete pillar and the ground perforation 102.
본 실시예의 콘크리트 기둥 형성 단계는 도 9 내지 도 12과 같이 단계적으로 이루어진다.The step of forming a concrete column in this embodiment is performed in stages as shown in FIGS. 9 to 12.
먼저 도 9 및 도 10과 같이, 상하방향으로 형성된 상하방향 철근부(201)를 콘크리트 기둥용 통공부(101) 및 지반 천공부(102)에 삽입한다.First, as shown in Figs. 9 and 10, the vertical reinforcement portion 201 formed in the vertical direction is inserted into the through hole 101 and the ground perforation 102 for a concrete column.
본 실시예에서는 이미 보호관(103)이 콘크리트 기둥용 통공부(101) 및 지반 천공부(102)에 위치되어 있으므로, 상하방향 철근부(201)를 보호관(103) 내부에 삽입한다.In this embodiment, since the protective pipe 103 is already located in the through hole 101 and the ground perforation 102 for the concrete column, the vertical reinforcement portion 201 is inserted into the protective pipe 103.
이때 상하방향 철근부(201)의 하부 및 측부를 방수막(202)으로 감싼 상태로 콘크리트 기둥용 통공부(101) 및 지반 천공부(102)에 삽입한다.At this time, the bottom and side portions of the vertical reinforcing bar portion 201 are wrapped with a waterproof membrane 202 and inserted into the through hole 101 and the ground perforation 102 for a concrete column.
한편 보호관(103)을 통하여 방수막(202) 등이 삽입되므로, 방수막(202)이 수중 지반(1) 등에 접촉하면서 찢기거나 훼손될 위험이 없다.Meanwhile, since the waterproof membrane 202 or the like is inserted through the protective tube 103, there is no risk of being torn or damaged while the waterproof membrane 202 contacts the underwater ground 1 or the like.
이와 같이 방수막(202)으로 감싸인 상하방향 철근부(201)가 보호관(103) 내부에 삽입된 후, 도 11 및 도 12와 같이 방수막(202)의 내부에 콘크리트(203)를 타설하여 콘크리트 기둥(200)을 형성한다.In this way, after the vertical reinforcement portion 201 wrapped with the waterproof membrane 202 is inserted into the protective tube 103, concrete 203 is poured into the waterproof membrane 202 as shown in FIGS. 11 and 12 To form a concrete column 200.
도 11은 방수막(202)의 내부에 콘크리트(203) 소량을 타설하면서 보호관(103)을 조금 상승시킨 상태의 도면이다.11 is a view of a state in which the protective pipe 103 is slightly raised while a small amount of concrete 203 is poured into the waterproof membrane 202.
즉 도 11에서 보호관(103)의 하단은 지반 천공부(102)를 막 벗어난 상태를 가지도록 보호관(103)을 상승시킨 상태이며, 방수막(202)의 내부에는 지반 천공부(102) 영역에 필요한 콘크리트(203)가 타설된 상태이다.That is, in FIG. 11, the lower end of the protective pipe 103 is in a state in which the protective pipe 103 is raised to have a state just out of the ground perforation 102, and the inside of the waterproof membrane 202 is in the ground perforation 102 area. The necessary concrete 203 is poured.
이에 의하여 지반 천공부(102)에 위치한 방수막(202)은 콘크리트(203)의 압력에 의하여 수중 지반(1)에 밀착된다.Accordingly, the waterproof membrane 202 located in the ground perforation 102 is in close contact with the underwater ground 1 by the pressure of the concrete 203.
이와 같은 방식으로, 방수막(202)의 내부에 콘크리트(203)를 점차적으로 타설함과 함께 보호관(103)을 점차적으로 상승시켜, 최종적으로 도 12과 같이 보호관(103)을 완전히 제거하는 한편 콘크리트 기둥용 통공부(101)와 지반 천공부(102) 전체에 콘크리트(203)를 타설하는 작업을 완료한다.In this way, the concrete 203 is gradually poured into the waterproof membrane 202 and the protective tube 103 is gradually raised, and the protective tube 103 is finally completely removed as shown in FIG. The work of pouring concrete 203 in the entire through hole 101 for the column and the ground hole 102 is completed.
즉 보호관(103)은, 타설된 콘크리트(203)가 경화되기 전에 제거될 수 있다.That is, the protective tube 103 may be removed before the poured concrete 203 is cured.
이와 같이 콘크리트(203)가 방수막(202)의 내부에 타설되면 방수막(202)은 콘크리트(203)의 압력으로 수중 지반(1) 및 콘크리트 블록(110, 120, 130, 140)에 밀착되며, 이후 양생 과정을 거쳐 콘크리트 기둥(200)이 된다.In this way, when the concrete 203 is poured into the waterproof membrane 202, the waterproof membrane 202 is in close contact with the underwater ground 1 and the concrete blocks 110, 120, 130, 140 by the pressure of the concrete 203. Afterwards, it becomes a concrete column 200 through a curing process.
만일 방수막(202)의 내부에 콘크리트(203)를 한꺼번에 타설하고 이후 보호관(103)을 상승시켜 보호관(103)을 제거할 수도 있지만, 이 경우 방수막(202)이 콘크리트(203)의 압력으로 보호관(103) 내부에 강하게 밀착되어 보호관(103)을 방수막(202)으로부터 분리하는 것이 어려울 수 있다.If the concrete 203 is poured into the waterproof membrane 202 at once, and then the protective tube 103 may be raised to remove the protective tube 103, in this case, the waterproof membrane 202 is applied under the pressure of the concrete 203. It may be difficult to separate the protective tube 103 from the waterproof film 202 because it is strongly adhered to the inside of the protective tube 103.
이와 같이 콘크리트 블록 집합체(100)에 콘크리트 기둥(200)이 형성된다.In this way, the concrete column 200 is formed in the concrete block assembly 100.
