WO2021049637A1 - Biodegradable laminated sheet, sheet for forming containers, and biodegradable container - Google Patents

Biodegradable laminated sheet, sheet for forming containers, and biodegradable container Download PDF

Info

Publication number
WO2021049637A1
WO2021049637A1 PCT/JP2020/034553 JP2020034553W WO2021049637A1 WO 2021049637 A1 WO2021049637 A1 WO 2021049637A1 JP 2020034553 W JP2020034553 W JP 2020034553W WO 2021049637 A1 WO2021049637 A1 WO 2021049637A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
biodegradable
elastic modulus
container
surface layer
Prior art date
Application number
PCT/JP2020/034553
Other languages
French (fr)
Japanese (ja)
Inventor
知彰 原田
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021545629A priority Critical patent/JPWO2021049637A1/ja
Publication of WO2021049637A1 publication Critical patent/WO2021049637A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a biodegradable laminated sheet, a container forming sheet, and a biodegradable container which have biodegradability, gas barrier property, and can be molded even in a container having a relatively deep bottom.
  • biodegradable plastic sheets are being developed.
  • Materials for biodegradable plastic sheets include, for example, polylactic acid (also referred to as "PLA"), polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), and the like.
  • PLA polylactic acid
  • PCL polycaprolactone
  • PBS polybutylene succinate
  • PBSA polybutylene succinate adipate
  • examples thereof include aliphatic polyesters, aromatic aliphatic polyesters such as polybutylene adipate terephthalate (PBAT), and polyvinyl alcohol (PVA) -based resins.
  • gas barrier means, in a broad sense, suppression of permeation of arbitrary gas, and more specifically, suppression of permeation of oxygen and / or fragrance.
  • the "gas barrier layer" in a biodegradable plastic sheet or container is often made of a PVA-based resin containing a polymer or a copolymer containing a vinyl alcohol component as a main component resin.
  • a PVA-based resin containing a polymer or a copolymer containing a vinyl alcohol component as a main component resin.
  • the PVA-based resin has biodegradability, if it is used for the gas barrier layer, the entire sheet will have biodegradability. Therefore, the sheet and the container obtained from the sheet can be completely decomposed (no residue remains after biodegradation).
  • Patent Document 1 as a laminate having heat resistance and biodegrading after use, polybutylene succi is used as an adhesive layer between an aliphatic polyester resin layer made of polylactic acid and a polyvinyl alcohol resin layer.
  • a biodegradable laminate using a modified polyester resin obtained by graft-modifying nate (hereinafter sometimes referred to as PBS) or polybutylene adipate terephthalate (hereinafter sometimes referred to as PBAT) with maleic anhydride has been disclosed.
  • PBS graft-modifying nate
  • PBAT polybutylene adipate terephthalate
  • Patent Document 2 discloses a laminated sheet in which a polylactic acid resin layer and a barrier layer made of an ethylene-vinyl alcohol copolymer are bonded using a modified polyolefin resin.
  • An object of the present invention is a new biodegradable laminated sheet having a gas barrier layer, which can form a sheet with a uniform thickness of the gas barrier layer even in a container having a relatively deep bottom and has excellent heat resistance. It is an object of the present invention to provide a container-forming sheet and a container made by using the same.
  • the biodegradable resin sheet according to one aspect of the present invention has a surface layer, an intermediate layer and a back layer, the surface layer and the back layer are biodegradable resin layers, the intermediate layer is a gas barrier layer, and the surface layer.
  • the indentation elastic modulus of the back layer is higher than the indentation elastic modulus of the back layer.
  • the biodegradable resin sheet according to another aspect of the present invention has a configuration having a biodegradable resin layer and a gas barrier layer, the storage elastic modulus of the sheet at 110 ° C. is E'(110), and the sheet at 130 ° C.
  • the storage elastic modulus of is E'(130)
  • the E'(110) is 5 MPa to 100 MPa
  • a represented by the following formula (1) is -0.2 to -9.0 ⁇ . It is 10 -4.
  • the container-forming sheet according to one aspect of the present invention comprises the above-mentioned biodegradable resin sheet. Further, the biodegradable container according to one aspect of the present invention is formed by molding the above-mentioned container forming sheet.
  • the biodegradable container according to another aspect of the present invention is a biodegradable container provided with a side wall portion and a bottom surface portion, and the side wall portion and the bottom surface portion have a surface layer, an intermediate layer and a back layer.
  • the surface layer and the back layer are biodegradable resin layers, the intermediate layer is a gas barrier layer, and the indentation elastic modulus of the surface layer is higher than the indentation elastic modulus of the back layer.
  • the surface layer having a high indentation elastic modulus contributes to heat resistance and the back layer having a low indentation elastic modulus contributes to moldability.
  • the secondary molding processability is excellent, and the thickness of the gas barrier layer can be uniformly molded even in a container with a relatively deep bottom. Not only is it excellent in heat resistance.
  • the "secondary molding process” means a process of deforming a sheet into another shape or imparting another shape, and the processing method includes a thermoforming method such as vacuum forming or compressed air forming. Can be mentioned. However, it is not limited to these.
  • the biodegradable laminated sheet (referred to as "the present laminated sheet 1") according to an example of the embodiment of the present invention has a surface layer, an intermediate layer and a back layer, and the surface layer and the back layer are biodegradable resin layers.
  • the intermediate layer is a gas barrier layer and is a biodegradable laminated sheet.
  • the biodegradable laminated sheet (referred to as "the present laminated sheet 2") according to another example of the embodiment of the present invention has a biodegradable resin layer and a gas barrier layer, and has biodegradability. It is a laminated sheet.
  • the laminated sheets 1 and 2 may be a non-stretched sheet or a stretched sheet (stretched film). From the viewpoint of secondary molding processability, a non-stretched sheet is preferable.
  • the "biodegradable resin layer” means a layer containing a biodegradable resin as a main component resin
  • the "gas barrier layer” means a layer having a gas barrier property.
  • biodegradable refers to the property of being finally decomposed into water and carbon dioxide by the action of microorganisms, and is preferably a pilot under an aerobic composting environment of 58 ° C. described in ISO16929 or JIS K6952. On a scale, a 100 mm square film has a property of satisfying that the remaining 10% of a 2 mm flue is within 12 weeks.
  • the "gas barrier property” means a property of suppressing the permeation of an arbitrary gas in a broad sense, and more specifically, a property of suppressing the permeation of oxygen and / or aroma.
  • the property satisfies that the oxygen permeability at 0 ° C. and / or room temperature (20 to 25 ° C.) and 50% RH is 5.0 cc / m 2 ⁇ day ⁇ atm or less.
  • the surface layer and the back layer (hereinafter, also referred to as “front and back layers”) in the laminated sheet 1 are biodegradable resin layers, and can be formed from a biodegradable resin composition.
  • the surface layer and the back layer may have the same composition or different compositions.
  • the indentation elastic modulus of the surface layer is assumed. Is higher than the indentation elastic modulus of the back layer.
  • the difference in indentation elastic modulus between the surface layer and the back layer is more preferably 10 MPa or more, further preferably 100 MPa or more, of which 200 MPa or more, of which 500 MPa or more, and of which 1000 MPa or more. Is even more preferable.
  • the surface layer and the back layer of the laminated sheet 1 preferably have an indentation elastic modulus of at least one of them, that is, one or both layers of 100 MPa to 8000 MPa.
  • the indentation elastic modulus of at least one of the surface layer and the back layer is 100 MPa to 8000 MPa, the handleability of the molded product of the laminated sheet 1 is improved.
  • the indentation elastic modulus of at least one of the surface layer and the back layer is preferably 100 MPa to 8000 MPa, more preferably 200 MPa or more or 7,000 MPa or less, and more preferably 300 MPa or more or 6000 MPa or less.
  • the indentation elastic modulus of the surface layer is made higher than the indentation elastic modulus of the back layer, the surface layer has heat resistance and strength, the back layer has good secondary molding processability, and the inside of the container has good heat sealability.
  • the indentation elastic modulus of the surface layer of the laminated sheet 1 is preferably 500 MPa to 8000 MPa, particularly 1000 MPa or more or 7,000 MPa or less, particularly 1500 MPa or more or 6000 MPa or less, and more preferably 2000 MPa or more.
  • the indentation elastic modulus of the back layer is preferably 100 MPa to 3000 MPa, particularly preferably 1000 MPa or less, and further preferably 500 MPa or less.
  • the elasticity measured by a triangular pyramidal indenter (made of diamond, inter-weight angle 115 °) using a Shimadzu dynamic ultra-micro hardness meter (manufactured by Shimadzu Corporation, DUH-W201).
  • a method of measuring the rate (pushing elastic modulus) can be mentioned.
  • the test mode is a load-unloading test, in which the triangular pyramid indenter is held for 5 seconds under the load when it reaches a depth of 10 ⁇ m from the surface of the sample, and then the load is removed and the depth of the triangular pyramid indenter is changed over time. Obtain the unloading curve.
  • the surface layer and the back layer of the laminated sheet 1 preferably have a storage elastic modulus of at least one, that is, one or both layers at 110 ° C. of 5 MPa to 100 MPa.
  • 110 ° C. is a temperature assuming a heating temperature at the time of molding. Further, it is considered that 110 ° C. exists in the most suitable temperature range for uniformly molding the gas barrier layer. Therefore, since it is rational to judge by the storage elastic modulus of about 110 ° C., the judgment was made by the storage elastic modulus at 110 ° C. In the examples described later, the set temperature during the secondary molding process is 160 ° C.
  • the temperature rise and deformation occur at the same time, and the temperature rise rate is as high as 160 ° C / min. Therefore, the actual sheet temperature during the secondary molding process is higher than 160 ° C. Should also be considered low.
  • the storage elastic modulus at at least one of the surface layer and the back layer at 110 ° C. is 5 MPa to 100 MPa, the surface layer and the back layer can be suitably molded even at around 110 ° C. From this point of view, the storage elastic modulus of at least one of the surface layer and the back layer at 110 ° C. is preferably 5 MPa to 100 MPa, more preferably 7 MPa or more or 95 MPa or less, and more preferably 10 MPa or more or 90 MPa or less.
  • the thickness of the gas barrier layer may not be uniform and the gas barrier property may not be improved.
  • the resin constituting the gas barrier layer is often easier to flow at a high temperature than the resin constituting the biodegradable resin layer, and the laminated sheet itself can be molded relatively uniformly.
  • the gas barrier layer tends to flow easily at that temperature and the thickness unevenness becomes large. Therefore, as described above, by defining the storage elastic modulus of at least one of the surface layer and the back layer at 110 ° C., which is the most suitable temperature for uniformly molding the gas barrier layer, within a predetermined range, the gas barrier layer can also be formed.
  • the surface layer and the back layer can also be molded suitably, and the secondary molding processability is excellent. Not only can the thickness of the gas barrier layer be uniformly molded even in a container with a relatively deep bottom, but also heat resistance. Can also be excellent.
  • a dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Measurement Control Co., Ltd.) is used, and a tensile jig is used to measure the measurement temperature at -100 to 250 ° C. and the frequency at 10 Hz.
  • DVA-200 dynamic viscoelasticity measuring device manufactured by IT Measurement Control Co., Ltd.
  • a tensile jig is used to measure the measurement temperature at -100 to 250 ° C. and the frequency at 10 Hz.
  • a method of measuring at a heating rate of 3 ° C./min can be mentioned.
  • the total storage elastic modulus of the front and back layers at 110 ° C. is preferably 5 MPa or more, more preferably 7 MPa or more, and even more preferably 10 MPa or more. On the other hand, it is preferably 100 MPa or less, more preferably 95 MPa or less, and even more preferably 90 MPa or less.
  • the total storage elastic modulus of the front and back layers of the laminated sheet 1 is (the storage elastic modulus of the surface layer ⁇ the thickness ratio of the surface layer to the total thickness of the surface layer and the back layer) + (the storage elastic modulus of the back layer ⁇ the total thickness of the surface layer and the back layer). It can be obtained by the ratio of the thickness of the back layer to the thickness of the back layer. That is, the total storage elastic modulus of the front and back layers is calculated by the following formula from the storage elastic modulus of each of the surface layer and the back layer and the thickness of each of the surface layer and the back layer.
  • E a ' E 1' ⁇ (t 1 / t 1 + t 2) + E 2 ' ⁇ (t 2 / t 1 + t 2) (However, E a ': total storage elastic modulus of the front and back layers, E 1 ': storage elastic modulus of the surface layer, E 2 ': storage elastic modulus of the back layer, t 1 : thickness of the surface layer, t 2 : thickness of the back layer Is.) If the ratio of the thickness of the intermediate layer (gas barrier layer) to the surface layer and the back layer of the laminated sheet 1 is small, the influence of the intermediate layer on the storage elastic modulus of the entire laminated sheet 1 is not so large. Therefore, the total storage elastic modulus of the front and back layers is almost the same as the storage elastic modulus of the entire laminated sheet 1.
  • the temperature range of the region where the total storage elastic modulus of the front and back layers is 10 MPa to 100 MPa is preferably 5 ° C. or higher, particularly 7 ° C. or higher, and 10 ° C. or higher among them. It is more preferable to have. Since 10 MPa to 100 MPa is considered to be the optimum storage elastic modulus for secondary molding, the temperature region showing the storage elastic modulus in this range can be assumed to be the molding processing temperature region. Therefore, if this storage elastic modulus region can be obtained in a wider temperature range, secondary molding can be suitably performed even if there is a temperature fluctuation, which is preferable.
  • the total storage elastic modulus of the front and back layers at 160 ° C. is preferably 90 MPa or less, particularly 80 MPa or less, particularly 50 MPa or less, and further preferably 20 MPa or less.
  • the storage elastic modulus at 160 ° C. is 90 MPa or less, the molding of a container having a relatively deep bottom can be performed even better.
  • the storage elastic moduli of the surface layer and the back layer of the laminated sheet 1 may be the same or different.
  • the storage elastic modulus of the surface layer on the outside of the container is higher than the storage elastic modulus of the back layer on the inside of the container.
  • the sealing property after molding, the heat resistance, and the thickness of the gas barrier layer can be uniformly molded.
  • the type of the main component resin constituting the surface layer and the back layer can be changed, the copolymerization component of the main component resin can be changed, the molecular weight of the main component resin can be changed, or the surface layer. And / or can be appropriately adjusted by including inorganic particles in the back layer.
  • Both the surface layer and the back layer of the laminated sheet 1 are mainly composed of a biodegradable aliphatic polyester, a biodegradable aromatic polyester, a biodegradable aliphatic aromatic polyester, or a mixed resin composed of a combination of two or more of these.
  • the layer contains as a main component resin, and more preferably, it is a layer containing a biodegradable aliphatic polyester, a biodegradable aliphatic aromatic polyester, or a mixed resin composed of a combination thereof as a main component resin.
  • the "main component resin” means a resin having the highest content (mass%) among the resins constituting each layer of the surface layer or the back layer.
  • the content of the main component resin in each layer is preferably 50% by mass or more, particularly 70% by mass or more, particularly 80% by mass or more, and particularly 90% by mass or more (100% by mass) of the resin constituting each layer. Including).
  • the surface layer and the back layer may have the same main component resin or different resins.
  • one of the surface layer and the back layer can be a layer having more excellent moldability, and the other layer can be made into a layer having more excellent heat resistance.
  • the laminated sheet 1 is used as an oxygen-airtight packaging container, a food packaging container, etc.
  • a container is formed because heat resistance is required on the outside of the container and heat sealability is required on the inside of the container.
  • the surface layer on the outside of the container is a layer having more excellent heat resistance
  • the back layer on the inside of the container is a layer having more excellent moldability.
  • the present invention is not limited to such an example.
  • the surface layer on the outside of the container is preferably biodegradable aliphatic polyester. Since many biodegradable aliphatic polyesters generally have a high storage elastic modulus at around 100 ° C., the surface layer on the outside of the container contains the biodegradable aliphatic polyester, so that the container is made of boiling water or the like. It becomes difficult to deform even when exposed to high temperatures.
  • the back layer on the inside of the container is preferably biodegradable aliphatic aromatic polyester.
  • biodegradable aliphatic polyesters have a storage elastic modulus of 5 MPa to 100 MPa at around 110 ° C., which is the most suitable temperature for uniformly molding the gas barrier layer, so that the back layer inside the container is raw.
  • the secondary molding processability is improved.
  • biodegradable aliphatic polyesters examples include polylactic acid (PLA), polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene adipate, polyethylene succinate (PES), and the like. Examples thereof include 3-hydroxybutyrate-co-3-hydroxyhexanoate polymer (PHBH). Examples of the biodegradable aliphatic aromatic polyester include polybutylene adipate terephthalate (PBAT) and polybutylene succinate terephthalate (PBST).
  • PLA polylactic acid
  • PCL polycaprolactone
  • PBS polybutylene succinate
  • PBSA polybutylene succinate adipate
  • PES polyethylene succinate
  • biodegradable aliphatic aromatic polyester examples include polybutylene adipate terephthalate (PBAT) and polybutylene succinate terephthalate (PBST).
  • the main component resin of the surface layer and the back layer particularly as a preferable example of the main component resin of the surface layer, for example, polybutylene succinate (PBS) or butylene succinate obtained by copolymerizing polybutylene succinate with a copolymerization component.
  • PBS polybutylene succinate
  • PBS butylene succinate obtained by copolymerizing polybutylene succinate with a copolymerization component.
  • examples thereof include a copolymer or a mixed resin of polybutylene succinate (PBS) and another biodegradable aliphatic polyester.
  • Polybutylene succinate (PBS) is a biodegradable resin having a melting point (Tm) close to that of polyethylene and mechanical properties. Since polybutylene succinate (PBS) has a high storage elastic modulus at around 100 ° C., which is 100 MPa or more, the surface layer on the outside of the container contains biodegradable aliphatic polyester, so that the container becomes hot water or the like. It is preferable because it does not easily deform even when exposed. Further, polybutylene succinate (PBS) has a melting point of around 110 ° C., and has a storage elastic modulus of 100 MPa or less at around 110 ° C., which is the most suitable temperature for uniformly molding the gas barrier layer. It is preferable because it does not interfere with the container molding of 1.
  • examples of the copolymerization component copolymerizing with polybutylene succinate include ⁇ -caprolactone (CL), glycolide (GA), L-lactide (LLA), and terephthalic acid (TPA). ), Adipic acid, sebacic acid, ethylene glycol, diethylene glycol, hexanediol, pentaerythritol, 3-alkoxy-1,2-propanediol and the like.
  • the melting point of the surface layer and the back layer or the entire laminated sheet is increased, thereby increasing the heat resistance of the container, that is, the molded product of the laminated sheet 1. Can be done.
  • Polylactic acid (PLA) is preferable as another biodegradable aliphatic polyester to be mixed with polybutylene succinate (PBS).
  • PBS polybutylene succinate
  • Polylactic acid (PLA) has a high storage elastic modulus at around 100 ° C. of 100 MPa or more, and has a high tensile strength at around 110 ° C., which is the most suitable temperature for uniformly molding the gas barrier layer. Therefore, the container is not easily deformed even when exposed to a high temperature such as boiling water, and the secondary molding processability is also good.
  • PBAT polybutylene adipate terephthalate
  • PBAT polybutylene adipate terephthalate
  • Polybutylene adipate terephthalate (PBAT) has a storage elastic modulus of 5 MPa to 100 MPa at around 110 ° C., which is the most suitable temperature for uniformly molding the gas barrier layer. Therefore, when the back layer contains polybutylene adipate terephthalate (PBAT), the secondary molding processability is improved.
  • At least one of the surface layer and the back layer preferably contains inorganic particles.
  • the inorganic particles By containing the inorganic particles, not only the storage elastic modulus can be increased, but also the heat resistance can be enhanced.
  • the content of the inorganic particles should be 10 parts by mass or more with respect to the total amount of the compositions forming each layer, for example, 100 parts by mass of the total of the biodegradable resin and the inorganic particles, from the viewpoint of heat resistance.
  • it is preferably 60 parts by mass or less with respect to the total amount of the composition forming each layer, for example, 100 parts by mass of the total of biodegradable resin and inorganic particles, and more than 50 parts by mass. Among them, it is more preferably 40 parts by mass or less.
  • the storage elastic modulus of the laminated sheet can be increased, and the heat resistance and rigidity of the laminated sheet can be increased.
  • the type of the inorganic particles is not particularly limited.
  • silicates such as pearlite, calcium silicate and sodium silicate, hydroxides such as aluminum oxide, magnesium carbonate and calcium hydroxide, ferric carbonate, zinc oxide, iron oxide, aluminum phosphate and barium sulfate. ..
  • One of these may be used alone, or two or more may be used in any combination and ratio.
  • talc is more preferable from the viewpoint of improving the storage elastic modulus and transparency.
  • the particle size of the inorganic particles is not particularly limited.
  • the average particle size is preferably 0.5 ⁇ m or more, more preferably 0.6 ⁇ m or more, still more preferably 0.7 ⁇ m or more, and particularly preferably 1.0 ⁇ m or more.
  • the average particle size of the inorganic particles is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less.
  • the specific surface area value per 1 g of powder measured by the powder specific surface area measuring device SS-100 (constant pressure air permeation method) manufactured by Shimadzu Corporation was obtained and conformed to JIS M8511.
  • Average particle size ( ⁇ m) 10000 x ⁇ 6 / (specific gravity of inorganic particles x specific surface area) ⁇
  • the main component resins of the surface layer and the back layer of the laminated sheet 1 preferably have crystallinity, that is, have a melting point.
  • the melting point (Tm) of the resin is preferably 100 ° C. or higher in terms of heat resistance.
  • the temperature is 250 ° C. or lower, it is preferable in terms of secondary molding processability.
  • the melting points (Tm) of the main component resins of the surface layer and the back layer are preferably 100 ° C. or higher, more preferably 105 ° C. or higher, and more preferably 110 ° C. or higher.
  • the temperature is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and more preferably 180 ° C. or lower.
  • the melting point (Tm) is determined by heating about 10 mg of the resin to ⁇ 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) and holding the resin at 200 ° C. for 1 minute. This is the crystal melting peak temperature obtained from the thermogram measured when the temperature was lowered to ⁇ 30 ° C. at a cooling rate of 10 ° C./min and then raised to 200 ° C. at a heating rate of 10 ° C./min again.
  • DSC differential scanning calorimeter
  • the surface layer and the back layer are made of resins other than the above, such as polyhydroxyalkanoate, polycarbonate, polyamide, polystyrene, polyolefin, acrylic resin, amorphous polyolefin, ABS, AS (acrylonitrile styrene), polycaprolactone, and polyvinyl alcohol. It may contain any one or more of synthetic resins such as resins and cellulose esters. However, these "resins other than the above” are preferably less than 50 parts by mass, particularly less than 30 parts by mass, with respect to 100 parts by mass of the main component resin.
  • the surface layer and back layer may be a lubricant, a plasticizer, an antioxidant, an antioxidant, a light stabilizer, an ultraviolet absorber, a dye, a pigment, an antioxidant, a crystal nucleating agent, an anti-blocking agent, and a light-resistant agent, if necessary.
  • additives such as agents, plasticizers, heat stabilizers, flame retardants, mold release agents, antifogging agents, surface wetting improvers, incineration aids, dispersion aids, various surfactants, slip agents, starch, cellulose , Paper, wood flour, chitin / cellulosic, coconut shell powder, walnut shell powder and other fine powders of animal / plant substances, or mixtures thereof may be contained as "other components".
  • additives such as agents, plasticizers, heat stabilizers, flame retardants, mold release agents, antifogging agents, surface wetting improvers, incineration aids, dispersion aids, various surfactants, slip agents, starch, cellulose , Paper, wood flour, chitin / cellulosic, coconut shell powder, walnut shell powder and other fine powders of animal / plant substances, or mixtures thereof may be contained as "other components".
  • the content of these "other ingredients” is not particularly limited. As a guide, it is preferably 0.01% by mass or more and 40% by mass or less with respect to the total amount of each layer.
  • the surface layer contains biodegradable aliphatic polyester as the main component resin and the back layer contains biodegradable aliphatic aromatic polyester as the main component resin, and the back layer contains inorganic particles. It is more preferable to include it.
  • the surface layer on the outside of the container contains biodegradable aliphatic polyester, the container is less likely to be deformed even when exposed to a high temperature such as boiling water. Further, since the back layer inside the container contains a biodegradable aliphatic aromatic polyester, the secondary molding processability is improved.
  • the back layer contains a biodegradable aliphatic aromatic polyester as a main component resin
  • the back layer is easily deformed at a high temperature and may have low heat resistance or rigidity. Therefore, by incorporating the inorganic particles in the back layer inside the container, it is possible to improve the heat resistance and rigidity while improving the secondary molding processability.
  • the surface layer of the laminated sheet 1 contains polylactic acid (PLA) or polybutylene succinate (PBS) as the main component resin
  • PBS polybutylene succinate
  • PBAT polybutylene adipate terephthalate
  • talc polybutylene adipate terephthalate
  • the intermediate layer of the laminated sheet 1 is a gas barrier layer.
  • the intermediate layer preferably contains a polyvinyl alcohol-based resin (PVA-based resin) as the main component resin.
  • the "main component resin” means a resin having the highest content (mass%) among the resins constituting the intermediate layer.
  • the content of the main component resin in the intermediate layer is preferably 50% by mass or more, particularly 70% by mass or more, particularly 80% by mass or more, and particularly 90% by mass or more (100% by mass) of the resin constituting the intermediate layer. Includes%).
  • the PVA-based resin is generally obtained by saponifying a polyvinyl ester-based resin obtained by polymerizing a vinyl ester-based monomer.
  • a copolymer containing a vinyl alcohol structural unit in the molecular chain as a repeating unit (hereinafter, also referred to as “PVA copolymer”) is preferable.
  • PVA copolymer a copolymer containing a vinyl alcohol structural unit in the molecular chain as a repeating unit
  • a resin obtained by saponifying a polyvinyl ester-based copolymer obtained by copolymerizing a vinyl ester-based monomer and various monomers is preferable, and above all, it is saponified with a vinyl alcohol structural unit equivalent to the degree of saponification.
  • a resin composed of the remaining vinyl ester structural unit is preferable.
  • the laminated sheet 1 By using a PVA copolymer as the main component resin of the gas barrier layer in the laminated sheet 1, it is possible to impart excellent gas barrier properties while maintaining secondary molding processability. Further, since the PVA copolymer has biodegradability, if it is used for the gas barrier layer, the entire laminated sheet 1 will have biodegradability. Therefore, the laminated sheet 1 and the container obtained from the laminated sheet 1 can be completely decomposed (no residue remains after biodegradation).
  • Vinyl ester-based monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, and versatic acid. Vinyl and the like can be mentioned. Above all, vinyl acetate can be economically preferably used.
  • Examples of the monomer used for copolymerization with the vinyl ester-based monomer include olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, and ⁇ -octadecene, 3-butene-1-ol, and 4-pentene.
  • Hydroxy group-containing ⁇ -olefins such as -1-ol, 5-hexene-1-ol, 3,4-dihydroxy-1-butene and derivatives such as acylated products thereof, acrylic acid, methacrylic acid, crotonic acid, maleic acid.
  • Unsaturated acids such as maleic anhydride and itaconic acid, salts thereof, monoesters, or nitriles such as dialkyl ester, acrylonitrile and metaacrylonitrile, amides such as diacetone acrylamide, acrylamide and methacrylamide, ethylene sulfonic acid and allyl Olefin sulfonic acids such as sulfonic acid and methallyl sulfonic acid or salts thereof, alkyl vinyl ethers, dimethyl allyl vinyl ketone, N-vinylpyrrolidone, vinyl chloride, vinyl ethylene carbonate, 2,2-dialkyl-4-vinyl-1,3 -Vinyl compounds such as dioxolane, glycerin monoallyl ether, 3,4-diacetoxy-1-butene, substituted vinyl acetates such as isopropenyl acetate, 1-methoxyvinyl acetate, vinylidene chloride, 1,4-di
  • the content of the structural unit derived from various monomers in the copolymer is preferably 1 to 20 mol%, and more preferably 2 mol% or more or 10 mol% or less.
  • Modified PVA resin As the PVA-based resin in the laminated sheet 1, a modified PVA-based resin into which various functional groups have been introduced by post-modification can also be used.
  • the modified PVA-based resin includes a PVA copolymer having an acetoacetyl group by reaction with diketen, a PVA copolymer having a polyalkylene oxide group by reaction with ethylene oxide, and a hydroxyalkyl group by reaction with an epoxy compound and the like.
  • PVA copolymer having the above examples thereof include a PVA copolymer having the above, a PVA copolymer obtained by reacting an aldehyde compound having various functional groups, and the like.
  • the main component resin of the intermediate layer is other than the vinyl alcohol structural unit and the vinyl ester structural unit.
  • a modified PVA-based resin having the structural unit of is preferable.
  • a modified PVA-based resin for example, a PVA copolymer having a primary hydroxyl group in the side chain and an ethylene-modified PVA copolymer are preferable in terms of melt moldability. Of these, a PVA copolymer having a primary hydroxyl group in the side chain is preferable.
  • a PVA copolymer having a hydroxyalkyl group in the side chain a PVA copolymer having a 1,2-diol structure in the side chain, and the like can be mentioned. Among them, a PVA copolymer having a 1,2-diol structure in the side chain is preferable.
  • the content of the modified species in the modified PVA resin is preferably 0.1 to 20 mol%, and more than 1 mol% or 10 mol%. The following is more preferable.
  • the content of the structural unit having a 1,2-diol structure in the side chain is preferably 0.1 to 20 mol%, particularly 1 mol. % Or more or 10 mol% or less, more preferably 2 mol% or more or 8 mol% or less.
  • the content of the ethylene structural unit is preferably 0.1 to 20 mol%, particularly 1 mol% or more or 15 mol% or less, and 3 mol% or more or 10 mol% or less among them. In particular, it is more preferably 4 mol% or more or 9 mol% or less.
  • the average degree of polymerization of the PVA-based resin is preferably 300 to 3000 from the viewpoint of followability to the surface layer and the back layer, and more preferably 350 or more or 2500 or less, and further 400 or more or 2000 or less. preferable.
  • the degree of saponification of the PVA-based resin is preferably 90.0 to 99.9 mol% from the viewpoint of gas barrier property, and among them, 99.0 mol% or more or 99.9 mol% or less, among which 99.5 mol. It is more preferably% or more or 99.9 mol% or less.
  • the intermediate layer may be made of a resin other than the above, for example, polyhydroxyalkanoate, polycarbonate, polyamide, polystyrene, polyolefin, acrylic resin, amorphous polyolefin, ABS, AS (acrylonitrile styrene), polycaprolactone, polyvinyl alcohol-based resin, etc. It may contain any one or more of synthetic resins such as cellulose ester. However, these "resins other than the above" are preferably less than 50 parts by mass, particularly less than 30 parts by mass, with respect to 100 parts by mass of the main component resin.
  • the intermediate layer is, if necessary, a lubricant, a plastic agent, an antioxidant, an antioxidant, a light stabilizer, an ultraviolet absorber, a dye, a pigment, an antioxidant, a crystal nucleating agent, an anti-blocking agent, a light-resistant agent, Various additives such as plasticizers, heat stabilizers, flame retardants, mold release agents, antifogging agents, surface wetting improvers, incineration aids, dispersion aids, various surfactants, slip agents, starch, cellulose, paper , Wood flour, chitin / cellulosic, coconut shell powder, walnut shell powder and other animal / plant substance fine powders, or mixtures thereof may be contained as "other components". These can be arbitrarily blended as long as the effects of the present invention are not impaired, and one type may be used alone or two or more types may be mixed and used.
  • the content of these "other ingredients” is not particularly limited. As a guide, it is preferably 0.01% by mass or more and 40% by mass or less with respect to the total amount of each layer.
  • the laminated sheet 2 has a biodegradable resin layer and a gas barrier layer and is a laminated sheet having biodegradability, it suffices to have either the biodegradable resin layer or the gas barrier layer. .. Therefore, the case where the biodegradable resin layer is a surface layer or a back layer is of course included, but the case where it is an intermediate layer is also included. Further, of course, the case where the gas barrier layer is an intermediate layer is included, but the case where the gas barrier layer is a surface layer or a back layer is also included. Above all, from the viewpoint of handleability and moisture resistance after molding, it is preferable that the biodegradable resin layer is the surface layer and the back layer, and the gas barrier layer is the intermediate layer.
  • the laminated sheet 2 is E'(110). Is 5 MPa to 100 MPa, and a represented by the following formula (1) is preferably ⁇ 0.2 to ⁇ 9.0 ⁇ 10 -4.
  • the above formula (1) shows the change in storage elastic modulus with temperature. More specifically, a in the above formula (1) is the average slope in the sections of 110 ° C. and 130 ° C. when the temperature is on the x-axis (° C.) and the storage elastic modulus is on the y-axis (l Albanyg (MPa)). Represents.
  • the laminated sheet 2 has a temperature range in which the gas barrier layer can be uniformly formed as long as the average inclination represented by the above formula (1) is within the range of ⁇ 0.2 to ⁇ 9.0 ⁇ 10 -4. Because of its wide width, it can have excellent secondary moldability. From this point of view, the above a is preferably ⁇ 0.2 to ⁇ 9.0 ⁇ 10 -4 , and more preferably ⁇ 0.1 or more or 0 or less.
  • the type of the main component resin constituting the biodegradable resin layer may be changed, or the type of the copolymerization component of the main component resin may be changed.
  • the molecular weight of the component resin may be changed, or the biodegradable resin layer may contain inorganic particles.
  • the thickness ratio of the biodegradable resin layer and the gas barrier layer may be adjusted.
  • the laminated sheet 2 satisfies the above formula (1) by adjusting the type of the main component resin constituting the resin layer.
  • the biodegradable resin layer of the laminated sheet 2 may be the same as the surface layer and the back layer of the laminated sheet 1.
  • a preferred embodiment of the biodegradable resin layer is the same as that described in the above ⁇ surface layer and back layer>.
  • the gas barrier layer of the laminated sheet 2 may be the same as the intermediate layer of the laminated sheet 1.
  • a preferred embodiment of the gas barrier layer is the same as that described in the above ⁇ intermediate layer>.
  • the laminated sheets 1 and 2 may be provided with at least a biodegradable resin layer and a gas barrier layer.
  • the laminated sheet 1 is intermediate between at least a surface layer and a back layer as a biodegradable resin layer and a gas barrier layer. It suffices to have a layer. Therefore, between the surface layer and the intermediate layer in the present laminated sheet 1, between the back layer and the intermediate layer, between the biodegradable resin layer and the gas barrier layer in the present laminated sheet 2, and further, the biodegradable resin layer or An "other layer” may be provided on the outside of the surface layer or the outside of the back layer.
  • examples of the "other layer” include an anchor coat layer, a heat seal layer, an adhesive layer, a printing layer, a laminate layer, a protective layer, and the like. However, it is not limited to these.
  • Adhesive layer It is preferable that an adhesive layer is interposed between the surface layer and the intermediate layer and / or between the back layer and the intermediate layer in the laminated sheet 1. Further, it is preferable that an adhesive layer is also interposed between the biodegradable resin layer and the gas barrier layer in the laminated sheet 2.
  • the adhesive layer can be formed from an adhesive resin composition.
  • the adhesive resin composition is capable of adhering a surface layer and an intermediate layer, a back layer and an intermediate layer, or a biodegradable resin layer and a gas barrier layer, and has biodegradability. It is preferable to have.
  • the composition of such an adhesive resin composition is not particularly limited.
  • a polyester resin D 0 mainly containing an aliphatic polyester resin and / or an aliphatic aromatic polyester resin is graft-modified with ⁇ , ⁇ -unsaturated carboxylic acid and / or an anhydride thereof.
  • the modified polyester resin D to be used can be mentioned.
  • the polyester resin D 0 is not particularly limited as long as it mainly contains an aliphatic polyester resin and / or an aliphatic aromatic polyester resin.
  • the "mainly containing" in the polyester resin D 0, usually refers to the content of the polyester resin D in 0 is not less than 50 wt%.
  • the polyester-based resin D 0 mainly contains an aliphatic polyester-based resin and / or an aliphatic aromatic polyester-based resin, it may contain other resins as long as the effects of the present invention are not impaired. Good.
  • Other resins that may be contained in the polyester resin D 0 include, for example, polyhydroxy alkanoate, aromatic polyester resin, polycarbonate, polyamide, polystyrene, polyolefin, acrylic resin, amorphous polyolefin, ABS, AS ( Acrylonitrile styrene), polycaprolactone, polyvinyl alcohol-based resin, synthetic resin such as cellulose ester, polylactic acid and the like can be mentioned.
  • the polyester resin D 0 is an aliphatic polyester resin and / or an aliphatic aromatic from the viewpoint of process moldability and adhesiveness when used as an adhesive layer used for a biodegradable laminated sheet having high biodegradability. It is preferably composed of only a polyester resin.
  • the polyester-based resin D 0 contains an aliphatic polyester-based resin and an aliphatic aromatic polyester-based resin, or an aliphatic aromatic polyester, from the viewpoint of improving mechanical strength and adhesiveness when the biodegradable laminated sheet is used. It preferably contains a based resin, and more preferably contains an aliphatic polyester resin and an aliphatic aromatic polyester resin. When the polyester-based resin D 0 contains an aliphatic aromatic polyester-based resin, the primary processability is improved. When the polyester-based resin D 0 contains an aliphatic polyester-based resin and an aliphatic aromatic polyester-based resin, the abundance ratio of the aliphatic polyester resin and the aliphatic aromatic polyester-based resin is the aliphatic polyester resin and the aliphatic aromatic. It is preferable that the total 100% by mass of the polyester-based resin contains 15 to 50% by mass of the aliphatic polyester-based resin and 50 to 85% by mass of the aliphatic aromatic polyester-based resin from the viewpoint of biodegradability and processability.
