WO2021047524A1 - 一类靶向蛋白质水解通路的功能分子及其制备和应用 - Google Patents

一类靶向蛋白质水解通路的功能分子及其制备和应用 Download PDF

Info

Publication number
WO2021047524A1
WO2021047524A1 PCT/CN2020/114125 CN2020114125W WO2021047524A1 WO 2021047524 A1 WO2021047524 A1 WO 2021047524A1 CN 2020114125 W CN2020114125 W CN 2020114125W WO 2021047524 A1 WO2021047524 A1 WO 2021047524A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
oxygen
pharmaceutically acceptable
preparation
acceptable salt
Prior art date
Application number
PCT/CN2020/114125
Other languages
English (en)
French (fr)
Inventor
张崇敬
王福嘉
叶子
杨婉琪
李珂
Original Assignee
中国医学科学院药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医学科学院药物研究所 filed Critical 中国医学科学院药物研究所
Priority to CN202080070688.4A priority Critical patent/CN114555607B/zh
Priority to EP20862461.9A priority patent/EP4043467A4/en
Priority to US17/641,485 priority patent/US20220380381A1/en
Publication of WO2021047524A1 publication Critical patent/WO2021047524A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/18Bridged systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/18Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/021Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-(X)n-C(=0)-, n being 5 or 6; for n > 6, classification in C07K5/06 - C07K5/10, according to the moiety having normal peptide bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0806Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of medicine, and relates to a class of functional molecules targeting proteolysis pathways, preparation and application thereof, and the application of its pharmaceutically acceptable salts and pharmaceutical compositions in the treatment of tumors.
  • the present invention uses a linking arm to connect a compound containing a peroxy bridge bond and a small molecule ligand in an E3 ubiquitin ligase complex to obtain a functional small molecule, which belongs to the technical field of medicine.
  • the ubiquitin-proteasome pathway is the main pathway of protein degradation in cells.
  • the ubiquitin-proteasome pathway is composed of ubiquitin, ubiquitin activating enzyme E1, ubiquitin conjugating enzyme E2, ubiquitin ligase E3, proteasome and its substrates (proteins).
  • E1 ubiquitin activating enzyme
  • E2 ubiquitin conjugating enzyme
  • E3 ubiquitin ligase E3
  • proteasome and its substrates proteins.
  • enzyme-catalyzed ubiquitination of the protein substrate first occurs. Subsequently, the ubiquitinated protein molecules can be recognized by the proteasome, and enter the proteasome to be degraded into short-chain polypeptide molecules, and the protein substrate is degraded.
  • This protein degradation system can remove aging or damaged proteins and play an important role in maintaining normal cell homeostasis and physiological functions.
  • the thorny problem solved by the present invention is to provide a compound targeting a variety of proteins including protein degradation systems and its application, specifically a series of small molecule compounds and preparation methods thereof, and the use of such compounds in the preparation of tumor drugs application.
  • the present invention provides the following technical solutions:
  • the first aspect of the technical solution of the present invention is to provide a class of compounds represented by formula (M) or pharmaceutically acceptable salts thereof:
  • R" is selected from the following structures:
  • L is selected from C1-C8 alkylene, oxygen-containing alkylene,
  • the number of oxygen atoms in the oxygen-containing alkylene group is selected from 1, 2, 3, 4 or 5, and each oxygen atom is connected with an ethylene group; when R" is R3, n is independently selected from 0, 1, 2, 3, 4 or 5; X is selected from oxygen or -CH 2 -.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof is represented by formula (I) and (II):
  • R is selected from the following structures:
  • n is independently selected from 0, 1, 2, 3, 4, 5
  • X is selected from oxygen, -CH 2-
  • L is selected from C1-C8 alkylene, oxygen-containing alkylene, or
  • the number of oxygen atoms of the oxygen-containing alkylene group is selected from 1, 2, 3, 4, or 5, and each oxygen atom is connected with an ethylene group.
  • L is selected from C1-C6 alkylene, more preferably L is selected from C1-C4 alkylene;
  • n is independently selected from 0, 1, 2, 3, 4 or 5;
  • X is selected from oxygen or -CH 2 -;
  • L is selected from C1-C8 alkylene, oxygen-containing alkylene,
  • the number of oxygen atoms of the oxygen-containing alkylene group is selected from 1, 2, 3, 4, or 5, and each oxygen atom is connected with an ethylene group.
  • More preferred compounds of the present invention are selected from:
  • the most preferred compound of the present invention is selected from:
  • the second aspect of the technical solution of the present invention provides a set of pharmaceutical compositions, comprising the compound described in the first aspect of the present invention or a pharmaceutically acceptable salt or a pharmaceutically acceptable carrier, excipient, diluent, auxiliary Agent, vehicle or combination thereof.
  • a pharmaceutically acceptable salt or a pharmaceutically acceptable carrier comprising the compound described in the first aspect of the present invention or a pharmaceutically acceptable salt or a pharmaceutically acceptable carrier, excipient, diluent, auxiliary Agent, vehicle or combination thereof.
  • pharmaceutically acceptable salts include addition salts formed with the following acids: hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, benzene disulfonic acid Acid, acetic acid, propionic acid, lactic acid, trifluoroacetic acid, maleic acid, citric acid, fumaric acid, oxalic acid, tartaric acid, benzoic acid, etc. and similar known acceptable acids form salts.
  • the present invention can contain the bifunctional small molecules described in the first aspect and their pharmaceutically acceptable salts as active ingredients, mixed with pharmaceutically acceptable excipients to prepare a composition, and prepare a clinically acceptable dosage form
  • pharmaceutically acceptable excipients refer to diluents, adjuvants or carriers that can be used in the field of pharmacy.
  • dosage forms refer to injections, tablets, capsules, etc. commonly used in clinical practice.
  • the third aspect of the technical solution of the present invention is to provide the application of the compound or pharmaceutically acceptable salt thereof involved in the first aspect of the present invention in the preparation of anti-tumor drugs, which can be used alone or in combination with existing anti-tumor drugs. Used in combination to treat and prevent tumors.
  • the tumor includes leukemia and lymphoma.
  • the fourth aspect of the technical solution of the present invention provides a method for preparing the compound or a pharmaceutically acceptable salt thereof in the first aspect of the present invention.
  • Step a Compound I-a is reacted with p-nitrophenoxy acid chloride to obtain compound I-b;
  • Step b Compound I-c is reacted with I-d to obtain compound I-e;
  • Step c Compound I-e is reacted with trifluoroacetic acid to remove Boc and then reacted with N-Boc-L-tert-leucine to obtain compound I-f;
  • Step d Compound I-f is reacted with trifluoroacetic acid to remove Boc and then condensed with an acid containing L to obtain compound I-g;