즉 콘크리트 기둥(200)은, 콘크리트 기둥용 통공부(101)에 위치하면서 제1직경으로 상하방향으로 연장되는 제1콘크리트 기둥부(200a)와, 지반 천공부(102)에 위치하면서 제2직경으로 상하방향으로 연장되는 제2콘크리트 기둥부(200b)를 포함하여 이루어진다.That is, the concrete pillar 200 is positioned in the first concrete pillar portion 200a extending in the vertical direction with the first diameter while being positioned in the through hole portion 101 for the concrete pillar, and the second diameter while being positioned in the ground perforation portion 102 It consists of including a second concrete column portion (200b) extending in the vertical direction.
이와 같이, 콘크리트 블록 집합체(100)를 이루는 복수의 콘크리트 블록(110, 120, 130, 140)이 콘크리트 기둥(200)에 의하여 수중 지반(1)에 결속된 상태가 된다.In this way, a plurality of concrete blocks (110, 120, 130, 140) constituting the concrete block assembly (100) is in a state bound to the underwater ground (1) by the concrete column (200).
따라서 본 실시예의 콘크리트 블록 집합체(100)의 안정성을 평가하기 위하여는, 콘크리트 블록 집합체(100)의 중량과, 수중 콘크리트 블록 구조물(200)의 수중 지반(1)에 대한 마찰력 이외에도, 콘크리트 기둥(200)에 의한 수중 지반(1)에의 결속력을 함께 고려하여야 한다.Therefore, in order to evaluate the stability of the concrete block assembly 100 of this embodiment, in addition to the weight of the concrete block assembly 100 and the frictional force on the underwater ground 1 of the underwater concrete block structure 200, the concrete column 200 ) To the underwater ground (1) must be considered together.
즉 본 콘크리트 블록 집합체(100)는 콘크리트 기둥(200)에 의한 수중 지반(1)에의 결속력으로 인하여 안정성이 획기적으로 향상된다.That is, the concrete block assembly 100 has a remarkably improved stability due to the binding force to the underwater ground 1 by the concrete column 200.
즉 비교적 소형화된 구조물인 경우에도, 높은 파력 에너지의 파도에 대응할 수 있는 파력 증폭 방파제(10)를 구현할 수 있다.That is, even in the case of a relatively compact structure, it is possible to implement the wave power amplifying breakwater 10 capable of responding to waves of high wave power energy.
(5) 상치 콘크리트 구조물 형성 단계(5) Steps of forming a standing concrete structure
콘크리트 기둥 형성 단계 이후, 도 13과 같이 콘크리트 블록 집합체(100)의 상부에 상치 콘크리트 구조물(300)을 형성한다.After the step of forming the concrete pillar, as shown in FIG. 13, a standing concrete structure 300 is formed on the upper part of the concrete block assembly 100.
상치 콘크리트 구조물(300)의 평면도상 구조는 콘크리트 블록 집합체(100)의 평면도상 구조에 대응한다.The plan view structure of the standing concrete structure 300 corresponds to the plan view structure of the concrete block assembly 100.
즉 상치 콘크리트 구조물(300)은 전면에 전방으로 돌출되는 제2돌출부와 후방으로 요입되는 제2요입부가 번갈아 형성되면서 제2돌출부와 제2요입부의 사이에 외해에서 입사되는 파도를 제2요입부로 안내하기 위하여 제2돌출부에서 제2요입부를 향하여 경사진 제2파도 안내부가 각각 형성되며, 이와 같은 상치 콘크리트 구조물(300)의 구조는 파력 증폭 방파제(10)의 돌출부(11), 요입부(120, 파도 안내부(13)의 구조에 대응된다.That is, the standing concrete structure 300 guides the waves incident from the open sea between the second protrusion and the second concave portion to the second concave portion as the second protrusion protruding forward and the second concave concave in the rear are formed alternately. In order to do so, a second wave guide portion inclined toward the second concave portion from the second protrusion portion is formed, respectively, and the structure of the standing concrete structure 300 is the protrusion 11, the concave portion 120 of the wave power amplifying breakwater 10, Corresponds to the structure of the wave guide 13.
상치 콘크리트 구조물(300)은 파력 증폭 방파제(10)의 상부를 친수 공간으로 조성하거나 등대와 같은 시설물 설치 공간으로 활용할 수 있도록 하기 위한 것이다.The stand-up concrete structure 300 is to make the upper part of the wave power amplifying breakwater 10 a hydrophilic space or to be utilized as a space for installation of facilities such as a lighthouse.
이와 같이 상치 콘크리트 구조물(300)이 형성되면서 파력 증폭 방파제(10)가 완성된다.As the concrete structure 300 is formed in this way, the wave power amplifying breakwater 10 is completed.
파력 증폭 방파제(10)에는 약 12m 간격으로 요입부(12)가 반복 형성되어 있다. 요입부(12)의 상부측에는 파력 발전장치(20)를 설치하기 위한 파력 발전장치 설치공간(12a)이 형성된다.In the wave power amplifying breakwater 10, concave portions 12 are repeatedly formed at about 12m intervals. A wave power generating device installation space 12a for installing the wave power generating device 20 is formed on the upper side of the concave inlet 12.
파력 발전장치 설치공간(12a)은 내측으로 오목한 홈 형태로 형성된다. 아울러 파력 증폭 방파제(10)의 상부측에는 파력 발전장치 설치공간(12a)으로 접근할 수 있도록 계단(12b)이 형성된다. 계단(12b)과 같은 부가적인 구조들은 실시례에 따라서 생략되거나 다른 구조물로 변경될 수도 있다.Wave power generating device installation space (12a) is formed in the shape of a concave inward groove. In addition, a step 12b is formed on the upper side of the wave power amplifying breakwater 10 to access the wave power generation device installation space 12a. Additional structures such as the staircase 12b may be omitted or changed to other structures depending on the embodiment.
본 실시례에서 파력 발전장치 설치공간(12a)은 상치 콘크리트 구조물(300)에 형성된다. 파력 발전장치 설치공간(12a)은 파력 증폭 방파제(10)의 수면 위로 돌출된 높이에 따라서 그 위치가 변경될 수 있다.In this embodiment, the wave power generation device installation space 12a is formed in the standing concrete structure 300. The location of the wave power generating device installation space 12a may be changed according to a height protruding above the water surface of the wave power amplifying breakwater 10.