  • the aliphatic aromatic polyester-based resin contained in the polyester-based resin D 0 at least a part of the repeating unit of the above-mentioned aliphatic polyester-based resin is replaced with an aromatic compound unit, preferably the above-mentioned above-mentioned aliphatic compound unit.
  • the aromatic compound unit examples include an aromatic diol unit having an aromatic hydrocarbon group which may have a substituent and an aromatic dicarboxylic acid having an aromatic hydrocarbon group which may have a substituent.
  • examples thereof include an aromatic oxycarboxylic acid unit having an aromatic hydrocarbon group which may have a unit and a substituent.
  • the aromatic hydrocarbon group may be a single ring, or a plurality of rings bonded or condensed with each other.
  • Specific examples of the aromatic hydrocarbon group include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, dinaphthylene group, diphenylene group and the like.
  • aromatic dicarboxylic acid component that gives an aromatic dicarboxylic acid unit
  • aromatic dicarboxylic acid component may be a derivative of an aromatic dicarboxylic acid compound.
  • the derivative of the aromatic dicarboxylic acid component exemplified above is preferable, and among them, a lower alkyl ester having 1 or more and 4 or less carbon atoms, an acid anhydride and the like can be mentioned.
  • the derivative of the aromatic dicarboxylic acid compound include lower alkyl esters such as methyl ester, ethyl ester, propyl ester and butyl ester of the above-exemplified aromatic dicarboxylic acid component; and the above-exemplified aromatic dicarboxylic acid such as succinic anhydride.
  • Cyclic acid anhydride as an acid component; and the like can be mentioned. Of these, dimethyl terephthalate is preferable.
  • the aromatic diol component may be a derivative of an aromatic diol compound. Further, it may be a compound having a structure in which a plurality of aliphatic diol compounds and / or aromatic diol compounds are dehydrated and condensed with each other.
  • aromatic oxycarboxylic acid component that gives the aromatic oxycarboxylic acid unit include p-hydroxybenzoic acid and p- ⁇ -hydroxyethoxybenzoic acid.
  • the aromatic oxycarboxylic acid component may be a derivative of the aromatic oxycarboxylic acid compound. Further, it may be a compound (oligomer) having a structure in which a plurality of aliphatic oxycarboxylic acid compounds and / or aromatic oxycarboxylic acid compounds are dehydrated and condensed with each other. That is, an oligomer may be used as a raw material.
  • aromatic compound component When an optical isomer is present in the aromatic compound component that gives these aromatic compound units, any of D-form, L-form, and racemic form may be used. Further, the aromatic compound component is not limited to the above example as long as an aromatic compound unit can be given. Further, one type of aromatic compound component may be used alone, or two or more types may be used in any combination and in a ratio.
  • the aliphatic aromatic polyester resin it is preferable to use an aromatic dicarboxylic acid component as a component that gives an aromatic compound unit, and the content of the aromatic dicarboxylic acid unit in this case is the aliphatic dicarboxylic acid unit and the aromatic acid. Based on the total amount of the dicarboxylic acid unit (100 mol%), it is preferably 10 mol% or more and 80 mol% or less. Further, it is preferable to use terephthalic acid as the aromatic dicarboxylic acid component, and as the aliphatic aromatic polyester resin, it is preferable to use polybutylene terephthalate adipate and / or polybutylene terephthalate succinate resin.
  • the mass average molecular weight of the polyester resin D 0 is a polystyrene-equivalent value measured by GPC, usually 5,000 to 1,000,000, preferably 20,000 to 500,000, and particularly preferably 50,000. ⁇ 400,000. If the mass average molecular weight of the polyester resin is too large, the melt viscosity tends to be high and it tends to be difficult to melt-mold, and conversely, if it is too small, the molded product tends to be brittle.
  • polyester resin D 0 Commercially available products of polyester resin D 0 include, for example, "Ecoflex” manufactured by BASF, which contains polybutylene terephthalate adipate as the main component, and a polycondensation polymer of succinic acid / adipic acid / 1,4-butanediol as the main component.
  • PTTMCC “BioPBS” manufactured by Biochem Co., Ltd. can be mentioned.
  • “Aonilex” manufactured by Kaneka Corporation can be mentioned as a polyhydroxy alkanoate which may be contained in the polyester resin.
  • Modified polyester resin D The modified polyester resin D is obtained by graft-modifying the above-mentioned polyester resin D 0 with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride.
  • the polyester-based resin D 0 is biodegradable because it contains an aliphatic polyester-based resin and / or an aliphatic aromatic polyester-based resin, and the polyester-based resin D 0 is ⁇ , ⁇ -unsaturated carboxylic acid and / or its.
  • the modified polyester resin D obtained by graft modification with an anhydride also has a basic skeleton of an aliphatic polyester or an aliphatic aromatic polyester, and is biodegradable because it is modified by a slight amount. is there.
  • ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride used for graft modification to the polyester resin D 0 are ⁇ , ⁇ -unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; Examples thereof include ⁇ , ⁇ -unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citrus acid, tetrahydrophthalic acid, crotonic acid and isocrotonic acid, derivatives thereof and anhydrides thereof, preferably ⁇ , ⁇ -unsaturated.
  • Anhydride of dicarboxylic acid can be used. Particularly preferred is maleic anhydride.
  • the method for graft-modifying the polyester resin D 0 with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride is not particularly limited, and a known method can be used. Although graft modification can be performed only by thermal reaction, it is preferable to use a radical initiator in order to enhance the reactivity. Examples of the reaction method include a solution reaction, a reaction as a suspension, and a reaction in a molten state without using a solvent or the like, and among them, the reaction in a molten state is preferable.
  • the modified polyester resin D may be obtained by using two or more kinds of polyester resins D 0.
  • the polyester resin D 0 can be obtained as a modified polyester resin D by mixing the polyester resin D 0 in advance and then graft-modifying with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride.
  • two or more types of polyester resins D 0 are graft-modified with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride to obtain a modified polyester resin D, and then all the modified polyester resins D are subjected to. It may be mixed.
  • the adhesive resin composition of the present invention preferably uses an aliphatic polyester resin and / or a polyester resin mainly containing the above-mentioned aliphatic aromatic polyester resin, but the polyester resin is a fat.
  • the aliphatic polyester resin is graft-modified with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride in advance, and the aliphatic aromatic polyester. You may prepare the system resin graft-modified with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride, and mix them to use as the modified polyester-based resin D.
  • one of the aliphatic polyester resin and the aliphatic aromatic polyester resin may be graft-modified with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride, and mixed with the other resin for use.
  • the modified polyester resin D is, for example, a mixture of an aliphatic polyester resin graft-modified with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride and an aliphatic aromatic polyester resin.
  • it may be a mixture of an aliphatic polyester-based resin graft-modified with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride and an aliphatic polyester-based resin.
  • a mixture of an aliphatic polyester resin and an aliphatic aromatic polyester resin graft-modified with ⁇ , ⁇ -unsaturated carboxylic acid and / or an anhydride thereof may be used as the modified polyester resin D.
  • the method for modifying the polyester resin D 0 is not limited to one type, and a mixture of a plurality of resins obtained by modifying the polyester resin D 0 by two or more methods is used as the modified polyester resin D. You may use it.
  • the adhesive resin composition of the present invention uses an aliphatic aromatic polyester resin as an ⁇ , ⁇ -unsaturated carboxylic from the viewpoints of improving biodegradability, improving adhesiveness, moldability, and improving appearance when used as an adhesive layer.
  • a mixture of a modified polyester resin D graft-modified with an acid and / or its anhydride and an aliphatic polyester resin, or a mixture of an aliphatic polyester resin and an aliphatic aromatic polyester resin is ⁇ , ⁇ -non.
  • the modified polyester resin D graft-modified with saturated carboxylic acid and / or its anhydride is preferably a modified polyester resin, and from the viewpoint as a biodegradable resin composition required for home compost, an aliphatic aromatic polyester.
  • modified polyester resin D obtained by mixing the modified polyester resin D graft-modified with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride and the aliphatic polyester resin is used as the modified polyester resin D.
  • the proportion (% by mass) of the modified polyester resin D obtained by graft-modifying the aliphatic aromatic polyester resin contained in the modified polyester resin with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride is , 50-90 with respect to 100% by mass of the total of the modified polyester resin D obtained by graft-modifying the aliphatic aromatic polyester resin with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride and the aliphatic polyester resin. Mass% is preferred.
  • the ratio of the aliphatic polyester resin is 100 mass in total of the modified polyester resin D obtained by graft-modifying the aliphatic aromatic polyester resin with ⁇ , ⁇ -unsaturated carboxylic acid and / or its anhydride and the aliphatic polyester resin. 10 to 50% by mass is preferable with respect to%.
  • One type or two or more types of polyester resin D 0 may be mixed with the modified polyester resin D as long as the performance is not impaired.
  • the content of unsaturated carboxylic acid and / or its anhydride in the modified polyester resin D is not limited. Usually, it is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.03% by mass or more. On the other hand, it is usually preferably 5.0% by mass or less, particularly preferably 4.0% by mass or less, and more preferably 3.0% by mass or less. If the content of the unsaturated carboxylic acid and / or its anhydride in the modified polyester resin D is too small, the interlayer adhesiveness, particularly the adhesive force with the PVA resin layer tends to be insufficient.
  • the content of unsaturated carboxylic acid and / or its anhydride in the modified polyester resin D can be determined from the spectrum obtained by 1 1 H-NMR measurement.
  • the mass average molecular weight of the modified polyester resin D is a polystyrene-equivalent value measured by GPC, which is usually 5,000 to 1,000,000, and more preferably 20,000 or more or 500,000 or less. Among them, it is more preferably 50,000 or more or 400,000 or less. If the mass average molecular weight of the modified polyester resin D is too large, the melt viscosity tends to be high and it tends to be difficult to melt-mold, and conversely, if it is too small, the molded product tends to be brittle.
  • the adhesive layer may contain only one type of the above-mentioned modified polyester resin D, or may contain two or more types.
  • the present laminated sheet 1 has at least a structure in which a surface layer, a first adhesive layer, an intermediate layer, a second adhesive layer, and a back layer are laminated in this order, and the surface layer and the back layer are biodegradable. It is preferable that the layer is mainly composed of a degradable resin, and that the first adhesive layer, the intermediate layer and the second adhesive layer are biodegradable.
  • the present laminated sheet 2 has at least a structure in which a biodegradable resin layer, an adhesive layer, and a gas barrier layer are laminated in this order, and the biodegradable resin layer is a layer containing a biodegradable resin as a main component. Moreover, it is preferable that the adhesive layer and the gas barrier layer have biodegradability.
  • the laminated sheet 2 has at least a configuration in which a first biodegradable resin layer, a first adhesive layer, a gas barrier layer, a second adhesive layer, and a second biodegradable resin layer are laminated in this order.
  • the first biodegradable resin layer and the second biodegradable resin layer are layers mainly composed of a biodegradable resin, and the first adhesive layer, the gas barrier layer and the second It is more preferable that the adhesive layer has biodegradability.
  • the thickness of the laminated sheets 1 and 2 is preferably 0.1 mm or more, and more preferably 0.3 mm or more, and more preferably 0.5 mm or more, from the viewpoint of the thickness after the secondary molding process. On the other hand, from the viewpoint of secondary molding processability, it is preferably 2.0 mm or less, more preferably 1.8 mm or less, and more preferably 1.6 mm or less.
  • the thickness of the surface layer with respect to the thickness of the back layer is preferably 0.1 or more, more preferably 0.2 or more, and even more preferably 0.4 or more.
  • the ratio of the surface layer to the thickness of the back layer when the laminated sheet is formed into a capsule container as shown in FIG. 1 and the outside of the container is the surface layer and the inside of the container is the back layer. It may be a thickness ratio (front layer / back layer).
  • the thickness of the intermediate layer or the gas barrier layer in the laminated sheets 1 and 2 is preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more, and further preferably 1.0 ⁇ m or more. ..
  • it is preferably 700 ⁇ m or less, more preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the ratio of the thickness of the gas barrier layer to the thickness of the biodegradable resin layer is preferably 4.1 ⁇ 10 -4 to 1.4. Among them, 8.3 ⁇ 10 -4 or more is more preferable from the viewpoint of gas barrier property, and 0.33 or less is more preferable from the viewpoint of processability and economy.
  • the laminated sheets 1 and 2 can be produced by a coextrusion method.
  • the method is not limited to the coextrusion method, and can be produced by, for example, a coating method, a laminating method, or another method.
  • a composition for forming a surface layer, a composition for forming a back layer, a composition for forming an intermediate layer, and, if necessary, another adhesive layer or the like when the present laminated sheet 1 is produced by the coextrusion method, a composition for forming a surface layer, a composition for forming a back layer, a composition for forming an intermediate layer, and, if necessary, another adhesive layer or the like.
  • Each of the compositions forming the layer can be prepared, heated and supplied to an extruder to be melted, and coextruded from a T-die into a sheet to prepare the present laminated sheet.
  • the laminated sheets 1 and / or 2 can obtain the following physical properties.
  • the laminated sheets 1 and 2 are prepared to have a 100 mm square film within 12 weeks on a pilot scale under an aerobic composting environment of 58 ° C. described in ISO 16929 or JIS K6952, and the remaining 10% of the 2 mm flue remains. It can have satisfactory biodegradability.
  • the laminated sheets 1 and 2 have an oxygen permeability of 5.0 cc / m 2 ⁇ day ⁇ atm or less at 0 ° C. and / or room temperature (20 to 25 ° C.) and 50% RH.
  • 4.0 cc / m 2 ⁇ day ⁇ atm or less and more preferably 3.0 cc / m 2 ⁇ day ⁇ atm or less.
  • the smaller the oxygen permeability, the more preferable, and the feasible lower limit is preferably 0.01 cc / m 2 ⁇ day ⁇ atm or more.
  • the oxygen permeability of the laminated sheets 1 and 2 can be adjusted by, for example, adjusting the type and thickness of the intermediate layer or the gas barrier layer. However, it is not limited to these factors.
  • the laminated sheets 1 and 2 preferably have a storage elastic modulus at 110 ° C. of 5 MPa to 100 MPa, more preferably 7 MPa or 95 MPa or less, and more preferably 10 MPa or more or 90 MPa or less.
  • the storage elasticity of the laminated sheets 1 and 2 can be adjusted by changing the type of the main component resin constituting the front and back layers or the biodegradable resin layer, changing the copolymerization component of the main component resin, or changing the main component resin. It can be appropriately adjusted by changing the molecular weight or by incorporating inorganic particles in the front and back layers or the biodegradable resin layer.
  • a dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Measurement Control Co., Ltd.) is used and a tensile jig is used to measure the temperature. Examples thereof include a method of measuring at 100 to 250 ° C., a frequency of 10 Hz, and a heating rate of 3 ° C./min.
  • the storage elastic modulus of the laminated sheets 1 and 2 is (the storage elastic modulus of the surface layer ⁇ the thickness ratio of the surface layer to the total thickness of the surface layer, the back layer and the intermediate layer (gas barrier layer) layer) + (the storage elastic modulus of the back layer).
  • the storage elastic modulus of the laminated sheets 1 and 2 is calculated from the storage elastic modulus of each of the surface layer, the back layer and the intermediate layer (gas barrier layer) and the thickness of each of the surface layer, the back layer and the intermediate layer (gas barrier layer). It may be calculated by.
  • E t ' E 1' ⁇ (t 1 / t 1 + t 2 + t 3) + E 2 ' ⁇ (t 2 / t 1 + t 2 + t 3) + E 3' ⁇ (t 3 / t 1 + t 2 + t 3)
  • Et ' storage elastic modulus of the laminated sheet
  • E 1 ' storage elastic modulus of the surface layer
  • E 2 ' storage elastic modulus of the back layer
  • E 3 ' storage elasticity of the intermediate layer (gas barrier layer) Ratio
  • t 1 Surface layer thickness
  • t 2 Back layer thickness
  • t 3 Intermediate layer (gas barrier layer) thickness.
  • the laminated sheets 1 and 2 preferably have a maximum tensile strength of 0.5 MPa or more at 110 ° C., more preferably 0.6 MPa or more, and even more preferably 0.7 MPa or more.
  • the tensile tension is measured according to the method described in JIS C2133, with a test length (distance between gripping tools) of 20 mm, a test width of 15 mm, a tensile speed of 200 mm / min, a test temperature of 110 ⁇ 2 ° C., and a test humidity of 50 ⁇ .
  • a method of measuring at 10% can be mentioned.
  • the container according to an example of the embodiment of the present invention (“the present container”) is a biodegradable container provided with a side wall portion and a bottom surface portion, and the side wall portion and the bottom surface portion have a surface layer, an intermediate layer and a back layer.
  • the surface layer and the back layer are biodegradable resin layers, and the intermediate layer is a gas barrier layer.
  • the indentation elastic modulus of the surface layer of the side wall and the bottom surface of the container is higher than that of the back layer from the viewpoint of providing heat resistance in the surface layer and improving heat sealing property in the back layer. Is preferable.
  • the difference in indentation elastic modulus between the surface layer and the back layer is preferably 10 MPa or more, and more preferably 100 MPa or more, particularly 200 MPa or more, particularly 500 MPa or more, and among them 1000 MPa or more.
  • the indentation elastic modulus of at least one of the surface layer and the back layer in this container is preferably 100 MPa to 8000 MPa from the viewpoint of heat resistance and heat sealability. From this point of view, the indentation elastic modulus of at least one of the surface layer and the back layer is preferably 100 MPa to 8000 MPa, more preferably 200 MPa or more or 7,000 MPa or less, and more preferably 300 MPa or more or 6000 MPa or less.
  • the indentation elastic modulus of the surface layer is made higher than the indentation elastic modulus of the back layer, the surface layer has heat resistance and strength, the back layer has good secondary molding processability, and the inside of the container has good heat sealability.
  • the indentation elastic modulus of the surface layer in this container is preferably 500 MPa to 8000 MPa, particularly 1000 MPa or more or 7,000 MPa or less, particularly 1500 MPa or more or 6000 MPa or less, and more preferably 2000 MPa or more.
  • the indentation elastic modulus of the back layer is preferably 100 MPa to 3000 MPa, particularly preferably 1000 MPa or less, and further preferably 600 MPa or less.
  • the method for measuring the indentation elastic modulus of the surface layer and the back layer in the present container is the same as that of the present laminated sheet 1.
  • the container can be formed from, for example, the laminated sheet 1 or 2.
  • the method for forming this container is arbitrary, and it can also be molded by, for example, injection molding.
  • the container can be formed by heat vacuum forming with the surface layer of the laminated sheet 1 or 2 as the outside of the container and the back layer as the inside of the container.
  • the method is not limited to this method.
  • This laminated sheet is excellent in secondary molding processability, and not only can the thickness of the gas barrier layer be uniformly molded even in a container having a relatively deep bottom, but also excellent heat resistance. Therefore, this laminated sheet is suitable as a container forming sheet, and is also suitable for forming this container. At this time, by molding the surface layer of the laminated sheet as the outside of the container and the back layer as the inside of the container, both heat resistance and heat sealability can be achieved.
  • the "secondary molding process” means a process of deforming a sheet into another shape or imparting another shape, and the processing method includes a thermoforming method such as vacuum forming or compressed air forming. Can be mentioned. However, it is not limited to these.
  • a container having a collar portion (1) and a recessed portion (2) as a storage portion can be mentioned.
  • This container can be manufactured by vacuum forming the laminated sheet 1 or 2 in the same manner as in Examples described later.
  • the wall thickness of the collar portion (1) is preferably 0.1 mm or more, particularly preferably 0.5 mm or more, and more preferably 0.9 mm or more from the viewpoint of durability of the recess. On the other hand, from the viewpoint of secondary molding processability at the time of sheeting, it is preferably 2.0 mm or less, more preferably 1.5 mm or less, and more preferably 1.2 mm or less.
  • the recess (2) has a side wall portion (3) and a bottom surface portion (4), and when the plan view shape of the upper edge portion (2a) of the recess (2) is a non-circular shape, the shortest width L 1 thereof.
  • the ratio of the depth D of the concave portion (2) to the diameter L 1 is preferably 0.1 or more, more preferably 0.2 or more, and even more preferably 0.5 or more.
  • it when used as a deep-drawn container, it is preferably 5.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less.
  • the average value of the wall thickness (also referred to as "average wall thickness") of the side wall portion (3) of the recess (2) is a gas barrier depending on the thickness due to the uniform wall thickness of this container, that is, the molded product by deep drawing molding. From the viewpoint of reducing the unevenness of the property and obtaining a packaging container having a higher gas barrier property (low oxygen permeability), it is preferably 15% or more of the wall thickness of the flange portion (1), particularly 18%. Above all, it is more preferable that it is 20% or more. On the other hand, from the viewpoint of uniformity of thickness in the shallowly drawn container, it is preferably 95% or less, particularly preferably 90% or less, and more preferably 80% or less of the wall thickness of the collar portion (1).
  • the difference between the maximum wall thickness and the minimum wall thickness is such that the unevenness of the gas barrier property is small, and a packaging container having a high gas barrier property (low oxygen permeability) can be obtained. Therefore, it is preferably 0.35 mm or less, more preferably 0.30 mm or less, and more preferably 0.25 mm or less. The smaller the difference between the maximum wall thickness and the minimum wall thickness is, the better from the viewpoint of barrier property, and 0.01 mm or more is preferable within a feasible range.
  • the container may not have the bottom surface portion (4) in FIG. 1, and the recess (2) may be composed of only the side wall portion (3).
  • this container can be biodegradable and has excellent gas barrier properties and heat resistance, it is an oxygen-airtight packaging container, a food packaging container, and especially a coffee bean container for a capsule-type coffee maker. It can be suitably used as (so-called "coffee capsule”).
  • the laminated sheet 1 or 2 may be used as a lid material for covering the collar portion (1) of the container.
  • the laminated sheet 1 or 2 may be used as a lid material for covering the collar portion (1) of the container.
  • the laminated sheet 1 or 2 By integrating the laminated sheet 1 or 2 with the container as a lid material, it is possible to obtain biodegradability as a whole and excellent gas barrier property and heat resistance.
  • the lid material used for this container is not limited to the present laminated sheet 1 or 2, and can be selected and used from any resin, metal, paper, and laminated bodies thereof.
  • the laminated sheets 1 and 2 and the container have good biodegradability, as described above, the decomposition characteristics in an aerobic compost environment are good. In addition, it can be an effective means not only in an aerobic compost environment, but also as a countermeasure against natural decomposition when staying in rivers and oceans, and problems that birds and marine organisms accidentally eat and accumulate in the body. Therefore, the effect is great.
  • the method for producing this container is arbitrary.
  • the present container can be produced by using the present laminated sheet 1 or 2, or the present container can be produced by injection molding or the like.
  • the container When the container is manufactured using the laminated sheet 1 or 2, it is preferable to perform heat vacuum forming with the surface layer of the laminated sheet 1 or 2 on the outside of the container and the back layer on the inside of the container.
  • the heating temperature is 80 to 80 to that the gas barrier layer does not flow and the front and back layers or the biodegradable resin layer can be molded.
  • the temperature is preferably 170 ° C. or higher, particularly preferably 100 ° C. or higher or 160 ° C. or lower, and particularly preferably 110 ° C. or higher or 150 ° C. or lower.
  • a dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Measurement Control Co., Ltd.) is used and tension is applied to each of the surface layer, intermediate layer (gas barrier layer) and back layer of Examples 1 to 4 and Comparative Examples 1 and 2.
  • DVA-200 manufactured by IT Measurement Control Co., Ltd.
  • tension is applied to each of the surface layer, intermediate layer (gas barrier layer) and back layer of Examples 1 to 4 and Comparative Examples 1 and 2.
  • the storage elastic modulus at a measurement temperature of -100 to 250 ° C., a frequency of 10 Hz, and a heating rate of 3 ° C./min was measured.
  • the rate (E') is shown.
  • the storage elastic modulus of the biodegradable laminated sheets (samples) of Example 1 and Comparative Examples 1 and 2 was measured by the same method as described above, and the storage elastic modulus (E') of the entire laminated sheet at 110 ° C. and 130 ° C. was measured. ) Is shown in the table.
  • the storage elastic modulus of the entire laminated sheet at 110 ° C. and 130 ° C. was calculated by the following formula using the storage elastic moduli measured for each of the surface layer, the intermediate layer (gas barrier layer) and the back layer. I asked for E').
  • E t ' E 1' ⁇ (t 1 / t 1 + t 2 + t 3) + E 2 ' ⁇ (t 2 / t 1 + t 2 + t 3) + E 3' ⁇ (t 3 / t 1 + t 2 + t 3)
  • Et ' storage elastic modulus of the entire laminated sheet
  • E 1 ' storage elastic modulus of the surface layer
  • E 2 ' storage elastic modulus of the back layer
  • E 3 ' storage of the intermediate layer (gas barrier layer)
  • Elastic modulus (40.9 MPa at 110 ° C., 27.9 MPa at 130 ° C.)
  • t 1 Surface layer thickness (320 ⁇ m)
  • t 2 Back layer thickness (320 ⁇ m)
  • t 3 Intermediate layer (gas barrier layer) thickness (60 ⁇ m).
  • Example 1 the storage elastic modulus (E') of the entire laminated sheet actually measured as described above and the storage elastic modulus (E') of the entire laminated sheet calculated by the above formula as described above are calculated.
  • the measured value was 77.0 MPa at 110 ° C., while the calculated value was 82.6 MPa, and at 130 ° C., the measured value was 52.0 MPa, while the calculated value was 54.3 MPa. Since it was there, it was confirmed that the values were almost the same.
  • the storage elastic modulus of each of the surface layer and the back layer and the thickness of each of the surface layer and the back layer were used to obtain 110 ° C. and 130 ° C. using the following formula. And the total storage elastic modulus of the front and back layers at 160 ° C. was calculated.
  • E a ' E 1' ⁇ (t 1 / (t 1 + t 2)) + E 2 ' ⁇ (t 2 / (t 1 + t 2)) (In the above equation, E a ': total storage elastic modulus of the front and back layers, E 1 ': storage elastic modulus of the surface layer, E 2 ': storage elastic modulus of the back layer, t 1 : thickness of the surface layer, t 2 : back layer The thickness of.) Further, the temperature range in which the total storage elastic modulus of the front and back layers is 10 MPa to 100 MPa is shown in the table as a “molding processing temperature range”.
  • the indentation elastic modulus (Y) of each of the surface layer and the back layer of the biodegradable laminated sheet (sample) obtained in Examples and Comparative Examples was measured as follows. Further, the surface layer and the back layer in the central portion of the side wall portion (3) of the biodegradable packaging container (sample) obtained by molding the biodegradable laminated sheet (sample) obtained in Examples and Comparative Examples into a capsule shape, respectively. The indentation elastic modulus (Y) of was measured.
  • the test mode is a load-unloading test, in which the triangular pyramid indenter is held for 5 seconds under the load when it reaches a depth of 10 ⁇ m from the surface of the sample, and then the load is removed and the depth of the triangular pyramid indenter is changed over time. An unloading curve was obtained.
  • the thickness of each layer of each part of the side wall was measured using a thickness measuring device.
  • the portions (3a), (3b), and (3c) of FIG. 1 are measured at three points each, and the average value thereof is taken as the thickness of each portion, and further, the portions (3a), (3b), and (3c) of FIG. 1 are shown.
  • the average value of the thickness was taken as the average wall thickness of the side wall.
  • Thickness distribution (all layers of side wall) 100 x (maximum wall thickness of side wall-minimum wall thickness of side wall) / average wall thickness of side wall
  • the oxygen permeability of the biodegradable packaging container (sample) obtained in Examples and Comparative Examples at 23 ° C. and 50% RH was measured as follows. The measurement was performed using an oxygen permeability measuring device OX-TRAN (OX-TRAN2 / 21 manufactured by MOCON) according to the test method of oxygen gas permeability by the electrolytic sensor method described in JIS K7126-1 or ISO 1515-2. The amount of oxygen gas that passed through the test piece and was carried out of the cell by the nitrogen carrier gas was measured using an electrolytic sensor. By using air (21% by volume of oxygen) as the test gas under the conditions of 23 ° C. and 50% RH, and multiplying the obtained oxygen permeability by 100/21, the oxygen permeability of the biodegradable packaging container (sample) can be increased. Obtained.
  • OX-TRAN2 / 21 manufactured by MOCON oxygen permeability measuring device OX-TRAN2 / 21 manufactured by MOCON
  • Example 1 [Preparation of PVA-based resin having a 1,2-diol structure in the side chain] Azobisisobutyronitrile was charged with 68.0 parts of vinyl acetate, 23.8 parts of methanol, and 8.2 parts of 3,4-diacetoxy-1-butene in a reaction vessel equipped with a reflux condenser, a dropping funnel, and a stirrer. 0.3 mol% (against charged vinyl acetate) was added, and the temperature was raised under a nitrogen stream with stirring to initiate polymerization.
  • the methanol solution was further diluted with methanol, adjusted to a concentration of 45% and charged into a kneader, and a 2% methanol solution of sodium hydroxide was added to the vinyl acetate structure in the copolymer while maintaining the solution temperature at 35 ° C.
  • the unit and the total amount of 3,4-diacetoxy-1-butene structural unit were added at a ratio of 10.5 mmol to 1 mol to carry out saponification.
  • a PVA-based resin having the above was prepared.
  • the degree of saponification of the obtained PVA-based resin was 99.2 mol% when analyzed by the amount of alkali consumed for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene.
  • the average degree of polymerization was 450 when analyzed according to JIS K 6726.
  • 1,2-diol structural unit was calculated from the integrated value measured by 1 H-NMR (300 MHz proton NMR, d6-DMSO solution, internal standard substance; tetramethylsilane, 50 ° C.). It was 6 mol%.
  • modified polybutylene adipate resin 100 parts of polybutylene adipate resin (BASF's "Ecoflex C1200"), 0.1 part of maleic anhydride, 2,5-dimethyl-2,5-bis (t-butyloxy) hexane as a radical initiator (Nippon Yushi) After dry blending 0.01 part of "Perhexa 25B" manufactured by Japan, this is a twin-screw extruder (diameter: 15 mm, L / D: 60, screw rotation speed: 200 rpm, mesh: 90/90 mesh, cylinder temperature: 210 ° C. ), Extruded into strands, cooled with water, and cut with a pelletizer to obtain a modified polybutylene adipate resin having a polar group in the shape of a cylindrical pellet.
  • BASF's "Ecoflex C1200” 0.1 part of maleic anhydride, 2,5-dimethyl-2,5-bis (t-butyloxy)
  • talc MG-made by Fuji Tarku Kogyo Co., Ltd.
  • PBAT polybutylene adipate terephthalate
  • 115, average particle diameter: 14 ⁇ m 30 parts by mass were mixed, preheated using an oven to hold at 70 ° C. for 5 hours, and then supplied to an extruder (cylinder temperature 150 ° C.) to melt. ..
  • the surface layer forming composition 90 parts by mass of polylactic acid (PLA, manufactured by Nature Works, Ingeo NW4032D, density 1.24 g / cm 3 , melting point 169 ° C.) and polybutylene succinate (PBS, manufactured by PTTMCC Biochem), BioPBS FZ91PM, density 1.23 g / cm 3 , melting point 115 ° C.) 10 parts by mass are mixed, and these are preheated in an oven so as to be held at 70 ° C. for 5 hours, and then an extruder (cylinder temperature 200). It was supplied to °C) and melted.
  • PBS polybutylene succinate
  • the intermediate layer (gas barrier layer) forming composition the PVA-based resin having a 1,2-diol structure in the side chain obtained above was supplied to an extruder (cylinder temperature 210 ° C.) and melted. Furthermore, as the adhesive layer forming composition, the modified polybutylene adipate-based resin obtained above is preheated in an oven so as to be held at 70 ° C. for 5 hours, and then transferred to an extruder (cylinder temperature 220 ° C.). It was supplied and melted.
  • Each layer-forming composition melted as described above is co-extruded from a T-die into a sheet of 4 types and 5 layers (surface layer / adhesive layer / intermediate layer (gas barrier layer) / adhesive layer / back layer), and cast roll at 50 ° C.
  • a biodegradable laminated sheet (sample) having a thickness of 1200 ⁇ m (surface layer / adhesive layer / intermediate layer (gas barrier layer) / adhesive layer / back layer: 540 ⁇ m / 30 ⁇ m / 60 ⁇ m / 30 ⁇ m / 540 ⁇ m) was obtained.
  • the obtained biodegradable laminated sheet (sample) was prepared on a pilot scale in an aerobic composting environment at 58 ° C. described in ISO16929 or JIS K6952, and a 100 mm square film was formed within 12 weeks, and a 2 mm fluid remaining within 10%. It was biodegradable.
  • biodegradable packaging container Next, using a vacuum forming machine, a secondary molding process (deep drawing) was performed with the surface layer of the obtained biodegradable laminated sheet (sample) as the outside of the container and the back layer as the inside of the container. That is, the biodegradable laminated sheet (sample) was rapidly heated by the upper and lower heaters (upper 500 ° C., lower 450 ° C., 40s), and when the sheet temperature reached 160 ° C., plug assist and vacuum forming were performed.
  • a biodegradable packaging container (sample) was prepared by molding into a capsule shape described below. Table 1 shows the results of measuring the physical characteristics of the obtained packaging container.
  • the produced biodegradable packaging container has a capsule container shape as shown in FIG. 1, and has an annular collar portion (1) and a recess (2) as a storage portion in the collar portion (1).
  • the container is provided, and the recess (2) has a side wall portion (3) and a circular bottom surface portion (4), and has a depth of D 45 mm, an upper edge portion diameter of L 1 45 mm, and a bottom surface portion diameter of L 2. It was 37 mm and the width of the collar was 0.9 mm.
  • the produced biodegradable packaging container is a 100 mm square film within 12 weeks on a pilot scale under an aerobic composting environment of 58 ° C. described in ISO16929 or JIS K6952, and the remaining 10% of the 2 mm flue remains. It was biodegradable.
  • the oxygen permeability of the produced biodegradable packaging container at 23 ° C. and 50% RH was 0.0497 cc / m 2 ⁇ day ⁇ atm.
  • Example 2 In Example 1, the same as in Example 1 except that the surface layer forming composition was formed only from polybutylene succinate (PBS, manufactured by PTTMCC Biochem, BioPBS FZ91PM, density 1.23 g / cm 3 , melting point 115 ° C.).
  • PBS polybutylene succinate
  • the produced biodegradable laminated sheet (sample) and biodegradable packaging container were prepared on a pilot scale under an aerobic composting environment of 58 ° C. described in ISO16929 or JIS K6952, and a 100 mm square film of 2 mm was formed within 12 weeks. The remaining amount of the film was within 10%, and it was biodegradable.
  • Example 3 In Example 1, as the back layer forming composition, talc (Fuji talc) was used with respect to 95 parts by mass of polybutylene adipate terephthalate (PBAT (BASF Ecoflex C1200, MFR: 3.8 g / 10 minutes, melting point: 115 ° C.)).
  • PBAT polybutylene adipate terephthalate
  • a biodegradable laminated sheet (sample) was prepared in the same manner as in Example 1 except that MG-115 manufactured by Kogyo Co., Ltd. and 5 parts by mass (average particle diameter: 14 ⁇ m) were mixed.
  • the produced biodegradable laminated sheet (sample) was prepared on a pilot scale under an aerobic composting environment of 58 ° C. described in ISO16929 or JIS K6952, and within 12 weeks, a 100 mm square film was formed within 10% of the remaining 2 mm flue. It was biodegradable.
  • Example 4 In Example 3, as the surface layer forming composition, talc (Fuji talc industry) with respect to 90 parts by mass of polybutylene adipate terephthalate (PBAT (BASF Ecoflex C1200, MFR: 3.8 g / 10 minutes, melting point: 115 ° C.)).
  • PBAT polybutylene adipate terephthalate
  • a biodegradable laminated sheet (sample) was prepared in the same manner as in Example 3 except that MG-115 manufactured by the same company and 10 parts by mass (average particle diameter: 14 ⁇ m) were mixed.
  • the produced biodegradable laminated sheet (sample) was prepared on a pilot scale under an aerobic composting environment of 58 ° C. described in ISO16929 or JIS K6952, and within 12 weeks, a 100 mm square film was formed within 10% of the remaining 2 mm flue. It was biodegradable.
  • both the back layer forming composition and the surface layer forming composition were formed from only polybutylene succinate adipate-based biodegradable polyester resin (PBSA-based resin, density 1.39 g / cm 3 , melting point 145 ° C.).
  • PBSA-based resin polybutylene succinate adipate-based biodegradable polyester resin
  • a biodegradable laminated sheet (sample) and a biodegradable packaging container (sample) were produced in the same manner as in Example 1 except that the thickness of the intermediate layer (gas barrier layer) was 135 ⁇ m.
  • the oxygen permeability of the produced biodegradable packaging container at 23 ° C. and 50% RH was 0.1238 cc / m 2 ⁇ day ⁇ atm.
  • both the back layer forming composition and the surface layer forming composition were formed from only polylactic acid (PLA, manufactured by Unitica, Terramac HV-6250H, density 1.27 g / cm 3 , melting point 170 ° C.), and the intermediate layer (PLA, manufactured by Unitica, Teramac HV-6250H) was formed.
  • a biodegradable laminated sheet (sample) and a biodegradable packaging container (sample) were produced in the same manner as in Example 1 except that the thickness of the gas barrier layer) was 150 ⁇ m.
  • the oxygen permeability of the produced biodegradable packaging container at 23 ° C. and 50% RH was 0.1286 cc / m 2 ⁇ day ⁇ atm.
  • the indentation elastic modulus of the surface layer on the outside of the container is the indentation elastic modulus of the back layer on the inside of the container.
  • the difference is 10 MPa or more, not only the heat resistance is excellent, but also the secondary molding processability is excellent, and even in a container with a relatively deep bottom, the gas barrier layer It was found that the thickness can be uniformly formed. It can be considered that this is because the surface layer having a high indentation elastic modulus contributes to heat resistance and the back layer having a low indentation elastic modulus contributes to moldability.
  • the storage elastic modulus of at least one of the front and back layers at 110 ° C. is adjusted to 5 MPa to 100 MPa, and / or the storage elastic modulus of the laminated sheet at 110 ° C. is set to 5 MPa to 100 MPa, and the inclination a is ⁇ 0. It was found that by adjusting the size to 2 to ⁇ 9.0 ⁇ 10 -4 , the thickness of the gas barrier layer can be uniformly formed even in a container having a relatively deep bottom while ensuring heat resistance.

