WO2021045440A1 - Underwater concrete block structure and construction method therefor - Google Patents

Underwater concrete block structure and construction method therefor Download PDF

Info

Publication number
WO2021045440A1
WO2021045440A1 PCT/KR2020/011438 KR2020011438W WO2021045440A1 WO 2021045440 A1 WO2021045440 A1 WO 2021045440A1 KR 2020011438 W KR2020011438 W KR 2020011438W WO 2021045440 A1 WO2021045440 A1 WO 2021045440A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
ground
underwater
concrete block
hole
Prior art date
Application number
PCT/KR2020/011438
Other languages
French (fr)
Korean (ko)
Inventor
김상기
Original Assignee
김상기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김상기 filed Critical 김상기
Publication of WO2021045440A1 publication Critical patent/WO2021045440A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D25/00Joining caissons, sinkers, or other units to each other under water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/20Bulkheads or similar walls made of prefabricated parts and concrete, including reinforced concrete, in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
    • E02D5/40Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds in open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor

Definitions

  • the present invention relates to an underwater concrete block structure installed on the sea or along a river for various purposes such as a berthing facility for a port, a sofa structure installed on the shore, a breakwater, and a construction method thereof.
  • Underwater structures are installed underwater for various purposes, such as berthing facilities for ports, sofa structures installed on the shore, and breakwaters.
  • the underwater structure means that the lower part of the underwater structure is installed in a submerged state, and the upper part of the underwater structure may protrude above the water surface or be located under the water surface.
  • a widely known construction technique in the construction of underwater structures is the large caisson method.
  • the large caisson construction method has the advantage of being able to withstand large waves, but because a large caisson with a very large structure must be manufactured on land and installed underwater after transporting it to the installation point, transportation and construction costs are very high, and various constraints There are a lot of them.
  • the inventor of the present invention proposes Korean Patent Registration No. 10-1355805 "Aquatic Concrete Block Structure Construction Method and Underwater Concrete Block Structure” (2014. 1. 15. Registration), and by using a concrete column, the concrete block in the upper part and the concrete block in the lower part. To have this structural integrity, a technology that allows underwater concrete block structures to have sufficient structural stability even against waves caused by large typhoons was proposed.
  • the stability of an underwater structure is generally determined by the weight and frictional force of the underwater structure (ie, the ground contact area of the underwater structure, and the coefficient of friction between the underwater structure and the foundation ground).
  • This method of determining stability is based on the premise that the underwater structure is simply loaded on the foundation ground.
  • the stability of the underwater structure is determined only by the weight and frictional force of the underwater structure.
  • the underwater structure is a structure in which a plurality of concrete blocks are integrated, there is still a problem that the underwater structure must be constructed with the same size as the large caisson.
  • Korean Patent Laid-Open Publication No. 10-2019-0010203 "Concrete pack insertion device and concrete block structure construction method using the same and concrete block structure constructed through the same” (published on January 30, 2019).
  • the prior art is to prepare a concrete pack sealed by inserting concrete and reinforcing bars extending in the vertical direction into a waterproof membrane, and receiving the concrete pack in a hollow tube-shaped tube extending in the vertical direction. After inserting the pipe body into the vertical column groove of the concrete block stack, the concrete pack is inserted into the vertical column groove by removing the pipe body from the vertical column groove while leaving the concrete pack.
  • the pipe body is inserted into the vertical column groove of the concrete block stacked body together with the concrete pack in order to conveniently insert the concrete pack, and is completely irrelevant to the drilling work.
  • Korean Patent Registration No. 10-1650231 "Semi-permeable breakwater construction structure with wave power generator" (registered on August 16, 2016) is known, and in this prior art, the near-entrance steel pipe is inserted into the guided steel pipe of the lower hooking while inserting the near-entrance steel pipe. After press-fitting into the ground, excavating to a predetermined depth from the inside of the near-entrance steel pipe using RCD bits, inserting a reinforcing bar net into the inside of the near-incoming steel pipe, pouring concrete, and forming an on-site casting pile integrated with the near-incoming steel pipe, and then plural Various concrete blocks are installed using cast-in-place piles.
  • the cast-in-place pile is a structure composed of a steel pipe, reinforcing bar mesh and concrete inserted therein, it is impossible to remove the steel pipe for cast-in-place piles. That is, this prior art has a problem that the construction cost and the like are greatly increased since the near-entry steel pipe cannot be reused.
  • this prior art press-fits the near-entry steel pipe into the submarine ground while inserting the near-entry steel pipe into the guided steel pipe of the lower hooking pre-installed on the submarine ground, but since there is no structure that can guide the upper part of the near-entry steel pipe, the near-entry steel pipe is vertically installed. It becomes very difficult to press fit.
  • the present invention is conceived to solve the problems of the prior art as described above, forming a concrete block assembly by a plurality of concrete blocks, and the lower portion of the through hole for a concrete column through the through hole for a concrete column of the concrete block assembly.
  • a new type of construction method and a new type of underwater concrete block structure that can significantly increase the stability of an underwater concrete block structure by forming a ground perforation in the ground and forming a concrete column along the through hole for concrete pillars and the ground perforation. I would like to propose.
  • the present invention is a concrete block manufacturing step of manufacturing a plurality of concrete blocks having vertical through holes extending in a vertical direction with a first diameter; A plurality of concrete blocks produced in the concrete block manufacturing step are installed on the upper part of the underwater ground to form a concrete block assembly in which the plurality of concrete blocks are continuously arranged in a horizontal direction, wherein the vertical through hole of the concrete block has a lower end.
  • a protective tube having a shape extending in a vertical direction with a second diameter smaller than the first diameter is inserted into the underwater ground in a vertical direction through the through hole for the concrete column, while the cylinder for the concrete column.
  • the underwater ground located in the lower part of the study is perforated to form a ground perforation that is a continuous space with the through-hole for the concrete column and extends vertically with a diameter smaller than the first diameter, and the inserted protective tube is the barrel for the concrete column.
  • a ground perforation forming step in which the ground perforation portion is formed in the study and located across the ground perforation portion, and the ground perforation portion is formed inside the inserted protective tube; After the step of forming the ground perforation, the vertical reinforcing bar portion formed in the vertical direction is inserted into the protective tube in a state where the lower and side portions of the vertical reinforcing bar portion are wrapped with a waterproof film, and uncured concrete is poured into the waterproofing film.
  • a concrete column is formed along the through hole and the ground perforation, and the protective tube is removed before the poured uncured concrete is hardened, so that the waterproofing membrane is formed by the pressure of the poured uncured concrete and the underwater ground and the concrete block
  • the concrete pillar is in close contact with the concrete pillar, a first concrete pillar portion extending in a vertical direction with a first diameter while being positioned in the through hole for the concrete pillar, and a second concrete pillar portion extending in a vertical direction with a second diameter while being positioned in the ground perforation portion.
  • Concrete pillar forming step comprising a concrete pillar portion; It characterized in that it comprises a.
  • the forming of the concrete block assembly comprises forming a concrete block assembly in which the plurality of concrete blocks are continuously arranged in a horizontal direction and in a vertical direction, and the vertical direction of a plurality of concrete blocks continuously arranged in the vertical direction
  • the through hole is continuous in the vertical direction
  • the lower end may be blocked by the underwater ground, and the through hole for the concrete column may be formed with the upper end open.
  • the upper surface of the concrete block assembly may be positioned higher than the water surface, and the upper end of the protective tube inserted in the ground perforation forming step may protrude from the upper surface of the concrete block assembly.
  • the protective pipe in the step of forming the concrete column, it is preferable to remove the protective pipe by gradually pouring the uncured concrete into the waterproof membrane and gradually raising the protective pipe.
  • the underwater ground includes a foundation ground artificially constructed for an underwater concrete block structure, and a foundation ground composition step of forming the foundation ground prior to the step of forming the concrete block assembly is included, and the foundation ground is , It may be any one of a basic stony ground, a substituted stony ground, a deep mixed-processed ground, a soft ground improved-treated ground, or a combination thereof.
  • a step of forming a stand concrete part on the upper part of the concrete block assembly may be added.
  • the concrete block has a space for filling inside, and after the step of forming the concrete block assembly, an inside filling step of filling the inside filling space in the inside filling space may be added.
  • a plurality of concrete blocks having vertical through holes extending in a vertical direction with a first diameter are installed on the upper part of the underwater ground so that the plurality of concrete blocks are continuously arranged in at least a horizontal direction. It comprises a block assembly, and a plurality of concrete pillars formed along a ground perforation formed by perforating the underwater ground with a diameter smaller than the first diameter and located below the vertical through-hole and the up-down through-hole; The concrete pillar extends in the vertical direction to a second diameter smaller than the first diameter while being positioned in the vertical through hole and extending in the vertical direction to the first diameter and the ground perforation.
  • the concrete pillar is formed in a vertical direction and is in close contact with the underwater ground and the concrete block while surrounding the vertical reinforcement portion disposed across the vertical through hole and the ground perforation, and the lower and side portions of the vertical reinforcement portion. It comprises a waterproof membrane and concrete cured by pouring into the inside of the waterproof membrane; The plurality of concrete blocks of the concrete block assembly are bound to the underwater ground by the concrete pillars; An underwater concrete block structure is provided, characterized in that.
  • the concrete block assembly is one in which the plurality of concrete blocks are arranged in a horizontal direction and in a vertical direction, and the concrete column has a vertical penetration hole of a plurality of concrete blocks continuously arranged in the vertical direction. It may be formed along a through hole for a concrete column formed while continuing in a direction and a ground hole formed by drilling the underwater ground located under the through hole for a concrete column.
  • the present invention forms a concrete block assembly by a plurality of concrete blocks, and forms a ground perforation in the lower part of the through hole for a concrete column through the through hole for a concrete column of the concrete block assembly, and
  • a new type of construction method is provided that can significantly increase the stability of an underwater concrete block structure by allowing a concrete column to be formed along the through hole and the ground perforation.
  • a plurality of concrete blocks constituting a concrete block assembly are bound to the underwater ground by a concrete column, thereby greatly improving the stability of the underwater concrete block structure.
  • FIG. 1 is a perspective view of a concrete block used in the construction method of the underwater concrete block structure according to the first embodiment of the present invention
  • FIG. 2 is a schematic plan view of a state in which a concrete block assembly is formed on the upper part of the underwater ground by installing the concrete block of FIG. 1;
  • FIG. 3 is a schematic cross-sectional view of FIG. 2;
  • FIG. 4 is a view of a state in which a ground perforation portion is formed after the formation of the concrete block assembly of FIG. 3;
  • 5 to 8 are views sequentially showing a process of forming a concrete column after the formation of the ground perforation of FIG. 4;
  • FIG. 9 is a cross-sectional view of a concrete block used in the construction method of the underwater concrete block structure according to the second embodiment of the present invention.
  • FIG. 10 is a perspective view of the concrete block of FIG. 9,
  • FIG. 11 is a view of a state in which a concrete block assembly is formed on the upper part of the underwater ground by installing the concrete block of FIG. 9;
  • FIG. 12 is a view of a state in which a ground perforation portion is formed after the formation of the concrete block assembly of FIG. 11;
  • FIG. 13 to 16 are views sequentially showing a process of forming a concrete column after the formation of the ground perforation of FIG. 12;
  • 17 is a cross-sectional view of an underwater concrete block structure constructed according to a third embodiment of the present invention.
  • FIG. 18 is a view showing a separate cross-section of a plurality of concrete blocks used in FIG. 17;
  • FIG. 19 is a cross-sectional view of an underwater concrete block structure constructed according to a fourth embodiment of the present invention.
  • FIG. 20 is a perspective view of a concrete block used in the construction method of the underwater concrete block structure according to the fifth embodiment of the present invention.
  • Figure 21 is a cross-sectional view of the concrete block of Figure 21,
  • FIG. 22 is a cross-sectional view of an underwater concrete block structure constructed according to a fifth embodiment of the present invention.
  • FIG. 1 is a perspective view of a concrete block used in the construction method of an underwater concrete block structure according to a first embodiment of the present invention
  • FIG. 2 is a concrete block assembly formed on the upper part of the underwater ground by installing the concrete block of FIG.
  • FIG. 3 is a cross-sectional conceptual view of FIG. 2
  • FIG. 4 is a view of a state in which a ground perforation portion is formed after the concrete block assembly of FIG. 3 is formed
  • FIGS. 5 to 8 are a ground perforation portion of FIG. 4 It is a diagram showing the process of forming a concrete column after formation in order.
  • a concrete block 10 as shown in FIG. 1 is manufactured.
  • the shape of the concrete block 10 may be formed in various ways, it is preferable that at least two or more vertical through holes 11 extending in the vertical direction are formed.
  • the vertical through hole 11 extends in the vertical direction with a first diameter D1.
  • a space for filling may be formed in the concrete block 10, or a space for another purpose or a shape for another purpose may be formed.
  • the vertical through-hole 11 may be a hole formed in the concrete block 10 as shown in FIG. 1, but as shown in FIGS. 20 and 21, a hollow pipe is inserted into the concrete block to use the inside of the hollow pipe as a vertical through-hole. May be.
  • FIG. 2 is a plan view of the installed state, and FIG. 2 is a cross-sectional view of the installed state.
  • the vertical through-hole 11 of the concrete block 10 constituting the concrete block assembly 100 forms a through hole 101 for a concrete column whose lower end is blocked by the underwater ground 20 and the upper end is opened.
  • each vertical through hole 11 of each concrete block 10 functions as a through hole 101 for a concrete column. do.
  • the through hole 101 for the concrete column has a shape that extends in the vertical direction with the first diameter D1.
  • the underwater ground 20 of this embodiment corresponds to an underwater ground that is not artificially created, that is, the sea floor, but according to the embodiment, the underwater ground 20 is a concept including a foundation ground artificially formed for an underwater concrete block structure. .
  • foundation ground is formed on the upper part of the underwater ground 20 and the concrete block assembly 100 is formed thereafter, a foundation ground construction step of forming the foundation ground before the concrete block assembly formation step is further required.
  • the foundation ground may be any one or a combination of the ground sandstone ground, the substituted sandstone ground, the deep mixed ground ground, the soft ground improvement ground ground.
  • the ground is replaced according to the replacement method, consolidation method, dewatering method, drainage method, vibration compaction method, compaction sand pile method, blasting method, chemical injection method, etc. It refers to the ground that has been improved according to the improved soft ground improvement method.
  • FIG. 3 shows a cross-sectional view of the concrete block assembly
  • the concrete block assembly 100 is a state in which a plurality of concrete blocks 10 are continuously arranged in a horizontal direction as shown in FIG. 2.
  • the underwater ground 20 located under the through hole 101 for the concrete column is perforated, and the ground hole 102 is a space continuous with the through hole 101 for the concrete column. To form.
  • D2 second diameter
  • the inserted protective pipe 30 is positioned across the concrete column perforation portion 101 and the ground perforation portion 102, and the ground perforation portion ( 102) is formed.
  • the protective pipe 30 prevents the surrounding underwater ground 20 from collapsing into the ground drilling portion 102 during or after the drilling operation, or various foreign substances from flowing into the ground drilling portion 102.
  • the protective tube 30 serves to protect the waterproof membrane 112 when inserting the vertical reinforcing bars 111 and the waterproof membrane 112 to be described later into the protective tube 30.
  • the length of the protective tube 30 is preferably formed longer than the sum of the length of the through hole 101 for the concrete column and the length of the ground perforation 102. Accordingly, the waterproof film 112 can be inserted easily.
  • the upper surface of the concrete block assembly 100 is positioned higher than the water surface, and the upper end of the protective tube 30 inserted in the ground perforation formation step protrudes from the upper surface of the concrete block assembly 100 Has been. That is, the upper end of the protective tube 30 is positioned higher than the water surface and is positioned higher than the upper surface of the concrete block assembly 100. Therefore, the operation of inserting the waterproof film 112 or the like into the protective tube 30 can be performed very easily.
  • the protective pipe 30 is in the form of a hollow pipe, and the second diameter D2 of the protective pipe 30 is smaller than the first diameter D1 of the through hole 101 for a concrete column. This facilitates the insertion of the protective tube 30. That is, when the protection tube 30 is inserted or when the protection tube 30 is removed, the protection tube 30 is prevented from being caught in the through hole 101 for a concrete column.
  • the protection tube 30 when the protection tube 30 is inserted with reference to the through hole 101 for a concrete column when the protection tube 30 is inserted, the protection tube 30 can be inserted while having a relatively precise vertical degree.
  • the protective tube 30 is preferably removed after the step of forming the ground perforation.
  • a drilling equipment is required for the operation of drilling the underwater ground 20, and in this embodiment, since the upper surface of the concrete block assembly 100 is located higher than the water surface, the drilling equipment is the upper part of the concrete block assembly 100 If it is placed on the surface to perform drilling, it becomes a dry operation (that is, the wet operation on a barge becomes unnecessary), and working in the same environment as the land operation can increase work efficiency.
  • the concrete pillar 110 is formed along the through hole 101 for the concrete pillar and the ground perforation 102.
  • the step of forming a concrete column in this embodiment is performed in stages as shown in FIGS. 5 to 8.
  • the vertical reinforcing bars 111 formed in the vertical direction are inserted into the through-holes 101 for concrete columns and the ground perforations 102.
  • the vertical reinforcement part 111 is inserted into the protective pipe 30.
  • the bottom and side portions of the vertical reinforcing bars 111 are wrapped with a waterproof membrane 112 and inserted into the concrete column through-holes 101 and the ground perforations 102.
  • FIG. 7 is a view of a state in which the protective tube 30 is slightly raised while pouring a small amount of uncured concrete 113 (fresh concrete) inside the waterproof membrane 112.
  • the lower end of the protective pipe 30 in FIG. 7 is a state in which the protective pipe 30 is raised so as to have a state just out of the ground perforated portion 102, and the inside of the waterproof film 112 is in the ground perforated portion 102 area.
  • the necessary uncured concrete 113 is in a poured state.
  • the waterproof membrane 112 located in the ground perforation 102 is in close contact with the underwater ground 20 by the pressure of the uncured concrete 113.
  • the uncured concrete 113 is gradually poured into the waterproof membrane 112 and the protective tube 30 is gradually raised, and finally the protective tube 30 is completely removed as shown in FIG. 8. Meanwhile, the work of pouring the uncured concrete 113 in the entire through-hole 101 for the concrete column and the ground perforation 102 is completed.
  • the protective tube 30 may be removed before the poured uncured concrete 113 is hardened.
  • the waterproof membrane 112 is in close contact with the underwater ground 20 and the concrete block 10 under the pressure of the uncured concrete 113, and then It becomes a concrete column 110 through a curing process.
  • the protective tube 30 may be raised to remove the protective tube 30, in this case, the waterproof membrane 112 is not cured concrete 113 It may be difficult to separate the protective tube 30 from the waterproof film 112 because it is strongly adhered to the inside of the protective tube 30 at a pressure of ).
  • the concrete column 110 is formed on the concrete block assembly 100 to form the underwater concrete block structure 200.
  • the concrete pillar 110 is positioned in the first concrete pillar portion 110a extending in the vertical direction with the first diameter while being positioned in the through hole portion 101 for the concrete pillar, and the second diameter while being positioned in the ground perforation portion 102 It consists of including a second concrete column portion (110b) extending in the vertical direction.
  • a plurality of concrete blocks 10 constituting the concrete block assembly 100 are bound to the underwater ground 20 by the concrete pillar 110.
  • the concrete column The binding force to the underwater ground (20) by (110) should be considered together.
  • the underwater concrete block structure 200 is significantly improved in stability due to the binding force to the underwater ground 20 by the concrete column 110.
  • the binding force to the underwater ground 20 by the concrete column 110 compensates for this. Therefore, it can have sufficient stability.
  • FIG. 9 is a cross-sectional view of a concrete block used in the construction method of an underwater concrete block structure according to a second embodiment of the present invention
  • FIG. 10 is a perspective view of the concrete block of FIG. 9
  • FIG. 11 is a concrete block of FIG.
  • FIG. 12 is a view in a state in which a ground perforation part is formed after the formation of the concrete block assembly of FIG. 11,
  • FIGS. 13 to 16 are the ground fabric of FIG. It is a drawing showing the process of forming a concrete column after the formation of the study.
  • a concrete block 10 having a relatively small size as shown in FIGS. 9 and 10 is manufactured.
  • a concrete block assembly in which a plurality of concrete blocks 10 manufactured in the concrete block production stage are installed on the upper part of the underwater ground 20 so that a plurality of concrete blocks 10 are continuously arranged horizontally and vertically as shown in FIG. Form 100.
  • the concrete blocks 10 are continuously arranged in the vertical direction, but the concrete block assembly 100 is a state in which a plurality of concrete blocks 10 are continuously arranged in the horizontal direction. Since the continuous arrangement structure of the plurality of concrete blocks 10 in the horizontal direction is a general technique, detailed descriptions are omitted.
  • the vertical through-holes 11 of the plurality of concrete blocks 10 are continuously arranged in the vertical direction, while the lower end is blocked by the underwater ground 20 and the upper end is opened.
  • the through hole 101 for the concrete column is formed.
  • the concrete blocks 10 are installed in two or more stages in the vertical direction, and the vertical through holes 11 of the plurality of concrete blocks 10 stacked in the vertical direction are combined to be used for one concrete column.
  • the through hole 101 is formed.
  • this embodiment is in a state in which a plurality of concrete blocks 10 are bound to the underwater ground 20 by a concrete column 110, as well as a plurality of As the concrete blocks 10 are bound to each other by the concrete columns 110, the concrete block assembly 100 has structural integrity.
  • FIG. 17 is a cross-sectional view of an underwater concrete block structure constructed according to a third embodiment of the present invention
  • FIG. 18 is a view showing a separate cross-section of a plurality of concrete blocks used in FIG. 17.
  • the replacement stony ground 21 is formed as the foundation ground, and the foundation stony ground 22 is formed on the upper portion of the displacement stony ground 21, and then the foundation stony ground (
  • the underwater concrete block structure 200 was constructed on the upper part of 22).
  • the foundation ground construction step was carried out before the concrete block aggregate formation step.
  • the inner filling space 12 of the concrete block 10 after forming the concrete block assembly 100, fills the inner filling material 120 (sand, gravel, sandstone, etc.).
  • the step of forming the upper concrete portion may be further added.
  • 19 is a cross-sectional view of an underwater concrete block structure constructed according to a third embodiment of the present invention.
  • the foundation stony ground 22 is formed on the top of the deep-mixed ground 23, and then the foundation stony ground 22.
  • the underwater concrete block structure 200 was constructed on the upper part of the.
  • the deep mixed-processed ground 23 and the rubble ground 22 were combined.
  • the foundation ground construction step was carried out before the concrete block aggregate formation step.
  • the filling material 120 sand, gravel, sandstone, etc.
  • the upper part of the concrete block assembly 100 is formed with a concrete part 130.
  • Figure 20 is a perspective view of a concrete block used in the construction method of the underwater concrete block structure according to the fifth embodiment of the present invention
  • Figure 21 is a cross-sectional view of the concrete block of Figure 21
  • Figure 22 is a fifth embodiment of the present invention It is a cross-sectional view of an underwater concrete block structure constructed by.
  • the concrete block 10 of this embodiment consists of a concrete upper plate 13, a concrete lower plate 14, and a vertical connection pipe 15.
  • the concrete upper plate 13 and the concrete lower plate 14 are arranged to be spaced apart from each other in the vertical direction so that seawater may flow therebetween.
  • the vertical connection pipe 15 has an upper end inserted into the concrete upper plate 13, a lower end inserted into the concrete lower plate 14, and an upper and lower middle portion between the concrete upper plate 13 and the concrete lower plate 14 to the outside. Exposed.
  • the vertical connection pipe 15 is in the form of a hollow pipe in which the vertical through hole 11 is formed in the vertical direction.
  • the underwater concrete block structure 200 as shown in FIG. 22 is formed.
  • the concrete column 110 is formed along a through-hole for a concrete column and a ground perforation in which the vertical through-holes 11 of the vertical connection pipe 15 are vertically formed.
  • a near-employment concrete block 24 is disposed on one side of the foundation stony ground 22, and the near-employment concrete block 24 is also provided with a vertical through hole.
  • the near-employment concrete block 24 can be seen in a modified form of FIG. 9.
  • the foundation ground construction step was performed before the concrete block assembly formation step.
  • the underwater concrete block structure 200 of this embodiment creates an environment in which seawater can freely flow inside.
  • seawater can freely flow through the outside of the vertical connection pipe 15, and a concrete column is formed through the inside of the vertical connection pipe 15 so that a plurality of concrete blocks are bound to each other.
  • the shape of the concrete block can be modified in a wide variety.
  • the present invention can be used to construct an underwater concrete block structure installed on the sea or along a river for various purposes, such as a berthing facility for a port, a sofa structure installed on the shore, a breakwater, etc.

