WO2021049392A1 - Gas supply apparatus, substrate treatment apparatus, and method for controlling gas supply apparatus - Google Patents

Gas supply apparatus, substrate treatment apparatus, and method for controlling gas supply apparatus Download PDF

Info

Publication number
WO2021049392A1
WO2021049392A1 PCT/JP2020/033314 JP2020033314W WO2021049392A1 WO 2021049392 A1 WO2021049392 A1 WO 2021049392A1 JP 2020033314 W JP2020033314 W JP 2020033314W WO 2021049392 A1 WO2021049392 A1 WO 2021049392A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas supply
raw material
gas
carrier gas
mass flow
Prior art date
Application number
PCT/JP2020/033314
Other languages
French (fr)
Japanese (ja)
Inventor
哲 若林
大寿 木元
淳志 松本
拓哉 川口
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021049392A1 publication Critical patent/WO2021049392A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present disclosure relates to a gas supply device, a substrate processing device, and a control method for the gas supply device.
  • a film forming apparatus for forming a tungsten film on a substrate using a solid raw material is known.
  • Patent Document 1 describes a measured value of a first mass flow controller connected to a carrier gas supply path, a measured value of a second mass flow controller connected to a diluted gas supply path, and a mass flow meter provided in the raw material gas supply path.
  • a raw material gas supply device for calculating a raw material gas supply amount from the measured values of is disclosed.
  • the present disclosure provides a control method for a gas supply device, a substrate processing device, and a gas supply device for accurately detecting a raw material gas supply amount.
  • a raw material container a carrier gas supply source, a carrier gas supply path for supplying carrier gas from the carrier gas supply source to the raw material container, and the carrier gas supply.
  • a first mass flow controller provided in the path, a raw material gas supply path for supplying the raw material gas together with the carrier gas from the raw material container to the processing container, a mass flow meter provided in the raw material gas supply path, and the carrier gas supply path. Whether to supply the first evacline provided downstream from the first mass flow controller and the carrier gas supplied from the carrier gas supply source to the raw material container or the first evacline.
  • a gas supply device including a first switching unit for switching the gas is provided.
  • the schematic diagram which shows the structural example of the substrate processing apparatus.
  • the flowchart which shows an example of the operation of a substrate processing apparatus.
  • the figure which shows an example of the gas supply sequence in the film formation process of a substrate processing apparatus.
  • FIG. 1 is a schematic view showing a configuration example of the substrate processing apparatus 100 according to the present embodiment.
  • the substrate processing apparatus 100 shown in FIG. 1 is an example of a film forming apparatus that forms a tungsten film on a wafer (substrate) W by the ALD method in a processing container in a reduced pressure state.
  • the substrate processing device 100 includes a processing container 1, a mounting table 2, a shower head 3, an exhaust unit 4, a gas supply mechanism 6, and a control unit 9.
  • the processing container 1 is made of a metal such as aluminum and has a substantially cylindrical shape.
  • the processing container 1 accommodates the wafer W.
  • a carry-in outlet 11 for carrying in or out the wafer W is formed on the side wall of the processing container 1, and the carry-in outlet 11 is opened and closed by the gate valve 12.
  • An annular exhaust duct 13 having a rectangular cross section is provided on the main body of the processing container 1.
  • a slit 13a is formed in the exhaust duct 13 along the inner peripheral surface.
  • An exhaust port 13b is formed on the outer wall of the exhaust duct 13.
  • a top wall 14 is provided on the upper surface of the exhaust duct 13 so as to close the upper opening of the processing container 1.
  • the exhaust duct 13 and the top wall 14 are hermetically sealed with a seal ring 15.
  • the mounting table 2 horizontally supports the wafer W in the processing container 1.
  • the mounting table 2 is formed in a disk shape having a size corresponding to the wafer W, and is supported by the support member 23.
  • the mounting table 2 is made of a ceramic material such as AlN or a metal material such as aluminum or nickel alloy, and a heater 21 for heating the wafer W is embedded therein.
  • the heater 21 is supplied with power from a heater power source (not shown) to generate heat.
  • the wafer W is controlled to a predetermined temperature by controlling the output of the heater 21 by a temperature signal of a thermocouple (not shown) provided near the upper surface of the mounting table 2.
  • the mounting table 2 is provided with a cover member 22 formed of ceramics such as alumina so as to cover the outer peripheral region of the upper surface and the side surface.
  • a support member 23 for supporting the mounting table 2 is provided on the bottom surface of the mounting table 2.
  • the support member 23 extends from the center of the bottom surface of the mounting table 2 to the lower side of the processing container 1 through a hole formed in the bottom wall of the processing container 1, and the lower end thereof is connected to the elevating mechanism 24.
  • the elevating mechanism 24 causes the mounting table 2 to move up and down via the support member 23 between the processing position shown in FIG. 1 and the transfer position below which the wafer W can be conveyed, which is indicated by the alternate long and short dash line.
  • a flange portion 25 is attached below the processing container 1 of the support member 23, and the atmosphere inside the processing container 1 is partitioned from the outside air between the bottom surface of the processing container 1 and the collar portion 25, and the mounting table 2 is used.
  • a bellows 26 that expands and contracts as the vehicle moves up and down is provided.
  • three wafer support pins 27 are provided so as to project upward from the elevating plate 27a.
  • the wafer support pin 27 is moved up and down via the lifting plate 27a by the lifting mechanism 28 provided below the processing container 1.
  • the wafer support pin 27 is inserted into a through hole 2a provided in the mounting table 2 at the transport position so that the wafer support pin 27 can be recessed with respect to the upper surface of the mounting table 2.
  • the wafer W is delivered between the transfer mechanism (not shown) and the mounting table 2.
  • the shower head 3 supplies the processing gas into the processing container 1 in the form of a shower.
  • the shower head 3 is made of metal, is provided so as to face the mounting table 2, and has substantially the same diameter as the mounting table 2.
  • the shower head 3 has a main body 31 fixed to the top wall 14 of the processing container 1 and a shower plate 32 connected under the main body 31.
  • a gas diffusion space 33 is formed between the main body 31 and the shower plate 32, and the gas introduction hole 36 penetrates the top wall 14 of the processing container 1 and the center of the main body 31 in the gas diffusion space 33. , 37 are provided.
  • An annular protrusion 34 projecting downward is formed on the peripheral edge of the shower plate 32.
  • a gas discharge hole 35 is formed on the flat surface inside the annular protrusion 34.
  • a processing space 38 is formed between the mounting table 2 and the shower plate 32, and the upper surface of the cover member 22 and the annular protrusion 34 are close to each other to form an annular gap 39. Will be done.
  • the exhaust unit 4 exhausts the inside of the processing container 1.
  • the exhaust unit 4 has an exhaust pipe 41 connected to the exhaust port 13b, and an exhaust mechanism 42 having a vacuum pump, a pressure control valve, and the like connected to the exhaust pipe 41.
  • the gas in the processing container 1 reaches the exhaust duct 13 through the slit 13a, and is exhausted from the exhaust duct 13 through the exhaust pipe 41 by the exhaust mechanism 42.
  • the gas supply mechanism 6 supplies the processing gas into the processing container 1.
  • the gas supply mechanism 6 includes WCl 6 gas supply mechanism 61a, N 2 gas supply source 62a, N 2 gas supply source 63a, H 2 gas supply source 64a, H 2 gas supply source 65a, N 2 gas supply source 66a, N 2 It has a gas supply source 67a.
  • the WCl 6 gas supply mechanism 61a supplies WCl 6 gas into the processing container 1 via the gas supply line 61b.
  • a storage tank 61d and a valve 61e are interposed in the gas supply line 61b from the upstream side.
  • the downstream side of the valve 61e of the gas supply line 61b is connected to the gas introduction hole 36.
  • WCl 6 WCl 6 gas supplied from the gas supply mechanism 61a is temporarily stored in the storage tank 61d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 61d, the processing chamber 1 Is supplied to.
  • the supply and stop of WCl 6 gas from the storage tank 61d to the processing container 1 is performed by opening and closing the valve 61e.
  • the WCl 6 gas supply mechanism 61a has a raw material container 71 which is a raw material container for accommodating WCl 6.
  • WCl 6 is a solid raw material that is solid at room temperature.
  • a heater 71a is provided around the raw material container 71, and the film-forming raw material in the raw material container 71 is heated to an appropriate temperature to sublimate WCl 6.
  • the gas supply line 61b described above is inserted into the raw material container 71 from above.
  • the WCl 6 gas supply mechanism 61a includes a carrier gas supply line 72 inserted into the raw material container 71 from above, and a carrier gas supply source 73 for supplying N 2 gas, which is a carrier gas, to the carrier gas supply line 72.
  • a mass flow controller 74 as a flow controller connected to the carrier gas supply line 72, a three-way valve (first switching portion) 75a and an on-off valve 75b on the downstream side of the mass flow controller 74, and a gas supply line 61b. It has an on-off valve 76a, an on-off valve 76b, and a mass flow meter 77 provided in the vicinity of the raw material container 71.
  • the three-way valve 75a is provided at a position directly below the mass flow controller 74, and the on-off valve 75b is provided on the side of the insertion end of the carrier gas supply line 72. Further, the on-off valve 76a, the on-off valve 76b, and the mass flow meter 77 are arranged in the order of the on-off valve 76a, the on-off valve 76b, and the mass flow meter 77 from the insertion end of the gas supply line 61b.
  • the three-way valve 75a is a three-way valve having one input port and two output ports.
  • the three-way valve 75a can take a first state of communicating the input port and one output port, a second state of communicating the input port and the other output port, and a third state of blocking between the ports. It is configured.
  • the input port of the three-way valve 75a is connected to the downstream side of the mass flow controller 74 via the carrier gas supply line 72.
  • One output port of the three-way valve 75a is connected to the upstream side of the on-off valve 75b via the carrier gas supply line 72.
  • the other output port of the three-way valve 75a is connected to one end of the evacline 91.
  • the other end of the evac line 91 is connected to the exhaust pipe 41. As a result, the inside of the Evacline 91 is exhausted by the exhaust mechanism 42.
  • the Evacline 91 is provided with an orifice (first pressure adjusting unit) 92.
  • the carrier gas supplied from the carrier gas supply source 73 is supplied to the raw material container 71.
  • the carrier gas supplied from the carrier gas supply source 73 is supplied to the evacline 91.
  • the carrier gas supply line 72 is closed.
  • a bypass line 78 is provided so as to connect the position between the three-way valve 75a and the on-off valve 75b of the carrier gas supply line 72 and the position between the on-off valve 76a and the on-off valve 76b of the gas supply line 61b.
  • An on-off valve 79 is provided in the vehicle. Off valves 75b, 76a closed by the opening and closing valve 79, opening and closing valve 76 b, by a three-way valve 75a and the first state, N 2 gas is a carrier gas supply line 72 supplied from the carrier gas supply source 73, a bypass It is supplied to the gas supply line 61b via the line 78. This makes it possible to purge the gas supply line 61b.
  • a dilution gas supply source 81 which is a supply source of N 2 gas, is provided at the upstream end of the dilution gas supply line 80.
  • a mass flow controller 82 and a three-way valve (second switching portion) 83 are interposed in the dilution gas supply line 80 from the upstream side.
  • the three-way valve 83 is a three-way valve having one input port and two output ports.
  • the three-way valve 83 can take a first state of communicating the input port and one output port, a second state of communicating the input port and the other output port, and a third state of blocking between the ports. It is configured.
  • the input port of the three-way valve 83 is connected to the downstream side of the mass flow controller 82 via the dilution gas supply line 80.
  • One output port of the three-way valve 83 is connected to the gas supply line 61b (downstream side of the on-off valve 76b and upstream side of the mass flow meter 77) via the dilution gas supply line 80.
  • the other output port of the three-way valve 83 is connected to one end of the evacline 93.
  • the other end of the evac line 93 is connected to the exhaust pipe 41.
  • the Evacline 93 is provided with an orifice (second pressure adjusting unit) 94.
  • the dilution gas supplied from the dilution gas supply source 81 is supplied to the storage tank 61d.
  • the dilution gas supplied from the dilution gas supply source 81 is supplied to the Evacline 93.
  • the dilution gas supply line 80 is closed.
  • One end of the Evacline 95 is connected between the storage tank 61d and the valve 61e in the gas supply line 61b. Although not shown, the other end of the Evacline 95 is connected to the exhaust pipe 41. As a result, the inside of the Evacline 95 is exhausted by the exhaust mechanism 42. An on-off valve 96 is interposed in the Evacline 95.
  • the carrier gas stores the sublimated WCl 6 gas in the raw material container 71. It is conveyed into the tank 61d. Further, the diluted gas is supplied into the storage tank 61d. Thereby, the concentration (partial pressure) of WCl 6 gas in the gas in the storage tank 61d is adjusted. Further, by opening the valve 61e, the gas in the storage tank 61d is supplied to the processing space 38 of the processing container 1.
  • N 2 gas supply source 62a supplies a N 2 gas is a purge gas through the gas supply line 62b to the processing chamber 1.
  • a flow rate controller 62c, a storage tank 62d, and a valve 62e are interposed in the gas supply line 62b from the upstream side.
  • the downstream side of the valve 62e of the gas supply line 62b is connected to the gas supply line 61b.
  • N 2 gas supplied from N 2 gas supply source 62a is temporarily stored in the storage tank 62d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 62d, the processing chamber 1 Is supplied to.
  • Supply and stop of the N 2 gas from the storage tank 62d to the processing chamber 1 is performed by opening and closing the valve 62e.
  • the N 2 gas supply source 63a supplies N 2 gas, which is a carrier gas, into the processing container 1 via the gas supply line 63b.
  • a flow rate controller 63c, a valve 63e, and an orifice 63f are interposed in the gas supply line 63b from the upstream side.
  • the downstream side of the orifice 63f of the gas supply line 63b is connected to the gas supply line 61b.
  • N 2 gas supplied from N 2 gas supply source 63a is supplied into the processing vessel 1 continuously during deposition of the wafer W.
  • the supply and stop of the N 2 gas from the N 2 gas supply source 63a to the processing container 1 is performed by opening and closing the valve 63e.
  • the H 2 gas supply source 64a supplies the H 2 gas, which is the added reduction gas, into the processing container 1 via the gas supply line 64b.
  • a flow rate controller 64c, a valve 64e, and an orifice 64f are interposed in the gas supply line 64b from the upstream side.
  • the downstream side of the orifice 64f of the gas supply line 64b is connected to the gas introduction hole 37.
  • H 2 gas supplied from the H 2 gas supply source 64a is supplied into the processing vessel 1 continuously during deposition of the wafer W.
  • the supply and stop of the H 2 gas from the H 2 gas supply source 64a to the processing container 1 is performed by opening and closing the valve 64e.
  • Storage tank 65d the gas supply line 65b by 66d, the gas is supplied at a relatively large flow rate to 66b, the gas supplied by the orifice 64f gas supply line 65b, to 66b from flowing back into the H 2 gas supply line 64b Is suppressed.
  • the H 2 gas supply source 65a supplies the H 2 gas, which is a reducing gas, into the processing container 1 via the gas supply line 65b.
  • a flow rate controller 65c, a storage tank 65d, and a valve 65e are interposed in the gas supply line 65b from the upstream side.
  • the downstream side of the valve 65e of the gas supply line 65b is connected to the gas supply line 64b.
  • H 2 gas supplied from the H 2 gas supply source 65a is temporarily stored in the storage tank 65d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 65d, the processing chamber 1 Is supplied to.
  • the supply and stop of the H 2 gas from the storage tank 65d to the processing container 1 is performed by opening and closing the valve 65e.
  • N 2 gas supply source 66a supplies a N 2 gas is a purge gas through the gas supply line 66b to the processing chamber 1.
  • a flow rate controller 66c, a storage tank 66d, and a valve 66e are interposed in the gas supply line 66b from the upstream side. The downstream side of the valve 66e of the gas supply line 66b is connected to the gas supply line 64b.
  • N 2 gas supplied from N 2 gas supply source 66a is temporarily stored in the storage tank 66d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 66d, the processing chamber 1 Is supplied to. Supply and stop of the N 2 gas from the storage tank 66d to the processing chamber 1 is performed by opening and closing the valve 66e.
  • the N 2 gas supply source 67a supplies N 2 gas, which is a carrier gas, into the processing container 1 via the gas supply line 67b.
  • a flow rate controller 67c, a valve 67e, and an orifice 67f are interposed in the gas supply line 67b from the upstream side.