  • Step e Compound I-g is reacted with trifluoroacetic acid to remove Boc and then reacted with I-b or I-i to obtain a compound of general formula I.
  • the compound of the present invention can be mixed and covalently combined with key proteins in the protein degradation system, providing a method with a unique mechanism of action for the prevention and treatment of cancer.
  • FIG. 1 The proportion of human leukemia cells in the peripheral blood of mice.
  • QHS Artesunate
  • QV Example CL8.
  • FIG. 1 The proportion of human leukemia cells in bone marrow.
  • QHS Artesunate;
  • QV Example CL8.
  • FIG. 3 The proportion of human leukemia cells in the spleen.
  • QHS Artesunate
  • QV Example CL8.
  • Figure 7 The proton nuclear magnetic resonance spectrum of key intermediate 2.
  • Fig. 10 A partial enlarged view of the proton nuclear magnetic resonance spectrum of the key intermediate 3.
  • the raw materials can be obtained from commercial sources, or prepared by methods known in the art, or prepared according to the methods described herein.
  • the structure of the compound was determined by high resolution mass spectrometry (HRMS).
  • HRMS high resolution mass spectrometry
  • Thermo Exactive Plus (USA) mass spectrometer is used for HRMS measurement.
  • Column chromatography uses 200-300 mesh silica gel (produced by Yantai Yinlong Chemical Plant).
  • reaction solution was extracted with saturated ammonium chloride aqueous solution and saturated sodium chloride aqueous solution in sequence.
  • the combined organic phases were dried with anhydrous sodium sulfate. After the solvent was removed in vacuo, the residue was separated and purified by silica gel column chromatography.
  • the mobile phase was pure dichloromethane to a dichloromethane solution containing 5% methanol to obtain Ie, a yellow solid, 3.97 g, the yield is 65.24%.
  • HATU (5.43g, 14.27mmol, 1.5eq.) was added, and N,N-diisopropylethylamine (6.29mL, 38.04mmol, 4eq.) was added to adjust the pH so that the pH of the reaction solution was greater than 9.
  • the reaction solution was stirred at room temperature for 2 hours. After the completion of the reaction, the reaction solution was extracted with saturated ammonium chloride aqueous solution (200mL ⁇ 2) and saturated sodium chloride aqueous solution (200mL) successively. The organic phases were combined and dried with anhydrous sodium sulfate. After filtration, the filtrate was filtered and the solvent was removed in vacuo.
  • I-f (190 mg, 0.36 mmol, 1 eq.) was dissolved in a dichloromethane solution containing 20% trifluoroacetic acid and stirred for 2 hours to remove the Boc protecting group, and the solvent and trifluoroacetic acid were removed in vacuo. This was dissolved in 5 mL of dichloromethane, and 3-(2-((tert-butoxycarbonyl)amino)ethoxy)propionic acid 83.5 mg, 0.38 mmol, 1.2 eq.) was added.
  • HATU (163.3 mg, 0.43 mmol, 1.2 eq.) was added, and N,N-diisopropylethylamine was added to adjust the pH so that the pH of the reaction solution was greater than 9.
  • the reaction solution was stirred at room temperature for 2 hours. After the completion of the reaction, the reaction solution was extracted with saturated ammonium chloride aqueous solution (20mL ⁇ 2) and saturated sodium chloride aqueous solution (20mL) successively, and the organic phases were combined and dried with anhydrous sodium sulfate. After filtration, the filtrate was filtered and the solvent was removed in vacuo.
  • Ig-L1 (30 mg, 0.046 mmol, 1 eq.) was dissolved in a dichloromethane solution containing 20% trifluoroacetic acid and stirred for 2 hours, the Boc protecting group was removed, and the solvent and trifluoroacetic acid were removed in vacuo. It was dissolved in 5 mL of dichloromethane, and Ib-3 (23 mg, 0.046 mmol, 1 eq.) was added. Then HATU (21mg, 0.055mmol, 1.2eq.) was added, and N,N-diisopropylethylamine was added to adjust the pH so that the pH of the reaction solution was greater than 9. The reaction solution was stirred at room temperature for 2 hours.
  • Ig-L1 (48mg, 0.0743mmol) was added to 3ml of 30% trifluoroacetic acid in dichloromethane. After stirring for 30min at room temperature, the dichloromethane and most of the trifluoroacetic acid were removed by rotary evaporation, and then an appropriate amount of DMSO was added to dissolve it. Add appropriate amount of DIEA to make the pH of the solution neutral or weakly alkaline for use.
  • Ig-L1 (32mg, 0.049mmol, 1eq.) was dissolved in a dichloromethane solution containing 20% trifluoroacetic acid and stirred for 2 hours, the Boc protecting group was removed, and the solvent and trifluoroacetic acid were removed in vacuo. It was dissolved in 5 mL of dichloromethane, N,N-diisopropylethylamine was added to adjust the pH to neutral, and Va (15 mg, 0.049 mmol, 1 eq.) was added. Then EDCI (14mg, 0.073mmol, 1.5eq.), DMAP (9mg, 0.073mmol, 1.5eq.) were added. The reaction solution was stirred at room temperature for 4 hours.
  • reaction solution was extracted with saturated ammonium chloride aqueous solution (20mL ⁇ 2) and saturated sodium chloride aqueous solution (20mL) successively, and the organic phases were combined and dried with anhydrous sodium sulfate. After filtration, the filtrate was filtered and the solvent was removed in vacuo. High-efficiency preparation and liquid-phase purification, CL-25, white product 29mg, yield 70.0%. The molecular ion peak m/z measured by HRMS is 836.4239[M+H] + , and the theoretical value is 836.4263.
  • the synthesized example compounds were formulated into solutions of different concentrations of 20 mM, 10 mM, 5 mM, 2.5 mM, 1.25 mM, 0.625 mM, 0.3125 mM, 0.15625 mM, 0.078 mM, 0 mM with DMSO. Then, each solution of the above concentration was diluted 1000 times with complete medium (that is, 1 ⁇ L of drug solution was added to 999 ⁇ L of complete medium). Add the medicinal solution to a 96-well plate, 3 replicate wells for each concentration, 50 ⁇ L per well.
  • the cell suspension was diluted to 100,000 cells/mL, and 50 ⁇ L of the diluted cell suspension was added to each well containing the compound.
  • the cell survival rate and the compound's half inhibitory concentration (IC 50 ) on the growth of tumor cells were calculated. The specific test results are shown in Table 1.
  • mice Via the tail vein injection of 100 ⁇ L was resuspended 2 ⁇ 10 6 th NSG U937 leukemia cells were transplanted into mice. Every 3 days after transplantation, 50-100 ⁇ L of peripheral blood was taken from the fundus venous plexus, placed in an EP tube containing heparin sodium, and 500 ⁇ L of red blood cell lysate was immediately added to destroy the red blood cells. The proportion of human-CD45 positive cells was detected by flow cytometry. When the average implantation rate was 0.4%, the model was considered successful and the mice were randomly divided into groups. The drug was administered for 5 consecutive days a week (gavage, the vehicle was corn oil), once a day, and rested for 2 days. It lasted 2 weeks in total. Two weeks after the administration, the samples were taken on the 15th day, and the peripheral blood, spleen, and bone marrow of the mice were separated, and the test was completed.
  • the compound CL8 has a strong inhibitory effect on U937 leukemia cells in mice.
  • the test results are shown in Table 2, Figure 1, Figure 2, Figure 3 and Figure 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

