WO2021049405A1 - 角膜内皮細胞撮影装置、その制御方法、及びプログラム - Google Patents

角膜内皮細胞撮影装置、その制御方法、及びプログラム Download PDF

Info

Publication number
WO2021049405A1
WO2021049405A1 PCT/JP2020/033390 JP2020033390W WO2021049405A1 WO 2021049405 A1 WO2021049405 A1 WO 2021049405A1 JP 2020033390 W JP2020033390 W JP 2020033390W WO 2021049405 A1 WO2021049405 A1 WO 2021049405A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
corneal endothelial
illumination
cornea
Prior art date
Application number
PCT/JP2020/033390
Other languages
English (en)
French (fr)
Inventor
和宏 大森
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to CN202080063788.4A priority Critical patent/CN114401664A/zh
Priority to JP2021545494A priority patent/JP7186888B2/ja
Publication of WO2021049405A1 publication Critical patent/WO2021049405A1/ja
Priority to US17/572,642 priority patent/US20220125308A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/117Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/13Ophthalmic microscopes
    • A61B3/135Slit-lamp microscopes

Definitions

  • the present invention relates to a corneal endothelial cell imaging device, a control method thereof, and a program.
  • the corneal endothelium imaging device can irradiate the eye to be examined with slit light from an oblique direction and receive the reflected component from the corneal endothelium among the reflected light from the cornea to photograph the corneal endothelial cells.
  • a clear image of the corneal endothelial cells can be obtained by precisely aligning the imaging optical system with respect to the eye to be inspected in the optical axis direction and focusing on the corneal endothelium (Patent Document 1). , Patent Document 2, Patent Document 3).
  • Such a corneal endothelial cell imaging device identifies the size and shape of the corneal endothelial cells by analyzing the acquired images of the corneal endothelial cells, and provides information based on the specified size and shape to the soundness of the cornea. Is generated as information for diagnosing. In this case, a wider range of images of corneal endothelial cells are acquired in order to improve the reliability of the generated information.
  • Patent Document 1 and Patent Document 2 while changing the presentation position of the fixation target by the fixation optical system, the fixation target is projected at different positions on the cornea to acquire images of a plurality of corneal endothelial cells.
  • the method is disclosed.
  • a panoramic image is generated by synthesizing a plurality of acquired images.
  • a plurality of acquired images are displayed on the display screen at the same time.
  • Patent Document 3 discloses a method of generating a composite image by synthesizing two or more images obtained by changing the position of a slit by moving a slit member.
  • Patent Document 1 and Patent Document 2 since a plurality of images are acquired by changing the presentation position of the fixation target, it takes at least 10 to 20 seconds to acquire each image. It takes time. Therefore, the eyeball may move during that time, making it difficult to align the acquired multiple images or requiring re-acquisition of the images. Therefore, it is not possible to acquire a high-quality image with a wide field of view. It's not easy. Further, in the method disclosed in Patent Document 3, the optical system becomes complicated and the apparatus becomes large in size.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a new technique for easily acquiring a high-quality image of corneal endothelial cells with a simple structure. ..
  • the first aspect according to the embodiment includes a spatial light modulator that modulates the light from the light source, and the spatial light modulator modulates the light from the light source to provide slit-shaped illumination light to the cornea of the eye to be inspected.
  • An irradiation system that irradiates toward the irradiation system, a light receiving system that includes an image sensor that is arranged obliquely with respect to the irradiation system and receives the reflected light from the corneum, and an illumination region in the corneum that irradiates the illumination light.
  • the aperture range on the light receiving surface corresponding to the illumination region in the corneum is set, and the light receiving result of the reflected component from the corneal endothelium obtained by the light receiving element in the set aperture range is captured.
  • It is a corneal endothelial cell imaging apparatus including a control unit that controls the image sensor as described above.
  • control unit controls the spatial light modulator so as to sequentially irradiate two or more illumination regions in the cornea with the illumination light, and controls the cornea.
  • the opening range on the light receiving surface corresponding to the illumination region in the above is sequentially set, and the light receiving result of the reflected component from the corneal endothelium obtained by the light receiving element in the set opening range is sequentially captured by the rolling shutter method. Control the sensor.
  • a third aspect according to the embodiment is an image in which, in the second aspect, two or more images based on the light receiving result obtained by each of the light receiving elements in the two or more aperture ranges of the light receiving surface are combined to generate a composite image. Includes synthesis section.
  • the fourth aspect according to the embodiment includes an analysis unit that obtains information representing the state of corneal endothelial cells by analyzing the synthetic image in the third aspect.
  • the irradiation system includes a slit in which an opening is formed and light from the light source is irradiated, and the spatial light modulator. Includes an optical scanner that deflects the slit-shaped illumination light that has passed through the opening formed in the slit.
  • the slit is arranged at a position optically conjugate with the corneal endothelium.
  • the optical scanner is arranged at a position substantially conjugate with the light source.
  • the eighth aspect according to the embodiment is, in any one of the fifth to seventh aspects, the first lens system arranged between the light source and the slit, and arranged between the slit and the optical scanner.
  • the light source is arranged at the front focal position of the first lens system
  • the slit is arranged at the front focal position of the second lens system.
  • a ninth aspect according to the embodiment includes a spatial light modulator that modulates the light from the light source, and the spatial light modulator modulates the light from the light source to provide slit-shaped illumination light to the cornea of the eye to be inspected. It is a control method of a corneal endothelial cell photographing apparatus including an irradiation system for irradiating toward the irradiation system and a light receiving system including an image sensor which is arranged obliquely with respect to the irradiation system and receives the reflected light from the corneum.
  • the control method of the corneal endothelial cell imaging device includes an irradiation system control step for controlling the spatial light modulator so as to irradiate the illumination region in the cornea with the illumination light, and an opening in the light receiving surface corresponding to the illumination region in the cornea.
  • the light receiving system control step of setting a range and controlling the image sensor so as to capture the light receiving result of the reflected component from the corneal endothelium by the light receiving element having the set opening range is included.
  • the irradiation system control step controls the spatial light modulator so as to sequentially irradiate two or more illumination regions in the cornea with the illumination light.
  • the opening range on the light receiving surface corresponding to the illumination region in the cornea is sequentially set, and the light receiving result of the reflected component from the corneal endothelium obtained by the light receiving element in the set opening range is a rolling shutter method.
  • the image sensor is controlled so as to be sequentially captured by.
  • an image for generating a composite image by synthesizing two or more images based on the light receiving result obtained by each light receiving element in the two or more aperture ranges of the light receiving surface includes synthesis steps.
  • the twelfth aspect according to the embodiment includes, in the eleventh aspect, an analysis step of obtaining information representing the state of the corneal endothelial cells by analyzing the synthetic image.
  • the thirteenth aspect according to the embodiment is a program for causing a computer to execute each step of the control method of the corneal endothelial cell imaging apparatus according to any one of the ninth to twelfth aspects.
  • the left-right direction is the X direction
  • the vertical direction is the Y direction
  • the depth direction (optical axis direction, front-back direction) of the optical system is the Z direction when viewed from the subject.
  • the X direction and the Y direction may be referred to as the XY direction.
  • the corneal endothelial cell imaging apparatus irradiates slit-shaped illumination light toward the cornea of the test eye by modulating the light from the light source, and the reflected light from the cornea of the test eye irradiated with the illumination light. It is possible to photograph the corneal endothelial cells by receiving light.
  • the corneal endothelial cell imaging apparatus includes an irradiation system having a spatial light modulator and a light receiving system having an image sensor. Spatial light modulators direct illumination light to a predetermined illumination region in the cornea by modulating the light from a light source.
  • the image sensor receives the reflected light from the cornea.
  • the image sensor is controlled to capture the light-receiving result obtained by the light-receiving element in the aperture range of the light-receiving surface of the reflected light corresponding to the illumination region of the illumination light in the cornea.
  • the reflected component from the corneal endothelium can be efficiently received without being affected by an unnecessary reflective component (for example, the reflected component from the corneal epithelium).
  • the spatial light modulator sequentially moves the illumination region of the illumination light in the cornea by modulating the light from the light source.
  • the image sensor sequentially moves the aperture range on the light receiving surface of the reflected light in synchronization with the movement of the illumination region of the illumination light, and the light receiving result obtained by the light receiving element in the aperture range is obtained by, for example, a rolling shutter method. It is controlled to take in sequentially.
  • the corneal endothelium is not affected by unnecessary reflection components (for example, reflection components from the corneal epithelium). It is possible to efficiently receive the reflected component of.
  • the method for controlling the corneal endothelial cell imaging device includes one or more steps for realizing a process executed by a processor (computer) in the corneal endothelial cell imaging device according to the embodiment.
  • the program according to the embodiment causes the processor to execute each step of the control method of the corneal endothelial cell imaging apparatus according to the embodiment.
  • the recording medium according to the embodiment is a non-temporary recording medium (storage medium) on which the program according to the embodiment is recorded.
  • the corneal endothelial cell imaging device includes a base, a base portion provided above the base, and a measuring head that can move in the X, Y, and Z directions with respect to the base.
  • the measurement head is provided with an optical system for photographing the corneal endothelial cells of the eye to be inspected.
  • the base is provided with a holding member that holds the chin rest and the forehead rest. For example, using a known alignment method, it is possible to align the optical system with respect to the eye to be inspected by moving the measurement head to the subject who puts the forehead on the forehead while placing the chin on the chin receiving part. It is possible (see Patent Document 1).
  • the corneal endothelial cell imaging apparatus acquires an image of corneal endothelial cells using an optical scanner as a spatial light modulator.
  • the corneal endothelial cell imaging apparatus acquires images of a plurality of corneal endothelial cells having different imaging regions, and synthesizes these images to acquire an image of the wide-field corneal endothelial cells as a panoramic image. To do.
  • FIG. 1 shows a configuration example of the optical system of the corneal endothelial cell imaging apparatus according to the embodiment.
  • FIG. 1 shows a configuration example of an optical system when critical illumination is performed on corneal endothelial cells.
  • the optical system shown in FIG. 1 is provided on the measurement head.
  • the illustration of the configuration for aligning the optical system with respect to the eye to be inspected is omitted.
  • the corneal endothelial cell imaging device 1 includes an irradiation system 10 and a light receiving system 20.
  • the irradiation system 10 is provided with an optical system for irradiating a slit-shaped illumination light (slit light) toward the cornea C of the eye E to be inspected.
  • the light receiving system 20 is provided with an optical system for receiving the reflected component from the corneal endothelium among the reflected light from the cornea C of the eye E to be inspected, which is irradiated with the illumination light by the irradiation system 10.
  • the optical axis O2 of the irradiation system 10 intersects the optical axis O3 of the light receiving system 20 (for example, the optical axis of the objective lens of the light receiving system 20).
  • the light receiving system 20 is provided so that the angle formed by O1 and the optical axis O3 of the light receiving system 20 is ⁇ o. ⁇ o may be at an angle equal to ⁇ i.
  • the irradiation system 10 includes a light source 11, a slit 12 in which a slit-shaped opening is formed, an optical scanner 13 as a spatial light modulator, lens systems L1 and L2, and an objective lens 15.
  • the light source 11 includes, for example, an infrared light emitting diode (LED: Light Emitting Diode).
  • the slit 12 is irradiated with light from the light source 11.
  • a slit-shaped illumination light is emitted as a secondary light source from the opening formed in the slit 12.
  • the optical scanner 13 deflects the slit-shaped illumination light that has passed through the opening formed in the slit 12 and guides it to the objective lens 15.
  • the optical scanner 13 receives control from a control unit described later and changes the deflection angle of the illumination light from the slit 12.
  • the optical scanner 13 is a uniaxial scanner that one-dimensionally deflects illumination light in a direction orthogonal to the slit direction (longitudinal direction of the slit).
  • the optical scanner 13 two-dimensionally deflects the illumination light.
  • the optical scanner 13 includes a first galvano scanner and a second galvano scanner.
  • the first galvano scanner deflects the illumination light so as to move the illumination region of the illumination light in the slit direction (or the horizontal direction orthogonal to the optical axis of the irradiation system 10).
  • the second galvano scanner deflects the illumination light deflected by the first galvano scanner so as to move the illumination region of the illumination light in a direction orthogonal to the slit direction (or a vertical direction orthogonal to the optical axis of the irradiation system 10).
  • Scanning modes that move the illuminated area of the illumination light by the optical scanner 13 include, for example, horizontal scan, vertical scan, cross scan, radial scan, circular scan, concentric circular scan, and spiral scan.
  • the illumination region (illumination position) of the illumination light in the cornea C of the eye E to be inspected can be changed.
  • the optical scanner 13 sequentially changes the illumination area so that some of the illumination areas overlap.
  • the lens system L1 includes one or more lenses and is arranged between the light source 11 and the slit 12.
  • the lens system L1 functions as a condensing lens that collects the light from the light source 11.
  • the lens system L2 includes one or more lenses and is arranged between the slit 12 and the optical scanner 13.
  • the lens system L2 functions as a collimator lens for converting the illumination light that has passed through the opening formed in the slit 12 into parallel light.
  • the slit 12 (specifically, the opening) can be arranged at a position optically conjugate with the corneal endothelium of the eye E to be inspected.
  • the optical scanner 13 (specifically, the deflection surface) can be arranged at a position optically conjugate with the light source 11.
  • the light source 11 is arranged at the front focal position of the lens system L1.
  • the slit 12 is arranged at the front focal position of the lens system L2.
  • the light output from the light source 11 is collected by the lens system L1 and irradiated to the slit 12.
  • the light from the light source 11 that has passed through the opening formed in the slit 12 is converted into parallel light by the lens system L2 and is applied to the deflection surface of the optical scanner 13.
  • the optical scanner 13 deflects the illumination light transmitted through the lens system L2 by changing the deflection angle of the deflection surface under the control of a control unit described later, and guides the illumination light to the objective lens 15.
  • the light guided by the objective lens 15 is obliquely emitted toward the cornea C.
  • the light receiving system 20 includes an objective lens 21, a plano-convex lens 22, a concave lens 23, an aperture 24 having an opening (slit) formed therein, an imaging lens 25, and an image sensor 26.
  • the objective lens 21, the plano-convex lens 22, and the imaging lens 25 are lenses (positive lenses) having a positive refractive power.
  • the concave lens 23 is a lens (negative lens) that is arranged between the objective lens 21 and the image sensor 26 and has a negative refractive power.
  • the optical center of the concave lens 23 is arranged at a position deviated from at least one optical axis of the objective lens 21 and the plano-convex lens 22, and the optical axis of the concave lens 23 is relative to at least one optical axis of the objective lens 21 and the plano-convex lens 22. It is arranged at an angle (tilt shift arrangement). At least one of the objective lens 21 and the plano-convex lens 22 may be tilt-shifted.
  • the optical center of the objective lens 21 is arranged at a position deviated from the optical axis of the plano-convex lens 22, and the optical axis of the objective lens 21 is arranged at an angle with respect to the optical axis of the plano-convex lens 22. Good.
  • the diaphragm 24 shields the reflected light flux portion from the corneal epithelium in a state where the alignment of the optical system (irradiation system 10 and the light receiving system 20) with respect to the eye E to be inspected is matched, and only the reflected light flux portion of the corneal endothelium passes through the slit. Arranged to do.
  • the imaging lens 25 forms an image of the light that has passed through the concave lens 23 on the light receiving surface of the image sensor 26.
  • the image sensor 26 is a CMOS (Complementary Metal Oxide Sensor) image sensor. In some embodiments, the image sensor 26 is a CCD (Charge Coupled Device) image sensor.
  • the size of the light receiving surface of the image sensor 26 can be increased by increasing the photographing magnification using the imaging lens 25.
  • the diaphragm 24 is arranged so that the position of the opening in the optical path of the reflected light from the cornea C is optically substantially conjugate with the corneal endothelium (corneal) of the eye E to be inspected.
  • the light receiving surface (imaging surface, detection surface) of the image sensor 26 is arranged so as to be substantially conjugated with the corneal endothelium (corneal) of the eye E to be inspected.
  • the diaphragm 24 is removed from the configuration shown in FIG. 1 so that the light passing through the concave lens 23 directly reaches the imaging lens 25.