Abstract

A method of constructing an underwater concrete block structure (200) includes assembling a plurality of concrete blocks (10) into a concrete block assembly (100), forming a drilled borehole (102) in the underwater ground (20) under a concrete hole (101) of the concrete block assembly (100), and forming a concrete column (110) in the concrete hole (101) and the drilled borehole (102), thereby greatly increasing the stability of the underwater concrete block structure (200). An underwater concrete block structure is obtained using the method.

Description

수중 콘크리트 블록 구조물 및 그 시공 방법 Underwater concrete block structure and its construction method
본 발명은 항만 등을 위한 접안시설, 해안에 설치되는 소파용 구조물, 방파제 등 다양한 목적으로 해상 또는 강가에 설치되는 수중 콘크리트 블록 구조물 및 그 시공 방법에 관한 것이다.The present invention relates to an underwater concrete block structure installed on the sea or along a river for various purposes such as a berthing facility for a port, a sofa structure installed on the shore, a breakwater, and a construction method thereof.
항만 등을 위한 접안시설, 해안에 설치되는 소파용 구조물, 방파제 등 다양한 목적으로 수중에 수중 구조물이 설치된다. 상기 및 이하에서 수중 구조물이란, 수중 구조물의 하부가 수중에 잠긴 상태로 설치되는 것을 말하며, 수중 구조물의 상부는 수면 위로 돌출되거나 혹은 수면 아래에 위치될 수 있다.Underwater structures are installed underwater for various purposes, such as berthing facilities for ports, sofa structures installed on the shore, and breakwaters. In the above and below, the underwater structure means that the lower part of the underwater structure is installed in a submerged state, and the upper part of the underwater structure may protrude above the water surface or be located under the water surface.
수중 구조물의 시공에서 널리 알려진 시공 기법은 대형 케이슨 공법이다. 대형 케이슨 공법은 대형 파랑에도 견딜 수 있다는 장점이 있지만, 매우 큰 구조의 대형 케이슨을 육상에서 제작하고 이를 설치 지점으로 운반한 후 수중에 설치해야 하기 때문에 운반비 및 공사비가 매우 많이 소요되며, 여러가지 제약 조건이 많다.A widely known construction technique in the construction of underwater structures is the large caisson method. The large caisson construction method has the advantage of being able to withstand large waves, but because a large caisson with a very large structure must be manufactured on land and installed underwater after transporting it to the installation point, transportation and construction costs are very high, and various constraints There are a lot of them.
이와 같은 대형 케이슨 공법의 문제점을 해결하기 위하여 소형 콘크리트 블록을 수심에 따라 여러 단으로 쌓아 올려 수중 구조물을 형성하는 방법이 알려져 있다.In order to solve the problem of such a large caisson method, a method of forming an underwater structure by stacking small concrete blocks in several stages according to the water depth is known.
본 발명자는 대한민국 특허등록 제10-1355805호 "수중 콘크리트 블록 구조물 시공 방법 및 수중 콘크리트 블록 구조물"(2014. 1. 15. 등록)을 제안하여, 콘크리트 기둥에 의하여 상부의 콘크리트 블록과 하부의 콘크리트 블록이 구조적 일체성을 가지도록 하여 대형 태풍 등으로 인한 파랑에도 수중 콘크리트 블록 구조물이 충분한 구조적 안정성을 가질 수 있는 기술을 제시하였다.The inventor of the present invention proposes Korean Patent Registration No. 10-1355805 "Aquatic Concrete Block Structure Construction Method and Underwater Concrete Block Structure" (2014. 1. 15. Registration), and by using a concrete column, the concrete block in the upper part and the concrete block in the lower part. To have this structural integrity, a technology that allows underwater concrete block structures to have sufficient structural stability even against waves caused by large typhoons was proposed.
한편 대형 케이슨 공법과 같은 수중 구조물의 안정성은, 수중 구조물의 중량과 마찰력(즉 수중 구조물의 지반 접촉 면적과, 수중 구조물과 기초 지반간의 마찰 계수)에 의하여 결정하는 것이 일반적이다.Meanwhile, the stability of an underwater structure such as the large caisson method is generally determined by the weight and frictional force of the underwater structure (ie, the ground contact area of the underwater structure, and the coefficient of friction between the underwater structure and the foundation ground).
이러한 안정성 결정 방법은, 수중 구조물이 기초 지반에 단순 적재되어 있다는 것을 전제로 한 것이다.This method of determining stability is based on the premise that the underwater structure is simply loaded on the foundation ground.
따라서 수중 구조물이 복수의 콘크리트 블록으로 일체화된 구조인 경우에도 그 수중 구조물의 안정성은, 수중 구조물의 중량과 마찰력에 의해서만 결정된다.Therefore, even if the underwater structure is a structure integrated with a plurality of concrete blocks, the stability of the underwater structure is determined only by the weight and frictional force of the underwater structure.
이와 같은 문제로 인하여 수중 구조물이 복수의 콘크리트 블록으로 일체화되는 구조임에도 여전히 대형 케이슨과 동일한 크기로 수중 구조물이 건설되어야 한다는 문제가 있다.Due to this problem, even though the underwater structure is a structure in which a plurality of concrete blocks are integrated, there is still a problem that the underwater structure must be constructed with the same size as the large caisson.
한편 본 발명자는 대한민국 공개특허 제10-2019-0010203호 "콘크리트 팩 삽입장치 및 이를 이용한 콘크리트 블록 구조물 시공 방법과 이를 통해 시공된 콘크리트 블록 구조물"(2019. 1. 30. 공개)을 제안하였으며, 이 종래 기술은, 방수막에 상하방향으로 연장되는 형태의 철근부 및 콘크리트를 삽입하여 밀봉한 콘크리트 팩을 준비하고, 상하방향으로 연장되는 중공관 형태의 관체 내부에 상기 콘크리트 팩을 수용한 상태로 상기 관체를 콘크리트 블록 적층체의 상하방향 기둥홈에 삽입한 후 상기 콘크리트 팩을 남겨두면서 상기 관체를 상기 상하방향 기둥홈으로부터 이탈시킴으로써 상기 콘크리트 팩이 상기 상하방향 기둥홈에 삽입되도록 하고 있다.Meanwhile, the present inventors have proposed Korean Patent Laid-Open Publication No. 10-2019-0010203 "Concrete pack insertion device and concrete block structure construction method using the same and concrete block structure constructed through the same" (published on January 30, 2019). The prior art is to prepare a concrete pack sealed by inserting concrete and reinforcing bars extending in the vertical direction into a waterproof membrane, and receiving the concrete pack in a hollow tube-shaped tube extending in the vertical direction. After inserting the pipe body into the vertical column groove of the concrete block stack, the concrete pack is inserted into the vertical column groove by removing the pipe body from the vertical column groove while leaving the concrete pack.
여기에서 관체는 콘크리트 팩을 편리하게 삽입하기 위하여 콘크리트 팩과 함께 콘크리트 블록 적층체의 상하방향 기둥홈에 삽입되는 것으로서, 천공 작업과는 전혀 무관하다.Here, the pipe body is inserted into the vertical column groove of the concrete block stacked body together with the concrete pack in order to conveniently insert the concrete pack, and is completely irrelevant to the drilling work.
한편 대한민국 등록특허 제10-1650231호 "파력발전기를 갖춘 반투과성 방파제 축조구조물"(2016. 8. 16. 등록)이 알려져 있으며, 이 종래 기술에서는, 하부후팅의 유도강관 내에 근입강관을 집어넣으면서 근입강관을 지반에 압입한 후, RCD 비트를 이용하여 근입강관 내부에서 소정의 깊이까지 굴착한 후, 근입강관 내부에 철근망을 집어넣고 콘크리트 타설하여 근입강관과 일체화된 현장타설 말뚝을 형성한 후, 복수의 현장타설 말뚝을 이용하여 각종 콘크리트 블록을 설치하게 된다.Meanwhile, Korean Patent Registration No. 10-1650231 "Semi-permeable breakwater construction structure with wave power generator" (registered on August 16, 2016) is known, and in this prior art, the near-entrance steel pipe is inserted into the guided steel pipe of the lower hooking while inserting the near-entrance steel pipe. After press-fitting into the ground, excavating to a predetermined depth from the inside of the near-entrance steel pipe using RCD bits, inserting a reinforcing bar net into the inside of the near-incoming steel pipe, pouring concrete, and forming an on-site casting pile integrated with the near-incoming steel pipe, and then plural Various concrete blocks are installed using cast-in-place piles.
여기에서 현장타설 말뚝은, 근입강관과 그 내부에 삽입된 철근망 및 콘크리트로 이루어지는 구조이므로, 현장타설 말뚝용 근입강관은 제거가 불가능하다. 즉 이 종래 기술은 근입강관을 재사용할 수 없게되어 공사비 등이 매우 증가한다는 문제가 있다.Here, since the cast-in-place pile is a structure composed of a steel pipe, reinforcing bar mesh and concrete inserted therein, it is impossible to remove the steel pipe for cast-in-place piles. That is, this prior art has a problem that the construction cost and the like are greatly increased since the near-entry steel pipe cannot be reused.
또한 이 종래 기술은 현장타설 말뚝에 각종 콘크리트 블록을 설치하나, 현장타설 말뚝과 콘크리트 블록이 완전히 일체화되지 못하고 단순 조립되는 구조이므로, 시간의 경과에 따라 구조적인 취약성을 가지게 된다.In addition, in this prior art, various concrete blocks are installed on the cast-in-place pile, but since the cast-in-place pile and the concrete block are not completely integrated and are simply assembled, structural fragility arises over time.
또한 이 종래 기술은 해저 지반에 미리 설치된 하부후팅의 유도강관 내에 근입강관을 집어넣으면서 근입강관을 해저 지반에 압입하게 되나, 근입강관의 상부를 안내할 수 있는 구조물이 전혀 없으므로, 근입강관을 수직으로 압입하는 것이 대단히 어렵게 된다.In addition, this prior art press-fits the near-entry steel pipe into the submarine ground while inserting the near-entry steel pipe into the guided steel pipe of the lower hooking pre-installed on the submarine ground, but since there is no structure that can guide the upper part of the near-entry steel pipe, the near-entry steel pipe is vertically installed. It becomes very difficult to press fit.
또한 근입강관의 수직도가 정밀하지 않을 경우 이를 이용하여 콘크리트 블록을 설치하는 작업이 어려워지게 된다.In addition, when the verticality of the near-entry steel pipe is not precise, it becomes difficult to install a concrete block using it.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 복수의 콘크리트 블록에 의하여 콘크리트 블록 집합체를 형성하고, 상기 콘크리트 블록 집합체의 콘크리트 기둥용 통공부를 통하여 콘크리트 기둥용 통공부의 하부에 지반 천공부를 형성하고, 콘크리트 기둥용 통공부와 지반 천공부를 따라 콘크리트 기둥이 형성되도록 하여, 수중 콘크리트 블록 구조물의 안정성을 대폭 높일 수 있는 새로운 형태의 시공 방법 및 새로운 형태의 수중 콘크리트 블록 구조물을 제안하고자 한다.The present invention is conceived to solve the problems of the prior art as described above, forming a concrete block assembly by a plurality of concrete blocks, and the lower portion of the through hole for a concrete column through the through hole for a concrete column of the concrete block assembly. A new type of construction method and a new type of underwater concrete block structure that can significantly increase the stability of an underwater concrete block structure by forming a ground perforation in the ground and forming a concrete column along the through hole for concrete pillars and the ground perforation. I would like to propose.
상기의 과제를 해결하기 위하여 본 발명은, 제1직경으로 상하방향으로 연장되는 상하방향 관통구가 형성되는 복수의 콘크리트 블록을 제작하는 콘크리트 블록 제작 단계 ; 상기 콘크리트 블록 제작 단계에서 제작된 복수의 콘크리트 블록을 수중 지반의 상부에 설치하여 상기 복수의 콘크리트 블록이 수평방향으로 연속하여 배치된 콘크리트 블록 집합체를 형성하되, 상기 콘크리트 블록의 상하방향 관통구는 하단부가 상기 수중 지반에 의하여 막히며 상단부가 개방되면서 제1직경으로 상하방향으로 연장되는 콘크리트 기둥용 통공부를 형성하는 콘크리트 블록 집합체 형성 단계 ; 상기 콘크리트 블록 집합체 형성 단계 이후, 제1직경보다 작은 직경인 제2직경으로 상하방향으로 연장되는 형태의 보호관을 상기 콘크리트 기둥용 통공부를 통하여 수직 방향으로 상기 수중 지반에 삽입하면서 상기 콘크리트 기둥용 통공부의 하부에 위치한 수중 지반을 천공하여 상기 콘크리트 기둥용 통공부와 연속되는 공간이면서 제1직경보다 작은 직경으로 상하방향으로 연장되는 지반 천공부를 형성하되, 상기 삽입된 보호관은 상기 콘크리트 기둥용 통공부 및 상기 지반 천공부에 걸쳐 위치되며, 상기 삽입된 보호관의 내부에 상기 지반 천공부가 형성되는 지반 천공부 형성 단계 ; 상기 지반 천공부 형성 단계 이후, 상하방향으로 형성된 상하방향 철근부를 상기 상하방향 철근부의 하부 및 측부를 방수막으로 감싼 상태로 상기 보호관에 삽입하고 상기 방수막의 내부에 미경화 콘크리트를 타설하여 상기 콘크리트 기둥용 통공부와 상기 지반 천공부를 따라 콘크리트 기둥을 형성하되, 상기 타설된 미경화 콘크리트가 경화되기 전에 상기 보호관을 제거하여 상기 방수막은 상기 타설된 미경화 콘크리트의 압력으로 상기 수중 지반 및 상기 콘크리트 블록에 밀착되며, 상기 콘크리트 기둥은 상기 콘크리트 기둥용 통공부에 위치하면서 제1직경으로 상하방향으로 연장되는 제1콘크리트 기둥부와 상기 지반 천공부에 위치하면서 제2직경으로 상하방향으로 연장되는 제2콘크리트 기둥부를 포함하여 이루어지는 콘크리트 기둥 형성 단계 ; 를 포함하여 이루어지는 것을 특징으로 한다.In order to solve the above problems, the present invention is a concrete block manufacturing step of manufacturing a plurality of concrete blocks having vertical through holes extending in a vertical direction with a first diameter; A plurality of concrete blocks produced in the concrete block manufacturing step are installed on the upper part of the underwater ground to form a concrete block assembly in which the plurality of concrete blocks are continuously arranged in a horizontal direction, wherein the vertical through hole of the concrete block has a lower end. A concrete block assembly forming step of forming a through hole for a concrete column