  • the downstream side of the orifice 67f of the gas supply line 67b is connected to the gas supply line 64b.
  • N 2 gas supplied from N 2 gas supply source 67a is supplied into the processing vessel 1 continuously during deposition of the wafer W.
  • the supply and stop of the N 2 gas from the N 2 gas supply source 67a to the processing container 1 is performed by opening and closing the valve 67e.
  • Storage tank 65d the gas supply line 65b by 66d, the gas is supplied at a relatively large flow rate to 66b, the gas supplied by the orifice 67f gas supply line 65b, to 66b from flowing back to the N 2 gas supply line 67b Is suppressed.
  • the control unit 9 is, for example, a computer, and includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an auxiliary storage device, and the like.
  • the CPU operates based on a program stored in the ROM or the auxiliary storage device, and controls the operation of the substrate processing device 100.
  • the control unit 9 may be provided inside the substrate processing device 100, or may be provided outside. When the control unit 9 is provided outside the board processing device 100, the control unit 9 can control the board processing device 100 by a communication means such as wire or wireless.
  • control unit 9 has a function of calculating the amount of raw material gas supplied (flow rate) from the raw material container 71 to the storage tank 61d. Specifically, assuming that the detection value m1 of the mass flow meter 77, the detection value m2 of the mass flow controller 74, and the detection value m3 of the mass flow controller 82, the amount of raw material gas supplied from the raw material container 71 to the storage tank 61d is "m1". -(M2 + m3) "can be calculated.
  • control unit 9 has a function of calculating the remaining amount of the solid raw material in the raw material container 71. Specifically, the total amount of solid raw materials used is calculated based on the calculated integrated value of the raw material gas supply amount. Then, the remaining amount of the solid raw material is calculated based on the initial filling amount of the solid raw material and the calculated total usage amount.
  • FIG. 2 is a flowchart showing an example of the operation of the substrate processing apparatus 100.
  • step S101 the wafer W is carried in.
  • the wafer W is carried into the processing container 1 of the substrate processing apparatus 100 shown in FIG. Specifically, the gate valve 12 is opened with the mounting table 2 lowered to the transport position. Subsequently, the wafer W is carried into the processing container 1 through the carry-in outlet 11 by a transport arm (not shown), and the mounting table 2 is heated to a predetermined temperature (for example, 350 ° C. to 550 ° C.) by the heater 21. Place on top. Subsequently, the mounting table 2 is raised to the processing position. When the mounting table 2 rises to the processing position, the inside of the processing container 1 is vertically partitioned by the partition member 16 and the cover member 22. Of the partitioned space in the processing container 1, the upper space including the processing space 38 and above the mounting table 2 is decompressed to a predetermined degree of vacuum by the exhaust mechanism 42.
  • step S102 the pressure in the processing space 38 is adjusted. Specifically, the valves 63e and 67e are opened, and the valves 61e, 62e, 64e, 65e and 66e are closed.
  • N 2 gas supply source 63a, 67a of the N 2 gas to increase the pressure supplied to the processing space 38 from stabilizing the temperature of the wafer W on the mounting table 2.
  • the lower space below the mounting table 2 is supplied with an inert gas (for example, N 2 gas) by a gas supply mechanism (not shown), and is more than the upper space. Also becomes high pressure.
  • the gas supplied from the shower head 3 to the processing space 38 is exhausted to the exhaust mechanism 42 via the annular gap 39, the exhaust duct 13, the exhaust port 13b, and the exhaust pipe 41.
  • step S103 the preflow of the carrier gas and the diluted gas is flowed to the Evaclines 91 and 93.
  • the control unit 9 sets the three-way valve 75a in the second state.
  • the carrier gas supplied from the carrier gas supply source 73 flows to the evacline 91 via the mass flow controller 74 and the three-way valve 75a. That is, by flowing the carrier gas to the Evacline 91 via the mass flow controller 74, the flow rate of the mass flow controller 74 is raised in advance before the carrier gas is flowed to the raw material container 71. Further, since the orifice 92 is provided in the evac line 91, the pressure inside the carrier gas supply line 72 becomes a predetermined pressure.
  • control unit 9 puts the three-way valve 83 in the second state.
  • the diluted gas supplied from the diluted gas supply source 81 flows to the Evacline 93 via the mass flow controller 82 and the three-way valve 83. That is, the flow rate of the mass flow controller 82 is raised in advance by flowing the diluted gas through the mass flow controller 82 to the evacline 93. Further, since the orifice 94 is provided in the Evac line 93, the pressure inside the dilution gas supply line 80 becomes a desired pressure.
  • the control unit 9 puts the three-way valves 75a and 83 in the first state, respectively. Also, the on-off valves 75b, 76a, 76b are opened. As a result, the carrier gas (N 2 gas) whose flow rate is adjusted by the mass flow controller 74 is supplied from the carrier gas supply source 73 to the raw material container 71. The raw material gas in the raw material container 71 is discharged from the raw material container 71 together with the carrier gas. The raw material gas and the carrier gas are mixed with the diluting gas, flow through the mass flow meter 77, and are supplied to the storage tank 61d.
  • the carrier gas N 2 gas
  • control unit 9 may open the on-off valve 96 and allow gas to flow from the storage tank 61d to the evacline 95. By discharging the initial gas in the storage tank 61d to the evacline 95, the raw material gas in the storage tank 61d can be stabilized. Then, the control unit 9 closes the on-off valve 96. The raw material gas, the carrier gas, and the diluting gas are supplied into the storage tank 61d, and the pressure in the storage tank 61d is increased.
  • N 2 gas is supplied from the N 2 gas supply source 62a into the storage tank 62d, and the pressure in the storage tank 62d is boosted.
  • H 2 gas is supplied from the H 2 gas supply source 65a into the storage tank 65d, and the pressure in the storage tank 65d is boosted.
  • N 2 gas is supplied from the N 2 gas supply source 66a into the storage tank 66d, and the pressure in the storage tank 66d is boosted.
  • step S104 a film forming process for forming a tungsten film on the wafer W is performed as an actual wafer process.
  • the film forming process in step S104 will be described with reference to FIG.
  • FIG. 3 is a diagram showing an example of a gas supply sequence in the film forming process of the substrate processing apparatus 100.
  • ALD process depicted in Figure 3 WCl 6 for supplying gas step S501, N 2 gas feeding step S502, H 2 gas feeding step S503, and N 2 gas is repeated a predetermined cycle feeding step S504 of, This is a process of alternately supplying WCl 6 gas and H 2 gas to form a tungsten film having a desired film thickness on the wafer W. Note that FIG. 3 shows only one cycle.
  • the step S501 of supplying the WCl 6 gas is a step of supplying the WCl 6 gas to the processing space 38.
  • step S501 supplies a WCl 6 gas, first, valve 63e, with open 67e, N 2 gas supply source 63a, from 67a, the gas supply line 63 b, N 2 gas through 67b (carrier N 2 gas) Continue to supply. Further, by opening the valve 61e, and supplies the WCl 6 gas into the processing space 38 in the processing chamber 1 via a gas supply line 61b from WCl 6 gas supply mechanism 61a. At this time, the WCl 6 gas is once stored in the storage tank 61d and then supplied into the processing container 1.
  • an H 2 gas is supplied as an additive reduction gas into the processing space 38.
  • step 501 of supplying WCl 6 gas by supplying H 2 as an added reducing gas at the same time as WCl 6 gas, the supplied WCl 6 gas is activated, and in step 503 of supplying H 2 gas thereafter.
  • the film formation reaction is likely to occur. Therefore, it is possible to maintain high step coverage and increase the deposition film thickness per cycle to increase the deposition rate.
  • the flow rate of H 2 as the added reduction gas can be set to such a flow rate that the CVD reaction does not occur in the step 501 of supplying the WCl 6 gas.
  • the step S502 for supplying the N 2 gas is a step of purging the excess WCl 6 gas or the like in the processing space 38.
  • the gas supply line 63 b while continuing the supply of N 2 gas through 67b (carrier N 2 gas), to stop the supply of WCl 6 gas by closing the valve 61e ..
  • the valves 62e and 66e are opened.
  • the processing space 38 of the processing chamber 1 gas supply line 62b from 66a, via 66b N 2 gas (purge N 2 gas).
  • the step S503 of supplying the H 2 gas is a step of supplying the H 2 gas to the processing space 38.
  • the valves 62e and 66e are closed and the N 2 gas (purge N 2) is closed while the supply of the N 2 gas (carrier N 2 gas) is continued through the gas supply lines 63b and 67b. Stop the supply of gas).
  • the valve 65e is opened.
  • an H 2 gas is supplied into the processing space 38 through the gas supply line 65b from the H 2 gas supply source 65a.
  • the H 2 gas is once stored in the storage tank 65d and then supplied into the processing container 1.
  • the flow rate of the H 2 gas at this time can be set to an amount that sufficiently causes a reduction reaction.
  • the flow rate of H 2 gas as an additive reducing gas supplied from the H 2 gas supply source 64a to the processing space 38 through the gas supply line 64b via a gas supply line 65b from the H 2 gas supply source 65a processing It is smaller than the flow rate of H 2 gas for reducing WCl 6 adsorbed on the wafer W supplied to the space 38.
  • the step S504 for supplying the N 2 gas is a step of purging the excess H 2 gas in the processing space 38.
  • the gas supply line 63 b while continuing the supply of N 2 gas through 67b (carrier N 2 gas), to stop the supply of the H 2 gas by closing the valve 65e ..
  • the valves 62e and 66e are opened.
  • the N 2 gas supply source 62a the processing space 38 of the processing chamber 1 gas supply line 62b from 66a, via 66b N 2 gas (purge N 2 gas).
  • the N 2 gas is temporarily stored in the storage tanks 62d and 66d and then supplied into the processing container 1, a relatively large flow rate can be supplied.
  • excess H 2 gas or the like in the processing space 38 is purged.
  • FIG. 4 is an example of a graph schematically showing the amount of raw material gas supplied based on the detected value.
  • the horizontal axis shows time, and the vertical axis shows the calculated raw material gas supply amount (raw material flow rate).
  • the actual wafer process shown in step S104 is performed without performing the process of flowing the preflow of the carrier gas and the diluted gas shown in step S103 to the Evaclines 91 and 93.
  • the calculated value of the raw material gas supply amount (raw material flow rate) in the reference example is shown by a broken line. As shown by the broken line in FIG. 4, at the start of raw material supply, a large value that cannot be considered from the raw material vapor pressure in the raw material container 71 is shown. This is because the detected values m2 and m3 are detected to be smaller than the actual flow rate due to the rise delay (delay time T) of the flow rate in the mass flow controllers 74 and 82. Therefore, the amount of raw material gas supplied by the formula “m1- (m2 + m3)” is calculated to be larger than the actual amount.
  • the amount of raw material gas supplied from the raw material container 71 to the storage tank 61d cannot be calculated accurately. Further, the remaining amount of the solid raw material in the raw material container 71 is calculated based on the integrated value of the calculated raw material gas supply amount. Therefore, there is a possibility that the remaining amount of the solid raw material in the raw material container 71 cannot be calculated accurately due to the accumulation of errors at the time of rising.
  • the mass flow is caused by flowing the preflow of the carrier gas to the evacline 91 before supplying the carrier gas to the raw material container 71.
  • the flow rate of the controller 74 can be increased in advance.
  • the flow rate of the mass flow controller 82 can be raised in advance by flowing the preflow of the diluted gas to the Evacline 93 before supplying the diluted gas to the storage tank 61d.
  • the calculated value of the raw material gas supply amount (raw material flow rate) in the substrate processing apparatus 100 according to the present embodiment is shown by a solid line. It is possible to suppress the rise delay of the flow rate of the mass flow controllers 74 and 82 at the start of raw material supply. As a result, as shown by the solid line in FIG. 4, the error of the calculated raw material gas supply amount (raw material flow rate) can be reduced. That is, according to the substrate processing apparatus 100 according to the present embodiment, the amount of raw material gas supplied can be calculated accurately. In addition, the remaining amount of the solid raw material in the raw material container 71 can be calculated accurately.
  • the replacement timing of the raw material container 71 can be accurately determined.
  • the usage rate of the solid raw material in the raw material container 71 can be improved. This makes it possible to efficiently use expensive solid raw materials.
  • the pressure in the carrier gas supply line 72 and the dilution gas supply line 80 at the start of step S104 is shown in the actual wafer in step S104.
  • the pressure gradient state in the line leading from the carrier gas supply source 73 to the storage tank 61d through the carrier gas supply line 72, the raw material container 71, and the gas supply line 61b which is greatly affected by the fluctuation of the pressure in the pipe due to conductance. It can be stabilized to the state during the actual wafer process at an early stage.
  • the pressure formed by the pressure adjusting portions such as the orifices 92 and 94 in the carrier gas supply line 72 and the dilution gas supply line 80 may be higher than the state during the actual wafer process. That is, when the pressure of the carrier gas supply line 72 on the upstream side of the three-way valve 75a is set to be higher than the pressure during the actual wafer process, the three-way valve 75a is switched from the first state to the second state.
  • the pressure of the carrier gas supply line 72 and the like on the downstream side of the three-way valve 75a can be quickly increased to stabilize the state during the actual wafer process at an early stage.
  • a step of exhausting the raw material gas filled in the storage tank 61d with the Evacline 95 is introduced before the actual wafer process shown in step S104. Sometimes. Even when this step is introduced, the amount of raw material gas discarded can be reduced.
  • the present disclosure is not limited to the above-described embodiment and the like, and is within the scope of the gist of the present disclosure described in the claims. , Various modifications and improvements are possible.
  • the present invention is not limited to this, and other solid raw materials and liquid raw materials can also be applied.
  • the carrier gas and the diluent gas have been described as being N 2 gas, but the present invention is not limited to this, and can be appropriately selected depending on the solid raw material and the actual wafer process.
  • the substrate processing apparatus 100 has been described as performing a film forming process on the wafer W, the present invention is not limited to this.
  • the diluted gas has been described as being supplied to the upstream side of the mass flow meter 77, the present invention is not limited to this, and the diluted gas may be supplied to the downstream side of the mass flow meter 77. Further, the dilution gas supply line 80 may not be provided.
  • the raw material gas supply amount is calculated by the difference "m1-m2" between the detection value m1 of the mass flow meter 77 and the detection value m2 of the mass flow controller 74. Even in such a configuration, the raw material gas supply amount can be calculated accurately by flowing the carrier gas preflow through the Evacline 91 before the actual wafer process (S104).
  • the three-way valve 75a is used as the first switching unit for switching whether the carrier gas supplied from the carrier gas supply source 73 is supplied to the raw material container 71 or the evacline 91. It is not limited to. For example, a plurality of open / close valves or the like may be used as the first switching unit.
  • an on-off valve provided on the carrier gas supply line 72 on the downstream side (the side of the raw material container 71) of the branch portion with the evac line 91 and on the upstream side of the on-off valve 75b, and the evac An on-off valve provided on the line 91 may be used as the first switching portion.
  • the three-way valve 75a has been described as a second switching unit for switching whether the dilution gas supplied from the dilution gas supply source 81 is supplied to the mass flow meter 77 or the evacline 93. It is not limited to this.
  • a plurality of open / close valves or the like may be used as the second switching unit.
  • An on-off valve provided on the line 93 may be used as the second switching portion.
  • the orifice 92 is used as the first pressure adjusting unit in which the pressure of the carrier gas supply line 72 is set to a predetermined pressure when the carrier gas is flowed through the evac line 91, but the present invention is not limited to this. ..
  • a control valve or the like may be used as the first pressure adjusting unit.
  • a pressure monitor may be provided on the upstream side of the three-way valve 75a to control the control valve based on the value of the pressure monitor.
  • the orifice 94 is used as the second pressure adjusting unit in which the pressure of the dilution gas supply line 80 is set to a predetermined pressure when the diluent gas is flowed through the Evacline 93, but the present invention is not limited to this. Absent.
  • a control valve or the like may be used as the second pressure adjusting unit.
  • a pressure monitor may be provided on the upstream side of the three-way valve 83, and the control valve may be controlled based on the value of the pressure monitor.