属于医药技术领域,涉及一类靶向蛋白质水解通路的功能小分子及其制备和应用。具体涉及如式(M)所示的功能小分子及其药学上可接受的盐,以及这些化合物和其药用组合物在制备治疗肿瘤药物中的应用。将含有过氧桥键的化合物和E3泛素连接酶复合体的底物连接获得功能化小分子。所涉及的功能分子能够混杂靶向结合包括蛋白质水解通路中功能蛋白的多种蛋白质,具有抗肿瘤生物活性。

Description

一类靶向蛋白质水解通路的功能分子及其制备和应用 技术领域
本发明属于医药技术领域,涉及一类靶向蛋白质水解通路的功能分子及其制备和应用,以及其药学上可接受的盐和其药学组合物在治疗肿瘤中的应用。本发明通过使用连接臂将含有过氧桥键的化合物和E3泛素连接酶复合体中的小分子配体连接获得功能化小分子,属于医药技术领域。
背景技术
泛素-蛋白酶体途径(ubiquitin proteasome pathway,UPP)是细胞内蛋白质降解的主要途径。泛素-蛋白酶体途径由泛素、泛素活化酶E1、泛素结合酶E2、泛素连接酶E3、蛋白酶体及其底物(蛋白质)构成。泛素-蛋白酶体途径特异性降解蛋白质时,首先发生酶催化的蛋白底物泛素化。随后,被泛素化的蛋白分子能够被蛋白酶体识别,并进入蛋白酶体体降解成短链的多肽分子,发生蛋白底物降解。这个蛋白降解系统能够清除老化或者受损蛋白,对维持正常的细胞动态平衡和生理功能发挥重要的作用。
发明内容
本发明解决的棘手问题在于提供一种混杂靶向包括蛋白降解系统的多种蛋白的化合物及其应用,具体为一系列小分子化合物及其制备方法,以及该类化合物在制备治疗肿瘤药物中的应用。
为了实现上述技术问题,本发明提供了如下技术方案:
本发明技术方案的第一方面是提供了一类如式(M)所示化合物或其药学上可接受的盐:
Figure PCTCN2020114125-appb-000001
其中:
R”选自如下结构:
Figure PCTCN2020114125-appb-000002
L选自C1-C8亚烷基,含氧亚烷基,
Figure PCTCN2020114125-appb-000003
所述的含氧亚烷基,其氧原子的个数选自1、2、3、4或5,并且每个氧原子用亚乙烷基连接;当R”为R3时,n独立选自0、1、2、3、4或5;X选自氧或-CH 2-。
优选的,本发明所述的化合物或其药学上可接受的盐如式(I)和(II)所示:
Figure PCTCN2020114125-appb-000004
其中:
R选自如下结构:
Figure PCTCN2020114125-appb-000005
n独立选自0、1、2、3、4、5
X选自氧,-CH 2-
L选自C1-C8亚烷基,含氧亚烷基,或
Figure PCTCN2020114125-appb-000006
所述的含氧亚烷基,其氧原子的个数选自1、2、3、4或5,并且每个氧原子用亚乙烷基连接。
优选的L选自C1-C6亚烷基,更优选的L选自C1-C4亚烷基;
式(I)优选的化合物为式(I-1)所示:
Figure PCTCN2020114125-appb-000007
其中:
n独立选自0、1、2、3、4或5;
X选自氧或-CH 2-;
L选自C1-C8亚烷基,含氧亚烷基,
Figure PCTCN2020114125-appb-000008
所述的含氧亚烷基,其氧原子的个数选自1、2、3、4或5,并且每个氧原子用亚乙烷基连接。
L最优选的结构如下:
Figure PCTCN2020114125-appb-000009
本发明更优选的化合物选自:
Figure PCTCN2020114125-appb-000010
Figure PCTCN2020114125-appb-000011
Figure PCTCN2020114125-appb-000012
Figure PCTCN2020114125-appb-000013
Figure PCTCN2020114125-appb-000014
Figure PCTCN2020114125-appb-000015
Figure PCTCN2020114125-appb-000016
Figure PCTCN2020114125-appb-000017
本发明最优选的化合物选自:
Figure PCTCN2020114125-appb-000018
Figure PCTCN2020114125-appb-000019
Figure PCTCN2020114125-appb-000020
Figure PCTCN2020114125-appb-000021
Figure PCTCN2020114125-appb-000022
本发明技术方案的第二方面提供了一组药物组合物,包含本发明第一方面所述的化合物或其药学上可接受的盐或药学上可接受的载体,赋形剂,稀释剂,辅剂,媒介物或它们的组合。上述化合物或其药学上可接受的盐或所述组合物在制备预防和/或治疗癌症疾病药物中的应用。根据本发明,药学上可接受的盐包括与下列酸形成的加成盐:盐酸、氢溴酸、硫酸、磷酸、甲磺酸、乙磺酸、对甲苯磺酸、苯磺酸、苯二磺酸、乙酸、丙酸、乳酸、三氟乙酸、马来酸、柠檬酸、富马酸、草酸、酒石酸、苯甲酸等以及类似的已知可以接受的酸成盐。
本发明可以含有第一方面所述的双功能小分子及其药学上可接受的盐作为活性成份,与药学上可接受的赋形剂混合制备成组合物,并制备成临床上可接受的剂型,上述赋形剂是指可用于药学领域的稀释剂、辅助剂或载体。上述剂型是指临床上常用的注射剂、片剂、胶囊剂等。
本发明技术方案的第三方面是提供了本发明第一方面涉及的化合物或其药学上可接受的盐在制备抗肿瘤药物中的应用,其可以单独使用或者可以与现已上市的抗肿瘤药物联合使用,用于治疗预防肿瘤。优选的,所述的肿瘤包括白血病、淋巴瘤。
本发明技术方案的第四方面是提供了本发明第一方面涉及化合物或其药学上可接受的盐的制备方法。
通式I的化合物的制备方法,方法如下:
Figure PCTCN2020114125-appb-000023
步骤a:化合物I-a与对硝基苯氧酰氯反应得到化合物I-b;
步骤b:化合物I-c与I-d反应得到化合物I-e;
步骤c:化合物I-e与三氟乙酸反应脱Boc后与N-Boc-L-叔亮氨酸反应得到化合物I-f;
步骤d:化合物I-f与三氟乙酸反应脱Boc后与含L的酸缩合得到化合物I-g;
步骤e:化合物I-g与三氟乙酸反应脱Boc后与I-b或I-i反应得到通式为I的化合物。
通式II的化合物制备方法,方法如下:
Figure PCTCN2020114125-appb-000024
步骤:化合物I-g与三氟乙酸反应脱Boc后与V-a或V-b反应得到通式为II的化合物。
有益技术效果:
本发明的化合物可以混杂共价性结合包括蛋白降解系统中的关键蛋白,为癌症的防治提供具有独特作用机制的方法。
附图说明
图1人白血病细胞占小鼠外周血的比例。QHS:青蒿琥酯;QV:实施例CL8。
图2人白血病细胞占骨髓的比例。QHS:青蒿琥酯;QV:实施例CL8。
图3人白血病细胞占脾脏的比例。QHS:青蒿琥酯;QV:实施例CL8。
图4小鼠的脾脏重量。QHS:青蒿琥酯;QV:实施例CL8;cm:厘米。
图5关键中间体1的核磁共振氢谱。
图6关键中间体1的质谱图。ES-API Positive:ES-API正离子信号。
图7关键中间体2的核磁共振氢谱。
图8关键中间体2的质谱图。ES-API Positive:ES-API正离子信号。
图9关键中间体3的核磁共振氢谱。
图10关键中间体3的核磁共振氢谱局部放大图。
图11关键中间体3的质谱图。
具体实施方式
不需进一步详细说明,认为本领域熟练技术人员借助前面的描述,可以最大程度的利用本发明。因此,下面提供的实施例仅仅是进一步阐明本发明而已,并不意味着以任何方式限制本发明范围。
原料可以从商业途径获得,或者通过本领域已知的方法制备,或根据本文所述方法制备。
化合物的结构通过高分辨质谱(HRMS)来确定。HRMS的测定用Thermo Exactive Plus(USA)型质谱仪。柱层析采用200-300目硅胶(烟台银龙化工厂生产)。
实施例合成所需的关键中间体1-3(其结构式如下)通过商业途径获得,即委托北京保诺科技有限公司按照经典的青蒿素衍生化方法(Org.Lett.2005,7,1561–1564;Org.Lett.2010,12,1420–1423;Bioorg.Med.Chem.2009,17,1325–1338;J.Med.Chem.2002,45,1052-1063)合成,均经核磁共振和质谱鉴定(附图5-10)。
Figure PCTCN2020114125-appb-000025
实施例合成所需的两个氨基被保护的非天然氨基酸(其结构式如下)从商业途径获得。
Figure PCTCN2020114125-appb-000026
实施例1:化合物CL-1的制备,其结构式如下:
Figure PCTCN2020114125-appb-000027
