WO2020213506A1 - Substrate processing device, substrate processing system, and substrate processing method - Google Patents

Substrate processing device, substrate processing system, and substrate processing method Download PDF

Info

Publication number
WO2020213506A1
WO2020213506A1 PCT/JP2020/015930 JP2020015930W WO2020213506A1 WO 2020213506 A1 WO2020213506 A1 WO 2020213506A1 JP 2020015930 W JP2020015930 W JP 2020015930W WO 2020213506 A1 WO2020213506 A1 WO 2020213506A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate processing
exhaust
gas
speed
chamber
Prior art date
Application number
PCT/JP2020/015930
Other languages
French (fr)
Japanese (ja)
Inventor
村上 誠志
一行 菊池
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020213506A1 publication Critical patent/WO2020213506A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Definitions

  • the present disclosure relates to a substrate processing apparatus, a substrate processing system, and a substrate processing method.
  • a substrate processing apparatus that controls the inside of a chamber to a vacuum atmosphere, supplies a processing gas into the chamber, and performs a desired treatment on the substrate in the chamber.
  • Patent Document 1 discloses a vacuum exhaust device of a vacuum heat treatment device that controls the pressure inside the furnace by controlling the rotation speed of a vacuum pump connected to the furnace body via an exhaust pipeline.
  • the present disclosure provides a substrate processing apparatus, a substrate processing system, and a substrate processing method for improving the stability of substrate processing performance.
  • the control device includes a chamber, a gas exhaust device having a pump capable of controlling the rotation speed and exhausting gas from the chamber, and a control device.
  • a substrate processing device that adjusts the rotational speed of the pump so that the exhaust speed from the inside of the chamber to the gas exhaust device becomes a reference exhaust speed.
  • a substrate processing apparatus it is possible to provide a substrate processing apparatus, a substrate processing system, and a substrate processing method for improving the stability of the substrate processing performance.
  • FIG. 6 is a schematic cross-sectional view showing an example of the configuration of the substrate processing apparatus according to the first embodiment.
  • the figure which shows an example of the process sequence in the substrate processing apparatus which concerns on 1st Embodiment.
  • the graph which shows an example of the relationship between the flow rate of the gas supplied to the processing container by the time change, and the pressure in a processing container.
  • the plan view which shows an example of the structure of the cluster system which concerns on 2nd Embodiment.
  • the schematic diagram which shows an example of the structure of the cluster system which concerns on 2nd Embodiment.
  • the graph which shows an example of the relationship between the flow rate of the gas supplied to the processing container due to the machine error and the pressure in the processing container.
  • FIG. 6 is a schematic cross-sectional view showing an example of the configuration of the substrate processing apparatus according to the third embodiment.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the substrate processing apparatus 100 according to the first embodiment.
  • the substrate processing apparatus 100 supplies TiCl 4 gas, which is a raw material gas, and NH 3 gas, which is a reducing gas, to a substrate W such as a wafer to form a TiN film on the surface of the substrate W.
  • TiCl 4 gas which is a raw material gas
  • NH 3 gas which is a reducing gas
  • a device will be described as an example.
  • the substrate processing device 100 includes a processing container (chamber) 1, a substrate mounting table 2, a shower head 3, a gas exhaust device 4, a processing gas supply unit 5, and a control device 6.
  • the processing container 1 is made of a metal such as aluminum and has a substantially cylindrical shape.
  • a carry-in outlet 11 for carrying in or out the substrate W is formed on the side wall of the processing container 1, and the carry-in outlet 11 can be opened and closed by a gate valve 12.
  • An annular exhaust duct 13 having a rectangular cross section is provided on the main body of the processing container 1.
  • a slit 13a is formed in the exhaust duct 13 along the inner peripheral surface.
  • an exhaust port 13b is formed on the outer wall of the exhaust duct 13.
  • a top wall 14 is provided on the upper surface of the exhaust duct 13 so as to close the upper opening of the processing container 1. The space between the top wall 14 and the exhaust duct 13 is airtightly sealed with a seal ring 15.
  • the board mounting table 2 horizontally supports the board W in the processing container 1.
  • the board mounting table 2 has a disk shape having a size corresponding to the board W, and is supported by the support member 23.
  • the substrate mounting table 2 is made of a ceramic material such as aluminum nitride (AlN) or a metal material such as aluminum or a nickel-based alloy, and a heater 21 for heating the substrate W is embedded therein.
  • the heater 21 is supplied with power from a heater power source (not shown) to generate heat.
  • the substrate W is controlled to a predetermined temperature by controlling the output of the heater 21 by the temperature signal of the thermocouple (not shown) provided near the wafer mounting surface on the upper surface of the substrate mounting table 2. It has become.
  • the substrate mounting table 2 is provided with a cover member 22 made of ceramics such as alumina so as to cover the outer peripheral region of the wafer mounting surface and the side surface of the substrate mounting table 2.
  • the support member 23 extends from the center of the bottom surface of the substrate mounting table 2 to the lower side of the processing container 1 through a hole formed in the bottom wall of the processing container 1, and the lower end thereof is connected to the elevating mechanism 24.
  • the elevating mechanism 24 allows the substrate mounting table 2 to move up and down via the support member 23 between the processing position shown in FIG. 1 and the transfer position below which the wafer can be conveyed by the alternate long and short dash line. ..
  • a flange portion 25 is attached below the processing container 1 of the support member 23, and the atmosphere inside the processing container 1 is partitioned from the outside air between the bottom surface of the processing container 1 and the collar portion 25 to form a substrate.
  • a bellows 26 that expands and contracts as the mounting table 2 moves up and down is provided.
  • three wafer support pins 27 are provided so as to project upward from the elevating plate 27a.
  • the wafer support pin 27 can be raised and lowered via the lifting plate 27a by the lifting mechanism 28 provided below the processing container 1, and is inserted into the through hole 2a provided in the substrate mounting table 2 at the transport position. It is possible to sink into the upper surface of the substrate mounting table 2.
  • the wafer transfer mechanism not shown
  • the shower head 3 supplies the processing gas into the processing container 1 in the form of a shower.
  • the shower head 3 is made of metal, is provided so as to face the substrate mounting table 2, and has substantially the same diameter as the substrate mounting table 2.
  • the shower head 3 has a main body 31 fixed to the top wall 14 of the processing container 1 and a shower plate 32 connected under the main body 31.
  • a gas diffusion space 33 is formed between the main body 31 and the shower plate 32, and a gas introduction hole is formed in the gas diffusion space 33 so as to penetrate the center of the main body 31 and the top wall 14 of the processing container 1.
  • 36 is provided.
  • An annular protrusion 34 projecting downward is formed on the peripheral edge of the shower plate 32, and a gas discharge hole 35 is formed on the flat surface inside the annular protrusion 34 of the shower plate 32.
  • a processing space 37 is formed between the shower plate 32 and the board mounting table 2, and the annular protrusion 34 and the upper surface of the cover member 22 of the board mounting table 2 are close to each other.
  • An annular gap 38 is formed.
  • the substrate processing device 100 is provided with a gas exhaust device 4 that exhausts gas from the processing container 1.
  • the gas exhaust device 4 includes an exhaust pipe 41, a vacuum pump 42, an APC valve 43, and a pressure sensor 44.
  • the gas in the processing container 1 reaches the exhaust duct 13 through the slit 13a, and is exhausted from the exhaust duct 13 through the exhaust pipe 41 by the vacuum pump 42 of the gas exhaust device 4.
  • the exhaust pipe 41 connects the exhaust port 13b of the processing container 1 and the suction port of the vacuum pump 42.
  • the vacuum pump 42 is capable of variable speed control by inverter control.
  • the exhaust pipe 41 is provided with a pressure control (APC: Adaptive Pressure Control) valve (hereinafter, referred to as “APC valve”) 43.
  • APC valve 43 is a valve whose opening degree can be controlled, and adjusts the pressure in the processing container 1 by adjusting the conductance of the exhaust path.
  • the pressure sensor 44 is provided in the exhaust pipe 41 on the upstream side of the APC valve 43, and detects the pressure in the exhaust pipe 41.
  • a pressure sensor for detecting the pressure in the processing container 1 may be provided, and a pressure sensor for detecting the pressure in the exhaust pipe 41 on the downstream side (primary side of the vacuum pump 42) of the APC valve 43 is provided. You may.
  • the processing gas supply unit 5 has a raw material gas supply line L1, the reducing gas supply line L2, the first continuous N 2 gas supply line L3, the second continuous N 2 gas supply line L4.
  • the raw material gas supply line L1 extends from the raw material gas supply source GS1 which is a supply source of the TiCl 4 gas (raw material gas) and is connected to the merging pipe L7.
  • the merging pipe L7 is connected to the gas introduction hole 36.
  • the raw material gas supply line L1 is provided with a mass flow controller M1, a buffer tank T1, and an on-off valve V1 in this order from the raw material gas supply source GS1 side.
  • the mass flow controller M1 controls the flow rate of the TiCl 4 gas flowing through the raw material gas supply line L1.
  • Buffer tank T1 is to temporarily store the TiCl 4 gas is supplied in a short time required TiCl 4 gas.
  • the on-off valve V1 switches the supply / stop of the TiCl 4 gas during the ALD process.
  • the reduction gas supply line L2 extends from the reduction gas supply source GS2, which is a supply source of NH 3 gas (reduction gas), and is connected to the merging pipe L7.
  • the reduction gas supply line L2 is provided with a mass flow controller M2, a buffer tank T2, and an on-off valve V2 in this order from the reduction gas supply source GS2 side.
  • the mass flow controller M2 controls the flow rate of the NH 3 gas flowing through the reducing gas supply line L2.
  • Buffer tank T2 temporarily storing the NH 3 gas is supplied in a short time necessary NH 3 gas.
  • Off valve V2 switches the supply and stop of the NH 3 gas during the ALD process.
  • First continuous N 2 gas supply line L3 extends from the N 2 gas supply source GS3 is a source of N 2 gas is connected to a source gas supply line L1.
  • N 2 gas is supplied to the source gas supply line L1 side via a first continuous N 2 gas supply line L3.
  • the first continuous N 2 gas supply line L3 constantly supplies N 2 gas during film formation by the ALD method, and functions as a carrier gas for TiCl 4 gas and also as a purge gas.
  • the first continuous N 2 gas supply line L3 is provided with a mass flow controller M3, an on-off valve V3, and an orifice F3 in this order from the N 2 gas supply source GS3 side.
  • the mass flow controller M3 controls the flow rate of N 2 gas flowing through the first continuous N 2 gas supply line L3.
  • Orifice F3 refrains from relatively large flow rate of the gas supplied by the buffer tank T1 flows back to the first continuous N 2 gas supply line L3.
  • Second continuous N 2 gas supply line L4 extends from the N 2 gas supply source GS4 is a source of N 2 gas is connected to the reducing gas supply line L2. Thus, it supplied with N 2 gas to the reducing gas supply line L2 side via the second continuous N 2 gas supply line L4.
  • the second continuous N 2 gas supply line L4 constantly supplies N 2 gas during film formation by the ALD method, functions as a carrier gas for NH 3 gas, and also functions as a purge gas.
  • the second continuous N 2 gas supply line L4 is provided with a mass flow controller M4, an on-off valve V4, and an orifice F4 in this order from the N 2 gas supply source GS4 side.
  • the mass flow controller M4 controls the flow rate of N 2 gas flowing through the second continuous N 2 gas supply line L4.
  • Orifice F4 refrains from relatively large flow rate of the gas supplied by the buffer tank T2 from flowing back to the second continuous N 2 gas supply line L4.
  • the control device 6 controls the operation of each part of the substrate processing device 100.
  • the control device 6 has a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the CPU executes a desired process according to a recipe stored in a storage area such as RAM.
  • control information of the device for the process condition is set.
  • the control information may be, for example, gas flow rate, pressure, temperature, process time.
  • the recipe and the program used by the control device 6 may be stored in, for example, a hard disk or a semiconductor memory. Further, the recipe or the like may be set in a predetermined position and read in a state of being housed in a storage medium readable by a portable computer such as a CD-ROM or a DVD.
  • the control device 6 has a processing gas control unit 61, a vacuum pump control unit 62, and an APC valve control unit 63 as control blocks executed by the CPU.
  • the processing gas control unit 61 controls the supply of the processing gas into the processing container 1 by the processing gas supply unit 5 by controlling the opening and closing of the valves V1 to V4 according to the recipe.
  • the vacuum pump control unit 62 controls the vacuum pump 42 by an inverter. That is, the vacuum pump control unit 62 inverter-controls the rotation speed of the motor of the vacuum pump 42.
  • the exhaust speed of the vacuum pump 42 is determined by the rotation speed of the motor of the vacuum pump 42. Therefore, the vacuum pump control unit 62 can control the exhaust speed of the vacuum pump 42.
  • the vacuum pump control unit 62 determines the rotation speed of the motor so that the exhaust speed from the inside of the processing container 1 to the gas exhaust device 4 becomes a preset exhaust speed. Then, the vacuum pump control unit 62 inverter-controls the motor of the vacuum pump 42 so that the rotation speed is determined.
  • the APC valve control unit 63 controls the opening degree of the APC valve 43 according to the recipe.
  • FIG. 2 is a diagram showing an example of a process sequence in the substrate processing apparatus 100 according to the first embodiment.
  • FIG. 2A is a timing chart showing changes in the amount of gas supplied.
  • the horizontal axis represents time and the vertical axis represents gas supply.
  • FIG. 2B is a graph showing the opening degree of the APC valve 43.
  • the horizontal axis represents time and the vertical axis represents the opening degree of the APC valve 43.
  • FIG. 2C is a graph showing the pressure inside the processing container 1.
  • the horizontal axis represents time and the vertical axis represents gas supply.
  • the substrate W is carried into the processing container 1 of the substrate processing apparatus 100.
  • the gate valve 12 is in a state where the substrate mounting table 2 heated to a predetermined temperature (for example, 300 ° C. to 700 ° C.) by the heater 21 is lowered to the transport position (indicated by the alternate long and short dash line in FIG. 1). open.
  • the substrate W is carried into the processing container 1 through the carry-in outlet 11 by a transport arm (not shown), and is supported by the wafer support pin 27.
  • the gate valve 12 is closed. Further, the wafer support pin 27 is lowered to mount the substrate W on the substrate mounting table 2.
  • the substrate mounting table 2 is raised to the processing position (shown by a solid line in FIG. 1), and the inside of the processing container 1 is depressurized to a predetermined degree of vacuum.
  • the on-off valves V3 and V4 are opened, and the on-off valves V1, V2 and V5 are closed.
  • the TiCl 4 gas is supplied from the raw material gas supply source GS1 into the buffer tank T1, and the pressure in the buffer tank T1 is maintained substantially constant. Further, NH 3 gas is supplied from the reducing gas supply source GS2 into the buffer tank T2, and the pressure in the buffer tank T2 is maintained substantially constant.
  • a TiN film is formed by an ALD process using TiCl 4 gas and NH 3 gas.
  • the TiCl 4 supply step S1, the first purge step S2, the NH 3 supply step S3, and the second purge step S4 are repeated for a predetermined cycle to form a TiN film having a desired film thickness on the substrate W. The process of doing.
  • the TiCl 4 supply step S1 is a step of supplying the TiCl 4 gas to the treatment space 37.
  • TiCl 4 feed step S1 firstly, with open closing valve V3, V4, from N 2 gas supply source GS3, GS4, first continuous N 2 gas supply line L3 and the second continuous N 2 gas supply line Continue to supply N 2 gas (continuous N 2 gas) via L4. Further, by opening the on-off valve V1, TiCl 4 gas is supplied from the raw material gas supply source GS1 to the processing space 37 in the processing container 1 via the raw material gas supply line L1. At this time, the TiCl 4 gas is once stored in the buffer tank T1 and then supplied into the processing container 1. As a result, TiCl 4 gas is adsorbed on the surface of the substrate W.
  • the first purging step S2 is a step of purging excess TiCl 4 gas or the like in the processing space 37.
  • N 2 gas continuous N 2 gas
  • the on-off valve V1 is closed to stop the supply of TiCl 4 gas. As a result, excess TiCl 4 gas or the like in the processing space 37 is purged.
  • the NH 3 supply step S3 is a step of supplying the NH 3 gas to the processing space 37.
  • NH 3 supply process S 3 while continuing the supply of the N 2 gas (continuous N 2 gas) through the first continuous N 2 gas supply line L3 and the second continuous N 2 gas supply line L4, Open the on-off valve V2. Accordingly, supplying the NH 3 gas into the processing space 37 through the reducing gas supply line L2 from the reducing gas source GS2.
  • the NH 3 gas is once stored in the buffer tank T2 and then supplied into the processing container 1.
  • the flow rate of the NH 3 gas at this time can be set to an amount that sufficiently causes a reduction reaction.
  • the second purging step S4 is a step of purging the excess NH 3 gas in the processing space 37.
  • the step of supplying a second N 2 gas continues the supply of the N 2 gas (continuous N 2 gas) through the first continuous N 2 gas supply line L3 and the second continuous N 2 gas supply line L4 In this state, the on-off valve V2 is closed to stop the supply of NH 3 gas. As a result, excess NH 3 gas or the like in the processing space 37 is purged.
  • a TiN film having a desired film thickness is formed on the substrate W.
  • the opening degree of the APC valve 43 is constant in the ALD process.
  • the rotation speed of the motor of the vacuum pump 42 is constant.
  • control device 6 maintains the rotation speed of the motor of the vacuum pump 42 by the vacuum pump control unit 62 at a predetermined rotation speed (for example, an output smaller than the maximum output of the vacuum pump 42 at the time of initial installation).
  • the processing gas control unit 61 controls the opening and closing of the valves V1 to V4 while the APC valve control unit 63 maintains the opening degree of the APC valve 43 at a predetermined opening degree (for example, the opening degree smaller than the full open at the time of initial installation). By doing so, the ALD process is executed.
  • the substrate processing apparatus 100 is a process of vaporizing and supplying a liquid having a low vapor pressure such as TiCl 4 gas which is a raw material gas. There is also a process of vaporizing and supplying a solid material as a raw material gas. There is also a process in which by-products and the like are produced by the processing gas.
  • solidified materials, by-products, and the like adhere to the inside of the exhaust pipe 41 and the vacuum pump 42, and the conductance decreases. Further, since the conductance is lowered, the exhaust speed from the inside of the processing container 1 to the gas exhaust device 4 is also lowered as compared with the initial installation. Further, the exhaust speed to the gas exhaust device 4 also fluctuates when the exhaust pipe 41 or the like is cleaned, maintained, or replaced.
  • FIG. 3 is a graph schematically showing an example of a pressure change in the processing container 1.
  • FIG. 3A shows an example of a pressure change in the processing container 1 at the time of initial installation of the substrate processing apparatus 100.
  • the pressure in the processing container 1 is pressure P 0 , indicating that TiCl 4 is preferably purged.
  • the pressure in the processing vessel 1 is pressure P 0 , indicating that NH 3 is preferably purged.
  • FIG. 3B shows an example of a pressure change in the substrate processing apparatus 100 after the lapse of operating time. Even if the rotation speed of the vacuum pump 42, the opening degree of the APC valve 43, and the opening and closing of the valves V1 to V4 are controlled under the same conditions as at the time of initial installation because the conductance of the exhaust pipe 41 etc. decreases as the operating time elapses. , has risen by an amount corresponding to the pressure difference ⁇ P than the pressure P 0 is the pressure in the initial state in (starting step S3) at the end of step S2. Therefore, the supply of NH 3 may be started before the TiCl 4 in the processing container 1 is sufficiently purged. Further, although not shown, the supply of TiCl 4 may be started before the NH 3 in the processing container 1 is sufficiently purged even from the end of step S4 to the start of step S1.
  • step S3 the supplied NH 3 reacts with TiCl 4 in the processing container 1 that could not be completely purged and is consumed, so that the reaction between TiCl 4 adsorbed on the surface of the substrate W and NH 3 May decrease and the film formation speed may decrease.
  • step S1 the supplied TiCl 4 reacts with NH 3 in the processing container 1 that could not be completely purged and is consumed, so that the TiCl 4 adsorbed on the surface of the substrate W is reduced and the film formation rate is increased. May decrease.
  • the exhaust speed from the inside of the processing container 1 to the gas exhaust device 4 is the exhaust speed at the time of initial installation of the substrate processing device 100 (hereinafter, "reference exhaust speed”).
  • the rotation speed of the motor of the vacuum pump 42 is controlled so as to be (referred to as).
  • FIG. 4 is a graph showing an example of the relationship between the flow rate of gas supplied to the processing container 1 due to aging and the pressure inside the processing container 1.
  • the output of the vacuum pump 42 is set to a predetermined output, and for each of the plurality of gases (raw material gas, reducing gas, carrier gas (inert gas)) supplied to the processing container 1.
  • the pressure in the processing container 1 when the flow rate is changed is plotted, and the approximate line 71 is obtained.
  • the rotation speed (output) of the vacuum pump 42 at the time of initial installation is set at a rotation speed lower than the maximum rotation speed of the vacuum pump 42.
  • the maximum rotation speed of the vacuum pump 42 is set to 100%, it is preferably set to 95% or less of the maximum rotation speed, and more preferably 80% or less from the viewpoint of actual operation. ..
  • the adjustment and control margins become smaller, and stable process performance cannot be satisfied.
  • the vacuum pump control unit 62 adjusts the rotation speed of the motor of the vacuum pump 42 when the predetermined determination criteria are satisfied.