Abstract

The present invention pertains to a biodegradable laminated sheet having a gas barrier layer. The present invention aims to form a sheet having uniform thickness of the gas barrier layer and provide excellent thermal resistance, even for comparatively deep containers. Provided is a biodegradable resin sheet having a surface layer, an intermediate layer, and a rear surface layer. The surface layer and the rear surface layer are biodegradable resin layers and the intermediate layer is a gas barrier layer. The indentation elastic modulus of the surface layer is greater than the indentation elastic modulus of the rear surface layer.

Description

生分解性積層シート、容器形成用シート及び生分解性容器Biodegradable laminated sheet, container forming sheet and biodegradable container
 本発明は、生分解性を有し、ガスバリア性を有し、かつ、比較的深底の容器であっても成形可能である生分解性積層シート、容器形成用シート及び生分解性容器に関する。 The present invention relates to a biodegradable laminated sheet, a container forming sheet, and a biodegradable container which have biodegradability, gas barrier property, and can be molded even in a container having a relatively deep bottom.
 昨今のプラスチックの廃棄処理問題などから、生分解性を有するプラスチックシートの開発がなされている。
 生分解性プラスチックシートの材料、すなわち生分解性樹脂としては、例えばポリ乳酸(「PLA」とも称する)、ポリカプロラクトン(PCL)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)などの脂肪族ポリエステル、ポリブチレンアジペートテレフタレート(PBAT)などの芳香族脂肪族ポリエステル、ポリビニルアルコール(PVA)系樹脂などを挙げることができる。
Due to the recent problems of plastic disposal, biodegradable plastic sheets are being developed.
Materials for biodegradable plastic sheets, that is, biodegradable resins include, for example, polylactic acid (also referred to as "PLA"), polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), and the like. Examples thereof include aliphatic polyesters, aromatic aliphatic polyesters such as polybutylene adipate terephthalate (PBAT), and polyvinyl alcohol (PVA) -based resins.
 一般的に、食品、医薬品、電子・電気部品、各種工業品などの包装容器において、ガスバリア性(例えば耐酸素性や耐水蒸気透過性など)が必要とされるものが多数存在する。そのため、生分解性プラスチックシート乃至容器においても、ガスバリア層を備えたものの開発が進められている。ここで、“ガスバリア”とは、広義には任意のガスの透過抑制を意味し、より限定的には、酸素及び/又は香りの透過の抑制を意味する。 In general, there are many packaging containers for foods, pharmaceuticals, electronic / electrical parts, various industrial products, etc. that require gas barrier properties (for example, oxygen resistance and water vapor permeability). Therefore, the development of biodegradable plastic sheets or containers provided with a gas barrier layer is underway. Here, the "gas barrier" means, in a broad sense, suppression of permeation of arbitrary gas, and more specifically, suppression of permeation of oxygen and / or fragrance.
 生分解性プラスチックシート乃至容器における“ガスバリア層”は、従来、ビニルアルコール成分を含む重合体又は共重合体を主成分樹脂として含有するPVA系樹脂から作製することが多かった。
 生分解性シート及び容器において、その主成分樹脂として最適なPVA系樹脂を選択してガスバリア層を形成することで、二次成形加工性を保持しつつ優れたバリア性を付与することができる。また、PVA系樹脂は生分解性を有するため、これをガスバリア層に用いれば、シート全体が生分解性を有することとなる。そのため、当該シート及び当該シートから得られる容器は完全分解型(生分解した後に残渣が残らない)とすることも可能となる。
Conventionally, the "gas barrier layer" in a biodegradable plastic sheet or container is often made of a PVA-based resin containing a polymer or a copolymer containing a vinyl alcohol component as a main component resin.
In the biodegradable sheet and the container, by selecting the optimum PVA-based resin as the main component resin and forming the gas barrier layer, it is possible to impart excellent barrier properties while maintaining the secondary molding processability. Further, since the PVA-based resin has biodegradability, if it is used for the gas barrier layer, the entire sheet will have biodegradability. Therefore, the sheet and the container obtained from the sheet can be completely decomposed (no residue remains after biodegradation).
 例えば特許文献1には、耐熱性を有し、使用後には生分解する積層体として、ポリ乳酸よりなる脂肪族ポリエステル系樹脂層とポリビニルアルコール系樹脂層との間の接着層に、ポリブチレンサクシネート(以下、PBSと称することがある)やポリブチレンアジペートテレフタレート(以下、PBATと称することがある)を無水マレイン酸でグラフト変性した変性ポリエステル系樹脂を用いた生分解性積層体が開示されている。
 特許文献2には、ポリ乳酸樹脂層とエチレン-ビニルアルコール共重合体よりなるバリア層とを変性ポリオレフィン系樹脂を用いて接着した積層シートが開示されている。
For example, in Patent Document 1, as a laminate having heat resistance and biodegrading after use, polybutylene succi is used as an adhesive layer between an aliphatic polyester resin layer made of polylactic acid and a polyvinyl alcohol resin layer. A biodegradable laminate using a modified polyester resin obtained by graft-modifying nate (hereinafter sometimes referred to as PBS) or polybutylene adipate terephthalate (hereinafter sometimes referred to as PBAT) with maleic anhydride has been disclosed. There is.
Patent Document 2 discloses a laminated sheet in which a polylactic acid resin layer and a barrier layer made of an ethylene-vinyl alcohol copolymer are bonded using a modified polyolefin resin.
国際公報第2013/069726号International Publication No. 2013/069726 国際公報第2017/069127号International Publication No. 2017/069127
 PVA系樹脂からなるガスバリア層を備えた生分解性シートを成形して容器を作製する際、ガスバリア性を確保するためには、ガスバリア層の厚みを均一にすることが必要である。
 従来、生分解性樹脂層にガスバリア層を積層して積層シートを作製し、この積層シートを容器に熱成形する際、積層シート全体の厚みを均一に制御できれば、内部に存在するガスバリア層の厚みも均一にすることができると考えられていた。
 ところが、積層シート全体の厚みを均一に制御しても、ガスバリア層の厚みが均一にならず、ガスバリア性を高めることができない場合があることが分かってきた。
When a container is produced by molding a biodegradable sheet provided with a gas barrier layer made of a PVA-based resin, it is necessary to make the thickness of the gas barrier layer uniform in order to secure the gas barrier property.
Conventionally, when a laminated sheet is produced by laminating a gas barrier layer on a biodegradable resin layer and the laminated sheet is thermoformed into a container, if the thickness of the entire laminated sheet can be uniformly controlled, the thickness of the gas barrier layer existing inside can be controlled. Was also thought to be able to be uniform.
However, it has been found that even if the thickness of the entire laminated sheet is controlled to be uniform, the thickness of the gas barrier layer may not be uniform and the gas barrier property may not be improved.
 本発明の目的は、ガスバリア層を有する生分解性積層シートに関し、比較的深底の容器であっても、ガスバリア層の厚みを均一にシート成形可能であり、かつ、耐熱性に優れた、新たな容器形成用シート及びこれを用いてなる容器を提供することにある。 An object of the present invention is a new biodegradable laminated sheet having a gas barrier layer, which can form a sheet with a uniform thickness of the gas barrier layer even in a container having a relatively deep bottom and has excellent heat resistance. It is an object of the present invention to provide a container-forming sheet and a container made by using the same.
 本発明の一態様に係る生分解性樹脂シートは、表層、中間層及び裏層を有し、前記表層及び裏層が生分解性樹脂層であり、前記中間層がガスバリア層であり、前記表層の押込み弾性率が前記裏層の押込み弾性率より高い。 The biodegradable resin sheet according to one aspect of the present invention has a surface layer, an intermediate layer and a back layer, the surface layer and the back layer are biodegradable resin layers, the intermediate layer is a gas barrier layer, and the surface layer. The indentation elastic modulus of the back layer is higher than the indentation elastic modulus of the back layer.
 本発明の別の一態様に係る生分解性樹脂シートは、生分解性樹脂層及びガスバリア層を有する構成を備え、110℃におけるシートの貯蔵弾性率をE’(110)とし、130℃におけるシートの貯蔵弾性率をE’(130)としたとき、当該E’(110)が5MPa~100MPaであって、かつ、下記式(1)で示されるaが-0.2~-9.0×10-4である。 The biodegradable resin sheet according to another aspect of the present invention has a configuration having a biodegradable resin layer and a gas barrier layer, the storage elastic modulus of the sheet at 110 ° C. is E'(110), and the sheet at 130 ° C. When the storage elastic modulus of is E'(130), the E'(110) is 5 MPa to 100 MPa, and a represented by the following formula (1) is -0.2 to -9.0 ×. It is 10 -4.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 本発明の一態様に係る容器形成用シートは、上記生分解性樹脂シートからなる。
 また、本発明の一態様に係る生分解性容器は、上記容器形成用シートを成形してなる。
The container-forming sheet according to one aspect of the present invention comprises the above-mentioned biodegradable resin sheet.
Further, the biodegradable container according to one aspect of the present invention is formed by molding the above-mentioned container forming sheet.
 本発明の別の一態様に係る生分解性容器は、側壁部及び底面部を備えた生分解性容器であって、当該側壁部及び底面部は、表層、中間層及び裏層を有し、前記表層及び裏層が生分解性樹脂層であり、前記中間層がガスバリア層であり、表層の押込み弾性率が裏層の押込み弾性率より高い。 The biodegradable container according to another aspect of the present invention is a biodegradable container provided with a side wall portion and a bottom surface portion, and the side wall portion and the bottom surface portion have a surface layer, an intermediate layer and a back layer. The surface layer and the back layer are biodegradable resin layers, the intermediate layer is a gas barrier layer, and the indentation elastic modulus of the surface layer is higher than the indentation elastic modulus of the back layer.
 本発明に係る生分解性積層シート及び生分解性容器は、押込み弾性率の高い表層が耐熱性に寄与し、押込み弾性率の低い裏層が成形性に寄与するため、容器を形成する際、例えば表層を容器外側とし、裏層を容器内側とすることで、二次成形加工性に優れており、比較的深底の容器であっても、ガスバリア層の厚みを均一に成形することができるばかりか、耐熱性にも優れている。
 ここで、「二次成形加工」とは、シートを別の形状に変形させたり、別の形状を付与したりする加工を意味し、加工方法としては、真空成形、圧空成形などの熱成形方法を挙げることができる。但し、これらに限定するものではない。
In the biodegradable laminated sheet and the biodegradable container according to the present invention, the surface layer having a high indentation elastic modulus contributes to heat resistance and the back layer having a low indentation elastic modulus contributes to moldability. For example, by setting the surface layer on the outside of the container and the back layer on the inside of the container, the secondary molding processability is excellent, and the thickness of the gas barrier layer can be uniformly molded even in a container with a relatively deep bottom. Not only is it excellent in heat resistance.
Here, the "secondary molding process" means a process of deforming a sheet into another shape or imparting another shape, and the processing method includes a thermoforming method such as vacuum forming or compressed air forming. Can be mentioned. However, it is not limited to these.
本発明の実施例の一例に係る容器の縦断面図である。It is a vertical sectional view of the container which concerns on an example of the Example of this invention.
 次に、発明の実施形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on examples of embodiments of the invention. However, the present invention is not limited to the embodiments described below.
<<<本積層シート>>>
 本発明の実施形態の一例に係る生分解性積層シート(「本積層シート1」と称する)は、表層、中間層及び裏層を有し、前記表層及び裏層は生分解性樹脂層であり、前記中間層はガスバリア層であり、かつ、生分解性を備えた積層シートである。
<<< This laminated sheet >>>
The biodegradable laminated sheet (referred to as "the present laminated sheet 1") according to an example of the embodiment of the present invention has a surface layer, an intermediate layer and a back layer, and the surface layer and the back layer are biodegradable resin layers. The intermediate layer is a gas barrier layer and is a biodegradable laminated sheet.
 また、本発明の実施形態の別の一例に係る生分解性積層シート(「本積層シート2」と称する)は、生分解性樹脂層及びガスバリア層を有し、かつ、生分解性を備えた積層シートである。 Further, the biodegradable laminated sheet (referred to as "the present laminated sheet 2") according to another example of the embodiment of the present invention has a biodegradable resin layer and a gas barrier layer, and has biodegradability. It is a laminated sheet.
 本積層シート1及び2は、無延伸シートであっても、延伸シート(延伸フィルム)であってもよい。二次成形加工性の観点から、無延伸シートであることが好ましい。 The laminated sheets 1 and 2 may be a non-stretched sheet or a stretched sheet (stretched film). From the viewpoint of secondary molding processability, a non-stretched sheet is preferable.
 本発明において「生分解性樹脂層」とは、生分解性を有する樹脂を主成分樹脂とする層の意味であり、「ガスバリア層」とは、ガスバリア性を有する層の意味である。
 本発明において「生分解性」とは、微生物の働きで最終的に水と二酸化炭素に分解される性質を言い、好ましくは、ISO16929又はJIS K6952記載の58℃の好気的コンポスト環境下、パイロットスケールで、12週間以内で100mm角のフィルムが、2mmのフルイ残り10%以内になることを満足する性質である。
 本発明において「ガスバリア性」とは、広義には任意のガスの透過を抑制する性質を意味し、より限定的には、酸素及び/又は香りの透過を抑制する性質を意味する。好ましくは、0℃及び/又は室温(20~25℃)、50%RHにおける酸素透過度が5.0cc/m2・day・atm以下になることを満足する性質である。
In the present invention, the "biodegradable resin layer" means a layer containing a biodegradable resin as a main component resin, and the "gas barrier layer" means a layer having a gas barrier property.
In the present invention, "biodegradable" refers to the property of being finally decomposed into water and carbon dioxide by the action of microorganisms, and is preferably a pilot under an aerobic composting environment of 58 ° C. described in ISO16929 or JIS K6952. On a scale, a 100 mm square film has a property of satisfying that the remaining 10% of a 2 mm flue is within 12 weeks.
In the present invention, the "gas barrier property" means a property of suppressing the permeation of an arbitrary gas in a broad sense, and more specifically, a property of suppressing the permeation of oxygen and / or aroma. Preferably, the property satisfies that the oxygen permeability at 0 ° C. and / or room temperature (20 to 25 ° C.) and 50% RH is 5.0 cc / m 2 · day · atm or less.
<<本積層シート1>>
 まず、本積層シート1について説明する。
<< This Laminated Sheet 1 >>
First, the present laminated sheet 1 will be described.
<表層及び裏層>
 本積層シート1における表層及び裏層(以下、「表裏層」ともいう)は、生分解性樹脂層であり、生分解性を有する樹脂組成物から形成することができる。
 表層及び裏層は、互いに同じ組成であっても、異なる組成であってもよい。
<Surface and back layers>
The surface layer and the back layer (hereinafter, also referred to as “front and back layers”) in the laminated sheet 1 are biodegradable resin layers, and can be formed from a biodegradable resin composition.
The surface layer and the back layer may have the same composition or different compositions.
(押込み弾性率)
 本積層シート1における表層及び裏層は、本積層シート1を用いて容器を形成する際、表層側を容器外側とし、裏層側を容器内側とすることを想定すると、前記表層の押込み弾性率が前記裏層の押込み弾性率より高い方が好ましい。容器外側とする表層の押込み弾性率を、容器内側とする裏層の押込み弾性率より高くすることにより、表層で耐熱性及び強度をもたせつつ、裏層で二次成形加工性を良好にでき、ガスバリア層の厚みを均一に成形でき、かつ容器内側でヒートシール性を良好にすることができる。
 かかる観点から、表層と裏層の押込み弾性率の差が10MPa以上であるのがより好ましく、100MPa以上であるのがさらに好ましく、その中でも200MPa以上、その中でも500MPa以上、その中でも1000MPa以上であるのがさらに好ましい。
(Indentation modulus)
When the surface layer and the back layer of the laminated sheet 1 are formed of a container using the laminated sheet 1, assuming that the surface layer side is the outside of the container and the back layer side is the inside of the container, the indentation elastic modulus of the surface layer is assumed. Is higher than the indentation elastic modulus of the back layer. By making the indentation elastic modulus of the surface layer on the outside of the container higher than the indentation elastic modulus of the back layer on the inside of the container, it is possible to improve the secondary molding processability in the back layer while providing heat resistance and strength in the surface layer. The thickness of the gas barrier layer can be uniformly formed, and the heat sealability can be improved inside the container.
From this point of view, the difference in indentation elastic modulus between the surface layer and the back layer is more preferably 10 MPa or more, further preferably 100 MPa or more, of which 200 MPa or more, of which 500 MPa or more, and of which 1000 MPa or more. Is even more preferable.
 本積層シート1における表層及び裏層は、少なくともそのうちの一方、すなわち一方又は両方の層の押込み弾性率が100MPa~8000MPaであることが好ましい。
 表層及び裏層のうち少なくとも一方の押込み弾性率が100MPa~8000MPaであれば、本積層シート1の成形品の取扱性が向上する。
 かかる観点から、表層及び裏層のうち少なくとも一方の押込み弾性率が100MPa~8000MPaであることが好ましく、中でも200MPa以上あるいは7000MPa以下、その中でも300MPa以上あるいは6000MPa以下であることがさらに好ましい。
The surface layer and the back layer of the laminated sheet 1 preferably have an indentation elastic modulus of at least one of them, that is, one or both layers of 100 MPa to 8000 MPa.
When the indentation elastic modulus of at least one of the surface layer and the back layer is 100 MPa to 8000 MPa, the handleability of the molded product of the laminated sheet 1 is improved.
From this point of view, the indentation elastic modulus of at least one of the surface layer and the back layer is preferably 100 MPa to 8000 MPa, more preferably 200 MPa or more or 7,000 MPa or less, and more preferably 300 MPa or more or 6000 MPa or less.
 また、表層の押込み弾性率を裏層の押込み弾性率よりも高くし、表層で耐熱性及び強度をもたせつつ、裏層で二次成形加工性を良好にし、かつ容器内側でヒートシール性を良好にする観点から、本積層シート1における表層の押込み弾性率は500MPa~8000MPaであることが好ましく、中でも1000MPa以上あるいは7000MPa以下、その中でも1500MPa以上あるいは6000MPa以下、さらにその中でも2000MPa以上が好ましい。
 一方、裏層の押込み弾性率は100MPa~3000MPaであることが好ましく、中でも1000MPa以下であるのが好ましく、さらにその中でも500MPa以下であるのが好ましい。
In addition, the indentation elastic modulus of the surface layer is made higher than the indentation elastic modulus of the back layer, the surface layer has heat resistance and strength, the back layer has good secondary molding processability, and the inside of the container has good heat sealability. The indentation elastic modulus of the surface layer of the laminated sheet 1 is preferably 500 MPa to 8000 MPa, particularly 1000 MPa or more or 7,000 MPa or less, particularly 1500 MPa or more or 6000 MPa or less, and more preferably 2000 MPa or more.
On the other hand, the indentation elastic modulus of the back layer is preferably 100 MPa to 3000 MPa, particularly preferably 1000 MPa or less, and further preferably 500 MPa or less.
 なお、押込み弾性率の測定方法としては、島津ダイナミック超微小硬度計(島津製作所社製、DUH-W201)を用いて、三角錐圧子(ダイヤモンド製、錘間角115°)で測定される弾性率(押込み弾性率)を測定する方法を挙げることができる。
 試験モードは負荷-除荷試験とし、三角錐圧子が試料の表面から深さ10μmに達したときの荷重で5秒保持した後、当該荷重を除いて、三角錐圧子の深さの時間変化から除荷曲線を得る。
 上記試験の負荷過程における三角錐圧子の深さの最大値(hmax)と、上記試験で得られた除荷曲線のうち、最大試験力の70%以上における除荷曲線のデータを用いた近似直線の傾き(S)、及び当該近似直線とx軸との交点における深さ(h)から、以下の式を用いて弾性率を算出することができる。
 当該超微細硬度計を用いることで、本積層シート1並びに後述する本容器における表層又は裏層それぞれの押込み弾性率を測定することができる。
As a method for measuring the indentation elastic modulus, the elasticity measured by a triangular pyramidal indenter (made of diamond, inter-weight angle 115 °) using a Shimadzu dynamic ultra-micro hardness meter (manufactured by Shimadzu Corporation, DUH-W201). A method of measuring the rate (pushing elastic modulus) can be mentioned.
The test mode is a load-unloading test, in which the triangular pyramid indenter is held for 5 seconds under the load when it reaches a depth of 10 μm from the surface of the sample, and then the load is removed and the depth of the triangular pyramid indenter is changed over time. Obtain the unloading curve.
Approximation using the maximum value (h max ) of the depth of the triangular pyramid indenter in the loading process of the above test and the data of the unloading curve at 70% or more of the maximum test force among the unloading curves obtained in the above test. from the slope of the line (S), and the depth at the point of intersection with the approximate straight line and the x-axis (h r), it is possible to calculate the modulus of elasticity using the following equation.
By using the ultrafine hardness tester, it is possible to measure the indentation elastic modulus of each of the surface layer or the back layer of the laminated sheet 1 and the container described later.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
(貯蔵弾性率)
 本積層シート1における表層及び裏層は、少なくとも一方、すなわち一方又は両方の層の110℃における貯蔵弾性率が5MPa~100MPaであることが好ましい。
 ここで、110℃は、成形時の加熱温度を想定した温度である。
 また、ガスバリア層を均一に成形するために最も好適な温度域の中に110℃が存在すると考えられる。そのため、110℃程度の貯蔵弾性率で判断するのが合理的であることから、110℃における貯蔵弾性率で判断した。
 なお、後述する実施例では、二次成形加工時の設定温度が160℃である。当該二次成形加工では、昇温と変形が同時に起こる加工を行っており、かつ、昇温速度も160℃/min程度と大きいため、実際の二次成形加工時のシート温度は、160℃よりも低いと考えるべきである。
 表層及び裏層のうち少なくとも一方の110℃における貯蔵弾性率が5MPa~100MPaであれば、110℃付近でも表層及び裏層を好適に成形することができる。
 かかる観点から、表層及び裏層のうち少なくとも一方の110℃における貯蔵弾性率が5MPa~100MPaであることが好ましく、中でも7MPa以上あるいは95MPa以下、その中でも10MPa以上あるいは90MPa以下であることがさらに好ましい。
(Storage modulus)
The surface layer and the back layer of the laminated sheet 1 preferably have a storage elastic modulus of at least one, that is, one or both layers at 110 ° C. of 5 MPa to 100 MPa.
Here, 110 ° C. is a temperature assuming a heating temperature at the time of molding.
Further, it is considered that 110 ° C. exists in the most suitable temperature range for uniformly molding the gas barrier layer. Therefore, since it is rational to judge by the storage elastic modulus of about 110 ° C., the judgment was made by the storage elastic modulus at 110 ° C.
In the examples described later, the set temperature during the secondary molding process is 160 ° C. In the secondary molding process, the temperature rise and deformation occur at the same time, and the temperature rise rate is as high as 160 ° C / min. Therefore, the actual sheet temperature during the secondary molding process is higher than 160 ° C. Should also be considered low.
When the storage elastic modulus at at least one of the surface layer and the back layer at 110 ° C. is 5 MPa to 100 MPa, the surface layer and the back layer can be suitably molded even at around 110 ° C.
From this point of view, the storage elastic modulus of at least one of the surface layer and the back layer at 110 ° C. is preferably 5 MPa to 100 MPa, more preferably 7 MPa or more or 95 MPa or less, and more preferably 10 MPa or more or 90 MPa or less.
 前述のように、積層シート全体の厚みを均一に制御しても、ガスバリア層の厚みが均一にならず、ガスバリア性を高めることができない場合があることが分かってきた。これは、生分解性樹脂層を構成する樹脂に比べて、ガスバリア層を構成する樹脂の方が、高温で流動し易いことが多いためであり、積層シート自体は、比較的均一に成型可能である温度条件であっても、ガスバリア層にとっては、その温度になると、流動しやすくなり、厚み偏肉が大きくなると考えられる。
 そこで、上述したように、ガスバリア層を均一に成形するために最も好適な温度である110℃における、表層及び裏層のうち少なくとも一方の貯蔵弾性率を所定範囲に規定することで、ガスバリア層も、表層及び裏層も好適に成形できるようになり、二次成形加工性に優れ、比較的深底の容器であっても、ガスバリア層の厚みを均一に成形することができるばかりか、耐熱性にも優れたものとすることができる。
As described above, it has been found that even if the thickness of the entire laminated sheet is controlled to be uniform, the thickness of the gas barrier layer may not be uniform and the gas barrier property may not be improved. This is because the resin constituting the gas barrier layer is often easier to flow at a high temperature than the resin constituting the biodegradable resin layer, and the laminated sheet itself can be molded relatively uniformly. Even under a certain temperature condition, it is considered that the gas barrier layer tends to flow easily at that temperature and the thickness unevenness becomes large.
Therefore, as described above, by defining the storage elastic modulus of at least one of the surface layer and the back layer at 110 ° C., which is the most suitable temperature for uniformly molding the gas barrier layer, within a predetermined range, the gas barrier layer can also be formed. The surface layer and the back layer can also be molded suitably, and the secondary molding processability is excellent. Not only can the thickness of the gas barrier layer be uniformly molded even in a container with a relatively deep bottom, but also heat resistance. Can also be excellent.
 貯蔵弾性率の測定方法としては、動的粘弾性測定装置(アイティー計測制御株式会社製「DVA-200」)を用いると共に引張治具を使用して、測定温度-100~250℃、周波数10Hz、昇温速度3℃/minで測定する方法を挙げることができる。 As a method for measuring the storage elastic modulus, a dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Measurement Control Co., Ltd.) is used, and a tensile jig is used to measure the measurement temperature at -100 to 250 ° C. and the frequency at 10 Hz. , A method of measuring at a heating rate of 3 ° C./min can be mentioned.
 また、同様の観点から、110℃における表裏層合計の貯蔵弾性率が5MPa以上であることが好ましく、中でも7MPa以上、その中でも10MPa以上であることがさらに好ましい。
 他方、100MPa以下であることが好ましく、中でも95MPa以下、その中でも90MPa以下であることがさらに好ましい。
From the same viewpoint, the total storage elastic modulus of the front and back layers at 110 ° C. is preferably 5 MPa or more, more preferably 7 MPa or more, and even more preferably 10 MPa or more.
On the other hand, it is preferably 100 MPa or less, more preferably 95 MPa or less, and even more preferably 90 MPa or less.
 本積層シート1の表裏層合計の貯蔵弾性率は、(表層の貯蔵弾性率×表層及び裏層の合計厚みに対する表層の厚み割合)+(裏層の貯蔵弾性率×表層及び裏層の合計厚みに対する裏層の厚み割合)で求めることができる。すなわち、表裏層合計の貯蔵弾性率は、表層及び裏層それぞれの貯蔵弾性率と、表層及び裏層それぞれの厚みから下式によって算出されるものである。
   E’=E’×(t/t+t)+E’×(t/t+t
(ただし、E’:表裏層合計の貯蔵弾性率、E’:表層の貯蔵弾性率、E’:裏層の貯蔵弾性率、t:表層の厚み、t:裏層の厚みである。)
 なお、本積層シート1において、表層及び裏層に対する中間層(ガスバリア層)の厚みの割合が小さければ、該中間層が、本積層シート1全体の貯蔵弾性率に及ぼす影響はあまり大きくない。そのため、表裏層合計の貯蔵弾性率は、本積層シート1全体の貯蔵弾性率とほぼ変わらない。
The total storage elastic modulus of the front and back layers of the laminated sheet 1 is (the storage elastic modulus of the surface layer × the thickness ratio of the surface layer to the total thickness of the surface layer and the back layer) + (the storage elastic modulus of the back layer × the total thickness of the surface layer and the back layer). It can be obtained by the ratio of the thickness of the back layer to the thickness of the back layer. That is, the total storage elastic modulus of the front and back layers is calculated by the following formula from the storage elastic modulus of each of the surface layer and the back layer and the thickness of each of the surface layer and the back layer.
E a '= E 1' × (t 1 / t 1 + t 2) + E 2 '× (t 2 / t 1 + t 2)
(However, E a ': total storage elastic modulus of the front and back layers, E 1 ': storage elastic modulus of the surface layer, E 2 ': storage elastic modulus of the back layer, t 1 : thickness of the surface layer, t 2 : thickness of the back layer Is.)
If the ratio of the thickness of the intermediate layer (gas barrier layer) to the surface layer and the back layer of the laminated sheet 1 is small, the influence of the intermediate layer on the storage elastic modulus of the entire laminated sheet 1 is not so large. Therefore, the total storage elastic modulus of the front and back layers is almost the same as the storage elastic modulus of the entire laminated sheet 1.
 さらに、二次成形性の観点から、前記表裏層合計の貯蔵弾性率が10MPa~100MPaを示す領域の温度幅が、5℃以上であることが好ましく、中でも7℃以上、その中でも10℃以上であることがさらに好ましい。
 10MPa~100MPaが二次成形に最適な貯蔵弾性率と考えられるため、当該範囲の貯蔵弾性率を示す温度領域を成形加工温度領域と想定することができる。
 よって、より広い温度範囲でこの貯蔵弾性率領域を取ることができれば、温度の振れがあっても好適に二次成形可能であるから、好ましい。
Further, from the viewpoint of secondary moldability, the temperature range of the region where the total storage elastic modulus of the front and back layers is 10 MPa to 100 MPa is preferably 5 ° C. or higher, particularly 7 ° C. or higher, and 10 ° C. or higher among them. It is more preferable to have.
Since 10 MPa to 100 MPa is considered to be the optimum storage elastic modulus for secondary molding, the temperature region showing the storage elastic modulus in this range can be assumed to be the molding processing temperature region.
Therefore, if this storage elastic modulus region can be obtained in a wider temperature range, secondary molding can be suitably performed even if there is a temperature fluctuation, which is preferable.
 さらに、本積層シート1は、160℃における、前記表裏層合計の貯蔵弾性率が90MPa以下であることが好ましく、中でも80MPa以下、その中でも50MPa以下、さらには20MPa以下であることが好ましい。
 160℃における貯蔵弾性率が90MPa以下であれば、比較的深底の容器の成形をさらに良好に行うことができる
Further, in the present laminated sheet 1, the total storage elastic modulus of the front and back layers at 160 ° C. is preferably 90 MPa or less, particularly 80 MPa or less, particularly 50 MPa or less, and further preferably 20 MPa or less.
When the storage elastic modulus at 160 ° C. is 90 MPa or less, the molding of a container having a relatively deep bottom can be performed even better.
 本積層シート1の表層及び裏層の貯蔵弾性率は、同じであっても、異なっていてもよい。
 例えば、本積層シートを図1に示すようなカプセル容器状に成形する場合、当該容器の外側となる表層の貯蔵弾性率を、当該容器の内側となる裏層の貯蔵弾性率よりも高いものとすると、成型後のシール性、耐熱性、及びガスバリア層の厚みを均一に成形できる点で好ましい。
 表層及び裏層の貯蔵弾性率は、表層及び裏層を構成する主成分樹脂の種類を変更したり、主成分樹脂の共重合成分を変更したり、主成分樹脂の分子量を変更したり、表層及び/又は裏層に無機粒子を含有させたりすることで適宜調整できる。
The storage elastic moduli of the surface layer and the back layer of the laminated sheet 1 may be the same or different.
For example, when this laminated sheet is molded into a capsule container shape as shown in FIG. 1, the storage elastic modulus of the surface layer on the outside of the container is higher than the storage elastic modulus of the back layer on the inside of the container. Then, it is preferable in that the sealing property after molding, the heat resistance, and the thickness of the gas barrier layer can be uniformly molded.
Regarding the storage elastic modulus of the surface layer and the back layer, the type of the main component resin constituting the surface layer and the back layer can be changed, the copolymerization component of the main component resin can be changed, the molecular weight of the main component resin can be changed, or the surface layer. And / or can be appropriately adjusted by including inorganic particles in the back layer.
(組成)
 本積層シート1の表層及び裏層はいずれも、生分解性脂肪族ポリエステル又は生分解性芳香族ポリエステル又は生分解性脂肪族芳香族ポリエステル又はこれら2種類以上の組み合わせからなる混合樹脂を主成分樹脂として含有する層であることが好ましく、中でも、生分解性脂肪族ポリエステル又は生分解性脂肪族芳香族ポリエステル又はこれらの組み合わせからなる混合樹脂を主成分樹脂として含有する層であることがより好ましい。
 ここで、前記「主成分樹脂」とは、表層又は裏層の各層を構成する樹脂の中で含有量(質量%)が最も高い樹脂を意味する。該主成分樹脂の各層中の含有量は、各層を構成する樹脂の50質量%以上であることが好ましく、中でも70質量%以上、中でも80質量%以上、中でも90質量%以上(100質量%を含む)であってもよい。
(composition)
Both the surface layer and the back layer of the laminated sheet 1 are mainly composed of a biodegradable aliphatic polyester, a biodegradable aromatic polyester, a biodegradable aliphatic aromatic polyester, or a mixed resin composed of a combination of two or more of these. It is preferable that the layer contains as a main component resin, and more preferably, it is a layer containing a biodegradable aliphatic polyester, a biodegradable aliphatic aromatic polyester, or a mixed resin composed of a combination thereof as a main component resin.