步骤1)I-b-3的制备
Figure PCTCN2020114125-appb-000028
将化合物I-a-3(化合物I-a中n=3,即中间体1)(240mg,0.74mmol,1eq.)用10mL二氯甲烷溶解,置于冰水浴中,再加入4-硝基苯基氯甲酸酯(180mg,0.90mmol,1.2eq.)和吡啶(183μL,2.28mmol,3eq.)。然后撤去冰水浴,将反应液置于室温下搅拌。搅拌9小时后,反应液中加入10mL水淬灭反应,用50mL饱和氯化铵水溶液萃取两次,50mL饱和食盐水萃取一次。收集有机相,用无水硫酸钠干燥,过滤后,减压浓缩。粗产物用硅胶柱层析纯化,流动相为石油醚:乙酸乙酯=30/1至5/1,得I-b-3,无色油状物(300mg,82.5%)。
步骤2)I-e的制备
Figure PCTCN2020114125-appb-000029
将(4-(4-甲基噻唑-5-基)苯基)甲胺(I-c,3g,14.58mmol,1eq.)用二氯甲烷溶解,然后加入1-(叔丁氧基羰基)-4-羟基吡咯烷-2-羧酸3.39g,14.58mmol,1eq.)和HATU(4.96g,16.08mmol,1.1eq.)。最后,加入N,N-二异丙基乙胺(1.70ml,9.72mmol,4eq.)。反应液在常温下搅拌4个小时。然后反应液依次用饱和氯化铵水溶液和饱和氯化钠水溶液萃取。合并有机相用无水硫酸钠干燥,真空除去溶剂后,残留物用硅胶柱层析分离纯化,流动相为纯二氯甲烷至含5%甲醇的二氯甲烷溶液,得I-e,黄色固体,3.97g,产率65.24%。
步骤3)I-f的制备
Figure PCTCN2020114125-appb-000030
将I-e(3.97g,9.51mmol,1eq.)溶于含20%三氟乙酸的二氯甲烷溶液搅拌2小时,脱去Boc保护基,真空除去溶剂与三氟乙酸。将其用200mL二氯甲烷溶解,加入2-((叔丁氧基羰基)氨基)-3,3-二甲基丁酸2.64g,11.41mmol,1.2eq.)。然后加入HATU(5.43g,14.27mmol,1.5eq.),加入N,N-二异丙基乙胺(6.29mL,38.04mmol,4eq.)调节pH,使反应液pH大于9。将反应液置于常温下搅拌2个小时。反应完成后,反应液依次用饱和氯化铵水溶液(200mL×2)萃取和饱和氯化钠水溶液(200mL)萃取,合并有机相,用无水硫酸钠干燥,过滤后滤液真空除去溶剂,残留物硅胶柱层析纯化,流动相梯度为纯二氯甲烷至含2.5%甲醇的二氯甲烷溶液,得I-f,淡黄色产物3.45g,产率为68.32%。
步骤4)I-g-L1的制备
Figure PCTCN2020114125-appb-000031
将I-f(190mg,0.36mmol,1eq.)溶于含20%三氟乙酸的二氯甲烷溶液搅拌2小时,脱去Boc保护基,真空除去溶剂与三氟乙酸。将其用5mL二氯甲烷溶解,加入3-(2-((叔丁氧基羰基)氨基)乙氧基)丙酸83.5mg,0.38mmol,1.2eq.)。然后加入HATU(163.3mg,0.43mmol,1.2eq.),加入N,N-二异丙基乙胺调节pH,使反应液pH大于9。将反应液置于常温下搅拌2个小时。反应完成后,反应液依次用饱和氯化铵水溶液(20mL×2)萃取和饱和氯化钠水溶液(20mL)萃取,合并有机相,用无水硫酸钠干燥,过滤后滤液真空除去溶剂,残留物硅胶柱层析纯化,流动相梯度为纯二氯甲烷至含5%甲醇的二氯甲烷溶液。得I-g-L1,淡黄色固体166mg,产率为71.9%。
步骤5)CL-1的制备
Figure PCTCN2020114125-appb-000032
将I-g-L1(30mg,0.046mmol,1eq.)溶于含20%三氟乙酸的二氯甲烷溶液搅拌2小时,脱去Boc保护基,真空除去溶剂与三氟乙酸。将其用5mL二氯甲烷溶解,加入I-b-3(23mg,0.046mmol,1eq.)。然后加入HATU(21mg,0.055mmol,1.2eq.),加入N,N-二异丙基乙胺调节pH,使反应液pH大于9。将反应液置于常温下搅拌2个小时。反应完成后,反应液依次用饱和氯化铵水溶液(20mL×2)萃取和饱和氯化钠水溶液(20mL)萃取,合并有机相,用无水硫酸钠干燥,过滤后滤液真空除去溶剂,残留物高效制备液相纯化。最后得CL-1(白色固体,32mg),产率为81.6%。HRMS(ESI)测得分子离子峰m/z898.4650[M+H] +,理论计算值898.4631。
实施例2:化合物CL-2的制备,其结构式如下:
Figure PCTCN2020114125-appb-000033
用I-g-L2(I-g中的L部分为L2)代替I-g-L1,参考实施例CL-1的操作过程,得到CL-2。HRMS(ESI)测得分子离子峰m/z 942.4867[M+H] +,理论计算值942.4893。
实施例3:化合物CL-3的制备,其结构式如下:
Figure PCTCN2020114125-appb-000034
用I-g-L3(I-g中的L部分为L3)代替I-g-L1,参考实施例CL-1的操作过程,得到CL-3。HRMS测得分子离子峰m/z 986.5146[M+H] +,理论计算值986.5155。
实施例4:化合物CL-4的制备,其机构式如下:
Figure PCTCN2020114125-appb-000035
用I-g-L4(I-g中的L部分为L4)代替I-g-L1,参考实施例CL-1的操作过程,得到CL-4。HRMS测得分子离子峰m/z 840.4188[M+H] +,理论计算值840.4212。
实施例5:
化合物CL-5的制备,其结构式如下:
Figure PCTCN2020114125-appb-000036
用I-g-L6(I-g中的L部分为L6)代替I-g-L1,参考实施例CL-1的操作过程,得到CL-5。HRMS测得分子离子峰m/z 868.4507[M+H] +,理论计算值868.4525。
实施例6:
化合物CL-6的制备,其结构式如下:
Figure PCTCN2020114125-appb-000037
用I-g-L7(I-g中的L部分为L7)代替I-g-L1,参考实施例CL-1的操作过程,得到CL-6。HRMS测得分子离子峰m/z 882.4680[M+H] +,理论计算值882.4687。
实施例7:
化合物CL-7的制备,其结构式如下:
Figure PCTCN2020114125-appb-000038
用I-g-L8(I-g中的L部分为L8)代替I-g-L1,参考实施例CL-1的操作过程,得到CL-7。HRMS测得分子离子峰m/z 930.4639[M+H] +,理论计算值930.4681。
实施例8:
化合物CL-8的制备,其结构式如下:
Figure PCTCN2020114125-appb-000039
用I-g-L5(I-g中的L部分为L5)代替I-g-L1,参考实施例CL-1的操作过程,得到CL-8。HRMS测得分子离子峰m/z 854.4366[M+H] +,理论计算值854.4368。
实施例9:
化合物CL-9的制备,其结构式如下:
Figure PCTCN2020114125-appb-000040
CL-9的合成路线如下:
Figure PCTCN2020114125-appb-000041
将I-g-L1(48mg,0.0743mmol)加到30%的三氟乙酸的二氯甲烷溶液3ml中,室温搅拌30min后,旋蒸除去二氯甲烷及大部分三氟乙酸,而后加入适量DMSO溶解,加入适量DIEA使溶液PH值在中性或弱碱性,备用。另取单口瓶,加入青蒿素酸(I-i-1)(24.3mg,0.0743mmol),加入EDCI(28.5mg,0.1486mmol),加入适量DMSO溶解,然后加入上述备用的溶液,加入DMAP(18mg,0.1486mmol),加入适量DIEA使溶液PH值大于9。室温搅拌过夜后,加入饱和的氯化铵水溶液,用二氯甲烷萃取,并用饱和食盐水洗,收集有机层,无水硫酸钠干燥,减压蒸去有机溶剂,残留物通过HPLC纯化,得CL9,无色固体,重7.98mg,收率12.58%。HRMS测得分子离子峰m/z 854.4340[M+H] +,理论计算值854.4368。
实施例10:
化合物CL-10的制备,其结构式如下:
Figure PCTCN2020114125-appb-000042
用I-g-L2(I-g中的L部分为L2)代替I-g-L1,参考实施例CL-9的操作过程,得到CL-10。HRMS测得分子离子峰m/z 898.4656[M+H] +,理论计算值898.4631。
实施例11:
化合物CL-11的制备,其结构式如下:
Figure PCTCN2020114125-appb-000043
用I-g-L3(I-g中的L部分为L3)代替I-g-L1,参考实施例CL-9的操作过程,得到CL-11。HRMS测得分子离子峰m/z 942.4852[M+H] +,942.4893。