  • the predetermined determination standard is a standard for determining that the conductance of the exhaust pipe 41 or the like has decreased. For example, when a predetermined operating time has elapsed or the number of cycles exceeds a predetermined threshold value. is there. Further, maintenance or replacement of equipment (exhaust pipe 41, vacuum pump 42, APC valve 43, etc.) that affects the exhaust speed may be performed. Since the pressure control in the processing container 1 may be affected during the film forming process, it is preferable to disallow the adjustment of the rotation speed.
  • the vacuum pump control unit 62 increases the rotation speed of the motor of the vacuum pump 42 from the rotation speed at the time of initial installation.
  • the rotation speed of the motor of the vacuum pump 42 is left as it was at the initial installation, and an approximate line 72 showing the relationship between the flow rate of the supplied gas and the pressure in the processing container 1 in the state of reduced conductance (after the lapse of operating time) is shown. .. Due to the decrease in conductance of the exhaust pipe 41 and the like, the inclination of the approximate line 72 becomes larger than the inclination of the approximate line 71 at the time of initial installation, and is diverged.
  • an approximate line 72a showing the relationship between the flow rate of the supply gas and the pressure in the processing container 1 when the rotation speed of the motor of the vacuum pump 42 is adjusted (increased) in the state of reduced conductance (after the lapse of operating time) is shown. ..
  • the rotation speed of the motor of the vacuum pump 42 By adjusting (increasing) the rotation speed of the motor of the vacuum pump 42 in this way, the inclination of the approximate line 72a can be made closer to the inclination of the approximate line 71 at the time of initial installation. Membrane performance can be obtained.
  • the adjusted rotation speed shall be the rotation speed at which the reference exhaust speed can be obtained.
  • the vacuum pump control unit 62 adjusts the rotation speed of the motor of the vacuum pump 42 based on the detected value of the pressure sensor 44 and the reference exhaust speed. For example, the vacuum pump control unit 62 acquires the current exhaust speed from the change in the detected value of the pressure sensor 44. The vacuum pump control unit 62 compares the acquired current exhaust speed with the reference exhaust speed, and adjusts the rotation speed of the motor of the vacuum pump 42 based on the comparison result. For example, the vacuum pump control unit 62 adjusts the rotation speed of the motor of the vacuum pump 42 so that the acquired exhaust speed becomes the reference exhaust speed. As a result, as shown in the approximate line 72a of FIG.
  • the relationship between the flow rate of the supply gas and the pressure in the processing container 1 can be made equal to the approximate line 71 at the time of initial installation.
  • the pressure change in the processing container 1 can be made the same as in the initial installation (see FIG. 2A), and the same film forming performance as in the initial installation can be obtained.
  • the substrate processing apparatus 100 by controlling the rotation speed of the motor by using the vacuum pump 42 controlled by the inverter, by-products and the like adhere to the exhaust pipe 41 and the like, and conductance is increased. Even if it changes with time, the exhaust speed can be kept constant, and the stability of the substrate processing performance can be improved.
  • the rotation speed of the vacuum pump 42 at the time of initial installation is set at a rotation speed less than the maximum rotation speed of the vacuum pump 42 (for example, 95% or less, more preferably 80% or less).
  • the stability of the substrate processing performance can be ensured by increasing the rotation speed of the vacuum pump 42, so that maintenance can be performed.
  • the life of the cycle can be extended. By using the vacuum pump 42 having a large maximum output, the maintenance cycle can be further extended.
  • control device 20 can be used to acquire the exhaust speed at the time of initial installation, acquire the current exhaust speed, and adjust the rotation speed of the motor, human work can be eliminated.
  • control device 20 may operate monitoring software that constantly monitors signals that affect the decrease in exhaust speed.
  • the signals that affect the decrease in the exhaust speed are, for example, the pressure sensor of the processing container 1 (not shown), the pressure sensor 44 of the exhaust pipe 41, and the pressure sensor on the primary side of the vacuum pump 42 (not shown). ),
  • the load status of the vacuum pump 42 for example, the current value and temperature of the motor
  • the opening degree of the APC valve 43, and the like can be used. As a result, it is possible to detect a sign of a film forming process defect caused by a change in the exhaust speed and prevent the process defect in advance.
  • FIG. 5 is a plan view showing an example of the configuration of the cluster system 300 according to the second embodiment.
  • the cluster system 300 has four substrate processing devices 100A to 100D. These are connected to the four walls of the vacuum transfer chamber 301 having a heptagonal planar shape via a gate valve G, respectively.
  • the inside of the vacuum transfer chamber 301 is exhausted by a vacuum pump and maintained at a predetermined degree of vacuum.
  • the substrate processing devices 100A to 100D are devices that perform processing (for example, film formation processing) on the substrate W, and are composed of a CVD (Chemical Vapor Deposition) device, an ALD device, and the like.
  • An example of the substrate processing devices 100A to 100D is the substrate processing device 100 shown in FIG. 1, and redundant description will be omitted.
  • the substrate processing devices 100A to 100D perform the same processing on the substrate W, and have the same configuration. However, as will be described later, the structures of the exhaust pipes 41A to 41D are different.
  • three load lock chambers 302 are connected to the other three wall portions of the vacuum transfer chamber 301 via a gate valve G1.
  • An air transport chamber 303 is provided on the opposite side of the vacuum transport chamber 301 with the load lock chamber 302 in between.
  • the three load lock chambers 302 are connected to the atmospheric transport chamber 303 via a gate valve G2.
  • the load lock chamber 302 controls the pressure between the atmospheric pressure and the vacuum when the substrate W is transported between the atmospheric transport chamber 303 and the vacuum transport chamber 301.
  • the wall portion of the air transport chamber 303 opposite to the load lock chamber 302 mounting wall portion has three carrier mounting ports 305 for mounting a carrier (FOUP or the like) C for accommodating the substrate W. Further, an alignment chamber 304 for aligning the substrate W is provided on the side wall of the air transport chamber 303. A downflow of clean air is formed in the air transport chamber 303.
  • a transfer mechanism 306 is provided in the vacuum transfer chamber 301.
  • the transport mechanism 306 transports the substrate W to the substrate processing devices 100A to 100D and the load lock chamber 302.
  • the transport mechanism 306 may have two transport arms 307a, 307b that can move independently.
  • a transport mechanism 308 is provided in the atmospheric transport chamber 303.
  • the transport mechanism 308 is adapted to transport the substrate W to the carrier C, the load lock chamber 302, and the alignment chamber 304.
  • the cluster system 300 has an overall control unit 310.
  • the overall control unit 310 includes each component of the substrate processing devices 100A to 100D, an exhaust mechanism and transfer mechanism 306 of the vacuum transfer chamber 301, an exhaust mechanism and gas supply mechanism of the load lock chamber 302, and a transfer mechanism 308 of the atmosphere transfer chamber 303.
  • a main control unit having a CPU (computer) that controls the drive systems of gate valves G, G1, G2, etc., an input device (keyboard, mouse, etc.), an output device (printer, etc.), a display device (display, etc.), a storage device.
  • Has storage medium
  • the main control unit of the overall control unit 310 executes a predetermined operation in the cluster system 300 based on, for example, a storage medium built in the storage device or a processing recipe stored in the storage medium set in the storage device. Let me.
  • the overall control unit 310 may be a higher-level control unit of the control unit of each unit such as the control device 6 (see FIG. 1).
  • the overall control unit 310 takes out the substrate W from the carrier C connected to the atmospheric transport chamber 303 by the transport mechanism 308 and transports it to the atmospheric transport chamber 303.
  • the overall control unit 310 opens the gate valve G2 of any of the load lock chambers 302, and carries the substrate W held by the transfer mechanism 308 into the load lock chamber 302.
  • the overall control unit 310 closes the gate valve G2 and evacuates the inside of the load lock chamber 302.
  • the substrate W is taken out from the carrier C and before being carried into the load lock chamber 302, the substrate W is aligned in the alignment chamber 304.
  • the overall control unit 310 opens the gate valve G1 of the load lock chamber 302, takes out the substrate W from the load lock chamber 302 by the transfer mechanism 306, and takes out the substrate W from the load lock chamber 302. Transport to. After the transfer arm of the transfer mechanism 306 is retracted into the vacuum transfer chamber 301, the overall control unit 310 closes the gate valve G1.
  • the overall control unit 310 opens the gate valve G of any of the substrate processing devices 100A, and carries the substrate W held by the transport mechanism 306 into the substrate processing device 100A. After the transfer arm of the transfer mechanism 306 is retracted into the vacuum transfer chamber 301, the overall control unit 310 closes the gate valve G and processes the substrate W by the substrate processing device 100A.
  • the overall control unit 310 opens the gate valve G of the substrate processing device 100A, takes out the substrate W from the substrate processing device 100A by the transfer mechanism 306, and transfers the substrate W to the vacuum transfer chamber 301. After the transfer arm of the transfer mechanism 306 is retracted into the vacuum transfer chamber 301, the overall control unit 310 closes the gate valve G of the substrate processing device 100A.
  • the overall control unit 310 opens the gate valve G1 of any of the load lock chambers 302, and carries the substrate W held by the transport mechanism 306 into the load lock chamber 302. After the transfer arm of the transfer mechanism 306 is retracted into the vacuum transfer chamber 301, the overall control unit 310 closes the gate valve G1 and returns the inside of the load lock chamber 302 to the atmospheric atmosphere.
  • the overall control unit 310 opens the gate valve G2 of the load lock chamber 302, takes out the substrate W from the load lock chamber 302 by the transport mechanism 308, and takes out the substrate W from the load lock chamber 302 to the atmosphere transport chamber 303. Transport to. After the transport arm of the transport mechanism 308 is retracted into the atmospheric transport chamber 303, the overall control unit 310 closes the gate valve G2 of the load lock chamber 302. Further, the overall control unit 310 returns the substrate W held by the transport mechanism 308 to the carrier C.
  • the substrate W can be processed by the substrate processing devices 100A to 100D.
  • FIG. 6 is a schematic diagram showing an example of the configuration of the cluster system 300 according to the second embodiment.
  • the cluster system 300 includes four substrate processing devices 100A to 100D.
  • the substrate processing devices 100A to 100D have the same configuration as the substrate processing device 100 shown in FIG. However, in the substrate processing devices 100A to 100D, the length and shape of the exhaust pipes 41A to 41D are different.
  • a plurality of substrate processing devices 100A to 100D having the same specifications for the same semiconductor process are installed.
  • FIG. 7 is a graph showing an example of the relationship between the flow rate of the gas supplied to the processing container 1 and the pressure in the processing container 1 due to a difference in the substrate processing devices 100A to 100D.
  • the approximate line 81 shows the relationship in the substrate processing device 100A
  • the approximate line 82 shows the relationship in the substrate processing device 100B
  • the approximate line 83 shows the relationship in the substrate processing device 100C
  • the approximate line 84 shows the relationship in the substrate processing device 100D. Show the relationship.
  • the approximate lines 82a to 84a show the relationship in the case where the rotation speed is adjusted.
  • the substrate processing device 100A will be described as a reference device. Even if the rotation speed of the vacuum pump 42, the opening degree of the APC valve 43, and the opening / closing of the valves V1 to V4 are controlled in the substrate processing devices 100B to 100D under the same conditions as the substrate processing device 100A, as shown in the approximate lines 81 to 84. Since the exhaust speeds are different, the same film forming performance as that of the substrate processing apparatus 100A may not be obtained.
  • the rotation speed of the motor is individually set according to the structural difference between the substrate processing devices 100A to 100D.
  • the vacuum pump control unit 62 of the substrate processing device 100A which is a reference device, acquires the exhaust speed of the substrate processing device 100A (hereinafter, referred to as “reference exhaust speed”) in advance.
  • the acquired reference exhaust speed is input to the control device 6 of the substrate processing devices 100B to 100D.
  • the input method is not limited, and for example, it may be performed by communication by the network N connecting the control devices 6 to each other, or may be performed via a recording medium, and the input may be performed by the operator. You may be broken.
  • the vacuum pump control unit 62 of the substrate processing device 100B adjusts the rotation speed of the motor of the vacuum pump 42 of the substrate processing device 100B.
  • the adjusted rotation speed shall be the rotation speed at which the reference exhaust speed can be obtained.
  • the exhaust speed of the substrate processing device 100B can be made equal to the reference exhaust rate (approximate line 81), so that the pressure change in the processing container 1 can be changed to the substrate processing device 100A.
  • the rotation speed of the motor of the vacuum pump 42 of the substrate processing apparatus 100C is adjusted.
  • the cluster system 300 even if there is a structural difference in the exhaust pipes 41A to 41D by controlling the rotation speed of the motor by using the vacuum pump 42 controlled by the inverter.
  • the exhaust speed can be made constant, and the stability of the substrate processing performance can be improved. Therefore, in the substrate processing devices 100A to 100D of the same process and the same specifications, the machine difference can be eliminated and the same film forming performance can be obtained.
  • the substrate processing devices 100A to 100D can be installed in a space-saving and small footprint.
  • the present invention is not limited to this.
  • the substrate processing apparatus 100 between the plurality of cluster systems 300 may be controlled in the same manner.
  • each substrate processing apparatus 100 is subjected to the control shown in the first embodiment.
  • the conductance may be optimized. As a result, it is possible to eliminate the machine difference between the substrate processing devices 100A to 100D and to keep the exhaust speed constant even when the conductance changes with time.
  • the control shown in the second embodiment is adopted to adopt the cluster system 300.
  • the overall conductance may be optimized.
  • the control device 6 of the substrate processing device 100A has a vacuum of the substrate processing device 100A so that the exhaust speed from the inside of the processing container 1 of the substrate processing device 100A to the gas exhaust device 4 of the substrate processing device 100A becomes the first exhaust speed.
  • the rotation speed of the motor of the pump 42 is adjusted.
  • the control device 6 of the substrate processing device 100B vacuums the substrate processing device 100B so that the exhaust speed from the inside of the processing container 1 of the substrate processing device 100B to the gas exhaust device 4 of the substrate processing device 100B becomes the second exhaust speed.
  • the rotation speed of the motor of the pump 42 is adjusted.
  • the overall control unit 310 determines the third exhaust speed based on the first exhaust speed and the second exhaust speed. For example, the overall control unit 310 compares the first exhaust speed with the second exhaust speed, and determines the third exhaust speed based on the comparison result.
  • the control device 6 of the board processing device 100A adjusts the exhaust speed of the board processing device 100A based on the third exhaust speed.
  • the control device 6 of the board processing device 100A adjusts the rotation speed of the motor of the vacuum pump 42 of the board processing device 100A so as to have the adjusted exhaust speed.
  • the control device 6 of the substrate processing device 100B adjusts the exhaust speed of the substrate processing device 100B based on the third exhaust speed.
  • the control device 6 of the board processing device 100B adjusts the rotation speed of the motor of the vacuum pump 42 of the board processing device 100B so as to have the adjusted exhaust speed.
  • the control shown in the first embodiment described above is carried out in each of the substrate processing devices 100A to 100D to obtain the initial reference exhaust speed of each of the substrate processing devices 100A to 100D. After that, the initial reference exhaust speeds of the substrate processing devices 100A to 100D may be compared, and the reference exhaust speed of the cluster system 300 may be obtained based on the comparison result.
  • the substrate processing apparatus 100 has been described as being a single-wafer type apparatus, the present invention is not limited to this, and a batch type apparatus may be used.
  • FIG. 8 is a schematic cross-sectional view showing an example of the configuration of the substrate processing apparatus 500 according to the third embodiment.
  • the substrate processing apparatus 500 has a vertically long shape extending in the vertical direction as a whole.
  • the substrate processing apparatus 500 has a processing container 510 which is vertically long and extends in the vertical direction.
  • the processing container 510 is formed of, for example, quartz.
  • the processing container 510 has, for example, a double tube structure of a cylindrical inner tube 511 and a ceilinged outer tube 512 placed concentrically on the outside of the inner tube 511.
  • the lower end of the processing container 510 is hermetically held by, for example, a stainless steel manifold 520.
  • the manifold 520 is fixed to, for example, a base plate (not shown).
  • the manifold 520 has an injector 530 and a gas exhaust unit 540.
  • the injector 530 is a gas supply unit that introduces various gases into the processing container 510.
  • a pipe 531 for introducing various gases is connected to the injector 530.
  • the pipe 531 is provided with a flow rate adjusting unit (not shown), a valve (not shown), or the like such as a mass flow controller for adjusting the gas flow rate.
  • the number of injectors 530 may be one, or may be a plurality of injectors. Note that FIG. 1 shows a case where the number of injectors 530 is one.
  • the gas exhaust unit 540 exhausts the inside of the processing container 510.
  • An exhaust pipe 541 is connected to the gas exhaust unit 540.
  • the exhaust pipe 541 is provided with an opening variable valve 543, a vacuum pump 542, and the like that can control the pressure reduction in the processing container 510.
  • a furnace port 521 is formed at the lower end of the manifold 520.
  • the hearth 521 is provided with, for example, a stainless steel disk-shaped lid 550.
  • the lid 550 is provided so as to be able to move up and down by an elevating mechanism 551, and is configured so that the furnace port 521 can be hermetically sealed.
  • a quartz heat insulating cylinder 60 is installed on the lid 550.
  • the wafer boat 570 is carried into the processing container 510 by raising the lid 550 using the elevating mechanism 551, and is housed in the processing container 510. Further, the wafer boat 570 is carried out from the processing container 510 by lowering the lid 550.
  • the wafer boat 570 has a groove structure having a plurality of slots (support grooves) in the longitudinal direction, and the wafers W are loaded in the slots at vertical intervals in a horizontal state.
  • a plurality of wafers mounted on the wafer boat 570 form one batch, and various heat treatments are performed in batch units.
  • a heater 580 is provided on the outside of the processing container 510.
  • the heater 580 has, for example, a cylindrical shape and heats the processing container 510 to a predetermined temperature.
  • the substrate processing device 500 is provided with, for example, a control device 590 made of a computer.
  • the batch type substrate processing apparatus 500 shown in FIG. 8 also exhausts by controlling the rotation speed of the motor using an inverter-controlled vacuum pump 542. Even if by-products or the like adhere to the pipe 541 or the like and the conductance changes with time, the exhaust speed can be kept constant, the maintenance cycle can be further extended, and the stability of the substrate processing performance can be improved. ..
  • a motor using an inverter-controlled vacuum pump 542 is used as in the cluster system 300 having a plurality of single-wafer type substrate processing devices 100 shown in FIG.
  • the substrate processing apparatus 100 is not limited to this, and may be an ALE (Atomic Layer Etching) apparatus, and is a substrate processing apparatus that performs other cycle processes. You may.
  • the substrate processing apparatus 100 may include a heater in the processing container 1 and the substrate mounting table 2.
  • the substrate processing device 100 may be a plasma processing device that performs processing by plasma.
  • the gas exhaust device 4 may be provided with a trap on the upstream side of the vacuum pump 42 in order to prevent by-products and the like from being sucked into the vacuum pump 42.
  • the processing gas supply unit 5 has been described as having a supply line for supplying four systems of gas, the present invention is not limited to this, and the number of systems may be three or less, or five or more. ..
  • the treatment in the substrate processing apparatus 100 has been described as an example of a treatment of forming a TiN film with TiCl 4 gas and NH 3 gas, but the treatment is not limited to this, and for example, SiH 2 Cl 2 gas and NH 3 A process for forming a Si 2 N 3 film (SiN film) with gas or a film formation by other ALD methods (for example, W film, Mo film, Al 2 O 3 film, ZAZ film, PoLy-Si film, SiGe film). , Graphene, etc.) or an oxidation (diffusion) process.
  • the present invention is not limited to ALD, and may be CVD, plasma (including microwave) CVD, plasma ALD, or the like.
  • the substrate processing device 100 may be provided with a ballast gas supply device (not shown) for supplying the ballast gas.
  • a ballast gas an inert gas such as N 2 gas can be used.
  • the ballast gas supply device has a ballast gas supply line.
  • the ballast gas supply line extends from the ballast gas supply source, which is the ballast gas supply source, and is connected to the exhaust pipe 41.
  • the ballast gas supply line is provided with a mass flow controller and a valve in order from the ballast gas supply source side.
  • the mass flow controller controls the flow rate of ballast gas flowing through the ballast gas supply line.
  • the valve switches between supplying and stopping ballast gas.
  • ballast gas supply line of the ballast gas supply device has been described as being connected to the exhaust pipe 41 on the upstream side of the APC valve, but the present invention is not limited to this.
  • the ballast gas supply line of the ballast gas supply device may be connected to the processing container 1 and supply the ballast gas into the processing container 1.