이와 같이 파력 증폭 방파제(10)가 설치된 후 파력 증폭 방파제(10)에 파력 발전장치가 설치된다.In this way, after the wave power amplification breakwater 10 is installed, a wave power generation device is installed in the wave power amplification breakwater 10.
파력 증폭 방파제(10)의 요입부(즉, 콘크리트 블록 집합체(100)의 제1요입부 또는 상치 콘크리트 구조물(300)의 제2요입부)에 집중되는 파도의 운동 에너지를 이용하여 발전하는 파력 발전장치(20)를 상치 콘크리트 구조물(300)의 제2요입부에 설치한다.Wave power generation generated by using the kinetic energy of the waves concentrated in the concave portion of the wave power amplification breakwater 10 (that is, the first concave portion of the concrete block assembly 100 or the second concave portion of the standing concrete structure 300) The device 20 is installed in the second concave portion of the standing concrete structure 300.
본 실시례의 파력 발전장치(20)는 파도의 상하방향 진동을 직접 이용하여 전력을 생산하는 가동물체형 발전장치이다.The wave power generation device 20 of this embodiment is a temporary animal-type power generation device that generates power by directly using the vertical vibration of the wave.
본 파력 발전장치(20)는 파력 증폭 방파제(10)의 요입부(12)에 배치되며 착수부위의 형태가 하방을 향하여 반구형을 이루는 반구형 부유체(22), 반구형 부유체(22)를 요입부(12)의 내에서 상하방향으로 이동 가능하게 안내하는 부유체 안내부, 반구형 부유체(22)의 상하방향 이동을 이용하여 전력을 발전하는 발전부를 포함하여 이루어진다.This wave power generation device 20 is disposed in the concave inlet 12 of the wave power amplifying breakwater 10 and has a hemispherical floating body 22 and a semi-spherical floating body 22 in which the shape of the embarkation portion faces downward. (12) It comprises a floating body guide portion for guiding so as to be movable in the vertical direction, and a power generation portion for generating electric power by using the vertical movement of the hemispherical floating body 22.
반구형 부유체(22)는 해수면에 착수되는 부위의 형태가 하방을 향하여 반구형을 이루는 부유체이다. 반구형 부유체(22)는 파도가 입사되는 방향에 상관없이 파력을 효과적으로 전달받을 수 있도록 하며, 파도의 충격을 최소화하여 파도에 의하여 쉽게 파손되지 않는다.The hemispherical floating body 22 is a floating body in which the shape of a portion to be embarked on the sea level faces downward and forms a hemispherical shape. The hemispherical floating body 22 enables the wave power to be effectively transmitted irrespective of the direction in which the wave is incident, and minimizes the impact of the wave so that it is not easily damaged by the wave.
부유체 안내부는 반구형 부유체(22)를 요입부(12)의 내에서 상하방향으로 이동 가능하게 안내하기 위한 것이다. 부유체 안내부(21)는 반구형 부유체(22)의 상하방향 이동을 안내하기만 하면 되므로 다양한 구조로 설계될 수 있다. 일례로, 부유체 안내부는 반구형 부유체(22)를 상하방향으로 직선 운동하도록 안내하는 레일 구조일 수 있다.The floating body guide portion is for guiding the hemispherical floating body 22 so as to be movable in the vertical direction within the concave portion 12. The floating body guide 21 only needs to guide the vertical movement of the hemispherical floating body 22, and thus can be designed in various structures. For example, the floating body guide portion may have a rail structure that guides the hemispherical floating body 22 to linearly move in the vertical direction.
본 실시례의 부유체 안내부는 일단부가 파력 증폭 방파제(10)의 요입부(12)에 상하방향으로 회동 가능하게 결합되고 타단부가 반구형 부유체(22)에 결합되는 회동 지지대(21)이다. 회동 지지대(21)는 한 쌍으로 마련되어 반구형 부유체(22)의 좌우 양측을 붙잡아 상하방향으로 회동 가능하게 지지한다. 이와 같은 구조의 회동 지지대(21)는 반구형 부유체(22)가 파도의 상하방향 진동에 따라서 호를 그리며 상하방향으로 움직일 수 있도록 안내한다.The floating body guide part of the present embodiment is a rotation support 21 whose one end is rotatably coupled to the concave inlet 12 of the wave power amplifying breakwater 10 and the other end is coupled to the hemispherical floating body 22. Rotation supports 21 are provided in a pair to hold the left and right sides of the hemispherical floating body 22 and support them so as to be rotatable in the vertical direction. The rotational support 21 of this structure guides the hemispherical floating body 22 to move in the vertical direction while drawing an arc according to the vertical vibration of the wave.
회동 지지대(21)를 상방으로 완전히 회동시키면 반구형 부유체(22)를 파력 발전장치 설치공간(12a)에 고정시킬 수 있다. 회동 지지대(21)를 상방으로 회동시켜 반구형 부유체(22)를 파력 발전장치 설치공간(12a)에 갈무리하면 태풍으로부터 파력 발전장치(20)의 파손을 방지할 수 있으며, 고장시 손쉽게 접근하여 수리하거나 교체할 수 있다.When the rotation support 21 is completely rotated upward, the hemispherical floating body 22 can be fixed to the wave power generator installation space 12a. If the hemispherical floating body (22) is stored in the wave power generation device installation space (12a) by rotating the rotation support (21) upward, damage to the wave power generation device (20) from a typhoon can be prevented, and in case of failure, it can be easily accessed and repaired. Or can be replaced.
발전부는 반구형 부유체(22)의 상하방향 움직임을 이용하여 전력을 발전하기 위한 것이다. 본 실시례의 발전부는 일단부가 파력 증폭 방파제(10)의 요입부(12)에 회동 가능하게 결합되고 타단부가 반구형 부유체(22)에 회동 가능하게 결합되어 반구형 부유체(22)의 상하방향 움직임에 따라서 길이가 가변되는 실린더부재(23)를 이용하여 전력을 발전한다.The power generation unit is for generating electric power by using the vertical movement of the hemispherical floating body 22. The power generation unit of this embodiment has one end rotatably coupled to the concave inlet 12 of the wave power amplifying breakwater 10 and the other end rotatably coupled to the hemispherical floating body 22 in the vertical direction of the hemispherical floating body 22 Electric power is generated by using the cylinder member 23 whose length is variable according to the movement.