that is blocked by the underwater ground and extends in a vertical direction with a first diameter while the upper end is opened; After the step of forming the concrete block assembly, a protective tube having a shape extending in a vertical direction with a second diameter smaller than the first diameter is inserted into the underwater ground in a vertical direction through the through hole for the concrete column, while the cylinder for the concrete column The underwater ground located in the lower part of the study is perforated to form a ground perforation that is a continuous space with the through-hole for the concrete column and extends vertically with a diameter smaller than the first diameter, and the inserted protective tube is the barrel for the concrete column. A ground perforation forming step in which the ground perforation portion is formed in the study and located across the ground perforation portion, and the ground perforation portion is formed inside the inserted protective tube; After the step of forming the ground perforation, the vertical reinforcing bar portion formed in the vertical direction is inserted into the protective tube in a state where the lower and side portions of the vertical reinforcing bar portion are wrapped with a waterproof film, and uncured concrete is poured into the waterproofing film. A concrete column is formed along the through hole and the ground perforation, and the protective tube is removed before the poured uncured concrete is hardened, so that the waterproofing membrane is formed by the pressure of the poured uncured concrete and the underwater ground and the concrete block The concrete pillar is in close contact with the concrete pillar, a first concrete pillar portion extending in a vertical direction with a first diameter while being positioned in the through hole for the concrete pillar, and a second concrete pillar portion extending in a vertical direction with a second diameter while being positioned in the ground perforation portion. Concrete pillar forming step comprising a concrete pillar portion; It characterized in that it comprises a.
상기에 있어서, 상기 콘크리트 블록 집합체 형성 단계는, 상기 복수의 콘크리트 블록이 수평방향 및 상하방향으로 연속하여 배치된 콘크리트 블록 집합체를 형성하되, 상기 상하방향으로 연속하여 배치된 복수의 콘크리트 블록의 상하방향 관통구가 상하방향으로 연속되면서 하단부가 상기 수중 지반에 의하여 막히며 상단부가 개방된 상기 콘크리트 기둥용 통공부가 형성되는 것일 수 있다.In the above, wherein the forming of the concrete block assembly comprises forming a concrete block assembly in which the plurality of concrete blocks are continuously arranged in a horizontal direction and in a vertical direction, and the vertical direction of a plurality of concrete blocks continuously arranged in the vertical direction As the through hole is continuous in the vertical direction, the lower end may be blocked by the underwater ground, and the through hole for the concrete column may be formed with the upper end open.
상기에 있어서, 상기 콘크리트 블록 집합체의 상부 표면은 수면보다 높게 위치되며, 상기 지반 천공부 형성 단계에서 삽입된 보호관의 상단은 상기 콘크리트 블록 집합체의 상부 표면으로부터 돌출되는 것일 수 있다.In the above, the upper surface of the concrete block assembly may be positioned higher than the water surface, and the upper end of the protective tube inserted in the ground perforation forming step may protrude from the upper surface of the concrete block assembly.
상기에 있어서, 상기 콘크리트 기둥 형성 단계에서, 상기 방수막의 내부에 상기 미경화 콘크리트를 점차적으로 타설함과 함께 상기 보호관을 점차적으로 상승시켜 상기 보호관을 제거하는 것이 바람직하다.In the above, in the step of forming the concrete column, it is preferable to remove the protective pipe by gradually pouring the uncured concrete into the waterproof membrane and gradually raising the protective pipe.
상기에 있어서, 상기 수중 지반은 수중 콘크리트 블록 구조물을 위하여 인공적으로 조성된 기초 지반을 포함하며, 상기 콘크리트 블록 집합체 형성 단계 이전에 상기 기초 지반을 조성하는 기초 지반 조성 단계가 포함되며, 상기 기초 지반은, 기초 사석 지반, 치환 사석 지반, 심층혼합처리 지반, 연약지반개량처리된 지반 중 어느 하나 또는 이들을 복합한 것일 수 있다.In the above, the underwater ground includes a foundation ground artificially constructed for an underwater concrete block structure, and a foundation ground composition step of forming the foundation ground prior to the step of forming the concrete block assembly is included, and the foundation ground is , It may be any one of a basic stony ground, a substituted stony ground, a deep mixed-processed ground, a soft ground improved-treated ground, or a combination thereof.
상기에 있어서, 상기 콘크리트 기둥 형성 단계 이후, 상기 콘크리트 블록 집합체의 상부에 상치 콘크리트부를 형성하는 상치 콘크리트부 형성 단계가 부가될 수 있다.In the above, after the step of forming the concrete column, a step of forming a stand concrete part on the upper part of the concrete block assembly may be added.
상기에 있어서, 상기 콘크리트 블록은 내부에 속채움용 공간이 형성되며, 상기 콘크리트 블록 집합체 형성 단계 이후 상기 속채움용 공간에 속채움재를 채우는 속채움 단계가 부가될 수 있다.In the above, the concrete block has a space for filling inside, and after the step of forming the concrete block assembly, an inside filling step of filling the inside filling space in the inside filling space may be added.
본 발명의 다른 사상으로, 제1직경으로 상하방향으로 연장되는 상하방향 관통구가 형성되는 복수의 콘크리트 블록이 수중 지반의 상부에 설치되어 상기 복수의 콘크리트 블록이 적어도 수평방향으로 연속하여 배치된 콘크리트 블록 집합체와, 상기 상하방향 관통구와 상기 상하방향 관통구의 하부에 위치하며 상기 제1직경보다 작은 직경으로 상기 수중 지반이 천공되어 형성된 지반 천공부를 따라 형성된 복수의 콘크리트 기둥을 포함하여 이루어지며 ; 상기 콘크리트 기둥은 상기 상하방향 관통구에 위치하면서 제1직경으로 상하방향으로 연장되는 제1콘크리트 기둥부와 상기 지반 천공부에 위치하면서 상기 제1직경보다 작은 직경인 제2직경으로 상하방향으로 연장되는 제2콘크리트 기둥부를 포함하여 이루어지며 ; 상기 콘크리트 기둥은, 상하방향으로 형성되어 상기 상하방향 관통구와 상기 지반 천공부에 걸쳐 배치된 상하방향 철근부와, 상기 상하방향 철근부의 하부 및 측부를 감싸면서 상기 수중 지반 및 상기 콘크리트 블록에 밀착된 방수막과, 상기 방수막의 내부에 타설되어 양생된 콘크리트를 포함하여 이루어지며 ; 상기 콘크리트 블록 집합체의 복수의 콘크리트 블록은 상기 콘크리트 기둥에 의하여 상기 수중 지반에 결속되는 것 ; 을 특징으로 하는 수중 콘크리트 블록 구조물이 제공된다.In another idea of the present invention, a plurality of concrete blocks having vertical through holes extending in a vertical direction with a first diameter are installed on the upper part of the underwater ground so that the plurality of concrete blocks are continuously arranged in at least a horizontal direction. It comprises a block assembly, and a plurality of concrete pillars formed along a ground perforation formed by perforating the underwater ground with a diameter smaller than the first diameter and located below the vertical through-hole and the up-down through-hole; The concrete pillar extends in the vertical direction to a second diameter smaller than the first diameter while being positioned in the vertical through hole and extending in the vertical direction to the first diameter and the ground perforation. It is made including a second concrete column portion; The concrete pillar is formed in a vertical direction and is in close contact with the underwater ground and the concrete block while surrounding the vertical reinforcement portion disposed across the vertical through hole and the ground perforation, and the lower and side portions of the vertical reinforcement portion. It comprises a waterproof membrane and concrete cured by pouring into the inside of the waterproof membrane; The plurality of concrete blocks of the concrete block assembly are bound to the underwater ground by the concrete pillars; An underwater concrete block structure is provided, characterized in that.
상기에 있어서, 상기 콘크리트 블록 집합체는 상기 복수의 콘크리트 블록이 수평방향 및 상하방향으로 연속하여 배치된 것이며, 상기 콘크리트 기둥은 상기 상하방향으로 연속하여 배치된 복수의 콘크리트 블록의 상하방향 관통구가 상하방향으로 연속되면서 형성된 콘크리트 기둥용 통공부와 상기 콘크리트 기둥용 통공부의 하부에 위치한 상기 수중 지반이 천공되어 형성된 지반 천공부를 따라 형성된 것일 수 있다.In the above, the concrete block assembly is one in which the plurality of concrete blocks are arranged in a horizontal direction and in a vertical direction, and the concrete column has a vertical penetration hole of a plurality of concrete blocks continuously arranged in the vertical direction. It may be formed along a through hole for a concrete column formed while continuing in a direction and a ground hole formed by drilling the underwater ground located under the through hole for a concrete column.
상기와 같이 본 발명은, 복수의 콘크리트 블록에 의하여 콘크리트 블록 집합체를 형성하고, 상기 콘크리트 블록 집합체의 콘크리트 기둥용 통공부를 통하여 콘크리트 기둥용 통공부의 하부에 지반 천공부를 형성하고, 콘크리트 기둥용 통공부와 지반 천공부를 따라 콘크리트 기둥이 형성되도록 하여, 수중 콘크리트 블록 구조물의 안정성을 대폭 높일 수 있는 새로운 형태의 시공 방법을 제공한다.As described above, the present invention forms a concrete block assembly by a plurality of concrete blocks, and forms a ground perforation in the lower part of the through hole for a concrete column through the through hole for a concrete column of the concrete block assembly, and A new type of construction method is provided that can significantly increase the stability of an underwater concrete block structure by allowing a concrete column to be formed along the through hole and the ground perforation.
이에 의하여 콘크리트 블록 집합체를 이루는 복수의 콘크리트 블록이 콘크리트 기둥에 의하여 수중 지반에 결속된 상태가 되어 수중 콘크리트 블록 구조물의 안정성이 대폭 향상된다.Accordingly, a plurality of concrete blocks constituting a concrete block assembly are bound to the underwater ground by a concrete column, thereby greatly improving the stability of the underwater concrete block structure.
또한 이와 같이 안정성이 향상된 결과, 기존의 대형 케이슨 공법 등과 비교할 때 수중 콘크리트 블록 구조물을 획기적으로 소형화시키는 것이 가능하게 된다.In addition, as a result of the improved stability, it is possible to significantly reduce the size of the underwater concrete block structure compared to the existing large caisson method.
이는 수중 콘크리트 블록 구조물의 중량 및 수중 콘크리트 블록 구조물의 수중 지반에 대한 마찰력을 감소시키는 경우에도 콘크리트 기둥에 의한 수중 지반에의 결속력이 이를 보완하여 충분한 안정성을 가질 수 있기 때문이다.This is because even when the weight of the underwater concrete block structure and the frictional force of the underwater concrete block structure against the underwater ground are reduced, the binding force to the underwater ground by the concrete column can compensate for this and have sufficient stability.
도 1은 본 발명의 제1실시예에 의한 수중 콘크리트 블록 구조물의 시공 방법에 사용되는 콘크리트 블록의 사시도,1 is a perspective view of a concrete block used in the construction method of the underwater concrete block structure according to the first embodiment of the present invention,
도 2는 도 1의 콘크리트 블록을 설치하여 수중 지반의 상부에 콘크리트 블록 집합체를 형성한 상태의 평면 개념도, FIG. 2 is a schematic plan view of a state in which a concrete block assembly is formed on the upper part of the underwater ground by installing the concrete block of FIG. 1;
도 3은 도 2의 단면 개념도, 3 is a schematic cross-sectional view of FIG. 2;
도 4는 도 3의 콘크리트 블록 집합체 형성 이후 지반 천공부를 형성한 상태의 도면,4 is a view of a state in which a ground perforation portion is formed after the formation of the concrete block assembly of FIG. 3;
도 5 내지 도 8은 도 4의 지반 천공부 형성 이후 콘크리트 기둥을 형성하는 과정을 순서대로 도시한 도면,5 to 8 are views sequentially showing a process of forming a concrete column after the formation of the ground perforation of FIG. 4;
도 9는 본 발명의 제2실시예에 의한 수중 콘크리트 블록 구조물의 시공 방법에 사용되는 콘크리트 블록의 단면도,9 is a cross-sectional view of a concrete block used in the construction method of the underwater concrete block structure according to the second embodiment of the present invention,
도 10은 도 9의 콘크리트 블록의 사시도,10 is a perspective view of the concrete block of FIG. 9,
도 11은 도 9의 콘크리트 블록을 설치하여 수중 지반의 상부에 콘크리트 블록 집합체를 형성한 상태의 도면,11 is a view of a state in which a concrete block assembly is formed on the upper part of the underwater ground by installing the concrete block of FIG. 9;
도 12는 도 11의 콘크리트 블록 집합체 형성 이후 지반 천공부를 형성한 상태의 도면,12 is a view of a state in which a ground perforation portion is formed after the formation of the concrete block assembly of FIG. 11;