Abstract

Provided are: a gas supply apparatus that, with good precision, detects a supply amount of a feedstock gas; a substrate treatment apparatus; and a method for controlling the gas supply apparatus. The gas supply apparatus comprises: a feedstock container; a carrier gas supply source; a carrier gas supply path that supplies a carrier gas from the carrier gas supply source to the feedstock container; a first mass flow controller provided to the carrier gas supply path; a feedstock gas supply path that supplies a feedstock gas together with the carrier gas to a treatment container from the feedstock container; a mass flow meter provided to the feedstock gas supply path; a first evacuation line provided further downstream than the first mass flow controller in the carrier gas supply path; and a first switching part that switches between supplying the carrier gas, supplied from the carrier gas supply source, to the feedstock container or to the first evacuation line.

Description

ガス供給装置、基板処理装置及びガス供給装置の制御方法Control method of gas supply device, substrate processing device and gas supply device
 本開示は、ガス供給装置、基板処理装置及びガス供給装置の制御方法に関する。 The present disclosure relates to a gas supply device, a substrate processing device, and a control method for the gas supply device.
 例えば、固体原料を用いて基板にタングステン膜を成膜する成膜装置が知られている。 For example, a film forming apparatus for forming a tungsten film on a substrate using a solid raw material is known.
 特許文献1には、キャリアガス供給路に接続された第1のマスフローコントローラの測定値、希釈ガス供給路に接続された第2のマスフローコントローラの測定値、原料ガス供給路に設けられたマスフローメータの測定値から、原料ガス供給量を算出する原料ガス供給装置が開示されている。 Patent Document 1 describes a measured value of a first mass flow controller connected to a carrier gas supply path, a measured value of a second mass flow controller connected to a diluted gas supply path, and a mass flow meter provided in the raw material gas supply path. A raw material gas supply device for calculating a raw material gas supply amount from the measured values of is disclosed.
特開2017-066511号公報Japanese Unexamined Patent Publication No. 2017-066511
 一の側面では、本開示は、原料ガス供給量を精度よく検出するガス供給装置、基板処理装置及びガス供給装置の制御方法を提供する。 On the one side, the present disclosure provides a control method for a gas supply device, a substrate processing device, and a gas supply device for accurately detecting a raw material gas supply amount.
 上記課題を解決するために、一の態様によれば、原料容器と、キャリアガス供給源と、前記キャリアガス供給源から前記原料容器にキャリアガスを供給するキャリアガス供給路と、前記キャリアガス供給路に設けられる第1のマスフローコントローラと、前記原料容器から処理容器にキャリアガスとともに原料ガスを供給する原料ガス供給路と、前記原料ガス供給路に設けられるマスフローメータと、前記キャリアガス供給路の前記第1のマスフローコントローラよりも下流に設けられる第1のエバックラインと、前記キャリアガス供給源から供給されるキャリアガスを、前記原料容器に供給するか、前記第1のエバックラインに供給するかを切り替える第1の切替部と、を備える、ガス供給装置が提供される。 In order to solve the above problems, according to one embodiment, a raw material container, a carrier gas supply source, a carrier gas supply path for supplying carrier gas from the carrier gas supply source to the raw material container, and the carrier gas supply. A first mass flow controller provided in the path, a raw material gas supply path for supplying the raw material gas together with the carrier gas from the raw material container to the processing container, a mass flow meter provided in the raw material gas supply path, and the carrier gas supply path. Whether to supply the first evacline provided downstream from the first mass flow controller and the carrier gas supplied from the carrier gas supply source to the raw material container or the first evacline. A gas supply device including a first switching unit for switching the gas is provided.
 一の側面によれば、原料ガス供給量を精度よく検出するガス供給装置、基板処理装置及びガス供給装置の制御方法を提供することができる。 According to one aspect, it is possible to provide a control method for a gas supply device, a substrate processing device, and a gas supply device that accurately detect the amount of raw material gas supplied.
基板処理装置の構成例を示す概略図。The schematic diagram which shows the structural example of the substrate processing apparatus. 基板処理装置の動作の一例を示すフローチャート。The flowchart which shows an example of the operation of a substrate processing apparatus. 基板処理装置の成膜処理におけるガス供給シーケンスの一例を示す図。The figure which shows an example of the gas supply sequence in the film formation process of a substrate processing apparatus. 検出値に基づいて算出される原料ガス供給量を模式的に示すグラフの一例。An example of a graph schematically showing the amount of raw material gas supplied based on the detected value.
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, a mode for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.
<基板処理装置>
 本実施形態に係る基板処理装置100について、図1を用いて説明する。図1は、本実施形態に係る基板処理装置100の構成例を示す概略図である。図1に示す基板処理装置100は、減圧状態の処理容器内でALD法によりウエハ(基板)Wにタングステン膜を成膜する成膜装置の一例である。
<Board processing equipment>
The substrate processing apparatus 100 according to this embodiment will be described with reference to FIG. FIG. 1 is a schematic view showing a configuration example of the substrate processing apparatus 100 according to the present embodiment. The substrate processing apparatus 100 shown in FIG. 1 is an example of a film forming apparatus that forms a tungsten film on a wafer (substrate) W by the ALD method in a processing container in a reduced pressure state.
 基板処理装置100は、処理容器1と、載置台2と、シャワーヘッド3と、排気部4と、ガス供給機構6と、制御部9とを有している。 The substrate processing device 100 includes a processing container 1, a mounting table 2, a shower head 3, an exhaust unit 4, a gas supply mechanism 6, and a control unit 9.
 処理容器1は、アルミニウム等の金属により構成され、略円筒状を有している。処理容器1は、ウエハWを収容する。処理容器1の側壁にはウエハWを搬入又は搬出するための搬入出口11が形成され、搬入出口11はゲートバルブ12により開閉される。処理容器1の本体の上には、断面が矩形状をなす円環状の排気ダクト13が設けられている。排気ダクト13には、内周面に沿ってスリット13aが形成されている。排気ダクト13の外壁には、排気口13bが形成されている。排気ダクト13の上面には、処理容器1の上部開口を塞ぐように天壁14が設けられている。排気ダクト13と天壁14との間はシールリング15で気密に封止されている。区画部材16は、載置台2(およびカバー部材22)が後述する処理位置へと上昇した際、処理容器1の内部を上下に区画する。 The processing container 1 is made of a metal such as aluminum and has a substantially cylindrical shape. The processing container 1 accommodates the wafer W. A carry-in outlet 11 for carrying in or out the wafer W is formed on the side wall of the processing container 1, and the carry-in outlet 11 is opened and closed by the gate valve 12. An annular exhaust duct 13 having a rectangular cross section is provided on the main body of the processing container 1. A slit 13a is formed in the exhaust duct 13 along the inner peripheral surface. An exhaust port 13b is formed on the outer wall of the exhaust duct 13. A top wall 14 is provided on the upper surface of the exhaust duct 13 so as to close the upper opening of the processing container 1. The exhaust duct 13 and the top wall 14 are hermetically sealed with a seal ring 15. When the mounting table 2 (and the cover member 22) rises to the processing position described later, the partition member 16 partitions the inside of the processing container 1 up and down.
 載置台2は、処理容器1内でウエハWを水平に支持する。載置台2は、ウエハWに対応した大きさの円板状に形成されており、支持部材23に支持されている。載置台2は、AlN等のセラミックス材料や、アルミニウムやニッケル合金等の金属材料で形成されており、内部にウエハWを加熱するためのヒータ21が埋め込まれている。ヒータ21は、ヒータ電源(図示せず)から給電されて発熱する。そして、載置台2の上面の近傍に設けられた熱電対(図示せず)の温度信号によりヒータ21の出力を制御することで、ウエハWが所定の温度に制御される。載置台2には、上面の外周領域及び側面を覆うようにアルミナ等のセラミックスにより形成されたカバー部材22が設けられている。 The mounting table 2 horizontally supports the wafer W in the processing container 1. The mounting table 2 is formed in a disk shape having a size corresponding to the wafer W, and is supported by the support member 23. The mounting table 2 is made of a ceramic material such as AlN or a metal material such as aluminum or nickel alloy, and a heater 21 for heating the wafer W is embedded therein. The heater 21 is supplied with power from a heater power source (not shown) to generate heat. Then, the wafer W is controlled to a predetermined temperature by controlling the output of the heater 21 by a temperature signal of a thermocouple (not shown) provided near the upper surface of the mounting table 2. The mounting table 2 is provided with a cover member 22 formed of ceramics such as alumina so as to cover the outer peripheral region of the upper surface and the side surface.
 載置台2の底面には、載置台2を支持する支持部材23が設けられている。支持部材23は、載置台2の底面の中央から処理容器1の底壁に形成された孔部を貫通して処理容器1の下方に延び、その下端が昇降機構24に接続されている。昇降機構24により載置台2が支持部材23を介して、図1で示す処理位置と、その下方の二点鎖線で示すウエハWの搬送が可能な搬送位置との間で昇降する。支持部材23の処理容器1の下方には、鍔部25が取り付けられており、処理容器1の底面と鍔部25の間には、処理容器1内の雰囲気を外気と区画し、載置台2の昇降動作にともなって伸縮するベローズ26が設けられている。 A support member 23 for supporting the mounting table 2 is provided on the bottom surface of the mounting table 2. The support member 23 extends from the center of the bottom surface of the mounting table 2 to the lower side of the processing container 1 through a hole formed in the bottom wall of the processing container 1, and the lower end thereof is connected to the elevating mechanism 24. The elevating mechanism 24 causes the mounting table 2 to move up and down via the support member 23 between the processing position shown in FIG. 1 and the transfer position below which the wafer W can be conveyed, which is indicated by the alternate long and short dash line. A flange portion 25 is attached below the processing container 1 of the support member 23, and the atmosphere inside the processing container 1 is partitioned from the outside air between the bottom surface of the processing container 1 and the collar portion 25, and the mounting table 2 is used. A bellows 26 that expands and contracts as the vehicle moves up and down is provided.
 処理容器1の底面の近傍には、昇降板27aから上方に突出するように3本(2本のみ図示)のウエハ支持ピン27が設けられている。ウエハ支持ピン27は、処理容器1の下方に設けられた昇降機構28により昇降板27aを介して昇降する。ウエハ支持ピン27は、搬送位置にある載置台2に設けられた貫通孔2aに挿通されて載置台2の上面に対して突没可能となっている。ウエハ支持ピン27を昇降させることにより、搬送機構(図示せず)と載置台2との間でウエハWの受け渡しが行われる。 Near the bottom surface of the processing container 1, three wafer support pins 27 (only two are shown) are provided so as to project upward from the elevating plate 27a. The wafer support pin 27 is moved up and down via the lifting plate 27a by the lifting mechanism 28 provided below the processing container 1. The wafer support pin 27 is inserted into a through hole 2a provided in the mounting table 2 at the transport position so that the wafer support pin 27 can be recessed with respect to the upper surface of the mounting table 2. By raising and lowering the wafer support pin 27, the wafer W is delivered between the transfer mechanism (not shown) and the mounting table 2.
 シャワーヘッド3は、処理容器1内に処理ガスをシャワー状に供給する。シャワーヘッド3は、金属製であり、載置台2に対向するように設けられており、載置台2とほぼ同じ直径を有している。シャワーヘッド3は、処理容器1の天壁14に固定された本体部31と、本体部31の下に接続されたシャワープレート32とを有している。本体部31とシャワープレート32との間にはガス拡散空間33が形成されており、ガス拡散空間33には処理容器1の天壁14及び本体部31の中央を貫通するようにガス導入孔36,37が設けられている。シャワープレート32の周縁部には下方に突出する環状突起部34が形成されている。環状突起部34の内側の平坦面には、ガス吐出孔35が形成されている。載置台2が処理位置に存在した状態では、載置台2とシャワープレート32との間に処理空間38が形成され、カバー部材22の上面と環状突起部34とが近接して環状隙間39が形成される。 The shower head 3 supplies the processing gas into the processing container 1 in the form of a shower. The shower head 3 is made of metal, is provided so as to face the mounting table 2, and has substantially the same diameter as the mounting table 2. The shower head 3 has a main body 31 fixed to the top wall 14 of the processing container 1 and a shower plate 32 connected under the main body 31. A gas diffusion space 33 is formed between the main body 31 and the shower plate 32, and the gas introduction hole 36 penetrates the top wall 14 of the processing container 1 and the center of the main body 31 in the gas diffusion space 33. , 37 are provided. An annular protrusion 34 projecting downward is formed on the peripheral edge of the shower plate 32. A gas discharge hole 35 is formed on the flat surface inside the annular protrusion 34. When the mounting table 2 is present at the processing position, a processing space 38 is formed between the mounting table 2 and the shower plate 32, and the upper surface of the cover member 22 and the annular protrusion 34 are close to each other to form an annular gap 39. Will be done.
 排気部4は、処理容器1の内部を排気する。排気部4は、排気口13bに接続された排気配管41と、排気配管41に接続された真空ポンプや圧力制御バルブ等を有する排気機構42とを有する。処理に際しては、処理容器1内のガスがスリット13aを介して排気ダクト13に至り、排気ダクト13から排気配管41を通って排気機構42により排気される。 The exhaust unit 4 exhausts the inside of the processing container 1. The exhaust unit 4 has an exhaust pipe 41 connected to the exhaust port 13b, and an exhaust mechanism 42 having a vacuum pump, a pressure control valve, and the like connected to the exhaust pipe 41. At the time of processing, the gas in the processing container 1 reaches the exhaust duct 13 through the slit 13a, and is exhausted from the exhaust duct 13 through the exhaust pipe 41 by the exhaust mechanism 42.
 ガス供給機構6は、処理容器1内に処理ガスを供給する。ガス供給機構6は、WClガス供給機構61a、Nガス供給源62a、Nガス供給源63a、Hガス供給源64a、Hガス供給源65a、Nガス供給源66a、Nガス供給源67aを有する。 The gas supply mechanism 6 supplies the processing gas into the processing container 1. The gas supply mechanism 6 includes WCl 6 gas supply mechanism 61a, N 2 gas supply source 62a, N 2 gas supply source 63a, H 2 gas supply source 64a, H 2 gas supply source 65a, N 2 gas supply source 66a, N 2 It has a gas supply source 67a.
 WClガス供給機構61aは、ガス供給ライン61bを介してWClガスを処理容器1内に供給する。ガス供給ライン61bには、上流側から貯留タンク61d及びバルブ61eが介設されている。ガス供給ライン61bのバルブ61eの下流側は、ガス導入孔36に接続されている。WClガス供給機構61aから供給されるWClガスは処理容器1内に供給される前に貯留タンク61dで一旦貯留され、貯留タンク61d内で所定の圧力に昇圧された後、処理容器1内に供給される。貯留タンク61dから処理容器1へのWClガスの供給及び停止は、バルブ61eの開閉により行われる。このように貯留タンク61dへWClガスを一旦貯留することで、比較的大きい流量のWClガスを処理容器1内に安定して供給できる。 The WCl 6 gas supply mechanism 61a supplies WCl 6 gas into the processing container 1 via the gas supply line 61b. A storage tank 61d and a valve 61e are interposed in the gas supply line 61b from the upstream side. The downstream side of the valve 61e of the gas supply line 61b is connected to the gas introduction hole 36. WCl 6 WCl 6 gas supplied from the gas supply mechanism 61a is temporarily stored in the storage tank 61d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 61d, the processing chamber 1 Is supplied to. The supply and stop of WCl 6 gas from the storage tank 61d to the processing container 1 is performed by opening and closing the valve 61e. By temporarily storing the WCl 6 gas in the storage tank 61d in this way, a relatively large flow rate of the WCl 6 gas can be stably supplied into the processing container 1.
 WClガス供給機構61aは、WClを収容する原料容器である原料容器71を有している。WClは常温で固体の固体原料である。原料容器71の周囲にはヒータ71aが設けられており、原料容器71内の成膜原料を適宜の温度に加熱して、WClを昇華させるようになっている。原料容器71内には前述したガス供給ライン61bが上方から挿入されている。 The WCl 6 gas supply mechanism 61a has a raw material container 71 which is a raw material container for accommodating WCl 6. WCl 6 is a solid raw material that is solid at room temperature. A heater 71a is provided around the raw material container 71, and the film-forming raw material in the raw material container 71 is heated to an appropriate temperature to sublimate WCl 6. The gas supply line 61b described above is inserted into the raw material container 71 from above.