  • FIG. 2 shows an explanatory diagram of the reflected light of the illumination light according to the embodiment.
  • the same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the reflected light of the slit-shaped illumination light irradiated to the cornea C by the irradiation system 10 is guided to the objective lens 21.
  • the luminous flux of the reflected light includes the reflected luminous fluxes R1, R2, and R3 as shown in FIG.
  • the reflected luminous flux R1 is a reflected luminous flux of the corneal surface Ca, which is the corneal epithelium of the cornea C.
  • the reflected light flux R2 is a reflected light flux of the corneal endothelium Cb.
  • the reflected luminous flux R3 is a reflected luminous flux of the corneal stroma Cc of the cornea C.
  • the reflected luminous fluxes R1, R2, and R3 pass through the objective lens 21 and pass through the plano-convex lens 22.
  • the plano-convex lens 22 is tilt-shifted so as to correct the aberration characteristics of the passing light, and corrects the aberration characteristics of the reflected luminous fluxes R1, R2, and R3.
  • the light that has passed through the plano-convex lens 22 is refracted by the concave lens 23.
  • FIG. 3 schematically shows a change in imaging characteristics due to the concave lens 23.
  • the vertical axis represents the MTF (Modulation Transfer Function) value
  • the horizontal axis represents the defocus amount.
  • FIG. 3 schematically shows the MTF characteristics of light passing through the optical center (1 point) of the concave lens 23 and the positions near the four corners (4 points) with respect to the optical center.
  • the characteristic T1 corresponds to the imaging characteristic of the concave lens 23 when the concave lens 23 is arranged coaxially with the optical axis O3 and the main surface is arranged so as to be orthogonal to the optical axis O3.
  • the characteristic T2 corresponds to the imaging characteristic by the concave lens 23 when the tilt shift arrangement is performed as described above. Since the optical center and the optical axis of the concave lens 23 are arranged as described above, the imaging characteristic can be changed from the characteristic T1 to the characteristic T2. Comparing the characteristic T1 and the characteristic T2, by arranging the tilt shift arrangement, it is possible to make the imaging characteristics of the passing light uniform in the lens surface of the concave lens 23.
  • the focus difference between the apex of the cornea and its peripheral portion can be significantly reduced, so that even if the cornea is keratoconus or the like, it does not depend on the morphology of the cornea, and a clear corneal endothelial cell with high resolution can be obtained. Images can be acquired.
  • the reflected luminous fluxes R1, R2, and R3 refracted by the concave lens 23 are applied to the diaphragm 24.
  • the reflected light fluxes R1, R2, and R3 irradiated on the diaphragm 24 the reflected light flux R2 mainly passes through the slit and is imaged on the light receiving surface of the image sensor 26 by the imaging lens 25.
  • a corneal endothelial cell image is imaged on the light receiving surface of the image sensor 26, and the corneal endothelial cell image is imaged.
  • the image sensor 26 is controlled by a control unit described later, and the aperture range is set so as to include the illumination range on the light receiving surface corresponding to the illumination region of the illumination light in the cornea C. Further, under the control of the control unit described later, the light receiving result of the reflected component from the corneal endothelium obtained by the light receiving element in the set aperture range is read from the image sensor 26. In particular, when the illumination region of the illumination light in the cornea C is sequentially moved by the deflection operation of the optical scanner 13, the image sensor 26 sequentially sets the opening range in the light receiving surface corresponding to the illumination region in the cornea C. Further, the image sensor 26 is controlled so that the light receiving result of the reflected component from the corneal endothelium obtained by the light receiving element in the set aperture range is sequentially read out by the rolling shutter method.
  • FIG. 4 shows an explanatory diagram of the control contents for the image sensor 26.
  • the vertical axis represents the time axis, and the illumination region of the illumination light on the corneal epidermis (corneal epithelium) at each time is schematically illustrated.
  • the illumination region (light receiving pattern) of the reflection component from the corneal epithelium and the reflection component from the corneal endothelium on the light receiving surface of the image sensor 26 at each time correspond to the illumination region of the illumination light on the corneal epithelium.
  • the illumination area of the above is schematically shown.
  • the slit-shaped illumination light is sequentially irradiated to two or more illumination regions in the corneal epidermis TG of the cornea C by the deflection operation of the optical scanner 13.
  • the illumination region IP1 in the corneal epidermis TG is irradiated with slit-shaped illumination light.
  • the illumination region IP2 in the corneal epidermis TG is irradiated with slit-shaped illumination light.
  • the illumination region IP3 in the corneal epidermis TG is irradiated with slit-shaped illumination light.
  • the reflected light including the reflection component of each layer in the cornea C is guided to the light receiving system 20.
  • the light receiving surface SR of the image sensor 26 has a reflective component from the corneal epithelium and the corneal endothelium. Is irradiated with a predetermined interval in the direction orthogonal to the slit direction.
  • the control unit described later sets the opening range so as to include the illumination range of the reflected light (particularly, the reflection component from the corneal endothelium) on the light receiving surface SR corresponding to the illumination region of the illumination light in the cornea C (corneal epidermis TG). be able to.
  • the control unit controls the image sensor 26 so as to read out the light receiving result obtained by the light receiving element in the set aperture range by, for example, a rolling shutter method.
  • the image sensor 26 sets the opening range OP1 in the light receiving surface SR corresponding to the illumination region IP1.
  • the aperture range OP1 includes the illumination range RP11 of the reflection component from the corneal endothelium on the light receiving surface SR corresponding to the illumination region IP1.
  • the illumination range RP12 of the reflection component from the corneal epithelium on the light receiving surface SR is not included in the aperture range OP1.
  • the image sensor 26 sets the opening range OP2 in the light receiving surface SR corresponding to the illumination region IP2.
  • the aperture range OP2 includes the illumination range RP21 of the reflection component from the corneal endothelium on the light receiving surface SR corresponding to the illumination region IP2.
  • the illumination range RP22 of the reflection component from the corneal epithelium on the light receiving surface SR is not included in the aperture range OP2.
  • the image sensor 26 sets the opening range OP3 in the light receiving surface SR corresponding to the illumination region IP3.
  • the aperture range OP3 includes the illumination range RP31 of the reflection component from the corneal endothelium on the light receiving surface SR corresponding to the illumination region IP3.
  • the illumination range RP32 of the reflection component from the corneal epithelium on the light receiving surface SR is not included in the aperture range OP3.
  • corneal endothelial cells are synthesized by synthesizing images IG1, IG2, IG3, etc. formed from the light receiving results acquired by the light receiving element in the opening range at each time based on the position of the opening range. It is possible to acquire a high-quality panoramic image IMG with a wide field of view.
  • FIG. 5 shows a block diagram of a configuration example of the control system of the corneal endothelial cell imaging device 1.
  • the control system of the corneal endothelial cell imaging apparatus 1 is mainly composed of the control unit 100.
  • Control unit 100 The control unit 100 controls each part of the corneal endothelial cell imaging device 1.
  • the control unit 100 includes a main control unit 101 and a storage unit 102.
  • the function of the main control unit 101 is realized by, for example, a processor.
  • the "processor” is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (for example, a SPLD (Simple Device) Cable) It means a circuit such as Programmable Logical Device), FPGA (Field Programmable Gate Array)).
  • the processor realizes the function according to the embodiment by reading and executing a program stored in a storage circuit or a storage device, for example.
  • a computer program for controlling the corneal endothelial cell imaging device 1 is stored in the storage unit 102 in advance.
  • This computer program includes a light source control program, an image sensor control program, a data processing program, a user interface program, and the like.
  • the control unit 100 executes the control process.
  • the control of the irradiation system 10 includes the control of the light source 11 and the control of the optical scanner 13.
  • the control of the light source 11 includes switching between turning on and off the light source 11 and adjusting the amount of light.
  • the control of the optical scanner 13 includes a deflection start position, a deflection end position, a deflection angle range, and a deflection speed control.
  • the control of the light receiving system 20 includes the control of the image sensor 26 and the like.
  • the control of the image sensor 26 includes setting an aperture range on the light receiving surface, reading control of the light receiving result, exposure adjustment, gain adjustment, shooting rate adjustment, and the like.
  • the control unit 100 sets the aperture range on the light receiving surface of the image sensor 26 according to the position of the illumination region of the illumination light on the corneal epidermis. Further, the control unit 100 controls the image sensor 26 so as to read out the light receiving result obtained by the light receiving element in the set aperture range by the rolling shutter method.
  • the control unit 100 can acquire an output signal (video signal) from the image sensor 26 by reading the light receiving result with the light receiving element in the aperture range.
  • the control unit 100 displays various information on a display device included in the UI unit 120, which will be described later.
  • the information displayed on the display device includes information generated by the control unit 100, information after data processing by the data processing unit 110, and the like.
  • the control unit 100 can control each unit of the corneal endothelial cell imaging device 1 based on the operation contents for the UI unit 120 described later.
  • the data processing unit 110 executes various data processing. As an example of data processing, there is processing on a light receiving result (image data) obtained by the image sensor 26. Examples of this processing include various image processing, analysis processing for images, and diagnostic support processing such as image evaluation based on image data.
  • the data processing unit 110 includes an image composition unit 111 and an analysis unit 112.
  • the image synthesizing unit 111 synthesizes two or more images obtained by illuminating different illumination regions in the cornea C (corneal epidermis) with slit-shaped illumination light by the deflection operation of the optical scanner 13, and synthesizes an image (panorama). Image) is generated.
  • the image compositing unit 111 is obtained by irradiating the illumination light so that the edges of the adjacent illumination regions overlap each other so that some of the edges of the image overlap each other2. Alignment processing is performed on the two images so that the overlapping portions match.
  • the image synthesizing unit 111 synthesizes two images by arranging the two images that have undergone the alignment process side by side.
  • the image synthesizing unit 111 generates a composite image by repeating such a synthesizing process.
  • the analysis unit 112 obtains information representing the state of the corneal endothelial cells based on the output signal from the image sensor 26. For example, the analysis unit 112 identifies the boundary of the corneal endothelial cells by analyzing the image generated based on the output signal from the image sensor 26 and depicting the plurality of corneal endothelial cells, and based on the specified boundary. Identify corneal endothelial cells. In some embodiments, the analysis unit 112 identifies the corneal endothelial cells by analyzing the synthetic image generated by the image synthesis unit 111. The analysis unit 112 obtains the area and shape of the specified corneal endothelial cells, and obtains information representing the state of the corneal endothelial cells.
  • Information representing the state of corneal endothelial cells includes cell number, cell density, minimum cell area, maximum cell area, average cell area, standard deviation of cell area, variation coefficient of cell area, cell area histogram, and hexagon. There are cell appearance rate, shape histogram, etc.
  • the analysis unit 112 uses the UI unit 120 to obtain information representing the state of the corneal endothelial cells from the corneal endothelial cells in the analysis target region in the image designated by the UI unit 120.
  • the analysis unit 112 identifies corneal endothelial cells having a minimum or maximum cell area.
  • the main control unit 101 causes the display device to discriminately display the corneal endothelial cells identified by the analysis unit 112 from the plurality of corneal endothelial cells depicted in the image.
  • the analysis unit 112 identifies a region in which the corneal endothelial cells are depicted in which the information representing the state of the corneal endothelial cells satisfies a predetermined condition. For example, the analysis unit 112 identifies a region having a predetermined density or more, less than a predetermined density, or a predetermined density range in the image. For example, the analysis unit 112 identifies a region in the image in which corneal endothelial cells are depicted in a predetermined area range including the average cell area or less, the average cell area or more, or the average cell area.
  • the main control unit 101 causes the display device to discriminately display the region specified by the analysis unit 112 from the image in which the plurality of corneal endothelial cells are drawn.
  • the image synthesis unit 111 aligns the two images based on the boundary of the corneal endothelial cells in the overlapping region specified by the analysis unit 112, and arranges the two aligned images side by side. You may combine the two images with.
  • the function of the data processing unit 110 is realized by, for example, one or more processors.
  • the function of the image compositing unit 111 is realized by the image compositing processor
  • the function of the analysis unit 112 is realized by the analysis processor.
  • the UI unit 120 has a function for exchanging information between the user and the corneal endothelial cell imaging device 1.
  • the UI unit 120 includes a display device and an operation device (input device).
  • the display device may include a display unit, and may include other display devices.
  • Operating devices include various hardware keys and / or software keys.
  • the control unit 100 can receive the operation content for the operation device and output a control signal corresponding to the operation content to each unit. It is possible to integrally configure at least a part of the operating device and at least a part of the display device.
  • the touch panel display is an example.
  • the lens system L1 is an example of the "first lens system” according to the embodiment.
  • the lens system L2 is an example of the "second lens system” according to the embodiment.
  • FIG. 6 shows an example of the operation of the corneal endothelial cell imaging device 1 according to the embodiment.
  • FIG. 6 shows a flow chart of an operation example of the corneal endothelial cell imaging device 1 when acquiring a panoramic image of corneal endothelial cells.
  • the storage unit 102 stores a computer program for realizing the process shown in FIG.
  • the main control unit 101 executes the process shown in FIG. 6 by operating according to this computer program.
  • the main control unit 101 aligns the optical system with respect to the eye E to be inspected in the XY direction by a known alignment method.
  • the main control unit 101 projects the alignment target light on the eye E to be inspected using an alignment target projection system (not shown), and images the reflected light on the light receiving surface of the image sensor 26. As a result, an image of the Purkinje image of the XY alignment target light is formed on the light receiving surface.
  • the main control unit 101 causes the display device of the UI unit 120 to display the image by the alignment visual target light based on the light receiving result of the reflected light of the alignment visual target light obtained by the image sensor 26.
  • the user operates the operation device included in the UI unit 120 so as to guide the image within a predetermined alignment mark, thereby moving the measurement head including the optical system in the XY direction to perform XY alignment.
  • the main control unit 101 moves the measurement head in the XY direction so as to cancel the displacement of the image with respect to the alignment mark.
  • the main control unit 101 aligns the optical system with respect to the eye E to be inspected in the Z direction by a known alignment method.
  • the main control unit 101 projects light for performing Z alignment (slit-shaped illumination light is also possible) onto the eye E to be inspected from an oblique direction using a Z alignment optotype projection system (not shown).
  • the main control unit 101 receives the reflected light with a line sensor or the like (not shown), and Z the measuring head including the optical system so that the light receiving position is a position determined in advance as a position where the alignment in the Z direction is appropriate.
  • Z alignment is performed by moving in the direction.
  • Step S2 Deflection control
  • the main control unit 101 starts the deflection operation of the optical scanner 13 within a predetermined deflection operation range.
  • step S2 the main control unit 101 deflects the deflection surface of the optical scanner 13 by a predetermined deflection angle with reference to the deflection start angle.
  • the slit-shaped illumination light is irradiated to the predetermined illumination region in the cornea C.
  • Step S2 corresponds to the “irradiation system control step” according to the embodiment.
  • Step S3 Shooting
  • the main control unit 101 causes the image sensor 26 to include the illumination range on the light receiving surface SR corresponding to the illumination region on the cornea C set in step S2. Set. Subsequently, the main control unit 101 controls the image sensor 26 to acquire the light receiving result obtained by the light receiving element in the set aperture range.
  • Step S3 corresponds to the "light receiving system control step" according to the embodiment.
  • the main control unit 101 acquires the light receiving result obtained by the image sensor 26, and stores the image data (or video signal) based on the light receiving result in the storage unit 102.
  • step S4 deflection control
  • the main control unit 101 deflects the deflection surface of the optical scanner 13 by a predetermined deflection angle.
  • the illumination region in the cornea C moves in the direction orthogonal to the slit direction, and the moved illumination region is irradiated with the slit-shaped illumination light.
  • step S4 corresponds to the “irradiation system control step” according to the embodiment.
  • step S4 the illuminated area after movement is set so as to overlap a part of the illuminated area set in step S2.
  • step S5 Shooting
