WO2021047438A1 - 一种仿真车辆换道轨迹的构建方法、装置、设备及存储介质 - Google Patents

一种仿真车辆换道轨迹的构建方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021047438A1
WO2021047438A1 PCT/CN2020/113135 CN2020113135W WO2021047438A1 WO 2021047438 A1 WO2021047438 A1 WO 2021047438A1 CN 2020113135 W CN2020113135 W CN 2020113135W WO 2021047438 A1 WO2021047438 A1 WO 2021047438A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
changing
vehicle
target
driving data
Prior art date
Application number
PCT/CN2020/113135
Other languages
English (en)
French (fr)
Inventor
杜海宁
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to EP20862295.1A priority Critical patent/EP3989015A4/en
Publication of WO2021047438A1 publication Critical patent/WO2021047438A1/zh
Priority to US17/527,700 priority patent/US20220073076A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0255Automatic changing of lane, e.g. for passing another vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W2030/082Vehicle operation after collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance

Definitions

  • This application relates to the field of Internet communication technology, and in particular to a method, device and equipment for constructing a simulated vehicle lane-changing trajectory.
  • the embodiment of the present application provides a method for constructing a lane-changing trajectory of a simulated vehicle.
  • the method is executed by a target lane-changing vehicle and includes:
  • Methods include:
  • the preset lane changing conditions When the preset lane changing conditions are met, or when the preset lane changing conditions are not met and it is determined to continue changing lanes, if the following vehicle in the target lane decelerates, it is constructed based on the target lateral driving data and the target longitudinal driving data
  • the first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system
  • the acceleration in the target longitudinal driving data is updated so that the updated longitudinal velocity is greater than the longitudinal velocity of the following vehicle , And less than the longitudinal speed of the preceding vehicle on the target lane; construct the second lane change of the target lane-changing vehicle in the lane-changing trajectory coordinate system based on the updated longitudinal driving data and the target lateral driving data Trajectory
  • An embodiment of the present application also provides a device for constructing a simulated vehicle lane-changing trajectory, and the device includes:
  • the lane-changing trajectory coordinate system construction module is used to take the location of the target lane-changing vehicle as the origin, the centerline of the current lane of the target lane-changing vehicle along the driving direction as the ordinate, and the normal direction of the centerline as the abscissa , To construct the coordinate system of the lane-changing trajectory;
  • the target vehicle ahead determination module is used to determine the target vehicle ahead according to the position of the target lane-changing vehicle to determine the target vehicle ahead;
  • the target longitudinal driving data determination module is used to determine the longitudinal speed of the target lane-changing vehicle, the longitudinal speed of the target preceding vehicle, and the distance between the target preceding vehicle and the target lane-changing vehicle at each moment in the lane changing process Determining the target longitudinal driving data during the lane changing process of the target lane-changing vehicle;
  • the target lateral driving data determination module is used to determine the target lateral driving during the lane changing process of the target lane-changing vehicle according to the preset initial lateral driving data, the preset end lateral driving data and the preset lane-changing time during the lane-changing process data;
  • the first lane-changing trajectory building module is used for when the preset lane-changing conditions are met, or when the preset lane-changing conditions are not met and it is determined to continue the lane-changing, if the following vehicle in the target lane decelerates, based on the
  • the target lateral driving data and the target longitudinal driving data construct a first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system;
  • the second lane-changing trajectory construction module is used to update the acceleration in the target longitudinal driving data if the following vehicle does not decelerate when the preset lane-changing conditions are not met and it is determined to continue the lane-changing, so that the updated The longitudinal speed is greater than the longitudinal speed of the following vehicle and less than the longitudinal speed of the preceding vehicle on the target lane; the target lane-changing vehicle is constructed based on the updated longitudinal driving data and the target lateral driving data.
  • the first lane changing back to the original lane trajectory building module is used to update the horizontal and vertical driving data in the process of changing back to the original lane when the preset lane changing conditions are not met and the lane changing is determined not to continue, and according to the said changing back
  • the horizontal driving data and the longitudinal driving data in the original lane process construct the first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • the target vehicle preceding determination module is further configured to determine from the preceding vehicle in the target lane and the preceding vehicle in the current lane according to whether the center of mass of the target lane-changing vehicle crosses the lane line of the current lane Target car ahead.
  • the first lane-changing-to-original-lane trajectory construction module is further configured to use a time when the preset lane-changing condition is not met as the initial time of the lane-changing to determine the lateral driving data at the initial time; Determining the lateral driving data at the end time of changing back to the lane; determining the lateral driving data in the process of changing back to the original lane according to the lateral driving data at the initial time, the lateral driving data at the end time, and the first preset changing back time; Based on whether the center of mass of the target lane-changing vehicle crosses the lane line of the current lane from the initial time to the end time, the vehicle ahead in the target lane and the vehicle in the current lane are updated in real time.