Here, the "main component resin" means a resin having the highest content (mass%) among the resins constituting each layer of the surface layer or the back layer. The content of the main component resin in each layer is preferably 50% by mass or more, particularly 70% by mass or more, particularly 80% by mass or more, and particularly 90% by mass or more (100% by mass) of the resin constituting each layer. Including).
 表層と裏層は、その主成分樹脂が同じ樹脂であっても、異なる樹脂であってもよい。
 例えば表層及び裏層のうちいずれか一方をより成形性に優れた層とし、他方をより耐熱性に優れた層とすることができる。中でも、酸素気密性包装容器、食品包装容器等として本積層シート1を用いる場合に、容器外側に耐熱性が求められること、及び、容器内側にヒートシール性が求められることから、容器を形成する際、容器外側とする表層を、より耐熱性に優れた層とし、容器内側とする裏層を、より成形性に優れた層とするのが好ましい。
但し、このような例に限定するものではない。
The surface layer and the back layer may have the same main component resin or different resins.
For example, one of the surface layer and the back layer can be a layer having more excellent moldability, and the other layer can be made into a layer having more excellent heat resistance. Above all, when the laminated sheet 1 is used as an oxygen-airtight packaging container, a food packaging container, etc., a container is formed because heat resistance is required on the outside of the container and heat sealability is required on the inside of the container. At this time, it is preferable that the surface layer on the outside of the container is a layer having more excellent heat resistance, and the back layer on the inside of the container is a layer having more excellent moldability.
However, the present invention is not limited to such an example.
 本積層シート1を用いて容器を形成する際、容器外側とする表層は、生分解性脂肪族ポリエステルであるのが好ましい。生分解性脂肪族ポリエステルは一般的に100℃付近での貯蔵弾性率が100MPa以上と高いものが多いため、容器外側とする表層が生分解性脂肪族ポリエステルを含有することによって、容器が熱湯等の高温にさらされても変形しにくくなる。
 他方、容器内側とする裏層は、生分解性脂肪族芳香族ポリエステルであるのが好ましい。生分解性脂肪族ポリエステルは、ガスバリア層を均一に成形するために最も好適な温度である110℃付近での貯蔵弾性率が5MPa~100MPaであるものが多いため、容器内側とする裏層が生分解性脂肪族芳香族ポリエステルを含有することによって、二次成形加工性が良好となる。
When the container is formed by using the laminated sheet 1, the surface layer on the outside of the container is preferably biodegradable aliphatic polyester. Since many biodegradable aliphatic polyesters generally have a high storage elastic modulus at around 100 ° C., the surface layer on the outside of the container contains the biodegradable aliphatic polyester, so that the container is made of boiling water or the like. It becomes difficult to deform even when exposed to high temperatures.
On the other hand, the back layer on the inside of the container is preferably biodegradable aliphatic aromatic polyester. Most biodegradable aliphatic polyesters have a storage elastic modulus of 5 MPa to 100 MPa at around 110 ° C., which is the most suitable temperature for uniformly molding the gas barrier layer, so that the back layer inside the container is raw. By containing the degradable aliphatic aromatic polyester, the secondary molding processability is improved.
 生分解性脂肪族ポリエステルとしては、例えばポリ乳酸(PLA)、ポリカプロラクトン(PCL)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンアジペート、ポリエチレンサクシネート(PES)、3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート重合体(PHBH)などを挙げることができる。
 生分解性脂肪族芳香族ポリエステルとしては、例えばポリブチレンアジペートテレフタレート(PBAT)、ポリブチレンサクシネートテレフタレート(PBST)などを挙げることができる。
Examples of biodegradable aliphatic polyesters include polylactic acid (PLA), polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene adipate, polyethylene succinate (PES), and the like. Examples thereof include 3-hydroxybutyrate-co-3-hydroxyhexanoate polymer (PHBH).
Examples of the biodegradable aliphatic aromatic polyester include polybutylene adipate terephthalate (PBAT) and polybutylene succinate terephthalate (PBST).
 表層及び裏層の主成分樹脂の一例、特に表層の主成分樹脂の好ましい一例として、例えばポリブチレンサクシネート(PBS)、あるいは、ポリブチレンサクシネートに共重合成分を共重合させたブチレンサクシネート共重合体、あるいは、ポリブチレンサクシネート(PBS)と他の生分解性脂肪族ポリエステルとの混合樹脂を挙げることができる。 As an example of the main component resin of the surface layer and the back layer, particularly as a preferable example of the main component resin of the surface layer, for example, polybutylene succinate (PBS) or butylene succinate obtained by copolymerizing polybutylene succinate with a copolymerization component. Examples thereof include a copolymer or a mixed resin of polybutylene succinate (PBS) and another biodegradable aliphatic polyester.
 ポリブチレンサクシネート(PBS)は、ポリエチレンに近い融点(Tm)や機械的性質を有する生分解性樹脂である。
 ポリブチレンサクシネート(PBS)は、100℃付近での貯蔵弾性率が100MPa以上と高いため、特に容器外側とする表層が生分解性脂肪族ポリエステルを含有することによって、容器が熱湯等の高温に晒されても変形しにくいため、好ましい。
 また、ポリブチレンサクシネート(PBS)は、110℃付近に融点を持ち、ガスバリア層を均一に成形するために最も好適な温度である110℃付近での貯蔵弾性率が100MPa以下となり、本積層シート1の容器成形を阻害することもないため、好ましい。
Polybutylene succinate (PBS) is a biodegradable resin having a melting point (Tm) close to that of polyethylene and mechanical properties.
Since polybutylene succinate (PBS) has a high storage elastic modulus at around 100 ° C., which is 100 MPa or more, the surface layer on the outside of the container contains biodegradable aliphatic polyester, so that the container becomes hot water or the like. It is preferable because it does not easily deform even when exposed.
Further, polybutylene succinate (PBS) has a melting point of around 110 ° C., and has a storage elastic modulus of 100 MPa or less at around 110 ° C., which is the most suitable temperature for uniformly molding the gas barrier layer. It is preferable because it does not interfere with the container molding of 1.
 前記ブチレンサクシネート共重合体において、ポリブチレンサクシネート(PBS)に共重合する共重合成分としては、例えばε-カプロラクトン(CL)、グリコリド(GA)、L-ラクチド(LLA)、テレフタル酸(TPA)、アジピン酸、セバシン酸、エチレングリコール、ジエチレングリコール、ヘキサンジオール、ペンタエリスリトール、3-アルコキシ-1,2-プロパンジオールなどを挙げることができる。
 例えば、テレフタル酸共重合ポリブチレンサクシネートを使用することで、表層及び裏層乃至本積層シート全体の融点が高くなり、これによって本容器、すなわち本積層シート1の成形品における耐熱性を高めることができる。
In the butylene succinate copolymer, examples of the copolymerization component copolymerizing with polybutylene succinate (PBS) include ε-caprolactone (CL), glycolide (GA), L-lactide (LLA), and terephthalic acid (TPA). ), Adipic acid, sebacic acid, ethylene glycol, diethylene glycol, hexanediol, pentaerythritol, 3-alkoxy-1,2-propanediol and the like.
For example, by using terephthalic acid copolymer polybutylene succinate, the melting point of the surface layer and the back layer or the entire laminated sheet is increased, thereby increasing the heat resistance of the container, that is, the molded product of the laminated sheet 1. Can be done.
 ポリブチレンサクシネート(PBS)と混合する他の生分解性脂肪族ポリエステルとしては、ポリ乳酸(PLA)が好ましい。ポリ乳酸(PLA)は、100℃付近での貯蔵弾性率が100MPa以上と高く、かつ、ガスバリア層を均一に成形するために最も好適な温度である110℃付近での引張強度が高い。そのため、容器が熱湯等の高温にさらされても変形しにくく、かつ、二次成形加工性も良好となる。 Polylactic acid (PLA) is preferable as another biodegradable aliphatic polyester to be mixed with polybutylene succinate (PBS). Polylactic acid (PLA) has a high storage elastic modulus at around 100 ° C. of 100 MPa or more, and has a high tensile strength at around 110 ° C., which is the most suitable temperature for uniformly molding the gas barrier layer. Therefore, the container is not easily deformed even when exposed to a high temperature such as boiling water, and the secondary molding processability is also good.
 他方、特に裏層の主成分樹脂の好ましい一例として、例えばポリブチレンアジペートテレフタレート(PBAT)を挙げることができる。
 ポリブチレンアジペートテレフタレート(PBAT)は、ガスバリア層を均一に成形するために最も好適な温度である110℃付近での貯蔵弾性率が5MPa~100MPaである。そのため、裏層がポリブチレンアジペートテレフタレート(PBAT)を含有することによって、二次成形加工性が良好となる。
On the other hand, as a particularly preferable example of the main component resin of the back layer, for example, polybutylene adipate terephthalate (PBAT) can be mentioned.
Polybutylene adipate terephthalate (PBAT) has a storage elastic modulus of 5 MPa to 100 MPa at around 110 ° C., which is the most suitable temperature for uniformly molding the gas barrier layer. Therefore, when the back layer contains polybutylene adipate terephthalate (PBAT), the secondary molding processability is improved.
 前記表層及び裏層の少なくとも一方は、無機粒子を含んでいることが好ましい。
 無機粒子を含有することで、貯蔵弾性率を高めることができるばかりか、耐熱性を高めることができる。特に、容器を形成する際に容器内側となる裏層に無機粒子を含有させることで、二次成形加工性を良好にしながらも、耐熱性及び剛性を良好にできるから、好ましい。但し、その量が多すぎると、成形時に伸び難くなってしまう。
 かかる観点から、無機粒子の含有量は、耐熱性の観点から、各層を形成する組成物の合計量、例えば生分解性樹脂と無機粒子の合計100質量部に対して10質量部以上であることが好ましく、中でも20質量部以上、その中でも25質量部以上であることがさらに好ましい。その一方、延伸性の観点から、各層を形成する組成物の合計量、例えば生分解性樹脂と無機粒子の合計100質量部に対して60質量部以下であることが好ましく、中でも50質量部以下、その中でも40質量部以下であることがさらに好ましい。
At least one of the surface layer and the back layer preferably contains inorganic particles.
By containing the inorganic particles, not only the storage elastic modulus can be increased, but also the heat resistance can be enhanced. In particular, it is preferable to include inorganic particles in the back layer inside the container when the container is formed, because the heat resistance and rigidity can be improved while improving the secondary molding processability. However, if the amount is too large, it will be difficult to stretch during molding.
From this point of view, the content of the inorganic particles should be 10 parts by mass or more with respect to the total amount of the compositions forming each layer, for example, 100 parts by mass of the total of the biodegradable resin and the inorganic particles, from the viewpoint of heat resistance. Is preferable, and more preferably 20 parts by mass or more, and more preferably 25 parts by mass or more. On the other hand, from the viewpoint of stretchability, it is preferably 60 parts by mass or less with respect to the total amount of the composition forming each layer, for example, 100 parts by mass of the total of biodegradable resin and inorganic particles, and more than 50 parts by mass. Among them, it is more preferably 40 parts by mass or less.
 表層及び裏層の一方又は両方が無機粒子を含有することによって、本積層シートの貯蔵弾性率を上げたり、本積層シートの耐熱性及び剛性を高めたりすることができる。 By containing inorganic particles in one or both of the front layer and the back layer, the storage elastic modulus of the laminated sheet can be increased, and the heat resistance and rigidity of the laminated sheet can be increased.
 当該無機粒子の種類は、特に限定するものではない。例えばシリカ、雲母、タルク、マイカ、クレイ、酸化チタン、炭酸カルシウム、ケイ藻土、アロフェン、ベントナイト、チタン酸カリウム、ゼオライト、セピオライト、スメクタイト、カオリン、カオリナイト、ガラス、石灰石、カーボン、ワラステナイト、焼成パーライト、珪酸カルシウム、珪酸ナトリウム等の珪酸塩、酸化アルミニウム、炭酸マグネシウム、水酸化カルシウム等の水酸化物、炭酸第二鉄、酸化亜鉛、酸化鉄、リン酸アルミニウム、硫酸バリウム等を挙げることができる。これら1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。中でも、貯蔵弾性率、透明性を向上させる観点でタルクがより好ましい。 The type of the inorganic particles is not particularly limited. For example, silica, mica, talc, mica, clay, titanium oxide, calcium carbonate, diatomaceous soil, allofen, bentonite, potassium titanate, zeolite, sepiolite, smectite, kaolin, kaolinite, glass, limestone, carbon, wallastenite, calcined. Examples thereof include silicates such as pearlite, calcium silicate and sodium silicate, hydroxides such as aluminum oxide, magnesium carbonate and calcium hydroxide, ferric carbonate, zinc oxide, iron oxide, aluminum phosphate and barium sulfate. .. One of these may be used alone, or two or more may be used in any combination and ratio. Of these, talc is more preferable from the viewpoint of improving the storage elastic modulus and transparency.
 無機粒子の粒径は、特に限定するものではない。ハンドリングの理由から平均粒子径が0.5μm以上であることが好ましく、より好ましくは0.6μm以上、更に好ましくは0.7μm以上、特に好ましくは1.0μm以上である。一方で、無機粒子の平均粒子径は50μm以下であることが好ましく、より好ましくは30μm以下、更に好ましくは20μm以下である。
 なお、この際の平均粒子径の測定方法としては、島津製作所製粉体比表面積測定装置SS-100型(恒圧式空気透過法)で測定した粉末1gあたりの比表面積値を求め、JIS M8511に準じた空気透過法による比表面積の測定結果から、下記式により無機粒子の平均粒子径を計算する方法を挙げることができる。
  平均粒子径(μm)=10000×{6/(無機粒子の比重×比表面積)}
The particle size of the inorganic particles is not particularly limited. For handling reasons, the average particle size is preferably 0.5 μm or more, more preferably 0.6 μm or more, still more preferably 0.7 μm or more, and particularly preferably 1.0 μm or more. On the other hand, the average particle size of the inorganic particles is preferably 50 μm or less, more preferably 30 μm or less, still more preferably 20 μm or less.
As a method for measuring the average particle size at this time, the specific surface area value per 1 g of powder measured by the powder specific surface area measuring device SS-100 (constant pressure air permeation method) manufactured by Shimadzu Corporation was obtained and conformed to JIS M8511. From the measurement result of the specific surface area by the air permeation method, a method of calculating the average particle size of the inorganic particles by the following formula can be mentioned.
Average particle size (μm) = 10000 x {6 / (specific gravity of inorganic particles x specific surface area)}
 本積層シート1の表層及び裏層の主成分樹脂は、結晶性を有する、すなわち融点を有することが好ましい。
 表層及び裏層の主成分樹脂が結晶性である場合、その融点(Tm)が100℃以上であれば、耐熱性の点で好ましい。その一方、250℃以下であれば、二次成形加工性の点で好ましい。
 かかる観点から、表層及び裏層の主成分樹脂の融点(Tm)は、100℃以上であることが好ましく、中でも105℃以上、その中でも110℃以上であることがさらに好ましい。その一方、250℃以下であることが好ましく、中でも200℃以下、その中でも180℃以下であることがさらに好ましい。
The main component resins of the surface layer and the back layer of the laminated sheet 1 preferably have crystallinity, that is, have a melting point.
When the main component resins of the surface layer and the back layer are crystalline, the melting point (Tm) of the resin is preferably 100 ° C. or higher in terms of heat resistance. On the other hand, when the temperature is 250 ° C. or lower, it is preferable in terms of secondary molding processability.
From this point of view, the melting points (Tm) of the main component resins of the surface layer and the back layer are preferably 100 ° C. or higher, more preferably 105 ° C. or higher, and more preferably 110 ° C. or higher. On the other hand, the temperature is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and more preferably 180 ° C. or lower.
 ここで、融点(Tm)は、示差走査熱量計(DSC)を用いて、樹脂約10mgを加熱速度10℃/分で-30℃~200℃まで昇温し、200℃で1分間保持した後、冷却速度10℃/分で-30℃まで降温し、再度、加熱速度10℃/分で200℃まで昇温したときに測定されたサーモグラムから求めた結晶融解ピーク温度である。 Here, the melting point (Tm) is determined by heating about 10 mg of the resin to −30 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) and holding the resin at 200 ° C. for 1 minute. This is the crystal melting peak temperature obtained from the thermogram measured when the temperature was lowered to −30 ° C. at a cooling rate of 10 ° C./min and then raised to 200 ° C. at a heating rate of 10 ° C./min again.
(その他の樹脂)
 表層及び裏層は、必要に応じて、上記以外の樹脂、例えばポリヒドロキシアルカノエート、ポリカーボネート、ポリアミド、ポリスチレン、ポリオレフィン、アクリル樹脂、アモルファスポリオレフィン、ABS、AS(アクリロニトリルスチレン)、ポリカプロラクトン、ポリビニルアルコール系樹脂、セルロースエステルなどの合成樹脂のうちのいずれか1種又は2種以上を含有していてもよい。
 但し、これら「上記以外の樹脂」は、上記主成分樹脂100質量部に対して50質量部未満、特に30質量部未満であることが好ましい。
(Other resins)
If necessary, the surface layer and the back layer are made of resins other than the above, such as polyhydroxyalkanoate, polycarbonate, polyamide, polystyrene, polyolefin, acrylic resin, amorphous polyolefin, ABS, AS (acrylonitrile styrene), polycaprolactone, and polyvinyl alcohol. It may contain any one or more of synthetic resins such as resins and cellulose esters.
However, these "resins other than the above" are preferably less than 50 parts by mass, particularly less than 30 parts by mass, with respect to 100 parts by mass of the main component resin.
(その他の成分)
 表層及び裏層は、必要に応じて、滑剤、可塑剤、帯電防止剤、酸化防止剤、光安定剤、紫外線吸収剤、染料、顔料、加水分解防止剤、結晶核剤、アンチブロッキング剤、耐光剤、可塑剤、熱安定剤、難燃剤、離型剤、防曇剤、表面ぬれ改善剤、焼却補助剤、分散助剤、各種界面活性剤、スリップ剤等の各種添加剤や、澱粉、セルロース、紙、木粉、キチン・キトサン質、椰子殻粉末、クルミ殻粉末等の動物/植物物質微粉末、あるいはこれらの混合物を「その他の成分」として含んでいてもよい。これらは、本発明の効果を損なわない範囲で任意に配合することができ、1種を単独で用いてもよく、2種以上を混合して使用してもよい。
(Other ingredients)
The surface layer and back layer may be a lubricant, a plasticizer, an antioxidant, an antioxidant, a light stabilizer, an ultraviolet absorber, a dye, a pigment, an antioxidant, a crystal nucleating agent, an anti-blocking agent, and a light-resistant agent, if necessary. Various additives such as agents, plasticizers, heat stabilizers, flame retardants, mold release agents, antifogging agents, surface wetting improvers, incineration aids, dispersion aids, various surfactants, slip agents, starch, cellulose , Paper, wood flour, chitin / cellulosic, coconut shell powder, walnut shell powder and other fine powders of animal / plant substances, or mixtures thereof may be contained as "other components". These can be arbitrarily blended as long as the effects of the present invention are not impaired, and one type may be used alone or two or more types may be mixed and used.
 これら「その他の成分」の含有量は、特に限定するものではない。目安としては、各層の総量に対して0.01質量%以上40質量%以下であることが好ましい。 The content of these "other ingredients" is not particularly limited. As a guide, it is preferably 0.01% by mass or more and 40% by mass or less with respect to the total amount of each layer.
(好ましい組成)
 本積層シート1は、表層が生分解性脂肪族ポリエステルを主成分樹脂として含み、かつ、裏層が生分解性脂肪族芳香族ポリエステルを主成分樹脂として含むことが好ましく、裏層が無機粒子を含むことがより好ましい。
 上述のとおり、容器外側とする表層が生分解性脂肪族ポリエステルを含有することによって、容器が熱湯等の高温に晒されても変形しにくくなる。また、容器内側とする裏層が生分解性脂肪族芳香族ポリエステルを含有することによって、二次成形加工性が良好となる。
 上記裏層が生分解性脂肪族芳香族ポリエステルを主成分樹脂として含む場合、当該裏層は高温で変形しやすく、耐熱性又は剛性が低くなる場合がある。そこで、容器内側となる裏層に無機粒子を含有させることで、二次成形加工性を良好にしながらも、耐熱性及び剛性をより良好にできる。
 特に上記の中でも、本積層シート1は、表層がポリ乳酸(PLA)又はポリブチレンサクシネート(PBS)を主成分樹脂として含み、かつ、裏層がポリブチレンアジペートテレフタレート(PBAT)を主成分樹脂として含むことが好ましく、裏層がタルクを含むことがより好ましい。
(Preferable composition)
In the laminated sheet 1, it is preferable that the surface layer contains biodegradable aliphatic polyester as the main component resin and the back layer contains biodegradable aliphatic aromatic polyester as the main component resin, and the back layer contains inorganic particles. It is more preferable to include it.
As described above, since the surface layer on the outside of the container contains biodegradable aliphatic polyester, the container is less likely to be deformed even when exposed to a high temperature such as boiling water. Further, since the back layer inside the container contains a biodegradable aliphatic aromatic polyester, the secondary molding processability is improved.
When the back layer contains a biodegradable aliphatic aromatic polyester as a main component resin, the back layer is easily deformed at a high temperature and may have low heat resistance or rigidity. Therefore, by incorporating the inorganic particles in the back layer inside the container, it is possible to improve the heat resistance and rigidity while improving the secondary molding processability.
In particular, among the above, the surface layer of the laminated sheet 1 contains polylactic acid (PLA) or polybutylene succinate (PBS) as the main component resin, and the back layer contains polybutylene adipate terephthalate (PBAT) as the main component resin. It is preferable to contain talc, and it is more preferable that the back layer contains talc.
<中間層>
 本積層シート1の中間層は、ガスバリア層である。
<Middle layer>
The intermediate layer of the laminated sheet 1 is a gas barrier layer.
(PVA系樹脂)
 中間層は、ポリビニルアルコール系樹脂(PVA系樹脂)を主成分樹脂とすることが好ましい。
 ここで、「主成分樹脂」とは、中間層を構成する樹脂の中でも含有量(質量%)が最も高い樹脂を意味する。中間層中の該主成分樹脂の含有量は、中間層を構成する樹脂の50質量%以上であることが好ましく、中でも70質量%以上、中でも80質量%以上、中でも90質量%以上(100質量%を含む)であってもよい。
(PVA resin)
The intermediate layer preferably contains a polyvinyl alcohol-based resin (PVA-based resin) as the main component resin.
Here, the "main component resin" means a resin having the highest content (mass%) among the resins constituting the intermediate layer. The content of the main component resin in the intermediate layer is preferably 50% by mass or more, particularly 70% by mass or more, particularly 80% by mass or more, and particularly 90% by mass or more (100% by mass) of the resin constituting the intermediate layer. Includes%).
 PVA系樹脂は、一般に、ビニルエステル系モノマーを重合して得られるポリビニルエステル系樹脂をケン化して得られるものである。
 本積層シート1におけるPVA系樹脂としては、繰り返し単位としてビニルアルコール構造単位を分子鎖中に含む共重合体(以下、「PVA共重合体」ともいう)が好ましい。中でも、ビニルエステル系モノマーと各種単量体とを共重合して得られるポリビニルエステル系共重合体をケン化して得られる樹脂が好ましく、中でも、ケン化度相当のビニルアルコール構造単位とケン化されずに残存したビニルエステル構造単位とから構成される樹脂が好ましい。
The PVA-based resin is generally obtained by saponifying a polyvinyl ester-based resin obtained by polymerizing a vinyl ester-based monomer.
As the PVA-based resin in the laminated sheet 1, a copolymer containing a vinyl alcohol structural unit in the molecular chain as a repeating unit (hereinafter, also referred to as “PVA copolymer”) is preferable. Among them, a resin obtained by saponifying a polyvinyl ester-based copolymer obtained by copolymerizing a vinyl ester-based monomer and various monomers is preferable, and above all, it is saponified with a vinyl alcohol structural unit equivalent to the degree of saponification. A resin composed of the remaining vinyl ester structural unit is preferable.
 本積層シート1において、ガスバリア層の主成分樹脂としてPVA共重合体を用いることで、二次成形加工性を保持しつつ優れたガスバリア性を付与することができる。また、PVA共重合体は生分解性を有するため、これをガスバリア層に用いれば、本積層シート1全体が生分解性を有することとなる。そのため、本積層シート1及び本積層シート1から得られる容器は完全分解型(生分解した後に残渣が残らない)とすることも可能となる。 By using a PVA copolymer as the main component resin of the gas barrier layer in the laminated sheet 1, it is possible to impart excellent gas barrier properties while maintaining secondary molding processability. Further, since the PVA copolymer has biodegradability, if it is used for the gas barrier layer, the entire laminated sheet 1 will have biodegradability. Therefore, the laminated sheet 1 and the container obtained from the laminated sheet 1 can be completely decomposed (no residue remains after biodegradation).
 ビニルエステル系モノマーとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等を挙げることができる。中でも、経済的に酢酸ビニルを好ましく用いることができる。 Vinyl ester-based monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, and versatic acid. Vinyl and the like can be mentioned. Above all, vinyl acetate can be economically preferably used.
 ビニルエステル系モノマーとの共重合に用いられる単量体としては、エチレンやプロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、3,4-ジヒドロキシ-1-ブテン等のヒドロキシ基含有α-オレフィン類およびそのアシル化物などの誘導体、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類、その塩、モノエステル、あるいはジアルキルエステル、アクリロニトリル、メタアクリロニトリル等のニトリル類、ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸類あるいはその塩、アルキルビニルエーテル類、ジメチルアリルビニルケトン、N-ビニルピロリドン、塩化ビニル、ビニルエチレンカーボネート、2,2-ジアルキル-4-ビニル-1,3-ジオキソラン、グリセリンモノアリルエーテル、3,4-ジアセトキシ-1-ブテン、等のビニル化合物、酢酸イソプロペニル、1-メトキシビニルアセテート等の置換酢酸ビニル類、塩化ビニリデン、1,4-ジアセトキシ-2-ブテン、ビニレンカーボネート等を挙げることができる。 Examples of the monomer used for copolymerization with the vinyl ester-based monomer include olefins such as ethylene, propylene, isobutylene, α-octene, α-dodecene, and α-octadecene, 3-butene-1-ol, and 4-pentene. Hydroxy group-containing α-olefins such as -1-ol, 5-hexene-1-ol, 3,4-dihydroxy-1-butene and derivatives such as acylated products thereof, acrylic acid, methacrylic acid, crotonic acid, maleic acid. , Unsaturated acids such as maleic anhydride and itaconic acid, salts thereof, monoesters, or nitriles such as dialkyl ester, acrylonitrile and metaacrylonitrile, amides such as diacetone acrylamide, acrylamide and methacrylamide, ethylene sulfonic acid and allyl Olefin sulfonic acids such as sulfonic acid and methallyl sulfonic acid or salts thereof, alkyl vinyl ethers, dimethyl allyl vinyl ketone, N-vinylpyrrolidone, vinyl chloride, vinyl ethylene carbonate, 2,2-dialkyl-4-vinyl-1,3 -Vinyl compounds such as dioxolane, glycerin monoallyl ether, 3,4-diacetoxy-1-butene, substituted vinyl acetates such as isopropenyl acetate, 1-methoxyvinyl acetate, vinylidene chloride, 1,4-diacetoxy-2- Butene, vinylene carbonate and the like can be mentioned.
 前記共重合体中の各種単量体に由来する構成単位の含有量は、1~20mol%であることが好ましく、中でも2mol%以上あるいは10mol%以下の範囲が好ましい。 The content of the structural unit derived from various monomers in the copolymer is preferably 1 to 20 mol%, and more preferably 2 mol% or more or 10 mol% or less.
=変性PVA系樹脂=
 本積層シート1におけるPVA系樹脂としては、後変性によって各種官能基を導入した変性PVA系樹脂を用いることもできる。
= Modified PVA resin =
As the PVA-based resin in the laminated sheet 1, a modified PVA-based resin into which various functional groups have been introduced by post-modification can also be used.
 当該変性PVA系樹脂としては、ジケテンとの反応によるアセトアセチル基を有するPVA共重合体、エチレンオキサイドとの反応によるポリアルキレンオキサイド基を有するPVA共重合体、エポキシ化合物等との反応によるヒドロキシアルキル基を有するPVA共重合体、及び各種官能基を有するアルデヒド化合物を反応させて得られるPVA共重合体等を挙げることができる。 The modified PVA-based resin includes a PVA copolymer having an acetoacetyl group by reaction with diketen, a PVA copolymer having a polyalkylene oxide group by reaction with ethylene oxide, and a hydroxyalkyl group by reaction with an epoxy compound and the like. Examples thereof include a PVA copolymer having the above, a PVA copolymer obtained by reacting an aldehyde compound having various functional groups, and the like.
 以上の中でも、生分解性に優れ、二次成形加工性を保持しつつ優れたガスバリア性を付与することができる観点から、中間層の主成分樹脂として、ビニルアルコール構造単位とビニルエステル構造単位以外の構造単位とを有する変性PVA系樹脂が好ましい。
 このような変性PVA系樹脂としては、例えば、側鎖に一級水酸基を有するPVA共重合体やエチレン変性PVA共重合体が、溶融成形性の点で好ましい。
 中でも、側鎖に一級水酸基を有するPVA共重合体が好ましい。例えば側鎖にヒドロキシアルキル基を有するPVA共重合体、側鎖に1,2-ジオール構造を有するPVA共重合体などを挙げることができる。その中でも、側鎖に1,2-ジオール構造を有するPVA共重合体が好ましい。
Among the above, from the viewpoint of being excellent in biodegradability and being able to impart excellent gas barrier properties while maintaining the secondary molding processability, the main component resin of the intermediate layer is other than the vinyl alcohol structural unit and the vinyl ester structural unit. A modified PVA-based resin having the structural unit of is preferable.
As such a modified PVA-based resin, for example, a PVA copolymer having a primary hydroxyl group in the side chain and an ethylene-modified PVA copolymer are preferable in terms of melt moldability.
Of these, a PVA copolymer having a primary hydroxyl group in the side chain is preferable. For example, a PVA copolymer having a hydroxyalkyl group in the side chain, a PVA copolymer having a 1,2-diol structure in the side chain, and the like can be mentioned. Among them, a PVA copolymer having a 1,2-diol structure in the side chain is preferable.
 前記変性PVA系樹脂における変性種の含有量(ビニルアルコール構造単位とビニルエステル構造単位以外の構造単位の含有量)は、0.1~20mol%であるのが好ましく、中でも1mol%以上或いは10mol%以下であるのがさらに好ましい。
 特に、側鎖に一級水酸基を有するPVA共重合体を用いる場合の、側鎖に1,2-ジオール構造を有する構造単位の含有量は、0.1~20mol%であるのが好ましく、中でも1mol%以上或いは10mol%以下、その中でも2mol%以上或いは8mol%以下であるのがさらに好ましい。
 また、エチレン変性PVA共重合体の場合の、エチレン構造単位の含有量は、0.1~20mol%であるのが好ましく、中でも1mol%以上或いは15mol%以下、その中でも3mol%以上或いは10mol%以下、特にその中でも4mol%以上或いは9mol%以下であるのがさらに好ましい。
The content of the modified species in the modified PVA resin (content of structural units other than vinyl alcohol structural unit and vinyl ester structural unit) is preferably 0.1 to 20 mol%, and more than 1 mol% or 10 mol%. The following is more preferable.
In particular, when a PVA copolymer having a primary hydroxyl group in the side chain is used, the content of the structural unit having a 1,2-diol structure in the side chain is preferably 0.1 to 20 mol%, particularly 1 mol. % Or more or 10 mol% or less, more preferably 2 mol% or more or 8 mol% or less.
Further, in the case of the ethylene-modified PVA copolymer, the content of the ethylene structural unit is preferably 0.1 to 20 mol%, particularly 1 mol% or more or 15 mol% or less, and 3 mol% or more or 10 mol% or less among them. In particular, it is more preferably 4 mol% or more or 9 mol% or less.
 PVA系樹脂の平均重合度は、表層及び裏層への追従性の観点から、300~3000であることが好ましく、その中でも350以上あるいは2500以下、その中でも400以上あるいは2000以下であることがさらに好ましい。
 また、PVA系樹脂のケン化度は、ガスバリア性の観点から、90.0~99.9mol%であることが好ましく、その中でも99.0mol%以上あるいは99.9mol%以下、その中でも99.5mol%以上あるいは99.9mol%以下であることがさらに好ましい。
The average degree of polymerization of the PVA-based resin is preferably 300 to 3000 from the viewpoint of followability to the surface layer and the back layer, and more preferably 350 or more or 2500 or less, and further 400 or more or 2000 or less. preferable.
Further, the degree of saponification of the PVA-based resin is preferably 90.0 to 99.9 mol% from the viewpoint of gas barrier property, and among them, 99.0 mol% or more or 99.9 mol% or less, among which 99.5 mol. It is more preferably% or more or 99.9 mol% or less.
(その他の樹脂)
 中間層は、必要に応じて、上記以外の樹脂、例えばポリヒドロキシアルカノエート、ポリカーボネート、ポリアミド、ポリスチレン、ポリオレフィン、アクリル樹脂、アモルファスポリオレフィン、ABS、AS(アクリロニトリルスチレン)、ポリカプロラクトン、ポリビニルアルコール系樹脂、セルロースエステルなどの合成樹脂のうちのいずれか1種又は2種以上を含有していてもよい。
 但し、これら「上記以外の樹脂」は、上記主成分樹脂100質量部に対して50質量部未満、特に30質量部未満であることが好ましい。
(Other resins)
If necessary, the intermediate layer may be made of a resin other than the above, for example, polyhydroxyalkanoate, polycarbonate, polyamide, polystyrene, polyolefin, acrylic resin, amorphous polyolefin, ABS, AS (acrylonitrile styrene), polycaprolactone, polyvinyl alcohol-based resin, etc. It may contain any one or more of synthetic resins such as cellulose ester.
However, these "resins other than the above" are preferably less than 50 parts by mass, particularly less than 30 parts by mass, with respect to 100 parts by mass of the main component resin.
(その他の成分)
 中間層は、必要に応じて、滑剤、可塑剤、帯電防止剤、酸化防止剤、光安定剤、紫外線吸収剤、染料、顔料、加水分解防止剤、結晶核剤、アンチブロッキング剤、耐光剤、可塑剤、熱安定剤、難燃剤、離型剤、防曇剤、表面ぬれ改善剤、焼却補助剤、分散助剤、各種界面活性剤、スリップ剤等の各種添加剤や、澱粉、セルロース、紙、木粉、キチン・キトサン質、椰子殻粉末、クルミ殻粉末等の動物/植物物質微粉末、あるいはこれらの混合物を「その他の成分」として含んでいてもよい。これらは、本発明の効果を損なわない範囲で任意に配合することができ、1種を単独で用いてもよく、2種以上を混合して使用してもよい。