实施例12:
化合物CL-12的制备,其结构式如下:
Figure PCTCN2020114125-appb-000044
用I-g-L4(I-g中的L部分为L4)代替I-g-L1,参考实施例CL-9的操作过程,得到CL-12。HRMS测得分子离子峰m/z 796.3928[M+H] +,理论计算值796.3950。
实施例13:
化合物CL-13的制备,其结构式如下:
Figure PCTCN2020114125-appb-000045
用I-g-L6(I-g中的L部分为L6)代替I-g-L1,参考实施例CL-9的操作过程,得到CL-13。HRMS测得分子离子峰m/z 824.4242[M+H] +,理论计算值824.4263。
实施例14:
化合物CL-14的制备,其结构式如下:
Figure PCTCN2020114125-appb-000046
用I-g-L7(I-g中的L部分为L7)代替I-g-L1,参考实施例CL-9的操作过程,得到CL-14。HRMS测得分子离子峰m/z 838.4400[M+H] +,理论计算值838.4419。
实施例15:
化合物CL-15的制备,其结构式如下:
Figure PCTCN2020114125-appb-000047
用I-g-L8(I-g中的L部分为L8)代替I-g-L1,参考实施例CL-9的操作过程,得到CL-15。HRMS测得分子离子峰m/z 886.4406[M+H] +,理论计算值886.4419。
实施例16:
化合物CL-16的制备,其结构式如下:
Figure PCTCN2020114125-appb-000048
用I-g-L5(I-g中的L部分为L5)代替I-g-L1,参考实施例CL-9的操作过程,得到CL-16。HRMS测得分子离子峰m/z 810.4080[M+H] +,理论计算值810.4106。
实施例17:
化合物CL-17的制备,其结构式如下:
Figure PCTCN2020114125-appb-000049
用I-a-2(I-a中的n为2)代替I-a-3,参考实施例CL-1的操作过程,得到CL-17。 1H NMR(400MHz,DMSO-d6)δ8.99(s.1H),8.57(t,J=6.0Hz,1H),7.94(d,J=9.2Hz,1H),7.37-7.43(m,4H),7.02(t,J=5.6Hz,1H),5.32(s,1H),4.56(d,J=9.6Hz,1H),4.40-4.46(m,2H),4.34(m, 1H),4.18-4.23(dd,J 1=5.6Hz,J 2=16Hz,1H),4.02-4.08(m,2H),3.89-3.96(m,1H),3.54-3.69(m,4H),3.33-3.39(m,2H),3.12(q,J=6.0Hz,2H),2.44(s,3H),2.31-2.38(m,2H),2.09-2.16(m,1H),1.79-2.13(m,6H),1.46-1.69(m,4H),1.23-1.41(m,6H),1.11-1.16(m,1H),0.93(s,9H),0.89(d,J=6.4Hz,3H),0.79(d,J=7.6Hz,3H);HRMS测得分子离子峰m/z 884.4458[M+H] +,理论计算值884.4474。
实施例18:
化合物CL-18的制备,其结构式如下:
Figure PCTCN2020114125-appb-000050
用I-g-L2(I-g中的L部分为L2)代替I-g-L1,参考实施例CL-17的操作过程,得到CL-18。 1H NMR(400MHz,DMSO-d 6)δ8.99(s.1H),8.57(t,J=6.0Hz,1H),7.93(d,J=9.2Hz,1H),7.37-7.43(m,4H),7.07(t,J=5.6Hz,1H),5.32(s,1H),4.56(m,1H),4.40-4.44(m,2H),4.34(m,1H),4.19-4.23(m,2H),4.05(m,2H),3.90-3.96(m,1H),3.55-3.69(m,7H,混杂水峰),3.44-3.47(m,4H),3.36-3.39(t,J=6.0Hz,2H),3.11(m,2H),2.66-2.67(m,1H),2.44(s,3H),2.31-2.38(m,2H),1.79-2.17(m,8H),1.47-1.70(m,5H),1.25-1.39(m,7H),1.09-1.16(m,2H),0.93(s,9H),0.89(d,J=6.4Hz,3H),0.79(d,J=7.6Hz,3H);HRMS测得分子离子峰m/z 928.4713[M+H] +,理论计算值928.4736。
实施例19:
化合物CL-19的制备,其结构式如下:
Figure PCTCN2020114125-appb-000051
用I-g-L3(I-g中的L部分为L3)代替I-g-L1,参考实施例CL-17的操作过程,得到CL-19。HRMS测得分子离子峰m/z 972.4986[M+H] +,理论计算值972.4998。
实施例20:
化合物CL-20的制备,其结构式如下:
Figure PCTCN2020114125-appb-000052
用I-g-L4(I-g中的L部分为L4)代替I-g-L1,参考实施例CL-17的操作过程,得到CL-20。 1H NMR(400MHz,DMSO-d6)δ8.98(s.1H),8.59(t,J=6.0Hz,1H),7.75(d,J=9.6Hz,1H),7.37-7.43(m,4H),7.30(t,J=5.6Hz,1H),5.33(s,1H),4.54(m,1H),4.39-4.45(m,2H),4.34(m,1H),4.19-4.24(dd,J 1=5.2Hz,J 2=16Hz,1H),4.07(m,2H),3.59-3.96(m,38H,混杂水峰),2.44(s,3H),1.78-2.17(m,7H),1.45-1.69(m,5H),1.25-1.36(m,6H),1.09-1.16(m,2H),0.92(s,9H),0.89(d,J=6.0Hz,3H),0.79(d,J=7.6Hz,3H);HRMS测得分子离子峰m/z 826.4021[M+H] +,理论计算值826.4055。
实施例21:
化合物CL-21的制备,其结构式如下:
Figure PCTCN2020114125-appb-000053
用I-g-L6(I-g中的L部分为L6)代替I-g-L1,参考实施例CL-17的操作过程,得到CL-21。 1H NMR(400MHz,DMSO-d6)δ8.99(s,1H),8.57(t,J=6.0Hz,1H),7.90(d,J=9.2Hz,1H),7.37-7.43(m,4H),7.30(t,J=6.0Hz,1H),5.33(s,1H),4.54(m,1H),4.40-4.46(m,2H),4.34(m,1H),4.01-4.09(m,1H),3.95(m,1H),3.61-3.69(m,2H),2.90-2.98(m,3H),2.67(m,1H),2.44(s,3H),2.33(m,1H),2.21-2.28(m,1H),1.79-2.17(m,8H),1.47-1.70(m,7H),1.25-1.39(m,6H),1.09-1.16(m,2H),0.93(s,9H),0.89(d,J=6.4Hz,3H),0.79(d,J=7.2Hz,3H);HRMS测得分子离子峰m/z 854.4340[M+H] +,理论计算值854.4368。
实施例22:
化合物CL-22的制备,其结构式如下:
Figure PCTCN2020114125-appb-000054
用I-g-L7(I-g中的L部分为L7)代替I-g-L1,参考实施例CL-17的操作过程,得到CL-22。 1H NMR(400MHz,DMSO-d6)δ8.99(s,1H),8.57(t,J=6.0Hz,1H),7.85(d,J=9.2Hz,1H),7.37-7.43(m,4H),7.06(t,J=6.0Hz,1H),5.32(s,1H),4.54(m,1H),4.40-4.47(m,2H),4.36(m,1H),4.18-4.23(m,1H),4.01-4.09(m,2H),3.89-3.96(m,1H),3.61-3.68(m,2H),2.95(m,2H),2.44(s,3H),2.33(m,1H),2.24(m,1H),1.79-2.17(m,9H),1.25-1.70(m,16H),1.09-1.16(m,2H),0.93(s,9H),0.89(d,J=6.0Hz,3H),0.79(d,J=7.6Hz,3H);HRMS测得分子离子峰m/z 868.4482[M+H] +,理论计算值868.4525。
实施例23:
化合物CL-23的制备,其结构式如下:
Figure PCTCN2020114125-appb-000055
用I-g-L8(I-g中的L部分为L8)代替I-g-L1,参考实施例CL-17的操作过程,得到CL-23。 1H NMR(400MHz,DMSO-d 6)δ8.99(s,1H),8.59(t,J=6.0Hz,1H),8.10(d,J=9.2Hz,1H),7.61(t,J=6.0Hz,1H),7.37-7.43(m,4H),7.21(d,J=8.0Hz,2H),7.15(d,J= 8.0Hz,2H),5.33(s,1H),4.52(m,1H),4.40-4.46(m,2H),4.34(m,1H),4.19-4.24(dd,J 1=5.2Hz,J 2=8.0Hz,1H),4.05-4.13(m,2H),3.60-3.67(m,2H),3.42(d,J=13.6Hz,1H),2.44(s,3H),2.10-2.17(m,1H),1.95-2.05(m,2H),1.79-1.92(m,3H),1.47-1.69(m,4H),1.25-1.39(m,6H),1.09-1.17(m,1H),0.91(s,9H),0.89(d,J=6.8Hz,3H),0.79(d,J=7.2Hz,3H);HRMS测得分子离子峰m/z 916.4500[M+H] +,理论计算值916.4525。
实施例24:
化合物CL-24的制备,其结构式如下:
Figure PCTCN2020114125-appb-000056
用I-g-L5(I-g中的L部分为L5)代替I-g-L1,参考实施例CL-17的操作过程,得到CL-24。 1H NMR(400MHz,DMSO-d 6)δ8.99(s,1H),8.58(t,J=6.0Hz,1H),7.96(d,J=9.2Hz,1H),7.37-7.44(m,4H),6.98(t,J=5.6Hz,1H),4.54(m,1H),4.40-4.45(m,2H),4.34(m,1H),4.22(m,1H),4.05(m,2H),3.96(m,1H),3.61-3.69(m,2H),3.17(m,2H),2.44(s,3H),2.30-2.34(m,1H),2.09-2.16(m,1H),1.79-2.07(m,5H),1.46-1.70(m,4H),1.23-1.39(m,6H),1.09-1.16(m,2H),0.93(s,9H),0.89(d,J=6.4Hz,3H),0.79(d,J=7.6Hz,3H);HRMS测得分子离子峰m/z 840.4193[M+H] +,理论计算值840.4212。
实施例25:
化合物CL-25的制备,其结构式如下:
Figure PCTCN2020114125-appb-000057
CL-25的合成路线如下:
Figure PCTCN2020114125-appb-000058
将I-g-L1(32mg,0.049mmol,1eq.)溶于含20%三氟乙酸的二氯甲烷溶液搅拌2小时,脱去Boc保护基,真空除去溶剂与三氟乙酸。将其用5mL二氯甲烷溶解,加入N,N-二异丙基乙胺调节pH至中性,加入V-a(15mg,0.049mmol,1eq.)。然后加入EDCI(14mg,0.073mmol,1.5eq.),DMAP(9mg,0.073mmol,1.5eq.)。将反应液置于常温下搅拌4个小时。反应完成后,反应液依次用饱和氯化铵水溶液(20mL×2)萃取和饱和氯化钠水溶液(20mL)萃取,合并有机相,用无水硫酸钠干燥,过滤后滤液真空除去溶剂,残留物高效制备液相纯化,得CL-25,白色产物29mg,产率为70.0%。HRMS测得分子离子峰m/z 836.4239[M+H] +,理论计算值836.4263。
实施例26:
化合物CL-26的制备,其结构式如下:
Figure PCTCN2020114125-appb-000059
用I-g-L2(I-g中的L部分为L2)代替I-g-L1,参考实施例CL-25的操作过程,得到CL-26。HRMS测得分子离子峰m/z 880.4515[M+H] +,理论计算值880.4525。
实施例27:
化合物CL-27的制备,其结构式如下:
Figure PCTCN2020114125-appb-000060
用I-g-L3(I-g中的L部分为L3)代替I-g-L1,参考实施例CL-25的操作过程,得到CL-27。HRMS测得分子离子峰m/z 924.4787[M+H] +,理论计算值924.4777。
实施例28:
化合物CL-28的制备,其结构式如下:
Figure PCTCN2020114125-appb-000061
用I-g-L4(I-g中的L部分为L4)代替I-g-L1,参考实施例CL-25的操作过程,得到CL-28。HRMS测得分子离子峰m/z 778.3817[M+H] +,理论计算值778.3844。
实施例29:
化合物CL-29的制备,其结构式如下:
Figure PCTCN2020114125-appb-000062
用I-g-L6(I-g中的L部分为L6)代替I-g-L1,参考实施例CL-25的操作过程,得到CL-29。HRMS测得分子离子峰m/z 806.4160[M+H] +,806.4163。
实施例30:
化合物CL-30的制备,其结构式如下:
Figure PCTCN2020114125-appb-000063
用I-g-L7(I-g中的L部分为L7)代替I-g-L1,参考实施例CL-25的操作过程,得到CL-30。HRMS测得分子离子峰m/z820.4295[M+H] +,理论计算值820.4314。
实施例31:
化合物CL-31的制备,其结构式如下:
Figure PCTCN2020114125-appb-000064
用I-g-L8(I-g中的L部分为L8)代替I-g-L1,参考实施例CL-25的操作过程,得到CL-31。HRMS测得分子离子峰m/z 868.4293[M+H] +,理论计算值868.4314。
实施例32:
化合物CL-32的制备,其结构式如下:
Figure PCTCN2020114125-appb-000065
用I-g-L5(I-g中的L部分为L5)代替I-g-L1,参考实施例CL-25的操作过程,得到CL-32。HRMS测得分子离子峰m/z 792.3968[M+H] +,理论计算值792.4001。
实施例33:
化合物CL-40的制备,其结构式如下:
Figure PCTCN2020114125-appb-000066
CL-40的合成路线如下:
Figure PCTCN2020114125-appb-000067
用I-g-L5(I-g中的L部分为L5)代替I-g-L1,用V-b代替V-a,参考实施例CL-25的操作过程,得到CL-40。HRMS测得分子离子峰m/z 880.4284[M+H] +,理论计算值880.4278。
实验例1 体外活性评价
MTT测试方法:
用DMSO将合成的实施例化合物配成20mM,10mM,5mM,2.5mM,1.25mM,0.625mM,0.3125mM,0.15625mM,0.078mM,0mM的不同浓度的溶液。然后用完全培养基将上述浓度的溶液分别稀释1000倍(即1μL药液加入999μL完全培养基)。将药液分别加入96孔板中,每个浓度3个复孔,每孔50μL。MV4-11细胞计数后,将细胞悬液稀释到100000个/mL,在含有化合物的孔中每孔加入50μL稀释的细胞悬液。96孔板外圈每孔加入200μL PBS溶液。培养48h。每孔加入100μL CellTiter-Glo Luminescent检测试剂,培养箱孵育10min,酶标仪检测。计算得出细胞存活率和化合物对肿瘤细胞的生长的半数抑制浓度(IC 50)。具体试验结果见表1。
表1 部分实施例化合物的MTT测试结果
Figure PCTCN2020114125-appb-000068
实验例2 体内活性评价
试验方法:
通过尾静脉注射将100μL重悬的2×10 6个U937白血病细胞移植到NSG小鼠中。移植后每3天从眼底静脉丛取外周血50-100μL,置于含肝素钠EP管中,即刻加入500μL的红细胞裂解液破坏红细胞,通过流式细胞术检测human-CD45阳性细胞比例。当平均植入率为0.4%时,即认为模型成功,将小鼠随机分组。每周连续给药5天(灌胃,溶媒为玉米油),每天给药1次,休息2天。共持续2周。给药2周后,即第15天取材,分离小鼠外周血、脾脏、骨髓,并完成检测。
试验结果:
化合物CL8对小鼠体内的U937白血病细胞具有很强的抑制作用。试验结果见表2、图1、图2、图3和图4。
表2 化合物CL-8的在动物体内抗白血病作用
Figure PCTCN2020114125-appb-000069
尽管已经通过特定实施方案描述了本发明,但修改和等价变化对于精通此领域的技术人员而言是显见的,且它们都包含在本发明范围之内。