  • the distance between the target lane-changing vehicles determines the longitudinal driving data in the process of changing back to the original lane.
  • the device further includes: a first initial moment determining module, configured to use a moment when the preset lane changing condition is not met as the initial moment of turning the front of the vehicle; a first lateral driving data determining module, configured to determine The lateral driving data at the initial moment; the second lateral driving data determining module is used to determine the lateral driving data at the end of turning the front of the car; the first lateral driving data update module is used to update the lateral driving data according to the initial moment , The lateral driving data at the end time and the preset breaking time to determine the lateral driving data in the process of turning the front of the vehicle; the second target vehicle update module is used to update the vehicle based on the center of mass of the target lane-changing vehicle at the initial time Whether it crosses the lane line of the current lane at the end time, from the preceding vehicle in the target lane and the preceding vehicle in the current lane, the target vehicle in front from the initial time to the end time is updated in real time;
  • a longitudinal driving data update module which
  • the device further includes a straight-line riding process determining module, configured to continue the driving process of the target lane-changing vehicle from the lateral position in the lateral driving data at the end of turning the front of the vehicle along the longitudinal direction as a straight-line riding process.
  • a straight-line riding process determining module configured to continue the driving process of the target lane-changing vehicle from the lateral position in the lateral driving data at the end of turning the front of the vehicle along the longitudinal direction as a straight-line riding process.
  • the second initial time determination module is used to determine the time when the following vehicle decelerates in the straight-line riding process as the initial time for continuing to change lanes; the third lateral driving data determination module is used to determine the initial time for continuing to change lanes The fourth lateral travel data determination module is used to determine the lateral travel data at the end of the continued lane change; the second lateral travel data update module is used to determine the lateral travel data at the initial time of the continued lane change , The lateral driving data at the end time and the preset time to continue to change lanes to determine the lateral driving data in the process of continuing to change lanes; the second target vehicle in front update module is used to continue changing lanes based on the center of mass of the target lane changing vehicle Whether it crosses the lane line of the current lane from the initial time to the end time, from the preceding vehicle in the target lane and the preceding vehicle in the current lane, real-time update of the initial time of the continued lane change to the end time
  • the second longitudinal driving data update module is used to
  • the distance between the target vehicle in front and the target lane-changing vehicle determines the longitudinal driving data in the course of continuing the lane change; the third lane-changing trajectory building module is used for the horizontal driving data and longitudinal driving in the course of continuing the lane change The data constructs the third lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • the device further includes: a third initial moment determination module, configured to ride when the duration of the straight-line riding process is greater than or equal to a preset riding time and the following vehicle is not decelerating.
  • the time after the preset riding time is taken as the initial time of changing back to the original lane;
  • the fifth lateral driving data determining module is used to determine the lateral driving data at the initial time of changing back to the original lane;
  • the sixth lateral driving data determining module Used to determine the lateral driving data at the end time of changing back to the original lane;
  • the third lateral driving data update module is used to determine the lateral driving data at the initial time of changing back to the original lane, the lateral driving data at the end time, and the second
  • the preset change-back time determines the lateral driving data in the process of changing back to the original lane;
  • the third target vehicle update module in front is used for starting to the end of the original lane change based on the center of mass of the target lane-changing vehicle Whether it crosses
  • the distance between the vehicle and the target lane-changing vehicle determines the longitudinal driving data in the process of changing back to the original lane; the second back-to-original lane trajectory building module is used for the horizontal driving data and the longitudinal driving data in the process of changing back to the original lane Constructing the second lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • the device further includes: a riding time determining module, configured to determine the riding time to continue driving along the longitudinal direction from the lateral position in the lateral driving data at the end time of turning the front of the vehicle; a riding trajectory construction module , Used for constructing the riding trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system based on the riding time, the lateral traveling data and the longitudinal traveling data at the end time of the front-end turning.
  • a riding time determining module configured to determine the riding time to continue driving along the longitudinal direction from the lateral position in the lateral driving data at the end time of turning the front of the vehicle
  • a riding trajectory construction module Used for constructing the riding trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system based on the riding time, the lateral traveling data and the longitudinal traveling data at the end time of the front-end turning.
  • the device further includes: a ratio setting module for a lane-changing scene, configured to set the first lane-changing trajectory, the second lane-changing trajectory, the first lane-changing trajectory, and The ratio of the lane-changing scene corresponding to the second lane-changing back to the original lane trajectory; the lane-changing scene construction module is configured to construct the lane-changing scene of the target lane-changing vehicle based on the lane-changing scene with the set ratio.