도 13 내지 도 16은 도 12의 지반 천공부 형성 이후 콘크리트 기둥을 형성하는 과정을 순서대로 도시한 도면,13 to 16 are views sequentially showing a process of forming a concrete column after the formation of the ground perforation of FIG. 12;
도 17은 본 발명의 제3실시예에 의하여 시공된 수중 콘크리트 블록 구조물의 단면도,17 is a cross-sectional view of an underwater concrete block structure constructed according to a third embodiment of the present invention,
도 18은 도17에 이용된 복수의 콘크리트 블록의 단면을 분리하여 도시한 도면,18 is a view showing a separate cross-section of a plurality of concrete blocks used in FIG. 17;
도 19는 본 발명의 제4실시예에 의하여 시공된 수중 콘크리트 블록 구조물의 단면도,19 is a cross-sectional view of an underwater concrete block structure constructed according to a fourth embodiment of the present invention,
도 20은 본 발명의 제5실시예에 의한 수중 콘크리트 블록 구조물의 시공 방법에 사용되는 콘크리트 블록의 사시도,20 is a perspective view of a concrete block used in the construction method of the underwater concrete block structure according to the fifth embodiment of the present invention,
도 21은 도 21의 콘크리트 블록의 단면도,Figure 21 is a cross-sectional view of the concrete block of Figure 21,
도 22는 본 발명의 제5실시예에 의하여 시공된 수중 콘크리트 블록 구조물의 단면도.22 is a cross-sectional view of an underwater concrete block structure constructed according to a fifth embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 부여하였다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art can easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and similar reference numerals are assigned to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.
먼저 본 발명에 의한 제1실시예에 의한 수중 콘크리트 블록 구조물의 시공 방법을 설명한다.First, the construction method of the underwater concrete block structure according to the first embodiment according to the present invention will be described.
도 1은 본 발명의 제1실시예에 의한 수중 콘크리트 블록 구조물의 시공 방법에 사용되는 콘크리트 블록의 사시도이며, 도 2는 도 1의 콘크리트 블록을 설치하여 수중 지반의 상부에 콘크리트 블록 집합체를 형성한 상태의 평면 개념도이며, 도 3은 도 2의 단면 개념도이며, 도 4는 도 3의 콘크리트 블록 집합체 형성 이후 지반 천공부를 형성한 상태의 도면이며, 도 5 내지 도 8은 도 4의 지반 천공부 형성 이후 콘크리트 기둥을 형성하는 과정을 순서대로 도시한 도면이다.1 is a perspective view of a concrete block used in the construction method of an underwater concrete block structure according to a first embodiment of the present invention, and FIG. 2 is a concrete block assembly formed on the upper part of the underwater ground by installing the concrete block of FIG. A plan view of the state, FIG. 3 is a cross-sectional conceptual view of FIG. 2, FIG. 4 is a view of a state in which a ground perforation portion is formed after the concrete block assembly of FIG. 3 is formed, and FIGS. 5 to 8 are a ground perforation portion of FIG. 4 It is a diagram showing the process of forming a concrete column after formation in order.
(1) 콘크리트 블록 제작 단계(1) Concrete block production stage
도 1과 같은 콘크리트 블록(10)을 제작한다.A concrete block 10 as shown in FIG. 1 is manufactured.
콘크리트 블록(10)의 형태는 다양하게 형성될 수 있지만, 적어도 상하방향으로 연장되는 상하방향 관통구(11)가 둘 이상 형성되는 것이 바람직하다.Although the shape of the concrete block 10 may be formed in various ways, it is preferable that at least two or more vertical through holes 11 extending in the vertical direction are formed.
상하방향 관통구(11)는 제1직경(D1)으로 상하방향으로 연장된다.The vertical through hole 11 extends in the vertical direction with a first diameter D1.
실시예에 따라서 콘크리트 블록(10)에는 속채움용 공간이 형성되거나 기타 다른 용도의 공간이나 다른 용도의 형상이 형성될 수 있다.Depending on the embodiment, a space for filling may be formed in the concrete block 10, or a space for another purpose or a shape for another purpose may be formed.
상하방향 관통구(11)는, 도 1과 같이 콘크리트 블록(10)에 형성된 구멍일 수도 있지만, 도 20 및 도 21과 같이 중공관을 콘크리트 블록에 삽입하여 중공관의 내부를 상하방향 관통구로 이용할 수도 있다.The vertical through-hole 11 may be a hole formed in the concrete block 10 as shown in FIG. 1, but as shown in FIGS. 20 and 21, a hollow pipe is inserted into the concrete block to use the inside of the hollow pipe as a vertical through-hole. May be.
도 1 등의 콘크리트 블록(10)에서는, 이해의 편의를 위하여, 상하방향 관통구(11)의 크기를 매우 과장되게 도시하고 있다.In the concrete block 10 of FIG. 1, for convenience of understanding, the size of the vertical through-hole 11 is very exaggerated.
(2) 콘크리트 블록 집합체 형성 단계(2) Concrete block assembly formation step
콘크리트 블록 제작 단계에서 제작된 복수의 콘크리트 블록(10)을 도 3과 같이 수중 지반(20)의 상부에 설치하여, 도 2와 같이 복수의 콘크리트 블록(10)이 수평방향으로 연속하여 배치된 콘크리트 블록 집합체(100)를 형성한다.Concrete in which a plurality of concrete blocks 10 produced in the concrete block manufacturing step are installed on the upper part of the underwater ground 20 as shown in FIG. 3, and a plurality of concrete blocks 10 are arranged in a horizontal direction as shown in FIG. To form a block assembly (100).
도 2는 설치된 상태의 평면도이며, 도 2는 설치된 상태의 단면도이다.2 is a plan view of the installed state, and FIG. 2 is a cross-sectional view of the installed state.
콘크리트 블록 집합체(100)를 이루는 콘크리트 블록(10)의 상하방향 관통구(11)는, 하단부가 수중 지반(20)에 의하여 막히며 상단부가 개방된 콘크리트 기둥용 통공부(101)를 형성한다.The vertical through-hole 11 of the concrete block 10 constituting the concrete block assembly 100 forms a through hole 101 for a concrete column whose lower end is blocked by the underwater ground 20 and the upper end is opened.
즉 본 실시예에서 콘크리트 블록은 대형으로 제작되어 상하방향으로는 오직 1단으로만 설치되며, 각 콘크리트 블록(10)의 각 상하방향 관통구(11)가 콘크리트 기둥용 통공부(101)로 기능한다.That is, in this embodiment, the concrete block is manufactured in a large size and is installed only in one step in the vertical direction, and each vertical through hole 11 of each concrete block 10 functions as a through hole 101 for a concrete column. do.
따라서 콘크리트 기둥용 통공부(101)는 제1직경(D1)으로 상하방향으로 연장되는 형태이다.Therefore, the through hole 101 for the concrete column has a shape that extends in the vertical direction with the first diameter D1.
본 실시예의 수중 지반(20)은 인위적으로 조성되지 않은 수중 지반, 즉 해저면에 해당하지만, 실시예에 따라서 수중 지반(20)은 수중 콘크리트 블록 구조물을 위하여 인공적으로 조성한 기초 지반을 포함하는 개념이다.The underwater ground 20 of this embodiment corresponds to an underwater ground that is not artificially created, that is, the sea floor, but according to the embodiment, the underwater ground 20 is a concept including a foundation ground artificially formed for an underwater concrete block structure. .
수중 지반(20)의 상부에 기초 지반이 조성되고 그 이후 콘크리트 블록 집합체(100)를 형성한다면, 콘크리트 블록 집합체 형성 단계 이전에 기초 지반을 조성하는 기초 지반 조성 단계가 더 필요하다.If the foundation ground is formed on the upper part of the underwater ground 20 and the concrete block assembly 100 is formed thereafter, a foundation ground construction step of forming the foundation ground before the concrete block assembly formation step is further required.
기초 지반은, 기초 사석 지반, 치환 사석 지반, 심층혼합처리 지반, 연약지반개량처리된 지반 중 어느 하나 또는 이들을 복합한 것일 수 있다.The foundation ground may be any one or a combination of the ground sandstone ground, the substituted sandstone ground, the deep mixed ground ground, the soft ground improvement ground ground.
연약지반개량처리된 지반이란, 지반이 연약하여 필요한 지지력을 얻을 수 없을 때 치환공법, 압밀공법, 탈수공법, 배수공법, 진동다짐공법, 다짐모래 말뚝공법, 폭파공법, 약액주입공법 등에 따라 지반을 개량하는 연약지반개량공법에 따라 개량 처리된 지반을 말한다.When the ground is soft and the necessary support cannot be obtained, the ground is replaced according to the replacement method, consolidation method, dewatering method, drainage method, vibration compaction method, compaction sand pile method, blasting method, chemical injection method, etc. It refers to the ground that has been improved according to the improved soft ground improvement method.
도 3에서는 콘크리트 블록 집합체의 단면도를 도시하고 있지만, 콘크리트 블록 집합체(100)는 도 2와 같이 수평방향으로도 복수의 콘크리트 블록(10)이 연속적으로 배치되어 있는 상태이다.Although FIG. 3 shows a cross-sectional view of the concrete block assembly, the concrete block assembly 100 is a state in which a plurality of concrete blocks 10 are continuously arranged in a horizontal direction as shown in FIG. 2.
(3) 지반 천공부 형성 단계(3) Ground perforation formation step
콘크리트 블록 집합체 형성 단계 이후, 도 4와 같이 콘크리트 기둥용 통공부(101)의 하부에 위치한 수중 지반(20)을 천공하여 콘크리트 기둥용 통공부(101)와 연속되는 공간인 지반 천공부(102)를 형성한다.After the step of forming the concrete block assembly, as shown in FIG. 4, the underwater ground 20 located under the through hole 101 for the concrete column is perforated, and the ground hole 102 is a space continuous with the through hole 101 for the concrete column. To form.
본 실시예에서는, 콘크리트 기둥용 통공부(101)의 하부에 위치한 수중 지반(20)을 천공하여 지반 천공부(102)를 형성할 때 제2직경(D2)으로 상하방향으로 연장되는 형태의 보호관(30)을 콘크리트 기둥용 통공부(101)를 통하여 수직 방향으로 수중 지반(20)에 삽입한다.In this embodiment, when forming the ground drilling portion 102 by drilling the underwater ground 20 located under the through hole 101 for a concrete column, a protective tube in the form of extending vertically with a second diameter (D2) Insert 30 into the underwater ground 20 in the vertical direction through the through hole 101 for the concrete column.
제2직경(D2)으로 상하방향으로 연장되는 형태의 보호관(30)을 콘크리트 기둥용 통공부(101)를 통하여 수직 방향으로 수중 지반(20)에 삽입하면서 콘크리트 기둥용 통공부(101)의 하부에 위치한 수중 지반(20)을 천공한다.The lower part of the through hole 101 for a concrete column while inserting the protective pipe 30 in the vertical direction with a second diameter (D2) into the underwater ground 20 in the vertical direction through the through hole 101 for a concrete column Drill the underwater ground (20) located at.
이와 같이 지반 천공부(102)를 형성하면, 삽입된 보호관(30)은 콘크리트 기둥용 통공부(101) 및 지반 천공부(102)에 걸쳐 위치되며, 보호관(30)의 내부에 지반 천공부(102)가 형성된다.When the ground perforation portion 102 is formed in this way, the inserted protective pipe 30 is positioned across the concrete column perforation portion 101 and the ground perforation portion 102, and the ground perforation portion ( 102) is formed.
이때 보호관(30)은 천공 작업 도중 혹은 천공 후에 주변의 수중 지반(20)이 지반 천공부(102)로 붕괴되거나 혹은 각종 이물질이 지반 천공부(102)로 유입되는 것을 방지한다. At this time, the protective pipe 30 prevents the surrounding underwater ground 20 from collapsing into the ground drilling portion 102 during or after the drilling operation, or various foreign substances from flowing into the ground drilling portion 102.
또한 보호관(30)은, 후술하는 상하방향 철근부(111) 및 방수막(112)을 보호관(30)에 삽입할 때 방수막(112)을 보호하는 역할을 한다.In addition, the protective tube 30 serves to protect the waterproof membrane 112 when inserting the vertical reinforcing bars 111 and the waterproof membrane 112 to be described later into the protective tube 30.
보호관(30)의 길이는 콘크리트 기둥용 통공부(101)의 길이와 지반 천공부(102)의 길이의 합보다 길게 형성되는 것이 바람직하다. 이에 의하여 방수막(112) 삽입 작업을 간편하게 진행할 수 있다.The length of the protective tube 30 is preferably formed longer than the sum of the length of the through hole 101 for the concrete column and the length of the ground perforation 102. Accordingly, the waterproof film 112 can be inserted easily.
즉 도 4에 도시된 바와 같이 콘크리트 블록 집합체(100)의 상부 표면은 수면보다 높게 위치되며, 지반 천공부 형성 단계에서 삽입된 보호관(30)의 상단은 콘크리트 블록 집합체(100)의 상부 표면으로부터 돌출되어 있다. 즉 보호관(30)의 상단은 수면보다 높게 위치되며 또한 콘크리트 블록 집합체(100)의 상부 표면보다 높게 위치된다. 따라서 보호관(30)으로 방수막(112) 등을 삽입하는 작업이 매우 간편하게 이루어질 수 있다.That is, as shown in Figure 4, the upper surface of the concrete block assembly 100 is positioned higher than the water surface, and the upper end of the protective tube 30 inserted in the ground perforation formation step protrudes from the upper surface of the concrete block assembly 100 Has been. That is, the upper end of the protective tube 30 is positioned higher than the water surface and is positioned higher than the upper surface of the concrete block assembly 100. Therefore, the operation of inserting the waterproof film 112 or the like into the protective tube 30 can be performed very easily.