즉, 본 실시례의 발전부는 반구형 부유체(22)의 움직임에 따라서 길이가 가변되는 실린더부재(23)를 통하여 전력을 발전하는 장치이다.That is, the power generation unit of this embodiment is a device that generates power through the cylinder member 23 whose length is variable according to the movement of the hemispherical floating body 22.
실린더부재(23)는 실린더부재(23)의 내부에 채워진 유체가 출입하며 운동에너지를 전달하는 유압실린더일 수 있다. 실린더부재(23)의 구체적인 작동 방식 및 발전부의 전력 발전 방식은 실시례에 따라서 변경될 수 있다.The cylinder member 23 may be a hydraulic cylinder through which a fluid filled in the cylinder member 23 enters and exits and transmits kinetic energy. A specific operation method of the cylinder member 23 and a power generation method of the power generation unit may be changed according to embodiments.
본 발명의 일 실시례에 의한 파력 증폭 방파제를 이용한 파력 발전 시스템은, 파도를 파력 증폭 방파제(10)의 요입부(12)로 집중시켜 파력을 증폭시키고 증폭된 파력을 이용하여 파력 발전장치(20)를 가동함으로써 발전이 이루어지도록 한다.The wave power generation system using the wave power amplifying breakwater according to an embodiment of the present invention amplifies the wave power by concentrating the wave to the concave portion 12 of the wave power amplification breakwater 10, and uses the amplified wave power to use the wave power generation device 20 ) To enable power generation to take place.
종래의 파력 발전 시스템은 파력 발전장치를 향하여 입사되는 파도 중 일부만을 이용하여 발전이 이루어지도록 하는 것이 일반적이며, 입사되는 파도의 에너지를 최대한 이용하기 위해서 부유체의 해수면 접촉 면적을 증가시키는 등의 방법을 사용하였다.Conventional wave power generation systems generally use only some of the waves incident on the wave power generation device to generate power, and in order to maximize the energy of the incident waves, a method such as increasing the contact area of the floating body to the sea surface. Was used.
그러나 본 발명의 일 실시례에 의한 파력 증폭 방파제(10)는 입사되는 파도가 경사면 형태의 파도 안내부(13)를 따라서 요입부(12)로 모이도록 하였으며, 요입부에 모인 파도가 서로 중첩되어 큰 진폭으로 진동하도록 하였다.However, in the wave power amplifying breakwater 10 according to an embodiment of the present invention, the incident waves are gathered to the concave inlet 12 along the inclined wave guide 13, and the waves collected in the concave inlet overlap each other. It was made to vibrate with a large amplitude.
요입부(12)의 파도는 큰 에너지를 가지고 있으면서 큰 진폭으로 진동하게 되므로, 이 곳에 파력 발전장치(20)를 마련하여 발전하면 많은 양의 파력 에너지를 전력으로 변환할 수 있다.Since the wave of the concave inlet 12 has a large energy and vibrates with a large amplitude, a large amount of wave energy can be converted into electric power by providing the wave power generation device 20 thereto.
본 발명의 일 실시례에 의한 파력 증폭 방파제를 이용한 파력 발전 시스템의 파력 증폭 방파제(10)는 테트라포드(TTP)를 이용하여 시공되는 방파제와는 달리 제1-1,1-2,2-1,2-2콘크리트 블록(110,120,130,140)을 단순 적층한 후 콘크리트 기둥(200)을 형성하므로 매우 손쉽게 시공 가능하다.The wave power amplification breakwater 10 of the wave power generation system using the wave power amplification breakwater according to an embodiment of the present invention is different from the breakwater constructed using a tetrapod (TTP), 1-1, 1-2, 2-1, 2-2 Since the concrete blocks (110, 120, 130, 140) are simply stacked to form a concrete column (200), it is very easy to construct.
아울러 제1-1,1-2,2-1,2-2콘크리트 블록(110,120,130,140)을 좌우로 오프셋되게 적층하고 상호 결속시킬 뿐 아니라 상하방향으로 수중 지반(1)에 결속시키는 것이 가능하여 견고한 구조물이 형성되므로, 대형 케이슨을 이용한 방식보다 시공 비용을 크게 절감할 수 있으며 공사 기간 또한 단축시킬 수 있다.In addition, 1-1, 1-2, 2-1, 2-2 concrete blocks (110, 120, 130, 140) can be stacked to be offset from side to side and bonded to each other, as well as to be bonded to the underwater ground (1) in the vertical direction, making it a sturdy structure. Since is formed, the construction cost can be significantly reduced compared to the method using a large caisson, and the construction period can also be shortened.
아울러 파력 발전장치(20)는 파력이 입사되는 모든 부위를 커버할 수 있도록 촘촘하게 배치되는 것이 아니라 일정한 간격으로 이격되어 배치되므로 파력 발전장치(20)의 수를 크게 늘리지 않아도 되며, 파력 발전장치(20)가 설치된 파력 증폭 방파제(10)의 요입부(12)로 파도가 집중되어 파력 에너지가 증폭되므로 종래보다 높은 발전 효율을 기대할 수 있다.In addition, the wave power generating device 20 is not densely arranged so as to cover all areas where the wave power is incident, but is arranged at regular intervals, so that the number of wave power generating devices 20 does not need to be greatly increased, and the wave power generating device 20 ), the wave is concentrated to the concave portion 12 of the wave power amplifying breakwater 10 installed, so that the wave energy is amplified, so that higher power generation efficiency than the conventional one can be expected.