  • the main control unit 101 tells the image sensor 26 the illumination range on the light receiving surface SR corresponding to the illumination region in the cornea C set in step S4. Set the opening range to include. Further, the main control unit 101 controls the image sensor 26 to acquire the light receiving result obtained by the light receiving element in the set aperture range.
  • step S5 corresponds to the "light receiving system control step" according to the embodiment.
  • the main control unit 101 acquires the light receiving result obtained by the image sensor 26, and stores the image data (or video signal) based on the light receiving result in the storage unit 102.
  • the main control unit 101 determines whether or not to end the shooting.
  • the number of times of imaging while changing the irradiation region in the cornea C is predetermined, and the main control unit 101 can determine whether or not to perform the next imaging based on the number of times. Further, the main control unit 101 may determine whether or not to perform the next shooting based on the operation content of the user with respect to the operation device of the UI unit 120.
  • step S6: Y When it is determined that the imaging is completed (S6: Y), the operation of the corneal endothelial cell imaging device 1 shifts to step S7. When it is determined that the imaging is not completed (S6: N), the operation of the corneal endothelial cell imaging apparatus 1 shifts to step S4.
  • Step S7 Synthesis
  • the main control unit 101 controls the image synthesizing unit 111 to obtain two or more images in step S3 and repeatedly executed step S5. Generate a composite image of the image of.
  • Step S7 corresponds to the "image composition step" according to the embodiment.
  • Step S8 Analysis
  • the analysis unit 112 analyzes the synthetic image generated in step S7 to obtain information representing the state of the corneal endothelial cells as described above.
  • Step S8 corresponds to the "analysis step” according to the embodiment.
  • the main control unit 101 causes the display device of the UI unit 120 to display the information obtained in step S8. At this time, the main control unit 101 can display the information on the display device together with the composite image generated in step S7. In some embodiments, the main control unit 101 causes the display device to display the information obtained in step S8 so as to be superimposed on the composite image generated in step S7.
  • the irradiation system 10 deflects the slit-shaped illumination light by using the optical scanner 13 to irradiate the illumination light so that the illumination region in the cornea C moves in the direction orthogonal to the slit direction. ..
  • the light receiving system 20 sets an aperture range on the light receiving surface corresponding to the illumination area in the cornea C in synchronization with the movement of the illumination area, and uses a rolling shutter method to obtain the light reception result obtained by the light receiving element in the set aperture range. take in.
  • the corneal endothelium is not affected by unnecessary reflection components (for example, reflection components from the corneal epithelium). It is possible to efficiently receive the reflected component of. Furthermore, with a very simple configuration, it becomes possible to acquire an image of corneal endothelial cells necessary for generating a panoramic image in a short time.
  • the time required to acquire a new image can be significantly shortened, so that the panoramic image can be easily acquired without imposing a burden on the subject.
  • the light receiving system 20 is provided with a concave lens 23 between the objective lens 21 and the image sensor 26 so that the concave lens 23 is tilt-shifted.
  • the focus difference between the apex of the cornea and its peripheral portion can be significantly reduced, so that even if the cornea is keratoconus or the like, it does not depend on the morphology of the cornea, and a clear corneal endothelial cell with high resolution can be obtained. Images can be acquired.
  • the focus difference between the acquired corneal endothelial cells at any two positions in the image is small, it becomes easy to align these images, and it becomes easy to acquire a panoramic image.
  • the configuration of the optical system of the corneal endothelial cell imaging device 1 according to the embodiment is not limited to the configuration shown in FIG.
  • FIG. 7 shows a configuration example of the optical system of the corneal endothelial cell imaging apparatus according to the modified example of the embodiment.
  • FIG. 7 shows a configuration example of an optical system when Koehler illumination is performed on corneal endothelial cells.
  • the same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the configuration of the corneal endothelial cell imaging device 1a according to this modification is different from the configuration of the corneal endothelial cell imaging device 1 in that the irradiation system 10a is provided instead of the irradiation system 10.
  • the irradiation system 10a includes a light source 11, a slit 12, an optical scanner 13, lens systems L11, L12, L13, a diaphragm (field diaphragm) 14, and an objective lens 15.
  • a lens system L11, an aperture 14, a lens system L12, a slit 12, and a lens system L13 are arranged between the light source 11 and the optical scanner 13 in this order from the side of the light source 11.
  • the lens system L11 includes one or more lenses and is arranged between the light source 11 and the diaphragm 14.
  • the light source 11 is arranged at the front focal position of the lens system L11.
  • the lens system L11 functions as a condensing lens that collects light from the light source 11.
  • An opening is formed in the diaphragm 14.
  • the size of the opening formed in the aperture 14 is variable.
  • the light from the light source 11 that has passed through the lens L11 passes through the opening formed in the diaphragm 14 and is irradiated to the lens system L12.
  • the lens system L12 includes one or more lenses and is arranged between the aperture 14 and the slit 12.
  • the lens system L12 functions as a relay lens.
  • the light source 11 is arranged at a position optically conjugate with the slit 12 (specifically, the opening).
  • the diaphragm 14 is arranged at a position optically conjugate with the corneal endothelium.
  • the slit 12 (specifically, the opening) is arranged at a position optically conjugate with the corneal endothelium of the eye E to be inspected.
  • the lens system L13 includes one or more lenses and is arranged between the slit 12 and the optical scanner 13.
  • the lens system L13 functions as a collimator lens for converting the illumination light that has passed through the opening formed in the slit 12 into parallel light.
  • a slit 12 is arranged at the front focal position of the lens system L13.
  • the light source 11 is arranged at a position that is optically non-conjugated to the optical scanner 13.
  • the light output from the light source 11 is collected by the lens system L11, passes through the opening formed in the diaphragm 14, passes through the lens system L12, and is irradiated to the slit 12.
  • the light from the light source 11 that has passed through the opening formed in the slit 12 is converted into parallel light by the lens system L13 and is applied to the deflection surface of the optical scanner 13.
  • the optical scanner 13 deflects the illumination light transmitted through the lens system L13 by changing the deflection angle of the deflection surface under the control of a control unit described later, and guides the illumination light to the objective lens 15.
  • the light guided by the objective lens 15 is obliquely emitted toward the cornea C.
  • the operation of the corneal endothelial cell imaging device 1a according to this modification is the same as the operation of the corneal endothelial cell imaging device 1 according to the embodiment, detailed description thereof will be omitted.
  • the image of the light source 11 is formed in the opening of the slit 12, and the image of the diaphragm 14 is formed in the corneal endothelium.
  • the size or shape of the opening formed in the slit 12 may be changed.
  • the size or shape of the opening formed in the slit 12 is changed during acquisition of a series of images. At least one of the plurality of illumination areas described above is resized.
  • the image sensor When receiving a reflection component from the corneal endothelium of the resized illumination area, the image sensor also changes the size of the aperture range on the light receiving surface corresponding to the resized illumination area. This makes it possible to obtain an image of corneal endothelial cells in an imaging region of a desired size or shape.
  • the deflection angle of the optical scanner 13 corresponding to each of the plurality of illumination regions of the illumination light applied to the cornea C is stored in the storage unit 102.
  • the main control unit 101 reads out the deflection angle of the optical scanner 13 corresponding to the desired illumination region from the storage unit 102, and deflects the deflection surface of the optical scanner 13 to the read deflection angle. Further, the main control unit 101 sets the aperture range on the light receiving surface corresponding to the desired illumination region for the image sensor 26.
  • the image of the corneal endothelial cells in the desired imaging region can be reacquired by illuminating the desired illumination region and performing reimaging.
  • the image synthesizing unit 111 generates a synthetic image from a plurality of images of corneal endothelial cells, including images of reacquired corneal endothelial cells.
  • the slit 12 may have two or more slit-shaped openings.
  • the cornea C is simultaneously irradiated with two or more slit-shaped illumination lights having different illumination regions from each other in a predetermined imaging region.
  • two or more aperture ranges on the light receiving surface corresponding to each of the two or more illumination regions in the cornea C are set at the same time, and the light receiving results obtained by the light receiving elements having the two or more aperture ranges are sequentially set. Or, it is read by the rolling shutter method.
  • the illumination region of the slit-shaped illumination light may be moved in the slit direction.
  • it is obtained by synthesizing a first synthetic image obtained by synthesizing images of two corneal endothelial cells adjacent to each other in a direction orthogonal to the slit direction and an image of two corneal endothelial cells adjacent to each other in the slit direction. It is possible to form a composite image (panoramic image) including the second composite image obtained.
  • the corneal endothelial cell imaging apparatus (1, 1a) includes an irradiation system (10, 10a), a light receiving system (20), and a control unit (100, main control unit 101).
  • the irradiation system includes a spatial light modulator (optical scanner 13) that modulates the light from the light source (11), and the slit-shaped illumination light is irradiated to the eye (E) by modulating the light from the light source with the spatial light modulator.
  • the light receiving system includes an image sensor (26) that is arranged obliquely with respect to the irradiation system and receives the reflected light from the cornea.
  • the control unit controls the spatial light modulator so as to irradiate the illumination region of the cornea with the illumination light, sets the opening range of the light receiving surface corresponding to the illumination region of the cornea, and uses the light receiving element of the set aperture range.
  • the image sensor is controlled so as to capture the light receiving result of the reflected component from the obtained corneal endothelium.
  • the space so as to synchronize the irradiation of the desired illumination region of the cornea with the illumination light using the spatial light modulator with the setting of the aperture range on the light receiving surface corresponding to the illumination region of the cornea.
  • the light modulator and image sensor are controlled.
  • corneal endothelial cells can be photographed at high speed.
  • the influence of unnecessary reflected components for example, the reflected component from the corneal epithelium
  • the reflected component from the corneal endothelium can be efficiently received without receiving it. Therefore, a high-quality image of corneal endothelial cells can be easily obtained.
  • control unit controls the spatial light modulator so as to sequentially irradiate two or more illumination regions in the cornea with illumination light, and corresponds to the illumination region in the cornea.
  • the opening range on the light receiving surface is sequentially set, and the image sensor is controlled so as to sequentially capture the light receiving result of the reflected component from the corneal endothelium obtained by the light receiving element in the set opening range by the rolling shutter method.
  • the aperture range on the light receiving surface can be moved in synchronization with the movement of the illumination region of the illumination light in the cornea, and the wide-field image of the corneal endothelial cells can be shortened with a very simple configuration. It will be possible to get in time.
  • the corneal endothelial cell imaging apparatus is an image synthesis that synthesizes two or more images based on the light receiving result obtained by each light receiving element in the two or more aperture ranges of the light receiving surface to generate a composite image. Includes part (111).
  • a wide-field image (for example, a panoramic image) can be easily acquired without imposing a burden on the subject with a very simple configuration.
  • the corneal endothelial cell imaging apparatus includes an analysis unit (112) that obtains information representing the state of corneal endothelial cells by analyzing a synthetic image.
  • the irradiation system includes a slit (12) in which an opening is formed and light from a light source is irradiated, and the spatial light modulator is formed in the slit. It includes an optical scanner (13) that deflects slit-shaped illumination light that has passed through the opening.
  • the spatial light so as to synchronize the irradiation of the desired illumination area in the cornea by the deflection operation of the optical scanner with the setting of the aperture range in the light receiving surface corresponding to the illumination area in the cornea.
  • the modulator and image sensor are controlled.
  • the slit is arranged at a position optically conjugate with the corneal endothelium.
  • the cornea can be irradiated with the illumination light with sufficient illuminance, it is possible to acquire a higher quality image of the corneal endothelial cells.
  • the optical scanner is arranged at a position substantially conjugate with the light source.
  • the cornea can be irradiated with the illumination light with sufficient illuminance, it is possible to acquire a higher quality image of the corneal endothelial cells.
  • the corneal endothelial cell imaging apparatus has a first lens system (lens system L1) arranged between the light source and the slit and a second lens system arranged between the slit and the optical scanner. (Lens system L2), the light source is arranged at the front focal position of the first lens system, and the slit is arranged at the front focal position of the second lens system.
  • the control method of the corneal endothelial cell imaging device is the control method of the corneal endothelial cell imaging device (1, 1a) including the irradiation system (10, 10a) and the light receiving system (20).
  • the irradiation system includes a spatial light modulator (optical scanner 13) that modulates the light from the light source (11), and the slit-shaped illumination light is irradiated to the eye (E) by modulating the light from the light source with the spatial light modulator. ) Is irradiated toward the corneum (E).
  • the light receiving system includes an image sensor (26) that is arranged obliquely with respect to the irradiation system and receives the reflected light from the cornea.
  • the control method of the corneal endothelial cell imaging apparatus includes an irradiation system control step and a light receiving system control step.
  • the irradiation system control step controls the spatial light modulator to irradiate the illuminated area of the cornea with illuminated light.
  • the light receiving system control step sets an opening range in the light receiving surface corresponding to the illumination region in the cornea, and controls the image sensor so that the light receiving element in the set opening range captures the light receiving result of the reflection component from the corneal endothelium.
  • the space so as to synchronize the irradiation of the desired illumination region of the cornea with the illumination light using the spatial light modulator with the setting of the aperture range on the light receiving surface corresponding to the illumination region of the cornea.
  • the light modulator and image sensor are controlled.
  • corneal endothelial cells can be photographed at high speed.
  • the influence of unnecessary reflected components for example, the reflected component from the corneal epithelium
  • the reflected component from the corneal endothelium can be efficiently received without receiving it. Therefore, a high-quality image of corneal endothelial cells can be easily obtained.
  • the irradiation system control step controls the spatial light modulator so as to sequentially irradiate two or more illumination regions in the cornea with the light receiving system.
  • the opening range on the light receiving surface corresponding to the illumination region of the cornea is sequentially set, and the light receiving result of the reflected component from the corneal endothelium obtained by the light receiving element in the set opening range is sequentially set by the rolling shutter method. Control the image sensor to capture.
  • the aperture range on the light receiving surface can be moved in synchronization with the movement of the illumination region of the illumination light in the cornea, and the wide-field image of the corneal endothelial cells can be shortened with a very simple configuration. It will be possible to get in time.
  • the control method of the corneal endothelial cell imaging apparatus is to generate a composite image by synthesizing two or more images based on the light receiving result obtained by each light receiving element in the two or more aperture ranges of the light receiving surface. Includes an image compositing step to do.
  • a wide-field image (for example, a panoramic image) can be easily acquired without imposing a burden on the subject with a very simple configuration.
  • the control method of the corneal endothelial cell imaging apparatus includes an analysis step of obtaining information representing the state of the corneal endothelial cells by analyzing a synthetic image.
  • the program causes a computer to perform each step of the control method of the corneal endothelial cell imaging apparatus according to any one of the above.
  • the space so as to synchronize the irradiation of the desired illumination region of the cornea with the illumination light using the spatial light modulator with the setting of the aperture range on the light receiving surface corresponding to the illumination region of the cornea.
  • the light modulator and image sensor are controlled.
  • corneal endothelial cells can be photographed at high speed.
  • the influence of unnecessary reflected components for example, the reflected component from the corneal epithelium
  • the reflected component from the corneal endothelium can be efficiently received without receiving it. Therefore, a high-quality image of corneal endothelial cells can be easily obtained.
  • a program for causing a computer to execute the control method of the corneal endothelial cell imaging apparatus described above.
  • a program can be stored on any computer-readable non-transitory recording medium.
  • the recording medium include semiconductor memory, optical disc, magneto-optical disk (CD-ROM / DVD-RAM / DVD-ROM / MO, etc.), magnetic storage medium (hard disk / floppy (registered trademark) disk / ZIP, etc.) and the like. Can be used. It is also possible to send and receive this program through a network such as the Internet or LAN.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