 また、WClガス供給機構61aは、原料容器71内に上方から挿入されたキャリアガス供給ライン72と、キャリアガス供給ライン72にキャリアガスであるNガスを供給するためのキャリアガス供給源73と、キャリアガス供給ライン72に接続された、流量制御器としてのマスフローコントローラ74、及びマスフローコントローラ74の下流側の三方弁(第1の切替部)75a及び開閉バルブ75bと、ガス供給ライン61bの原料容器71の近傍に設けられた、開閉バルブ76a及び開閉バルブ76b、ならびにマスフローメータ77とを有している。キャリアガス供給ライン72において、三方弁75aはマスフローコントローラ74の直下位置に設けられ、開閉バルブ75bはキャリアガス供給ライン72の挿入端の側に設けられている。また、開閉バルブ76a及び開閉バルブ76b、ならびにマスフローメータ77は、ガス供給ライン61bの挿入端から開閉バルブ76a、開閉バルブ76b、マスフローメータ77の順に配置されている。 Further, the WCl 6 gas supply mechanism 61a includes a carrier gas supply line 72 inserted into the raw material container 71 from above, and a carrier gas supply source 73 for supplying N 2 gas, which is a carrier gas, to the carrier gas supply line 72. A mass flow controller 74 as a flow controller connected to the carrier gas supply line 72, a three-way valve (first switching portion) 75a and an on-off valve 75b on the downstream side of the mass flow controller 74, and a gas supply line 61b. It has an on-off valve 76a, an on-off valve 76b, and a mass flow meter 77 provided in the vicinity of the raw material container 71. In the carrier gas supply line 72, the three-way valve 75a is provided at a position directly below the mass flow controller 74, and the on-off valve 75b is provided on the side of the insertion end of the carrier gas supply line 72. Further, the on-off valve 76a, the on-off valve 76b, and the mass flow meter 77 are arranged in the order of the on-off valve 76a, the on-off valve 76b, and the mass flow meter 77 from the insertion end of the gas supply line 61b.
 三方弁75aは、1つの入力ポートと2つの出力ポートを有する三方弁である。三方弁75aは、入力ポートと一方の出力ポートを連通させる第1状態、入力ポートと他方の出力ポートを連通させる第2状態、各ポート間を遮断する第3状態、を取ることができるように構成されている。三方弁75aの入力ポートは、キャリアガス供給ライン72を介して、マスフローコントローラ74の下流側と接続される。三方弁75aの一方の出力ポートは、キャリアガス供給ライン72を介して、開閉バルブ75bの上流側と接続される。三方弁75aの他方の出力ポートは、エバックライン91の一端と接続される。なお、図示は省略するが、エバックライン91の他端は、排気配管41と接続される。これにより、エバックライン91内は、排気機構42により排気される。エバックライン91には、オリフィス(第1の圧力調整部)92が設けられている。 The three-way valve 75a is a three-way valve having one input port and two output ports. The three-way valve 75a can take a first state of communicating the input port and one output port, a second state of communicating the input port and the other output port, and a third state of blocking between the ports. It is configured. The input port of the three-way valve 75a is connected to the downstream side of the mass flow controller 74 via the carrier gas supply line 72. One output port of the three-way valve 75a is connected to the upstream side of the on-off valve 75b via the carrier gas supply line 72. The other output port of the three-way valve 75a is connected to one end of the evacline 91. Although not shown, the other end of the evac line 91 is connected to the exhaust pipe 41. As a result, the inside of the Evacline 91 is exhausted by the exhaust mechanism 42. The Evacline 91 is provided with an orifice (first pressure adjusting unit) 92.
 即ち、三方弁75aの第1状態において、キャリアガス供給源73から供給されるキャリアガスは、原料容器71に供給される。三方弁75aの第2状態において、キャリアガス供給源73から供給されるキャリアガスは、エバックライン91に供給される。三方弁75aの第3状態において、キャリアガス供給ライン72を閉塞する。 That is, in the first state of the three-way valve 75a, the carrier gas supplied from the carrier gas supply source 73 is supplied to the raw material container 71. In the second state of the three-way valve 75a, the carrier gas supplied from the carrier gas supply source 73 is supplied to the evacline 91. In the third state of the three-way valve 75a, the carrier gas supply line 72 is closed.
 キャリアガス供給ライン72の三方弁75aと開閉バルブ75bの間の位置、及びガス供給ライン61bの開閉バルブ76aと開閉バルブ76bの間の位置を繋ぐように、バイパスライン78が設けられ、バイパスライン78には開閉バルブ79が介設されている。開閉バルブ75b,76aを閉じて開閉バルブ79,開閉バルブ76bを開き、三方弁75aを第1状態とすることにより、キャリアガス供給源73から供給されるNガスがキャリアガス供給ライン72、バイパスライン78を経て、ガス供給ライン61bに供給される。これにより、ガス供給ライン61bをパージすることが可能となっている。 A bypass line 78 is provided so as to connect the position between the three-way valve 75a and the on-off valve 75b of the carrier gas supply line 72 and the position between the on-off valve 76a and the on-off valve 76b of the gas supply line 61b. An on-off valve 79 is provided in the vehicle. Off valves 75b, 76a closed by the opening and closing valve 79, opening and closing valve 76 b, by a three-way valve 75a and the first state, N 2 gas is a carrier gas supply line 72 supplied from the carrier gas supply source 73, a bypass It is supplied to the gas supply line 61b via the line 78. This makes it possible to purge the gas supply line 61b.
 また、ガス供給ライン61bにおけるマスフローメータ77の上流側には、希釈ガスであるNガスを供給する希釈ガス供給ライン80の下流側の端部が合流している。希釈ガス供給ライン80の上流側の端部には、Nガスの供給源である希釈ガス供給源81が設けられている。希釈ガス供給ライン80には、上流側からマスフローコントローラ82と、三方弁(第2の切替部)83とが介設されている。 Further, the downstream end of the dilution gas supply line 80 for supplying the N 2 gas, which is the dilution gas, joins the upstream side of the mass flow meter 77 in the gas supply line 61b. A dilution gas supply source 81, which is a supply source of N 2 gas, is provided at the upstream end of the dilution gas supply line 80. A mass flow controller 82 and a three-way valve (second switching portion) 83 are interposed in the dilution gas supply line 80 from the upstream side.
 三方弁83は、1つの入力ポートと2つの出力ポートを有する三方弁である。三方弁83は、入力ポートと一方の出力ポートを連通させる第1状態、入力ポートと他方の出力ポートを連通させる第2状態、各ポート間を遮断する第3状態、を取ることができるように構成されている。三方弁83の入力ポートは、希釈ガス供給ライン80を介して、マスフローコントローラ82の下流側と接続される。三方弁83の一方の出力ポートは、希釈ガス供給ライン80を介して、ガス供給ライン61b(開閉バルブ76bの下流側かつマスフローメータ77の上流側)と接続される。三方弁83の他方の出力ポートは、エバックライン93の一端と接続される。なお、図示は省略するが、エバックライン93の他端は、排気配管41と接続される。これにより、エバックライン93内は、排気機構42により排気される。エバックライン93には、オリフィス(第2の圧力調整部)94が設けられている。 The three-way valve 83 is a three-way valve having one input port and two output ports. The three-way valve 83 can take a first state of communicating the input port and one output port, a second state of communicating the input port and the other output port, and a third state of blocking between the ports. It is configured. The input port of the three-way valve 83 is connected to the downstream side of the mass flow controller 82 via the dilution gas supply line 80. One output port of the three-way valve 83 is connected to the gas supply line 61b (downstream side of the on-off valve 76b and upstream side of the mass flow meter 77) via the dilution gas supply line 80. The other output port of the three-way valve 83 is connected to one end of the evacline 93. Although not shown, the other end of the evac line 93 is connected to the exhaust pipe 41. As a result, the inside of the Evacline 93 is exhausted by the exhaust mechanism 42. The Evacline 93 is provided with an orifice (second pressure adjusting unit) 94.
 即ち、三方弁83の第1状態において、希釈ガス供給源81から供給される希釈ガスは、貯留タンク61dに供給される。三方弁83の第2状態において、希釈ガス供給源81から供給される希釈ガスは、エバックライン93に供給される。三方弁83の第3状態において、希釈ガス供給ライン80を閉塞する。 That is, in the first state of the three-way valve 83, the dilution gas supplied from the dilution gas supply source 81 is supplied to the storage tank 61d. In the second state of the three-way valve 83, the dilution gas supplied from the dilution gas supply source 81 is supplied to the Evacline 93. In the third state of the three-way valve 83, the dilution gas supply line 80 is closed.
 ガス供給ライン61bにおける貯留タンク61dとバルブ61eとの間には、エバックライン95の一端が接続される。なお、図示は省略するが、エバックライン95の他端は、排気配管41と接続される。これにより、エバックライン95内は、排気機構42により排気される。エバックライン95には、開閉バルブ96が介設されている。 One end of the Evacline 95 is connected between the storage tank 61d and the valve 61e in the gas supply line 61b. Although not shown, the other end of the Evacline 95 is connected to the exhaust pipe 41. As a result, the inside of the Evacline 95 is exhausted by the exhaust mechanism 42. An on-off valve 96 is interposed in the Evacline 95.
 このように、三方弁75a,83を第1状態とし、開閉バルブ75b,76a,76bを開き、開閉バルブ79を閉じることで、キャリアガスは、原料容器71内で昇華されたWClガスを貯留タンク61d内に搬送する。また、希釈ガスは、貯留タンク61d内に供給される。これにより、貯留タンク61d内のガス中のWClガスの濃度(分圧)を調整する。また、バルブ61eを開くことにより、貯留タンク61d内のガスが、処理容器1の処理空間38に供給される。 In this way, by setting the three- way valves 75a and 83 to the first state, opening the on-off valves 75b, 76a and 76b, and closing the on-off valve 79, the carrier gas stores the sublimated WCl 6 gas in the raw material container 71. It is conveyed into the tank 61d. Further, the diluted gas is supplied into the storage tank 61d. Thereby, the concentration (partial pressure) of WCl 6 gas in the gas in the storage tank 61d is adjusted. Further, by opening the valve 61e, the gas in the storage tank 61d is supplied to the processing space 38 of the processing container 1.
 Nガス供給源62aは、ガス供給ライン62bを介してパージガスであるNガスを処理容器1内に供給する。ガス供給ライン62bには、上流側から流量制御器62c、貯留タンク62d及びバルブ62eが介設されている。ガス供給ライン62bのバルブ62eの下流側は、ガス供給ライン61bに接続されている。Nガス供給源62aから供給されるNガスは処理容器1内に供給される前に貯留タンク62dで一旦貯留され、貯留タンク62d内で所定の圧力に昇圧された後、処理容器1内に供給される。貯留タンク62dから処理容器1へのNガスの供給及び停止は、バルブ62eの開閉により行われる。このように貯留タンク62dへNガスを一旦貯留することで、比較的大きい流量のNガスを処理容器1内に安定して供給できる。 N 2 gas supply source 62a supplies a N 2 gas is a purge gas through the gas supply line 62b to the processing chamber 1. A flow rate controller 62c, a storage tank 62d, and a valve 62e are interposed in the gas supply line 62b from the upstream side. The downstream side of the valve 62e of the gas supply line 62b is connected to the gas supply line 61b. N 2 gas supplied from N 2 gas supply source 62a is temporarily stored in the storage tank 62d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 62d, the processing chamber 1 Is supplied to. Supply and stop of the N 2 gas from the storage tank 62d to the processing chamber 1 is performed by opening and closing the valve 62e. By temporarily storing the N 2 gas in the storage tank 62d in this way, a relatively large flow rate of the N 2 gas can be stably supplied into the processing container 1.
 Nガス供給源63aは、ガス供給ライン63bを介してキャリアガスであるNガスを処理容器1内に供給する。ガス供給ライン63bには、上流側から流量制御器63c、バルブ63e及びオリフィス63fが介設されている。ガス供給ライン63bのオリフィス63fの下流側は、ガス供給ライン61bに接続されている。Nガス供給源63aから供給されるNガスはウエハWの成膜中に連続して処理容器1内に供給される。Nガス供給源63aから処理容器1へのNガスの供給及び停止は、バルブ63eの開閉により行われる。貯留タンク61d,62dによってガス供給ライン61b,62bには比較的大きい流量でガスが供給されるが、オリフィス63fによってガス供給ライン61b,62bに供給されるガスがNガス供給ライン63bに逆流することが抑制される。 The N 2 gas supply source 63a supplies N 2 gas, which is a carrier gas, into the processing container 1 via the gas supply line 63b. A flow rate controller 63c, a valve 63e, and an orifice 63f are interposed in the gas supply line 63b from the upstream side. The downstream side of the orifice 63f of the gas supply line 63b is connected to the gas supply line 61b. N 2 gas supplied from N 2 gas supply source 63a is supplied into the processing vessel 1 continuously during deposition of the wafer W. The supply and stop of the N 2 gas from the N 2 gas supply source 63a to the processing container 1 is performed by opening and closing the valve 63e. Storage tank 61d, the gas supply line 61b by 62d, the gas is supplied at a relatively large flow rate and 62b, the gas supplied by the orifice 63f gas supply line 61b, and 62b from flowing back to the N 2 gas supply line 63b Is suppressed.
 Hガス供給源64aは、ガス供給ライン64bを介して添加還元ガスであるHガスを処理容器1内に供給する。ガス供給ライン64bには、上流側から流量制御器64c、バルブ64e及びオリフィス64fが介設されている。ガス供給ライン64bのオリフィス64fの下流側は、ガス導入孔37に接続されている。Hガス供給源64aから供給されるHガスはウエハWの成膜中に連続して処理容器1内に供給される。Hガス供給源64aから処理容器1へのHガスの供給及び停止は、バルブ64eの開閉により行われる。貯留タンク65d,66dによってガス供給ライン65b,66bには比較的大きい流量でガスが供給されるが、オリフィス64fによってガス供給ライン65b,66bに供給されるガスがHガス供給ライン64bに逆流することが抑制される。 The H 2 gas supply source 64a supplies the H 2 gas, which is the added reduction gas, into the processing container 1 via the gas supply line 64b. A flow rate controller 64c, a valve 64e, and an orifice 64f are interposed in the gas supply line 64b from the upstream side. The downstream side of the orifice 64f of the gas supply line 64b is connected to the gas introduction hole 37. H 2 gas supplied from the H 2 gas supply source 64a is supplied into the processing vessel 1 continuously during deposition of the wafer W. The supply and stop of the H 2 gas from the H 2 gas supply source 64a to the processing container 1 is performed by opening and closing the valve 64e. Storage tank 65d, the gas supply line 65b by 66d, the gas is supplied at a relatively large flow rate to 66b, the gas supplied by the orifice 64f gas supply line 65b, to 66b from flowing back into the H 2 gas supply line 64b Is suppressed.
 Hガス供給源65aは、ガス供給ライン65bを介して還元ガスであるHガスを処理容器1内に供給する。ガス供給ライン65bには、上流側から流量制御器65c、貯留タンク65d及びバルブ65eが介設されている。ガス供給ライン65bのバルブ65eの下流側は、ガス供給ライン64bに接続されている。Hガス供給源65aから供給されるHガスは処理容器1内に供給される前に貯留タンク65dで一旦貯留され、貯留タンク65d内で所定の圧力に昇圧された後、処理容器1内に供給される。貯留タンク65dから処理容器1へのHガスの供給及び停止は、バルブ65eの開閉により行われる。このように貯留タンク65dへHガスを一旦貯留することで、比較的大きい流量のHガスを処理容器1内に安定して供給できる。 The H 2 gas supply source 65a supplies the H 2 gas, which is a reducing gas, into the processing container 1 via the gas supply line 65b. A flow rate controller 65c, a storage tank 65d, and a valve 65e are interposed in the gas supply line 65b from the upstream side. The downstream side of the valve 65e of the gas supply line 65b is connected to the gas supply line 64b. H 2 gas supplied from the H 2 gas supply source 65a is temporarily stored in the storage tank 65d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 65d, the processing chamber 1 Is supplied to. The supply and stop of the H 2 gas from the storage tank 65d to the processing container 1 is performed by opening and closing the valve 65e. By temporarily storing the H 2 gas in the storage tank 65d in this way, a relatively large flow rate of the H 2 gas can be stably supplied into the processing container 1.
 Nガス供給源66aは、ガス供給ライン66bを介してパージガスであるNガスを処理容器1内に供給する。ガス供給ライン66bには、上流側から流量制御器66c、貯留タンク66d及びバルブ66eが介設されている。ガス供給ライン66bのバルブ66eの下流側は、ガス供給ライン64bに接続されている。Nガス供給源66aから供給されるNガスは処理容器1内に供給される前に貯留タンク66dで一旦貯留され、貯留タンク66d内で所定の圧力に昇圧された後、処理容器1内に供給される。貯留タンク66dから処理容器1へのNガスの供給及び停止は、バルブ66eの開閉により行われる。このように貯留タンク66dへNガスを一旦貯留することで、比較的大きい流量のNガスを処理容器1内に安定して供給できる。 N 2 gas supply source 66a supplies a N 2 gas is a purge gas through the gas supply line 66b to the processing chamber 1. A flow rate controller 66c, a storage tank 66d, and a valve 66e are interposed in the gas supply line 66b from the upstream side. The downstream side of the valve 66e of the gas supply line 66b is connected to the gas supply line 64b. N 2 gas supplied from N 2 gas supply source 66a is temporarily stored in the storage tank 66d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 66d, the processing chamber 1 Is supplied to. Supply and stop of the N 2 gas from the storage tank 66d to the processing chamber 1 is performed by opening and closing the valve 66e. By temporarily storing the N 2 gas in the storage tank 66d in this way, a relatively large flow rate of the N 2 gas can be stably supplied into the processing container 1.
 Nガス供給源67aは、ガス供給ライン67bを介してキャリアガスであるNガスを処理容器1内に供給する。ガス供給ライン67bには、上流側から流量制御器67c、バルブ67e及びオリフィス67fが介設されている。ガス供給ライン67bのオリフィス67fの下流側は、ガス供給ライン64bに接続されている。Nガス供給源67aから供給されるNガスはウエハWの成膜中に連続して処理容器1内に供給される。Nガス供給源67aから処理容器1へのNガスの供給及び停止は、バルブ67eの開閉により行われる。貯留タンク65d,66dによってガス供給ライン65b,66bには比較的大きい流量でガスが供給されるが、オリフィス67fによってガス供給ライン65b,66bに供給されるガスがNガス供給ライン67bに逆流することが抑制される。 The N 2 gas supply source 67a supplies N 2 gas, which is a carrier gas, into the processing container 1 via the gas supply line 67b. A flow rate controller 67c, a valve 67e, and an orifice 67f are interposed in the gas supply line 67b from the upstream side. The downstream side of the orifice 67f of the gas supply line 67b is connected to the gas supply line 64b. N 2 gas supplied from N 2 gas supply source 67a is supplied into the processing vessel 1 continuously during deposition of the wafer W. The supply and stop of the N 2 gas from the N 2 gas supply source 67a to the processing container 1 is performed by opening and closing the valve 67e. Storage tank 65d, the gas supply line 65b by 66d, the gas is supplied at a relatively large flow rate to 66b, the gas supplied by the orifice 67f gas supply line 65b, to 66b from flowing back to the N 2 gas supply line 67b Is suppressed.