Abstract

Provided are a substrate processing device, a substrate processing system, and a substrate processing method that improve the stability of substrate processing performance. A substrate processing device that comprises a chamber, a gas exhaust device that has a rotational-speed-controllable pump and exhausts gas from the chamber, and a control device. The control device adjusts the rotational speed of the pump such that the exhaust speed from inside the chamber to the gas exhaust device is a standard exhaust speed.

Description

基板処理装置、基板処理システム及び基板処理方法Substrate processing equipment, substrate processing system and substrate processing method
 本開示は、基板処理装置、基板処理システム及び基板処理方法に関する。 The present disclosure relates to a substrate processing apparatus, a substrate processing system, and a substrate processing method.
 例えば、チャンバ内を真空雰囲気に制御し、チャンバ内に処理ガスを供給して、チャンバ内の基板に所望の処理を施す基板処理装置が知られている。 For example, there is known a substrate processing apparatus that controls the inside of a chamber to a vacuum atmosphere, supplies a processing gas into the chamber, and performs a desired treatment on the substrate in the chamber.
 特許文献1には、炉体に排気管路を介して接続した真空ポンプの回転数制御により、炉体内圧力の制御をおこなう真空熱処理装置の真空排気装置が開示されている。 Patent Document 1 discloses a vacuum exhaust device of a vacuum heat treatment device that controls the pressure inside the furnace by controlling the rotation speed of a vacuum pump connected to the furnace body via an exhaust pipeline.
特開2007-315729号公報JP-A-2007-315729
 一の側面では、本開示は、基板処理性能の安定性を向上する基板処理装置、基板処理システム及び基板処理方法を提供する。 On the one hand, the present disclosure provides a substrate processing apparatus, a substrate processing system, and a substrate processing method for improving the stability of substrate processing performance.
 上記課題を解決するために、一の態様によれば、チャンバと、回転速度制御可能なポンプを有し、前記チャンバからガスを排気するガス排気装置と、制御装置と、を備え、前記制御装置は、前記チャンバ内から前記ガス排気装置への排気速度が基準排気速度となるように、前記ポンプの回転速度を調整する、基板処理装置が提供される。 In order to solve the above problems, according to one aspect, the control device includes a chamber, a gas exhaust device having a pump capable of controlling the rotation speed and exhausting gas from the chamber, and a control device. Provides a substrate processing device that adjusts the rotational speed of the pump so that the exhaust speed from the inside of the chamber to the gas exhaust device becomes a reference exhaust speed.
 一の側面によれば、基板処理性能の安定性を向上する基板処理装置、基板処理システム及び基板処理方法を提供することができる。 According to one aspect, it is possible to provide a substrate processing apparatus, a substrate processing system, and a substrate processing method for improving the stability of the substrate processing performance.
第1実施形態に係る基板処理装置の構成の一例を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing an example of the configuration of the substrate processing apparatus according to the first embodiment. 第1実施形態に係る基板処理装置におけるプロセスシーケンスの一例を示す図。The figure which shows an example of the process sequence in the substrate processing apparatus which concerns on 1st Embodiment. 処理容器内の圧力変化の一例を模式的に示したグラフ。The graph which showed an example of the pressure change in a processing container schematically. 経時変化による処理容器に供給するガスの流量と処理容器内の圧力の関係の一例を示すグラフ。The graph which shows an example of the relationship between the flow rate of the gas supplied to the processing container by the time change, and the pressure in a processing container. 第2実施形態に係るクラスタシステムの構成の一例を示す平面図。The plan view which shows an example of the structure of the cluster system which concerns on 2nd Embodiment. 第2実施形態に係るクラスタシステムの構成の一例を示す模式図。The schematic diagram which shows an example of the structure of the cluster system which concerns on 2nd Embodiment. 機差による処理容器に供給するガスの流量と処理容器内の圧力の関係の一例を示すグラフ。The graph which shows an example of the relationship between the flow rate of the gas supplied to the processing container due to the machine error and the pressure in the processing container. 第3実施形態に係る基板処理装置の構成の一例を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing an example of the configuration of the substrate processing apparatus according to the third embodiment.
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, a mode for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.
<基板処理装置>
 第1実施形態に係る基板処理装置100について、図1を用いて説明する。図1は、第1実施形態に係る基板処理装置100の構成の一例を示す断面模式図である。以下の説明において、基板処理装置100は、ウェハ等の基板Wに原料ガスであるTiClガス及び還元ガスであるNHガスを供給して、基板Wの表面にTiN膜を成膜するALD(Atomic Layer Deposition)装置である場合を例に説明する。
<Board processing equipment>
The substrate processing apparatus 100 according to the first embodiment will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the substrate processing apparatus 100 according to the first embodiment. In the following description, the substrate processing apparatus 100 supplies TiCl 4 gas, which is a raw material gas, and NH 3 gas, which is a reducing gas, to a substrate W such as a wafer to form a TiN film on the surface of the substrate W. Atomic Layer Deposition) A device will be described as an example.
 基板処理装置100は、処理容器(チャンバ)1、基板載置台2、シャワーヘッド3、ガス排気装置4、処理ガス供給部5、制御装置6を有する。 The substrate processing device 100 includes a processing container (chamber) 1, a substrate mounting table 2, a shower head 3, a gas exhaust device 4, a processing gas supply unit 5, and a control device 6.
 処理容器1は、アルミニウム等の金属により構成され、略円筒状を有する。処理容器1の側壁には基板Wを搬入又は搬出するための搬入出口11が形成され、搬入出口11はゲートバルブ12で開閉可能となっている。処理容器1の本体の上には、断面が矩形状をなす円環状の排気ダクト13が設けられている。排気ダクト13には、内周面に沿ってスリット13aが形成されている。また、排気ダクト13の外壁には排気口13bが形成されている。排気ダクト13の上面には処理容器1の上部開口を塞ぐように天壁14が設けられている。天壁14と排気ダクト13の間はシールリング15で気密にシールされている。 The processing container 1 is made of a metal such as aluminum and has a substantially cylindrical shape. A carry-in outlet 11 for carrying in or out the substrate W is formed on the side wall of the processing container 1, and the carry-in outlet 11 can be opened and closed by a gate valve 12. An annular exhaust duct 13 having a rectangular cross section is provided on the main body of the processing container 1. A slit 13a is formed in the exhaust duct 13 along the inner peripheral surface. Further, an exhaust port 13b is formed on the outer wall of the exhaust duct 13. A top wall 14 is provided on the upper surface of the exhaust duct 13 so as to close the upper opening of the processing container 1. The space between the top wall 14 and the exhaust duct 13 is airtightly sealed with a seal ring 15.
 基板載置台2は、処理容器1内で基板Wを水平に支持する。基板載置台2は、基板Wに対応した大きさの円板状をなし、支持部材23に支持されている。基板載置台2は、窒化アルミニウム(AlN)等のセラミックス材料や、アルミニウムやニッケル基合金等の金属材料で構成されており、内部に基板Wを加熱するためのヒータ21が埋め込まれている。ヒータ21は、ヒータ電源(図示せず)から給電されて発熱する。そして、基板載置台2の上面のウエハ載置面近傍に設けられた熱電対(図示せず)の温度信号によりヒータ21の出力を制御することにより、基板Wを所定の温度に制御するようになっている。 The board mounting table 2 horizontally supports the board W in the processing container 1. The board mounting table 2 has a disk shape having a size corresponding to the board W, and is supported by the support member 23. The substrate mounting table 2 is made of a ceramic material such as aluminum nitride (AlN) or a metal material such as aluminum or a nickel-based alloy, and a heater 21 for heating the substrate W is embedded therein. The heater 21 is supplied with power from a heater power source (not shown) to generate heat. Then, the substrate W is controlled to a predetermined temperature by controlling the output of the heater 21 by the temperature signal of the thermocouple (not shown) provided near the wafer mounting surface on the upper surface of the substrate mounting table 2. It has become.
 基板載置台2には、ウエハ載置面の外周領域、及び基板載置台2の側面を覆うようにアルミナ等のセラミックスからなるカバー部材22が設けられている。 The substrate mounting table 2 is provided with a cover member 22 made of ceramics such as alumina so as to cover the outer peripheral region of the wafer mounting surface and the side surface of the substrate mounting table 2.
 支持部材23は、基板載置台2の底面中央から処理容器1の底壁に形成された孔部を貫通して処理容器1の下方に延び、その下端が昇降機構24に接続されている。昇降機構24により基板載置台2が支持部材23を介して、図1で示す処理位置と、その下方の二点鎖線で示すウエハの搬送が可能な搬送位置との間で昇降可能となっている。また、支持部材23の処理容器1の下方には、鍔部25が取り付けられており、処理容器1の底面と鍔部25の間には、処理容器1内の雰囲気を外気と区画し、基板載置台2の昇降動作にともなって伸縮するベローズ26が設けられている。 The support member 23 extends from the center of the bottom surface of the substrate mounting table 2 to the lower side of the processing container 1 through a hole formed in the bottom wall of the processing container 1, and the lower end thereof is connected to the elevating mechanism 24. The elevating mechanism 24 allows the substrate mounting table 2 to move up and down via the support member 23 between the processing position shown in FIG. 1 and the transfer position below which the wafer can be conveyed by the alternate long and short dash line. .. Further, a flange portion 25 is attached below the processing container 1 of the support member 23, and the atmosphere inside the processing container 1 is partitioned from the outside air between the bottom surface of the processing container 1 and the collar portion 25 to form a substrate. A bellows 26 that expands and contracts as the mounting table 2 moves up and down is provided.
 処理容器1の底面近傍には、昇降板27aから上方に突出するように3本(2本のみ図示)のウエハ支持ピン27が設けられている。ウエハ支持ピン27は、処理容器1の下方に設けられた昇降機構28により昇降板27aを介して昇降可能になっており、搬送位置にある基板載置台2に設けられた貫通孔2aに挿通されて基板載置台2の上面に対して突没可能となっている。このようにウエハ支持ピン27を昇降させることにより、ウエハ搬送機構(図示せず)と基板載置台2との間で基板Wの受け渡しが行われる。 Near the bottom surface of the processing container 1, three wafer support pins 27 (only two are shown) are provided so as to project upward from the elevating plate 27a. The wafer support pin 27 can be raised and lowered via the lifting plate 27a by the lifting mechanism 28 provided below the processing container 1, and is inserted into the through hole 2a provided in the substrate mounting table 2 at the transport position. It is possible to sink into the upper surface of the substrate mounting table 2. By raising and lowering the wafer support pin 27 in this way, the substrate W is transferred between the wafer transfer mechanism (not shown) and the substrate mounting table 2.
 シャワーヘッド3は、処理容器1内に処理ガスをシャワー状に供給する。シャワーヘッド3は、金属製であり、基板載置台2に対向するように設けられており、基板載置台2とほぼ同じ直径を有する。シャワーヘッド3は、処理容器1の天壁14に固定された本体部31と、本体部31の下に接続されたシャワープレート32とを有する。本体部31とシャワープレート32との間にはガス拡散空間33が形成されており、ガス拡散空間33には、本体部31及び処理容器1の天壁14の中央を貫通するようにガス導入孔36が設けられている。シャワープレート32の周縁部には下方に突出する環状突起部34が形成され、シャワープレート32の環状突起部34の内側の平坦面にはガス吐出孔35が形成されている。 The shower head 3 supplies the processing gas into the processing container 1 in the form of a shower. The shower head 3 is made of metal, is provided so as to face the substrate mounting table 2, and has substantially the same diameter as the substrate mounting table 2. The shower head 3 has a main body 31 fixed to the top wall 14 of the processing container 1 and a shower plate 32 connected under the main body 31. A gas diffusion space 33 is formed between the main body 31 and the shower plate 32, and a gas introduction hole is formed in the gas diffusion space 33 so as to penetrate the center of the main body 31 and the top wall 14 of the processing container 1. 36 is provided. An annular protrusion 34 projecting downward is formed on the peripheral edge of the shower plate 32, and a gas discharge hole 35 is formed on the flat surface inside the annular protrusion 34 of the shower plate 32.
 基板載置台2が処理位置に存在した状態では、シャワープレート32と基板載置台2との間に処理空間37が形成され、環状突起部34と基板載置台2のカバー部材22の上面が近接して環状隙間38が形成される。 When the board mounting table 2 is present at the processing position, a processing space 37 is formed between the shower plate 32 and the board mounting table 2, and the annular protrusion 34 and the upper surface of the cover member 22 of the board mounting table 2 are close to each other. An annular gap 38 is formed.
 基板処理装置100は、処理容器1内からガスを排気するガス排気装置4が設けられている。ガス排気装置4は、排気配管41と、真空ポンプ42と、APCバルブ43と、圧力センサ44と、を備える。処理に際して、処理容器1内のガスは、スリット13aを介して排気ダクト13に至り、排気ダクト13からガス排気装置4の真空ポンプ42により排気配管41を通って排気される。 The substrate processing device 100 is provided with a gas exhaust device 4 that exhausts gas from the processing container 1. The gas exhaust device 4 includes an exhaust pipe 41, a vacuum pump 42, an APC valve 43, and a pressure sensor 44. At the time of processing, the gas in the processing container 1 reaches the exhaust duct 13 through the slit 13a, and is exhausted from the exhaust duct 13 through the exhaust pipe 41 by the vacuum pump 42 of the gas exhaust device 4.
 排気配管41は、処理容器1の排気口13bと真空ポンプ42の吸入ポートとを接続する。真空ポンプ42は、インバータ制御による可変速制御が可能となっている。排気配管41には、圧力制御(APC:Adaptive Pressure Control)バルブ(以下、「APCバルブ」と称する。)43が設けられている。APCバルブ43は、開度制御が可能なバルブであり、排気経路のコンダクタンスを調節することによって、処理容器1内の圧力を調節する。 The exhaust pipe 41 connects the exhaust port 13b of the processing container 1 and the suction port of the vacuum pump 42. The vacuum pump 42 is capable of variable speed control by inverter control. The exhaust pipe 41 is provided with a pressure control (APC: Adaptive Pressure Control) valve (hereinafter, referred to as “APC valve”) 43. The APC valve 43 is a valve whose opening degree can be controlled, and adjusts the pressure in the processing container 1 by adjusting the conductance of the exhaust path.
 圧力センサ44は、APCバルブ43よりも上流側の排気配管41に設けられ、排気配管41内の圧力を検出する。なお、処理容器1内の圧力を検出する圧力センサを備えていてもよく、APCバルブ43よりも下流側(真空ポンプ42の一次側)の排気配管41内の圧力を検出する圧力センサを備えていてもよい。 The pressure sensor 44 is provided in the exhaust pipe 41 on the upstream side of the APC valve 43, and detects the pressure in the exhaust pipe 41. A pressure sensor for detecting the pressure in the processing container 1 may be provided, and a pressure sensor for detecting the pressure in the exhaust pipe 41 on the downstream side (primary side of the vacuum pump 42) of the APC valve 43 is provided. You may.
 処理ガス供給部5は、原料ガス供給ラインL1、還元ガス供給ラインL2、第1の連続Nガス供給ラインL3、第2の連続Nガス供給ラインL4を有する。 The processing gas supply unit 5, has a raw material gas supply line L1, the reducing gas supply line L2, the first continuous N 2 gas supply line L3, the second continuous N 2 gas supply line L4.
 原料ガス供給ラインL1は、TiClガス(原料ガス)の供給源である原料ガス供給源GS1から延び、合流配管L7に接続されている。合流配管L7は、ガス導入孔36に接続されている。原料ガス供給ラインL1には、原料ガス供給源GS1側から順に、マスフローコントローラM1、バッファタンクT1、及び開閉弁V1が設けられている。マスフローコントローラM1は、原料ガス供給ラインL1を流れるTiClガスの流量を制御する。バッファタンクT1は、TiClガスを一時的に貯留し、短時間で必要なTiClガスを供給する。開閉弁V1は、ALDプロセスの際にTiClガスの供給・停止を切り替える。 The raw material gas supply line L1 extends from the raw material gas supply source GS1 which is a supply source of the TiCl 4 gas (raw material gas) and is connected to the merging pipe L7. The merging pipe L7 is connected to the gas introduction hole 36. The raw material gas supply line L1 is provided with a mass flow controller M1, a buffer tank T1, and an on-off valve V1 in this order from the raw material gas supply source GS1 side. The mass flow controller M1 controls the flow rate of the TiCl 4 gas flowing through the raw material gas supply line L1. Buffer tank T1 is to temporarily store the TiCl 4 gas is supplied in a short time required TiCl 4 gas. The on-off valve V1 switches the supply / stop of the TiCl 4 gas during the ALD process.
 還元ガス供給ラインL2は、NHガス(還元ガス)の供給源である還元ガス供給源GS2から延び、合流配管L7に接続されている。還元ガス供給ラインL2には、還元ガス供給源GS2側から順に、マスフローコントローラM2、バッファタンクT2、及び開閉弁V2が設けられている。マスフローコントローラM2は、還元ガス供給ラインL2を流れるNHガスの流量を制御する。バッファタンクT2は、NHガスを一時的に貯留し、短時間で必要なNHガスを供給する。開閉弁V2は、ALDプロセスの際にNHガスの供給・停止を切り替える。 The reduction gas supply line L2 extends from the reduction gas supply source GS2, which is a supply source of NH 3 gas (reduction gas), and is connected to the merging pipe L7. The reduction gas supply line L2 is provided with a mass flow controller M2, a buffer tank T2, and an on-off valve V2 in this order from the reduction gas supply source GS2 side. The mass flow controller M2 controls the flow rate of the NH 3 gas flowing through the reducing gas supply line L2. Buffer tank T2 temporarily storing the NH 3 gas is supplied in a short time necessary NH 3 gas. Off valve V2 switches the supply and stop of the NH 3 gas during the ALD process.
 第1の連続Nガス供給ラインL3は、Nガスの供給源であるNガス供給源GS3から延び、原料ガス供給ラインL1に接続されている。これにより、第1の連続Nガス供給ラインL3を介して原料ガス供給ラインL1側にNガスが供給される。第1の連続Nガス供給ラインL3は、ALD法による成膜中にNガスを常時供給し、TiClガスのキャリアガスとして機能するとともに、パージガスとしての機能も有する。第1の連続Nガス供給ラインL3には、Nガス供給源GS3側から順に、マスフローコントローラM3、開閉弁V3、及びオリフィスF3が設けられている。マスフローコントローラM3は、第1の連続Nガス供給ラインL3を流れるNガスの流量を制御する。オリフィスF3は、バッファタンクT1によって供給される比較的大きい流量のガスが第1の連続Nガス供給ラインL3に逆流することを抑制する。 First continuous N 2 gas supply line L3 extends from the N 2 gas supply source GS3 is a source of N 2 gas is connected to a source gas supply line L1. Thus, N 2 gas is supplied to the source gas supply line L1 side via a first continuous N 2 gas supply line L3. The first continuous N 2 gas supply line L3 constantly supplies N 2 gas during film formation by the ALD method, and functions as a carrier gas for TiCl 4 gas and also as a purge gas. The first continuous N 2 gas supply line L3 is provided with a mass flow controller M3, an on-off valve V3, and an orifice F3 in this order from the N 2 gas supply source GS3 side. The mass flow controller M3 controls the flow rate of N 2 gas flowing through the first continuous N 2 gas supply line L3. Orifice F3 refrains from relatively large flow rate of the gas supplied by the buffer tank T1 flows back to the first continuous N 2 gas supply line L3.
 第2の連続Nガス供給ラインL4は、Nガスの供給源であるNガス供給源GS4から延び、還元ガス供給ラインL2に接続されている。これにより、第2の連続Nガス供給ラインL4を介して還元ガス供給ラインL2側にNガスを供給される。第2の連続Nガス供給ラインL4は、ALD法による成膜中にNガスを常時供給し、NHガスのキャリアガスとして機能するとともに、パージガスとしての機能も有する。第2の連続Nガス供給ラインL4には、Nガス供給源GS4側から順に、マスフローコントローラM4、開閉弁V4、及びオリフィスF4が設けられている。マスフローコントローラM4は、第2の連続Nガス供給ラインL4を流れるNガスの流量を制御する。オリフィスF4は、バッファタンクT2によって供給される比較的大きい流量のガスが第2の連続Nガス供給ラインL4に逆流することを抑制する。 Second continuous N 2 gas supply line L4 extends from the N 2 gas supply source GS4 is a source of N 2 gas is connected to the reducing gas supply line L2. Thus, it supplied with N 2 gas to the reducing gas supply line L2 side via the second continuous N 2 gas supply line L4. The second continuous N 2 gas supply line L4 constantly supplies N 2 gas during film formation by the ALD method, functions as a carrier gas for NH 3 gas, and also functions as a purge gas. The second continuous N 2 gas supply line L4 is provided with a mass flow controller M4, an on-off valve V4, and an orifice F4 in this order from the N 2 gas supply source GS4 side. The mass flow controller M4 controls the flow rate of N 2 gas flowing through the second continuous N 2 gas supply line L4. Orifice F4 refrains from relatively large flow rate of the gas supplied by the buffer tank T2 from flowing back to the second continuous N 2 gas supply line L4.
 制御装置6は、基板処理装置100の各部の動作を制御する。制御装置6は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を有する。CPUは、RAM等の記憶領域に格納されたレシピに従って、所望の処理を実行する。レシピには、プロセス条件に対する装置の制御情報が設定されている。制御情報は、例えばガス流量、圧力、温度、プロセス時間であってよい。なお、レシピ及び制御装置6が使用するプログラムは、例えばハードディスク、半導体メモリに記憶されてもよい。また、レシピ等は、CD-ROM、DVD等の可搬性のコンピュータにより読み取り可能な記憶媒体に収容された状態で所定の位置にセットされ、読み出されるようにしてもよい。 The control device 6 controls the operation of each part of the substrate processing device 100. The control device 6 has a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). The CPU executes a desired process according to a recipe stored in a storage area such as RAM. In the recipe, control information of the device for the process condition is set. The control information may be, for example, gas flow rate, pressure, temperature, process time. The recipe and the program used by the control device 6 may be stored in, for example, a hard disk or a semiconductor memory. Further, the recipe or the like may be set in a predetermined position and read in a state of being housed in a storage medium readable by a portable computer such as a CD-ROM or a DVD.