또한 보호관(30)은 중공관 형태로서, 보호관(30)의 제2직경(D2)는 콘크리트 기둥용 통공부(101)의 제1직경(D1)보다 작다. 이에 의하여 보호관(30)의 삽입 작업이 편리하게 된다. 즉, 보호관(30)의 삽입시 또는 보호관(30)의 제거시, 보호관(30)이 콘크리트 기둥용 통공부(101)에 끼이는 것을 방지한다.In addition, the protective pipe 30 is in the form of a hollow pipe, and the second diameter D2 of the protective pipe 30 is smaller than the first diameter D1 of the through hole 101 for a concrete column. This facilitates the insertion of the protective tube 30. That is, when the protection tube 30 is inserted or when the protection tube 30 is removed, the protection tube 30 is prevented from being caught in the through hole 101 for a concrete column.
또한 보호관(30)의 삽입시 콘크리트 기둥용 통공부(101)를 참조하여 보호관(30)을 삽입하면, 보호관(30)은 비교적 정밀한 수직도를 가지면서 삽입될 수 있다.In addition, when the protection tube 30 is inserted with reference to the through hole 101 for a concrete column when the protection tube 30 is inserted, the protection tube 30 can be inserted while having a relatively precise vertical degree.
한편 보호관(30)은 지반 천공부 형성 단계 이후 제거되는 것이 바람직하다. Meanwhile, the protective tube 30 is preferably removed after the step of forming the ground perforation.
한편 수중 지반(20)을 천공하는 작업을 위하여는 천공 장비가 필요하며, 본 실시예는 콘크리트 블록 집합체(100)의 상부 표면은 수면보다 높게 위치하므로, 천공 장비가 콘크리트 블록 집합체(100)의 상부 표면에 배치되어 천공 작업을 수행한다면 이는 건식 작업이 되어(즉 바지선에서 작업하는 습식 작업이 불필요하게 됨.), 육상 작업과 동일한 환경에서 작업하여 작업 효율을 높일 수 있다.Meanwhile, a drilling equipment is required for the operation of drilling the underwater ground 20, and in this embodiment, since the upper surface of the concrete block assembly 100 is located higher than the water surface, the drilling equipment is the upper part of the concrete block assembly 100 If it is placed on the surface to perform drilling, it becomes a dry operation (that is, the wet operation on a barge becomes unnecessary), and working in the same environment as the land operation can increase work efficiency.
(4) 콘크리트 기둥 형성 단계(4) Concrete pillar formation stage
지반 천공부 형성 단계 이후, 콘크리트 기둥용 통공부(101)와 지반 천공부(102)를 따라 콘크리트 기둥(110)을 형성한다.After the ground perforation forming step, the concrete pillar 110 is formed along the through hole 101 for the concrete pillar and the ground perforation 102.
본 실시예의 콘크리트 기둥 형성 단계는 도 5 내지 도 8과 같이 단계적으로 이루어진다.The step of forming a concrete column in this embodiment is performed in stages as shown in FIGS. 5 to 8.
먼저 도 5 및 도 6과 같이, 상하방향으로 형성된 상하방향 철근부(111)를 콘크리트 기둥용 통공부(101) 및 지반 천공부(102)에 삽입한다.First, as shown in FIGS. 5 and 6, the vertical reinforcing bars 111 formed in the vertical direction are inserted into the through-holes 101 for concrete columns and the ground perforations 102.
본 실시예에서는 이미 보호관(30)이 콘크리트 기둥용 통공부(101) 및 지반 천공부(102)에 위치되어 있으므로, 상하방향 철근부(111)를 보호관(30) 내부에 삽입한다.In this embodiment, since the protective pipe 30 is already located in the through hole 101 and the ground perforation 102 for a concrete column, the vertical reinforcement part 111 is inserted into the protective pipe 30.
이때 상하방향 철근부(111)의 하부 및 측부를 방수막(112)으로 감싼 상태로 콘크리트 기둥용 통공부(101) 및 지반 천공부(102)에 삽입한다.At this time, the bottom and side portions of the vertical reinforcing bars 111 are wrapped with a waterproof membrane 112 and inserted into the concrete column through-holes 101 and the ground perforations 102.
한편 보호관(30)을 통하여 방수막(112) 등이 삽입되므로, 방수막(112)이 수중 지반(20) 등에 접촉하면서 찢기거나 훼손될 위험이 없다.Meanwhile, since the waterproof film 112 or the like is inserted through the protective tube 30, there is no risk of being torn or damaged while the waterproof film 112 comes into contact with the underwater ground 20 or the like.
이와 같이 방수막(112)으로 감싸인 상하방향 철근부(111)가 보호관(30) 내부에 삽입된 후, 도 7 및 도 8과 같이 방수막(112)의 내부에 콘크리트(113)를 타설하여 콘크리트 기둥(110)을 형성한다.In this way, after the vertical reinforcement portion 111 wrapped with the waterproof membrane 112 is inserted into the protective tube 30, concrete 113 is poured into the waterproof membrane 112 as shown in FIGS. 7 and 8. To form a concrete column (110).
도 7은 방수막(112)의 내부에 미경화 콘크리트(113)(fresh concrete) 소량을 타설하면서 보호관(30)을 조금 상승시킨 상태의 도면이다.7 is a view of a state in which the protective tube 30 is slightly raised while pouring a small amount of uncured concrete 113 (fresh concrete) inside the waterproof membrane 112.
즉 도 7에서 보호관(30)의 하단은 지반 천공부(102)를 막 벗어난 상태를 가지도록 보호관(30)을 상승시킨 상태이며, 방수막(112)의 내부에는 지반 천공부(102) 영역에 필요한 미경화 콘크리트(113)가 타설된 상태이다.That is, the lower end of the protective pipe 30 in FIG. 7 is a state in which the protective pipe 30 is raised so as to have a state just out of the ground perforated portion 102, and the inside of the waterproof film 112 is in the ground perforated portion 102 area. The necessary uncured concrete 113 is in a poured state.
이에 의하여 지반 천공부(102)에 위치한 방수막(112)은 미경화 콘크리트(113)의 압력에 의하여 수중 지반(20)에 밀착된다.Thereby, the waterproof membrane 112 located in the ground perforation 102 is in close contact with the underwater ground 20 by the pressure of the uncured concrete 113.
이와 같은 방식으로, 방수막(112)의 내부에 미경화 콘크리트(113)를 점차적으로 타설함과 함께 보호관(30)을 점차적으로 상승시켜, 최종적으로 도 8과 같이 보호관(30)을 완전히 제거하는 한편 콘크리트 기둥용 통공부(101)와 지반 천공부(102) 전체에 미경화 콘크리트(113)를 타설하는 작업을 완료한다.In this way, the uncured concrete 113 is gradually poured into the waterproof membrane 112 and the protective tube 30 is gradually raised, and finally the protective tube 30 is completely removed as shown in FIG. 8. Meanwhile, the work of pouring the uncured concrete 113 in the entire through-hole 101 for the concrete column and the ground perforation 102 is completed.
즉 보호관(30)은, 타설된 미경화 콘크리트(113)가 경화되기 전에 제거될 수 있다.That is, the protective tube 30 may be removed before the poured uncured concrete 113 is hardened.
이와 같이 미경화 콘크리트(113)가 방수막(112)의 내부에 타설되면 방수막(112)은 미경화 콘크리트(113)의 압력으로 수중 지반(20) 및 콘크리트 블록(10)에 밀착되며, 이후 양생 과정을 거쳐 콘크리트 기둥(110)이 된다.In this way, when the uncured concrete 113 is poured into the waterproof membrane 112, the waterproof membrane 112 is in close contact with the underwater ground 20 and the concrete block 10 under the pressure of the uncured concrete 113, and then It becomes a concrete column 110 through a curing process.
만일 방수막(112)의 내부에 미경화 콘크리트(113)를 한꺼번에 타설하고 이후 보호관(30)을 상승시켜 보호관(30)을 제거할 수도 있지만, 이 경우 방수막(112)이 미경화 콘크리트(113)의 압력으로 보호관(30) 내부에 강하게 밀착되어 보호관(30)을 방수막(112)으로부터 분리하는 것이 어려울 수 있다.If the uncured concrete 113 is poured into the waterproof membrane 112 at once, and then the protective tube 30 may be raised to remove the protective tube 30, in this case, the waterproof membrane 112 is not cured concrete 113 It may be difficult to separate the protective tube 30 from the waterproof film 112 because it is strongly adhered to the inside of the protective tube 30 at a pressure of ).
이와 같이 콘크리트 블록 집합체(100)에 콘크리트 기둥(110)이 형성되어 수중 콘크리트 블록 구조물(200)이 형성된다.In this way, the concrete column 110 is formed on the concrete block assembly 100 to form the underwater concrete block structure 200.
즉 콘크리트 기둥(110)은, 콘크리트 기둥용 통공부(101)에 위치하면서 제1직경으로 상하방향으로 연장되는 제1콘크리트 기둥부(110a)와, 지반 천공부(102)에 위치하면서 제2직경으로 상하방향으로 연장되는 제2콘크리트 기둥부(110b)를 포함하여 이루어진다.That is, the concrete pillar 110 is positioned in the first concrete pillar portion 110a extending in the vertical direction with the first diameter while being positioned in the through hole portion 101 for the concrete pillar, and the second diameter while being positioned in the ground perforation portion 102 It consists of including a second concrete column portion (110b) extending in the vertical direction.
수중 콘크리트 블록 구조물(200)에서 콘크리트 기둥(110)의 역할을 설명한다.The role of the concrete column 110 in the underwater concrete block structure 200 will be described.
또한 콘크리트 블록 집합체(100)를 이루는 복수의 콘크리트 블록(10)이 콘크리트 기둥(110)에 의하여 수중 지반(20)에 결속된 상태가 된다.In addition, a plurality of concrete blocks 10 constituting the concrete block assembly 100 are bound to the underwater ground 20 by the concrete pillar 110.
따라서 본 실시예의 수중 콘크리트 블록 구조물(200)의 안정성을 평가하기 위하여는, 수중 콘크리트 블록 구조물(200)의 중량과, 수중 콘크리트 블록 구조물(200)의 수중 지반(20)에 대한 마찰력 이외에도, 콘크리트 기둥(110)에 의한 수중 지반(20)에의 결속력을 함께 고려하여야 한다.Therefore, in order to evaluate the stability of the underwater concrete block structure 200 of this embodiment, in addition to the weight of the underwater concrete block structure 200 and the frictional force on the underwater ground 20 of the underwater concrete block structure 200, the concrete column The binding force to the underwater ground (20) by (110) should be considered together.
즉 수중 콘크리트 블록 구조물(200)은 콘크리트 기둥(110)에 의한 수중 지반(20)에의 결속력으로 인하여 안정성이 획기적으로 향상된다.That is, the underwater concrete block structure 200 is significantly improved in stability due to the binding force to the underwater ground 20 by the concrete column 110.
이와 같이 안정성이 향상되는 결과, 기존의 대형 케이슨과 동일한 안정성을 가지는 것으로 충분한 경우에는 수중 콘크리트 블록 구조물(200)을 획기적으로 소형화시키는 것이 가능하다. As a result of improving the stability as described above, if it is sufficient to have the same stability as the existing large caisson, it is possible to significantly reduce the underwater concrete block structure 200.
즉 수중 콘크리트 블록 구조물(200)의 중량과, 수중 콘크리트 블록 구조물(200)의 수중 지반(20)에 대한 마찰력을 감소시키는 경우에도 콘크리트 기둥(110)에 의한 수중 지반(20)에의 결속력이 이를 보완하여 충분한 안정성을 가질 수 있다.That is, even when the weight of the underwater concrete block structure 200 and the frictional force of the underwater concrete block structure 200 against the underwater ground 20 are reduced, the binding force to the underwater ground 20 by the concrete column 110 compensates for this. Therefore, it can have sufficient stability.
이하 본 발명에 의한 제2실시예를 설명한다.Hereinafter, a second embodiment according to the present invention will be described.
도 9는 본 발명의 제2실시예에 의한 수중 콘크리트 블록 구조물의 시공 방법에 사용되는 콘크리트 블록의 단면도이며, 도 10은 도 9의 콘크리트 블록의 사시도이며, 도 11은 도 9의 콘크리트 블록을 설치하여 수중 지반의 상부에 콘크리트 블록 집합체를 형성한 상태의 도면이며, 도 12는 도 11의 콘크리트 블록 집합체 형성 이후 지반 천공부를 형성한 상태의 도면이며, 도 13 내지 도 16은 도 12의 지반 천공부 형성 이후 콘크리트 기둥을 형성하는 과정을 순서대로 도시한 도면이다.9 is a cross-sectional view of a concrete block used in the construction method of an underwater concrete block structure according to a second embodiment of the present invention, FIG. 10 is a perspective view of the concrete block of FIG. 9, and FIG. 11 is a concrete block of FIG. Thus, it is a view of a state in which a concrete block assembly is formed on the upper part of the underwater ground, FIG. 12 is a view in a state in which a ground perforation part is formed after the formation of the concrete block assembly of FIG. 11, and FIGS. 13 to 16 are the ground fabric of FIG. It is a drawing showing the process of forming a concrete column after the formation of the study.
이하에서는 제1실시예와의 차이점만을 주로 설명하며, 제1실시예와 동일한 부분은 설명을 생략한다.Hereinafter, only differences from the first embodiment will be mainly described, and descriptions of the same parts as those of the first embodiment will be omitted.
(1) 콘크리트 블록 제작 단계(1) Concrete block production stage
본 실시예의 경우 도 9 및 도 10과 같은 비교적 작은 크기의 콘크리트 블록(10)을 제작한다.In the case of this embodiment, a concrete block 10 having a relatively small size as shown in FIGS. 9 and 10 is manufactured.
(2) 콘크리트 블록 집합체 형성 단계(2) Concrete block assembly formation step
콘크리트 블록 제작 단계에서 제작된 복수의 콘크리트 블록(10)을 수중 지반(20)의 상부에 설치하여 도 11과 같이 복수의 콘크리트 블록(10)이 수평방향 및 상하방향으로 연속하여 배치된 콘크리트 블록 집합체(100)를 형성한다.A concrete block assembly in which a plurality of concrete blocks 10 manufactured in the concrete block production stage are installed on the upper part of the underwater ground 20 so that a plurality of concrete blocks 10 are continuously arranged horizontally and vertically as shown in FIG. Form 100.