아울러, 본 실시례의 파력 발전장치(20)는 구조적 안정성이 높아 손쉽게 운용 가능하며, 반구형 부유체(22)의 착수부위 형태가 반구형이므로 파도의 입사 방향에 따른 파력 발전장치(20)의 파손 우려가 없다.In addition, the wave power generation device 20 of this embodiment has high structural stability and can be easily operated, and the shape of the landing portion of the hemispherical floating body 22 is a hemispherical shape, so there is a concern about the damage of the wave power generation device 20 according to the direction of incidence of the wave. There is no.
부가적으로 파력 증폭 방파제(10) 상부의 상치 콘크리트 구조물(300)에 친수형 공간을 조성하여 낚시와 같은 레저 활동을 즐기도록 할 수 있으며, 등대와 같은 부가적인 시설물을 설치하여 다양한 기능을 수행하는 공간으로 활용하고, 파력발전을 교육하고 친환경 에너지를 홍보하기 위한 현장으로 활용할 수 있다.In addition, it is possible to create a hydrophilic space in the upper concrete structure 300 of the wave power amplification breakwater 10 to enjoy leisure activities such as fishing, and to perform various functions by installing additional facilities such as a lighthouse. It can be used as a space, and it can be used as a site to educate on wave power generation and promote eco-friendly energy.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형 가능하다는 것을 이해할 수 있을 것이다.The above description of the present invention is for illustrative purposes only, and those of ordinary skill in the art to which the present invention pertains will be able to understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. .
그러므로 이상에서 기술한 실시례들은 모든 면에서 예시적인 것일 뿐 한정적이 아닌 것으로 이해되어야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.Therefore, it should be understood that the embodiments described above are illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as being distributed may also be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims to be described later rather than the detailed description, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention. do.
본 발명은 파력 발전 산업에 이용될 수 있다.The present invention can be used in the wave power industry.

Claims (3)

  1. 전면에 좌측이 우측보다 전방으로 돌출되도록 경사진 제1-1경사부가 형성되며 상하방향으로 연장되는 제1-1상하방향 관통구가 형성되는 복수의 제1-1콘크리트 블록, 전면에 우측이 좌측보다 전방으로 돌출되도록 경사진 제1-2경사부가 형성되며 상하방향으로 연장되는 제1-2상하방향 관통구가 형성되는 복수의 제1-2콘크리트 블록, 전면에 중앙부가 전방으로 돌출되고 좌측과 우측이 후방으로 후퇴되도록 경사진 제2-1돌출 경사부가 형성되며 상하방향으로 연장되는 제2-1상하방향 관통구가 형성되는 복수의 제2-1콘크리트 블록, 전면에 중앙부가 후방으로 요입되고 좌측과 우측이 전방으로 돌출되도록 경사진 제2-2요입 경사부가 형성되는 상하방향으로 연장되는 제2-2상하방향 관통구가 형성되는 복수의 제2-2콘크리트 블록을 제작하는 콘크리트 블록 제작 단계 ;A plurality of 1-1 concrete blocks in which the 1-1 inclined part is formed in the front so that the left side protrudes forward rather than the right side, and the 1-1 vertical through hole extending in the vertical direction is formed, and the right side is the left side on the front side. A plurality of 1-2 concrete blocks in which a 1-2 inclined portion is formed inclined to protrude more forward and a 1-2 vertical through hole extending in the vertical direction is formed, and the central portion on the front protrudes forward and the left side A plurality of 2-1 concrete blocks in which the 2-1 protruding inclined portion is formed so that the right side is retracted to the rear, and the 2-1 vertical through hole extending in the vertical direction is formed, and the central part is concave rearward on the front side. Concrete block manufacturing step of manufacturing a plurality of 2-2 concrete blocks in which the 2-2 vertical through-holes extending in the vertical direction are formed in which the 2-2 concave inclined part inclined so that the left and right protrude forward ;
    상기 콘크리트 블록 제작 단계에서 제작된 복수의 제1-1,1-2,2-1,2-2콘크리트 블록을 수중 지반의 상부에 설치하되, 상기 제1-1콘크리트 블록과 상기 제1-2콘크리트 블록은 수평방향으로 교대로 배치되어 제1블록층을 형성하고, 상기 제2-1콘크리트 블록과 상기 제2-2콘크리트 블록은 수평방향으로 교대로 배치되어 제2블록층을 형성하고, 상기 제1블록층과 상기 제2블록층은 상하방향으로 교대로 적층되어 콘크리트 블록 집합체를 형성하며, 상기 제1블록층과 상기 제2블록층은 평면도상 구조가 서로 동일한 형태이며, 상기 콘크리트 블록 집합체는 전면에 전방으로 돌출되는 제1돌출부와 후방으로 요입되는 제1요입부가 번갈아 형성되면서 상기 제1돌출부와 상기 제1요입부의 사이에 외해에서 입사되는 파도를 상기 제1요입부로 안내하기 위하여 상기 제1돌출부에서 상기 제1요입부를 향하여 경사진 제1파도 안내부가 각각 형성되며, 상기 콘크리트 블록 집합체의 상기 제1-1,1-2,2-1,2-2상하방향 관통구는 상하방향으로 연속되면서 하단부가 상기 수중 지반에 의하여 막히며 상단부가 개방된 복수의 콘크리트 기둥용 통공부를 형성하는 콘크리트 블록 집합체 형성 단계 ; A plurality of 1-1, 1-2, 2-1, 2-2 concrete blocks manufactured in the concrete block manufacturing step are installed on the upper part of the underwater ground, and the 1-1 concrete block and the 1-2-2 Concrete blocks are alternately arranged in a horizontal direction to form a first block layer, and the 2-1 concrete blocks and the 2-2 concrete blocks are alternately arranged in a horizontal direction to form a second block layer, and the The first block layer and the second block layer are alternately stacked in a vertical direction to form a concrete block assembly, and the first block layer and the second block layer have the same structure in plan view, and the concrete block assembly A first protrusion protruding forward and a first concave concave in the rear are alternately formed on the front side, and the first protrusion is formed between the first protrusion and the first concave part to guide the wave incident from the open sea to the first concave part. First wave guides inclined from the first protrusion to the first concave inlet are respectively formed, and the through holes in the 1-1, 1-2, 2-1, and 2-2 vertical directions of the concrete block assembly are continuous in the vertical direction. A concrete block assembly forming step of forming a through hole for a plurality of concrete columns with the lower end of which is blocked by the underwater ground and the upper end of which is open;