 制御部9は、例えばコンピュータであり、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置等を備える。CPUは、ROM又は補助記憶装置に格納されたプログラムに基づいて動作し、基板処理装置100の動作を制御する。制御部9は、基板処理装置100の内部に設けられていてもよく、外部に設けられていてもよい。制御部9が基板処理装置100の外部に設けられている場合、制御部9は、有線又は無線等の通信手段によって、基板処理装置100を制御できる。 The control unit 9 is, for example, a computer, and includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an auxiliary storage device, and the like. The CPU operates based on a program stored in the ROM or the auxiliary storage device, and controls the operation of the substrate processing device 100. The control unit 9 may be provided inside the substrate processing device 100, or may be provided outside. When the control unit 9 is provided outside the board processing device 100, the control unit 9 can control the board processing device 100 by a communication means such as wire or wireless.
 また、制御部9は、原料容器71から貯留タンク61dに供給される原料ガス供給量(流量)を算出する機能を有している。具体的には、マスフローメータ77の検出値m1、マスフローコントローラ74の検出値m2、マスフローコントローラ82の検出値m3とすると、原料容器71から貯留タンク61dに供給される原料ガス供給量は、「m1-(m2+m3)」で算出することができる。 Further, the control unit 9 has a function of calculating the amount of raw material gas supplied (flow rate) from the raw material container 71 to the storage tank 61d. Specifically, assuming that the detection value m1 of the mass flow meter 77, the detection value m2 of the mass flow controller 74, and the detection value m3 of the mass flow controller 82, the amount of raw material gas supplied from the raw material container 71 to the storage tank 61d is "m1". -(M2 + m3) "can be calculated.
 また、制御部9は、原料容器71内の固体原料の残量を算出する機能を有している。具体的には、算出した原料ガス供給量の積算値に基づいて固体原料の総使用量を算出する。そして、固体原料の初期充填量と算出した総使用量とに基づいて、固体原料の残量を算出する。 Further, the control unit 9 has a function of calculating the remaining amount of the solid raw material in the raw material container 71. Specifically, the total amount of solid raw materials used is calculated based on the calculated integrated value of the raw material gas supply amount. Then, the remaining amount of the solid raw material is calculated based on the initial filling amount of the solid raw material and the calculated total usage amount.
 次に、基板処理装置100の動作の一例について、ALDプロセスによりタングステン膜を成膜する場合を例に図2及び図3を用いて説明する。図2は、基板処理装置100の動作の一例を示すフローチャートである。 Next, an example of the operation of the substrate processing apparatus 100 will be described with reference to FIGS. 2 and 3 by taking the case of forming a tungsten film by the ALD process as an example. FIG. 2 is a flowchart showing an example of the operation of the substrate processing apparatus 100.
 ステップS101において、ウエハWを搬入する。まず、図1に示す基板処理装置100の処理容器1内にウエハWを搬入する。具体的には、載置台2を搬送位置に下降させた状態でゲートバルブ12を開く。続いて、搬送アーム(図示せず)によりウエハWを、搬入出口11を介して処理容器1内に搬入し、ヒータ21により所定温度(例えば、350℃~550℃)に加熱された載置台2上に載置する。続いて、載置台2を処理位置まで上昇させる。載置台2が処理位置まで上昇することにより、区画部材16及びカバー部材22によって、処理容器1の内部が上下に区画される。区画された処理容器1内の空間のうち、処理空間38を含み、載置台2よりも上側の上側空間は、排気機構42によって所定の真空度まで減圧される。 In step S101, the wafer W is carried in. First, the wafer W is carried into the processing container 1 of the substrate processing apparatus 100 shown in FIG. Specifically, the gate valve 12 is opened with the mounting table 2 lowered to the transport position. Subsequently, the wafer W is carried into the processing container 1 through the carry-in outlet 11 by a transport arm (not shown), and the mounting table 2 is heated to a predetermined temperature (for example, 350 ° C. to 550 ° C.) by the heater 21. Place on top. Subsequently, the mounting table 2 is raised to the processing position. When the mounting table 2 rises to the processing position, the inside of the processing container 1 is vertically partitioned by the partition member 16 and the cover member 22. Of the partitioned space in the processing container 1, the upper space including the processing space 38 and above the mounting table 2 is decompressed to a predetermined degree of vacuum by the exhaust mechanism 42.
 ステップS102において、処理空間38の圧力を調整する。具体的には、バルブ63e,67eを開き、バルブ61e,62e,64e,65e,66eを閉じる。これにより、Nガス供給源63a,67aからNガスを処理空間38内に供給して圧力を上昇させ、載置台2上のウエハWの温度を安定させる。なお、区画された処理容器1内の空間のうち、載置台2よりも下側の下側空間は、図示しないガス供給機構によって不活性ガス(例えば、Nガス)が供給され、上側空間よりも高圧になる。これにより、シャワーヘッド3から処理空間38に供給されたガスは、環状隙間39、排気ダクト13、排気口13b、排気配管41を介して、排気機構42に排気される。 In step S102, the pressure in the processing space 38 is adjusted. Specifically, the valves 63e and 67e are opened, and the valves 61e, 62e, 64e, 65e and 66e are closed. Thus, N 2 gas supply source 63a, 67a of the N 2 gas to increase the pressure supplied to the processing space 38 from stabilizing the temperature of the wafer W on the mounting table 2. Of the partitioned space in the processing container 1, the lower space below the mounting table 2 is supplied with an inert gas (for example, N 2 gas) by a gas supply mechanism (not shown), and is more than the upper space. Also becomes high pressure. As a result, the gas supplied from the shower head 3 to the processing space 38 is exhausted to the exhaust mechanism 42 via the annular gap 39, the exhaust duct 13, the exhaust port 13b, and the exhaust pipe 41.
 ステップS103において、キャリアガス及び希釈ガスのプリフローをエバックライン91,93に流す。具体的には、制御部9は、三方弁75aを第2状態とする。これにより、キャリアガス供給源73から供給されるキャリアガスは、マスフローコントローラ74、三方弁75aを介して、エバックライン91に流れる。即ち、キャリアガスをマスフローコントローラ74を介してエバックライン91に流すことにより、キャリアガスを原料容器71へと流す前に、予めマスフローコントローラ74の流量を立ち上げておく。また、エバックライン91にオリフィス92が設けられていることにより、キャリアガス供給ライン72内は、所定の圧力となる。また、制御部9は、三方弁83を第2状態とする。これにより、希釈ガス供給源81から供給される希釈ガスは、マスフローコントローラ82、三方弁83を介して、エバックライン93に流れる。即ち、希釈ガスをマスフローコントローラ82を介してエバックライン93に流すことにより、予めマスフローコントローラ82の流量を立ち上げておく。また、エバックライン93にオリフィス94が設けられていることにより、希釈ガス供給ライン80内は、所望の圧力となる。 In step S103, the preflow of the carrier gas and the diluted gas is flowed to the Evaclines 91 and 93. Specifically, the control unit 9 sets the three-way valve 75a in the second state. As a result, the carrier gas supplied from the carrier gas supply source 73 flows to the evacline 91 via the mass flow controller 74 and the three-way valve 75a. That is, by flowing the carrier gas to the Evacline 91 via the mass flow controller 74, the flow rate of the mass flow controller 74 is raised in advance before the carrier gas is flowed to the raw material container 71. Further, since the orifice 92 is provided in the evac line 91, the pressure inside the carrier gas supply line 72 becomes a predetermined pressure. Further, the control unit 9 puts the three-way valve 83 in the second state. As a result, the diluted gas supplied from the diluted gas supply source 81 flows to the Evacline 93 via the mass flow controller 82 and the three-way valve 83. That is, the flow rate of the mass flow controller 82 is raised in advance by flowing the diluted gas through the mass flow controller 82 to the evacline 93. Further, since the orifice 94 is provided in the Evac line 93, the pressure inside the dilution gas supply line 80 becomes a desired pressure.
 マスフローコントローラ74,82の流量の立ち上げが終了すると、制御部9は、三方弁75a,83をそれぞれ第1状態とする。また、開閉バルブ75b,76a,76bを開ける。これにより、キャリアガス供給源73からマスフローコントローラ74で流量調整されたキャリアガス(Nガス)が原料容器71に供給される。原料容器71内の原料ガスは、キャリアガスと共に原料容器71から排出される。原料ガス及びキャリアガスは、希釈ガスと混合して、マスフローメータ77を流れ、貯留タンク61dに供給される。また、制御部9は、開閉バルブ96を開け、貯留タンク61dからエバックライン95にガスを流してもよい。貯留タンク61d内の初期のガスをエバックライン95に排出することにより、貯留タンク61d内の原料ガスを安定化させることができる。そして、制御部9は、開閉バルブ96を閉じる。貯留タンク61d内には、原料ガス、キャリアガス、希釈ガスが供給されて、貯留タンク61d内の圧力は昇圧される。 When the start-up of the flow rates of the mass flow controllers 74 and 82 is completed, the control unit 9 puts the three- way valves 75a and 83 in the first state, respectively. Also, the on-off valves 75b, 76a, 76b are opened. As a result, the carrier gas (N 2 gas) whose flow rate is adjusted by the mass flow controller 74 is supplied from the carrier gas supply source 73 to the raw material container 71. The raw material gas in the raw material container 71 is discharged from the raw material container 71 together with the carrier gas. The raw material gas and the carrier gas are mixed with the diluting gas, flow through the mass flow meter 77, and are supplied to the storage tank 61d. Further, the control unit 9 may open the on-off valve 96 and allow gas to flow from the storage tank 61d to the evacline 95. By discharging the initial gas in the storage tank 61d to the evacline 95, the raw material gas in the storage tank 61d can be stabilized. Then, the control unit 9 closes the on-off valve 96. The raw material gas, the carrier gas, and the diluting gas are supplied into the storage tank 61d, and the pressure in the storage tank 61d is increased.
 また、貯留タンク62d内には、Nガス供給源62aからNガスが供給されて、貯留タンク62d内の圧力は昇圧される。また、貯留タンク65d内には、Hガス供給源65aからHガスが供給されて、貯留タンク65d内の圧力は昇圧される。また、貯留タンク66d内には、Nガス供給源66aからNガスが供給されて、貯留タンク66d内の圧力は昇圧される。 Further, N 2 gas is supplied from the N 2 gas supply source 62a into the storage tank 62d, and the pressure in the storage tank 62d is boosted. Further, H 2 gas is supplied from the H 2 gas supply source 65a into the storage tank 65d, and the pressure in the storage tank 65d is boosted. Further, N 2 gas is supplied from the N 2 gas supply source 66a into the storage tank 66d, and the pressure in the storage tank 66d is boosted.
 ステップS104において、実ウエハプロセスとしてウエハWにタングステン膜を成膜する成膜処理を行う。ここで、ステップS104における成膜処理について、図3を用いて説明する。図3は、基板処理装置100の成膜処理におけるガス供給シーケンスの一例を示す図である。 In step S104, a film forming process for forming a tungsten film on the wafer W is performed as an actual wafer process. Here, the film forming process in step S104 will be described with reference to FIG. FIG. 3 is a diagram showing an example of a gas supply sequence in the film forming process of the substrate processing apparatus 100.
 図3に示されるALDプロセスは、WClガスを供給する工程S501、Nガスを供給する工程S502、Hガスを供給する工程S503、及びNガスを供給する工程S504を所定サイクル繰り返し、WClガスとHガスを交互に供給してウエハWの上に所望の膜厚のタングステン膜を形成するプロセスである。なお、図3では、1サイクルのみを示す。 ALD process depicted in Figure 3, WCl 6 for supplying gas step S501, N 2 gas feeding step S502, H 2 gas feeding step S503, and N 2 gas is repeated a predetermined cycle feeding step S504 of, This is a process of alternately supplying WCl 6 gas and H 2 gas to form a tungsten film having a desired film thickness on the wafer W. Note that FIG. 3 shows only one cycle.
 WClガスを供給する工程S501は、WClガスを処理空間38に供給する工程である。WClガスを供給する工程S501では、まず、バルブ63e,67eを開いた状態で、Nガス供給源63a,67aから、ガス供給ライン63b,67bを経てNガス(キャリアNガス)を供給し続ける。また、バルブ61eを開くことにより、WClガス供給機構61aからガス供給ライン61bを経てWClガスを処理容器1内の処理空間38に供給する。このとき、WClガスは、貯留タンク61dに一旦貯留された後に処理容器1内に供給される。また、バルブ64eを開くことにより、添加還元ガスとしてのHガスを処理空間38に供給する。WClガスを供給する工程501において、WClガスと同時に添加還元ガスとしてのHを供給することにより、供給されたWClガスが活性化され、その後のHガスを供給する工程503の際の成膜反応が生じやすくなる。そのため、高いステップカバレッジを維持し、且つ1サイクルあたりの堆積膜厚を厚くして成膜速度を大きくすることができる。添加還元ガスとしてのHの流量としては、WClガスを供給する工程501においてCVD反応が生じない程度の流量とすることができる。 The step S501 of supplying the WCl 6 gas is a step of supplying the WCl 6 gas to the processing space 38. In step S501 supplies a WCl 6 gas, first, valve 63e, with open 67e, N 2 gas supply source 63a, from 67a, the gas supply line 63 b, N 2 gas through 67b (carrier N 2 gas) Continue to supply. Further, by opening the valve 61e, and supplies the WCl 6 gas into the processing space 38 in the processing chamber 1 via a gas supply line 61b from WCl 6 gas supply mechanism 61a. At this time, the WCl 6 gas is once stored in the storage tank 61d and then supplied into the processing container 1. Further, by opening the valve 64e, an H 2 gas is supplied as an additive reduction gas into the processing space 38. In step 501 of supplying WCl 6 gas, by supplying H 2 as an added reducing gas at the same time as WCl 6 gas, the supplied WCl 6 gas is activated, and in step 503 of supplying H 2 gas thereafter. The film formation reaction is likely to occur. Therefore, it is possible to maintain high step coverage and increase the deposition film thickness per cycle to increase the deposition rate. The flow rate of H 2 as the added reduction gas can be set to such a flow rate that the CVD reaction does not occur in the step 501 of supplying the WCl 6 gas.
 Nガスを供給する工程S502は、処理空間38の余剰のWClガス等をパージする工程である。Nガスを供給する工程S502では、ガス供給ライン63b,67bを介してのNガス(キャリアNガス)の供給を継続した状態で、バルブ61eを閉じてWClガスの供給を停止する。また、バルブ62e,66eを開く。これにより、Nガス供給源62a,66aからガス供給ライン62b,66bを経てNガス(パージNガス)を処理容器1内の処理空間38に供給する。このとき、Nガスは、貯留タンク62d,66dに一旦貯留された後に処理容器1内に供給されるので、比較的大きい流量を供給することができる。これにより、処理空間38の余剰のWClガス等をパージする。 The step S502 for supplying the N 2 gas is a step of purging the excess WCl 6 gas or the like in the processing space 38. In N 2 gas process for supplying S502, the gas supply line 63 b, while continuing the supply of N 2 gas through 67b (carrier N 2 gas), to stop the supply of WCl 6 gas by closing the valve 61e .. Also, the valves 62e and 66e are opened. Thus, it supplied to the N 2 gas supply source 62a, the processing space 38 of the processing chamber 1 gas supply line 62b from 66a, via 66b N 2 gas (purge N 2 gas). At this time, since the N 2 gas is temporarily stored in the storage tanks 62d and 66d and then supplied into the processing container 1, a relatively large flow rate can be supplied. As a result, excess WCl 6 gas or the like in the processing space 38 is purged.
 Hガスを供給する工程S503は、Hガスを処理空間38に供給する工程である。Hガスを供給する工程S503では、ガス供給ライン63b,67bを介してNガス(キャリアNガス)の供給を継続した状態で、バルブ62e,66eを閉じてNガス(パージNガス)の供給を停止する。また、バルブ65eを開く。これにより、Hガス供給源65aからガス供給ライン65bを経てHガスを処理空間38に供給する。このとき、Hガスは、貯留タンク65dに一旦貯留された後に処理容器1内に供給される。Hガスを供給する工程S503により、ウエハW上に吸着したWClが還元される。このときのHガスの流量は、十分に還元反応が生じる量とすることができる。なお、Hガス供給源64aからガス供給ライン64bを介して処理空間38に供給される添加還元ガスとしてのHガスの流量は、Hガス供給源65aからガス供給ライン65bを介して処理空間38に供給されるウエハW上に吸着したWClを還元するためのHガスの流量よりも小さい。 The step S503 of supplying the H 2 gas is a step of supplying the H 2 gas to the processing space 38. In the step S503 of supplying the H 2 gas, the valves 62e and 66e are closed and the N 2 gas (purge N 2) is closed while the supply of the N 2 gas (carrier N 2 gas) is continued through the gas supply lines 63b and 67b. Stop the supply of gas). Also, the valve 65e is opened. Thus, an H 2 gas is supplied into the processing space 38 through the gas supply line 65b from the H 2 gas supply source 65a. At this time, the H 2 gas is once stored in the storage tank 65d and then supplied into the processing container 1. WCl 6 adsorbed on the wafer W is reduced by the step S503 for supplying the H 2 gas. The flow rate of the H 2 gas at this time can be set to an amount that sufficiently causes a reduction reaction. The flow rate of H 2 gas as an additive reducing gas supplied from the H 2 gas supply source 64a to the processing space 38 through the gas supply line 64b via a gas supply line 65b from the H 2 gas supply source 65a processing It is smaller than the flow rate of H 2 gas for reducing WCl 6 adsorbed on the wafer W supplied to the space 38.
 Nガスを供給する工程S504は、処理空間38の余剰のHガスをパージする工程である。Nガスを供給する工程S504では、ガス供給ライン63b,67bを介してのNガス(キャリアNガス)の供給を継続した状態で、バルブ65eを閉じてHガスの供給を停止する。また、バルブ62e,66eを開く。これにより、Nガス供給源62a,66aからガス供給ライン62b,66bを経てNガス(パージNガス)を処理容器1内の処理空間38に供給する。このとき、Nガスは、貯留タンク62d,66dに一旦貯留された後に処理容器1内に供給されるので、比較的大きい流量を供給することができる。これにより、処理空間38の余剰のHガス等をパージする。 The step S504 for supplying the N 2 gas is a step of purging the excess H 2 gas in the processing space 38. In N 2 gas feeding step S504, the gas supply line 63 b, while continuing the supply of N 2 gas through 67b (carrier N 2 gas), to stop the supply of the H 2 gas by closing the valve 65e .. Also, the valves 62e and 66e are opened. Thus, it supplied to the N 2 gas supply source 62a, the processing space 38 of the processing chamber 1 gas supply line 62b from 66a, via 66b N 2 gas (purge N 2 gas). At this time, since the N 2 gas is temporarily stored in the storage tanks 62d and 66d and then supplied into the processing container 1, a relatively large flow rate can be supplied. As a result, excess H 2 gas or the like in the processing space 38 is purged.