도 11에서는 콘크리트 블록(10)이 상하방향으로 연속하여 배치된 상태를 확인할 수 있지만, 콘크리트 블록 집합체(100)는 수평방향으로도 복수의 콘크리트 블록(10)이 연속적으로 배치되어 있는 상태이다. 이와 같은 수평방향으로의 복수의 콘크리트 블록(10)의 연속적인 배치 구조는 일반적인 기술이므로 상세한 설명을 생략한다.In FIG. 11, it can be seen that the concrete blocks 10 are continuously arranged in the vertical direction, but the concrete block assembly 100 is a state in which a plurality of concrete blocks 10 are continuously arranged in the horizontal direction. Since the continuous arrangement structure of the plurality of concrete blocks 10 in the horizontal direction is a general technique, detailed descriptions are omitted.
콘크리트 블록 집합체(100)에는, 상하방향으로 연속하여 배치된 복수의 콘크리트 블록(10)의 상하방향 관통구(11)가 상하방향으로 연속되면서 하단부가 수중 지반(20)에 의하여 막히며 상단부가 개방된 콘크리트 기둥용 통공부(101)가 형성된다. In the concrete block assembly 100, the vertical through-holes 11 of the plurality of concrete blocks 10 are continuously arranged in the vertical direction, while the lower end is blocked by the underwater ground 20 and the upper end is opened. The through hole 101 for the concrete column is formed.
즉 본 실시예에서 콘크리트 블록(10)들은 상하방향으로는 2단 이상으로 설치되며, 상하방향으로 적층된 복수의 콘크리트 블록(10)의 상하방향 관통구(11)가 조합되어 하나의 콘크리트 기둥용 통공부(101)가 형성된다.That is, in this embodiment, the concrete blocks 10 are installed in two or more stages in the vertical direction, and the vertical through holes 11 of the plurality of concrete blocks 10 stacked in the vertical direction are combined to be used for one concrete column. The through hole 101 is formed.
이후 (3) 지반 천공부 형성 단계, (4) 콘크리트 기둥 형성 단계가 순차적으로 실시된다.Thereafter, (3) the step of forming the ground perforation and (4) the step of forming the concrete column are sequentially performed.
본 실시예에의 수중 콘크리트 블록 구조물(200)에서 콘크리트 기둥(110)의 역할을 설명한다.The role of the concrete column 110 in the underwater concrete block structure 200 according to this embodiment will be described.
본 실시예는 제1실시예와 대비할 때, 복수의 콘크리트 블록(10)이 콘크리트 기둥(110)에 의하여 수중 지반(20)에 결속된 상태가 될 뿐만 아니라, 상하방향으로 연속하여 배치된 복수의 콘크리트 블록(10)이 콘크리트 기둥(110)에 의하여 서로 결속되면서, 콘크리트 블록 집합체(100)가 구조적 일체성을 가지게 된다.In contrast to the first embodiment, this embodiment is in a state in which a plurality of concrete blocks 10 are bound to the underwater ground 20 by a concrete column 110, as well as a plurality of As the concrete blocks 10 are bound to each other by the concrete columns 110, the concrete block assembly 100 has structural integrity.
이하 본 발명의 제3실시예에 의하여 시공된 수중 콘크리트 블록 구조물을 설명한다.Hereinafter, an underwater concrete block structure constructed according to a third embodiment of the present invention will be described.
도 17은 본 발명의 제3실시예에 의하여 시공된 수중 콘크리트 블록 구조물의 단면도이며, 도 18은 도17에 이용된 복수의 콘크리트 블록의 단면을 분리하여 도시한 도면이다.FIG. 17 is a cross-sectional view of an underwater concrete block structure constructed according to a third embodiment of the present invention, and FIG. 18 is a view showing a separate cross-section of a plurality of concrete blocks used in FIG. 17.
도 17에서는 수중 지반(20)의 일부가 굴착된 후 기초 지반으로서 치환 사석 지반(21)이 조성되고 치환 사석 지반(21)의 상부에 기초 사석 지반(22)이 조성된 후, 기초 사석 지반(22)의 상부에 수중 콘크리트 블록 구조물(200)이 시공되었다.In FIG. 17, after a part of the underwater ground 20 is excavated, the replacement stony ground 21 is formed as the foundation ground, and the foundation stony ground 22 is formed on the upper portion of the displacement stony ground 21, and then the foundation stony ground ( The underwater concrete block structure 200 was constructed on the upper part of 22).
즉 콘크리트 블록 집합체 형성 단계 이전에 기초 지반 조성 단계가 실행되었다.That is, the foundation ground construction step was carried out before the concrete block aggregate formation step.
또한 도 17에서는 콘크리트 블록 집합체(100) 및 콘크리트 기둥(110)이 형성된 후 속채움 단계 및 상치 콘크리트부 형성 단계가 더 부가되었다.In addition, in FIG. 17, after the concrete block assembly 100 and the concrete column 110 are formed, the filling step and the upper concrete part forming step are further added.
즉 도 18에서 확인되는 바와 같이 복수의 콘크리트 블록(10)의 내부에 속채움용 공간(12)이 형성되어 있다.That is, as shown in FIG. 18, a space for filling the inside of the plurality of concrete blocks 10 is formed.
이와 같은 콘크리트 블록(10)의 속채움용 공간(12)은, 콘크리트 블록 집합체(100)를 형성한 후, 속채움재(120)(모래, 자갈 또는 사석 등)를 채운다.The inner filling space 12 of the concrete block 10, after forming the concrete block assembly 100, fills the inner filling material 120 (sand, gravel, sandstone, etc.).
또한 콘크리트 기둥(110)이 형성된 후, 콘크리트 블록 집합체(100)의 상부에 상치 콘크리트부(130)를 형성한다.In addition, after the concrete column 110 is formed, to form the upper part of the concrete block assembly 100, the upper part of the concrete 130.
즉 콘크리트 기둥 형성 단계 이후, 상치 콘크리트부 형성 단계가 더 부가될 수 있다.That is, after the step of forming the concrete column, the step of forming the upper concrete portion may be further added.
이하 본 발명의 제4실시예에 의하여 시공된 수중 콘크리트 블록 구조물을 설명한다.Hereinafter, an underwater concrete block structure constructed according to a fourth embodiment of the present invention will be described.
도 19는 본 발명의 제3실시예에 의하여 시공된 수중 콘크리트 블록 구조물의 단면도이다.19 is a cross-sectional view of an underwater concrete block structure constructed according to a third embodiment of the present invention.
도 19에서는 수중 지반(20)의 일부를 심층혼합처리 지반(23)으로 개량한 후, 심층혼합처리 지반(23)의 상부에 기초 사석 지반(22)이 조성된 후, 기초 사석 지반(22)의 상부에 수중 콘크리트 블록 구조물(200)이 시공되었다.In FIG. 19, after a part of the underwater ground 20 is improved to the deep-mixed ground 23, the foundation stony ground 22 is formed on the top of the deep-mixed ground 23, and then the foundation stony ground 22. The underwater concrete block structure 200 was constructed on the upper part of the.
즉 본 실시예에서는 기초 지반으로서, 심층혼합처리 지반(23)과 기초 사석 지반(22)을 복합 조성하였다.That is, in the present embodiment, as the foundation ground, the deep mixed-processed ground 23 and the rubble ground 22 were combined.
즉 콘크리트 블록 집합체 형성 단계 이전에 기초 지반 조성 단계가 실행되었다.That is, the foundation ground construction step was carried out before the concrete block aggregate formation step.
또한 도 19에서는 콘크리트 블록 집합체(100) 및 콘크리트 기둥(110)이 형성된 후 속채움 단계 및 상치 콘크리트부 형성 단계가 더 부가되었다.In addition, in FIG. 19, after the concrete block assembly 100 and the concrete column 110 are formed, the filling step and the upper concrete part forming step are further added.
즉, 콘크리트 블록 집합체(100)를 형성한 후, 속채움재(120)(모래, 자갈 또는 사석 등)를 채우며, 콘크리트 블록 집합체(100)의 상부에 상치 콘크리트부(130)를 형성한다.That is, after forming the concrete block assembly 100, the filling material 120 (sand, gravel, sandstone, etc.) is filled, and the upper part of the concrete block assembly 100 is formed with a concrete part 130.
이하 본 발명의 제5실시예에 의하여 시공된 수중 콘크리트 블록 구조물을 설명한다.Hereinafter, an underwater concrete block structure constructed according to a fifth embodiment of the present invention will be described.
도 20은 본 발명의 제5실시예에 의한 수중 콘크리트 블록 구조물의 시공 방법에 사용되는 콘크리트 블록의 사시도이며, 도 21은 도 21의 콘크리트 블록의 단면도이며, 도 22는 본 발명의 제5실시예에 의하여 시공된 수중 콘크리트 블록 구조물의 단면도이다.Figure 20 is a perspective view of a concrete block used in the construction method of the underwater concrete block structure according to the fifth embodiment of the present invention, Figure 21 is a cross-sectional view of the concrete block of Figure 21, Figure 22 is a fifth embodiment of the present invention It is a cross-sectional view of an underwater concrete block structure constructed by.
본 실시예의 콘크리트 블록(10)은, 도 20 및 도 21에 도시된 바와 같이, 콘크리트 상판(13)과 콘크리트 하판(14)과 수직 연결관(15)으로 이루어진다.The concrete block 10 of this embodiment, as shown in Figs. 20 and 21, consists of a concrete upper plate 13, a concrete lower plate 14, and a vertical connection pipe 15.
콘크리트 상판(13)과 콘크리트 하판(14)은 상하방향으로 서로 이격되어 배치되어 그 사이로 해수가 유동할 수 있다.The concrete upper plate 13 and the concrete lower plate 14 are arranged to be spaced apart from each other in the vertical direction so that seawater may flow therebetween.
실시예에 따라서 콘크리트 상판(13)과 콘크리트 하판(14) 사이에 다른 구성요소가 부가될 수도 있다.Depending on the embodiment, other components may be added between the concrete upper plate 13 and the concrete lower plate 14.
수직 연결관(15)은, 상단부가 콘크리트 상판(13)에 삽입 결합되고 하단부가 콘크리트 하판(14)에 삽입 결합되고 상하방향 중간부가 콘크리트 상판(13)과 콘크리트 하판(14)의 사이에서 외부로 노출된다.The vertical connection pipe 15 has an upper end inserted into the concrete upper plate 13, a lower end inserted into the concrete lower plate 14, and an upper and lower middle portion between the concrete upper plate 13 and the concrete lower plate 14 to the outside. Exposed.
아울러 수직 연결관(15)은, 상하방향으로 상하방향 관통구(11)가 형성되는 중공관 형태이다.In addition, the vertical connection pipe 15 is in the form of a hollow pipe in which the vertical through hole 11 is formed in the vertical direction.
이와 같은 콘크리트 블록(10)을 이용하여 도 22와 같은 수중 콘크리트 블록 구조물(200)을 형성한다.Using such a concrete block 10, the underwater concrete block structure 200 as shown in FIG. 22 is formed.
도 22에서 콘크리트 기둥(110)은, 수직 연결관(15)의 상하방향 관통구(11)가 상하로 연속하여 형성된 콘크리트 기둥용 통공부 및 지반 천공부를 따라 형성된다.In FIG. 22, the concrete column 110 is formed along a through-hole for a concrete column and a ground perforation in which the vertical through-holes 11 of the vertical connection pipe 15 are vertically formed.
도 22에서는 수중 지반(20)의 상부에 기초 사석 지반(22)을 미리 조성한 후, 기초 사석 지반(22)의 상부에 수중 콘크리트 블록 구조물(200)이 시공되었다.In FIG. 22, after the foundation sandstone ground 22 was previously formed on the upper part of the underwater ground 20, the underwater concrete block structure 200 was constructed on the upper part of the foundation sandstone ground 22.
아울러 기초 사석 지반(22)의 일측에는 근고용 콘크리트 블록(24)이 배치되며, 근고용 콘크리트 블록(24) 또한 상하방향 관통구가 형성되어 있다.In addition, a near-employment concrete block 24 is disposed on one side of the foundation stony ground 22, and the near-employment concrete block 24 is also provided with a vertical through hole.
근고용 콘크리트 블록(24)은 도 9의 변형된 형태로 볼 수 있다.The near-employment concrete block 24 can be seen in a modified form of FIG. 9.
상기와 같이 콘크리트 블록 집합체 형성 단계 이전에 기초 지반 조성 단계가 실행되었다.As described above, the foundation ground construction step was performed before the concrete block assembly formation step.
이와 같은 본 실시예의 수중 콘크리트 블록 구조물(200)은 내부로 해수가 자유롭게 유동할 수 있는 환경을 조성한다.The underwater concrete block structure 200 of this embodiment creates an environment in which seawater can freely flow inside.
즉 수직 연결관(15)의 외부를 통하여 해수가 자유롭게 유동할 수 있으며, 수직 연결관(15)의 내부를 통하여 콘크리트 기둥이 형성되어 복수의 콘크리트 블록이 서로 결속된다.That is, seawater can freely flow through the outside of the vertical connection pipe 15, and a concrete column is formed through the inside of the vertical connection pipe 15 so that a plurality of concrete blocks are bound to each other.
본 실시예를 통하여 콘크리트 블록의 형태는 매우 다양하게 변형될 수 있다는 것을 알 수 있다.It can be seen from this embodiment that the shape of the concrete block can be modified in a wide variety.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것일 뿐 한정적이 아닌 것으로 이해되어야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustrative purposes only, and those of ordinary skill in the art to which the present invention pertains will be able to understand that other specific forms can be easily modified without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as being distributed may also be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims to be described later rather than the detailed description, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention. do.
본 발명은 항만 등을 위한 접안시설, 해안에 설치되는 소파용 구조물, 방파제 등 다양한 목적으로 해상 또는 강가에 설치되는 수중 콘크리트 블록 구조물을 시공하기 위하여 이용될 수 있다.The present invention can be used to construct an underwater concrete block structure installed on the sea or along a river for various purposes, such as a berthing facility for a port, a sofa structure installed on the shore, a breakwater, etc.