    상기 콘크리트 블록 집합체 형성 단계 이후, 상하방향으로 연장되는 형태의 보호관을 상기 콘크리트 기둥용 통공부를 통하여 수직 방향으로 상기 수중 지반에 삽입하면서 상기 콘크리트 기둥용 통공부의 하부에 위치한 수중 지반을 천공하여 상기 콘크리트 기둥용 통공부와 연속되는 공간이면서 상기 콘크리트 기둥용 통공부의 단면적보다 작은 단면적으로 상하방향으로 연장되는 지반 천공부를 형성하되, 상기 삽입된 보호관은 상기 콘크리트 기둥용 통공부 및 상기 지반 천공부에 걸쳐 위치되며, 상기 삽입된 보호관의 내부에 상기 지반 천공부가 형성되는 지반 천공부 형성 단계 ;After the step of forming the concrete block assembly, a protective tube extending in the vertical direction is inserted into the underwater ground in a vertical direction through the through hole for the concrete column, and the underwater ground located under the through hole for the concrete column is drilled, and the A ground perforation part extending in the vertical direction is formed in a space continuous with the through hole for a concrete column and a cross-sectional area smaller than the cross-sectional area of the through hole for the concrete column, and the inserted protective tube is the through hole for the concrete column and the ground perforation. A ground perforation forming step which is positioned over and in which the ground perforated portion is formed in the inserted protective tube;
    상기 지반 천공부 형성 단계 이후, 상하방향으로 형성된 상하방향 철근부를 상기 상하방향 철근부의 하부 및 측부를 방수막으로 감싼 상태로 상기 보호관에 삽입하고 상기 방수막의 내부에 콘크리트를 타설하여 상기 콘크리트 기둥용 통공부와 상기 지반 천공부를 따라 콘크리트 기둥을 형성하되, 상기 타설된 콘크리트가 경화되기 전에 상기 보호관을 제거하여 상기 방수막은 상기 타설된 콘크리트의 압력으로 상기 수중 지반 및 상기 콘크리트 블록에 밀착되며, 상기 콘크리트 기둥은 상기 콘크리트 기둥용 통공부에 위치하면서 상하방향으로 연장되는 제1콘크리트 기둥부와 상기 지반 천공부에 위치하면서 상하방향으로 연장되는 제2콘크리트 기둥부를 포함하여 이루어지는 콘크리트 기둥 형성 단계 ;After the step of forming the ground perforation, the vertical reinforcement part formed in the vertical direction is inserted into the protective tube while the lower and side parts of the vertical reinforcement part are wrapped with a waterproofing film, and concrete is poured into the waterproofing film. A concrete column is formed along the study and the ground perforation, but the protective tube is removed before the poured concrete is hardened, so that the waterproofing membrane is in close contact with the underwater ground and the concrete block under the pressure of the poured concrete, and the concrete The pillar is a concrete pillar forming step comprising a first concrete pillar portion extending in the vertical direction while being positioned in the through hole for the concrete pillar, and a second concrete pillar portion extending in the vertical direction while being positioned in the ground drilling portion;
    상기 콘크리트 기둥 형성 단계 이후, 상기 콘크리트 블록 집합체의 상부에 상치 콘크리트 구조물을 형성하되, 상기 상치 콘크리트 구조물은 전면에 전방으로 돌출되는 제2돌출부와 후방으로 요입되는 제2요입부가 번갈아 형성되면서 상기 제2돌출부와 상기 제2요입부의 사이에 외해에서 입사되는 파도를 상기 제2요입부로 안내하기 위하여 상기 제2돌출부에서 상기 제2요입부를 향하여 경사진 제2파도 안내부가 각각 형성되는 상치 콘크리트 구조물 형성 단계 ;After the step of forming the concrete pillar, a standing concrete structure is formed on the upper part of the concrete block assembly, and the second convex portion is formed alternately with a second protruding portion protruding forward and a second concave inlet at the front side. Forming a top-level concrete structure in which a second wave guide portion inclined from the second protrusion toward the second concave portion is formed between the protrusion and the second concave portion in order to guide the waves incident from the open sea to the second concave portion;
    상기 콘크리트 블록 집합체의 제1요입부 또는 상기 상치 콘크리트 구조물의 제2요입부에 집중되는 파도의 운동 에너지를 이용하여 발전하는 파력 발전장치를 상기 상치 콘크리트 구조물의 제2요입부에 설치하는 파력 발전장치 설치 단계 ;A wave power generating device installed in the second concave portion of the standing concrete structure by using the kinetic energy of the waves concentrated in the first concave portion of the concrete block assembly or the second concave portion of the standing concrete structure Installation stage;
    를 포함하여 이루어지는 것을 특징으로 하는 파력 증폭 방파제를 이용한 파력 발전 시스템 시공 방법.Wave power generation system construction method using a wave power amplification breakwater comprising a.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 콘크리트 블록 집합체의 상부 표면은 수면보다 높게 위치되며, 상기 지반 천공부 형성 단계에서 삽입된 보호관의 상단은 상기 콘크리트 블록 집합체의 상부 표면으로부터 돌출되며, 상기 지반 천공부 형성 단계는, 천공 장비가 수면보다 높게 위치한 상기 콘크리트 블록 집합체의 상부 표면에 배치되어 건식 작업으로 천공 작업을 수행하는 것을 특징으로 하는 파력 증폭 방파제를 이용한 파력 발전 시스템 시공 방법.The upper surface of the concrete block assembly is located higher than the water surface, the upper end of the protective tube inserted in the ground perforation forming step protrudes from the upper surface of the concrete block assembly, and in the ground perforation forming step, the drilling equipment is water surface A method of constructing a wave power generation system using a wave power amplifying breakwater, characterized in that it is disposed on the upper surface of the concrete block assembly located higher and performs a drilling operation by a dry operation.