角膜内皮細胞撮影装置は、照射系と、受光系と、制御部とを含む。照射系は、光源からの光を変調する空間光変調器を含み、空間光変調器により光源からの光を変調することによりスリット状の照明光を被検眼の角膜に向けて照射する。受光系は、照射系に対して斜めに配置され、角膜からの反射光を受光するイメージセンサを含む。制御部は、角膜における照明領域に照明光を照射するように空間光変調器を制御すると共に、角膜における照明領域に対応する受光面における開口範囲を設定し、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果を取り込むようにイメージセンサを制御する。

Description

角膜内皮細胞撮影装置、その制御方法、及びプログラム
 この発明は、角膜内皮細胞撮影装置、その制御方法、及びプログラムに関する。
 角膜内皮細胞撮影装置は、斜め方向から被検眼にスリット光を照射し、角膜からの反射光のうち角膜内皮からの反射成分を受光して角膜内皮細胞を撮影することが可能である。角膜内皮細胞撮影装置では、被検眼に対してその光軸方向に撮影光学系の位置合わせを精密に行って角膜内皮にピントを合わせることにより角膜内皮細胞の鮮明な画像が得られる(特許文献1、特許文献2、特許文献3)。
 このような角膜内皮細胞撮影装置は、例えば、取得された角膜内皮細胞の画像を解析することにより角膜内皮細胞のサイズや形状を特定し、特定されたサイズや形状に基づく情報を角膜の健全性を診断するための情報として生成する。この場合、生成された情報の信頼性を向上するために、より広い範囲の角膜内皮細胞の画像が取得される。
 例えば、特許文献1及び特許文献2には、固視光学系により固視標の呈示位置を変更しつつ、角膜において異なる位置に固視標を投影して複数の角膜内皮細胞の画像を取得する手法が開示されている。特許文献1に開示された手法では、取得された複数の画像を合成することによりパノラマ画像が生成される。特許文献2に開示された手法では、取得された複数の画像が表示画面に同時に表示される。
 例えば、特許文献3には、スリット部材を移動することによりスリットの位置を変更して得られた2以上画像を合成して合成画像を生成する手法が開示されている。
特開2014-239812号公報 特開2014-018226号公報 特開2017-158726号公報
 角膜の健全性をより正確に診断するためには、より広い範囲でより高画質の角膜内皮細胞の画像を簡便に取得することが求められる。
 しかしながら、特許文献1及び特許文献2に開示された手法では、固視標の呈示位置を変更することにより複数の画像を取得していたため、各画像の取得に最低でも10秒~20秒程度の時間を要する。従って、その間に眼球が動いてしまい、取得された複数の画像の位置合わせが困難になったり画像の再取得が必要になったりする場合があり、広視野の高画質の画像を取得することは容易ではない。また、特許文献3に開示された手法では、光学系が複雑化し、装置の大型化を招く。
 この発明は、このような事情に鑑みてなされたものであり、その目的は、簡素な構成で、角膜内皮細胞の高画質の画像を簡便に取得するための新たな技術を提供することにある。
 実施形態に係る第1態様は、光源からの光を変調する空間光変調器を含み、前記空間光変調器により前記光源からの光を変調することによりスリット状の照明光を被検眼の角膜に向けて照射する照射系と、前記照射系に対して斜めに配置され、前記角膜からの反射光を受光するイメージセンサを含む受光系と、前記角膜における照明領域に前記照明光を照射するように前記空間光変調器を制御すると共に、前記角膜における照明領域に対応する受光面における開口範囲を設定し、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果を取り込むように前記イメージセンサを制御する制御部と、を含む、角膜内皮細胞撮影装置である。
 実施形態に係る第2態様では、第1態様において、前記制御部は、前記角膜における2以上の照明領域に前記照明光を順次に照射するように前記空間光変調器を制御すると共に、前記角膜における照明領域に対応する受光面における開口範囲を順次に設定し、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果をローリングシャッター方式で順次に取り込むように前記イメージセンサを制御する。
 実施形態に係る第3態様は、第2態様において、前記受光面の2以上の開口範囲のそれぞれの受光素子により得られた受光結果に基づく2以上の画像を合成して合成画像を生成する画像合成部を含む。
 実施形態に係る第4態様は、第3態様において、前記合成画像を解析することにより角膜内皮細胞の状態を表す情報を求める解析部を含む。
 実施形態に係る第5態様では、第1態様~第4態様のいずれかにおいて、前記照射系は、開口部が形成され、前記光源からの光が照射されるスリットを含み、前記空間光変調器は、前記スリットに形成された前記開口部を通過した前記スリット状の照明光を偏向する光スキャナを含む。
 実施形態に係る第6態様では、第5態様において、前記スリットは、前記角膜内皮と光学的に略共役な位置に配置されている。
 実施形態に係る第7態様では、第5態様又は第6態様において、前記光スキャナは、前記光源と光学的に略共役な位置に配置されている。
 実施形態に係る第8態様は、第5態様~第7態様のいずれかにおいて、前記光源と前記スリットとの間に配置された第1レンズ系と、前記スリットと前記光スキャナとの間に配置された第2レンズ系と、を含み、前記光源は、前記第1レンズ系の前側焦点位置に配置され、前記スリットは、前記第2レンズ系の前側焦点位置に配置されている。
 実施形態に係る第9態様は、光源からの光を変調する空間光変調器を含み、前記空間光変調器により前記光源からの光を変調することによりスリット状の照明光を被検眼の角膜に向けて照射する照射系と、前記照射系に対して斜めに配置され、前記角膜からの反射光を受光するイメージセンサを含む受光系と、を含む角膜内皮細胞撮影装置の制御方法である。角膜内皮細胞撮影装置の制御方法は、前記角膜における照明領域に前記照明光を照射するように前記空間光変調器を制御する照射系制御ステップと、前記角膜における照明領域に対応する受光面における開口範囲を設定し、設定された開口範囲の受光素子により角膜内皮からの反射成分の受光結果を取り込むように前記イメージセンサを制御する受光系制御ステップと、を含む。
 実施形態に係る第10態様では、第9態様において、前記照射系制御ステップは、前記角膜における2以上の照明領域に前記照明光を順次に照射するように前記空間光変調器を制御し、前記受光系制御ステップは、前記角膜における照明領域に対応する受光面における開口範囲を順次に設定し、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果をローリングシャッター方式で順次に取り込むように前記イメージセンサを制御する。
 実施形態に係る第11態様は、第10態様において、前記受光面の2以上の開口範囲のそれぞれの受光素子により得られた受光結果に基づく2以上の画像を合成して合成画像を生成する画像合成ステップを含む。
 実施形態に係る第12態様は、第11態様において、前記合成画像を解析することにより角膜内皮細胞の状態を表す情報を求める解析ステップを含む。
 実施形態に係る第13態様は、コンピュータに、第9態様~第12態様のいずれかに記載の角膜内皮細胞撮影装置の制御方法の各ステップを実行させるプログラムである。
 なお、上記した複数の態様に係る構成を任意に組み合わせることが可能である。
 この発明によれば、簡素な構成で、角膜内皮細胞の高画質の画像を簡便に取得するための新たな技術を提供することができる。
実施形態に係る角膜内皮細胞撮影装置の光学系の構成例を示す概略図である。 実施形態に係る角膜内皮細胞撮影装置の動作説明図である。 実施形態に係る角膜内皮細胞撮影装置の動作説明図である。 実施形態に係る角膜内皮細胞撮影装置の動作説明図である。 実施形態に係る角膜内皮細胞撮影装置の制御系の構成例を示す概略図である。 実施形態に係る角膜内皮細胞撮影装置の動作例のフロー図である。 実施形態の変形例に係る角膜内皮細胞撮影装置の光学系の構成例を示す概略図である。
 この発明に係る角膜内皮細胞撮影装置、その制御方法、及びプログラムの実施形態の例について、図面を参照しながら詳細に説明する。なお、この明細書において引用された文献の記載内容や任意の公知技術を、以下の実施形態に援用することが可能である。
 以下では、被検者から見て左右方向をX方向とし、上下方向をY方向とし、被検者から見て光学系の奥行き方向(光軸方向、前後方向)をZ方向とする。X方向及びY方向をXY方向と表記する場合がある。
 実施形態に係る角膜内皮細胞撮影装置は、光源からの光を変調することによりスリット状の照明光を被検眼の角膜に向けて照射し、照明光が照射された被検眼の角膜からの反射光を受光して角膜内皮細胞を撮影することが可能である。角膜内皮細胞撮影装置は、空間光変調器を有する照射系と、イメージセンサを有する受光系とを含む。空間光変調器は、光源からの光を変調することにより角膜における所定の照明領域に照明光を導く。イメージセンサは、角膜からの反射光を受光する。イメージセンサは、角膜における照明光の照明領域に対応する反射光の受光面における開口範囲の受光素子により得られた受光結果を取り込むように制御される。
 これにより、不要な反射成分(例えば、角膜上皮からの反射成分)の影響を受けることなく、角膜内皮からの反射成分を効率的に受光することができる。
 また、空間光変調器は、光源からの光を変調することにより角膜における照明光の照明領域を順次に移動する。このとき、イメージセンサは、照明光の照明領域の移動に同期して、反射光の受光面における開口範囲を順次に移動し、開口範囲の受光素子により得られた受光結果を例えばローリングシャッター方式で順次に取り込むように制御される。
 これにより、簡素な構成で、角膜内皮細胞を高速に撮影することができる。また、角膜における照明光の照明領域の移動に同期して受光面における開口範囲を移動することで、不要な反射成分(例えば、角膜上皮からの反射成分)の影響を受けることなく、角膜内皮からの反射成分を効率的に受光することができる。
 実施形態に係る角膜内皮細胞撮影装置の制御方法は、実施形態に係る角膜内皮細胞撮影装置においてプロセッサ(コンピュータ)により実行される処理を実現するための1以上のステップを含む。実施形態に係るプログラムは、プロセッサに実施形態に係る角膜内皮細胞撮影装置の制御方法の各ステップを実行させる。実施形態に係る記録媒体は、実施形態に係るプログラムが記録された非一時的な記録媒体(記憶媒体)である。
 角膜内皮細胞撮影装置は、基台と、基台の上方に設けられたベース部と、ベース部に対してX方向、Y方向及びZ方向に移動可能な測定ヘッドとを含む。測定ヘッドには、被検眼の角膜内皮細胞を撮影するための光学系が設けられている。基台には、顎受け部と額当て部とを保持する保持部材が設けられている。例えば公知のアライメント手法を用いて、顎受け部に顎を載せつつ額当て部に額を当てた被検者に対して測定ヘッドを移動させることにより、被検眼に対する光学系のアライメントを行うことが可能である(特許文献1を参照)。
 以下では、実施形態に係る角膜内皮細胞撮影装置が、空間光変調器としての光スキャナを用いて角膜内皮細胞の画像を取得する場合について説明する。いくつかの実施形態では、角膜内皮細胞撮影装置は、撮影領域が異なる複数の角膜内皮細胞の画像を取得し、これらの画像を合成することで広視野の角膜内皮細胞の画像をパノラマ画像として取得する。
[光学系]
 図1に、実施形態に係る角膜内皮細胞撮影装置の光学系の構成例を示す。図1は、角膜内皮細胞に対してクリティカル照明を行う場合の光学系の構成例を表す。図1に示す光学系は、上記の測定ヘッドに設けられている。図1では、被検眼に対する光学系のアライメントを行うための構成の図示が省略されている。
 角膜内皮細胞撮影装置1は、照射系10と、受光系20とを含む。照射系10には、被検眼Eの角膜Cに向けてスリット状の照明光(スリット光)を照射するための光学系が設けられている。受光系20には、照射系10により照明光が照射された被検眼Eの角膜Cからの反射光のうち角膜内皮からの反射成分を受光するための光学系が設けられている。角膜Cにおいて照射系10の光軸O2(例えば照射系10の対物レンズの光軸)が受光系20の光軸O3(例えば受光系20の対物レンズの光軸)に交差するように、受光系20は照射系10に対して斜めに配置されている。すなわち、被検眼Eの正面方向の軸をO1とすると、軸O1と照射系10の光軸O2とのなす角度がθi(例えばθi=30度)となるように照射系10が設けられ、軸O1と受光系20の光軸O3とのなす角度がθoとなるように受光系20が設けられる。θoはθiと等しい角度であってよい。
(照射系10)
 照射系10は、光源11と、スリット状の開口部が形成されているスリット12と、空間光変調器としての光スキャナ13と、レンズ系L1、L2と、対物レンズ15とを含む。光源11は、例えば赤外発光ダイオード(LED:Light Emitting Diode)を含む。スリット12には、光源11からの光が照射される。スリット12に形成された開口部から、2次光源としてスリット状の照明光が出射される。光スキャナ13は、スリット12に形成された開口部を通過したスリット状の照明光を偏向して対物レンズ15に導く。
 光スキャナ13は、後述の制御部からの制御を受け、スリット12からの照明光の偏向角度を変更する。図1では、光スキャナ13は、スリット方向(スリットの長手方向)に直交する方向に1次元的に照明光を偏向する一軸スキャナである。
 いくつかの実施形態では、光スキャナ13は、照明光を2次元的に偏向する。この場合、光スキャナ13は、第1ガルバノスキャナと、第2ガルバノスキャナとを含む。第1ガルバノスキャナは、スリット方向(又は照射系10の光軸に直交する水平方向)に照明光の照明領域を移動するように照明光を偏向する。第2ガルバノスキャナは、スリット方向に直交する方向(又は照射系10の光軸に直交する垂直方向)に照明光の照明領域を移動するように、第1ガルバノスキャナにより偏向された照明光を偏向する。光スキャナ13による照明光の照明領域を移動するスキャン態様としては、例えば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋スキャンなどがある。
 光スキャナ13による照明光の偏向角度を変更することにより、被検眼Eの角膜Cにおける照明光の照明領域(照明位置)を変更することができる。いくつかの実施形態では、光スキャナ13は、照明領域の一部が重複するように照明領域を順次に変更する。
 レンズ系L1は、1以上のレンズを含み、光源11とスリット12との間に配置される。レンズ系L1は、光源11からの光を集光する集光レンズとして機能する。
 レンズ系L2は、1以上のレンズを含み、スリット12と光スキャナ13との間に配置される。レンズ系L2は、スリット12に形成された開口部を通過した照明光を平行光にするためのコリメータレンズとして機能する。
 スリット12(具体的には、開口部)は、被検眼Eの角膜内皮と光学的に略共役な位置に配置可能である。光スキャナ13(具体的には、偏向面)は、光源11と光学的に略共役な位置に配置可能である。光源11は、レンズ系L1の前側焦点位置に配置される。スリット12は、レンズ系L2の前側焦点位置に配置される。
 光源11から出力された光は、レンズ系L1により集光されてスリット12に照射される。スリット12に形成された開口部を通過した光源11からの光は、レンズ系L2により平行光に変換され、光スキャナ13の偏向面に照射される。光スキャナ13は、後述の制御部からの制御を受けて偏向面の偏向角度を変更することでレンズ系L2を透過した照明光を偏向して、対物レンズ15に導く。対物レンズ15に導かれた光は、角膜Cに向けて斜めから照射される。光スキャナ13の偏向面の偏向角度を変更することにより、角膜Cにおけるスリット状の照明光の照明領域を変更することができる。
(受光系20)
 受光系20は、対物レンズ21と、平凸レンズ22と、凹レンズ23と、開口部(スリット)が形成されている絞り24と、結像レンズ25と、イメージセンサ26とを含む。対物レンズ21、平凸レンズ22、及び結像レンズ25は、正の屈折力を有するレンズ(正レンズ)である。凹レンズ23は、対物レンズ21とイメージセンサ26との間に配置され、負の屈折力を有するレンズ(負レンズ)である。
 凹レンズ23の光学中心は対物レンズ21及び平凸レンズ22の少なくとも1つの光軸から外れた位置に配置され、かつ、凹レンズ23の光軸は対物レンズ21及び平凸レンズ22の少なくとも1つの光軸に対して傾斜して配置されている(チルトシフト配置)。対物レンズ21及び平凸レンズ22の少なくとも一方が、チルトシフト配置されていてもよい。すなわち、対物レンズ21の光学中心は、平凸レンズ22の光軸から外れた位置に配置され、かつ、対物レンズ21の光軸は平凸レンズ22の光軸に対して傾斜して配置されていてもよい。
 絞り24は、被検眼Eに対する光学系(照射系10及び受光系20)のアライメントが合致した状態で角膜上皮からの反射光束の部分を遮光し、角膜内皮の反射光束の部分だけがスリットを通過するように配置されている。結像レンズ25は、凹レンズ23を通過した光をイメージセンサ26の受光面に結像させる。イメージセンサ26は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。いくつかの実施形態では、イメージセンサ26は、CCD(Charge Coupled Device)イメージセンサである。
 結像レンズ25を用いて撮影倍率を上げることにより、イメージセンサ26の受光面のサイズを大きくすることができる。
 絞り24は、角膜Cからの反射光の光路における開口部の位置が被検眼Eの角膜内皮(角膜)と光学的に略共役になるように配置されている。イメージセンサ26の受光面(撮像面、検出面)は、被検眼Eの角膜内皮(角膜)と光学的に略共役になるように配置されている。
 いくつかの実施形態では、図1に示す構成から絞り24が取り除かれており、凹レンズ23を通過した光が直接的に結像レンズ25に到達するように構成される。
 図2に、実施形態に係る照明光の反射光の説明図を示す。図2において、図1と同様の部分には同一符号を付し、適宜説明を省略する。
 照射系10により角膜Cに照射されたスリット状の照明光の反射光は、対物レンズ21に導かれる。反射光の光束は、図2に示すように反射光束R1、R2、R3を含む。反射光束R1は、角膜Cの角膜上皮である角膜表面Caの反射光束である。反射光束R2は、角膜内皮Cbの反射光束である。反射光束R3は、角膜Cの角膜実質Ccの反射光束である。反射光束R1、R2、R3は、対物レンズ21を通過し、平凸レンズ22を通過する。平凸レンズ22は、通過する光の収差特性を補正するようにチルトシフト配置されており、反射光束R1、R2、R3の収差特性を補正する。平凸レンズ22を通過した光は、凹レンズ23により屈折される。
 図3に、凹レンズ23による結像特性の変化を模式的に示す。図3において、縦軸はMTF(Modulation Transfer Function)値を表し、横軸はデフォーカス量を表す。図3は、凹レンズ23の光学中心(1点)と当該光学中心を基準とする四隅近傍の位置(4点)とを通る光のMTF特性を模式的に表したものである。
 特性T1は、光軸O3と同軸に凹レンズ23を配置し、かつ、主面が光軸O3に直交するように配置したときの凹レンズ23による結像特性に相当する。特性T2は、上記のようにチルトシフト配置したときの凹レンズ23による結像特性に相当する。凹レンズ23の光学中心及び光軸のそれぞれを上記のように配置するようにしたので、結像特性を特性T1から特性T2に変更することができる。特性T1と特性T2とを比較すると、チルトシフト配置することにより、凹レンズ23のレンズ面内において、通過する光の結像特性を揃えることができる。それにより、角膜頂点とその周辺部とのピント差を大幅に低減することができるため、角膜が円錐角膜等であっても角膜の形態に依存することなく、解像力の高い鮮明な角膜内皮細胞の画像の取得が可能になる。
 図1において、凹レンズ23により屈折された反射光束R1、R2、R3は、絞り24に照射される。絞り24に照射された反射光束R1、R2、R3のうち、主に反射光束R2は、スリットを通過し、結像レンズ25によりイメージセンサ26の受光面に結像される。それにより、イメージセンサ26の受光面に角膜内皮細胞像が結像され、この角膜内皮細胞像が撮像される。
 イメージセンサ26は、後述の制御部からの制御を受け、角膜Cにおける照明光の照明領域に対応する受光面における照明範囲を含むように開口範囲が設定される。また、後述の制御部からの制御を受け、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果がイメージセンサ26から読み出される。特に、光スキャナ13の偏向動作により角膜Cにおける照明光の照明領域が順次に移動される場合、イメージセンサ26は、角膜Cにおける照明領域に対応する受光面における開口範囲が順次に設定される。更に、イメージセンサ26は、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果がローリングシャッター方式で順次に読み出されるように制御される。
 図4に、イメージセンサ26に対する制御内容の説明図を示す。図4において、縦軸は時間軸を表し、各時刻における角膜表皮(角膜上皮)上の照明光の照明領域が模式的に図示されている。更に、図4では、角膜表皮上の照明光の照明領域に対応して、各時刻におけるイメージセンサ26の受光面における角膜上皮からの反射成分の照明領域(受光パターン)と角膜内皮からの反射成分の照明領域とが模式的に図示されている。
 スリット状の照明光は、光スキャナ13の偏向動作により、角膜Cの角膜表皮TGにおける2以上の照明領域に順次に照射される。時刻t1では、角膜表皮TGにおける照明領域IP1にスリット状の照明光が照射される。時刻t2では、角膜表皮TGにおける照明領域IP2にスリット状の照明光が照射される。時刻t3では、角膜表皮TGにおける照明領域IP3にスリット状の照明光が照射される。
 角膜表皮TGに照明光が照射されると、図2に示すように、角膜Cにおける各層の反射成分を含む反射光が受光系20に導かれる。例えば、図1に示す構成によれば、絞り24を用いることで角膜内皮からの反射成分以外の大部分を遮断することができる。その一方、絞り24が取り除かれている場合、又は、絞り24が設けられていても、図4に示すように、イメージセンサ26の受光面SRには、角膜上皮からの反射成分と角膜内皮からの反射成分とがスリット方向と直交する方向に所定の間隔を開けて照射される。
 後述の制御部は、角膜C(角膜表皮TG)における照明光の照明領域に対応する受光面SRにおける反射光(特に、角膜内皮からの反射成分)の照明範囲を含むように開口範囲を設定することができる。制御部は、設定された開口範囲の受光素子により得られた受光結果を例えばローリングシャッター方式で読み出すようにイメージセンサ26を制御する。
 時刻t1において、角膜表皮TGにおける照明領域IP1に照明光が照射されると、イメージセンサ26では、照明領域IP1に対応する受光面SRにおける開口範囲OP1が設定される。開口範囲OP1は、照明領域IP1に対応する受光面SRにおける角膜内皮からの反射成分の照明範囲RP11を含む。時刻t1では、受光面SRにおける角膜上皮からの反射成分の照明範囲RP12は、開口範囲OP1に含まれない。
 同様に、時刻t2において、角膜表皮TGにおける照明領域IP2に照明光が照射されると、イメージセンサ26では、照明領域IP2に対応する受光面SRにおける開口範囲OP2が設定される。開口範囲OP2は、照明領域IP2に対応する受光面SRにおける角膜内皮からの反射成分の照明範囲RP21を含む。時刻t2では、受光面SRにおける角膜上皮からの反射成分の照明範囲RP22は、開口範囲OP2に含まれない。
 また、時刻t3において、角膜表皮TGにおける照明領域IP3に照明光が照射されると、イメージセンサ26では、照明領域IP3に対応する受光面SRにおける開口範囲OP3が設定される。開口範囲OP3は、照明領域IP3に対応する受光面SRにおける角膜内皮からの反射成分の照明範囲RP31を含む。時刻t3では、受光面SRにおける角膜上皮からの反射成分の照明範囲RP32は、開口範囲OP3に含まれない。
 これにより、簡素な構成で、開口範囲以外に照射される反射光(不要光)の影響を受けることなく、角膜内皮からの反射成分に対応する受光結果だけを効率的に簡便に受光することができる。
 例えば、図4に示すように、各時刻において開口範囲の受光素子により取得された受光結果から形成された画像IG1、IG2、IG3等を開口範囲の位置に基づいて合成することにより、角膜内皮細胞の広視野の高画質のパノラマ画像IMGを取得することができる。
[制御系]
 図5に、角膜内皮細胞撮影装置1の制御系の構成例のブロック図を示す。角膜内皮細胞撮影装置1の制御系は、制御部100を中心に構成される。
(制御部100)
 制御部100は、角膜内皮細胞撮影装置1の各部の制御を行う。制御部100は、主制御部101と、記憶部102とを含む。主制御部101の機能は、例えばプロセッサにより実現される。
 本明細書において「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。プロセッサは、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
 記憶部102には、角膜内皮細胞撮影装置1を制御するためのコンピュータプログラムがあらかじめ格納される。このコンピュータプログラムには、光源制御用プログラム、撮像素子制御用プログラム、データ処理用プログラム及びユーザインターフェイス用プログラムなどが含まれる。このようなコンピュータプログラムに従って主制御部101が動作することにより、制御部100は制御処理を実行する。
 照射系10の制御には、光源11の制御や、光スキャナ13の制御などがある。光源11の制御には、光源11の点灯と消灯の切り替え、光量調整などがある。光スキャナ13の制御には、偏向開始位置、偏向終了位置、偏向角度範囲、偏向速度の制御などがある。
 受光系20の制御には、イメージセンサ26の制御などがある。イメージセンサ26の制御には、受光面における開口範囲の設定、受光結果の読み出し制御、露光調整、ゲイン調整、撮影レート調整などがある。例えば、制御部100は、イメージセンサ26に対して、角膜表皮における照明光の照明領域の位置に応じて受光面における開口範囲を設定する。また、制御部100は、設定された開口範囲の受光素子により得られた受光結果をローリングシャッター方式で読み出すようにイメージセンサ26を制御する。制御部100は、開口範囲の受光素子により受光結果を読み出すことでイメージセンサ26から出力信号(映像信号)を取得することができる。
 制御部100は、各種情報を後述のUI部120に含まれる表示デバイスに表示させる。表示デバイスに表示される情報には、制御部100により生成された情報、データ処理部110によるデータ処理後の情報などがある。また、制御部100は、後述のUI部120に対する操作内容に基づいて角膜内皮細胞撮影装置1の各部を制御することが可能である。
(データ処理部110)
 データ処理部110は、各種のデータ処理を実行する。データ処理の例として、イメージセンサ26により得られた受光結果(画像データ)に対する処理がある。この処理の例として、各種の画像処理や、画像に対する解析処理や、画像データに基づく画像評価などの診断支援処理がある。
 データ処理部110は、画像合成部111と、解析部112とを含む。