 制御装置6は、CPUが実行する制御ブロックとして、処理ガス制御部61と、真空ポンプ制御部62と、APCバルブ制御部63と、を有する。 The control device 6 has a processing gas control unit 61, a vacuum pump control unit 62, and an APC valve control unit 63 as control blocks executed by the CPU.
 処理ガス制御部61は、レシピに従ってバルブV1~V4の開閉を制御することにより、処理ガス供給部5による処理容器1内への処理ガスの供給を制御する。 The processing gas control unit 61 controls the supply of the processing gas into the processing container 1 by the processing gas supply unit 5 by controlling the opening and closing of the valves V1 to V4 according to the recipe.
 真空ポンプ制御部62は、真空ポンプ42をインバータ制御する。即ち、真空ポンプ制御部62は、真空ポンプ42のモータの回転速度をインバータ制御する。ここで、真空ポンプ42の排気速度は、真空ポンプ42のモータの回転速度により決定される。このため、真空ポンプ制御部62は、真空ポンプ42の排気速度を制御することができる。 The vacuum pump control unit 62 controls the vacuum pump 42 by an inverter. That is, the vacuum pump control unit 62 inverter-controls the rotation speed of the motor of the vacuum pump 42. Here, the exhaust speed of the vacuum pump 42 is determined by the rotation speed of the motor of the vacuum pump 42. Therefore, the vacuum pump control unit 62 can control the exhaust speed of the vacuum pump 42.
 真空ポンプ制御部62は、処理容器1内からガス排気装置4への排気速度が予め設定された排気速度となるように、モータの回転速度を決定する。そして、真空ポンプ制御部62は、決定した回転速度となるように、真空ポンプ42のモータをインバータ制御する。 The vacuum pump control unit 62 determines the rotation speed of the motor so that the exhaust speed from the inside of the processing container 1 to the gas exhaust device 4 becomes a preset exhaust speed. Then, the vacuum pump control unit 62 inverter-controls the motor of the vacuum pump 42 so that the rotation speed is determined.
 APCバルブ制御部63は、レシピに従ってAPCバルブ43の開度を制御する。 The APC valve control unit 63 controls the opening degree of the APC valve 43 according to the recipe.
 次に、第1実施形態に係る基板処理装置100におけるALDプロセスによるTiN膜の成膜処理について説明する。図2は、第1実施形態に係る基板処理装置100におけるプロセスシーケンスの一例を示す図である。図2(a)は、供給されるガスの量の変化を示すタイミングチャートである。図2(a)において、横軸は時間を示し、縦軸はガス供給量を示す。図2(b)は、APCバルブ43の開度を示すグラフである。図2(b)において、横軸は時間を示し、縦軸はAPCバルブ43の開度を示す。図2(c)は、処理容器1内の圧力を示すグラフである。図2(c)において、横軸は時間を示し、縦軸はガス供給量を示す。 Next, the film formation process of the TiN film by the ALD process in the substrate processing apparatus 100 according to the first embodiment will be described. FIG. 2 is a diagram showing an example of a process sequence in the substrate processing apparatus 100 according to the first embodiment. FIG. 2A is a timing chart showing changes in the amount of gas supplied. In FIG. 2A, the horizontal axis represents time and the vertical axis represents gas supply. FIG. 2B is a graph showing the opening degree of the APC valve 43. In FIG. 2B, the horizontal axis represents time and the vertical axis represents the opening degree of the APC valve 43. FIG. 2C is a graph showing the pressure inside the processing container 1. In FIG. 2C, the horizontal axis represents time and the vertical axis represents gas supply.
 まず、基板処理装置100の処理容器1内に基板Wを搬入する。具体的には、ヒータ21により所定温度(例えば、300℃~700℃)に加熱された基板載置台2を搬送位置(図1において二点鎖線で示す。)に下降させた状態でゲートバルブ12を開く。続いて、搬送アーム(図示せず)により基板Wを、搬入出口11を介して処理容器1内に搬入し、ウエハ支持ピン27で支持する。搬送アームが搬入出口11から退避すると、ゲートバルブ12を閉じる。また、ウエハ支持ピン27を下降させて、基板Wを基板載置台2に載置する。続いて、基板載置台2を処理位置(図1において実線で示す。)まで上昇させ、処理容器1内を所定の真空度まで減圧する。その後、開閉弁V3,V4を開き、開閉弁V1,V2,V5を閉じる。これにより、Nガス供給源GS3,GS4から第1の連続Nガス供給ラインL3及び第2の連続Nガス供給ラインL4を経てN2ガスを処理容器1内に供給して圧力を上昇させ、基板載置台2上の基板Wの温度を安定させる。このとき、バッファタンクT1内には、原料ガス供給源GS1からTiClガスが供給されて、バッファタンクT1内の圧力は略一定に維持されている。また、バッファタンクT2内には、還元ガス供給源GS2からNHガスが供給されて、バッファタンクT2内の圧力は略一定に維持されている。 First, the substrate W is carried into the processing container 1 of the substrate processing apparatus 100. Specifically, the gate valve 12 is in a state where the substrate mounting table 2 heated to a predetermined temperature (for example, 300 ° C. to 700 ° C.) by the heater 21 is lowered to the transport position (indicated by the alternate long and short dash line in FIG. 1). open. Subsequently, the substrate W is carried into the processing container 1 through the carry-in outlet 11 by a transport arm (not shown), and is supported by the wafer support pin 27. When the transport arm retracts from the carry-in outlet 11, the gate valve 12 is closed. Further, the wafer support pin 27 is lowered to mount the substrate W on the substrate mounting table 2. Subsequently, the substrate mounting table 2 is raised to the processing position (shown by a solid line in FIG. 1), and the inside of the processing container 1 is depressurized to a predetermined degree of vacuum. After that, the on-off valves V3 and V4 are opened, and the on-off valves V1, V2 and V5 are closed. Thus, to increase the pressure supplied from the N 2 gas supply source GS3, GS4 the first continuous N 2 gas supply line L3 and the second continuous N 2 gas supply line L4 processing vessel 1 N2 gas through the , Stabilize the temperature of the substrate W on the substrate mounting table 2. At this time, the TiCl 4 gas is supplied from the raw material gas supply source GS1 into the buffer tank T1, and the pressure in the buffer tank T1 is maintained substantially constant. Further, NH 3 gas is supplied from the reducing gas supply source GS2 into the buffer tank T2, and the pressure in the buffer tank T2 is maintained substantially constant.
 続いて、TiClガスとNHガスとを用いたALDプロセスによりTiN膜を成膜する。 Subsequently, a TiN film is formed by an ALD process using TiCl 4 gas and NH 3 gas.
 ALDプロセスは、TiCl供給工程S1、第1のパージ工程S2、NH供給工程S3、及び、第2のパージ工程S4を所定サイクル繰り返し、基板Wの上に所望の膜厚のTiN膜を形成するプロセスである。 In the ALD process, the TiCl 4 supply step S1, the first purge step S2, the NH 3 supply step S3, and the second purge step S4 are repeated for a predetermined cycle to form a TiN film having a desired film thickness on the substrate W. The process of doing.
 TiCl供給工程S1は、TiClガスを処理空間37に供給する工程である。TiCl供給工程S1では、まず、開閉弁V3,V4を開いた状態で、Nガス供給源GS3,GS4から、第1の連続Nガス供給ラインL3及び第2の連続Nガス供給ラインL4を経てNガス(連続Nガス)を供給し続ける。また、開閉弁V1を開くことにより、原料ガス供給源GS1から原料ガス供給ラインL1を経てTiClガスを処理容器1内の処理空間37に供給する。このとき、TiClガスは、バッファタンクT1に一旦貯留された後に処理容器1内に供給される。これにより、基板Wの表面にTiClガスが吸着される。 The TiCl 4 supply step S1 is a step of supplying the TiCl 4 gas to the treatment space 37. In TiCl 4 feed step S1, firstly, with open closing valve V3, V4, from N 2 gas supply source GS3, GS4, first continuous N 2 gas supply line L3 and the second continuous N 2 gas supply line Continue to supply N 2 gas (continuous N 2 gas) via L4. Further, by opening the on-off valve V1, TiCl 4 gas is supplied from the raw material gas supply source GS1 to the processing space 37 in the processing container 1 via the raw material gas supply line L1. At this time, the TiCl 4 gas is once stored in the buffer tank T1 and then supplied into the processing container 1. As a result, TiCl 4 gas is adsorbed on the surface of the substrate W.
 第1のパージ工程S2は、処理空間37の余剰のTiClガス等をパージする工程である。第1のパージ工程S2では、第1の連続Nガス供給ラインL3及び第2の連続Nガス供給ラインL4を介してのNガス(連続Nガス)の供給を継続した状態で、開閉弁V1を閉じてTiClガスの供給を停止する。これにより、処理空間37の余剰のTiClガス等をパージする。 The first purging step S2 is a step of purging excess TiCl 4 gas or the like in the processing space 37. In the first purging step S2, N 2 gas (continuous N 2 gas) is continuously supplied through the first continuous N 2 gas supply line L3 and the second continuous N 2 gas supply line L4. The on-off valve V1 is closed to stop the supply of TiCl 4 gas. As a result, excess TiCl 4 gas or the like in the processing space 37 is purged.
 NH供給工程S3は、NHガスを処理空間37に供給する工程である。NH供給工程Sでは、第1の連続Nガス供給ラインL3及び第2の連続Nガス供給ラインL4を介してのNガス(連続Nガス)の供給を継続した状態で、開閉弁V2を開く。これにより、還元ガス供給源GS2から還元ガス供給ラインL2を経てNHガスを処理空間37に供給する。このとき、NHガスは、バッファタンクT2に一旦貯留された後に処理容器1内に供給される。これにより、基板W上に吸着したTiClが還元される。このときのNHガスの流量は、十分に還元反応が生じる量とすることができる。 The NH 3 supply step S3 is a step of supplying the NH 3 gas to the processing space 37. In NH 3 supply process S 3, while continuing the supply of the N 2 gas (continuous N 2 gas) through the first continuous N 2 gas supply line L3 and the second continuous N 2 gas supply line L4, Open the on-off valve V2. Accordingly, supplying the NH 3 gas into the processing space 37 through the reducing gas supply line L2 from the reducing gas source GS2. At this time, the NH 3 gas is once stored in the buffer tank T2 and then supplied into the processing container 1. As a result, the TiCl 4 adsorbed on the substrate W is reduced. The flow rate of the NH 3 gas at this time can be set to an amount that sufficiently causes a reduction reaction.
 第2のパージ工程S4は、処理空間37の余剰のNHガスをパージする工程である。第2のNガスを供給する工程では、第1の連続Nガス供給ラインL3及び第2の連続Nガス供給ラインL4を介してのNガス(連続Nガス)の供給を継続した状態で、開閉弁V2を閉じてNHガスの供給を停止する。これにより、処理空間37の余剰のNHガス等をパージする。 The second purging step S4 is a step of purging the excess NH 3 gas in the processing space 37. The step of supplying a second N 2 gas, continues the supply of the N 2 gas (continuous N 2 gas) through the first continuous N 2 gas supply line L3 and the second continuous N 2 gas supply line L4 In this state, the on-off valve V2 is closed to stop the supply of NH 3 gas. As a result, excess NH 3 gas or the like in the processing space 37 is purged.
 以下、これらの工程を所定サイクル繰り返すことにより、基板Wの上に所望の膜厚のTiN膜を形成する。なお、図2(b)に示すように、ALDプロセスにおいて、APCバルブ43の開度は一定である。また、ALDプロセスにおいて、真空ポンプ42のモータの回転速度(真空ポンプ42の排気速度)は、一定である。 Hereinafter, by repeating these steps in a predetermined cycle, a TiN film having a desired film thickness is formed on the substrate W. As shown in FIG. 2B, the opening degree of the APC valve 43 is constant in the ALD process. Further, in the ALD process, the rotation speed of the motor of the vacuum pump 42 (exhaust speed of the vacuum pump 42) is constant.
 このように、制御装置6は、真空ポンプ制御部62により真空ポンプ42のモータの回転速度を所定の回転速度(例えば、初期設置時は真空ポンプ42の最大出力より小さい出力)で維持しつつ、APCバルブ制御部63によりAPCバルブ43の開度を所定の開度(例えば、初期設置時はフルオープンより小さい開度)で維持しつつ、処理ガス制御部61によりバルブV1~V4の開閉を制御することにより、ALDプロセスを実行する。 In this way, the control device 6 maintains the rotation speed of the motor of the vacuum pump 42 by the vacuum pump control unit 62 at a predetermined rotation speed (for example, an output smaller than the maximum output of the vacuum pump 42 at the time of initial installation). The processing gas control unit 61 controls the opening and closing of the valves V1 to V4 while the APC valve control unit 63 maintains the opening degree of the APC valve 43 at a predetermined opening degree (for example, the opening degree smaller than the full open at the time of initial installation). By doing so, the ALD process is executed.
 ところで、基板処理装置100は、原料ガスであるTiClガスのように低蒸気圧の液体を気化させて供給するプロセスである。また、原料ガスとして固体の材料を気化させて供給するプロセスもある。また、処理ガスにより副生成物等が生成されるプロセスもある。このようなプロセスでは、基板処理装置100の稼働時間が増えるに連れて、凝固した材料や副生成物等が排気配管41や真空ポンプ42内部に付着し、コンダクタンスが低下する。また、コンダクタンスが低下することにより、初期設置時と比較して、処理容器1内からガス排気装置4への排気速度も低下する。また、排気配管41等のクリーニング、メンテナンス、交換等が行われたときにも、ガス排気装置4への排気速度は変動する。 By the way, the substrate processing apparatus 100 is a process of vaporizing and supplying a liquid having a low vapor pressure such as TiCl 4 gas which is a raw material gas. There is also a process of vaporizing and supplying a solid material as a raw material gas. There is also a process in which by-products and the like are produced by the processing gas. In such a process, as the operating time of the substrate processing apparatus 100 increases, solidified materials, by-products, and the like adhere to the inside of the exhaust pipe 41 and the vacuum pump 42, and the conductance decreases. Further, since the conductance is lowered, the exhaust speed from the inside of the processing container 1 to the gas exhaust device 4 is also lowered as compared with the initial installation. Further, the exhaust speed to the gas exhaust device 4 also fluctuates when the exhaust pipe 41 or the like is cleaned, maintained, or replaced.
 図3は、処理容器1内の圧力変化の一例を模式的に示したグラフである。図3(a)は、基板処理装置100の初期設置時における処理容器1内の圧力変化の一例を示す。初期設置時においては、ステップS2の終了時(ステップS3の開始時)において、処理容器1内の圧力は圧力Pとなっており、TiClが好適にパージされることを示している。同様に、ステップS4の終了時(ステップS1の開始時)において、処理容器1内の圧力は圧力Pとなっており、NHが好適にパージされることを示している。 FIG. 3 is a graph schematically showing an example of a pressure change in the processing container 1. FIG. 3A shows an example of a pressure change in the processing container 1 at the time of initial installation of the substrate processing apparatus 100. At the time of initial installation, at the end of step S2 (at the start of step S3), the pressure in the processing container 1 is pressure P 0 , indicating that TiCl 4 is preferably purged. Similarly, at the end of step S4 (at the start of step S1), the pressure in the processing vessel 1 is pressure P 0 , indicating that NH 3 is preferably purged.
 図3(b)は、稼働時間経過後の基板処理装置100における圧力変化の一例を示す。稼働時間が経過して排気配管41等のコンダクタンスが低下することにより、初期設置時と同じ条件で真空ポンプ42の回転速度、APCバルブ43の開度、バルブV1~V4の開閉を制御しても、ステップS2の終了時(ステップS3の開始時)における圧力が初期状態の圧力Pよりも圧力差ΔPの分だけ上昇している。このため、処理容器1内のTiClが十分にパージされる前にNHの供給が開始される場合がある。また、図示は省略するがステップS4の終了からステップS1の開始時においても、処理容器1内のNHが十分にパージされる前にTiClの供給が開始される場合がある。 FIG. 3B shows an example of a pressure change in the substrate processing apparatus 100 after the lapse of operating time. Even if the rotation speed of the vacuum pump 42, the opening degree of the APC valve 43, and the opening and closing of the valves V1 to V4 are controlled under the same conditions as at the time of initial installation because the conductance of the exhaust pipe 41 etc. decreases as the operating time elapses. , has risen by an amount corresponding to the pressure difference ΔP than the pressure P 0 is the pressure in the initial state in (starting step S3) at the end of step S2. Therefore, the supply of NH 3 may be started before the TiCl 4 in the processing container 1 is sufficiently purged. Further, although not shown, the supply of TiCl 4 may be started before the NH 3 in the processing container 1 is sufficiently purged even from the end of step S4 to the start of step S1.
 このため、処理容器1内にはTiClとNHとが混在する状態となり、所望のALD反応が得られず、初期設置時と同様の成膜性能が得られないおそれがある。例えば、ステップS3において、供給されたNHがパージしきれなかった処理容器1内のTiClと反応して消費されることにより、基板Wの表面に吸着されたTiClとNHとの反応が低下し、成膜速度が低下するおそれがある。また、ステップS1において、供給されたTiClがパージしきれなかった処理容器1内のNHと反応して消費されることにより、基板Wの表面に吸着するTiClが減少し、成膜速度が低下するおそれがある。 For this reason, TiCl 4 and NH 3 are mixed in the processing container 1, and the desired ALD reaction cannot be obtained, so that the same film formation performance as in the initial installation may not be obtained. For example, in step S3, the supplied NH 3 reacts with TiCl 4 in the processing container 1 that could not be completely purged and is consumed, so that the reaction between TiCl 4 adsorbed on the surface of the substrate W and NH 3 May decrease and the film formation speed may decrease. Further, in step S1, the supplied TiCl 4 reacts with NH 3 in the processing container 1 that could not be completely purged and is consumed, so that the TiCl 4 adsorbed on the surface of the substrate W is reduced and the film formation rate is increased. May decrease.
 ここで、コンダクタンスの低下に対して、排気配管41に設けられたAPCバルブ43の開度を増加させてコンダクタンスが初期設置時と等しくなるように調整する場合、開度の増加には限界がある。 Here, when the opening degree of the APC valve 43 provided in the exhaust pipe 41 is increased to adjust the conductance to be equal to that at the time of initial installation in response to the decrease in conductance, there is a limit to the increase in opening degree. ..
 これに対し、第1実施形態に係る基板処理装置100は、処理容器1内からガス排気装置4への排気速度が基板処理装置100の初期設置時における排気速度(以下、「基準排気速度」と称する。)となるように、真空ポンプ42のモータの回転速度を制御する。 On the other hand, in the substrate processing device 100 according to the first embodiment, the exhaust speed from the inside of the processing container 1 to the gas exhaust device 4 is the exhaust speed at the time of initial installation of the substrate processing device 100 (hereinafter, "reference exhaust speed"). The rotation speed of the motor of the vacuum pump 42 is controlled so as to be (referred to as).
 図4は、経時変化による処理容器1に供給するガスの流量と処理容器1内の圧力の関係の一例を示すグラフである。 FIG. 4 is a graph showing an example of the relationship between the flow rate of gas supplied to the processing container 1 due to aging and the pressure inside the processing container 1.
 基板処理装置100の初期設置時において、真空ポンプ42の出力を所定の出力とし、処理容器1に供給される複数のガス(原料ガス、還元ガス、キャリアガス(不活性ガス))の夫々について、流量を変化させたときの処理容器1内の圧力をプロットし、近似線71を求める。ここで、初期設置時における真空ポンプ42の回転速度(出力)は、真空ポンプ42の最大回転速度よりも少ない回転速度で設定される。例えば、真空ポンプ42の最大回転速度を100%とした場合、実運用上の観点から最大回転速度の95%以下に設定されるのがよく、より好ましくは80%以下に設定されるのがよい。基準排気速度のポンプの回転速度が、最大回転速度に近くなるほど、調整、制御のマージンが小さくなり、安定したプロセス性能は満たすことができない。 At the time of initial installation of the substrate processing apparatus 100, the output of the vacuum pump 42 is set to a predetermined output, and for each of the plurality of gases (raw material gas, reducing gas, carrier gas (inert gas)) supplied to the processing container 1. The pressure in the processing container 1 when the flow rate is changed is plotted, and the approximate line 71 is obtained. Here, the rotation speed (output) of the vacuum pump 42 at the time of initial installation is set at a rotation speed lower than the maximum rotation speed of the vacuum pump 42. For example, when the maximum rotation speed of the vacuum pump 42 is set to 100%, it is preferably set to 95% or less of the maximum rotation speed, and more preferably 80% or less from the viewpoint of actual operation. .. As the rotation speed of the pump at the reference exhaust speed approaches the maximum rotation speed, the adjustment and control margins become smaller, and stable process performance cannot be satisfied.
 次に、真空ポンプ制御部62は、所定の判定基準を満たした場合、真空ポンプ42のモータの回転速度を調整する。ここで、所定の判定基準とは、排気配管41等のコンダクタンスが低下したと判定するための基準であり、例えば、所定の稼働時間が経過した場合、サイクル数が所定の閾値を超えた場合である。また、排気速度に影響を与える機器(排気配管41、真空ポンプ42、APCバルブ43等)のメンテナンスや交換が行われた場合であってもよい。なお、成膜プロセス中は処理容器1内の圧力制御に影響を与えるおそれがあるため、回転速度の調整を不許可とすることが好ましい。 Next, the vacuum pump control unit 62 adjusts the rotation speed of the motor of the vacuum pump 42 when the predetermined determination criteria are satisfied. Here, the predetermined determination standard is a standard for determining that the conductance of the exhaust pipe 41 or the like has decreased. For example, when a predetermined operating time has elapsed or the number of cycles exceeds a predetermined threshold value. is there. Further, maintenance or replacement of equipment (exhaust pipe 41, vacuum pump 42, APC valve 43, etc.) that affects the exhaust speed may be performed. Since the pressure control in the processing container 1 may be affected during the film forming process, it is preferable to disallow the adjustment of the rotation speed.
 真空ポンプ制御部62は、真空ポンプ42のモータの回転速度を初期設置時の回転速度よりも増加させる。 The vacuum pump control unit 62 increases the rotation speed of the motor of the vacuum pump 42 from the rotation speed at the time of initial installation.
 ここで、真空ポンプ42のモータの回転速度を初期設置時のままとし、コンダクタンス低下状態(稼働時間経過後)における供給ガスの流量と処理容器1内の圧力との関係を示す近似線72を示す。排気配管41等のコンダクタンスが低下することにより、近似線72の傾きは、初期設置時の近似線71の傾きよりも大きくなり、乖離している。 Here, the rotation speed of the motor of the vacuum pump 42 is left as it was at the initial installation, and an approximate line 72 showing the relationship between the flow rate of the supplied gas and the pressure in the processing container 1 in the state of reduced conductance (after the lapse of operating time) is shown. .. Due to the decrease in conductance of the exhaust pipe 41 and the like, the inclination of the approximate line 72 becomes larger than the inclination of the approximate line 71 at the time of initial installation, and is diverged.