(Other ingredients)
The intermediate layer is, if necessary, a lubricant, a plastic agent, an antioxidant, an antioxidant, a light stabilizer, an ultraviolet absorber, a dye, a pigment, an antioxidant, a crystal nucleating agent, an anti-blocking agent, a light-resistant agent, Various additives such as plasticizers, heat stabilizers, flame retardants, mold release agents, antifogging agents, surface wetting improvers, incineration aids, dispersion aids, various surfactants, slip agents, starch, cellulose, paper , Wood flour, chitin / cellulosic, coconut shell powder, walnut shell powder and other animal / plant substance fine powders, or mixtures thereof may be contained as "other components". These can be arbitrarily blended as long as the effects of the present invention are not impaired, and one type may be used alone or two or more types may be mixed and used.
 これら「その他の成分」の含有量は、特に限定するものではない。目安としては、各層の総量に対して0.01質量%以上40質量%以下であることが好ましい。 The content of these "other ingredients" is not particularly limited. As a guide, it is preferably 0.01% by mass or more and 40% by mass or less with respect to the total amount of each layer.
<<本積層シート2>>
 次に、本積層シート2について説明する。
<< This Laminated Sheet 2 >>
Next, the present laminated sheet 2 will be described.
 本積層シート2は、生分解性樹脂層及びガスバリア層を有し、かつ、生分解性を備えた積層シートであるから、生分解性樹脂層及びガスバリア層を何れかに有していればよい。したがって、生分解性樹脂層が表層又は裏層である場合はもちろん包含するが、中間層である場合も包含する。また、ガスバリア層が中間層である場合はもちろん包含するが、表層又は裏層である場合も包含する。中でも、成形後の取扱性及び耐湿性の観点から、生分解性樹脂層が表層及び裏層であり、ガスバリア層が中間層であることが好ましい。 Since the laminated sheet 2 has a biodegradable resin layer and a gas barrier layer and is a laminated sheet having biodegradability, it suffices to have either the biodegradable resin layer or the gas barrier layer. .. Therefore, the case where the biodegradable resin layer is a surface layer or a back layer is of course included, but the case where it is an intermediate layer is also included. Further, of course, the case where the gas barrier layer is an intermediate layer is included, but the case where the gas barrier layer is a surface layer or a back layer is also included. Above all, from the viewpoint of handleability and moisture resistance after molding, it is preferable that the biodegradable resin layer is the surface layer and the back layer, and the gas barrier layer is the intermediate layer.
 本積層シート2は、110℃における該積層シートの貯蔵弾性率をE’(110)とし、130℃における該積層シートの貯蔵弾性率をE’(130)としたとき、当該E’(110)が5MPa~100MPaであって、かつ、下記式(1)で示されるaが-0.2~-9.0×10-4であることが好ましい。 When the storage elastic modulus of the laminated sheet at 110 ° C. is E' (110) and the storage elastic modulus of the laminated sheet at 130 ° C. is E' (130) , the laminated sheet 2 is E'(110). Is 5 MPa to 100 MPa, and a represented by the following formula (1) is preferably −0.2 to −9.0 × 10 -4.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 上記式(1)は、温度による貯蔵弾性率の変化を示す。より詳細には、上記式(1)におけるaは、温度をx軸(℃)とし、貯蔵弾性率をy軸(lоg(MPa))としたときの110℃及び130℃の区間での平均傾きを表す。 The above formula (1) shows the change in storage elastic modulus with temperature. More specifically, a in the above formula (1) is the average slope in the sections of 110 ° C. and 130 ° C. when the temperature is on the x-axis (° C.) and the storage elastic modulus is on the y-axis (lоg (MPa)). Represents.
 本積層シート2は、上記式(1)で示される当該平均傾きが-0.2~-9.0×10-4の範囲内であれば、ガスバリア層を均一に成形することができる温度範囲が広いため、優れた二次成形性を有することができる。
 かかる観点から、上記aは、-0.2~-9.0×10-4であることが好ましく、中でも-0.1以上あるいは0以下であることがより好ましい。
The laminated sheet 2 has a temperature range in which the gas barrier layer can be uniformly formed as long as the average inclination represented by the above formula (1) is within the range of −0.2 to −9.0 × 10 -4. Because of its wide width, it can have excellent secondary moldability.
From this point of view, the above a is preferably −0.2 to −9.0 × 10 -4 , and more preferably −0.1 or more or 0 or less.
 本積層シート2が上記式(1)を満足するためには、生分解性樹脂層を構成する主成分樹脂の種類を変更したり、主成分樹脂の共重合成分の種類を変更したり、主成分樹脂の分子量を変更したり、生分解性樹脂層に無機粒子を含有させたりすればよい。また、生分解性樹脂層及びガスバリア層の厚み比率を調整してもよい。特に生分解性樹脂層を構成する主成分樹脂の種類、生分解性樹脂層及びガスバリア層の厚み比率の影響が大きいため、本積層シート2におけるガスバリア層の厚み比率を小さくしつつ、生分解性樹脂層を構成する主成分樹脂の種類を調整することにより、本積層シート2が上記式(1)を満足するようにすることが好ましい。 In order for the laminated sheet 2 to satisfy the above formula (1), the type of the main component resin constituting the biodegradable resin layer may be changed, or the type of the copolymerization component of the main component resin may be changed. The molecular weight of the component resin may be changed, or the biodegradable resin layer may contain inorganic particles. Further, the thickness ratio of the biodegradable resin layer and the gas barrier layer may be adjusted. In particular, since the type of the main component resin constituting the biodegradable resin layer and the thickness ratio of the biodegradable resin layer and the gas barrier layer are greatly affected, the biodegradability is reduced while reducing the thickness ratio of the gas barrier layer in the laminated sheet 2. It is preferable that the laminated sheet 2 satisfies the above formula (1) by adjusting the type of the main component resin constituting the resin layer.
<生分解性樹脂層>
 本積層シート2の生分解性樹脂層は、本積層シート1における表層及び裏層と同じものであってよい。当該生分解性樹脂層の好ましい実施形態は、上記<表層及び裏層>で説明したものと同じである。
<Biodegradable resin layer>
The biodegradable resin layer of the laminated sheet 2 may be the same as the surface layer and the back layer of the laminated sheet 1. A preferred embodiment of the biodegradable resin layer is the same as that described in the above <surface layer and back layer>.
<ガスバリア層>
 本積層シート2のガスバリア層は、本積層シート1における中間層と同じものであってよい。当該ガスバリア層の好ましい実施形態は、上記<中間層>で説明したものと同じである。
<Gas barrier layer>
The gas barrier layer of the laminated sheet 2 may be the same as the intermediate layer of the laminated sheet 1. A preferred embodiment of the gas barrier layer is the same as that described in the above <intermediate layer>.
<<本積層シート1及び2の構成>>
 本積層シート1及び2は、少なくとも生分解性樹脂層とガスバリア層を備えていればよく、とりわけ本積層シート1は、少なくとも生分解性樹脂層としての表層及び裏層と、ガスバリア層としての中間層を備えていればよい。
 よって、本積層シート1における表層と中間層との間、裏層と中間層との間、本積層シート2における生分解性樹脂層とガスバリア層との間、さらには、生分解性樹脂層又は表層の外側若しくは裏層の外側には「他の層」を備えていてもよい。
<< Configuration of main laminated sheets 1 and 2 >>
The laminated sheets 1 and 2 may be provided with at least a biodegradable resin layer and a gas barrier layer. In particular, the laminated sheet 1 is intermediate between at least a surface layer and a back layer as a biodegradable resin layer and a gas barrier layer. It suffices to have a layer.
Therefore, between the surface layer and the intermediate layer in the present laminated sheet 1, between the back layer and the intermediate layer, between the biodegradable resin layer and the gas barrier layer in the present laminated sheet 2, and further, the biodegradable resin layer or An "other layer" may be provided on the outside of the surface layer or the outside of the back layer.
 ここで、前記「他の層」としては、例えばアンカーコート層、ヒートシール層、接着層、印刷層、ラミネート層、保護層などを挙げることができる。但し、これらに限定するものではない。 Here, examples of the "other layer" include an anchor coat layer, a heat seal layer, an adhesive layer, a printing layer, a laminate layer, a protective layer, and the like. However, it is not limited to these.
(接着層)
 本積層シート1における表層と中間層との間、及び/又は、裏層と中間層との間には、接着層が介在することが好ましい。
 また、本積層シート2における生分解性樹脂層とガスバリア層との間にも、接着剤層が介在することが好ましい。
(Adhesive layer)
It is preferable that an adhesive layer is interposed between the surface layer and the intermediate layer and / or between the back layer and the intermediate layer in the laminated sheet 1.
Further, it is preferable that an adhesive layer is also interposed between the biodegradable resin layer and the gas barrier layer in the laminated sheet 2.
 接着層は、接着性樹脂組成物から形成することができる。
 当該接着性樹脂組成物は、表層と中間層とを、又は裏層と中間層とを、若しくは生分解性樹脂層とガスバリア層とを接着することができ、かつ、生分解性を有するものであることが好ましい。
 このような接着性樹脂組成物であれば、その組成は特に限定するものではない。好ましい一例として、脂肪族ポリエステル系樹脂及び/又は脂肪族芳香族ポリエステル系樹脂を主として含有するポリエステル系樹脂D0を、α,β-不飽和カルボン酸及び/又はその無水物によりグラフト変性して得られる変性ポリエステル系樹脂Dを挙げることができる。
The adhesive layer can be formed from an adhesive resin composition.
The adhesive resin composition is capable of adhering a surface layer and an intermediate layer, a back layer and an intermediate layer, or a biodegradable resin layer and a gas barrier layer, and has biodegradability. It is preferable to have.
The composition of such an adhesive resin composition is not particularly limited. As a preferred example, a polyester resin D 0 mainly containing an aliphatic polyester resin and / or an aliphatic aromatic polyester resin is graft-modified with α, β-unsaturated carboxylic acid and / or an anhydride thereof. The modified polyester resin D to be used can be mentioned.
 なお、当該ポリエステル系樹脂D0は、脂肪族ポリエステル系樹脂及び/又は脂肪族芳香族ポリエステル系樹脂を主として含有するものであれば、特に限定されない。
 ポリエステル系樹脂D0に「主として含有する」とは、通常、ポリエステル系樹脂D0中の含有量が50質量%以上であることをいう。
The polyester resin D 0 is not particularly limited as long as it mainly contains an aliphatic polyester resin and / or an aliphatic aromatic polyester resin.
The "mainly containing" in the polyester resin D 0, usually refers to the content of the polyester resin D in 0 is not less than 50 wt%.
 また、当該ポリエステル系樹脂D0は、脂肪族ポリエステル系樹脂及び/又は脂肪族芳香族ポリエステル系樹脂を主として含んでいれば、本発明の効果を損なわない範囲で、他の樹脂を含んでいてもよい。
 当該ポリエステル系樹脂D0に含まれていてもよい他の樹脂としては、例えば、ポリヒドロキシアルカノエート、芳香族ポリエステル系樹脂、ポリカーボネート、ポリアミド、ポリスチレン、ポリオレフィン、アクリル樹脂、アモルファスポリオレフィン、ABS、AS(アクリロニトリルスチレン)、ポリカプロラクトン、ポリビニルアルコール系樹脂、セルロースエステルなどの合成樹脂、ポリ乳酸などを挙げることができる。
Further, if the polyester-based resin D 0 mainly contains an aliphatic polyester-based resin and / or an aliphatic aromatic polyester-based resin, it may contain other resins as long as the effects of the present invention are not impaired. Good.
Other resins that may be contained in the polyester resin D 0 include, for example, polyhydroxy alkanoate, aromatic polyester resin, polycarbonate, polyamide, polystyrene, polyolefin, acrylic resin, amorphous polyolefin, ABS, AS ( Acrylonitrile styrene), polycaprolactone, polyvinyl alcohol-based resin, synthetic resin such as cellulose ester, polylactic acid and the like can be mentioned.
 生分解性が高く、生分解性積層シートに使用する接着層として使用する場合の加工成形性や接着性の観点から、当該ポリエステル系樹脂D0は脂肪族ポリエステル系樹脂及び/又は脂肪族芳香族ポリエステル系樹脂のみから構成されることが好ましい。 The polyester resin D 0 is an aliphatic polyester resin and / or an aliphatic aromatic from the viewpoint of process moldability and adhesiveness when used as an adhesive layer used for a biodegradable laminated sheet having high biodegradability. It is preferably composed of only a polyester resin.
 当該ポリエステル系樹脂D0は、生分解性積層シートとしたときの機械強度と接着性向上の観点から、脂肪族ポリエステル系樹脂及び脂肪族芳香族ポリエステル系樹脂を含むこと、又は脂肪族芳香族ポリエステル系樹脂を含むことが好ましく、脂肪族ポリエステル系樹脂及び脂肪族芳香族ポリエステル系樹脂を含むことがより好ましい。当該ポリエステル系樹脂D0が脂肪族芳香族ポリエステル系樹脂を含むことで、一次加工性が向上する。
 当該ポリエステル系樹脂D0が脂肪族ポリエステル系樹脂と脂肪族芳香族ポリエステル系樹脂を含む場合、脂肪族ポリエステル樹脂と脂肪族芳香族ポリエステル系樹脂の存在割合は、脂肪族ポリエステル樹脂と脂肪族芳香族ポリエステル系樹脂の合計100質量%中に脂肪族ポリエステル系樹脂を15~50質量%、脂肪族芳香族ポリエステル系樹脂を50~85質量%含むことが、生分解性と加工性の観点から好ましい。
The polyester-based resin D 0 contains an aliphatic polyester-based resin and an aliphatic aromatic polyester-based resin, or an aliphatic aromatic polyester, from the viewpoint of improving mechanical strength and adhesiveness when the biodegradable laminated sheet is used. It preferably contains a based resin, and more preferably contains an aliphatic polyester resin and an aliphatic aromatic polyester resin. When the polyester-based resin D 0 contains an aliphatic aromatic polyester-based resin, the primary processability is improved.
When the polyester-based resin D 0 contains an aliphatic polyester-based resin and an aliphatic aromatic polyester-based resin, the abundance ratio of the aliphatic polyester resin and the aliphatic aromatic polyester-based resin is the aliphatic polyester resin and the aliphatic aromatic. It is preferable that the total 100% by mass of the polyester-based resin contains 15 to 50% by mass of the aliphatic polyester-based resin and 50 to 85% by mass of the aliphatic aromatic polyester-based resin from the viewpoint of biodegradability and processability.
 当該ポリエステル系樹脂D0に含まれる脂肪族芳香族ポリエステル系樹脂としては、上述の脂肪族ポリエステル系樹脂の繰り返し単位の少なくとも一部が、芳香族化合物単位に置き換えられたもの、好ましくは、上述の脂肪族ポリエステル系樹脂の脂肪族ジカルボン酸単位の一部が芳香族ジカルボン酸単位に置き換えられた、脂肪族ジオール単位と脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位とを主構成単位として含むポリエステル系樹脂が例示される。 As the aliphatic aromatic polyester-based resin contained in the polyester-based resin D 0 , at least a part of the repeating unit of the above-mentioned aliphatic polyester-based resin is replaced with an aromatic compound unit, preferably the above-mentioned above-mentioned aliphatic compound unit. A polyester-based compound containing an aliphatic diol unit, an aliphatic dicarboxylic acid unit, and an aromatic dicarboxylic acid unit as main constituent units, in which a part of the aliphatic dicarboxylic acid unit of the aliphatic polyester resin is replaced with an aromatic dicarboxylic acid unit. Resin is exemplified.
 芳香族化合物単位としては、例えば、置換基を有していてもよい芳香族炭化水素基を有する芳香族ジオール単位、置換基を有していてもよい芳香族炭化水素基を有する芳香族ジカルボン酸単位、置換基を有していてもよい芳香族炭化水素基を有する芳香族オキシカルボン酸単位等を挙げることができる。芳香族炭化水素基は、単環でもよいし、複数の環が互いに結合、又は縮合したものでもよい。芳香族炭化水素基の具体例としては、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ジナフチレン基、ジフェニレン基等を挙げることができる。 Examples of the aromatic compound unit include an aromatic diol unit having an aromatic hydrocarbon group which may have a substituent and an aromatic dicarboxylic acid having an aromatic hydrocarbon group which may have a substituent. Examples thereof include an aromatic oxycarboxylic acid unit having an aromatic hydrocarbon group which may have a unit and a substituent. The aromatic hydrocarbon group may be a single ring, or a plurality of rings bonded or condensed with each other. Specific examples of the aromatic hydrocarbon group include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, dinaphthylene group, diphenylene group and the like.
 芳香族ジカルボン酸単位を与える芳香族ジカルボン酸成分の具体例としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸等を挙げることができる。中でも、テレフタル酸が好ましい。
 芳香族ジカルボン酸成分としては、芳香族ジカルボン酸化合物の誘導体でもよい。例えば、上記に例示した芳香族ジカルボン酸成分の誘導体が好ましく、中でも、炭素数1以上4以下である低級アルキルエステルや、酸無水物等を挙げることができる。芳香族ジカルボン酸化合物の誘導体の具体例としては、上記例示した芳香族ジカルボン酸成分のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル等の低級アルキルエステル;無水コハク酸等の上記例示した芳香族ジカルボン酸成分の環状酸無水物;等を挙げることができる。中でも、ジメチルテレフタレートが好ましい。
Specific examples of the aromatic dicarboxylic acid component that gives an aromatic dicarboxylic acid unit include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid and the like. Of these, terephthalic acid is preferable.
The aromatic dicarboxylic acid component may be a derivative of an aromatic dicarboxylic acid compound. For example, the derivative of the aromatic dicarboxylic acid component exemplified above is preferable, and among them, a lower alkyl ester having 1 or more and 4 or less carbon atoms, an acid anhydride and the like can be mentioned. Specific examples of the derivative of the aromatic dicarboxylic acid compound include lower alkyl esters such as methyl ester, ethyl ester, propyl ester and butyl ester of the above-exemplified aromatic dicarboxylic acid component; and the above-exemplified aromatic dicarboxylic acid such as succinic anhydride. Cyclic acid anhydride as an acid component; and the like can be mentioned. Of these, dimethyl terephthalate is preferable.
 芳香族ジオール単位を与える芳香族ジオール成分の具体例としては、例えば、キシリレングリコール、4,4’-ジヒドロキシビフェニル、2,2-ビス(4’-ヒドロキシフェニル)プロパン、2,2-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-β-ヒドロキシエトキシフェニル)スルホン酸等を挙げることができる。芳香族ジオール成分としては、芳香族ジオール化合物の誘導体でもよい。また、複数の脂肪族ジオール化合物及び/又は芳香族ジオール化合物が互いに脱水縮合した構造を有する化合物であってもよい。 Specific examples of the aromatic diol component that gives the aromatic diol unit include xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis (4'-hydroxyphenyl) propane, and 2,2-bis (. Examples thereof include 4'-β-hydroxyethoxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, and bis (4-β-hydroxyethoxyphenyl) sulfonic acid. The aromatic diol component may be a derivative of an aromatic diol compound. Further, it may be a compound having a structure in which a plurality of aliphatic diol compounds and / or aromatic diol compounds are dehydrated and condensed with each other.
 芳香族オキシカルボン酸単位を与える芳香族オキシカルボン酸成分の具体例としては、例えば、p-ヒドロキシ安息香酸、p-β-ヒドロキシエトキシ安息香酸等を挙げることができる。当該芳香族オキシカルボン酸成分は、芳香族オキシカルボン酸化合物の誘導体でもよい。また、複数の脂肪族オキシカルボン酸化合物及び/又は芳香族オキシカルボン酸化合物が互いに脱水縮合した構造を有する化合物(オリゴマー)であってもよい。即ち、原料物質としてオリゴマーを用いてもよい。 Specific examples of the aromatic oxycarboxylic acid component that gives the aromatic oxycarboxylic acid unit include p-hydroxybenzoic acid and p-β-hydroxyethoxybenzoic acid. The aromatic oxycarboxylic acid component may be a derivative of the aromatic oxycarboxylic acid compound. Further, it may be a compound (oligomer) having a structure in which a plurality of aliphatic oxycarboxylic acid compounds and / or aromatic oxycarboxylic acid compounds are dehydrated and condensed with each other. That is, an oligomer may be used as a raw material.
 これら芳香族化合物単位を与える芳香族化合物成分に光学異性体が存在する場合には、D体、L体、及びラセミ体のいずれを用いてもよい。また、芳香族化合物成分としては、芳香族化合物単位を与えることができれば、上記の例に限定されるものではない。更に、芳香族化合物成分は1種を単独で用いてもよく、2種以上を任意の組み合わせ、及び比率で併用してもよい。 When an optical isomer is present in the aromatic compound component that gives these aromatic compound units, any of D-form, L-form, and racemic form may be used. Further, the aromatic compound component is not limited to the above example as long as an aromatic compound unit can be given. Further, one type of aromatic compound component may be used alone, or two or more types may be used in any combination and in a ratio.
 脂肪族芳香族ポリエステル系樹脂としては、芳香族化合物単位を与える成分として芳香族ジカルボン酸成分を用いることが好ましく、この場合の芳香族ジカルボン酸単位の含有量は、脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位の全量を基準(100mol%)として、10mol%以上80mol%以下であることが好ましい。また、芳香族ジカルボン酸成分としてテレフタル酸を用いることが好ましく、脂肪族芳香族ポリエステル系樹脂としては、ポリブチレンテレフタレートアジペート及び/又はポリブチレンテレフタレートサクシネート系樹脂を用いることが好ましい。 As the aliphatic aromatic polyester resin, it is preferable to use an aromatic dicarboxylic acid component as a component that gives an aromatic compound unit, and the content of the aromatic dicarboxylic acid unit in this case is the aliphatic dicarboxylic acid unit and the aromatic acid. Based on the total amount of the dicarboxylic acid unit (100 mol%), it is preferably 10 mol% or more and 80 mol% or less. Further, it is preferable to use terephthalic acid as the aromatic dicarboxylic acid component, and as the aliphatic aromatic polyester resin, it is preferable to use polybutylene terephthalate adipate and / or polybutylene terephthalate succinate resin.
 ポリエステル系樹脂Dの質量平均分子量は、GPCにより測定したポリスチレン換算の値で、通常5,000~1,000,000であり、好ましくは20,000~500,000、特に好ましくは50,000~400,000である。ポリエステル系樹脂の質量平均分子量が大きすぎると溶融粘度が高くなり溶融成形しにくくなる傾向があり、逆に小さすぎると成形物が脆くなる傾向がある。 The mass average molecular weight of the polyester resin D 0 is a polystyrene-equivalent value measured by GPC, usually 5,000 to 1,000,000, preferably 20,000 to 500,000, and particularly preferably 50,000. ~ 400,000. If the mass average molecular weight of the polyester resin is too large, the melt viscosity tends to be high and it tends to be difficult to melt-mold, and conversely, if it is too small, the molded product tends to be brittle.
 ポリエステル系樹脂Dの市販品としては、例えば、ポリブチレンテレフタレートアジペートを主成分とするBASF社製「エコフレックス」、コハク酸/アジピン酸/1,4-ブタンジオールの縮重合物を主成分とするPTTMCC Biochem社製「BioPBS」が挙げられる。
 また、任意の成分として、ポリエステル系樹脂に含んでいてもよいポリヒドロキシアルカノエートとしてカネカ社製「Aonilex」などを挙げることができる。
Commercially available products of polyester resin D 0 include, for example, "Ecoflex" manufactured by BASF, which contains polybutylene terephthalate adipate as the main component, and a polycondensation polymer of succinic acid / adipic acid / 1,4-butanediol as the main component. PTTMCC "BioPBS" manufactured by Biochem Co., Ltd. can be mentioned.
Further, as an arbitrary component, "Aonilex" manufactured by Kaneka Corporation can be mentioned as a polyhydroxy alkanoate which may be contained in the polyester resin.
=変性ポリエステル系樹脂D=
 前記変性ポリエステル系樹脂Dは、上述のポリエステル系樹脂Dを、α,β-不飽和カルボン酸及び/又はその無水物をグラフト変性して得られたものである。
 ポリエステル系樹脂Dは脂肪族ポリエステル系樹脂及び/又は脂肪族芳香族ポリエステル系樹脂を含むことから生分解性であり、当該ポリエステル系樹脂Dをα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性して得られる変性ポリエステル系樹脂Dもまた、基本骨格は脂肪族ポリエステル又は脂肪族芳香族ポリエステルであり、それに若干量の変性を施したものであることから、生分解性である。
= Modified polyester resin D =
The modified polyester resin D is obtained by graft-modifying the above-mentioned polyester resin D 0 with α, β-unsaturated carboxylic acid and / or its anhydride.
The polyester-based resin D 0 is biodegradable because it contains an aliphatic polyester-based resin and / or an aliphatic aromatic polyester-based resin, and the polyester-based resin D 0 is α, β-unsaturated carboxylic acid and / or its. The modified polyester resin D obtained by graft modification with an anhydride also has a basic skeleton of an aliphatic polyester or an aliphatic aromatic polyester, and is biodegradable because it is modified by a slight amount. is there.
 ポリエステル系樹脂Dへのグラフト変性に用いられるα,β-不飽和カルボン酸及び/又はその無水物としては、具体的にはアクリル酸、メタクリル酸などのα,β-不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸、シトラス酸、テトラヒドロフタル酸、クロトン酸、イソクロトン酸等のα,β-不飽和ジカルボン酸やその誘導体及びその無水物が挙げられ、好ましくはα,β-不飽和ジカルボン酸の無水物を用いることができる。特に好ましくは、無水マレイン酸である。
 これらのα,β-不飽和カルボン酸及び/又はその無水物は、1種を単独で用いる場合に限らず、2種以上を併用してもよい。
Specific examples of the α, β-unsaturated carboxylic acid and / or its anhydride used for graft modification to the polyester resin D 0 are α, β-unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; Examples thereof include α, β-unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citrus acid, tetrahydrophthalic acid, crotonic acid and isocrotonic acid, derivatives thereof and anhydrides thereof, preferably α, β-unsaturated. Anhydride of dicarboxylic acid can be used. Particularly preferred is maleic anhydride.
These α, β-unsaturated carboxylic acids and / or their anhydrides are not limited to the case where one type is used alone, and two or more types may be used in combination.
 ポリエステル系樹脂Dをα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性する方法としては特に限定されず、公知の方法を用いることができる。グラフト変性は、熱反応のみでも可能であるが、反応性を高めるためには、ラジカル開始剤を用いることが好ましい。反応させる手法としては、溶液反応、懸濁液としての反応、溶媒等を使用しない溶融状態での反応などを挙げることができるが、中でも溶融状態で行うことが好ましい。 The method for graft-modifying the polyester resin D 0 with α, β-unsaturated carboxylic acid and / or its anhydride is not particularly limited, and a known method can be used. Although graft modification can be performed only by thermal reaction, it is preferable to use a radical initiator in order to enhance the reactivity. Examples of the reaction method include a solution reaction, a reaction as a suspension, and a reaction in a molten state without using a solvent or the like, and among them, the reaction in a molten state is preferable.
 変性ポリエステル系樹脂Dは、ポリエステル系樹脂Dを2種類以上用いて得られたものであってもよい。ポリエステル系樹脂Dを2種類以上用いる場合、ポリエステル系樹脂Dを予め混合した後、α,β-不飽和カルボン酸及び/又はその無水物でグラフト変性することで変性ポリエステル系樹脂Dとしてもよく、2種類以上のポリエステル系樹脂Dをそれぞれα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性して変性ポリエステル系樹脂Dを得てから、全ての変性ポリエステル系樹脂Dを混合してもよい。
 つまり、本発明の接着性樹脂組成物は、脂肪族ポリエステル系樹脂及び/又は前述の脂肪族芳香族ポリエステル系樹脂を主として含有するポリエステル系樹脂を用いることが好ましいが、当該ポリエステル系樹脂が、脂肪族ポリエステル系樹脂及び脂肪族芳香族ポリエステル系樹脂を含む場合、予め、脂肪族ポリエステル系樹脂をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性したものと、脂肪族芳香族ポリエステル系樹脂をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性したものをそれぞれ準備しておき、それらを混合して変性ポリエステル系樹脂Dとして用いてもよい。
 また、脂肪族ポリエステル系樹脂及び脂肪族芳香族ポリエステル系樹脂のうち一方の樹脂をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性し、他方の樹脂と混合して用いてもよい。変性ポリエステル系樹脂Dは、例えば、脂肪族ポリエステル系樹脂をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性したものと脂肪族芳香族ポリエステル系樹脂とを混合したものであってもよく、脂肪族芳香族ポリエステル系樹脂をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性したものと脂肪族ポリエステル系樹脂とを混合したものであってもよい。
 また、脂肪族ポリエステル系樹脂及び脂肪族芳香族ポリエステル系樹脂の混合物をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性したものを変性ポリエステル系樹脂Dとして用いてもよい。
 また、ポリエステル系樹脂Dの変性の方法は1種類に限られず、ポリエステル系樹脂Dを2種類以上の方法で変性して得られた複数の樹脂を混合したものを変性ポリエステル系樹脂Dとして用いてもよい。
The modified polyester resin D may be obtained by using two or more kinds of polyester resins D 0. When two or more types of polyester resin D 0 are used, the polyester resin D 0 can be obtained as a modified polyester resin D by mixing the polyester resin D 0 in advance and then graft-modifying with α, β-unsaturated carboxylic acid and / or its anhydride. Often, two or more types of polyester resins D 0 are graft-modified with α, β-unsaturated carboxylic acid and / or its anhydride to obtain a modified polyester resin D, and then all the modified polyester resins D are subjected to. It may be mixed.
That is, the adhesive resin composition of the present invention preferably uses an aliphatic polyester resin and / or a polyester resin mainly containing the above-mentioned aliphatic aromatic polyester resin, but the polyester resin is a fat. When the group polyester resin and the aliphatic aromatic polyester resin are contained, the aliphatic polyester resin is graft-modified with α, β-unsaturated carboxylic acid and / or its anhydride in advance, and the aliphatic aromatic polyester. You may prepare the system resin graft-modified with α, β-unsaturated carboxylic acid and / or its anhydride, and mix them to use as the modified polyester-based resin D.
Further, one of the aliphatic polyester resin and the aliphatic aromatic polyester resin may be graft-modified with α, β-unsaturated carboxylic acid and / or its anhydride, and mixed with the other resin for use. Good. The modified polyester resin D is, for example, a mixture of an aliphatic polyester resin graft-modified with α, β-unsaturated carboxylic acid and / or its anhydride and an aliphatic aromatic polyester resin. Alternatively, it may be a mixture of an aliphatic polyester-based resin graft-modified with α, β-unsaturated carboxylic acid and / or its anhydride and an aliphatic polyester-based resin.
Further, a mixture of an aliphatic polyester resin and an aliphatic aromatic polyester resin graft-modified with α, β-unsaturated carboxylic acid and / or an anhydride thereof may be used as the modified polyester resin D.
Further, the method for modifying the polyester resin D 0 is not limited to one type, and a mixture of a plurality of resins obtained by modifying the polyester resin D 0 by two or more methods is used as the modified polyester resin D. You may use it.
 本発明の接着性樹脂組成物としては、生分解性向上、接着性向上、成形性、接着層としたときの外観向上の観点から、脂肪族芳香族ポリエステル系樹脂をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性した変性ポリエステル系樹脂Dと脂肪族ポリエステル系樹脂とを混合したもの、又は脂肪族ポリエステル系樹脂及び脂肪族芳香族ポリエステル系樹脂の混合物をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性した変性ポリエステル系樹脂Dを変性ポリエステル系樹脂とすることが好ましく、ホームコンポストに必要な生分解性樹脂組成物としての観点から、脂肪族芳香族ポリエステル系樹脂をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性した変性ポリエステル系樹脂Dと脂肪族ポリエステル系樹脂とを混合したものを変性ポリエステル系樹脂Dとすることがより好ましい。
 なお、この場合、変性ポリエステル系樹脂に含まれる脂肪族芳香族ポリエステル系樹脂をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性した変性ポリエステル系樹脂Dの割合(質量%)は、脂肪族芳香族ポリエステル系樹脂をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性した変性ポリエステル系樹脂Dと脂肪族ポリエステル系樹脂の合計100質量%に対して、50~90質量%が好ましい。脂肪族ポリエステル系樹脂の割合は、脂肪族芳香族ポリエステル系樹脂をα,β-不飽和カルボン酸及び/又はその無水物でグラフト変性した変性ポリエステル系樹脂Dと脂肪族ポリエステル系樹脂の合計100質量%に対して、10~50質量%が好ましい。
The adhesive resin composition of the present invention uses an aliphatic aromatic polyester resin as an α, β-unsaturated carboxylic from the viewpoints of improving biodegradability, improving adhesiveness, moldability, and improving appearance when used as an adhesive layer. A mixture of a modified polyester resin D graft-modified with an acid and / or its anhydride and an aliphatic polyester resin, or a mixture of an aliphatic polyester resin and an aliphatic aromatic polyester resin is α, β-non. The modified polyester resin D graft-modified with saturated carboxylic acid and / or its anhydride is preferably a modified polyester resin, and from the viewpoint as a biodegradable resin composition required for home compost, an aliphatic aromatic polyester. It is more preferable that the modified polyester resin D obtained by mixing the modified polyester resin D graft-modified with α, β-unsaturated carboxylic acid and / or its anhydride and the aliphatic polyester resin is used as the modified polyester resin D.
In this case, the proportion (% by mass) of the modified polyester resin D obtained by graft-modifying the aliphatic aromatic polyester resin contained in the modified polyester resin with α, β-unsaturated carboxylic acid and / or its anhydride is , 50-90 with respect to 100% by mass of the total of the modified polyester resin D obtained by graft-modifying the aliphatic aromatic polyester resin with α, β-unsaturated carboxylic acid and / or its anhydride and the aliphatic polyester resin. Mass% is preferred. The ratio of the aliphatic polyester resin is 100 mass in total of the modified polyester resin D obtained by graft-modifying the aliphatic aromatic polyester resin with α, β-unsaturated carboxylic acid and / or its anhydride and the aliphatic polyester resin. 10 to 50% by mass is preferable with respect to%.