Claims (11)

  1. 一类如式(M)所示化合物或其药学上可接受的盐或其立体异构体:
    Figure PCTCN2020114125-appb-100001
    其中:
    R”选自如下结构:
    Figure PCTCN2020114125-appb-100002
    L选自C1-C8亚烷基,含氧亚烷基,
    Figure PCTCN2020114125-appb-100003
    所述的含氧亚烷基,其氧原子的个数选自1、2、3、4或5,并且每个氧原子用亚乙烷基连接;
    当R”为R3时,n独立选自0、1、2、3、4或5;X选自氧或-CH 2-。
  2. 根据权利要求1的化合物或其药学上可接受的盐或其立体异构体,所述的化合物为式(I)所示:
    Figure PCTCN2020114125-appb-100004
    其中:
    n独立选自0、1、2、3、4或5;
    X选自氧或-CH 2-;
    L选自C1-C8亚烷基,含氧亚烷基,
    Figure PCTCN2020114125-appb-100005
    所述的含氧亚烷基,其氧原子的个数选自1、2、3、4或5,并且每个氧原子用亚乙烷基连接。
  3. 根据权利要求2的化合物或其药学上可接受的盐或其立体异构体,所述的化合物为式(I-1)所示:
    Figure PCTCN2020114125-appb-100006
    其中:
    n独立选自0、1、2、3、4或5;
    X选自氧或-CH 2-;
    L选自C1-C8亚烷基,含氧亚烷基,
    Figure PCTCN2020114125-appb-100007
    所述的含氧亚烷基,其氧原子的个数选自1、2、3、4或5,并且每个氧原子用亚乙烷基连接。
  4. 根据权利要求2-3任一项的化合物或其药学上可接受的盐或其立体异构体:
    L选自如下结构:
    Figure PCTCN2020114125-appb-100008
  5. 根据权利要求1的化合物或其药学上可接受的盐或其立体异构体,所述的化合物为式(II)所示:
    Figure PCTCN2020114125-appb-100009
    其中:
    R选自如下结构:
    Figure PCTCN2020114125-appb-100010
    L选自C1-C8亚烷基,含氧亚烷基,
    Figure PCTCN2020114125-appb-100011
    所述的含氧亚烷基,其氧原子的个数选自1、2、3、4或5,并且每个氧原子用亚乙烷基连接。
  6. 根据权利要求5的化合物或其药学上可接受的盐或其立体异构体:
    L选自如下结构:
    Figure PCTCN2020114125-appb-100012
  7. 根据权利要求1的化合物或其药学上可接受的盐或其立体异构体,其特征在于,化合物选自如下:
    Figure PCTCN2020114125-appb-100013
    Figure PCTCN2020114125-appb-100014
    Figure PCTCN2020114125-appb-100015
    Figure PCTCN2020114125-appb-100016
    Figure PCTCN2020114125-appb-100017
    Figure PCTCN2020114125-appb-100018
    Figure PCTCN2020114125-appb-100019
    Figure PCTCN2020114125-appb-100020
  8. 根据权利要求1的化合物或其药学上可接受的盐或其立体异构体,其特征在于,化合物选自如下:
    Figure PCTCN2020114125-appb-100021
    Figure PCTCN2020114125-appb-100022
    Figure PCTCN2020114125-appb-100023
    Figure PCTCN2020114125-appb-100024
    Figure PCTCN2020114125-appb-100025
  9. 一组药物组合物,包含权利1-8任一项所述的化合物或其药学上可接受的盐或药学上可接受的载体,赋形剂,稀释剂,辅剂,媒介物或它们的组合。
  10. 权利要求1-8任一项的化合物或其药学上可接受的盐或权利要求9所述药物组合物在制备预防和/或治疗肿瘤疾病药物中的应用。
  11. 根据权利要求10的应用,其特征在于,所述的肿瘤包括白血病、淋巴瘤。
PCT/CN2020/114125 2019-09-09 2020-09-09 一类靶向蛋白质水解通路的功能分子及其制备和应用 WO2021047524A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080070688.4A CN114555607B (zh) 2019-09-09 2020-09-09 一类靶向蛋白质水解通路的功能分子及其制备和应用
EP20862461.9A EP4043467A4 (en) 2019-09-09 2020-09-09 CLASS OF FUNCTIONAL MOLECULES TARGETING PROTEOLYSIS PATHWAYS, PRODUCTION AND USE THEREOF
US17/641,485 US20220380381A1 (en) 2019-09-09 2020-09-09 Class of functional molecules targeting proteolysis pathways, preparation and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910848612.9 2019-09-09
CN201910848612.9A CN112457365B (zh) 2019-09-09 2019-09-09 一类靶向蛋白质水解通路的功能分子及其制备和应用