Claims (9)

  1. 제1직경으로 상하방향으로 연장되는 상하방향 관통구가 형성되는 복수의 콘크리트 블록을 제작하는 콘크리트 블록 제작 단계 ;A concrete block manufacturing step of manufacturing a plurality of concrete blocks having vertical through holes extending in the vertical direction with a first diameter;
    상기 콘크리트 블록 제작 단계에서 제작된 복수의 콘크리트 블록을 수중 지반의 상부에 설치하여 상기 복수의 콘크리트 블록이 수평방향으로 연속하여 배치된 콘크리트 블록 집합체를 형성하되, 상기 콘크리트 블록의 상하방향 관통구는 하단부가 상기 수중 지반에 의하여 막히며 상단부가 개방되면서 제1직경으로 상하방향으로 연장되는 콘크리트 기둥용 통공부를 형성하는 콘크리트 블록 집합체 형성 단계 ; A plurality of concrete blocks produced in the concrete block manufacturing step are installed on the upper part of the underwater ground to form a concrete block assembly in which the plurality of concrete blocks are continuously arranged in a horizontal direction, wherein the vertical through hole of the concrete block has a lower end. A concrete block assembly forming step of forming a through hole for a concrete column that is blocked by the underwater ground and extends in a vertical direction with a first diameter while the upper end is opened;
    상기 콘크리트 블록 집합체 형성 단계 이후, 제1직경보다 작은 직경인 제2직경으로 상하방향으로 연장되는 형태의 보호관을 상기 콘크리트 기둥용 통공부를 통하여 수직 방향으로 상기 수중 지반에 삽입하면서 상기 콘크리트 기둥용 통공부의 하부에 위치한 수중 지반을 천공하여 상기 콘크리트 기둥용 통공부와 연속되는 공간이면서 제1직경보다 작은 직경으로 상하방향으로 연장되는 지반 천공부를 형성하되, 상기 삽입된 보호관은 상기 콘크리트 기둥용 통공부 및 상기 지반 천공부에 걸쳐 위치되며, 상기 삽입된 보호관의 내부에 상기 지반 천공부가 형성되는 지반 천공부 형성 단계 ;After the step of forming the concrete block assembly, a protective tube having a shape extending in a vertical direction with a second diameter smaller than the first diameter is inserted into the underwater ground in a vertical direction through the through hole for the concrete column, while the cylinder for the concrete column The underwater ground located in the lower part of the study is perforated to form a ground perforation that is a continuous space with the through-hole for the concrete column and extends vertically with a diameter smaller than the first diameter, and the inserted protective tube is the barrel for the concrete column. A ground perforation forming step in which the ground perforation portion is formed in the study and located across the ground perforation portion, and the ground perforation portion is formed inside the inserted protective tube;
    상기 지반 천공부 형성 단계 이후, 상하방향으로 형성된 상하방향 철근부를 상기 상하방향 철근부의 하부 및 측부를 방수막으로 감싼 상태로 상기 보호관에 삽입하고 상기 방수막의 내부에 미경화 콘크리트를 타설하여 상기 콘크리트 기둥용 통공부와 상기 지반 천공부를 따라 콘크리트 기둥을 형성하되, 상기 타설된 미경화 콘크리트가 경화되기 전에 상기 보호관을 제거하여 상기 방수막은 상기 타설된 미경화 콘크리트의 압력으로 상기 수중 지반 및 상기 콘크리트 블록에 밀착되며, 상기 콘크리트 기둥은 상기 콘크리트 기둥용 통공부에 위치하면서 제1직경으로 상하방향으로 연장되는 제1콘크리트 기둥부와 상기 지반 천공부에 위치하면서 제2직경으로 상하방향으로 연장되는 제2콘크리트 기둥부를 포함하여 이루어지는 콘크리트 기둥 형성 단계 ;After the step of forming the ground perforation, the vertical reinforcing bar portion formed in the vertical direction is inserted into the protective tube in a state where the lower and side portions of the vertical reinforcing bar portion are wrapped with a waterproof film, and uncured concrete is poured into the waterproofing film. A concrete column is formed along the through hole and the ground perforation, and the protective tube is removed before the poured uncured concrete is hardened, so that the waterproofing membrane is formed by the pressure of the poured uncured concrete and the underwater ground and the concrete block The concrete pillar is in close contact with the concrete pillar, a first concrete pillar portion extending in a vertical direction with a first diameter while being positioned in the through hole for the concrete pillar, and a second concrete pillar portion extending in a vertical direction with a second diameter while being positioned in the ground perforation portion. Concrete pillar forming step comprising a concrete pillar portion;
    를 포함하여 이루어지는 것을 특징으로 하는 수중 콘크리트 블록 구조물 시공방법.Underwater concrete block structure construction method comprising a.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 콘크리트 블록 집합체 형성 단계는, 상기 복수의 콘크리트 블록이 수평방향 및 상하방향으로 연속하여 배치된 콘크리트 블록 집합체를 형성하되, 상기 상하방향으로 연속하여 배치된 복수의 콘크리트 블록의 상하방향 관통구가 상하방향으로 연속되면서 하단부가 상기 수중 지반에 의하여 막히며 상단부가 개방된 상기 콘크리트 기둥용 통공부가 형성되는 것을 특징으로 하는 수중 콘크리트 블록 구조물 시공방법.In the step of forming the concrete block assembly, a concrete block assembly in which the plurality of concrete blocks are continuously arranged in a horizontal direction and an up-down direction is formed, and the vertical through holes of the plurality of concrete blocks continuously arranged in the vertical direction are vertically arranged. An underwater concrete block structure construction method, characterized in that the through hole for the concrete column is formed in which the lower end is blocked by the underwater ground while continuing in the direction and the upper end is opened.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 콘크리트 블록 집합체의 상부 표면은 수면보다 높게 위치되며, 상기 지반 천공부 형성 단계에서 삽입된 보호관의 상단은 상기 콘크리트 블록 집합체의 상부 표면으로부터 돌출되는 것을 특징으로 하는 수중 콘크리트 블록 구조물 시공방법.The upper surface of the concrete block assembly is positioned higher than the water surface, and the upper end of the protective pipe inserted in the ground perforation forming step protrudes from the upper surface of the concrete block assembly.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 콘크리트 기둥 형성 단계에서, 상기 방수막의 내부에 상기 미경화 콘크리트를 점차적으로 타설함과 함께 상기 보호관을 점차적으로 상승시켜 상기 보호관을 제거하는 것을 특징으로 하는 수중 콘크리트 블록 구조물 시공방법.In the step of forming the concrete column, the uncured concrete is gradually poured into the waterproof membrane, and the protective pipe is gradually raised to remove the protective pipe.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 수중 지반은 수중 콘크리트 블록 구조물을 위하여 인공적으로 조성된 기초 지반을 포함하며,The underwater ground includes a foundation ground artificially constructed for an underwater concrete block structure,
    상기 콘크리트 블록 집합체 형성 단계 이전에 상기 기초 지반을 조성하는 기초 지반 조성 단계가 포함되며, A foundation ground composition step of forming the foundation ground prior to the concrete block assembly formation step is included,
    상기 기초 지반은, 기초 사석 지반, 치환 사석 지반, 심층혼합처리 지반, 연약지반개량처리된 지반 중 어느 하나 또는 이들을 복합한 것인 것을 특징으로 하는 수중 콘크리트 블록 구조물 시공방법.The foundation ground is an underwater concrete block structure construction method, characterized in that any one or a combination of the ground stony ground, substituted stony ground, deep mixed ground, and soft ground improved ground.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 콘크리트 기둥 형성 단계 이후, 상기 콘크리트 블록 집합체의 상부에 상치 콘크리트부를 형성하는 상치 콘크리트부 형성 단계가 부가되는 것을 특징으로 하는 수중 콘크리트 블록 구조물 시공방법.After the step of forming the concrete column, the step of forming a standing concrete part for forming a standing concrete part on the upper part of the concrete block assembly is added.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 콘크리트 블록은 내부에 속채움용 공간이 형성되며, 상기 콘크리트 블록 집합체 형성 단계 이후 상기 속채움용 공간에 속채움재를 채우는 속채움 단계가 부가되는 것을 특징으로 하는 수중 콘크리트 블록 구조물 시공방법.The concrete block is an underwater concrete block structure construction method, characterized in that the inner filling space is formed, and after the step of forming the concrete block assembly, an inside filling step of filling the filling material into the inside filling space is added.
  8. 제1직경으로 상하방향으로 연장되는 상하방향 관통구가 형성되는 복수의 콘크리트 블록이 수중 지반의 상부에 설치되어 상기 복수의 콘크리트 블록이 적어도 수평방향으로 연속하여 배치된 콘크리트 블록 집합체와, 상기 상하방향 관통구와 상기 상하방향 관통구의 하부에 위치하며 상기 제1직경보다 작은 직경으로 상기 수중 지반이 천공되어 형성된 지반 천공부를 따라 형성된 복수의 콘크리트 기둥을 포함하여 이루어지며 ;A plurality of concrete blocks having vertical through-holes extending in a vertical direction with a first diameter are installed on the upper part of the underwater ground so that the plurality of concrete blocks are continuously arranged in at least a horizontal direction, and a concrete block assembly in which the plurality of concrete blocks are continuously arranged in a horizontal direction, and the vertical direction It comprises a through hole and a plurality of concrete pillars located below the vertical through hole and formed along a ground hole formed by drilling the underwater ground with a diameter smaller than the first diameter;
    상기 콘크리트 기둥은 상기 상하방향 관통구에 위치하면서 제1직경으로 상하방향으로 연장되는 제1콘크리트 기둥부와 상기 지반 천공부에 위치하면서 상기 제1직경보다 작은 직경인 제2직경으로 상하방향으로 연장되는 제2콘크리트 기둥부를 포함하여 이루어지며 ;The concrete pillar extends in the vertical direction to a second diameter smaller than the first diameter while being positioned in the vertical through hole and extending in the vertical direction to the first diameter and the ground perforation. It is made including a second concrete column portion;
    상기 콘크리트 기둥은, 상하방향으로 형성되어 상기 상하방향 관통구와 상기 지반 천공부에 걸쳐 배치된 상하방향 철근부와, 상기 상하방향 철근부의 하부 및 측부를 감싸면서 상기 수중 지반 및 상기 콘크리트 블록에 밀착된 방수막과, 상기 방수막의 내부에 타설되어 양생된 콘크리트를 포함하여 이루어지며 ;The concrete pillar is formed in a vertical direction and is in close contact with the underwater ground and the concrete block while surrounding the vertical reinforcement portion disposed across the vertical through hole and the ground perforation, and the lower and side portions of the vertical reinforcement portion. It comprises a waterproof membrane and concrete cured by pouring into the inside of the waterproof membrane;
    상기 콘크리트 블록 집합체의 복수의 콘크리트 블록은 상기 콘크리트 기둥에 의하여 상기 수중 지반에 결속되는 것 ;The plurality of concrete blocks of the concrete block assembly are bound to the underwater ground by the concrete pillars;
    을 특징으로 하는 수중 콘크리트 블록 구조물.Underwater concrete block structure, characterized in that.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 콘크리트 블록 집합체는 상기 복수의 콘크리트 블록이 수평방향 및 상하방향으로 연속하여 배치된 것이며, The concrete block assembly is that the plurality of concrete blocks are continuously arranged in a horizontal direction and an up-down direction,
    상기 콘크리트 기둥은 상기 상하방향으로 연속하여 배치된 복수의 콘크리트 블록의 상하방향 관통구가 상하방향으로 연속되면서 형성된 콘크리트 기둥용 통공부와 상기 콘크리트 기둥용 통공부의 하부에 위치한 상기 수중 지반이 천공되어 형성된 지반 천공부를 따라 형성된 것을 특징으로 하는 수중 콘크리트 블록 구조물.In the concrete column, a through hole for a concrete column formed while the vertical through-holes of a plurality of concrete blocks arranged in a vertical direction are continuous in a vertical direction, and the underwater ground located under the through hole for the concrete column is perforated. Underwater concrete block structure, characterized in that formed along the formed ground perforation.
PCT/KR2020/011438 2019-09-05 2020-08-27 Underwater concrete block structure and construction method therefor WO2021045440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190110350 2019-09-05
KR10-2019-0110350 2019-09-05