 また、コンダクタンス低下状態(稼働時間経過後)において、真空ポンプ42のモータの回転速度を調整(増加)した場合における供給ガスの流量と処理容器1内の圧力との関係を示す近似線72aを示す。このように、真空ポンプ42のモータの回転速度を調整(増加)させることにより、近似線72aの傾きを初期設置時の近似線71の傾きに近づけることができるので、初期設置時と同様の成膜性能が得られる。 Further, an approximate line 72a showing the relationship between the flow rate of the supply gas and the pressure in the processing container 1 when the rotation speed of the motor of the vacuum pump 42 is adjusted (increased) in the state of reduced conductance (after the lapse of operating time) is shown. .. By adjusting (increasing) the rotation speed of the motor of the vacuum pump 42 in this way, the inclination of the approximate line 72a can be made closer to the inclination of the approximate line 71 at the time of initial installation. Membrane performance can be obtained.
 なお、調整後の回転速度は、基準排気速度が得られる回転速度とする。真空ポンプ制御部62は、圧力センサ44の検出値と基準排気速度に基づいて、真空ポンプ42のモータの回転速度を調整する。例えば、真空ポンプ制御部62は、圧力センサ44の検出値の変化から現在の排気速度を取得する。真空ポンプ制御部62は、取得した現在の排気速度と基準排気速度とを比較して、比較結果に基づいて、真空ポンプ42のモータの回転速度を調整する。例えば、真空ポンプ制御部62は、取得した排気速度が基準排気速度となるように真空ポンプ42のモータの回転速度を調整する。これにより、図4の近似線72aに示すように、供給ガスの流量と処理容器1内の圧力との関係を初期設置時の近似線71と等しくすることができるので、図3(c)に示すように、処理容器1内の圧力変化を初期設置時(図2(a)参照)と同様にすることができ、初期設置時と同様の成膜性能が得られる。 The adjusted rotation speed shall be the rotation speed at which the reference exhaust speed can be obtained. The vacuum pump control unit 62 adjusts the rotation speed of the motor of the vacuum pump 42 based on the detected value of the pressure sensor 44 and the reference exhaust speed. For example, the vacuum pump control unit 62 acquires the current exhaust speed from the change in the detected value of the pressure sensor 44. The vacuum pump control unit 62 compares the acquired current exhaust speed with the reference exhaust speed, and adjusts the rotation speed of the motor of the vacuum pump 42 based on the comparison result. For example, the vacuum pump control unit 62 adjusts the rotation speed of the motor of the vacuum pump 42 so that the acquired exhaust speed becomes the reference exhaust speed. As a result, as shown in the approximate line 72a of FIG. 4, the relationship between the flow rate of the supply gas and the pressure in the processing container 1 can be made equal to the approximate line 71 at the time of initial installation. As shown, the pressure change in the processing container 1 can be made the same as in the initial installation (see FIG. 2A), and the same film forming performance as in the initial installation can be obtained.
 以上、第1実施形態に係る基板処理装置100によれば、インバータ制御の真空ポンプ42を用いてモータの回転速度を制御することにより、排気配管41等に副生成物等が付着してコンダクタンスが経時変化しても、排気速度を一定にすることができ、基板処理性能の安定性を向上させることができる。 As described above, according to the substrate processing apparatus 100 according to the first embodiment, by controlling the rotation speed of the motor by using the vacuum pump 42 controlled by the inverter, by-products and the like adhere to the exhaust pipe 41 and the like, and conductance is increased. Even if it changes with time, the exhaust speed can be kept constant, and the stability of the substrate processing performance can be improved.
 また、初期設置時における真空ポンプ42の回転速度は、真空ポンプ42の最大回転速度よりも少ない回転速度(例えば95%以下、より好ましくは80%以下)で設定される。これにより、排気配管41等に副生成物等が付着してコンダクタンスが経時変化しても、真空ポンプ42の回転速度を増加させることで基板処理性能の安定性を確保することができるので、メンテナンス周期を延命することができる。なお、最大出力の大きい真空ポンプ42を用いることにより、メンテナンス周期をさらに延命することができる。 Further, the rotation speed of the vacuum pump 42 at the time of initial installation is set at a rotation speed less than the maximum rotation speed of the vacuum pump 42 (for example, 95% or less, more preferably 80% or less). As a result, even if by-products or the like adhere to the exhaust pipe 41 or the like and the conductance changes with time, the stability of the substrate processing performance can be ensured by increasing the rotation speed of the vacuum pump 42, so that maintenance can be performed. The life of the cycle can be extended. By using the vacuum pump 42 having a large maximum output, the maintenance cycle can be further extended.
 また、初期設置時における排気速度の取得、現在の排気速度の取得、モータの回転速度を調整は、制御装置20により行うことができるので、人的な作業を不要とすることができる。 Further, since the control device 20 can be used to acquire the exhaust speed at the time of initial installation, acquire the current exhaust speed, and adjust the rotation speed of the motor, human work can be eliminated.
 また、制御装置20は、排気速度の低下に関係を与えるような信号を常時モニタする監視ソフトウエアを作動させてもよい。なお、排気速度の低下に関係を与えるような信号は、例えば、処理容器1の圧力センサ(図示せず)、排気配管41の圧力センサ44、真空ポンプ42の一次側の圧力センサ(図示せず)、真空ポンプ42の負荷状況(例えば、モータの電流値や温度)、APCバルブ43の開度等を用いることができる。これにより、排気速度の変化に起因する成膜プロセス不良が発生する前に、その予兆を検知して、プロセス不良を未然に防止することができる。 Further, the control device 20 may operate monitoring software that constantly monitors signals that affect the decrease in exhaust speed. The signals that affect the decrease in the exhaust speed are, for example, the pressure sensor of the processing container 1 (not shown), the pressure sensor 44 of the exhaust pipe 41, and the pressure sensor on the primary side of the vacuum pump 42 (not shown). ), The load status of the vacuum pump 42 (for example, the current value and temperature of the motor), the opening degree of the APC valve 43, and the like can be used. As a result, it is possible to detect a sign of a film forming process defect caused by a change in the exhaust speed and prevent the process defect in advance.
<クラスタシステム>
 次に、第2実施形態に係るクラスタシステム300について、図5を用いて説明する。図5は、第2実施形態に係るクラスタシステム300の構成の一例を示す平面図である。クラスタシステム300は、4つの基板処理装置100A~100Dを有する。これらは、平面形状が七角形をなす真空搬送室301の4つの壁部にそれぞれゲートバルブGを介して接続されている。真空搬送室301内は、真空ポンプにより排気されて所定の真空度に保持される。
<Cluster system>
Next, the cluster system 300 according to the second embodiment will be described with reference to FIG. FIG. 5 is a plan view showing an example of the configuration of the cluster system 300 according to the second embodiment. The cluster system 300 has four substrate processing devices 100A to 100D. These are connected to the four walls of the vacuum transfer chamber 301 having a heptagonal planar shape via a gate valve G, respectively. The inside of the vacuum transfer chamber 301 is exhausted by a vacuum pump and maintained at a predetermined degree of vacuum.
 基板処理装置100A~100Dは、基板Wに対して処理(例えば、成膜処理)を施す装置であり、CVD(Chemical Vapor Deposition)装置、ALD装置等により構成される。基板処理装置100A~100Dの一例は、図1に示す基板処理装置100であり、重複する説明を省略する。なお、基板処理装置100A~100Dは、基板Wに対して同じ処理を施すものであり、同様の構成を有している。但し、後述するように、排気配管41A~41Dの構造が異なっている。 The substrate processing devices 100A to 100D are devices that perform processing (for example, film formation processing) on the substrate W, and are composed of a CVD (Chemical Vapor Deposition) device, an ALD device, and the like. An example of the substrate processing devices 100A to 100D is the substrate processing device 100 shown in FIG. 1, and redundant description will be omitted. The substrate processing devices 100A to 100D perform the same processing on the substrate W, and have the same configuration. However, as will be described later, the structures of the exhaust pipes 41A to 41D are different.
 また、真空搬送室301の他の3つの壁部には、3つのロードロック室302がゲートバルブG1を介して接続されている。ロードロック室302を挟んで真空搬送室301の反対側には、大気搬送室303が設けられている。3つのロードロック室302は、ゲートバルブG2を介して大気搬送室303に接続されている。ロードロック室302は、大気搬送室303と真空搬送室301との間で基板Wを搬送する際に、大気圧と真空との間で圧力制御するものである。 Further, three load lock chambers 302 are connected to the other three wall portions of the vacuum transfer chamber 301 via a gate valve G1. An air transport chamber 303 is provided on the opposite side of the vacuum transport chamber 301 with the load lock chamber 302 in between. The three load lock chambers 302 are connected to the atmospheric transport chamber 303 via a gate valve G2. The load lock chamber 302 controls the pressure between the atmospheric pressure and the vacuum when the substrate W is transported between the atmospheric transport chamber 303 and the vacuum transport chamber 301.
 大気搬送室303のロードロック室302取り付け壁部とは反対側の壁部には、基板Wを収容するキャリア(FOUP等)Cを取り付ける3つのキャリア取り付けポート305を有している。また、大気搬送室303の側壁には、基板Wのアライメントを行うアライメントチャンバ304が設けられている。大気搬送室303内には清浄空気のダウンフローが形成されるようになっている。 The wall portion of the air transport chamber 303 opposite to the load lock chamber 302 mounting wall portion has three carrier mounting ports 305 for mounting a carrier (FOUP or the like) C for accommodating the substrate W. Further, an alignment chamber 304 for aligning the substrate W is provided on the side wall of the air transport chamber 303. A downflow of clean air is formed in the air transport chamber 303.
 真空搬送室301内には、搬送機構306が設けられている。搬送機構306は、基板処理装置100A~100D、ロードロック室302に対して基板Wを搬送する。搬送機構306は、独立に移動可能な2つの搬送アーム307a,307bを有していてもよい。 A transfer mechanism 306 is provided in the vacuum transfer chamber 301. The transport mechanism 306 transports the substrate W to the substrate processing devices 100A to 100D and the load lock chamber 302. The transport mechanism 306 may have two transport arms 307a, 307b that can move independently.
 大気搬送室303内には、搬送機構308が設けられている。搬送機構308は、キャリアC、ロードロック室302、アライメントチャンバ304に対して基板Wを搬送するようになっている。 A transport mechanism 308 is provided in the atmospheric transport chamber 303. The transport mechanism 308 is adapted to transport the substrate W to the carrier C, the load lock chamber 302, and the alignment chamber 304.
 クラスタシステム300は全体制御部310を有している。全体制御部310は、基板処理装置100A~100Dの各構成部、真空搬送室301の排気機構や搬送機構306、ロードロック室302の排気機構やガス供給機構、大気搬送室303の搬送機構308、ゲートバルブG、G1、G2の駆動系等を制御するCPU(コンピュータ)を有する主制御部と、入力装置(キーボード、マウス等)、出力装置(プリンタ等)、表示装置(ディスプレイ等)、記憶装置(記憶媒体)を有している。全体制御部310の主制御部は、例えば、記憶装置に内蔵された記憶媒体、または記憶装置にセットされた記憶媒体に記憶された処理レシピに基づいて、クラスタシステム300に、所定の動作を実行させる。なお、全体制御部310は、制御装置6(図1参照)のような各ユニットの制御部の上位の制御部であってもよい。 The cluster system 300 has an overall control unit 310. The overall control unit 310 includes each component of the substrate processing devices 100A to 100D, an exhaust mechanism and transfer mechanism 306 of the vacuum transfer chamber 301, an exhaust mechanism and gas supply mechanism of the load lock chamber 302, and a transfer mechanism 308 of the atmosphere transfer chamber 303. A main control unit having a CPU (computer) that controls the drive systems of gate valves G, G1, G2, etc., an input device (keyboard, mouse, etc.), an output device (printer, etc.), a display device (display, etc.), a storage device. Has (storage medium). The main control unit of the overall control unit 310 executes a predetermined operation in the cluster system 300 based on, for example, a storage medium built in the storage device or a processing recipe stored in the storage medium set in the storage device. Let me. The overall control unit 310 may be a higher-level control unit of the control unit of each unit such as the control device 6 (see FIG. 1).
 次に、以上のように構成されるクラスタシステム300の動作について説明する。以下の処理動作は、全体制御部310における記憶媒体に記憶された処理レシピに基づいて実行される。 Next, the operation of the cluster system 300 configured as described above will be described. The following processing operations are executed based on the processing recipe stored in the storage medium in the overall control unit 310.
 まず、全体制御部310は、搬送機構308により大気搬送室303に接続されたキャリアCから基板Wを取り出して、大気搬送室303に搬送する。全体制御部310は、いずれかのロードロック室302のゲートバルブG2を開け、搬送機構308で保持された基板Wをそのロードロック室302に搬入する。搬送機構308の搬送アームが大気搬送室303へと退避した後、全体制御部310は、ゲートバルブG2を閉じ、ロードロック室302内を真空排気する。なお、基板WをキャリアCから基板Wを取り出した後、ロードロック室302に搬入する前に、アライメントチャンバ304で基板Wのアライメントを行う。 First, the overall control unit 310 takes out the substrate W from the carrier C connected to the atmospheric transport chamber 303 by the transport mechanism 308 and transports it to the atmospheric transport chamber 303. The overall control unit 310 opens the gate valve G2 of any of the load lock chambers 302, and carries the substrate W held by the transfer mechanism 308 into the load lock chamber 302. After the transport arm of the transport mechanism 308 is retracted into the atmospheric transport chamber 303, the overall control unit 310 closes the gate valve G2 and evacuates the inside of the load lock chamber 302. After the substrate W is taken out from the carrier C and before being carried into the load lock chamber 302, the substrate W is aligned in the alignment chamber 304.
 ロードロック室302が所定の真空度になった時点で、全体制御部310は、ロードロック室302のゲートバルブG1を開け、搬送機構306によりロードロック室302から基板Wを取り出して真空搬送室301に搬送する。搬送機構306の搬送アームが真空搬送室301へと退避した後、全体制御部310は、ゲートバルブG1を閉じる。 When the load lock chamber 302 reaches a predetermined degree of vacuum, the overall control unit 310 opens the gate valve G1 of the load lock chamber 302, takes out the substrate W from the load lock chamber 302 by the transfer mechanism 306, and takes out the substrate W from the load lock chamber 302. Transport to. After the transfer arm of the transfer mechanism 306 is retracted into the vacuum transfer chamber 301, the overall control unit 310 closes the gate valve G1.
 全体制御部310は、いずれかの基板処理装置100AのゲートバルブGを開け、搬送機構306で保持された基板Wをその基板処理装置100Aに搬入する。搬送機構306の搬送アームが真空搬送室301へと退避した後、全体制御部310は、ゲートバルブGを閉じ、その基板処理装置100Aにより、基板Wに処理を施す。 The overall control unit 310 opens the gate valve G of any of the substrate processing devices 100A, and carries the substrate W held by the transport mechanism 306 into the substrate processing device 100A. After the transfer arm of the transfer mechanism 306 is retracted into the vacuum transfer chamber 301, the overall control unit 310 closes the gate valve G and processes the substrate W by the substrate processing device 100A.
 基板処理装置100Aの処理が終了後、全体制御部310は、基板処理装置100AのゲートバルブGを開け、搬送機構306により基板処理装置100Aから基板Wを取り出して真空搬送室301に搬送する。搬送機構306の搬送アームが真空搬送室301へと退避した後、全体制御部310は、基板処理装置100AのゲートバルブGを閉じる。 After the processing of the substrate processing device 100A is completed, the overall control unit 310 opens the gate valve G of the substrate processing device 100A, takes out the substrate W from the substrate processing device 100A by the transfer mechanism 306, and transfers the substrate W to the vacuum transfer chamber 301. After the transfer arm of the transfer mechanism 306 is retracted into the vacuum transfer chamber 301, the overall control unit 310 closes the gate valve G of the substrate processing device 100A.
 全体制御部310は、いずれかのロードロック室302のゲートバルブG1を開け、搬送機構306で保持された基板Wをそのロードロック室302に搬入する。搬送機構306の搬送アームが真空搬送室301へと退避した後、全体制御部310は、ゲートバルブG1を閉じ、ロードロック室302内を大気雰囲気に戻す。 The overall control unit 310 opens the gate valve G1 of any of the load lock chambers 302, and carries the substrate W held by the transport mechanism 306 into the load lock chamber 302. After the transfer arm of the transfer mechanism 306 is retracted into the vacuum transfer chamber 301, the overall control unit 310 closes the gate valve G1 and returns the inside of the load lock chamber 302 to the atmospheric atmosphere.
 ロードロック室302が所定の大気雰囲気になった時点で、全体制御部310は、ロードロック室302のゲートバルブG2を開け、搬送機構308によりロードロック室302から基板Wを取り出して大気搬送室303に搬送する。搬送機構308の搬送アームが大気搬送室303へと退避した後、全体制御部310は、ロードロック室302のゲートバルブG2を閉じる。また、全体制御部310は、搬送機構308で保持された基板WをキャリアCに戻す。 When the load lock chamber 302 reaches a predetermined atmospheric atmosphere, the overall control unit 310 opens the gate valve G2 of the load lock chamber 302, takes out the substrate W from the load lock chamber 302 by the transport mechanism 308, and takes out the substrate W from the load lock chamber 302 to the atmosphere transport chamber 303. Transport to. After the transport arm of the transport mechanism 308 is retracted into the atmospheric transport chamber 303, the overall control unit 310 closes the gate valve G2 of the load lock chamber 302. Further, the overall control unit 310 returns the substrate W held by the transport mechanism 308 to the carrier C.
 このように第2実施形態に係るクラスタシステム300によれば、基板処理装置100A~100Dで基板Wに処理を施すことができる。 As described above, according to the cluster system 300 according to the second embodiment, the substrate W can be processed by the substrate processing devices 100A to 100D.
 次に、第2実施形態に係るクラスタシステム300について、図6を用いて更に説明する。図6は、第2実施形態に係るクラスタシステム300の構成の一例を示す模式図である。図6に示す例において、クラスタシステム300は、4台の基板処理装置100A~100Dを備えている。基板処理装置100A~100Dは、図1に示す基板処理装置100と同様の構成を有している。但し、基板処理装置100A~100Dでは、排気配管41A~41Dの長さ、形状が異なっている。 Next, the cluster system 300 according to the second embodiment will be further described with reference to FIG. FIG. 6 is a schematic diagram showing an example of the configuration of the cluster system 300 according to the second embodiment. In the example shown in FIG. 6, the cluster system 300 includes four substrate processing devices 100A to 100D. The substrate processing devices 100A to 100D have the same configuration as the substrate processing device 100 shown in FIG. However, in the substrate processing devices 100A to 100D, the length and shape of the exhaust pipes 41A to 41D are different.
 例えば、半導体量産工場において、同じ半導体工程のための同じ仕様の基板処理装置100A~100Dを複数台設置している。一方で、複数台の基板処理装置100A~100Dをできるだけ省スペース・小フットプリントに設置することが求められている。このため、同工程・同仕様の基板処理装置100A~100Dであっても、処理容器1から真空ポンプ42までの排気配管41A~41Dの長さや曲げまでも完全に統一することは現実的には困難である。このため、基板処理装置100A~100Dにおいて、構造上の差異が生じる。 For example, in a semiconductor mass production factory, a plurality of substrate processing devices 100A to 100D having the same specifications for the same semiconductor process are installed. On the other hand, it is required to install a plurality of substrate processing devices 100A to 100D in a space-saving and small footprint as much as possible. Therefore, even if the substrate processing devices 100A to 100D have the same process and specifications, it is realistic to completely unify the lengths and bends of the exhaust pipes 41A to 41D from the processing container 1 to the vacuum pump 42. Have difficulty. Therefore, structural differences occur in the substrate processing devices 100A to 100D.
 排気配管41A~41Dの長さや曲げが異なることにより、コンダクタンスに差が生じる。図7は、各基板処理装置100A~100Dにおいて、機差による処理容器1に供給するガスの流量と処理容器1内の圧力の関係の一例を示すグラフである。また、近似線81は基板処理装置100Aにおける関係を示し、近似線82は基板処理装置100Bにおける関係を示し、近似線83は基板処理装置100Cにおける関係を示し、近似線84は基板処理装置100Dにおける関係を示す。また、近似線82a~84aは回転速度調整後の場合における関係を示す。 The conductance differs due to the difference in length and bending of the exhaust pipes 41A to 41D. FIG. 7 is a graph showing an example of the relationship between the flow rate of the gas supplied to the processing container 1 and the pressure in the processing container 1 due to a difference in the substrate processing devices 100A to 100D. Further, the approximate line 81 shows the relationship in the substrate processing device 100A, the approximate line 82 shows the relationship in the substrate processing device 100B, the approximate line 83 shows the relationship in the substrate processing device 100C, and the approximate line 84 shows the relationship in the substrate processing device 100D. Show the relationship. Further, the approximate lines 82a to 84a show the relationship in the case where the rotation speed is adjusted.
 ここで、基板処理装置100Aを基準の装置とするものとして説明する。基板処理装置100B~100Dにおいて、基板処理装置100Aと同じ条件で真空ポンプ42の回転速度、APCバルブ43の開度、バルブV1~V4の開閉を制御しても、近似線81~84に示すように排気速度が異なるため、基板処理装置100Aと同様の成膜性能が得られないおそれがある。 Here, the substrate processing device 100A will be described as a reference device. Even if the rotation speed of the vacuum pump 42, the opening degree of the APC valve 43, and the opening / closing of the valves V1 to V4 are controlled in the substrate processing devices 100B to 100D under the same conditions as the substrate processing device 100A, as shown in the approximate lines 81 to 84. Since the exhaust speeds are different, the same film forming performance as that of the substrate processing apparatus 100A may not be obtained.