 以上のサイクルを繰り返すことで、ウエハWにタングステン膜を成膜する。 By repeating the above cycle, a tungsten film is formed on the wafer W.
 図4は、検出値に基づいて算出される原料ガス供給量を模式的に示すグラフの一例である。横軸は時間を示し、縦軸は算出された原料ガス供給量(原料流量)を示す。 FIG. 4 is an example of a graph schematically showing the amount of raw material gas supplied based on the detected value. The horizontal axis shows time, and the vertical axis shows the calculated raw material gas supply amount (raw material flow rate).
 ここで、参考例に示す基板処理装置100の動作は、ステップS103に示すキャリアガス及び希釈ガスのプリフローをエバックライン91,93に流す処理を行わずに、ステップS104に示す実ウエハプロセスを行う。参考例における原料ガス供給量(原料流量)の算出値を破線で示す。図4の破線に示すように、原料供給の開始時において、原料容器71内の原料蒸気圧からは考えられない大きな値を示している。これは、マスフローコントローラ74,82における流量の立ち上がり遅延(遅延時間T)によって、検出値m2,m3が実際の流量よりも小さく検出されることによる。このため、式「m1-(m2+m3)」で算出する原料ガス供給量は実際よりも大きく算出される。 Here, in the operation of the substrate processing apparatus 100 shown in the reference example, the actual wafer process shown in step S104 is performed without performing the process of flowing the preflow of the carrier gas and the diluted gas shown in step S103 to the Evaclines 91 and 93. The calculated value of the raw material gas supply amount (raw material flow rate) in the reference example is shown by a broken line. As shown by the broken line in FIG. 4, at the start of raw material supply, a large value that cannot be considered from the raw material vapor pressure in the raw material container 71 is shown. This is because the detected values m2 and m3 are detected to be smaller than the actual flow rate due to the rise delay (delay time T) of the flow rate in the mass flow controllers 74 and 82. Therefore, the amount of raw material gas supplied by the formula “m1- (m2 + m3)” is calculated to be larger than the actual amount.
 このような立ち上がり時の誤差により、原料容器71から貯留タンク61dに供給される原料ガス供給量を精度よく算出することができなくなるおそれがある。また、原料容器71における固体原料の残量は、算出される原料ガス供給量の積算値に基づいて算出される。このため、立ち上がり時の誤差が累積することにより、原料容器71における固体原料の残量を精度よく算出することができなくなるおそれがある。 Due to such an error at the time of rising, there is a possibility that the amount of raw material gas supplied from the raw material container 71 to the storage tank 61d cannot be calculated accurately. Further, the remaining amount of the solid raw material in the raw material container 71 is calculated based on the integrated value of the calculated raw material gas supply amount. Therefore, there is a possibility that the remaining amount of the solid raw material in the raw material container 71 cannot be calculated accurately due to the accumulation of errors at the time of rising.
 これに対し、本実施形態に係る基板処理装置100によれば、ステップS103に示すように、キャリアガスを原料容器71に供給する前に、キャリアガスのプリフローをエバックライン91に流すことによって、マスフローコントローラ74の流量を予め立ち上げておくことができる。また、希釈ガスを貯留タンク61dに供給する前に、希釈ガスのプリフローをエバックライン93に流すことによって、マスフローコントローラ82の流量を予め立ち上げておくことができる。 On the other hand, according to the substrate processing apparatus 100 according to the present embodiment, as shown in step S103, the mass flow is caused by flowing the preflow of the carrier gas to the evacline 91 before supplying the carrier gas to the raw material container 71. The flow rate of the controller 74 can be increased in advance. Further, the flow rate of the mass flow controller 82 can be raised in advance by flowing the preflow of the diluted gas to the Evacline 93 before supplying the diluted gas to the storage tank 61d.
 本実施形態に係る基板処理装置100における原料ガス供給量(原料流量)の算出値を実線で示す。原料供給の開始時におけるマスフローコントローラ74,82の流量の立ち上がり遅延を抑制することができる。これにより、図4の実線に示すように、算出される原料ガス供給量(原料流量)の誤差を低減することができる。即ち、本実施形態に係る基板処理装置100によれば、原料ガス供給量を精度よく算出することができる。また、原料容器71における固体原料の残量を精度よく算出することができる。 The calculated value of the raw material gas supply amount (raw material flow rate) in the substrate processing apparatus 100 according to the present embodiment is shown by a solid line. It is possible to suppress the rise delay of the flow rate of the mass flow controllers 74 and 82 at the start of raw material supply. As a result, as shown by the solid line in FIG. 4, the error of the calculated raw material gas supply amount (raw material flow rate) can be reduced. That is, according to the substrate processing apparatus 100 according to the present embodiment, the amount of raw material gas supplied can be calculated accurately. In addition, the remaining amount of the solid raw material in the raw material container 71 can be calculated accurately.
 原料容器71における固体原料の残量を精度よく算出することにより、原料容器71の交換タイミングを精度よく判断することができる。また、原料容器71内の固体原料の使用率を向上させることができる。これにより、高価な固体原料を効率よく使用することができる。 By accurately calculating the remaining amount of the solid raw material in the raw material container 71, the replacement timing of the raw material container 71 can be accurately determined. In addition, the usage rate of the solid raw material in the raw material container 71 can be improved. This makes it possible to efficiently use expensive solid raw materials.
 また、エバックライン91,93にオリフィス92,94等の圧力調整部を設けることにより、ステップS104の開始時におけるキャリアガス供給ライン72、希釈ガス供給ライン80内の圧力を、ステップS104に示す実ウエハプロセス中の状態に近づけることができる。これにより、原料供給の開始時から、各ガス供給ライン内の圧力が安定化するまでの時間を短くすることができる。特に、コンダクタンスによる配管内圧力の変動影響が大きい、キャリアガス供給源73から、キャリアガス供給ライン72、原料容器71、ガス供給ライン61bを通り、貯留タンク61dへと通じるラインにおける圧力勾配状態を、早期に実ウエハプロセス中の状態に安定化させることができる。 Further, by providing pressure adjusting portions such as orifices 92 and 94 on the evac lines 91 and 93, the pressure in the carrier gas supply line 72 and the dilution gas supply line 80 at the start of step S104 is shown in the actual wafer in step S104. You can get closer to the state during the process. As a result, the time from the start of raw material supply until the pressure in each gas supply line stabilizes can be shortened. In particular, the pressure gradient state in the line leading from the carrier gas supply source 73 to the storage tank 61d through the carrier gas supply line 72, the raw material container 71, and the gas supply line 61b, which is greatly affected by the fluctuation of the pressure in the pipe due to conductance. It can be stabilized to the state during the actual wafer process at an early stage.
 なお、オリフィス92,94等の圧力調整部がキャリアガス供給ライン72、希釈ガス供給ライン80内に形成する圧力は、実ウエハプロセス中の状態よりも高い圧力としてもよい。即ち、三方弁75aよりも上流側のキャリアガス供給ライン72の圧力を実ウエハプロセス中の状態よりも高い圧力としておくことで、三方弁75aを第1状態から第2状態へと切り換えた際、三方弁75aよりも下流側のキャリアガス供給ライン72等の圧力を速やかに上昇させ、早期に実ウエハプロセス中の状態に安定化させることができる。 The pressure formed by the pressure adjusting portions such as the orifices 92 and 94 in the carrier gas supply line 72 and the dilution gas supply line 80 may be higher than the state during the actual wafer process. That is, when the pressure of the carrier gas supply line 72 on the upstream side of the three-way valve 75a is set to be higher than the pressure during the actual wafer process, the three-way valve 75a is switched from the first state to the second state. The pressure of the carrier gas supply line 72 and the like on the downstream side of the three-way valve 75a can be quickly increased to stabilize the state during the actual wafer process at an early stage.
 また、処理空間38に供給される原料ガス供給量を更に厳密に制御するため、ステップS104に示す実ウエハプロセスの前に、貯留タンク61dに充填した原料ガスをエバックライン95で排気するステップを導入することもある。このステップを導入した場合においても、原料ガスの捨て量を低減することができる。 Further, in order to more strictly control the amount of raw material gas supplied to the processing space 38, a step of exhausting the raw material gas filled in the storage tank 61d with the Evacline 95 is introduced before the actual wafer process shown in step S104. Sometimes. Even when this step is introduced, the amount of raw material gas discarded can be reduced.
 以上、基板処理装置100による本実施形態の成膜方法について説明したが、本開示は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形、改良が可能である。 Although the film forming method of the present embodiment by the substrate processing apparatus 100 has been described above, the present disclosure is not limited to the above-described embodiment and the like, and is within the scope of the gist of the present disclosure described in the claims. , Various modifications and improvements are possible.
 原料容器71内の固体原料はWClであるものとして説明したが、これに限られるものではなく、その他の固体原料や液体原料についても適用することができる。また、キャリアガス及び希釈ガスはNガスであるものとして説明したが、これに限られるものではなく、固体原料や実ウエハプロセスに応じて適宜選択することができる。また、基板処理装置100は、ウエハWに成膜処理を施すものとして説明したが、これに限られるものではない。 Although the solid raw material in the raw material container 71 has been described as being WCl 6 , the present invention is not limited to this, and other solid raw materials and liquid raw materials can also be applied. Further, the carrier gas and the diluent gas have been described as being N 2 gas, but the present invention is not limited to this, and can be appropriately selected depending on the solid raw material and the actual wafer process. Further, although the substrate processing apparatus 100 has been described as performing a film forming process on the wafer W, the present invention is not limited to this.
 また、希釈ガスはマスフローメータ77の上流側に供給される構成として説明したが、これに限られるものではなく、マスフローメータ77の下流側に供給する構成であってもよい。また、希釈ガス供給ライン80はなくてもよい。このような構成の場合、原料ガス供給量は、マスフローメータ77の検出値m1と、マスフローコントローラ74の検出値m2の差「m1-m2」で算出される。このような構成においても、実ウエハプロセス(S104)の前にキャリアガスのプリフローをエバックライン91に流すことにより、原料ガス供給量を精度よく算出することができる。 Although the diluted gas has been described as being supplied to the upstream side of the mass flow meter 77, the present invention is not limited to this, and the diluted gas may be supplied to the downstream side of the mass flow meter 77. Further, the dilution gas supply line 80 may not be provided. In the case of such a configuration, the raw material gas supply amount is calculated by the difference "m1-m2" between the detection value m1 of the mass flow meter 77 and the detection value m2 of the mass flow controller 74. Even in such a configuration, the raw material gas supply amount can be calculated accurately by flowing the carrier gas preflow through the Evacline 91 before the actual wafer process (S104).
 また、キャリアガス供給源73から供給されるキャリアガスを、原料容器71に供給するか、エバックライン91に供給するかを切り替える第1の切替部として三方弁75aを用いるものとして説明したが、これに限るものではない。例えば、第1の切替部として、複数の開閉バルブ等を用いてもよい。例えば、第1の切替部として、エバックライン91との分岐部よりも下流側(原料容器71の側)かつ、開閉バルブ75bより上流側のキャリアガス供給ライン72に設けられた開閉バルブと、エバックライン91に設けられた開閉バルブと、を用いてもよい。同様に、希釈ガス供給源81から供給される希釈ガスを、マスフローメータ77に供給するか、エバックライン93に供給するかを切り替える第2の切替部として三方弁75aを用いるものとして説明したが、これに限るものではない。例えば、第2の切替部として、複数の開閉バルブ等を用いてもよい。例えば、第2の切替部として、エバックライン93との分岐部よりも下流側(マスフローメータ77の側)かつ、マスフローメータ77より上流側の希釈ガス供給ライン80に設けられた開閉バルブと、エバックライン93に設けられた開閉バルブと、を用いてもよい。 Further, it has been described that the three-way valve 75a is used as the first switching unit for switching whether the carrier gas supplied from the carrier gas supply source 73 is supplied to the raw material container 71 or the evacline 91. It is not limited to. For example, a plurality of open / close valves or the like may be used as the first switching unit. For example, as the first switching portion, an on-off valve provided on the carrier gas supply line 72 on the downstream side (the side of the raw material container 71) of the branch portion with the evac line 91 and on the upstream side of the on-off valve 75b, and the evac An on-off valve provided on the line 91 may be used. Similarly, the three-way valve 75a has been described as a second switching unit for switching whether the dilution gas supplied from the dilution gas supply source 81 is supplied to the mass flow meter 77 or the evacline 93. It is not limited to this. For example, a plurality of open / close valves or the like may be used as the second switching unit. For example, as the second switching portion, an on-off valve provided on the dilution gas supply line 80 on the downstream side (the side of the mass flow meter 77) and the upstream side of the mass flow meter 77 from the branch portion with the Evac line 93, and the Evac. An on-off valve provided on the line 93 may be used.
 また、キャリアガスをエバックライン91に流す際、キャリアガス供給ライン72の圧力を所定の圧力とする第1の圧力調整部として、オリフィス92を用いるものとして説明したが、これに限られるものではない。例えば、第1の圧力調整部として、コントロールバルブ等を用いてもよい。また、三方弁75aよりも上流側に圧力モニタを設けて、圧力モニタの値に基づいてコントロールバルブを制御してもよい。同様に、希釈ガスをエバックライン93に流す際、希釈ガス供給ライン80の圧力を所定の圧力とする第2の圧力調整部として、オリフィス94を用いるものとして説明したが、これに限られるものではない。例えば、第2の圧力調整部として、コントロールバルブ等を用いてもよい。また、三方弁83よりも上流側に圧力モニタを設けて、圧力モニタの値に基づいてコントロールバルブを制御してもよい。 Further, it has been described that the orifice 92 is used as the first pressure adjusting unit in which the pressure of the carrier gas supply line 72 is set to a predetermined pressure when the carrier gas is flowed through the evac line 91, but the present invention is not limited to this. .. For example, a control valve or the like may be used as the first pressure adjusting unit. Further, a pressure monitor may be provided on the upstream side of the three-way valve 75a to control the control valve based on the value of the pressure monitor. Similarly, it has been described that the orifice 94 is used as the second pressure adjusting unit in which the pressure of the dilution gas supply line 80 is set to a predetermined pressure when the diluent gas is flowed through the Evacline 93, but the present invention is not limited to this. Absent. For example, a control valve or the like may be used as the second pressure adjusting unit. Further, a pressure monitor may be provided on the upstream side of the three-way valve 83, and the control valve may be controlled based on the value of the pressure monitor.
 尚、本願は、2019年9月12日に出願した日本国特許出願2019-166327号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。 Note that this application claims priority based on Japanese Patent Application No. 2019-166327 filed on September 12, 2019, and the entire contents of these Japanese patent applications are incorporated herein by reference.
W     ウエハ
100   基板処理装置
1     処理容器
2     載置台
6     ガス供給機構(ガス供給装置)
9     制御部(原料供給量算出部、原料残量算出部)
38    処理空間
41    排気配管
42    排気機構
61a   WClガス供給機構
61b   ガス供給ライン(原料ガス供給路)
61d   貯留タンク
61e   バルブ
71    原料容器
71a   ヒータ
72    キャリアガス供給ライン(キャリアガス供給路)
73    キャリアガス供給源
74    マスフローコントローラ(第1のマスフローコントローラ)
75a   三方弁(第1の切替部)
77    マスフローメータ
78    バイパスライン(バイパス流路)
79    開閉バルブ
80    希釈ガス供給ライン(希釈ガス供給路)
81    希釈ガス供給源
82    マスフローコントローラ(第2のマスフローコントローラ)
83    三方弁(第2の切替部)
91    エバックライン(第1のエバックライン)
92    オリフィス(第1の圧力調整部)
93    エバックライン(第2のエバックライン)
94    オリフィス(第2の圧力調整部)
95    エバックライン
96    開閉バルブ
W Wafer 100 Substrate processing device 1 Processing container 2 Mounting table 6 Gas supply mechanism (gas supply device)
9 Control unit (raw material supply amount calculation unit, raw material remaining amount calculation unit)
38 Processing space 41 Exhaust piping 42 Exhaust mechanism 61a WCl 6 Gas supply mechanism 61b Gas supply line (raw material gas supply path)
61d Storage tank 61e Valve 71 Raw material container 71a Heater 72 Carrier gas supply line (carrier gas supply path)
73 Carrier gas supply source 74 Mass flow controller (first mass flow controller)
75a three-way valve (first switching part)
77 Mass flow meter 78 Bypass line (bypass flow path)
79 Open / close valve 80 Diluted gas supply line (diluted gas supply path)
81 Diluted gas supply source 82 Mass flow controller (second mass flow controller)
83 Three-way valve (second switching part)
91 Evacline (1st Evacline)
92 Orifice (first pressure regulator)
93 Evacline (2nd Evacline)
94 Orifice (second pressure regulator)
95 Evacline 96 Open / Close valve