Publications (1)

Publication Number Publication Date
WO2021045440A1 true WO2021045440A1 (en) 2021-03-11

Family

ID=74852699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011438 WO2021045440A1 (en) 2019-09-05 2020-08-27 Underwater concrete block structure and construction method therefor

Country Status (1)

Country Link
WO (1) WO2021045440A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116423630A (en) * 2023-03-02 2023-07-14 湖北远固新型建材科技股份有限公司 Double-plug perforating device and method for phosphogypsum concrete block before steam curing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060023036A (en) * 2004-09-08 2006-03-13 송병무 Marine structure and construction method thereof
WO2013022902A2 (en) * 2011-08-09 2013-02-14 Tie-Cast Systems, Inc. Masonry reinforcement system
JP2013151827A (en) * 2012-01-25 2013-08-08 Ohbayashi Corp Tide-water control structure
WO2019017625A1 (en) * 2017-07-21 2019-01-24 김상기 Concrete pack inserting device, method for constructing concrete block structure using same, and concrete block structure constructed thereby
WO2020175844A1 (en) * 2019-02-28 2020-09-03 김상기 Construction method for underwater concrete block structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060023036A (en) * 2004-09-08 2006-03-13 송병무 Marine structure and construction method thereof
WO2013022902A2 (en) * 2011-08-09 2013-02-14 Tie-Cast Systems, Inc. Masonry reinforcement system
JP2013151827A (en) * 2012-01-25 2013-08-08 Ohbayashi Corp Tide-water control structure
WO2019017625A1 (en) * 2017-07-21 2019-01-24 김상기 Concrete pack inserting device, method for constructing concrete block structure using same, and concrete block structure constructed thereby
WO2020175844A1 (en) * 2019-02-28 2020-09-03 김상기 Construction method for underwater concrete block structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116423630A (en) * 2023-03-02 2023-07-14 湖北远固新型建材科技股份有限公司 Double-plug perforating device and method for phosphogypsum concrete block before steam curing
CN116423630B (en) * 2023-03-02 2023-10-31 湖北远固新型建材科技股份有限公司 Double-plug perforating device and method for phosphogypsum concrete block before steam curing

Similar Documents

Publication Publication Date Title
WO2021182795A1 (en) Construction method for underwater concrete block structure
WO2020166846A1 (en) Underwater concrete block structure construction method
WO2020138860A1 (en) Method for constructing annular foundation using variable cross-section rectangular pipes, and foundation thereof
WO2020197061A1 (en) Subterranean underwater structure using geotextile mold and method for constructing same
WO2020145483A1 (en) Method for constructing structure
KR102022341B1 (en) Construruction method for underwater concrete block structure
KR20210029069A (en) Underwater concrete block structure and construruction method therefor
KR100923078B1 (en) Cofferdam Construction Method using Sheet File and Wale and Construction Method For Underwater Structure using the Cofferdam
WO2014204107A1 (en) Multi-suction-pile anchor and flat plate anchor having suction piles
WO2023022457A1 (en) Method for constructing concrete block structure
WO2023096253A1 (en) Method for constructing concrete block structure
WO2021045440A1 (en) Underwater concrete block structure and construction method therefor
WO2022182027A1 (en) Underwater concrete block structure and construction method therefor
WO2024014729A1 (en) Underwater concrete structure for preventing subsidence at seabed soft ground, and construction method therefor
KR100914650B1 (en) The well foundation method for which a steel caisson for pier reinforcement was used
JP4508400B2 (en) Construction method for underwater structure foundation
KR100383409B1 (en) Construction Method of Direct Foundation for using Caisson
KR100617949B1 (en) Pile Groups Construction Method of Weak Bedding Bone Using Caission
KR20130013287A (en) Wet-type constructing method of pier foundation
WO2020055174A1 (en) Complete drainage gabion-reinforced soil retaining wall and construction method thereof
WO2009142397A2 (en) A block for building a revetment and a construction method thereof
WO2021049789A1 (en) Wave power generation system using wave amplification breakwater and construction method thereof
WO2022225213A1 (en) Method for constructing underwater base structure
JP2000265474A (en) Temporary cofferdam constructing method for construction
CN114960742A (en) New and old pipe gallery connection construction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861339

Country of ref document: EP

Kind code of ref document: A1