 これに対し、第2実施形態に係るクラスタシステム300は、基板処理装置100A~100Dの構造上の差異に応じて、モータの回転速度を個別に設定する。まず、基準の装置である基板処理装置100Aの真空ポンプ制御部62は、基板処理装置100Aの排気速度(以下、「基準排気速度」と称する。)を予め取得する。取得された基準排気速度は、基板処理装置100B~100Dの制御装置6に入力される。なお、入力方法は限定するものではなく、例えば、制御装置6同士を接続したネットワークNによる通信により行われてもよく、記録媒体を介して行われてもよく、作業者が入力することにより行われてもよい。 On the other hand, in the cluster system 300 according to the second embodiment, the rotation speed of the motor is individually set according to the structural difference between the substrate processing devices 100A to 100D. First, the vacuum pump control unit 62 of the substrate processing device 100A, which is a reference device, acquires the exhaust speed of the substrate processing device 100A (hereinafter, referred to as “reference exhaust speed”) in advance. The acquired reference exhaust speed is input to the control device 6 of the substrate processing devices 100B to 100D. The input method is not limited, and for example, it may be performed by communication by the network N connecting the control devices 6 to each other, or may be performed via a recording medium, and the input may be performed by the operator. You may be broken.
 次に、基板処理装置100Bの真空ポンプ制御部62は、基板処理装置100Bの真空ポンプ42のモータの回転速度を調整する。調整後の回転速度は、基準排気速度が得られる回転速度とする。これにより、図7の近似線82aに示すように、基板処理装置100Bの排気速度を基準排気速度(近似線81)と等しくすることができるので、処理容器1内の圧力変化を基板処理装置100Aと同様にすることができ、基板処理装置100Aと同様の成膜性能が得られる。基板処理装置100Cにおいても、同様に基板処理装置100Cの真空ポンプ42のモータの回転速度を調整する。 Next, the vacuum pump control unit 62 of the substrate processing device 100B adjusts the rotation speed of the motor of the vacuum pump 42 of the substrate processing device 100B. The adjusted rotation speed shall be the rotation speed at which the reference exhaust speed can be obtained. As a result, as shown in the approximate line 82a of FIG. 7, the exhaust speed of the substrate processing device 100B can be made equal to the reference exhaust rate (approximate line 81), so that the pressure change in the processing container 1 can be changed to the substrate processing device 100A. The same can be applied to the above, and the same film forming performance as that of the substrate processing apparatus 100A can be obtained. Similarly, in the substrate processing apparatus 100C, the rotation speed of the motor of the vacuum pump 42 of the substrate processing apparatus 100C is adjusted.
 以上、第2実施形態に係るクラスタシステム300によれば、インバータ制御の真空ポンプ42を用いてモータの回転速度を制御することにより、排気配管41A~41Dに構造上の差異が生じていても、排気速度を一定にすることができ、基板処理性能の安定性を向上させることができる。よって、同工程・同仕様の基板処理装置100A~100Dにおいて、機差をなくすことができ、同様の成膜性能が得られる。 As described above, according to the cluster system 300 according to the second embodiment, even if there is a structural difference in the exhaust pipes 41A to 41D by controlling the rotation speed of the motor by using the vacuum pump 42 controlled by the inverter. The exhaust speed can be made constant, and the stability of the substrate processing performance can be improved. Therefore, in the substrate processing devices 100A to 100D of the same process and the same specifications, the machine difference can be eliminated and the same film forming performance can be obtained.
 換言すれば、排気配管41A~41Dの長さや曲げの自由度が増えるので、基板処理装置100A~100Dを省スペース・小フットプリントに設置することができる。 In other words, since the length of the exhaust pipes 41A to 41D and the degree of freedom of bending are increased, the substrate processing devices 100A to 100D can be installed in a space-saving and small footprint.
 なお、1つのクラスタシステム300内の複数の基板処理装置100について排気配管41A~41Dの差異を解消する場合を例に説明したが、これに限られるものではない。複数のクラスタシステム300間の基板処理装置100についても同様に制御してもよい。 Although the case of eliminating the difference between the exhaust pipes 41A to 41D for the plurality of substrate processing devices 100 in one cluster system 300 has been described as an example, the present invention is not limited to this. The substrate processing apparatus 100 between the plurality of cluster systems 300 may be controlled in the same manner.
 また、クラスタシステム300の初期設置時において、第2実施形態で示した制御を採用してクラスタシステム300全体のコンダクタンスを最適化した後、第1実施形態で示した制御により各基板処理装置100におけるコンダクタンスを最適化してもよい。これにより、基板処理装置100A~100Dの機差を解消するとともに、コンダクタンスが経時変化に対しても、排気速度を一定にすることができる。 Further, at the time of initial installation of the cluster system 300, after optimizing the conductance of the entire cluster system 300 by adopting the control shown in the second embodiment, each substrate processing apparatus 100 is subjected to the control shown in the first embodiment. The conductance may be optimized. As a result, it is possible to eliminate the machine difference between the substrate processing devices 100A to 100D and to keep the exhaust speed constant even when the conductance changes with time.
 また、各基板処理装置100A~100Dにおいて、第1実施形態で示した制御により各基板処理装置100A~100Dにおけるコンダクタンスを最適化した後、第2実施形態で示した制御を採用してクラスタシステム300全体のコンダクタンスを最適化してもよい。 Further, in each of the substrate processing devices 100A to 100D, after optimizing the conductance in each of the substrate processing devices 100A to 100D by the control shown in the first embodiment, the control shown in the second embodiment is adopted to adopt the cluster system 300. The overall conductance may be optimized.
 例えば、基板処理装置100Aの制御装置6は、基板処理装置100Aの処理容器1内から基板処理装置100Aのガス排気装置4への排気速度が第1排気速度となるように基板処理装置100Aの真空ポンプ42のモータの回転速度を調整する。また、基板処理装置100Bの制御装置6は、基板処理装置100Bの処理容器1内から基板処理装置100Bのガス排気装置4への排気速度が第2排気速度となるように基板処理装置100Bの真空ポンプ42のモータの回転速度を調整する。全体制御部310は、第1排気速度と第2排気速度に基づいて、第3排気速度を決定する。例えば、全体制御部310は、第1排気速度と第2排気速度とを比較して、比較結果に基づいて、第3排気速度を決定する。 For example, the control device 6 of the substrate processing device 100A has a vacuum of the substrate processing device 100A so that the exhaust speed from the inside of the processing container 1 of the substrate processing device 100A to the gas exhaust device 4 of the substrate processing device 100A becomes the first exhaust speed. The rotation speed of the motor of the pump 42 is adjusted. Further, the control device 6 of the substrate processing device 100B vacuums the substrate processing device 100B so that the exhaust speed from the inside of the processing container 1 of the substrate processing device 100B to the gas exhaust device 4 of the substrate processing device 100B becomes the second exhaust speed. The rotation speed of the motor of the pump 42 is adjusted. The overall control unit 310 determines the third exhaust speed based on the first exhaust speed and the second exhaust speed. For example, the overall control unit 310 compares the first exhaust speed with the second exhaust speed, and determines the third exhaust speed based on the comparison result.
 基板処理装置100Aの制御装置6は、第3排気速度に基づいて、基板処理装置100Aの排気速度を調整する。基板処理装置100Aの制御装置6は、調整後の排気速度となるように基板処理装置100Aの真空ポンプ42のモータの回転速度を調整する。また、基板処理装置100Bの制御装置6は、第3排気速度に基づいて、基板処理装置100Bの排気速度を調整する。基板処理装置100Bの制御装置6は、調整後の排気速度となるように基板処理装置100Bの真空ポンプ42のモータの回転速度を調整する。 The control device 6 of the board processing device 100A adjusts the exhaust speed of the board processing device 100A based on the third exhaust speed. The control device 6 of the board processing device 100A adjusts the rotation speed of the motor of the vacuum pump 42 of the board processing device 100A so as to have the adjusted exhaust speed. Further, the control device 6 of the substrate processing device 100B adjusts the exhaust speed of the substrate processing device 100B based on the third exhaust speed. The control device 6 of the board processing device 100B adjusts the rotation speed of the motor of the vacuum pump 42 of the board processing device 100B so as to have the adjusted exhaust speed.
 また、第2実施形態に係るクラスタシステム300は、各基板処理装置100A~100Dにおいて上述した第1実施形態で示した制御を実施して各基板処理装置100A~100Dの初期基準排気速度を求めた後、各基板処理装置100A~100Dの初期基準排気速度を比較して、比較結果に基づいてクラスタシステム300の基準排気速度を求めてよい。 Further, in the cluster system 300 according to the second embodiment, the control shown in the first embodiment described above is carried out in each of the substrate processing devices 100A to 100D to obtain the initial reference exhaust speed of each of the substrate processing devices 100A to 100D. After that, the initial reference exhaust speeds of the substrate processing devices 100A to 100D may be compared, and the reference exhaust speed of the cluster system 300 may be obtained based on the comparison result.
 また、基板処理装置100は、枚葉方式の装置であるものとして説明したが、これに限られるものではなく、バッチ方式の装置であってもよい。 Further, although the substrate processing apparatus 100 has been described as being a single-wafer type apparatus, the present invention is not limited to this, and a batch type apparatus may be used.
 図8は、第3実施形態に係る基板処理装置500の構成の一例を示す断面模式図である。 FIG. 8 is a schematic cross-sectional view showing an example of the configuration of the substrate processing apparatus 500 according to the third embodiment.
 基板処理装置500は、全体として縦長の鉛直方向に延びた形状を有する。基板処理装置500は、縦長で鉛直方向に延びた処理容器510を有する。 The substrate processing apparatus 500 has a vertically long shape extending in the vertical direction as a whole. The substrate processing apparatus 500 has a processing container 510 which is vertically long and extends in the vertical direction.
 処理容器510は、例えば石英により形成される。処理容器510は、例えば円筒体の内管511と、内管511の外側に同心的に載置された有天井の外管512との2重管構造を有する。処理容器510の下端部は、例えばステンレス鋼製のマニホールド520により気密に保持される。 The processing container 510 is formed of, for example, quartz. The processing container 510 has, for example, a double tube structure of a cylindrical inner tube 511 and a ceilinged outer tube 512 placed concentrically on the outside of the inner tube 511. The lower end of the processing container 510 is hermetically held by, for example, a stainless steel manifold 520.
 マニホールド520は、例えばベースプレート(図示せず)に固定される。マニホールド520は、インジェクタ530と、ガス排気部540とを有する。 The manifold 520 is fixed to, for example, a base plate (not shown). The manifold 520 has an injector 530 and a gas exhaust unit 540.
 インジェクタ530は、処理容器510内に各種のガスを導入するガス供給部である。 The injector 530 is a gas supply unit that introduces various gases into the processing container 510.
 インジェクタ530には、各種のガスを導入するための配管531が接続される。配管531には、ガス流量を調整するためのマスフローコントローラ等の流量調整部(図示せず)やバルブ(図示せず)等が介設される。インジェクタ530は、1本であってよく、複数本であってもよい。なお、図1には、インジェクタ530が1本の場合を示す。 A pipe 531 for introducing various gases is connected to the injector 530. The pipe 531 is provided with a flow rate adjusting unit (not shown), a valve (not shown), or the like such as a mass flow controller for adjusting the gas flow rate. The number of injectors 530 may be one, or may be a plurality of injectors. Note that FIG. 1 shows a case where the number of injectors 530 is one.
 ガス排気部540は、処理容器510内を排気する。ガス排気部540には、排気配管541が接続されている。排気配管541には、処理容器510内を減圧制御可能な開度可変弁543、真空ポンプ542等が介設されている。 The gas exhaust unit 540 exhausts the inside of the processing container 510. An exhaust pipe 541 is connected to the gas exhaust unit 540. The exhaust pipe 541 is provided with an opening variable valve 543, a vacuum pump 542, and the like that can control the pressure reduction in the processing container 510.
 マニホールド520の下端部には、炉口521が形成されている。炉口521には、例えばステンレス鋼製の円盤状の蓋体550が設けられている。 A furnace port 521 is formed at the lower end of the manifold 520. The hearth 521 is provided with, for example, a stainless steel disk-shaped lid 550.
 蓋体550は、昇降機構551により昇降可能に設けられており、炉口521を気密に封止可能に構成されている。蓋体550の上には、例えば石英製の保温筒60が設置されている。 The lid 550 is provided so as to be able to move up and down by an elevating mechanism 551, and is configured so that the furnace port 521 can be hermetically sealed. For example, a quartz heat insulating cylinder 60 is installed on the lid 550.
 保温筒60の上には、多数枚のウエハWを水平状態で所定間隔を有して多段に保持する、例えば石英製のウエハボート570が載置されている。 On the heat insulating cylinder 60, for example, a wafer boat 570 made of quartz, which holds a large number of wafers W in a horizontal state at predetermined intervals in multiple stages, is placed.
 ウエハボート570は、昇降機構551を用いて、蓋体550を上昇させることで処理容器510内へと搬入され、処理容器510内に収容される。また、ウエハボート570は、蓋体550を下降させることで処理容器510内から搬出される。ウエハボート570は、長手方向に複数のスロット(支持溝)を有する溝構造を有し、ウエハWはそれぞれ水平状態で上下に間隔をおいてスロットに積載される。ウエハボート570に載置される複数のウエハは、1つのバッチを構成し、バッチ単位で各種の熱処理が施される。 The wafer boat 570 is carried into the processing container 510 by raising the lid 550 using the elevating mechanism 551, and is housed in the processing container 510. Further, the wafer boat 570 is carried out from the processing container 510 by lowering the lid 550. The wafer boat 570 has a groove structure having a plurality of slots (support grooves) in the longitudinal direction, and the wafers W are loaded in the slots at vertical intervals in a horizontal state. A plurality of wafers mounted on the wafer boat 570 form one batch, and various heat treatments are performed in batch units.
 処理容器510の外側には、ヒータ580が設けられる。ヒータ580は、例えば円筒形状を有し、処理容器510を所定の温度に加熱する。 A heater 580 is provided on the outside of the processing container 510. The heater 580 has, for example, a cylindrical shape and heats the processing container 510 to a predetermined temperature.
 基板処理装置500には、例えばコンピュータからなる制御装置590が設けられている。 The substrate processing device 500 is provided with, for example, a control device 590 made of a computer.
 図8に示すバッチ方式の基板処理装置500においても、図1に示す枚葉方式の基板処理装置100と同様に、インバータ制御の真空ポンプ542を用いてモータの回転速度を制御することにより、排気配管541等に副生成物等が付着してコンダクタンスが経時変化しても、排気速度を一定にすることができ、メンテナンス周期をさらに延命するとともに、基板処理性能の安定性を向上させることができる。 Similarly to the single-wafer type substrate processing apparatus 100 shown in FIG. 1, the batch type substrate processing apparatus 500 shown in FIG. 8 also exhausts by controlling the rotation speed of the motor using an inverter-controlled vacuum pump 542. Even if by-products or the like adhere to the pipe 541 or the like and the conductance changes with time, the exhaust speed can be kept constant, the maintenance cycle can be further extended, and the stability of the substrate processing performance can be improved. ..
 また、複数のバッチ方式の基板処理装置500を有するシステムにおいても、図6に示す複数の枚葉方式の基板処理装置100を有するクラスタシステム300と同様に、インバータ制御の真空ポンプ542を用いてモータの回転速度を制御することにより、排気配管541に構造上の差異が生じていても、排気速度を一定にすることができ、基板処理性能の安定性を向上させることができる。 Further, even in a system having a plurality of batch type substrate processing devices 500, a motor using an inverter-controlled vacuum pump 542 is used as in the cluster system 300 having a plurality of single-wafer type substrate processing devices 100 shown in FIG. By controlling the rotation speed of the above, the exhaust speed can be kept constant and the stability of the substrate processing performance can be improved even if there is a structural difference in the exhaust pipe 541.
 以上、基板処理装置100,500及びクラスタシステム300の実施形態等について説明したが、本開示は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形、改良が可能である。 Although the embodiments of the substrate processing devices 100, 500 and the cluster system 300 have been described above, the present disclosure is not limited to the above embodiments and the like, and the scope of the gist of the present disclosure described in the claims. Within, various modifications and improvements are possible.
 基板処理装置100は、ALD装置である場合を例に説明したが、これに限られるものではなく、ALE(Atomic Layer Etching)装置であってもよく、その他のサイクルプロセスを行う基板処理装置であってもよい。また、基板処理装置100は、処理容器1や基板載置台2にヒータを備えていてもよい。また、基板処理装置100は、プラズマによる処理を行うプラズマ処理装置であってもよい。また、ガス排気装置4は、副生成物等が真空ポンプ42に吸入されることを抑制するために、真空ポンプ42よりも上流側にトラップを設けてもよい。また、処理ガス供給部5は、4系統のガスを供給する供給ラインを有するものとして説明したが、これに限られるものではなく、3系統以下であってもよく、5系統以上あってもよい。 Although the case where the substrate processing apparatus 100 is an ALD apparatus has been described as an example, the substrate processing apparatus 100 is not limited to this, and may be an ALE (Atomic Layer Etching) apparatus, and is a substrate processing apparatus that performs other cycle processes. You may. Further, the substrate processing apparatus 100 may include a heater in the processing container 1 and the substrate mounting table 2. Further, the substrate processing device 100 may be a plasma processing device that performs processing by plasma. Further, the gas exhaust device 4 may be provided with a trap on the upstream side of the vacuum pump 42 in order to prevent by-products and the like from being sucked into the vacuum pump 42. Further, although the processing gas supply unit 5 has been described as having a supply line for supplying four systems of gas, the present invention is not limited to this, and the number of systems may be three or less, or five or more. ..
 また、基板処理装置100における処理は、TiClガスとNHガスによるTiN膜を成膜する処理を一例に説明したが、これに限られるものではなく、例えば、SiHClガスとNHガスによるSi膜(SiN膜)を成膜する処理や、その他のALD法による成膜(例えば、W膜、Mo膜、Al膜、ZAZ膜、PoLy-Si膜、SiGe膜、Grapheneなど)処理であってもよく、酸化(拡散)プロセスであってもよい。また、ALDに限られるものではなく、CVD、プラズマ(マイクロ波を含む)CVD、プラズマALDなどであってもよい。 Further, the treatment in the substrate processing apparatus 100 has been described as an example of a treatment of forming a TiN film with TiCl 4 gas and NH 3 gas, but the treatment is not limited to this, and for example, SiH 2 Cl 2 gas and NH 3 A process for forming a Si 2 N 3 film (SiN film) with gas or a film formation by other ALD methods (for example, W film, Mo film, Al 2 O 3 film, ZAZ film, PoLy-Si film, SiGe film). , Graphene, etc.) or an oxidation (diffusion) process. Further, the present invention is not limited to ALD, and may be CVD, plasma (including microwave) CVD, plasma ALD, or the like.
 また、基板処理装置100は、バラストガスを供給するバラストガス供給装置(図示せず)が設けられていてもよい。なお、バラストガスとしては、Nガス等の不活性ガスを用いることができる。 Further, the substrate processing device 100 may be provided with a ballast gas supply device (not shown) for supplying the ballast gas. As the ballast gas, an inert gas such as N 2 gas can be used.
 バラストガス供給装置は、バラストガス供給ラインを有する。バラストガス供給ラインは、バラストガスの供給源であるバラストガス供給源から延び、排気配管41に接続されている。バラストガス供給ラインには、バラストガス供給源側から順に、マスフローコントローラ及びバルブが設けられている。マスフローコントローラは、バラストガス供給ラインを流れるバラストガスの流量を制御する。バルブは、バラストガスの供給・停止を切り替える。排気配管41にバラストガスを供給することにより、処理容器1内からガス排気装置4への排気量を迅速に低下させることができる。また、バラストガスの供給を停止することにより、処理容器1内からガス排気装置4への排気量をバラストガス供給前の状態に迅速に戻すことができる。 The ballast gas supply device has a ballast gas supply line. The ballast gas supply line extends from the ballast gas supply source, which is the ballast gas supply source, and is connected to the exhaust pipe 41. The ballast gas supply line is provided with a mass flow controller and a valve in order from the ballast gas supply source side. The mass flow controller controls the flow rate of ballast gas flowing through the ballast gas supply line. The valve switches between supplying and stopping ballast gas. By supplying the ballast gas to the exhaust pipe 41, the amount of exhaust gas from the inside of the processing container 1 to the gas exhaust device 4 can be rapidly reduced. Further, by stopping the supply of the ballast gas, the amount of exhaust gas from the processing container 1 to the gas exhaust device 4 can be quickly returned to the state before the ballast gas supply.
 なお、バラストガス供給装置のバラストガス供給ラインは、APCバルブよりも上流側の排気配管41に接続されるものとして説明したが、これに限られるものではない。例えば、バラストガス供給装置のバラストガス供給ラインは、処理容器1内に接続され、処理容器1内にバラストガスを供給する構成であってもよい。 The ballast gas supply line of the ballast gas supply device has been described as being connected to the exhaust pipe 41 on the upstream side of the APC valve, but the present invention is not limited to this. For example, the ballast gas supply line of the ballast gas supply device may be connected to the processing container 1 and supply the ballast gas into the processing container 1.
 尚、本願は、2019年4月17日に出願した日本国特許出願2019-078857号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。 Note that this application claims priority based on Japanese Patent Application No. 2019-078857 filed on April 17, 2019, and the entire contents of these Japanese patent applications are incorporated herein by reference.
1,510 処理容器(チャンバ)
2   基板載置台
3   シャワーヘッド
4   ガス排気装置
5   処理ガス供給部
6   制御装置
20  制御装置
21  ヒータ
41,41A~41D 排気配管
42  真空ポンプ
43  APCバルブ
44  圧力センサ
100,100A~100D,500 基板処理装置
300   クラスタシステム
540   ガス排気部
541   排気配管
542   真空ポンプ
543   開度可変弁
580   ヒータ
590   制御装置
1,510 Processing container (chamber)
2 Board mount 3 Shower head 4 Gas exhaust device 5 Processing gas supply unit 6 Control device 20 Control device 21 Heater 41, 41A to 41D Exhaust piping 42 Vacuum pump 43 APC valve 44 Pressure sensor 100, 100A to 100D, 500 Board processing device 300 Cluster system 540 Gas exhaust section 541 Exhaust piping 542 Vacuum pump 543 Opening variable valve 580 Heater 590 Control device