 変性ポリエステル系樹脂Dにはその性能を阻害しない限り、1種類又は2種類以上のポリエステル系樹脂Dを混合することもできる。 One type or two or more types of polyester resin D 0 may be mixed with the modified polyester resin D as long as the performance is not impaired.
 変性ポリエステル系樹脂Dにおける不飽和カルボン酸及び/又はその無水物の含有量は、限定されない。通常0.01質量%以上であることが好ましく、中でも0.02質量%以上、その中でも0.03質量%以上であることがさらに好ましい。その一方、通常5.0質量%以下であることが好ましく、中でも4.0質量%以下、その中でも3.0質量%以下であることがさらに好ましい。
 変性ポリエステル系樹脂Dにおける不飽和カルボン酸及び/又はその無水物の含有量が少なすぎると、層間接着性、特にPVA系樹脂層との接着力が不充分になる傾向がある。変性ポリエステル系樹脂における不飽和カルボン酸及び/又はその無水物の含有量が多すぎると、熱溶融成形時の安定性が低下する傾向がある。
 変性ポリエステル系樹脂Dにおける不飽和カルボン酸及び/又はその無水物の含有量は、H-NMR測定によって得られるスペクトルから求めることができる。
The content of unsaturated carboxylic acid and / or its anhydride in the modified polyester resin D is not limited. Usually, it is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.03% by mass or more. On the other hand, it is usually preferably 5.0% by mass or less, particularly preferably 4.0% by mass or less, and more preferably 3.0% by mass or less.
If the content of the unsaturated carboxylic acid and / or its anhydride in the modified polyester resin D is too small, the interlayer adhesiveness, particularly the adhesive force with the PVA resin layer tends to be insufficient. If the content of the unsaturated carboxylic acid and / or its anhydride in the modified polyester resin is too large, the stability during hot melt molding tends to decrease.
The content of unsaturated carboxylic acid and / or its anhydride in the modified polyester resin D can be determined from the spectrum obtained by 1 1 H-NMR measurement.
 変性ポリエステル系樹脂Dの質量平均分子量は、GPCにより測定したポリスチレン換算の値で、通常5,000~1,000,000であり、中でも20,000以上或いは500,000以下であるのが好ましく、その中でも50,000以上或いは400,000以下であるのがさらに好ましい。変性ポリエステル系樹脂Dの質量平均分子量が大きすぎると溶融粘度が高くなり溶融成形しにくくなる傾向があり、逆に小さすぎると成形物が脆くなる傾向がある。 The mass average molecular weight of the modified polyester resin D is a polystyrene-equivalent value measured by GPC, which is usually 5,000 to 1,000,000, and more preferably 20,000 or more or 500,000 or less. Among them, it is more preferably 50,000 or more or 400,000 or less. If the mass average molecular weight of the modified polyester resin D is too large, the melt viscosity tends to be high and it tends to be difficult to melt-mold, and conversely, if it is too small, the molded product tends to be brittle.
 なお、接着層は、上記の変性ポリエステル系樹脂Dの1種のみを含有するものであってもよく、2種以上を含有するものであってもよい。 The adhesive layer may contain only one type of the above-mentioned modified polyester resin D, or may contain two or more types.
(好ましい実施形態)
 上記のなかでも、とりわけ、本積層シート1は、表層、第1の接着層、中間層、第2の接着層、裏層の順に積層された構成を少なくとも備え、当該表層及び当該裏層が生分解性を有する樹脂を主成分とする層であり、かつ、当該第1の接着層、当該中間層及び当該第2の接着層が生分解性を有することが好ましい。
(Preferable embodiment)
Among the above, in particular, the present laminated sheet 1 has at least a structure in which a surface layer, a first adhesive layer, an intermediate layer, a second adhesive layer, and a back layer are laminated in this order, and the surface layer and the back layer are biodegradable. It is preferable that the layer is mainly composed of a degradable resin, and that the first adhesive layer, the intermediate layer and the second adhesive layer are biodegradable.
 また、本積層シート2は、生分解性樹脂層、接着層、ガスバリア層の順に積層された構成を少なくとも備え、当該生分解性樹脂層が生分解性を有する樹脂を主成分とする層であり、かつ、当該接着層及び当該ガスバリア層が生分解性を有することが好ましい。
 本積層シート2は、第1の生分解性樹脂層、第1の接着層、ガスバリア層、第2の接着層、第2の生分解性樹脂層の順に積層された構成を少なくとも備え、当該第1の生分解性樹脂層及び当該第2の生分解性樹脂層が生分解性を有する樹脂を主成分とする層であり、かつ、当該第1の接着層、当該ガスバリア層及び当該第2の接着層が生分解性を有することがより好ましい。
Further, the present laminated sheet 2 has at least a structure in which a biodegradable resin layer, an adhesive layer, and a gas barrier layer are laminated in this order, and the biodegradable resin layer is a layer containing a biodegradable resin as a main component. Moreover, it is preferable that the adhesive layer and the gas barrier layer have biodegradability.
The laminated sheet 2 has at least a configuration in which a first biodegradable resin layer, a first adhesive layer, a gas barrier layer, a second adhesive layer, and a second biodegradable resin layer are laminated in this order. The first biodegradable resin layer and the second biodegradable resin layer are layers mainly composed of a biodegradable resin, and the first adhesive layer, the gas barrier layer and the second It is more preferable that the adhesive layer has biodegradability.
<<本積層シートの厚み>>
 本積層シート1及び2の厚みは、二次成形加工後の厚みの観点から、0.1mm以上であることが好ましく、中でも0.3mm以上、その中でも0.5mm以上であることがさらに好ましい。その一方、二次成形加工性の観点から、2.0mm以下であることが好ましく、中でも1.8mm以下、その中でも1.6mm以下であることがさらに好ましい。
<< Thickness of this laminated sheet >>
The thickness of the laminated sheets 1 and 2 is preferably 0.1 mm or more, and more preferably 0.3 mm or more, and more preferably 0.5 mm or more, from the viewpoint of the thickness after the secondary molding process. On the other hand, from the viewpoint of secondary molding processability, it is preferably 2.0 mm or less, more preferably 1.8 mm or less, and more preferably 1.6 mm or less.
 本積層シート1において、110℃における貯蔵弾性率又は押込み弾性率の高い方を表層、110℃における貯蔵弾性率又は押込み弾性率の低い方を裏層とした場合、裏層の厚みに対する表層の厚みの比率(表層/裏層)は、耐熱性の観点から、0.1以上であることが好ましく、中でも0.2以上、その中でも0.4以上であることがさらに好ましい。その一方、二次成形加工性の観点から、9.0以下であることが好ましく、中でも4.0以下、その中でも2.3以下であることがさらに好ましい。
 当該比率は、本積層シートを図1に示すようなカプセル容器状に成形したときの、当該容器の外側を表層とし、当該容器の内側を裏層とした場合の、裏層の厚みに対する表層の厚みの比率(表層/裏層)であってもよい。
In this laminated sheet 1, when the one having the higher storage elastic modulus or indentation elastic modulus at 110 ° C. is the surface layer and the one having the lower storage elastic modulus or indentation elastic modulus at 110 ° C. is the back layer, the thickness of the surface layer with respect to the thickness of the back layer. From the viewpoint of heat resistance, the ratio of (surface layer / back layer) is preferably 0.1 or more, more preferably 0.2 or more, and even more preferably 0.4 or more. On the other hand, from the viewpoint of secondary molding processability, it is preferably 9.0 or less, more preferably 4.0 or less, and even more preferably 2.3 or less.
The ratio of the surface layer to the thickness of the back layer when the laminated sheet is formed into a capsule container as shown in FIG. 1 and the outside of the container is the surface layer and the inside of the container is the back layer. It may be a thickness ratio (front layer / back layer).
 本積層シート1及び2における中間層又はガスバリア層の厚みは、ガスバリア性の観点から、0.5μm以上であることが好ましく、中でも0.8μm以上、その中でも1.0μm以上であることがさらに好ましい。その一方、加工性の観点から、700μm以下であることが好ましく、中でも500μm以下、その中でも300μm以下であることがさらに好ましい。 From the viewpoint of gas barrier properties, the thickness of the intermediate layer or the gas barrier layer in the laminated sheets 1 and 2 is preferably 0.5 μm or more, more preferably 0.8 μm or more, and further preferably 1.0 μm or more. .. On the other hand, from the viewpoint of workability, it is preferably 700 μm or less, more preferably 500 μm or less, and more preferably 300 μm or less.
 本積層シート2において、生分解性樹脂層の厚みに対する、ガスバリア層の厚みの比率(ガスバリア層/生分解性樹脂層)は、4.1×10-4~1.4であることが好ましく、中でもガスバリア性の観点から8.3×10-4以上がより好ましく、加工性及び経済性の観点から0.33以下であることがより好ましい。 In the present laminated sheet 2, the ratio of the thickness of the gas barrier layer to the thickness of the biodegradable resin layer (gas barrier layer / biodegradable resin layer) is preferably 4.1 × 10 -4 to 1.4. Among them, 8.3 × 10 -4 or more is more preferable from the viewpoint of gas barrier property, and 0.33 or less is more preferable from the viewpoint of processability and economy.
<<本積層シートの製造方法>>
 本積層シート1及び2は、共押出法によって作製することができる。但し、共押出法に限定するものではなく、例えば塗布法やラミネート法、その他の方法によっても作製することができる。
 例えば、共押出法によって本積層シート1を作製する際、表層を形成する組成物、裏層を形成する組成物、中間層を形成する組成物、さらには必要に応じて、接着層など他の層を形成する組成物をそれぞれ調製し、加熱して押出機へ供給して溶融させ、Tダイからシート状に共押出して本積層シートを作製することができる。
<< Manufacturing method of this laminated sheet >>
The laminated sheets 1 and 2 can be produced by a coextrusion method. However, the method is not limited to the coextrusion method, and can be produced by, for example, a coating method, a laminating method, or another method.
For example, when the present laminated sheet 1 is produced by the coextrusion method, a composition for forming a surface layer, a composition for forming a back layer, a composition for forming an intermediate layer, and, if necessary, another adhesive layer or the like. Each of the compositions forming the layer can be prepared, heated and supplied to an extruder to be melted, and coextruded from a T-die into a sheet to prepare the present laminated sheet.
<<本積層シートの物性>>
 本積層シート1及び/又は2は次のような物性を得ることができる。
<< Physical characteristics of this laminated sheet >>
The laminated sheets 1 and / or 2 can obtain the following physical properties.
(生分解性)
 本積層シート1及び2は、ISO16929又はJIS K6952記載の58℃の好気的コンポスト環境下で、パイロットスケールで、12週間以内で100mm角のフィルムが、2mmのフルイ残り10%以内になることを満足する生分解性を有することができる。
(Biodegradable)
The laminated sheets 1 and 2 are prepared to have a 100 mm square film within 12 weeks on a pilot scale under an aerobic composting environment of 58 ° C. described in ISO 16929 or JIS K6952, and the remaining 10% of the 2 mm flue remains. It can have satisfactory biodegradability.
(酸素透過度)
 本積層シート1及び2は、酸素バリア性の観点から、0℃及び/又は室温(20~25℃)、50%RHにおける酸素透過度が5.0cc/m2・day・atm以下であることが好ましく、中でも4.0cc/m2・day・atm以下、その中でも3.0cc/m2・day・atm以下であることがさらに好ましい。酸素透過度は小さいほど好ましく、実現可能な下限としては0.01cc/m2・day・atm以上が好ましい。
 本積層シート1及び2の前記酸素透過度は、例えば中間層又はガスバリア層の種類や厚みを調整することによって調整することができる。但し、これらの要因に限定されるものではない。
(Oxygen permeability)
From the viewpoint of oxygen barrier properties, the laminated sheets 1 and 2 have an oxygen permeability of 5.0 cc / m 2 · day · atm or less at 0 ° C. and / or room temperature (20 to 25 ° C.) and 50% RH. Of these, 4.0 cc / m 2 · day · atm or less, and more preferably 3.0 cc / m 2 · day · atm or less. The smaller the oxygen permeability, the more preferable, and the feasible lower limit is preferably 0.01 cc / m 2 · day · atm or more.
The oxygen permeability of the laminated sheets 1 and 2 can be adjusted by, for example, adjusting the type and thickness of the intermediate layer or the gas barrier layer. However, it is not limited to these factors.
(貯蔵弾性率)
 本積層シート1及び2は、110℃における貯蔵弾性率が5MPa~100MPaであることが好ましく、中でも7MPaあるいは95MPa以下、その中でも10MPa以上あるいは90MPa以下であることがさらに好ましい。
 本積層シート1及び2の前記貯蔵弾性率は、表裏層又は生分解性樹脂層を構成する主成分樹脂の種類を変更したり、主成分樹脂の共重合成分を変更したり、主成分樹脂の分子量を変更したり、表裏層又は生分解性樹脂層に無機粒子を含有させたりすることで適宜調整できる。
(Storage modulus)
The laminated sheets 1 and 2 preferably have a storage elastic modulus at 110 ° C. of 5 MPa to 100 MPa, more preferably 7 MPa or 95 MPa or less, and more preferably 10 MPa or more or 90 MPa or less.
The storage elasticity of the laminated sheets 1 and 2 can be adjusted by changing the type of the main component resin constituting the front and back layers or the biodegradable resin layer, changing the copolymerization component of the main component resin, or changing the main component resin. It can be appropriately adjusted by changing the molecular weight or by incorporating inorganic particles in the front and back layers or the biodegradable resin layer.
 本積層シート1及び2の貯蔵弾性率の測定方法としては、動的粘弾性測定装置(アイティー計測制御株式会社製「DVA-200」)を用いると共に引張治具を使用して、測定温度-100~250℃、周波数10Hz、昇温速度3℃/minで測定する方法を挙げることができる。 As a method for measuring the storage elastic modulus of the laminated sheets 1 and 2, a dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Measurement Control Co., Ltd.) is used and a tensile jig is used to measure the temperature. Examples thereof include a method of measuring at 100 to 250 ° C., a frequency of 10 Hz, and a heating rate of 3 ° C./min.
 また、本積層シート1及び2の貯蔵弾性率は、(表層の貯蔵弾性率×表層、裏層及び中間層(ガスバリア層)層の合計厚みに対する表層の厚み割合)+(裏層の貯蔵弾性率×表層、裏層及び中間層(ガスバリア層)層の合計厚みに対する裏層の厚み割合)+(中間層(ガスバリア層)の貯蔵弾性率×表層、裏層及び中間層(ガスバリア層)の合計厚みに対する中間層(ガスバリア層)の厚み割合)でも求めることができる。すなわち、本積層シート1及び2の貯蔵弾性率は、表層、裏層及び中間層(ガスバリア層)それぞれの貯蔵弾性率と、表層、裏層及び中間層(ガスバリア層)それぞれの厚みから、下式によって算出されてもよい。
   E’=E’×(t/t+t+t)+E’×(t/t+t+t)+E’×(t/t+t+t
(上式において、E’:積層シートの貯蔵弾性率、E’:表層の貯蔵弾性率、E’:裏層の貯蔵弾性率、E’:中間層(ガスバリア層)の貯蔵弾性率、t:表層の厚み、t:裏層の厚み、t:中間層(ガスバリア層)の厚みである。)
The storage elastic modulus of the laminated sheets 1 and 2 is (the storage elastic modulus of the surface layer × the thickness ratio of the surface layer to the total thickness of the surface layer, the back layer and the intermediate layer (gas barrier layer) layer) + (the storage elastic modulus of the back layer). × Thickness ratio of back layer to total thickness of surface layer, back layer and intermediate layer (gas barrier layer)) + (storage elastic modulus of intermediate layer (gas barrier layer) × total thickness of surface layer, back layer and intermediate layer (gas barrier layer) It can also be obtained by the thickness ratio of the intermediate layer (gas barrier layer) with respect to. That is, the storage elastic modulus of the laminated sheets 1 and 2 is calculated from the storage elastic modulus of each of the surface layer, the back layer and the intermediate layer (gas barrier layer) and the thickness of each of the surface layer, the back layer and the intermediate layer (gas barrier layer). It may be calculated by.
E t '= E 1' × (t 1 / t 1 + t 2 + t 3) + E 2 '× (t 2 / t 1 + t 2 + t 3) + E 3' × (t 3 / t 1 + t 2 + t 3)
(In the above equation, Et ': storage elastic modulus of the laminated sheet, E 1 ': storage elastic modulus of the surface layer, E 2 ': storage elastic modulus of the back layer, E 3 ': storage elasticity of the intermediate layer (gas barrier layer) Ratio, t 1 : Surface layer thickness, t 2 : Back layer thickness, t 3 : Intermediate layer (gas barrier layer) thickness.)
(引張張力)
 本積層シート1及び2は、延伸張力の観点から、110℃における最大引張強度が0.5MPa以上であることが好ましく、中でも0.6MPa以上、その中でも0.7MPa以上であることがさらに好ましい。
 なお、引張張力の測定方法としては、JIS C2133記載の方法に準じて、試験長(つかみ具間距離)20mm、試験幅15mm、引張速度200mm/min、試験温度110±2℃、試験湿度50±10%で測定する方法を挙げることができる。
(Tensile tension)
From the viewpoint of stretching tension, the laminated sheets 1 and 2 preferably have a maximum tensile strength of 0.5 MPa or more at 110 ° C., more preferably 0.6 MPa or more, and even more preferably 0.7 MPa or more.
The tensile tension is measured according to the method described in JIS C2133, with a test length (distance between gripping tools) of 20 mm, a test width of 15 mm, a tensile speed of 200 mm / min, a test temperature of 110 ± 2 ° C., and a test humidity of 50 ±. A method of measuring at 10% can be mentioned.
<<<本容器>>>
 本発明の実施形態の一例に係る容器(「本容器」)は、側壁部及び底面部を備えた生分解性容器であって、当該側壁部及び底面部は、表層、中間層及び裏層を有し、前記表層及び裏層が生分解性樹脂層であり、前記中間層がガスバリア層である。
<<< This container >>
The container according to an example of the embodiment of the present invention (“the present container”) is a biodegradable container provided with a side wall portion and a bottom surface portion, and the side wall portion and the bottom surface portion have a surface layer, an intermediate layer and a back layer. The surface layer and the back layer are biodegradable resin layers, and the intermediate layer is a gas barrier layer.
 本容器の側壁部及び底面部において、表層で耐熱性をもたせつつ、裏層でヒートシール性を良好にできるという観点から、それらの表層の押込み弾性率は、裏層の押込み弾性率より高い方が好ましい。中でも、表層と裏層の押込み弾性率の差が10MPa以上であるのが好ましく、その中でも100MPa以上、その中でも200MPa以上、その中でも500MPa以上、その中でも1000MPa以上であるのがさらに好ましい。 The indentation elastic modulus of the surface layer of the side wall and the bottom surface of the container is higher than that of the back layer from the viewpoint of providing heat resistance in the surface layer and improving heat sealing property in the back layer. Is preferable. Among them, the difference in indentation elastic modulus between the surface layer and the back layer is preferably 10 MPa or more, and more preferably 100 MPa or more, particularly 200 MPa or more, particularly 500 MPa or more, and among them 1000 MPa or more.
 また、本容器における表層及び裏層は、少なくとも一方、すなわち一方又は両方の層の押込み弾性率は、耐熱性とヒートシール性の観点から、100MPa~8000MPaであることが好ましい。
 かかる観点から、表層及び裏層のうち少なくとも一方の押込み弾性率が100MPa~8000MPaであることが好ましく、中でも200MPa以上あるいは7000MPa以下、その中でも300MPa以上あるいは6000MPa以下であることがさらに好ましい。
Further, the indentation elastic modulus of at least one of the surface layer and the back layer in this container, that is, one or both layers, is preferably 100 MPa to 8000 MPa from the viewpoint of heat resistance and heat sealability.
From this point of view, the indentation elastic modulus of at least one of the surface layer and the back layer is preferably 100 MPa to 8000 MPa, more preferably 200 MPa or more or 7,000 MPa or less, and more preferably 300 MPa or more or 6000 MPa or less.
 また、表層の押込み弾性率を裏層の押込み弾性率よりも高くし、表層で耐熱性及び強度をもたせつつ、裏層で二次成形加工性を良好にし、かつ容器内側でヒートシール性を良好にする観点から、本容器における表層の押込み弾性率は500MPa~8000MPaであることが好ましく、中でも1000MPa以上あるいは7000MPa以下、その中でも1500MPa以上あるいは6000MPa以下、さらにその中でも2000MPa以上が好ましい。
 一方、裏層の押込み弾性率は100MPa~3000MPaであることが好ましく、中でも1000MPa以下が好ましく、さらにその中でも600MPa以下であるのが好ましい。
In addition, the indentation elastic modulus of the surface layer is made higher than the indentation elastic modulus of the back layer, the surface layer has heat resistance and strength, the back layer has good secondary molding processability, and the inside of the container has good heat sealability. The indentation elastic modulus of the surface layer in this container is preferably 500 MPa to 8000 MPa, particularly 1000 MPa or more or 7,000 MPa or less, particularly 1500 MPa or more or 6000 MPa or less, and more preferably 2000 MPa or more.
On the other hand, the indentation elastic modulus of the back layer is preferably 100 MPa to 3000 MPa, particularly preferably 1000 MPa or less, and further preferably 600 MPa or less.
 なお、本容器における表層及び裏層の押込み弾性率の測定方法は、本積層シート1と同様である。 The method for measuring the indentation elastic modulus of the surface layer and the back layer in the present container is the same as that of the present laminated sheet 1.
 本容器は、例えば本積層シート1又は2から形成することができる。但し、本容器の形成方法は、任意であり、例えば射出成形などによっても成形可能である。
 例えば、本積層シート1又は2の表層を容器外側とし、裏層を容器内側として、加熱真空成形することによって、本容器を形成することができる。但し、この方法に限定するものではない。
The container can be formed from, for example, the laminated sheet 1 or 2. However, the method for forming this container is arbitrary, and it can also be molded by, for example, injection molding.
For example, the container can be formed by heat vacuum forming with the surface layer of the laminated sheet 1 or 2 as the outside of the container and the back layer as the inside of the container. However, the method is not limited to this method.
 本積層シートは、二次成形加工性に優れており、比較的深底の容器であっても、ガスバリア層の厚みを均一に成形することができるばかりか、耐熱性にも優れている。よって、本積層シートは、容器形成用シートとして好適であり、本容器を形成するにも適している。
 この際、本積層シートの表層を容器外側とし、裏層を容器内側として成形することによって、耐熱性とヒートシール性を両立することができる。
 ここで、「二次成形加工」とは、シートを別の形状に変形させたり、別の形状を付与したりする加工を意味し、加工方法としては、真空成形、圧空成形などの熱成形方法を挙げることができる。但し、これらに限定するものではない。
This laminated sheet is excellent in secondary molding processability, and not only can the thickness of the gas barrier layer be uniformly molded even in a container having a relatively deep bottom, but also excellent heat resistance. Therefore, this laminated sheet is suitable as a container forming sheet, and is also suitable for forming this container.
At this time, by molding the surface layer of the laminated sheet as the outside of the container and the back layer as the inside of the container, both heat resistance and heat sealability can be achieved.
Here, the "secondary molding process" means a process of deforming a sheet into another shape or imparting another shape, and the processing method includes a thermoforming method such as vacuum forming or compressed air forming. Can be mentioned. However, it is not limited to these.
 次に、本容器の一例として、図1に示すように、鍔部(1)と、収納部としての凹部(2)とを備えた容器を挙げることができる。
 本容器は、後述する実施例と同様に、本積層シート1又は2を真空成形することにより作製することができる。
Next, as an example of this container, as shown in FIG. 1, a container having a collar portion (1) and a recessed portion (2) as a storage portion can be mentioned.
This container can be manufactured by vacuum forming the laminated sheet 1 or 2 in the same manner as in Examples described later.
 鍔部(1)の肉厚は、凹部の耐久性の観点から0.1mm以上であることが好ましく、中でも0.5mm以上、その中でも0.9mm以上であることがさらに好ましい。その一方、シート時における二次成形加工性の観点から、2.0mm以下であることが好ましく、中でも1.5mm以下、その中でも1.2mm以下であることがさらに好ましい。 The wall thickness of the collar portion (1) is preferably 0.1 mm or more, particularly preferably 0.5 mm or more, and more preferably 0.9 mm or more from the viewpoint of durability of the recess. On the other hand, from the viewpoint of secondary molding processability at the time of sheeting, it is preferably 2.0 mm or less, more preferably 1.5 mm or less, and more preferably 1.2 mm or less.
 凹部(2)は、側壁部(3)と底面部(4)を有し、凹部(2)の上縁部(2a)の平面視形状が非円形状の場合はその最短幅L、該凹部(2)の上縁部(2a)の平面視形状が円形状の場合はその直径Lに対する、凹部(2)の深さDの比率(深さD/最短幅又は直径L)は、浅絞りの容器として使用される場合、0.1以上であることが好ましく、中でも0.2以上、その中でも0.5以上であることがさらに好ましい。その一方、深絞りの容器として使用される場合、5.0以下であることが好ましく、中でも3.0以下、その中でも2.0以下であることがさらに好ましい。 The recess (2) has a side wall portion (3) and a bottom surface portion (4), and when the plan view shape of the upper edge portion (2a) of the recess (2) is a non-circular shape, the shortest width L 1 thereof. When the plan view shape of the upper edge portion (2a) of the concave portion (2) is circular, the ratio of the depth D of the concave portion (2) to the diameter L 1 (depth D / shortest width or diameter L 1 ) is When used as a container with a shallow drawing, it is preferably 0.1 or more, more preferably 0.2 or more, and even more preferably 0.5 or more. On the other hand, when used as a deep-drawn container, it is preferably 5.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less.
 凹部(2)の側壁部(3)の肉厚の平均値(「平均肉厚」とも称する)は、深絞り成型による、本容器すなわち成形品の肉厚が均一であることにより、厚みによるガスバリア性のムラを小さくして、ガスバリア性のより高い(酸素透過度の低い)包装容器を得るという観点から、前記鍔部(1)の肉厚の15%以上であることが好ましく、中でも18%以上、その中でも20%以上であることがさらに好ましい。他方、浅絞り容器における厚みの均一性観点から、前記鍔部(1)の肉厚の95%以下であることが好ましく、中でも90%以下、その中でも80%以下であることがさらに好ましい。 The average value of the wall thickness (also referred to as "average wall thickness") of the side wall portion (3) of the recess (2) is a gas barrier depending on the thickness due to the uniform wall thickness of this container, that is, the molded product by deep drawing molding. From the viewpoint of reducing the unevenness of the property and obtaining a packaging container having a higher gas barrier property (low oxygen permeability), it is preferably 15% or more of the wall thickness of the flange portion (1), particularly 18%. Above all, it is more preferable that it is 20% or more. On the other hand, from the viewpoint of uniformity of thickness in the shallowly drawn container, it is preferably 95% or less, particularly preferably 90% or less, and more preferably 80% or less of the wall thickness of the collar portion (1).
 前記凹部(2)の側壁部(3)は、最大肉厚と最小肉厚との差は、ガスバリア性のムラが小さくなり、ガスバリア性の高い(酸素透過度の低い)包装容器が得られる観点から、0.35mm以下であることが好ましく、中でも0.30mm以下、その中でも0.25mm以下であることがさらに好ましい。最大肉厚と最小肉厚との差はバリア性の観点で小さければ小さいほどよく、実現可能な範囲で0.01mm以上が好ましい。
 なお、本容器は、図1における底面部(4)を有さず、凹部(2)が側壁部(3)のみで構成されていてもよい。
Regarding the side wall portion (3) of the recess (2), the difference between the maximum wall thickness and the minimum wall thickness is such that the unevenness of the gas barrier property is small, and a packaging container having a high gas barrier property (low oxygen permeability) can be obtained. Therefore, it is preferably 0.35 mm or less, more preferably 0.30 mm or less, and more preferably 0.25 mm or less. The smaller the difference between the maximum wall thickness and the minimum wall thickness is, the better from the viewpoint of barrier property, and 0.01 mm or more is preferable within a feasible range.
The container may not have the bottom surface portion (4) in FIG. 1, and the recess (2) may be composed of only the side wall portion (3).
 本容器は、生分解性を有し、かつ、ガスバリア性及び耐熱性に優れたものとすることができるから、酸素気密性包装容器、食品包装容器、中でも、カプセル式コーヒーメーカー用のコーヒー豆容器(所謂「コーヒーカプセル」)として好適に用いることができる。 Since this container can be biodegradable and has excellent gas barrier properties and heat resistance, it is an oxygen-airtight packaging container, a food packaging container, and especially a coffee bean container for a capsule-type coffee maker. It can be suitably used as (so-called "coffee capsule").
 また、本積層シート1又は2を本容器の鍔部(1)を被覆する蓋材とすることもできる。本積層シート1又は2を蓋材として本容器と一体化することにより、全体として生分解性を有し、かつ、ガスバリア性及び耐熱性に優れたものとすることができる。このような態様の場合は、本容器あるいは蓋材のうち少なくとも一方の表面にはヒートシール層を設けることが好ましい。
 なお、本容器に用いられる蓋材は本積層シート1又は2に限定されるものではなく、任意の樹脂製、金属製、紙製、及びこれらの積層体等から選択して用いることができる。
Further, the laminated sheet 1 or 2 may be used as a lid material for covering the collar portion (1) of the container. By integrating the laminated sheet 1 or 2 with the container as a lid material, it is possible to obtain biodegradability as a whole and excellent gas barrier property and heat resistance. In such an embodiment, it is preferable to provide a heat seal layer on the surface of at least one of the container and the lid material.
The lid material used for this container is not limited to the present laminated sheet 1 or 2, and can be selected and used from any resin, metal, paper, and laminated bodies thereof.
 本積層シート1及び2並びに本容器は生分解性が良好であるため、前述の通り、好気的コンポスト環境下での分解特性が良好である。
 また、好気的コンポスト環境下のみならず、例えば河川や海洋中を滞留する際の自然分解や、鳥類や海洋生物などが誤食して体内に蓄積する問題への対策としても有効な手段となり得るため、その効果は大きい。
Since the laminated sheets 1 and 2 and the container have good biodegradability, as described above, the decomposition characteristics in an aerobic compost environment are good.
In addition, it can be an effective means not only in an aerobic compost environment, but also as a countermeasure against natural decomposition when staying in rivers and oceans, and problems that birds and marine organisms accidentally eat and accumulate in the body. Therefore, the effect is great.
<<本容器の作製方法>>
 本容器の作製方法は任意である。例えば本積層シート1又は2を用いて本容器を作製することもできるし、また、射出成形などによって本容器を作製することも可能である。
<< How to make this container >>
The method for producing this container is arbitrary. For example, the present container can be produced by using the present laminated sheet 1 or 2, or the present container can be produced by injection molding or the like.
 本積層シート1又は2を用いて本容器を作製する場合は、本積層シート1又は2の表層を容器外側とし、裏層を容器内側として、加熱真空成形するのが好ましい。 When the container is manufactured using the laminated sheet 1 or 2, it is preferable to perform heat vacuum forming with the surface layer of the laminated sheet 1 or 2 on the outside of the container and the back layer on the inside of the container.
 本積層シート1又は2を加熱真空成形して本容器を作製する際、ガスバリア層が流動せず、かつ、表裏層又は生分解性樹脂層を成形可能である点から、加熱温度は、80~170℃とすることが好ましく、中でも100℃以上あるいは160℃以下、その中でも110℃以上あるいは150℃以下とすることが好ましい。 When the laminated sheet 1 or 2 is vacuum formed by heating to produce the container, the heating temperature is 80 to 80 to that the gas barrier layer does not flow and the front and back layers or the biodegradable resin layer can be molded. The temperature is preferably 170 ° C. or higher, particularly preferably 100 ° C. or higher or 160 ° C. or lower, and particularly preferably 110 ° C. or higher or 150 ° C. or lower.
<<<語句の説明>>>
 本発明において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」あるいは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)あるいは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」あるいは「Y未満であることが好ましい」旨の意図も包含する。
<<< Explanation of words >>>
When expressed as "X to Y" (X, Y are arbitrary numbers) in the present invention, unless otherwise specified, it means "X or more and Y or less" and "preferably larger than X" or "preferably better than Y". It also includes the meaning of "small".
Further, when expressed as "X or more" (X is an arbitrary number) or "Y or less" (Y is an arbitrary number), it means "preferably larger than X" or "preferably less than Y". Including intention.
 以下、実施例により本発明を具体的に説明する。但し、本発明は、以下の実施例により何ら限定されるものではない。
 本発明で用いた測定法および評価方法は次のとおりである。
Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.
The measurement method and evaluation method used in the present invention are as follows.
<貯蔵弾性率測定>
 次のようにして、実施例・比較例で得た生分解性積層シート(サンプル)の全体、表層、裏層それぞれの貯蔵弾性率(E’)を求めた。
<Measurement of storage elastic modulus>
The storage elastic moduli (E') of the entire biodegradable laminated sheet (sample), the surface layer, and the back layer obtained in Examples and Comparative Examples were determined as follows.
 実施例1~4、比較例1及び2の表層、中間層(ガスバリア層)及び裏層それぞれについて、動的粘弾性測定装置(アイティー計測制御株式会社製「DVA-200」)を用いると共に引張治具を使用して、測定温度-100~250℃、周波数10Hz、昇温速度3℃/minにおける貯蔵弾性率を測定し、表には、110℃、130℃における表層及び裏層の貯蔵弾性率(E’)を示した。 A dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Measurement Control Co., Ltd.) is used and tension is applied to each of the surface layer, intermediate layer (gas barrier layer) and back layer of Examples 1 to 4 and Comparative Examples 1 and 2. Using a jig, the storage elastic modulus at a measurement temperature of -100 to 250 ° C., a frequency of 10 Hz, and a heating rate of 3 ° C./min was measured. The rate (E') is shown.