 画像合成部111は、光スキャナ13の偏向動作によって角膜C(角膜表皮)において互いに異なる照明領域をスリット状の照明光で照明することにより得られた2以上の画像を合成して合成画像(パノラマ画像)を生成する。いくつかの実施形態では、画像合成部111は、隣接する照明領域の端部が重複するように照明光を照射することで、画像の端部の一部が互いに重複するように得られた2つの画像に対して当該重複部分が一致するように位置合わせ処理を施す。画像合成部111は、位置合わせ処理が施された2つの画像を並べて配置することで2つの画像を合成する。画像合成部111は、このような合成処理を繰り返すことで合成画像を生成する。
 解析部112は、イメージセンサ26からの出力信号に基づいて角膜内皮細胞の状態を表す情報を求める。例えば、解析部112は、イメージセンサ26からの出力信号に基づいて生成され複数の角膜内皮細胞が描出された画像を解析することにより角膜内皮細胞の境界を特定し、特定された境界に基づいて角膜内皮細胞を特定する。いくつかの実施形態では、解析部112は、画像合成部111により生成された合成画像を解析することにより角膜内皮細胞を特定する。解析部112は、特定された角膜内皮細胞の面積や形状を求め、角膜内皮細胞の状態を表す情報を求める。角膜内皮細胞の状態を表す情報には、細胞の数、細胞の密度、最小細胞面積、最大細胞面積、平均細胞面積、細胞面積の標準偏差、細胞面積の変動係数、細胞面積のヒストグラム、六角形細胞出現率、形状のヒストグラムなどがある。
 いくつかの実施形態では、解析部112は、UI部120を用いて指定された画像内の解析対象領域の角膜内皮細胞に対して上記の角膜内皮細胞の状態を表す情報を求める。
 いくつかの実施形態では、解析部112は、最小細胞面積又は最大細胞面積を有する角膜内皮細胞を特定する。主制御部101は、画像に描出された複数の角膜内皮細胞から解析部112により特定された角膜内皮細胞を識別可能に表示デバイスに表示させる。
 いくつかの実施形態では、解析部112は、上記の角膜内皮細胞の状態を表す情報が所定の条件を満たす角膜内皮細胞が描出された領域を特定する。例えば、解析部112は、画像内で所定の密度以上、所定の密度未満、又は所定の密度範囲の領域を特定する。例えば、解析部112は、画像内で平均細胞面積以下、平均細胞面積以上、又は平均細胞面積を含む所定の面積範囲の角膜内皮細胞が描出された領域を特定する。主制御部101は、複数の角膜内皮細胞が描出された画像から、解析部112により特定された領域を識別可能に表示デバイスに表示させる。
 なお、画像合成部111は、解析部112により特定された重複領域内の角膜内皮細胞の境界に基づいて2つの画像の位置合わせを行い、位置合わせが行われた2つの画像を並べて配置することで2つの画像を合成してもよい。
 データ処理部110の機能は、例えば1以上のプロセッサにより実現される。いくつかの実施形態では、画像合成部111の機能は画像合成プロセッサにより実現され、解析部112の機能は解析プロセッサにより実現される。
(UI部120)
 UI(User Interface)部120は、ユーザと角膜内皮細胞撮影装置1との間で情報のやりとりを行うための機能を備える。UI部120は、表示デバイスと操作デバイス(入力デバイス)とを含む。表示デバイスは、表示部を含んでよく、それ以外の表示デバイスを含んでもよい。操作デバイスは、各種のハードウェアキー及び/又はソフトウェアキーを含む。制御部100は、操作デバイスに対する操作内容を受け、操作内容に対応した制御信号を各部に出力することが可能である。操作デバイスの少なくとも一部と表示デバイスの少なくとも一部とを一体的に構成することが可能である。タッチパネルディスプレイはその一例である。
 レンズ系L1は、実施形態に係る「第1レンズ系」の一例である。レンズ系L2は、実施形態に係る「第2レンズ系」の一例である。
[動作]
 実施形態に係る角膜内皮細胞撮影装置1の動作について説明する。
 図6に、実施形態に係る角膜内皮細胞撮影装置1の動作の一例を示す。図6は、角膜内皮細胞のパノラマ画像を取得する場合の角膜内皮細胞撮影装置1の動作例のフロー図を表す。記憶部102には、図6に示す処理を実現するためのコンピュータプログラムが記憶されている。主制御部101は、このコンピュータプログラムに従って動作することにより、図6に示す処理を実行する。
(S1:アライメント)
 主制御部101は、公知のアライメント手法により被検眼Eに対する光学系のXY方向の位置合わせを行う。
 例えば、主制御部101は、図示しないアライメント視標投影系を用いて被検眼Eにアライメント視標光を投影させ、その反射光をイメージセンサ26の受光面に結像させる。それにより、当該受光面には、XYアライメント視標光のプルキンエ像による像が結像される。主制御部101は、イメージセンサ26により得られたアライメント視標光の反射光の受光結果に基づいてUI部120の表示デバイスにアライメント視標光による像を表示させる。ユーザは、当該像を所定のアライメントマーク内に誘導するようにUI部120に含まれる操作デバイスに対する操作を行うことにより、光学系を含む測定ヘッドをXY方向に移動させてXYアライメントを行う。自動でXYアライメントを行う場合、主制御部101は、アライメントマークに対する像の変位をキャンセルするように測定ヘッドをXY方向に移動させる。
 次に、主制御部101は、公知のアライメント手法により被検眼Eに対する光学系のZ方向の位置合わせを行う。例えば、主制御部101は、図示しないZアライメント視標投影系を用いてZアライメントを行うための光(スリット状の照明光でも可)を斜め方向から被検眼Eに投影させる。主制御部101は、その反射光を図示しないラインセンサ等で受光し、その受光位置がZ方向のアライメントが適正となる位置としてあらかじめ決定された位置となるように光学系を含む測定ヘッドをZ方向に移動させてZアライメントを行う。
(S2:偏向制御)
 続いて、主制御部101は、あらかじめ決められた偏向動作範囲内において光スキャナ13の偏向動作を開始させる。ステップS2では、主制御部101は、偏向開始角度を基準に所定の偏向角度だけ光スキャナ13の偏向面を偏向する。これにより、角膜Cにおける所定の照明領域にスリット状の照明光が照射される。ステップS2は、実施形態に係る「照射系制御ステップ」に相当する。
(S3:撮影)
 ステップS2における偏向制御に同期して、主制御部101は、イメージセンサ26に対して、ステップS2において設定された角膜Cにおける照明領域に対応する受光面SRにおける照明範囲を含むように開口範囲を設定する。続いて、主制御部101は、イメージセンサ26を制御して、設定された開口範囲の受光素子により得られた受光結果を取得する。ステップS3は、実施形態に係る「受光系制御ステップ」に相当する。
 主制御部101は、イメージセンサ26により得られた受光結果を取得し、当該受光結果に基づく画像データ(又は映像信号)を記憶部102に記憶させる。
(S4:偏向制御)
 続いて、主制御部101は、所定の偏向角度だけ光スキャナ13の偏向面を偏向する。これにより、角膜Cにおける照明領域がスリット方向と直交する方向に移動し、移動された照明領域にスリット状の照明光が照射される。ステップS4は、ステップS2と同様に、実施形態に係る「照射系制御ステップ」に相当する。
 例えば、ステップS4では、ステップS2において設定された照明領域の一部に重複するように、移動後の照明領域が設定される。
(S5:撮影)
 ステップS3と同様に、ステップS4における偏向制御に同期して、主制御部101は、イメージセンサ26に対して、ステップS4において設定された角膜Cにおける照明領域に対応する受光面SRにおける照明範囲を含むように開口範囲を設定する。更に、主制御部101は、イメージセンサ26を制御して、設定された開口範囲の受光素子により得られた受光結果を取得する。ステップS5は、ステップS3と同様に、実施形態に係る「受光系制御ステップ」に相当する。
 主制御部101は、イメージセンサ26により得られた受光結果を取得し、当該受光結果に基づく画像データ(又は映像信号)を記憶部102に記憶させる。
(S6:終了?)
 次に、主制御部101は、撮影を終了するか否かを判定する。角膜Cにおける照射領域を変更しつつ撮影を行う回数はあらかじめ決められており、主制御部101は、当該回数に基づいて次の撮影を行うか否かを判定することができる。また、主制御部101は、UI部120の操作デバイスに対するユーザの操作内容に基づいて、次の撮影を行うか否かを判定してもよい。
 撮影を終了すると判定されたとき(S6:Y)、角膜内皮細胞撮影装置1の動作はステップS7に移行する。撮影を終了しないと判定されたとき(S6:N)、角膜内皮細胞撮影装置1の動作はステップS4に移行する。
(S7:合成)
 ステップS6において、撮影を終了すると判定されたとき(S6:Y)、主制御部101は、画像合成部111を制御して、ステップS3、及び繰り返し実行されたステップS5においてにおいて取得された2以上の画像の合成画像を生成させる。ステップS7は、実施形態に係る「画像合成ステップ」に相当する。
(S8:解析)
 次に、解析部112は、ステップS7において生成された合成画像を解析することにより、上記のように角膜内皮細胞の状態を表す情報を求める。ステップS8は、実施形態に係る「解析ステップ」に相当する。
(S9:表示)
 次に、主制御部101は、ステップS8において求められた情報をUI部120の表示デバイスに表示させる。このとき、主制御部101は、ステップS7において生成された合成画像と共に当該情報を表示デバイスに表示させることが可能である。いくつかの実施形態では、主制御部101は、ステップS8において求められた情報がステップS7において生成された合成画像に重畳するように表示デバイスに表示させる。
 以上で、角膜内皮細胞撮影装置1の動作は終了である(エンド)。
 以上説明したように、照射系10は、光スキャナ13を用いてスリット状の照明光を偏向することで、角膜Cにおける照明領域がスリット方向と直交する方向に移動するように照明光を照射する。受光系20は、照明領域の移動に同期して、角膜Cにおける照明領域に対応する受光面における開口範囲を設定し、設定された開口範囲の受光素子により得られた受光結果をローリングシャッター方式で取り込む。
 それにより、角膜内皮の異なる照明領域に対するスリット状の照明光の順次的な照射を高速化することができる。また、角膜における照明光の照明領域の移動に同期して受光面における開口範囲を移動することで、不要な反射成分(例えば、角膜上皮からの反射成分)の影響を受けることなく、角膜内皮からの反射成分を効率的に受光することができる。更に、非常に簡素な構成で、パノラマ画像の生成に必要な角膜内皮細胞の画像を短時間に取得することが可能になる。
 例えば、固視標の呈示位置を変更することにより新たな角膜内皮細胞が描出された画像の取得に要する時間は最低でも10秒~20秒程度であるため、その間に眼球が動いてしまう。この場合、眼球の移動により画像の位置合わせが困難になり、パノラマ画像の生成ができない場合が多い。これに対し、実施形態では新たな画像の取得に要する時間を大幅に短縮することができるため、被検者に負担をかけることなく、パノラマ画像を容易に取得することが可能になる。
 また、受光系20は、対物レンズ21とイメージセンサ26との間に凹レンズ23を設け、凹レンズ23をチルトシフト配置するようにしている。それにより、角膜頂点とその周辺部とのピント差を大幅に低減することができるため、角膜が円錐角膜等であっても角膜の形態に依存することなく、解像力の高い鮮明な角膜内皮細胞の画像の取得が可能になる。また、取得された角膜内皮細胞の画像中の任意の2つの位置におけるピント差が少ないため、これらの画像の位置合わせを行いやすくなり、パノラマ画像の取得が容易になる。
<変形例>
 実施形態に係る角膜内皮細胞撮影装置1の光学系の構成は図1に示す構成に限定されるものではない。
 図7に、実施形態の変形例に係る角膜内皮細胞撮影装置の光学系の構成例を示す。図7は、角膜内皮細胞に対してケーラー照明を行う場合の光学系の構成例を表す。図7において、図1と同様の部分には同一符号を付し、適宜説明を省略する。
 本変形例に係る角膜内皮細胞撮影装置1aの構成が角膜内皮細胞撮影装置1の構成と異なる点は、照射系10に代えて照射系10aが設けられている点である。
 照射系10aは、光源11と、スリット12と、光スキャナ13と、レンズ系L11、L12、L13と、絞り(視野絞り)14と、対物レンズ15とを含む。光源11から光スキャナ13の間に、光源11の側から順に、レンズ系L11、絞り14、レンズ系L12、スリット12、及びレンズ系L13が配置されている。
 レンズ系L11は、1以上のレンズを含み、光源11と絞り14との間に配置される。レンズ系L11の前側焦点位置には、光源11が配置される。レンズ系L11は、光源11からの光を集光する集光レンズとして機能する。
 絞り14には、開口部が形成されている。いくつかの実施形態では、絞り14に形成された開口部のサイズは変更可能である。レンズL11を通過した光源11からの光は、絞り14に形成された開口部を通過し、レンズ系L12に照射される。
 レンズ系L12は、1以上のレンズを含み、絞り14とスリット12との間に配置される。レンズ系L12は、リレーレンズとして機能する。
 光源11は、スリット12(具体的には、開口部)と光学的に略共役な位置に配置されている。絞り14は、角膜内皮と光学的に略共役な位置に配置される。スリット12(具体的には、開口部)は、被検眼Eの角膜内皮と光学的に略共役な位置に配置される。
 レンズ系L13は、1以上のレンズを含み、スリット12と光スキャナ13との間に配置される。レンズ系L13は、スリット12に形成された開口部を通過した照明光を平行光にするためのコリメータレンズとして機能する。レンズ系L13の前側焦点位置には、スリット12が配置される。
 本変形例では、光源11は、光スキャナ13と光学的に非共役な位置に配置される。