  3. 전면에 좌측이 우측보다 전방으로 돌출되도록 경사진 제1-1경사부가 형성되며 상하방향으로 연장되는 제1-1상하방향 관통구가 형성되는 복수의 제1-1콘크리트 블록, 전면에 우측이 좌측보다 전방으로 돌출되도록 경사진 제1-2경사부가 형성되며 상하방향으로 연장되는 제1-2상하방향 관통구가 형성되는 복수의 제1-2콘크리트 블록, 전면에 중앙부가 전방으로 돌출되고 좌측과 우측이 후방으로 후퇴되도록 경사진 제2-1돌출 경사부가 형성되며 상하방향으로 연장되는 제2-1상하방향 관통구가 형성되는 복수의 제2-1콘크리트 블록, 전면에 중앙부가 후방으로 요입되고 좌측과 우측이 전방으로 돌출되도록 경사진 제2-2요입 경사부가 형성되는 상하방향으로 연장되는 제2-2상하방향 관통구가 형성되는 복수의 제2-2콘크리트 블록를 포함하여 이루어지며, 상기 복수의 제1-1,1-2,2-1,2-2콘크리트 블록이 수중 지반의 상부에 설치되어 상기 제1-1콘크리트 블록과 상기 제1-2콘크리트 블록은 수평방향으로 교대로 배치되어 제1블록층을 형성하고, 상기 제2-1콘크리트 블록과 상기 제2-2콘크리트 블록은 수평방향으로 교대로 배치되어 제2블록층을 형성하고, 상기 제1블록층과 상기 제2블록층은 평면도상 구조가 서로 동일한 형태로서 상하방향으로 교대로 적층되며, 전면에 전방으로 돌출되는 제1돌출부와 후방으로 요입되는 제1요입부가 번갈아 형성되면서 상기 제1돌출부와 상기 제1요입부의 사이에 외해에서 입사되는 파도를 상기 제1요입부로 안내하기 위하여 상기 제1돌출부에서 상기 제1요입부를 향하여 경사진 제1파도 안내부가 각각 형성되는 콘크리트 블록 집합체 ;A plurality of 1-1 concrete blocks in which the 1-1 inclined part is formed in the front so that the left side protrudes forward rather than the right side, and the 1-1 vertical through hole extending in the vertical direction is formed, and the right side is the left side on the front side. A plurality of 1-2 concrete blocks in which a 1-2 inclined portion is formed inclined to protrude more forward and a 1-2 vertical through hole extending in the vertical direction is formed, and the central portion on the front protrudes forward and the left side A plurality of 2-1 concrete blocks in which the 2-1 protruding inclined portion is formed so that the right side is retracted to the rear, and the 2-1 vertical through hole extending in the vertical direction is formed, and the central part is concave rearward on the front side. Consisting of a plurality of 2-2 concrete blocks having a 2-2 vertical through-hole extending in the vertical direction in which a 2-2 concave inclined part inclined so that the left and the right protrude forward is formed, the plurality of The 1-1, 1-2, 2-1, 2-2 concrete blocks are installed on the upper part of the underwater ground, and the 1-1 concrete blocks and the 1-2 concrete blocks are alternately arranged in the horizontal direction. A first block layer is formed, and the 2-1 concrete blocks and the 2-2 concrete blocks are alternately disposed in a horizontal direction to form a second block layer, and the first block layer and the second block layer The planar structure is identical to each other and is alternately stacked in the vertical direction, and a first protrusion protruding forward and a first concave concave rearward are alternately formed on the front side, and between the first protrusion and the first concave part. A concrete block assembly in which a first wave guide portion inclined toward the first concave portion is formed from the first protrusion to guide the waves incident from the open sea to the first concave portion;
    상기 콘크리트 블록 집합체의 상기 제1-1,1-2,2-1,2-2상하방향 관통구가 상하방향으로 연속되면서 하단부가 상기 수중 지반에 의하여 막히며 상단부가 개방된 복수의 콘크리트 기둥용 통공부와 상기 콘크리트 기둥용 통공부의 하부에 위치하며 상기 수중 지반이 천공되어 형성된 지반 천공부를 따라 형성된 복수의 콘크리트 기둥 ;For a plurality of concrete columns in which the first 1-1,1-2,2-1,2-2 vertical through-holes of the concrete block assembly are continuous in the vertical direction, the lower end is blocked by the underwater ground and the upper end is open A plurality of concrete pillars positioned below the through-holes and the through-holes for the concrete pillars, and formed along the ground-perforations formed by drilling the underwater ground;
    상기 콘크리트 블록 집합체의 상부에 형성되되 전면에 전방으로 돌출되는 제2돌출부와 후방으로 요입되는 제2요입부가 번갈아 형성되면서 상기 제2돌출부와 상기 제2요입부의 사이에 외해에서 입사되는 파도를 상기 제2요입부로 안내하기 위하여 상기 제2돌출부에서 상기 제2요입부를 향하여 경사진 제2파도 안내부가 각각 형성되는 상치 콘크리트 구조물 ; The second protrusion protruding forward and the second concave concave in the rear are formed on the upper part of the concrete block assembly, and the waves incident from the open sea between the second protrusion and the second concave part are alternately formed. 2 a standing concrete structure in which second wave guide portions inclined from the second protrusion to the second concave portion are formed to guide the concave portion;
    상기 상치 콘크리트 구조물의 제2요입부에 마련되어 상기 콘크리트 블록 집합체의 제1요입부 또는 상기 상치 콘크리트 구조물의 제2요입부에 집중되는 파도의 운동 에너지를 이용하여 발전하는 파력 발전장치 ; A wave power generating device provided in the second concave portion of the standing concrete structure and generating power using the kinetic energy of the waves concentrated in the first concave portion of the concrete block assembly or the second concave portion of the standing concrete structure;
    를 포함하여 이루어지며, It is made including,
    상기 콘크리트 기둥은 상기 콘크리트 기둥용 통공부에 위치하면서 상하방향으로 연장되는 제1콘크리트 기둥부와 상기 지반 천공부에 위치하면서 상기 제1콘크리트 기둥부의 단면적보다 작은 단면적으로 상하방향으로 연장되는 제2콘크리트 기둥부를 포함하여 이루어지며 ;The concrete pillar is a first concrete pillar portion extending in the vertical direction while being positioned in the through hole for the concrete pillar, and a second concrete extending in the vertical direction with a cross-sectional area smaller than the cross-sectional area of the first concrete pillar portion while positioned in the ground perforation portion It is made including a column part;
    상기 콘크리트 기둥은, 상하방향으로 형성되어 상기 콘크리트 기둥용 통공부와 상기 지반 천공부에 걸쳐 배치된 상하방향 철근부와, 상기 상하방향 철근부의 하부 및 측부를 감싸면서 상기 수중 지반 및 상기 콘크리트 블록에 밀착된 방수막과, 상기 방수막의 내부에 타설되어 양생된 콘크리트를 포함하여 이루어지는 것 ;The concrete pillar is formed in the vertical direction, the vertical reinforcement portion disposed across the through hole for the concrete pillar and the ground perforation, and the bottom and side portions of the vertical reinforcement portion while surrounding the underwater ground and the concrete block. It comprises a waterproof membrane in close contact and cured concrete poured into the interior of the waterproof membrane;
    을 특징으로 하는 파력 증폭 방파제를 이용한 파력 발전 시스템.Wave power generation system using a wave power amplification breakwater, characterized in that.