 また、実施例1、比較例1及び2の生分解性積層シート(サンプル)について、上記と同じ方法で貯蔵弾性率を測定し、110℃、130℃における積層シート全体の貯蔵弾性率(E’)を表に示した。
 他方、実施例2~4については、表層、中間層(ガスバリア層)及び裏層それぞれについて測定した各貯蔵弾性率を用いて、下記式により110℃、130℃における積層シート全体の貯蔵弾性率(E’)を求めた。
   E’=E’×(t/t+t+t)+E’×(t/t+t+t)+E’×(t/t+t+t
(上式において、E’:積層シート全体の貯蔵弾性率、E’:表層の貯蔵弾性率、E’:裏層の貯蔵弾性率、E’:中間層(ガスバリア層)の貯蔵弾性率(110℃で40.9MPa、130℃で27.9MPa)、t:表層の厚み(320μm)、t:裏層の厚み(320μm)、t:中間層(ガスバリア層)の厚み(60μm)である。)
Further, the storage elastic modulus of the biodegradable laminated sheets (samples) of Example 1 and Comparative Examples 1 and 2 was measured by the same method as described above, and the storage elastic modulus (E') of the entire laminated sheet at 110 ° C. and 130 ° C. was measured. ) Is shown in the table.
On the other hand, in Examples 2 to 4, the storage elastic modulus of the entire laminated sheet at 110 ° C. and 130 ° C. was calculated by the following formula using the storage elastic moduli measured for each of the surface layer, the intermediate layer (gas barrier layer) and the back layer. I asked for E').
E t '= E 1' × (t 1 / t 1 + t 2 + t 3) + E 2 '× (t 2 / t 1 + t 2 + t 3) + E 3' × (t 3 / t 1 + t 2 + t 3)
(In the above equation, Et ': storage elastic modulus of the entire laminated sheet, E 1 ': storage elastic modulus of the surface layer, E 2 ': storage elastic modulus of the back layer, E 3 ': storage of the intermediate layer (gas barrier layer) Elastic modulus (40.9 MPa at 110 ° C., 27.9 MPa at 130 ° C.), t 1 : Surface layer thickness (320 μm), t 2 : Back layer thickness (320 μm), t 3 : Intermediate layer (gas barrier layer) thickness (60 μm).)
 なお、実施例1について、上記のように実測した積層シート全体の貯蔵弾性率(E’)と、上述のように上記式により計算で求めた積層シート全体の貯蔵弾性率(E’)とを比較したところ、110℃では実測値が77.0MPaであるのに対し、計算値が82.6MPaであり、130℃では実測値が52.0MPaであるのに対し、計算値が54.3MPaであったことから、ほぼ同じ値となることが確認できた。 In Example 1, the storage elastic modulus (E') of the entire laminated sheet actually measured as described above and the storage elastic modulus (E') of the entire laminated sheet calculated by the above formula as described above are calculated. As a result of comparison, the measured value was 77.0 MPa at 110 ° C., while the calculated value was 82.6 MPa, and at 130 ° C., the measured value was 52.0 MPa, while the calculated value was 54.3 MPa. Since it was there, it was confirmed that the values were almost the same.
 また、実施例・比較例で得た生分解性積層シート(サンプル)について、表層及び裏層それぞれの貯蔵弾性率と、表層及び裏層それぞれの厚みから、下式を用いて110℃、130℃及び160℃における表裏層合計の貯蔵弾性率を算出した。
   E’=E’×(t/(t+t))+E’×(t/(t+t))
(上式において、E’:表裏層合計の貯蔵弾性率、E’:表層の貯蔵弾性率、E’:裏層の貯蔵弾性率、t:表層の厚み、t:裏層の厚みである。)
 また、表裏層合計の貯蔵弾性率が10MPa~100MPaを示す温度領域を「成形加工温度領域」として表に示した。
Further, regarding the biodegradable laminated sheets (samples) obtained in Examples and Comparative Examples, the storage elastic modulus of each of the surface layer and the back layer and the thickness of each of the surface layer and the back layer were used to obtain 110 ° C. and 130 ° C. using the following formula. And the total storage elastic modulus of the front and back layers at 160 ° C. was calculated.
E a '= E 1' × (t 1 / (t 1 + t 2)) + E 2 '× (t 2 / (t 1 + t 2))
(In the above equation, E a ': total storage elastic modulus of the front and back layers, E 1 ': storage elastic modulus of the surface layer, E 2 ': storage elastic modulus of the back layer, t 1 : thickness of the surface layer, t 2 : back layer The thickness of.)
Further, the temperature range in which the total storage elastic modulus of the front and back layers is 10 MPa to 100 MPa is shown in the table as a “molding processing temperature range”.
 さらに、実施例・比較例で得た生分解性積層シート(サンプル)全体の、110℃における貯蔵弾性率をE’(110)とし、130℃における貯蔵弾性率をE’(130)としたときの、下記式(1)で示されるaを「傾きa」として表に示した。 Further, when the storage elastic modulus of the entire biodegradable laminated sheet (sample) obtained in Examples and Comparative Examples is E' (110) at 110 ° C. and the storage elastic modulus at 130 ° C. is E' (130). The a represented by the following formula (1) is shown in the table as "inclination a".
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
<押込み弾性率測定>
 次のようにして、実施例及び比較例で得た生分解性積層シート(サンプル)の表層、裏層それぞれの押込み弾性率(Y)を測定した。
 また、実施例及び比較例で得た生分解性積層シート(サンプル)をカプセル形状に成形して得た生分解性包装容器(サンプル)の側壁部(3)の中央部における表層、裏層それぞれの押込み弾性率(Y)を測定した。
 島津ダイナミック超微小硬度計(島津製作所社製、DUH-W201)を用いて、三角錐圧子(ダイヤモンド製、錘間角115°)で測定される弾性率(押込み弾性率(Y))を測定した。
 試験モードは負荷-除荷試験とし、三角錐圧子が試料の表面から深さ10μmに達したときの荷重で5秒保持した後、当該荷重を除いて、三角錐圧子の深さの時間変化から除荷曲線を得た。
 上記試験の負荷過程における三角錐圧子の深さの最大値(hmax)と、上記試験で得られた除荷曲線のうち、最大試験力の70%以上における除荷曲線のデータを用いた近似直線の傾き(S)、及び当該近似直線とx軸との交点における深さ(h)から、以下の式を用いて弾性率(Y)を算出した。表には、算出した表層の弾性率(Y)を「表層Y」、裏層の弾性率(Y)を「裏層Y」として示した。
<Measurement of indentation elastic modulus>
The indentation elastic modulus (Y) of each of the surface layer and the back layer of the biodegradable laminated sheet (sample) obtained in Examples and Comparative Examples was measured as follows.
Further, the surface layer and the back layer in the central portion of the side wall portion (3) of the biodegradable packaging container (sample) obtained by molding the biodegradable laminated sheet (sample) obtained in Examples and Comparative Examples into a capsule shape, respectively. The indentation elastic modulus (Y) of was measured.
Using a Shimadzu dynamic ultra-micro hardness tester (manufactured by Shimadzu Corporation, DUH-W201), the elastic modulus (pushing elastic modulus (Y)) measured by a triangular pyramid indenter (made of diamond, inter-weight angle 115 °) is measured. did.
The test mode is a load-unloading test, in which the triangular pyramid indenter is held for 5 seconds under the load when it reaches a depth of 10 μm from the surface of the sample, and then the load is removed and the depth of the triangular pyramid indenter is changed over time. An unloading curve was obtained.
Approximation using the maximum value (h max ) of the depth of the triangular pyramid indenter in the loading process of the above test and the data of the unloading curve at 70% or more of the maximum test force among the unloading curves obtained in the above test. the slope of the straight line (S), and the depth at the point of intersection with the approximate straight line and the x-axis from the (h r), was calculated modulus (Y) using the following equation. In the table, the calculated elastic modulus (Y) of the surface layer is shown as “surface layer Y”, and the elastic modulus (Y) of the back layer is shown as “back layer Y”.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
<引張強度、引張破断伸び>
 JIS C2133記載の方法に準じて、下記条件の下、実施例・比較例で得た生分解性積層シート(サンプル)の引張最大強度(MPa)を測定し、110℃での引張強度、110℃での引張破断伸び、及び、110℃での成形性を、それぞれ以下の基準で判定した。
 試験長(つかみ具間距離):20mm
 試験幅:15mm
 速度:200mm/min
 試験温度:110±2℃
 試験湿度:50±10%
<Tensile strength, tensile elongation at break>
According to the method described in JIS C2133, the maximum tensile strength (MPa) of the biodegradable laminated sheet (sample) obtained in Examples / Comparative Examples was measured under the following conditions, and the tensile strength at 110 ° C. was 110 ° C. The tensile elongation at break and the moldability at 110 ° C. were determined according to the following criteria, respectively.
Test length (distance between grippers): 20 mm
Test width: 15 mm
Speed: 200mm / min
Test temperature: 110 ± 2 ° C
Test humidity: 50 ± 10%
=引張強度の判定基準=
 ○(good):引張最大強度が0.5MPa以上
 ×(poor):引張最大強度が0.5MPa未満
= Criteria for determining tensile strength =
○ (good): Maximum tensile strength is 0.5 MPa or more × (poor): Maximum tensile strength is less than 0.5 MPa
=引張破断伸びの判定基準=
 ○(good):引張破断伸びが200%以上
 ×(poor):引張破断伸びが200%未満
= Criteria for tensile elongation at break =
○ (good): Tensile breaking elongation is 200% or more × (poor): Tensile breaking elongation is less than 200%
=成形性の判定基準=
 ○(good):110℃での引張強度が0.5MPa以上、かつ、110℃での引張破断伸びが200%以上
 ×(poor):110℃での引張強度が0.5MPa未満、又は、110℃での引張破断伸びが200%未満
= Criteria for moldability =
○ (good): Tensile strength at 110 ° C. is 0.5 MPa or more, and tensile elongation at break at 110 ° C. is 200% or more × (poor): Tensile strength at 110 ° C. is less than 0.5 MPa, or 110 Tensile breaking elongation at ° C is less than 200%
<生分解性包装容器(サンプル)の厚み測定>
 実施例・比較例で得た生分解性包装容器(サンプル)について、厚み測定器を用いて側壁部各部位の各層厚みを測定した。この際、図1の(3a)(3b)(3c)の部分を各3点ずつ測定し、それらの平均値を各部の厚みとし、さらに図1の(3a)(3b)及び(3c)の厚みの平均値を側壁部平均肉厚とした。そして、側壁部の最大肉厚と最小肉厚を求め、これらの数値を用いて、下記式より、側壁部の厚み分布(側壁部全層)を算出した。
 厚み分布(側壁部全層)=100×(側壁部最大肉厚-側壁部最小肉厚)/側壁部平均肉厚
<Measurement of thickness of biodegradable packaging container (sample)>
For the biodegradable packaging container (sample) obtained in Examples and Comparative Examples, the thickness of each layer of each part of the side wall was measured using a thickness measuring device. At this time, the portions (3a), (3b), and (3c) of FIG. 1 are measured at three points each, and the average value thereof is taken as the thickness of each portion, and further, the portions (3a), (3b), and (3c) of FIG. 1 are shown. The average value of the thickness was taken as the average wall thickness of the side wall. Then, the maximum wall thickness and the minimum wall thickness of the side wall portion were obtained, and the thickness distribution of the side wall portion (all layers of the side wall portion) was calculated from the following formula using these numerical values.
Thickness distribution (all layers of side wall) = 100 x (maximum wall thickness of side wall-minimum wall thickness of side wall) / average wall thickness of side wall
 また、中間層(ガスバリア層)の厚み分布は、光学顕微鏡を用いて、図1の(1)(3a)(3b)(3c)及び(4)の各断面を観察して、各部分の中間層(ガスバリア層)の厚みを各3点ずつ測定し、それらの平均値を各部の厚みとし、さらに図1の(1)(3a)(3b)(3c)及び(4)における中間層(ガスバリア層)の厚みの平均値をガスバリア層平均肉厚とした。そして、中間層(ガスバリア層)の厚みの最大肉厚と最小肉厚を求め、これらの数値を用いて、下記式より、中間層(ガスバリア層)の厚み分布(ガスバリア層)を算出した。
 厚み分布(ガスバリア層)=100×(ガスバリア層最大肉厚-ガスバリア層最小肉厚)/ガスバリア層平均肉厚
The thickness distribution of the intermediate layer (gas barrier layer) is determined by observing the cross sections of FIGS. 1 (1), (3a), (3b), (3c) and (4) using an optical microscope. The thickness of the layer (gas barrier layer) is measured at 3 points each, and the average value thereof is taken as the thickness of each part. Further, the intermediate layer (gas barrier) in (1), (3a), (3b), (3c) and (4) of FIG. The average value of the thickness of the layer) was taken as the average wall thickness of the gas barrier layer. Then, the maximum wall thickness and the minimum wall thickness of the thickness of the intermediate layer (gas barrier layer) were obtained, and the thickness distribution (gas barrier layer) of the intermediate layer (gas barrier layer) was calculated from the following formulas using these numerical values.
Thickness distribution (gas barrier layer) = 100 x (maximum wall thickness of gas barrier layer-minimum wall thickness of gas barrier layer) / average wall thickness of gas barrier layer
=厚み分布(側壁部全層)の評価基準=
 ○(good):厚み分布(側壁部全層)が70%未満
 ×(poor):厚み分布(側壁部全層)が70%以上
= Evaluation criteria for thickness distribution (all layers of side wall) =
○ (good): Thickness distribution (all layers of side wall) is less than 70% × (poor): Thickness distribution (all layers of side wall) is 70% or more
=厚み分布(ガスバリア層)の評価基準=
 ○(good):厚み分布(ガスバリア層)が60%未満
 ×(poor):厚み分布(ガスバリア層)が60%以上
= Evaluation criteria for thickness distribution (gas barrier layer) =
○ (good): Thickness distribution (gas barrier layer) is less than 60% × (poor): Thickness distribution (gas barrier layer) is 60% or more
<酸素透過度の測定>
 次のようにして、実施例及び比較例で得た生分解性包装容器(サンプル)の23℃、50%RHにおける酸素透過度を測定した。
 酸素透過率測定装置OX-TRAN(MOCON社製、OX-TRAN2/21)を用いて、JIS K7126-1又はISO 15105-2記載の電解センサ法による酸素ガス透過度の試験方法に従い測定した。試験片を透過して窒素キャリヤーガスによってセルから運び出される酸素ガス量を、電解センサを用いて測定した。23℃、50%RHにおける条件下で試験ガスに空気(酸素21体積%)を用い、得られた酸素透過率を100/21倍することで生分解性包装容器(サンプル)の酸素透過度を得た。
<Measurement of oxygen permeability>
The oxygen permeability of the biodegradable packaging container (sample) obtained in Examples and Comparative Examples at 23 ° C. and 50% RH was measured as follows.
The measurement was performed using an oxygen permeability measuring device OX-TRAN (OX-TRAN2 / 21 manufactured by MOCON) according to the test method of oxygen gas permeability by the electrolytic sensor method described in JIS K7126-1 or ISO 1515-2. The amount of oxygen gas that passed through the test piece and was carried out of the cell by the nitrogen carrier gas was measured using an electrolytic sensor. By using air (21% by volume of oxygen) as the test gas under the conditions of 23 ° C. and 50% RH, and multiplying the obtained oxygen permeability by 100/21, the oxygen permeability of the biodegradable packaging container (sample) can be increased. Obtained.
<実施例1>
〔側鎖に1,2-ジオール構造を有するPVA系樹脂の作製〕
 還流冷却器、滴下漏斗、攪拌機を備えた反応容器に、酢酸ビニル68.0部、メタノール23.8部、3,4-ジアセトキシ-1-ブテン8.2部を仕込み、アゾビスイソブチロニトリルを0.3mol%(対仕込み酢酸ビニル)投入し、攪拌しながら窒素気流下で温度を上昇させ、重合を開始させた。酢酸ビニルの重合率が90%となった時点で、m-ジニトロベンゼンを添加して重合を終了させ、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し、共重合体のメタノール溶液とした。
<Example 1>
[Preparation of PVA-based resin having a 1,2-diol structure in the side chain]
Azobisisobutyronitrile was charged with 68.0 parts of vinyl acetate, 23.8 parts of methanol, and 8.2 parts of 3,4-diacetoxy-1-butene in a reaction vessel equipped with a reflux condenser, a dropping funnel, and a stirrer. 0.3 mol% (against charged vinyl acetate) was added, and the temperature was raised under a nitrogen stream with stirring to initiate polymerization. When the polymerization rate of vinyl acetate reaches 90%, m-dinitrobenzene is added to terminate the polymerization, and then the unreacted vinyl acetate monomer is removed from the system by blowing methanol vapor to the outside of the system. The polymer was prepared as a methanol solution.
 次いで、上記メタノール溶液をさらにメタノールで希釈し、濃度45%に調整してニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を、共重合体中の酢酸ビニル構造単位および3,4-ジアセトキシ-1-ブテン構造単位の合計量1molに対して10.5mmolとなる割合で加えてケン化を行った。ケン化が進行するとともにケン化物が析出し、粒子状となった時点で濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的とする“側鎖に1,2-ジオール構造を有するPVA系樹脂”を作製した。
 得られたPVA系樹脂のケン化度は、残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンの加水分解に要するアルカリ消費量にて分析したところ、99.2mol%であった。また、平均重合度は、JIS K 6726に準じて分析を行ったところ、450であった。また、1,2-ジオール構造単位の含有量は、H-NMR(300MHzプロトンNMR、d6-DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、6mol%であった。
Next, the methanol solution was further diluted with methanol, adjusted to a concentration of 45% and charged into a kneader, and a 2% methanol solution of sodium hydroxide was added to the vinyl acetate structure in the copolymer while maintaining the solution temperature at 35 ° C. The unit and the total amount of 3,4-diacetoxy-1-butene structural unit were added at a ratio of 10.5 mmol to 1 mol to carry out saponification. As the saponification progresses, the saponified product precipitates, and when it becomes particulate, it is filtered off, washed well with methanol and dried in a hot air dryer, and the target "1,2-diol structure in the side chain" A PVA-based resin having the above was prepared.
The degree of saponification of the obtained PVA-based resin was 99.2 mol% when analyzed by the amount of alkali consumed for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene. The average degree of polymerization was 450 when analyzed according to JIS K 6726. The content of 1,2-diol structural unit was calculated from the integrated value measured by 1 H-NMR (300 MHz proton NMR, d6-DMSO solution, internal standard substance; tetramethylsilane, 50 ° C.). It was 6 mol%.
〔変性ポリブチレンアジペート系樹脂の作製〕
 ポリブチレンアジペート系樹脂(BASF社製「Ecoflex C1200」)100部、無水マレイン酸0.1部、ラジカル開始剤として2,5-ジメチル-2,5-ビス(t-ブチルオキシ)ヘキサン(日本油脂社製「パーヘキサ25B」)0.01部をドライブレンドした後、これを二軸押出機(直径:15mm、L/D:60、スクリュ回転数:200rpm、メッシュ:90/90mesh、シリンダー温度:210℃)にて溶融混練し、ストランド状に押出し、水冷後、ペレタイザーでカットし、円柱形ペレット形状の極性基を有する変性ポリブチレンアジペート系樹脂を得た。
[Preparation of modified polybutylene adipate resin]
100 parts of polybutylene adipate resin (BASF's "Ecoflex C1200"), 0.1 part of maleic anhydride, 2,5-dimethyl-2,5-bis (t-butyloxy) hexane as a radical initiator (Nippon Yushi) After dry blending 0.01 part of "Perhexa 25B" manufactured by Japan, this is a twin-screw extruder (diameter: 15 mm, L / D: 60, screw rotation speed: 200 rpm, mesh: 90/90 mesh, cylinder temperature: 210 ° C. ), Extruded into strands, cooled with water, and cut with a pelletizer to obtain a modified polybutylene adipate resin having a polar group in the shape of a cylindrical pellet.
〔生分解性積層シート(サンプル)の作製〕
 裏層形成組成物として、ポリブチレンアジペートテレフタレート(PBAT(BASF社製 Ecoflex C1200、MFR:3.8g/10分、融点:115℃)70質量部に対して、タルク(富士タルク工業社製 MG-115、平均粒子径:14μm)30質量部を混合し、これらを、オーブンを用いて70℃で5時間保持するように予備加熱した後、押出機(シリンダー温度150℃)へ供給して溶融した。
 他方、表層形成組成物として、ポリ乳酸(PLA、Nature Works社製、Ingeo NW4032D、密度1.24g/cm3、融点169℃)90質量部と、ポリブチレンサクシネート(PBS、PTTMCC Biochem社製、BioPBS FZ91PM、密度1.23g/cm3、融点115℃)10質量部とを混合し、これらを、オーブンを用いて70℃で5時間保持するように予備加熱した後、押出機(シリンダー温度200℃)へ供給して溶融した。
[Preparation of biodegradable laminated sheet (sample)]
As the back layer forming composition, talc (MG-made by Fuji Tarku Kogyo Co., Ltd.) with respect to 70 parts by mass of polybutylene adipate terephthalate (PBAT (BASF Ecoflex C1200, MFR: 3.8 g / 10 minutes, melting point: 115 ° C.)). 115, average particle diameter: 14 μm) 30 parts by mass were mixed, preheated using an oven to hold at 70 ° C. for 5 hours, and then supplied to an extruder (cylinder temperature 150 ° C.) to melt. ..
On the other hand, as the surface layer forming composition, 90 parts by mass of polylactic acid (PLA, manufactured by Nature Works, Ingeo NW4032D, density 1.24 g / cm 3 , melting point 169 ° C.) and polybutylene succinate (PBS, manufactured by PTTMCC Biochem), BioPBS FZ91PM, density 1.23 g / cm 3 , melting point 115 ° C.) 10 parts by mass are mixed, and these are preheated in an oven so as to be held at 70 ° C. for 5 hours, and then an extruder (cylinder temperature 200). It was supplied to ℃) and melted.
 また、中間層(ガスバリア層)形成組成物として、上記で得られた、側鎖に1,2-ジオール構造を有するPVA系樹脂を押出機(シリンダー温度210℃)へ供給して溶融した。
 さらにまた、接着層形成組成物として、上記で得られた変性ポリブチレンアジペート系樹脂を、オーブンを用いて70℃で5時間保持するように予備加熱した後、押出機(シリンダー温度220℃)へ供給して溶融した。
Further, as the intermediate layer (gas barrier layer) forming composition, the PVA-based resin having a 1,2-diol structure in the side chain obtained above was supplied to an extruder (cylinder temperature 210 ° C.) and melted.
Furthermore, as the adhesive layer forming composition, the modified polybutylene adipate-based resin obtained above is preheated in an oven so as to be held at 70 ° C. for 5 hours, and then transferred to an extruder (cylinder temperature 220 ° C.). It was supplied and melted.
 前記のように溶融した各層形成組成物を、Tダイからシート状に4種5層(表層/接着層/中間層(ガスバリア層)/接着層/裏層)で共押出し、キャストロールで50℃に急冷して厚み1200μm(表層/接着層/中間層(ガスバリア層)/接着層/裏層:540μm/30μm/60μm/30μm/540μm)の生分解性積層シート(サンプル)を得た。
 得られた生分解性積層シート(サンプル)は、ISO16929又はJIS K6952記載の58℃の好気的コンポスト環境下、パイロットスケールで、12週間以内で100mm角のフィルムが、2mmのフルイ残り10%以内になるものであり、生分解性を有していた。
Each layer-forming composition melted as described above is co-extruded from a T-die into a sheet of 4 types and 5 layers (surface layer / adhesive layer / intermediate layer (gas barrier layer) / adhesive layer / back layer), and cast roll at 50 ° C. A biodegradable laminated sheet (sample) having a thickness of 1200 μm (surface layer / adhesive layer / intermediate layer (gas barrier layer) / adhesive layer / back layer: 540 μm / 30 μm / 60 μm / 30 μm / 540 μm) was obtained.
The obtained biodegradable laminated sheet (sample) was prepared on a pilot scale in an aerobic composting environment at 58 ° C. described in ISO16929 or JIS K6952, and a 100 mm square film was formed within 12 weeks, and a 2 mm fluid remaining within 10%. It was biodegradable.
〔生分解性包装容器の作製〕
 次に、真空成形機を用いて、得られた生分解性積層シート(サンプル)の表層を容器外側とし、裏層を容器内側として、二次成形加工(深絞り成形)を行った。すなわち、該生分解性積層シート(サンプル)を上下のヒーター(上500℃、下450℃、40s)で急速に昇温し、シート温度が160℃となったところで、プラグアシストと真空成形によって、次に説明するカプセル形状に成形して、生分解性包装容器(サンプル)を作製した。得られた包装容器の物性測定結果を表1に示す。
 作製した生分解性包装容器は、図1に示すようなカプセル容器状を呈し、円環状の鍔部(1)と、該鍔部(1)内に、収納部としての凹部(2)とを備えた容器であって、該凹部(2)は、側壁部(3)と円状の底面部(4)とを有し、深さD45mm、上縁部径L145mm、底面部径L237mmであり、鍔部の幅は0.9mmであった。
 作製した生分解性包装容器は、ISO16929又はJIS K6952記載の58℃の好気的コンポスト環境下、パイロットスケールで、12週間以内で100mm角のフィルムが、2mmのフルイ残り10%以内になるものであり、生分解性を有していた。
 また、作製した生分解性包装容器の23℃、50%RHにおける酸素透過度は、0.0497cc/m2・day・atmであった。
[Preparation of biodegradable packaging container]
Next, using a vacuum forming machine, a secondary molding process (deep drawing) was performed with the surface layer of the obtained biodegradable laminated sheet (sample) as the outside of the container and the back layer as the inside of the container. That is, the biodegradable laminated sheet (sample) was rapidly heated by the upper and lower heaters (upper 500 ° C., lower 450 ° C., 40s), and when the sheet temperature reached 160 ° C., plug assist and vacuum forming were performed. A biodegradable packaging container (sample) was prepared by molding into a capsule shape described below. Table 1 shows the results of measuring the physical characteristics of the obtained packaging container.
The produced biodegradable packaging container has a capsule container shape as shown in FIG. 1, and has an annular collar portion (1) and a recess (2) as a storage portion in the collar portion (1). The container is provided, and the recess (2) has a side wall portion (3) and a circular bottom surface portion (4), and has a depth of D 45 mm, an upper edge portion diameter of L 1 45 mm, and a bottom surface portion diameter of L 2. It was 37 mm and the width of the collar was 0.9 mm.
The produced biodegradable packaging container is a 100 mm square film within 12 weeks on a pilot scale under an aerobic composting environment of 58 ° C. described in ISO16929 or JIS K6952, and the remaining 10% of the 2 mm flue remains. It was biodegradable.
The oxygen permeability of the produced biodegradable packaging container at 23 ° C. and 50% RH was 0.0497 cc / m 2 · day · atm.
<実施例2>
 実施例1において、表層形成組成物として、ポリブチレンサクシネート(PBS、PTTMCC Biochem社製、BioPBS FZ91PM、密度1.23g/cm3、融点115℃)のみから形成した以外は、実施例1と同様にして、生分解性積層シート(サンプル)及び生分解性包装容器(サンプル)を作製した。
 作製した生分解性積層シート(サンプル)及び生分解性包装容器は、ISO16929又はJIS K6952記載の58℃の好気的コンポスト環境下、パイロットスケールで、12週間以内で100mm角のフィルムが、2mmのフルイ残り10%以内になるものであり、生分解性を有していた。
<Example 2>
In Example 1, the same as in Example 1 except that the surface layer forming composition was formed only from polybutylene succinate (PBS, manufactured by PTTMCC Biochem, BioPBS FZ91PM, density 1.23 g / cm 3 , melting point 115 ° C.). To prepare a biodegradable laminated sheet (sample) and a biodegradable packaging container (sample).
The produced biodegradable laminated sheet (sample) and biodegradable packaging container were prepared on a pilot scale under an aerobic composting environment of 58 ° C. described in ISO16929 or JIS K6952, and a 100 mm square film of 2 mm was formed within 12 weeks. The remaining amount of the film was within 10%, and it was biodegradable.
<実施例3>
 実施例1において、裏層形成組成物として、ポリブチレンアジペートテレフタレート(PBAT(BASF社製 Ecoflex C1200、MFR:3.8g/10分、融点:115℃)95質量部に対して、タルク(富士タルク工業社製 MG-115、平均粒子径:14μm)5質量部を混合した以外は、実施例1と同様にして、生分解性積層シート(サンプル)を作製した。
 作製した生分解性積層シート(サンプル)は、ISO16929又はJIS K6952記載の58℃の好気的コンポスト環境下、パイロットスケールで、12週間以内で100mm角のフィルムが、2mmのフルイ残り10%以内になるものであり、生分解性を有していた。
<Example 3>
In Example 1, as the back layer forming composition, talc (Fuji talc) was used with respect to 95 parts by mass of polybutylene adipate terephthalate (PBAT (BASF Ecoflex C1200, MFR: 3.8 g / 10 minutes, melting point: 115 ° C.)). A biodegradable laminated sheet (sample) was prepared in the same manner as in Example 1 except that MG-115 manufactured by Kogyo Co., Ltd. and 5 parts by mass (average particle diameter: 14 μm) were mixed.
The produced biodegradable laminated sheet (sample) was prepared on a pilot scale under an aerobic composting environment of 58 ° C. described in ISO16929 or JIS K6952, and within 12 weeks, a 100 mm square film was formed within 10% of the remaining 2 mm flue. It was biodegradable.
<実施例4>
 実施例3において、表層形成組成物として、ポリブチレンアジペートテレフタレート(PBAT(BASF社製 Ecoflex C1200、MFR:3.8g/10分、融点:115℃)90質量部に対して、タルク(富士タルク工業社製 MG-115、平均粒子径:14μm)10質量部を混合したした以外は、実施例3と同様にして、生分解性積層シート(サンプル)を作製した。
 作製した生分解性積層シート(サンプル)は、ISO16929又はJIS K6952記載の58℃の好気的コンポスト環境下、パイロットスケールで、12週間以内で100mm角のフィルムが、2mmのフルイ残り10%以内になるものであり、生分解性を有していた。
<Example 4>
In Example 3, as the surface layer forming composition, talc (Fuji talc industry) with respect to 90 parts by mass of polybutylene adipate terephthalate (PBAT (BASF Ecoflex C1200, MFR: 3.8 g / 10 minutes, melting point: 115 ° C.)). A biodegradable laminated sheet (sample) was prepared in the same manner as in Example 3 except that MG-115 manufactured by the same company and 10 parts by mass (average particle diameter: 14 μm) were mixed.
The produced biodegradable laminated sheet (sample) was prepared on a pilot scale under an aerobic composting environment of 58 ° C. described in ISO16929 or JIS K6952, and within 12 weeks, a 100 mm square film was formed within 10% of the remaining 2 mm flue. It was biodegradable.
<比較例1>
 実施例1において、裏層形成組成物及び表層形成組成物ともに、ポリブチレンサクシネートアジペート系生分解性ポリエステル樹脂(PBSA系樹脂、密度1.39g/cm3、融点145℃)のみから形成し、中間層(ガスバリア層)の厚みを135μmとした以外は、実施例1と同様にして、生分解性積層シート(サンプル)及び生分解性包装容器(サンプル)を作製した。
 作製した生分解性包装容器の23℃、50%RHにおける酸素透過度は、0.1238cc/m2・day・atmであった。
<Comparative example 1>
In Example 1, both the back layer forming composition and the surface layer forming composition were formed from only polybutylene succinate adipate-based biodegradable polyester resin (PBSA-based resin, density 1.39 g / cm 3 , melting point 145 ° C.). A biodegradable laminated sheet (sample) and a biodegradable packaging container (sample) were produced in the same manner as in Example 1 except that the thickness of the intermediate layer (gas barrier layer) was 135 μm.
The oxygen permeability of the produced biodegradable packaging container at 23 ° C. and 50% RH was 0.1238 cc / m 2 · day · atm.
<比較例2>
 実施例1において、裏層形成組成物及び表層形成組成物ともに、ポリ乳酸(PLA、ユニチカ製、テラマックHV-6250H、密度1.27g/cm3、融点170℃)のみから形成し、中間層(ガスバリア層)の厚みを150μmとした以外は、実施例1と同様にして、生分解性積層シート(サンプル)及び生分解性包装容器(サンプル)を作製した。
 作製した生分解性包装容器の23℃、50%RHにおける酸素透過度は、0.1286cc/m2・day・atmであった。
<Comparative example 2>
In Example 1, both the back layer forming composition and the surface layer forming composition were formed from only polylactic acid (PLA, manufactured by Unitica, Terramac HV-6250H, density 1.27 g / cm 3 , melting point 170 ° C.), and the intermediate layer (PLA, manufactured by Unitica, Teramac HV-6250H) was formed. A biodegradable laminated sheet (sample) and a biodegradable packaging container (sample) were produced in the same manner as in Example 1 except that the thickness of the gas barrier layer) was 150 μm.
The oxygen permeability of the produced biodegradable packaging container at 23 ° C. and 50% RH was 0.1286 cc / m 2 · day · atm.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記実施例及びこれまで本発明者が繰り返し行ってきた試験結果から、生分解性積層シートを用いて容器を形成する際、容器外側とする表層の押込み弾性率が、容器内側とする裏層の押込み弾性率よりも高く、好ましくはその差が10MPa以上であると、耐熱性に優れるばかりか、二次成形加工性に優れたものとなり、比較的深底の容器であっても、ガスバリア層の厚みを均一に成形することができることが分かった。これは、押込み弾性率の高い表層が耐熱性に寄与し、押込み弾性率の低い裏層が成形性に寄与するためと考えることができる。 From the above examples and the test results that the present inventor has repeatedly performed so far, when forming a container using a biodegradable laminated sheet, the indentation elastic modulus of the surface layer on the outside of the container is the indentation elastic modulus of the back layer on the inside of the container. When it is higher than the indentation elastic modulus, preferably the difference is 10 MPa or more, not only the heat resistance is excellent, but also the secondary molding processability is excellent, and even in a container with a relatively deep bottom, the gas barrier layer It was found that the thickness can be uniformly formed. It can be considered that this is because the surface layer having a high indentation elastic modulus contributes to heat resistance and the back layer having a low indentation elastic modulus contributes to moldability.
 また、表裏層のうちの少なくとも一方の110℃における貯蔵弾性率を5MPa~100MPaに調整すること、及び/又は、積層シートの110℃における貯蔵弾性率を5MPa~100MPaとし、傾きaを-0.2~-9.0×10-4に調整することで、耐熱性を確保しつつ、比較的深底の容器であっても、ガスバリア層の厚みを均一に成形することができることが分かった。 Further, the storage elastic modulus of at least one of the front and back layers at 110 ° C. is adjusted to 5 MPa to 100 MPa, and / or the storage elastic modulus of the laminated sheet at 110 ° C. is set to 5 MPa to 100 MPa, and the inclination a is −0. It was found that by adjusting the size to 2 to −9.0 × 10 -4 , the thickness of the gas barrier layer can be uniformly formed even in a container having a relatively deep bottom while ensuring heat resistance.
(1)鍔部
(2)凹部
(3)側壁部
(4)底面部
(1) Brim part (2) Recessed part (3) Side wall part (4) Bottom part