Claims (11)

  1.  原料容器と、
     キャリアガス供給源と、
     前記キャリアガス供給源から前記原料容器にキャリアガスを供給するキャリアガス供給路と、
     前記キャリアガス供給路に設けられる第1のマスフローコントローラと、
     前記原料容器から処理容器にキャリアガスとともに原料ガスを供給する原料ガス供給路と、
     前記原料ガス供給路に設けられるマスフローメータと、
     前記キャリアガス供給路の前記第1のマスフローコントローラよりも下流に設けられる第1のエバックラインと、
     前記キャリアガス供給源から供給されるキャリアガスを、前記原料容器に供給するか、前記第1のエバックラインに供給するかを切り替える第1の切替部と、
    を備える、ガス供給装置。
    Raw material container and
    Carrier gas source and
    A carrier gas supply path for supplying carrier gas from the carrier gas supply source to the raw material container, and
    A first mass flow controller provided in the carrier gas supply path and
    A raw material gas supply path for supplying the raw material gas together with the carrier gas from the raw material container to the processing container, and
    A mass flow meter provided in the raw material gas supply path and
    A first evacline provided downstream of the first mass flow controller in the carrier gas supply path, and
    A first switching unit that switches whether the carrier gas supplied from the carrier gas supply source is supplied to the raw material container or the first evacline.
    A gas supply device.
  2.  前記第1のエバックラインに設けられる第1の圧力調整部を備える、
    請求項1に記載のガス供給装置。
    A first pressure adjusting unit provided on the first evacline is provided.
    The gas supply device according to claim 1.
  3.  前記第1の切替部を制御する制御部を備え、
     前記制御部は、
     キャリアガスを前記第1のエバックラインに供給するステップの後に、キャリアガスを前記原料容器に供給するステップを行う、
    請求項1または請求項2に記載のガス供給装置。
    A control unit for controlling the first switching unit is provided.
    The control unit
    After the step of supplying the carrier gas to the first evacline, the step of supplying the carrier gas to the raw material container is performed.
    The gas supply device according to claim 1 or 2.
  4.  希釈ガス供給源と、
     前記希釈ガス供給源から前記原料ガス供給路の前記マスフローメータよりも上流側と接続する希釈ガス供給路と、
     前記希釈ガス供給路に設けられる第2のマスフローコントローラと、
     前記キャリアガス供給路の前記第2のマスフローコントローラよりも下流に設けられる第2のエバックラインと、
    前記希釈ガス供給源から供給される希釈ガスを、前記マスフローメータに供給するか、前記第2のエバックラインに供給するかを切り替える第2の切替部と、を備える、
    請求項1乃至請求項3のいずれか1項に記載のガス供給装置。
    Diluted gas source and
    A dilution gas supply path connecting the dilution gas supply source to the upstream side of the raw material gas supply path from the mass flow meter,
    A second mass flow controller provided in the diluted gas supply path and
    A second evacline provided downstream of the second mass flow controller in the carrier gas supply path, and
    A second switching unit for switching whether the diluted gas supplied from the diluted gas supply source is supplied to the mass flow meter or the second evacline is provided.
    The gas supply device according to any one of claims 1 to 3.
  5.  前記第2のエバックラインに設けられる第2の圧力調整部を備える、
    請求項4に記載のガス供給装置。
    A second pressure adjusting unit provided on the second evacline is provided.
    The gas supply device according to claim 4.
  6.  前記第2の切替部を制御する制御部を備え、
     前記制御部は、
     希釈ガスを前記第2のエバックラインに供給するステップの後に、希釈ガスを前記マスフローメータに供給するステップを行う、
    請求項4または請求項5に記載のガス供給装置。
    A control unit for controlling the second switching unit is provided.
    The control unit
    After the step of supplying the diluted gas to the second evacline, the step of supplying the diluted gas to the mass flow meter is performed.
    The gas supply device according to claim 4 or 5.
  7.  前記原料容器をバイパスして、前記キャリアガス供給路から前記原料ガス供給路に接続するバイパス流路と、
     前記キャリアガス供給源から供給されるキャリアガスを、前記原料容器に供給するか、前記バイパス流路に供給するかを切り替える第3の切替部と、を更に備える、
    請求項1乃至請求項6のいずれか1項に記載のガス供給装置。
    A bypass flow path that bypasses the raw material container and connects the carrier gas supply path to the raw material gas supply path.
    A third switching unit for switching whether the carrier gas supplied from the carrier gas supply source is supplied to the raw material container or the bypass flow path is further provided.
    The gas supply device according to any one of claims 1 to 6.
  8.  前記マスフローメータの検出値及び前記マスフローコントローラの検出値に基づいて、原料ガス供給量を算出する原料供給量算出部を備える、
    請求項1乃至7のいずれか1項に記載のガス供給装置。
    A raw material supply amount calculation unit for calculating a raw material gas supply amount based on a detection value of the mass flow meter and a detection value of the mass flow controller is provided.
    The gas supply device according to any one of claims 1 to 7.
  9.  前記原料供給量算出部が算出した前記原料ガス供給量に基づいて、前記原料容器内の固体原料の残量を算出する原料残量算出部を備える、
    請求項8に記載のガス供給装置。
    A raw material remaining amount calculation unit for calculating the remaining amount of the solid raw material in the raw material container based on the raw material gas supply amount calculated by the raw material supply amount calculation unit is provided.
    The gas supply device according to claim 8.
  10.  請求項1乃至請求項9のいずれか1項に記載のガス供給装置を備える、基板処理装置。 A substrate processing device including the gas supply device according to any one of claims 1 to 9.
  11.  原料容器と、キャリアガス供給源と、前記キャリアガス供給源から前記原料容器にキャリアガスを供給するキャリアガス供給路と、前記キャリアガス供給路に設けられる第1のマスフローコントローラと、前記原料容器から処理容器にキャリアガスとともに原料ガスを供給する原料ガス供給路と、前記原料ガス供給路に設けられるマスフローメータと、前記キャリアガス供給路の前記第1のマスフローコントローラよりも下流に設けられる第1のエバックラインと、前記キャリアガス供給源から供給されるキャリアガスを、前記原料容器に供給するか、前記第1のエバックラインに供給するかを切り替える第1の切替部と、を備える、ガス供給装置の制御方法であって、
     キャリアガスを前記第1のエバックラインに供給するステップと、
     キャリアガスを前記原料容器に供給するステップと、を有する、
    ガス供給装置の制御方法。
    From the raw material container, the carrier gas supply source, the carrier gas supply path for supplying the carrier gas from the carrier gas supply source to the raw material container, the first mass flow controller provided in the carrier gas supply path, and the raw material container. A raw material gas supply path for supplying the raw material gas together with the carrier gas to the processing container, a mass flow meter provided in the raw material gas supply path, and a first mass flow controller provided downstream of the first mass flow controller in the carrier gas supply path. A gas supply device including an evacline and a first switching unit for switching between supplying the carrier gas supplied from the carrier gas supply source to the raw material container and supplying the carrier gas to the first evacline. It is a control method of
    The step of supplying the carrier gas to the first evacline and
    It has a step of supplying a carrier gas to the raw material container.
    Control method of gas supply device.
PCT/JP2020/033314 2019-09-12 2020-09-02 Gas supply apparatus, substrate treatment apparatus, and method for controlling gas supply apparatus WO2021049392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019166327A JP2021042445A (en) 2019-09-12 2019-09-12 Gas supply device, substrate processing apparatus and method for controlling gas supply device
JP2019-166327 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021049392A1 true WO2021049392A1 (en) 2021-03-18