Claims (13)

  1.  チャンバと、
     回転速度制御可能なポンプを有し、前記チャンバからガスを排気するガス排気装置と、
     制御装置と、を備え、
     前記制御装置は、前記チャンバ内から前記ガス排気装置への排気速度が基準排気速度となるように、前記ポンプの回転速度を調整する、
    基板処理装置。
    With the chamber
    A gas exhaust device that has a pump with controllable rotation speed and exhausts gas from the chamber,
    Equipped with a control device,
    The control device adjusts the rotation speed of the pump so that the exhaust speed from the inside of the chamber to the gas exhaust device becomes the reference exhaust speed.
    Board processing equipment.
  2.  前記基準排気速度は、前記基板処理装置の初期設置時における排気速度である、
    請求項1に記載の基板処理装置。
    The reference exhaust rate is the exhaust rate at the time of initial installation of the substrate processing apparatus.
    The substrate processing apparatus according to claim 1.
  3.  排気速度に関する信号を検出する検出器を備え、
     前記制御装置は、前記検出器の検出値を監視する、
    請求項1または請求項2に記載の基板処理装置。
    Equipped with a detector to detect signals related to exhaust speed
    The control device monitors the detection value of the detector.
    The substrate processing apparatus according to claim 1 or 2.
  4.  前記制御装置は、前記検出器の検出結果、前記基準排気速度に基づいて、前記ポンプの回転速度を調整する、
    請求項3に記載の基板処理装置。
    The control device adjusts the rotation speed of the pump based on the detection result of the detector and the reference exhaust speed.
    The substrate processing apparatus according to claim 3.
  5.  前記基準排気速度の前記ポンプの回転速度は、最大回転速度より小さい、
    請求項1乃至請求項4のいずれか1項に記載の基板処理装置。
    The rotation speed of the pump at the reference exhaust speed is smaller than the maximum rotation speed.
    The substrate processing apparatus according to any one of claims 1 to 4.
  6.  チャンバと、回転速度制御可能なポンプを有し前記チャンバからガスを排気するガス排気装置と、制御装置と、を有する基板処理装置を複数備え、
     一の前記基板処理装置における排気速度を基準排気速度とし、
     他の前記基板処理装置の前記制御装置は、前記チャンバ内から前記ガス排気装置への排気速度が前記基準排気速度となるように、前記ポンプの回転速度を調整する、
    基板処理システム。
    A plurality of substrate processing devices including a chamber, a gas exhaust device having a pump capable of controlling the rotation speed and exhausting gas from the chamber, and a control device are provided.
    The exhaust speed in the above-mentioned substrate processing device is set as the reference exhaust speed.
    The control device of the other substrate processing device adjusts the rotation speed of the pump so that the exhaust speed from the inside of the chamber to the gas exhaust device becomes the reference exhaust speed.
    Board processing system.
  7.  前記基準排気速度は、一の前記基板処理装置の初期設置時における排気速度である、
    請求項6に記載の基板処理システム。
    The reference exhaust rate is the exhaust rate at the time of initial installation of one of the substrate processing devices.
    The substrate processing system according to claim 6.
  8.  複数の前記基板処理装置は、排気速度に関する信号を検出する検出器を備え、
     前記制御装置は、前記検出器の検出値を監視する、
    請求項7に記載の基板処理システム。
    The plurality of substrate processing devices include detectors that detect signals related to exhaust speed.
    The control device monitors the detection value of the detector.
    The substrate processing system according to claim 7.
  9.  一の前記基板処理装置の前記制御装置は、一の前記基板処理装置の前記検出器の検出結果、一の前記基板処理装置の前記基準排気速度に基づいて、一の前記基板処理装置の前記ポンプの回転速度を調整する、
    請求項8に記載の基板処理システム。
    The control device of the substrate processing apparatus is based on the detection result of the detector of the substrate processing apparatus and the reference exhaust speed of the substrate processing apparatus of the substrate processing apparatus. Adjust the rotation speed of
    The substrate processing system according to claim 8.
  10.  チャンバと、
     回転速度制御可能なポンプを有し、前記チャンバからガスを排気するガス排気装置と、
     制御装置と、を備える基板処理装置の基板処理方法であって、
     前記制御装置は、
     前記チャンバ内から前記ガス排気装置への排気速度が基準排気速度となるように、前記ポンプの回転速度を調整する、
    基板処理方法。
    With the chamber
    A gas exhaust device that has a pump with controllable rotation speed and exhausts gas from the chamber,
    A substrate processing method for a substrate processing apparatus including a control device.
    The control device is
    The rotation speed of the pump is adjusted so that the exhaust speed from the inside of the chamber to the gas exhaust device becomes the reference exhaust speed.
    Substrate processing method.
  11.  前記基準排気速度は、前記基板処理装置の初期設置時における排気速度である、
    請求項10に記載の基板処理方法。
    The reference exhaust rate is the exhaust rate at the time of initial installation of the substrate processing apparatus.
    The substrate processing method according to claim 10.
  12.  前記基準排気速度は、
     チャンバと、回転速度制御可能なポンプを有し、前記チャンバからガスを排気するガス排気装置と、制御装置と、を備える他の基板処理装置の初期設置時における排気速度である、
    請求項10に記載の基板処理方法。
    The reference exhaust speed is
    The exhaust speed at the time of initial installation of another substrate processing device having a chamber, a pump having a controllable rotation speed, and a gas exhaust device for exhausting gas from the chamber, and a control device.
    The substrate processing method according to claim 10.
  13.   チャンバと、
     回転速度制御可能なポンプを有し、前記チャンバからガスを排気するガス排気装置と、
     制御装置と、を備える複数の基板処理装置を含む基板処理システムの基板処理方法であって、
     前記制御装置は、
     一の前記基板処理装置の前記チャンバ内から前記ガス排気装置への排気速度が第1基準排気速度となるように、一の前記基板処理装置の前記ポンプの回転速度を調整し、
     他の前記基板処理装置の前記チャンバ内から前記ガス排気装置への排気速度が第2基準排気速度となるように、他の前記基板処理装置の前記ポンプの回転速度を調整し、
     一の前記基板処理装置の前記第1基準排気速度と、他の前記基板処理装置の前記第2基準排気速度に基づいて、第3基準排気速度を決定し、前記第3基準排気速度に基づいて、一の前記基板処理装置の排気速度及び他の前記基板処理装置の排気速度を調整する、
    基板処理方法。
    With the chamber
    A gas exhaust device that has a pump with controllable rotation speed and exhausts gas from the chamber,
    A substrate processing method for a substrate processing system including a control device and a plurality of substrate processing devices.
    The control device is
    The rotation speed of the pump of the substrate processing device is adjusted so that the exhaust speed from the chamber of the substrate processing device to the gas exhaust device becomes the first reference exhaust rate.
    The rotation speed of the pump of the other substrate processing device is adjusted so that the exhaust rate from the chamber of the other substrate processing device to the gas exhaust device becomes the second reference exhaust rate.
    The third reference exhaust rate is determined based on the first reference exhaust rate of one of the substrate processing devices and the second reference exhaust rate of the other substrate processing device, and based on the third reference exhaust rate. Adjusting the exhaust rate of one of the substrate processing devices and the exhaust rate of the other substrate processing device.
    Substrate processing method.
PCT/JP2020/015930 2019-04-17 2020-04-09 Substrate processing device, substrate processing system, and substrate processing method WO2020213506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019078857A JP2020176296A (en) 2019-04-17 2019-04-17 Substrate processing device, substrate processing system and substrate processing method
JP2019-078857 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020213506A1 true WO2020213506A1 (en) 2020-10-22