Claims (13)

  1.  表層、中間層及び裏層を有し、
     前記表層及び裏層が生分解性樹脂層であり、前記中間層がガスバリア層であり、
     前記表層の押込み弾性率が前記裏層の押込み弾性率より高い、生分解性樹脂シート。
    It has a surface layer, an intermediate layer and a back layer,
    The surface layer and the back layer are biodegradable resin layers, and the intermediate layer is a gas barrier layer.
    A biodegradable resin sheet in which the indentation elastic modulus of the surface layer is higher than the indentation elastic modulus of the back layer.
  2.  前記表層と前記裏層の押込み弾性率の差が10MPa以上である、請求項1に記載の生分解性樹脂シート。 The biodegradable resin sheet according to claim 1, wherein the difference in indentation elastic modulus between the surface layer and the back layer is 10 MPa or more.
  3.  前記表層及び前記裏層のうち少なくとも一方の押込み弾性率が100MPa以上8000MPa以下である、請求項1又は2に記載の生分解性樹脂シート。 The biodegradable resin sheet according to claim 1 or 2, wherein the indentation elastic modulus of at least one of the surface layer and the back layer is 100 MPa or more and 8000 MPa or less.
  4.  前記表層及び前記裏層のうち少なくとも一方が無機粒子を5質量%以上含む、請求項1~3のいずれか1項に記載の生分解性樹脂シート。 The biodegradable resin sheet according to any one of claims 1 to 3, wherein at least one of the surface layer and the back layer contains 5% by mass or more of inorganic particles.
  5.  前記表層及び前記裏層は、生分解性脂肪族ポリエステル又は生分解性脂肪族芳香族ポリエステル又はこれらの組み合わせからなる混合樹脂を主成分樹脂として含有する、請求項1~4のいずれか1項に記載の生分解性樹脂シート。 According to any one of claims 1 to 4, the surface layer and the back layer contain a biodegradable aliphatic polyester, a biodegradable aliphatic aromatic polyester, or a mixed resin composed of a combination thereof as a main component resin. The biodegradable resin sheet described.
  6.  前記裏層の厚みに対する前記表層の厚みの比率(表層/裏層)が0.1以上9.0以下である、請求項1~5のいずれか1項に記載の生分解性樹脂シート。 The biodegradable resin sheet according to any one of claims 1 to 5, wherein the ratio of the thickness of the surface layer (surface layer / back layer) to the thickness of the back layer is 0.1 or more and 9.0 or less.
  7.  前記中間層は、繰り返し単位としてビニルアルコール構造単位を分子鎖中に含む共重合体を主成分樹脂として含有する、請求項1~6のいずれか1項に記載の生分解性樹脂シート。 The biodegradable resin sheet according to any one of claims 1 to 6, wherein the intermediate layer contains a copolymer containing a vinyl alcohol structural unit in a molecular chain as a repeating unit as a main component resin.
  8.  前記表層と前記中間層との間、及び/又は前記裏層と前記中間層との間に接着層が介在している、請求項1~7のいずれか1項に記載の生分解性樹脂シート。 The biodegradable resin sheet according to any one of claims 1 to 7, wherein an adhesive layer is interposed between the surface layer and the intermediate layer and / or between the back layer and the intermediate layer. ..
  9.  110℃におけるシートの貯蔵弾性率をE’(110)とし、130℃におけるシートの貯蔵弾性率をE’(130)としたとき、当該E’(110)が5MPa~100MPaであって、かつ、下記式(1)で示されるaが-0.2~-9.0×10-4である、請求項1~8のいずれか1項に記載の生分解性樹脂シート。
    Figure JPOXMLDOC01-appb-I000001
    When the storage elastic modulus of the sheet at 110 ° C. is E'(110) and the storage elastic modulus of the sheet at 130 ° C. is E'(130), the E'(110) is 5 MPa to 100 MPa and The biodegradable resin sheet according to any one of claims 1 to 8, wherein a represented by the following formula (1) is −0.2 to −9.0 × 10 -4.
    Figure JPOXMLDOC01-appb-I000001
  10.  請求項1~9のいずれか1項に記載の生分解性積層シートからなる容器形成用シート。 A container-forming sheet made of the biodegradable laminated sheet according to any one of claims 1 to 9.
  11.  側壁部及び底面部を備えた生分解性容器であって、
     当該側壁部及び底面部は、表層、中間層及び裏層を有し、前記表層及び裏層が生分解性樹脂層であり、前記中間層がガスバリア層であり、表層の押込み弾性率が裏層の押込み弾性率より高いことを特徴とする、生分解性容器。
    A biodegradable container having a side wall and a bottom surface.
    The side wall portion and the bottom surface portion have a surface layer, an intermediate layer and a back layer, the surface layer and the back layer are biodegradable resin layers, the intermediate layer is a gas barrier layer, and the indentation elastic modulus of the surface layer is the back layer. A biodegradable container characterized by having a higher indentation modulus.
  12.  前記表層と前記裏層の押込み弾性率の差が10MPa以上である、請求項11に記載の生分解性容器。 The biodegradable container according to claim 11, wherein the difference in indentation elastic modulus between the surface layer and the back layer is 10 MPa or more.
  13.  前記表層が容器外側であり、前記裏層が容器内側である、請求項11又は12に記載の生分解性容器。 The biodegradable container according to claim 11 or 12, wherein the surface layer is the outside of the container and the back layer is the inside of the container.
PCT/JP2020/034553 2019-09-13 2020-09-11 Biodegradable laminated sheet, sheet for forming containers, and biodegradable container WO2021049637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545629A JPWO2021049637A1 (en) 2019-09-13 2020-09-11

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019167257 2019-09-13
JP2019-167257 2019-09-13
JP2019201876 2019-11-07
JP2019-201876 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021049637A1 true WO2021049637A1 (en) 2021-03-18

Family

ID=74867047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034553 WO2021049637A1 (en) 2019-09-13 2020-09-11 Biodegradable laminated sheet, sheet for forming containers, and biodegradable container

Country Status (2)

Country Link
JP (1) JPWO2021049637A1 (en)
WO (1) WO2021049637A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188443A (en) * 1993-11-18 1995-07-25 Mitsui Toatsu Chem Inc Degradable foam
JP2001122288A (en) * 1999-10-26 2001-05-08 Mitsubishi Plastics Ind Ltd Biodegradable bag
JP2002178470A (en) * 2000-12-14 2002-06-26 Kureha Chem Ind Co Ltd Film for deep drawing
JP2006508830A (en) * 2002-12-09 2006-03-16 バイオプ・バイオポリマー・テクノロジーズ・アクチエンゲゼルシャフト Biodegradable multilayer film
JP2006231859A (en) * 2005-02-28 2006-09-07 Unitika Ltd Biodegradable damp-proof material and its manufacturing method
JP2007276316A (en) * 2006-04-07 2007-10-25 Tohcello Co Ltd Aliphatic polyester-based composite film
JP2008296482A (en) * 2007-05-31 2008-12-11 Showa Highpolymer Co Ltd Multilayer film
JP2009096096A (en) * 2007-10-18 2009-05-07 Tohcello Co Ltd Laminated film
JP2009208398A (en) * 2008-03-05 2009-09-17 Tohcello Co Ltd Laminated film
JP2017533844A (en) * 2014-10-27 2017-11-16 ティパ コーポレイション リミティド Biodegradable sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188443A (en) * 1993-11-18 1995-07-25 Mitsui Toatsu Chem Inc Degradable foam
JP2001122288A (en) * 1999-10-26 2001-05-08 Mitsubishi Plastics Ind Ltd Biodegradable bag
JP2002178470A (en) * 2000-12-14 2002-06-26 Kureha Chem Ind Co Ltd Film for deep drawing
JP2006508830A (en) * 2002-12-09 2006-03-16 バイオプ・バイオポリマー・テクノロジーズ・アクチエンゲゼルシャフト Biodegradable multilayer film
JP2006231859A (en) * 2005-02-28 2006-09-07 Unitika Ltd Biodegradable damp-proof material and its manufacturing method
JP2007276316A (en) * 2006-04-07 2007-10-25 Tohcello Co Ltd Aliphatic polyester-based composite film
JP2008296482A (en) * 2007-05-31 2008-12-11 Showa Highpolymer Co Ltd Multilayer film
JP2009096096A (en) * 2007-10-18 2009-05-07 Tohcello Co Ltd Laminated film
JP2009208398A (en) * 2008-03-05 2009-09-17 Tohcello Co Ltd Laminated film
JP2017533844A (en) * 2014-10-27 2017-11-16 ティパ コーポレイション リミティド Biodegradable sheet

Also Published As

Publication number Publication date
JPWO2021049637A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP7322463B2 (en) biodegradable laminate
JP5414875B2 (en) Biodegradable laminate
KR20120104168A (en) Toughened polyhydroxyalkanoate compositions
WO2009137382A1 (en) Thermoformed article made from bio-based biodegradable polymer composition
WO2011071666A1 (en) Thermoformed articles made from reactive extrusion products of biobased materials
JP7361456B2 (en) Laminates and coffee capsules, food containers, cosmetic containers
US20200231730A1 (en) Biodegradable acid-modified polyester resin and laminate
WO2021049637A1 (en) Biodegradable laminated sheet, sheet for forming containers, and biodegradable container
JP6102315B2 (en) Polyester resin composition and film formed by molding the polyester resin composition
JP2009028988A (en) Polylactic acid based multiple-layered article excellent in gas barrier property
JP2020183117A (en) Sheet, sheet for container formation and container
CN111194334A (en) Resin composition, melt-molding material, multilayer structure, and agricultural film
JP6572557B2 (en) Resin composition
JP6249695B2 (en) Modified ethylene-vinyl ester copolymer saponified resin composition and pellets comprising the same
JP6230377B2 (en) Storage method of saponified modified ethylene-vinyl ester copolymer
WO2020203536A1 (en) Molded article and method for producing molded article
CN111344349A (en) Resin composition, material for melt molding, multilayer structure, and material for liquid packaging
JP2019038944A (en) Biodegradable polyester resin and laminate
WO2023190413A1 (en) Modified polyester-based resin, adhesive resin composition, and laminate
JP2019157005A (en) Adhesive resin composition, laminate and molding
JP7359138B2 (en) Resin composition, molded article, and method for producing resin composition
JP2024046112A (en) Polyester resin composition and laminate
JP2024046111A (en) Acid-modified polyester resin composition and laminate
WO2023190618A1 (en) Acid-modified polyester resin, laminate and biodegradable adhesive
JP2023145418A (en) Acid-modified polyester-based resin, laminate and biodegradable adhesive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863507

Country of ref document: EP

Kind code of ref document: A1