Family

ID=74862941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033314 WO2021049392A1 (en) 2019-09-12 2020-09-02 Gas supply apparatus, substrate treatment apparatus, and method for controlling gas supply apparatus

Country Status (2)

Country Link
JP (1) JP2021042445A (en)
WO (1) WO2021049392A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023107020A (en) * 2022-01-21 2023-08-02 日本エア・リキード合同会社 Residual quantity measuring method of solid material, sublimation gas supply method and sublimation gas supply system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148257A (en) * 1995-11-29 1997-06-06 Sumitomo Electric Ind Ltd Material supplier
JPH1167693A (en) * 1997-06-11 1999-03-09 Tokyo Electron Ltd Device and method for cvd film-formation
JP2000031075A (en) * 1998-05-18 2000-01-28 Ips Ltd System for depositing semiconductor thin film by continuous gas injection
JP2002203811A (en) * 2001-01-05 2002-07-19 Nec Corp Method for manufacturing semiconductor device and its device
JP2017101295A (en) * 2015-12-02 2017-06-08 東京エレクトロン株式会社 Raw material gas supply device, raw material gas supply method and storage medium
JP2018145458A (en) * 2017-03-02 2018-09-20 東京エレクトロン株式会社 Gas supply device, gas supply method, and film deposition method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148257A (en) * 1995-11-29 1997-06-06 Sumitomo Electric Ind Ltd Material supplier
JPH1167693A (en) * 1997-06-11 1999-03-09 Tokyo Electron Ltd Device and method for cvd film-formation
JP2000031075A (en) * 1998-05-18 2000-01-28 Ips Ltd System for depositing semiconductor thin film by continuous gas injection
JP2002203811A (en) * 2001-01-05 2002-07-19 Nec Corp Method for manufacturing semiconductor device and its device
JP2017101295A (en) * 2015-12-02 2017-06-08 東京エレクトロン株式会社 Raw material gas supply device, raw material gas supply method and storage medium
JP2018145458A (en) * 2017-03-02 2018-09-20 東京エレクトロン株式会社 Gas supply device, gas supply method, and film deposition method

Also Published As

Publication number Publication date
JP2021042445A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
KR102086217B1 (en) Gas supply device, gas supply method and film forming method
JP6948803B2 (en) Gas supply device, gas supply method and film formation method
US11396700B2 (en) Substrate processing apparatus
JP6964473B2 (en) Gas supply equipment and film formation equipment
US11535932B2 (en) Film forming method and film forming apparatus
KR102640809B1 (en) Raw material supply apparatus and film forming apparatus
WO2021049392A1 (en) Gas supply apparatus, substrate treatment apparatus, and method for controlling gas supply apparatus
TW200909607A (en) Valve switching operation checking method, gas processing apparatus, and storage medium
KR102184689B1 (en) Flow rate control method, flow rate control device, and film forming apparatus
JP6979888B2 (en) Tungsten film film forming method and film forming system
KR102614887B1 (en) Substrate processing method and substrate processing apparatus
WO2020213506A1 (en) Substrate processing device, substrate processing system, and substrate processing method
KR102607054B1 (en) Film forming method and film forming apparatus
JP6906559B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP4903619B2 (en) Substrate processing equipment
US20200056287A1 (en) Film-Forming Method and Film-Forming Apparatus
JP2022144207A (en) Film deposition apparatus and film deposition method
JP2021038442A (en) Substrate treatment method and substrate treatment apparatus
JP2020172673A (en) Substrate treatment apparatus and substrate treatment method
JP2010034362A (en) Method of manufacturing semiconductor device, and substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863177

Country of ref document: EP

Kind code of ref document: A1