 光源11から出力された光は、レンズ系L11により集光されて、絞り14に形成された開口部を通過し、レンズ系L12を透過し、スリット12に照射される。スリット12に形成された開口部を通過した光源11からの光は、レンズ系L13により平行光に変換され、光スキャナ13の偏向面に照射される。光スキャナ13は、後述の制御部からの制御を受けて偏向面の偏向角度を変更することでレンズ系L13を透過した照明光を偏向して、対物レンズ15に導く。対物レンズ15に導かれた光は、角膜Cに向けて斜めから照射される。光スキャナ13の偏向面の偏向角度を変更することにより、角膜Cにおけるスリット状の照明光の照明領域を変更することができる。
 本変形例に係る角膜内皮細胞撮影装置1aの動作は、実施形態に係る角膜内皮細胞撮影装置1の動作と同様であるため、詳細な説明を省略する。
 以上説明したように、本変形例によれば、光源11の像がスリット12の開口部に結像し、絞り14の像が角膜内皮で結像する。これにより、角膜を均一に照明しつつ、実施形態と同様の効果を得ることができる。
 上記の実施形態又はその変形例では、角膜Cに対して一定のサイズ(面積)の照射領域に照明光を照射する場合について説明したが、実施形態に係る構成はこれに限定されるものではない。例えば、スリット12に形成された開口部のサイズ又は形状が変更可能であってもよい。角膜Cにおける所定の撮影領域を光スキャナ13の偏向動作により複数の照明領域で網羅する場合に、スリット12に形成された開口部のサイズ又は形状を一連の画像の取得中に変更することで、上記の複数の照明領域の少なくとも1つのサイズが変更される。サイズが変更された照明領域の角膜内皮からの反射成分を受光するとき、イメージセンサでは、サイズが変更された照明領域に対応する受光面における開口範囲のサイズもまた変更される。これにより、所望のサイズ又は形状の撮影領域における角膜内皮細胞の画像を取得することができる。
 上記の実施形態又はその変形例において、図4に示す複数の角膜内皮細胞の画像の1つを再取得することも可能である。この場合、角膜Cに照射された照明光の複数の照明領域のそれぞれに対応する光スキャナ13の偏向角度が記憶部102に記憶される。主制御部101は、所望の照明領域に対応する光スキャナ13の偏向角度を記憶部102から読み出し、読み出された偏向角度に光スキャナ13の偏向面を偏向させる。また、主制御部101は、イメージセンサ26に対し、所望の照明領域に対応する受光面における開口範囲を設定する。これにより、所望の照明領域を照明させて再撮影を実行することで、所望の撮影領域内の角膜内皮細胞の画像の再取得が可能になる。いくつかの実施形態では、画像合成部111は、再取得された角膜内皮細胞の画像を含む複数の角膜内皮細胞の画像から合成画像を生成する。
 上記の実施形態又はその変形例において、スリット12には、2以上のスリット状の開口部が形成されていてもよい。この場合、角膜Cには、所定の撮影領域に、互いに照明領域が異なる2以上のスリット状の照明光が同時に照射される。この場合、イメージセンサでは、角膜Cにおける2以上の照明領域のそれぞれに対応する受光面における2以上の開口範囲が同時に設定され、2以上の開口範囲の受光素子により得られた受光結果が順次に、又はローリングシャッター方式で読み出される。
 上記の実施形態又はその変形例において、スリット方向に直交する方向にスリット状の照明光の照明領域を移動させる場合について説明したが、実施形態に係る構成はこれに限定されるものではない。例えば、スリット状の照明光の照明領域をスリット方向に移動させてもよい。例えば、スリット方向に直交する方向に隣接する2つの角膜内皮細胞の画像を合成することにより得られた第1合成画像と、スリット方向に隣接する2つの角膜内皮細胞の画像を合成することにより得られた第2合成画像とを含む合成画像(パノラマ画像)を形成することが可能である。
[作用]
 実施形態の作用について説明する。
 いくつかの実施形態に係る角膜内皮細胞撮影装置(1、1a)は、照射系(10、10a)と、受光系(20)と、制御部(100、主制御部101)とを含む。照射系は、光源(11)からの光を変調する空間光変調器(光スキャナ13)を含み、空間光変調器により光源からの光を変調することによりスリット状の照明光を被検眼(E)の角膜(C)に向けて照射する。受光系は、照射系に対して斜めに配置され、角膜からの反射光を受光するイメージセンサ(26)を含む。制御部は、角膜における照明領域に照明光を照射するように空間光変調器を制御すると共に、角膜における照明領域に対応する受光面における開口範囲を設定し、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果を取り込むようにイメージセンサを制御する。
 このような態様によれば、空間光変調器を用いた角膜における所望の照明領域への照明光の照射と、角膜における照明領域に対応する受光面における開口範囲の設定とを同期するように空間光変調器とイメージセンサとが制御される。それにより、角膜内皮細胞を高速に撮影することができる。また、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果を取り込むことで、簡素な構成で、不要な反射成分(例えば、角膜上皮からの反射成分)の影響を受けることなく、角膜内皮からの反射成分を効率的に受光することができる。従って、角膜内皮細胞の高画質の画像を簡便に取得することができる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置では、制御部は、角膜における2以上の照明領域に照明光を順次に照射するように空間光変調器を制御すると共に、角膜における照明領域に対応する受光面における開口範囲を順次に設定し、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果をローリングシャッター方式で順次に取り込むようにイメージセンサを制御する。
 このような態様によれば、角膜における照明光の照明領域の移動に同期して受光面における開口範囲を移動することができ、非常に簡素な構成で、角膜内皮細胞の広視野の画像を短時間に取得することが可能になる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置は、受光面の2以上の開口範囲のそれぞれの受光素子により得られた受光結果に基づく2以上の画像を合成して合成画像を生成する画像合成部(111)を含む。
 このような態様によれば、非常に簡素な構成で、被検者に負担をかけることなく広視野の画像(例えば、パノラマ画像)を容易に取得することができる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置は、合成画像を解析することにより角膜内皮細胞の状態を表す情報を求める解析部(112)を含む。
 このような態様によれば、角膜内皮細胞に関して精度の高い情報を容易に提供することができる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置では、照射系は、開口部が形成され、光源からの光が照射されるスリット(12)を含み、空間光変調器は、スリットに形成された開口部を通過したスリット状の照明光を偏向する光スキャナ(13)を含む。
 このような態様によれば、光スキャナの偏向動作による角膜における所望の照明領域への照明光の照射と、角膜における照明領域に対応する受光面における開口範囲の設定とを同期するように空間光変調器とイメージセンサとが制御される。それにより、非常に簡素な構成で、角膜内皮細胞を高速に撮影し、角膜内皮細胞の高画質の画像を簡便に取得することができる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置では、スリットは、角膜内皮と光学的に略共役な位置に配置されている。
 このような態様によれば、角膜に対して十分な照度で照明光を照射することができるため、角膜内皮細胞のより高画質の画像の取得が可能になる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置では、光スキャナは、光源と光学的に略共役な位置に配置されている。
 このような態様によれば、角膜に対して十分な照度で照明光を照射することができるため、角膜内皮細胞のより高画質の画像の取得が可能になる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置は、光源とスリットとの間に配置された第1レンズ系(レンズ系L1)と、スリットと光スキャナとの間に配置された第2レンズ系(レンズ系L2)と、を含み、光源は、第1レンズ系の前側焦点位置に配置され、スリットは、第2レンズ系の前側焦点位置に配置されている。
 このような態様によれば、スリットに形成される開口部のサイズが十分に小さくても、角膜に対して照明効率の高い照明を行うことができる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置の制御方法は、照射系(10、10a)と、受光系(20)とを含む角膜内皮細胞撮影装置(1、1a)の制御方法である。照射系は、光源(11)からの光を変調する空間光変調器(光スキャナ13)を含み、空間光変調器により光源からの光を変調することによりスリット状の照明光を被検眼(E)の角膜(E)に向けて照射する。受光系は、照射系に対して斜めに配置され、角膜からの反射光を受光するイメージセンサ(26)を含む。角膜内皮細胞撮影装置の制御方法は、照射系制御ステップと、受光系制御ステップとを含む。照射系制御ステップは、角膜における照明領域に照明光を照射するように空間光変調器を制御する。受光系制御ステップは、角膜における照明領域に対応する受光面における開口範囲を設定し、設定された開口範囲の受光素子により角膜内皮からの反射成分の受光結果を取り込むようにイメージセンサを制御する。
 このような態様によれば、空間光変調器を用いた角膜における所望の照明領域への照明光の照射と、角膜における照明領域に対応する受光面における開口範囲の設定とを同期するように空間光変調器とイメージセンサとが制御される。それにより、角膜内皮細胞を高速に撮影することができる。また、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果を取り込むことで、簡素な構成で、不要な反射成分(例えば、角膜上皮からの反射成分)の影響を受けることなく、角膜内皮からの反射成分を効率的に受光することができる。従って、角膜内皮細胞の高画質の画像を簡便に取得することができる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置の制御方法では、照射系制御ステップは、角膜における2以上の照明領域に照明光を順次に照射するように空間光変調器を制御し、受光系制御ステップは、角膜における照明領域に対応する受光面における開口範囲を順次に設定し、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果をローリングシャッター方式で順次に取り込むようにイメージセンサを制御する。
  このような態様によれば、角膜における照明光の照明領域の移動に同期して受光面における開口範囲を移動することができ、非常に簡素な構成で、角膜内皮細胞の広視野の画像を短時間に取得することが可能になる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置の制御方法は、受光面の2以上の開口範囲のそれぞれの受光素子により得られた受光結果に基づく2以上の画像を合成して合成画像を生成する画像合成ステップを含む。
 このような態様によれば、非常に簡素な構成で、被検者に負担をかけることなく広視野の画像(例えば、パノラマ画像)を容易に取得することができる。
 いくつかの実施形態に係る角膜内皮細胞撮影装置の制御方法は、合成画像を解析することにより角膜内皮細胞の状態を表す情報を求める解析ステップを含む。
 このような態様によれば、角膜内皮細胞に関して精度の高い情報を容易に提供することができる。
 いくつかの実施形態に係るプログラムは、コンピュータに、上記のいずれかに記載の角膜内皮細胞撮影装置の制御方法の各ステップを実行させる。
 このような態様によれば、空間光変調器を用いた角膜における所望の照明領域への照明光の照射と、角膜における照明領域に対応する受光面における開口範囲の設定とを同期するように空間光変調器とイメージセンサとが制御される。それにより、角膜内皮細胞を高速に撮影することができる。また、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果を取り込むことで、簡素な構成で、不要な反射成分(例えば、角膜上皮からの反射成分)の影響を受けることなく、角膜内皮からの反射成分を効率的に受光することができる。従って、角膜内皮細胞の高画質の画像を簡便に取得することができる。
<その他>
 以上に示された実施形態は、この発明を実施するための一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内において任意の変形、省略、追加等を施すことが可能である。
 いくつかの実施形態では、上記の角膜内皮細胞撮影装置の制御方法をコンピュータに実行させるためのプログラムが提供される。このようなプログラムを、コンピュータによって読み取り可能な非一時的な(non-transitory)任意の記録媒体に記憶させることができる。この記録媒体としては、例えば、半導体メモリ、光ディスク、光磁気ディスク(CD-ROM/DVD-RAM/DVD-ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)などを用いることが可能である。また、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。
1、1a 角膜内皮細胞撮影装置
10、10a 照射系
11 光源
12 スリット
13 光スキャナ
14 絞り
15 対物レンズ
20 受光系
21 対物レンズ
22 平凸レンズ
23 凹レンズ
24 絞り
25 結像レンズ
26 イメージセンサ
100 制御部
101 主制御部
110 データ処理部
111 画像合成部
112 解析部
C 角膜
E 被検眼
L1、L2、L11、L12、L13 レンズ系