PCT/KR2020/011433 2019-09-09 2020-08-27 Wave power generation system using wave amplification breakwater and construction method thereof WO2021049789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190111695A KR102095792B1 (en) 2019-09-09 2019-09-09 Wave power generation system using wave amplification breakwater and construction method therefor
KR10-2019-0111695 2019-09-09

Publications (1)

Publication Number Publication Date
WO2021049789A1 true WO2021049789A1 (en) 2021-03-18

Family

ID=70276200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011433 WO2021049789A1 (en) 2019-09-09 2020-08-27 Wave power generation system using wave amplification breakwater and construction method thereof

Country Status (2)

Country Link
KR (1) KR102095792B1 (en)
WO (1) WO2021049789A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102095792B1 (en) * 2019-09-09 2020-04-01 김상기 Wave power generation system using wave amplification breakwater and construction method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060023036A (en) * 2004-09-08 2006-03-13 송병무 Marine structure and construction method thereof
KR101355805B1 (en) * 2013-03-13 2014-01-24 (주)유주 Structure of concrete blocks and construction method therof
KR20150110237A (en) * 2014-03-24 2015-10-02 김상훈 Construction structures with wave power generator of semipermeable breakwater
CN109183709A (en) * 2018-09-28 2019-01-11 大连理工大学 Parabolic type wave energy utilizes formula breakwater
KR20190010203A (en) * 2017-07-21 2019-01-30 (주)유주 Inserting apparatus for concrete pack and contruction method for constructure of concrete blocks with the same and constructure of the concrete blocks
KR102095792B1 (en) * 2019-09-09 2020-04-01 김상기 Wave power generation system using wave amplification breakwater and construction method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101584184B1 (en) 2015-06-18 2016-01-13 정민시 Wave power generating apparatus using breakwater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060023036A (en) * 2004-09-08 2006-03-13 송병무 Marine structure and construction method thereof
KR101355805B1 (en) * 2013-03-13 2014-01-24 (주)유주 Structure of concrete blocks and construction method therof
KR20150110237A (en) * 2014-03-24 2015-10-02 김상훈 Construction structures with wave power generator of semipermeable breakwater
KR20190010203A (en) * 2017-07-21 2019-01-30 (주)유주 Inserting apparatus for concrete pack and contruction method for constructure of concrete blocks with the same and constructure of the concrete blocks
CN109183709A (en) * 2018-09-28 2019-01-11 大连理工大学 Parabolic type wave energy utilizes formula breakwater
KR102095792B1 (en) * 2019-09-09 2020-04-01 김상기 Wave power generation system using wave amplification breakwater and construction method therefor

Also Published As

Publication number Publication date
KR102095792B1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
CN103741657B (en) The construction method of large-sized multifunction waterborne traffic accident
WO2021049789A1 (en) Wave power generation system using wave amplification breakwater and construction method thereof
WO2020175844A1 (en) Construction method for underwater concrete block structure
CN217580865U (en) Large-diameter steel casing drilling platform under deep water slope bare rock geological condition
WO2018133740A1 (en) Underground building and construction method for same
JP6681148B2 (en) Bridge construction method, pillars and guide means used in the bridge construction method
CN112813991A (en) Excavation and support construction method for deep foundation pit of subway transfer station
CN203654196U (en) Guide apparatus for large and multifunctional over-water construction platform
CN112411572A (en) Building foundation pit supporting system
JP4508400B2 (en) Construction method for underwater structure foundation
JP4317322B2 (en) Arch support structure
WO2024014729A1 (en) Underwater concrete structure for preventing subsidence at seabed soft ground, and construction method therefor
WO2021045440A1 (en) Underwater concrete block structure and construction method therefor
CN215408678U (en) Arched tunnel composite lining structure
JP4504864B2 (en) Dam body reinforcement structure with wave-dissipating function
JP2015519489A (en) Partially floating offshore platform for offshore wind power, bridges and offshore structures, and construction method
CN113605422A (en) Construction method of wood-bamboo clay cofferdam
CN109827485B (en) Assembled flyrock protection device for cofferdam demolition blasting and use method thereof
CN111535183B (en) Bridge pile foundation construction equipment of water conservancy construction environmental protection
CN203684190U (en) Large multifunctional over-water construction platform
JP3852686B2 (en) Three-dimensional intersection construction method and three-dimensional intersection
CN214005679U (en) Integral type guide frame special for overwater pile foundation construction
CN218933016U (en) Shore protection trestle structure
US5145279A (en) Public works machine usable more particularly for laying vertical drains
JP2000144677A (en) Temporary cofferdam construction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863121

Country of ref document: EP

Kind code of ref document: A1