Publications (1)

Publication Number Publication Date
WO2021047524A1 true WO2021047524A1 (zh) 2021-03-18

Family

ID=74807506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114125 WO2021047524A1 (zh) 2019-09-09 2020-09-09 一类靶向蛋白质水解通路的功能分子及其制备和应用

Country Status (4)

Country Link
US (1) US20220380381A1 (zh)
EP (1) EP4043467A4 (zh)
CN (2) CN112457365B (zh)
WO (1) WO2021047524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116655651A (zh) * 2023-05-31 2023-08-29 中国医学科学院药物研究所 青蒿素10位碳取代衍生物差向异构体的制备及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112457365B (zh) * 2019-09-09 2023-06-09 中国医学科学院药物研究所 一类靶向蛋白质水解通路的功能分子及其制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081530A1 (en) * 2016-10-28 2018-05-03 Icahn School Of Medicine At Mount Sinai Compositions and methods for treating ezh2-mediated cancer
WO2018106870A1 (en) * 2016-12-08 2018-06-14 Icahn School Of Medicine At Mount Sinai Compositions and methods for treating cdk4/6-mediated cancer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201504314D0 (en) * 2015-03-13 2015-04-29 Univ Dundee Small molecules
CN106749513A (zh) * 2017-01-23 2017-05-31 中国药科大学 基于vhl配体诱导bet降解的双功能分子及其制备和应用
JP2021512153A (ja) * 2018-01-26 2021-05-13 イエール ユニバーシティ タンパク質分解のイミド系モジュレーターおよび使用方法
CN110143961B (zh) * 2019-06-27 2022-03-29 江苏省中医药研究院 一种基于vhl配体诱导bet降解的吡咯并吡啶酮类双功能分子化合物
CN112457365B (zh) * 2019-09-09 2023-06-09 中国医学科学院药物研究所 一类靶向蛋白质水解通路的功能分子及其制备和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081530A1 (en) * 2016-10-28 2018-05-03 Icahn School Of Medicine At Mount Sinai Compositions and methods for treating ezh2-mediated cancer
WO2018106870A1 (en) * 2016-12-08 2018-06-14 Icahn School Of Medicine At Mount Sinai Compositions and methods for treating cdk4/6-mediated cancer

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BIOORG. MED. CHEM., vol. 17, 2009, pages 1325 - 1338
CHIARA MANIACI, SCOTT J. HUGHES, ANDREA TESTA, WENZHANG CHEN, DOUGLAS J. LAMONT, SONIA ROCHA, DARIO R. ALESSI, ROBERTO ROMEO, ALES: "Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation", NATURE COMMUNICATIONS, NATURE PUBLISHING GROUP, GB, vol. 8, no. 1, 10 December 2017 (2017-12-10), GB, XP055476041, ISSN: 2041-1723, DOI: 10.1038/s41467-017-00954-1 *
J. MED. CHEM., vol. 45, 2002, pages 1052 - 1063
OH, S. ; KIM, B.J. ; SINGH, N.P. ; LAI, H. ; SASAKI, T.: "Synthesis and anti-cancer activity of covalent conjugates of artemisinin and a transferrin-receptor targeting peptide", CANCER LETTERS, NEW YORK, NY, US, vol. 274, no. 1, 8 February 2009 (2009-02-08), US, pages 33 - 39, XP025817758, ISSN: 0304-3835, DOI: 10.1016/j.canlet.2008.08.031 *
ORG. LETT., vol. 12, 2010, pages 1420 - 1423
ORG. LETT., vol. 7, 2005, pages 1561 - 1564
See also references of EP4043467A4
SUN XIN, YAN PEIYI, ZOU CHANG, WONG YIN‐KWAN, SHU YUHAN, LEE YEW MUN, ZHANG CHONGJING, YANG NAI‐DI, WANG JIGANG, ZHANG JIANBIN: "Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives", MEDICINAL RESEARCH REVIEWS, NEW YORK, NY, US, vol. 39, no. 6, 1 November 2019 (2019-11-01), US, pages 2172 - 2193, XP055790533, ISSN: 0198-6325, DOI: 10.1002/med.21580 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116655651A (zh) * 2023-05-31 2023-08-29 中国医学科学院药物研究所 青蒿素10位碳取代衍生物差向异构体的制备及应用

Also Published As

Publication number Publication date
EP4043467A1 (en) 2022-08-17
CN114555607B (zh) 2023-11-28
CN112457365B (zh) 2023-06-09
EP4043467A4 (en) 2023-11-08
US20220380381A1 (en) 2022-12-01
CN114555607A (zh) 2022-05-27
CN112457365A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
ES2668318T3 (es) Formas cristalinas de inhibidor del factor XIa
KR20180073676A (ko) Tlr7 효능제로서의 7-(티아졸-5-일)피롤로피리미딘 화합물
KR20140059236A (ko) Hcv 프로테아제 억제제의 결정 형태
WO2021047524A1 (zh) 一类靶向蛋白质水解通路的功能分子及其制备和应用
CN106883279B (zh) 一种前药、其制备方法、药物组合物及其用途
JP2019521980A (ja) Jak阻害剤としてのピロロピリミジン化合物の結晶
WO2018086243A1 (zh) 氟硼二吡咯衍生物及其制备方法和在医药上的应用
WO2018086242A1 (zh) pH敏感的轴向取代硅酞菁配合物及其制备方法和在医药上的应用
WO2018196812A1 (zh) 硼酸和硼酸酯类化合物及其制备方法和用途
CN107286220B (zh) 1,2,4-三氮唑偶联的二氢杨梅素衍生物及其制备方法和应用
ES2539236T3 (es) Sal de ácido benzoico de Otamixaban
WO2018227886A1 (zh) 新型吲哚胺2,3-双加氧化酶抑制剂
CA3197092A1 (en) 1-(2-(4-cyclopropyl-1h-1,2,3-triazol-1-yl)acetyl)-4-hydroxy-n-(benzyl)pyrrolidin e-2-carboxamide derivatives as vhl inhibitors for the treatment of anemia and cancer
WO2022116968A1 (zh) 一种新型n-杂环bet溴结构域抑制剂、其制备方法及医药用途
CN115160301A (zh) 一种山荷叶素衍生物、其制备方法及用途
EP3473639B1 (en) Hepatitis c virus inhibitor and application
KR20210022557A (ko) 티오펜 유도체의 고체 형태
CN113166188A (zh) 两性霉素b肽衍生物
WO2024146631A1 (zh) 一种parp7抑制剂的制备方法
CN114907387B (zh) 嘧啶并吡咯类kras抑制剂及其制备方法与应用
WO2017193757A1 (zh) 水溶性Epothilone衍生物及其制备方法
WO2019056376A1 (zh) 酸敏感的吉非替尼-氟硼二吡咯衍生物及其制备方法和在医药上的应用
WO2023077977A1 (zh) 秋水仙碱衍生物的制备方法及其用途
CN110183471B (zh) 一种哌嗪类衍生物及制备方法及应用
WO2019114501A1 (zh) α-楝子素衍生物及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020862461

Country of ref document: EP

Effective date: 20220411