Claims (13)

  1.  光源からの光を変調する空間光変調器を含み、前記空間光変調器により前記光源からの光を変調することによりスリット状の照明光を被検眼の角膜に向けて照射する照射系と、
     前記照射系に対して斜めに配置され、前記角膜からの反射光を受光するイメージセンサを含む受光系と、
     前記角膜における照明領域に前記照明光を照射するように前記空間光変調器を制御すると共に、前記角膜における照明領域に対応する受光面における開口範囲を設定し、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果を取り込むように前記イメージセンサを制御する制御部と、
     を含む、角膜内皮細胞撮影装置。
  2.  前記制御部は、前記角膜における2以上の照明領域に前記照明光を順次に照射するように前記空間光変調器を制御すると共に、前記角膜における照明領域に対応する受光面における開口範囲を順次に設定し、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果をローリングシャッター方式で順次に取り込むように前記イメージセンサを制御する
     ことを特徴とする請求項1に記載の角膜内皮細胞撮影装置。
  3.  前記受光面の2以上の開口範囲のそれぞれの受光素子により得られた受光結果に基づく2以上の画像を合成して合成画像を生成する画像合成部を含む
     ことを特徴とする請求項2に記載の角膜内皮細胞撮影装置。
  4.  前記合成画像を解析することにより角膜内皮細胞の状態を表す情報を求める解析部を含む
     ことを特徴とする請求項3に記載の角膜内皮細胞撮影装置。
  5.  前記照射系は、開口部が形成され、前記光源からの光が照射されるスリットを含み、
     前記空間光変調器は、前記スリットに形成された前記開口部を通過した前記スリット状の照明光を偏向する光スキャナを含む
     ことを特徴とする請求項1~請求項4のいずれか一項に記載の角膜内皮細胞撮影装置。
  6.  前記スリットは、前記角膜内皮と光学的に略共役な位置に配置されている
     ことを特徴とする請求項5に記載の角膜内皮細胞撮影装置。
  7.  前記光スキャナは、前記光源と光学的に略共役な位置に配置されている
     ことを特徴とする請求項5又は請求項6に記載の角膜内皮細胞撮影装置。
  8.  前記光源と前記スリットとの間に配置された第1レンズ系と、
     前記スリットと前記光スキャナとの間に配置された第2レンズ系と、
     を含み、
     前記光源は、前記第1レンズ系の前側焦点位置に配置され、
     前記スリットは、前記第2レンズ系の前側焦点位置に配置されている
     ことを特徴とする請求項5~請求項7のいずれか一項に記載の角膜内皮細胞撮影装置。
  9.  光源からの光を変調する空間光変調器を含み、前記空間光変調器により前記光源からの光を変調することによりスリット状の照明光を被検眼の角膜に向けて照射する照射系と、
     前記照射系に対して斜めに配置され、前記角膜からの反射光を受光するイメージセンサを含む受光系と、を含む角膜内皮細胞撮影装置の制御方法であって、
     前記角膜における照明領域に前記照明光を照射するように前記空間光変調器を制御する照射系制御ステップと、
     前記角膜における照明領域に対応する受光面における開口範囲を設定し、設定された開口範囲の受光素子により角膜内皮からの反射成分の受光結果を取り込むように前記イメージセンサを制御する受光系制御ステップと、
     を含む、角膜内皮細胞撮影装置の制御方法。
  10.  前記照射系制御ステップは、前記角膜における2以上の照明領域に前記照明光を順次に照射するように前記空間光変調器を制御し、
     前記受光系制御ステップは、前記角膜における照明領域に対応する受光面における開口範囲を順次に設定し、設定された開口範囲の受光素子により得られた角膜内皮からの反射成分の受光結果をローリングシャッター方式で順次に取り込むように前記イメージセンサを制御する
     ことを特徴とする請求項9に記載の角膜内皮細胞撮影装置の制御方法。
  11.  前記受光面の2以上の開口範囲のそれぞれの受光素子により得られた受光結果に基づく2以上の画像を合成して合成画像を生成する画像合成ステップを含む
     ことを特徴とする請求項10に記載の角膜内皮細胞撮影装置の制御方法。
  12.  前記合成画像を解析することにより角膜内皮細胞の状態を表す情報を求める解析ステップを含む
     ことを特徴とする請求項11に記載の角膜内皮細胞撮影装置の制御方法。
  13.  コンピュータに、請求項9~12のいずれか一項に記載の角膜内皮細胞撮影装置の制御方法の各ステップを実行させることを特徴とするプログラム。
PCT/JP2020/033390 2019-09-11 2020-09-03 角膜内皮細胞撮影装置、その制御方法、及びプログラム WO2021049405A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080063788.4A CN114401664A (zh) 2019-09-11 2020-09-03 角膜内皮细胞拍摄装置、其控制方法及程序
JP2021545494A JP7186888B2 (ja) 2019-09-11 2020-09-03 角膜内皮細胞撮影装置、その制御方法、及びプログラム
US17/572,642 US20220125308A1 (en) 2019-09-11 2022-01-11 Corneal endothelial cell imaging apparatus, method of controlling same, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962898643P 2019-09-11 2019-09-11
US62/898,643 2019-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/572,642 Continuation US20220125308A1 (en) 2019-09-11 2022-01-11 Corneal endothelial cell imaging apparatus, method of controlling same, and recording medium

Publications (1)

Publication Number Publication Date
WO2021049405A1 true WO2021049405A1 (ja) 2021-03-18

Family

ID=74866955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033390 WO2021049405A1 (ja) 2019-09-11 2020-09-03 角膜内皮細胞撮影装置、その制御方法、及びプログラム

Country Status (4)

Country Link
US (1) US20220125308A1 (ja)
JP (1) JP7186888B2 (ja)
CN (1) CN114401664A (ja)
WO (1) WO2021049405A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018226A (ja) * 2012-07-12 2014-02-03 Nidek Co Ltd 角膜内皮細胞撮影装置
JP2014239812A (ja) * 2013-06-12 2014-12-25 株式会社トプコン 角膜内皮細胞撮影装置
JP2017158726A (ja) * 2016-03-08 2017-09-14 株式会社トプコン 角膜内皮細胞撮影装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023812A (ja) * 2012-07-30 2014-02-06 Haruo Seo 折り畳みクッション

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018226A (ja) * 2012-07-12 2014-02-03 Nidek Co Ltd 角膜内皮細胞撮影装置
JP2014239812A (ja) * 2013-06-12 2014-12-25 株式会社トプコン 角膜内皮細胞撮影装置
JP2017158726A (ja) * 2016-03-08 2017-09-14 株式会社トプコン 角膜内皮細胞撮影装置

Also Published As

Publication number Publication date
US20220125308A1 (en) 2022-04-28
JP7186888B2 (ja) 2022-12-09
JPWO2021049405A1 (ja) 2021-03-18
CN114401664A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
JP7080076B2 (ja) 眼科装置、及びその制御方法
JP7302342B2 (ja) 眼底撮影装置
JP7027326B2 (ja) 走査型眼底撮影装置
JP7376847B2 (ja) 眼底画像処理装置および眼底画像処理プログラム
WO2021049405A1 (ja) 角膜内皮細胞撮影装置、その制御方法、及びプログラム
US20220192488A1 (en) Ophthalmic apparatus, method of controlling same, and recording medium
JP2009285108A (ja) 眼科撮影装置
US20160089027A1 (en) Method for photographically observing and/or documenting the fundus of an eye, and fundus camera
JP2000135200A (ja) 検眼装置
JP2003225208A (ja) 眼底カメラ
JP2020170118A (ja) 画像検査装置
WO2021182321A1 (ja) 眼科装置、その制御方法、及びプログラム
US20240049962A1 (en) Ophthalmic apparatus and ophthalmic information processing apparatus
JP7468162B2 (ja) 眼底画像処理プログラムおよび眼底撮影装置
JP6937536B1 (ja) 眼底撮影装置
JP2022157060A (ja) 眼底撮影装置
US20230389795A1 (en) Ophthalmic information processing apparatus, ophthalmic apparatus, ophthalmic information processing method, and recording medium
JP2022038529A (ja) 眼科装置、その制御方法、及びプログラム
JP7200516B2 (ja) 眼底撮影装置
WO2021205965A1 (ja) 眼科装置
JP7460406B2 (ja) 眼科装置、その制御方法、及びプログラム
JP5680164B2 (ja) 眼科装置、画像取得方法およびプログラム
US20230014194A1 (en) Ophthalmic apparatus, method of controlling same, and recording medium
JP7318273B2 (ja) 眼科撮影装置、および、眼科用画像処理プログラム
US20240032787A1 (en) Ophthalmic apparatus, method of controlling ophthalmic apparatus, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864034

Country of ref document: EP

Kind code of ref document: A1