Family

ID=72837868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015930 WO2020213506A1 (en) 2019-04-17 2020-04-09 Substrate processing device, substrate processing system, and substrate processing method

Country Status (2)

Country Link
JP (1) JP2020176296A (en)
WO (1) WO2020213506A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239427A (en) * 1988-07-28 1990-02-08 Anelva Corp Method and apparatus for plasma treatment
JP2014148703A (en) * 2013-01-31 2014-08-21 Ulvac Japan Ltd Sputtering device
JP2015079876A (en) * 2013-10-17 2015-04-23 東京エレクトロン株式会社 Substrate processing method, and substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239427A (en) * 1988-07-28 1990-02-08 Anelva Corp Method and apparatus for plasma treatment
JP2014148703A (en) * 2013-01-31 2014-08-21 Ulvac Japan Ltd Sputtering device
JP2015079876A (en) * 2013-10-17 2015-04-23 東京エレクトロン株式会社 Substrate processing method, and substrate processing apparatus

Also Published As

Publication number Publication date
JP2020176296A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
KR101848370B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
US7858534B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP6339057B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
US10961625B2 (en) Substrate processing apparatus, reaction tube and method of manufacturing semiconductor device
KR101893360B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
US9508546B2 (en) Method of manufacturing semiconductor device
US9587314B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP6948803B2 (en) Gas supply device, gas supply method and film formation method
CN106920760B (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP6774972B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
KR20210128914A (en) Raw material supply apparatus and film forming apparatus
US20160177446A1 (en) Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device and Non-Transitory Computer-Readable Recording Medium
KR20170090967A (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
WO2020213506A1 (en) Substrate processing device, substrate processing system, and substrate processing method
US20080199610A1 (en) Substrate processing apparatus, and substrate processing method
JP7191910B2 (en) SUBSTRATE PROCESSING SYSTEM, SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND PROGRAM
JP7377892B2 (en) Semiconductor device manufacturing method, substrate processing equipment, and program
US7211514B2 (en) Heat-processing method for semiconductor process under a vacuum pressure
KR20220134439A (en) Reaction tube, substrate processing apparatus and method of manufacturing semiconductor device
US11807938B2 (en) Exhaust device, processing system, and processing method
JP2020200496A (en) Substrate processing method and apparatus
JP2020047640A (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP7300913B2 (en) Substrate processing method and substrate processing apparatus
JP7240557B2 (en) Substrate processing equipment, semiconductor device manufacturing method, program and inner tube
KR20220041736A (en) Method of manufacturing semiconductor device, substrate processing apparatus and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790568

Country of ref document: EP

Kind code of ref document: A1