  • a ratio setting module for a lane-changing scene configured to set the first lane-changing trajectory, the second lane-changing trajectory, the first lane-changing trajectory, and The ratio of the lane-changing scene corresponding to the second lane-changing back to the original lane trajectory
  • the lane-changing scene construction module is configured to construct the lane-changing scene of the target lane-changing vehicle based on the lane-changing scene with the set ratio.
  • the device further includes a recording module, which is used to record the collision accident if the following vehicle does not decelerate when the preset lane-changing condition is not met and it is determined to continue the lane-changing.
  • An embodiment of the present application also provides a device for simulating a lane-changing trajectory of a vehicle.
  • the device includes a processor and a memory.
  • the memory stores at least one instruction, at least a section of program, code set, or instruction set.
  • One instruction, the at least one program, the code set or the instruction set is loaded and executed by the processor to implement the method for constructing a lane-changing trajectory of a simulated vehicle as described in the embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the at least one program, the The code set or instruction set is loaded and executed by the processor to realize the method for constructing a lane-changing trajectory of a simulated vehicle as described above.
  • FIG. 1A is a schematic diagram of an application environment provided by an embodiment of the present application.
  • 1B is a schematic flowchart of a method for constructing a simulated vehicle lane-changing trajectory provided by an embodiment of the application;
  • FIG. 2 is a schematic flowchart of a method for constructing a simulated vehicle lane-changing trajectory provided by an embodiment of the present application
  • Fig. 3 is a schematic diagram of a lane-changing trajectory coordinate system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a lateral position (lateral offset distance) curve that changes with time during a lane change process according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a lateral speed curve that changes with time during a lane change process according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a lateral velocity curve that changes with time during a lane change process according to an embodiment of the present application
  • FIG. 7A is a schematic flowchart of a process of updating horizontal driving data and vertical driving data in the process of changing back to the original lane according to an embodiment of the present application;
  • FIG. 7B is a schematic flowchart of a method for constructing a lane-changing trajectory of a simulated vehicle when the preset lane-changing condition is not met according to an embodiment of the present application;
  • FIG. 7C is a schematic flowchart of a method for constructing a lane-changing trajectory of a simulated vehicle after breaking the front of the vehicle provided by an embodiment of the present application;
  • FIG. 7D is a schematic flowchart of a method for constructing a lane-changing trajectory of a simulated vehicle when the following vehicle continues to change lanes after determining that the following vehicle decelerates and gives way;
  • FIG. 7E is a schematic flowchart of a method for constructing a lane-changing trajectory of a simulated vehicle when changing back to the original lane according to an embodiment of the present application;
  • FIG. 8 is a schematic diagram of a flow chart of a lane-changing simulation driving provided by an embodiment of the present application.
  • 9A is a schematic structural diagram of a device for constructing a simulated vehicle lane-changing trajectory provided by an embodiment of the present application.
  • 9B is a schematic structural diagram of a device for constructing a simulated vehicle lane changing trajectory provided by an embodiment of the present application.
  • FIG. 10 is a hardware structure block diagram of a server for a method for constructing a lane-changing trajectory of a simulated vehicle provided by an embodiment of the present application.
  • the process of changing lanes of the vehicle may not be completed at one time under the interference of some factors. Therefore, the vehicle in the related technology
  • the lane-changing scene will cause the simulation results to hardly reflect the real situation, and cannot provide an effective decision-making basis for actual autonomous driving applications.
  • the embodiment of the present application provides a method for constructing a simulated vehicle lane-changing trajectory, which can make the simulated trajectory better reflect the actual situation, and can provide an effective auxiliary decision-making basis for actual automatic driving applications.
  • FIG. 1A is a schematic diagram of an application environment applicable to a method for constructing a lane-changing trajectory of a simulated vehicle provided by an embodiment of the present application.
  • the application environment includes at least a simulated vehicle 01 and a simulated vehicle 02. , Simulated Vehicle 03 and Simulated Vehicle 04.
  • the simulated vehicle 01 may be a target lane-changing vehicle that needs to change lanes in a vehicle driving simulation system; specifically, the simulated vehicle 02 may be a vehicle driving simulation system that is located in the current lane where the target lane-changing vehicle is located and is in all lanes.
  • the preceding vehicle in front of the target lane-changing vehicle; the simulation vehicle 03 may be the preceding vehicle located in the target lane of the target lane-changing vehicle in the vehicle driving simulation system and in front of the target lane-changing lane; the simulated vehicle 03 may be the vehicle driving In the simulation system, the following vehicle is located on the target lane of the target lane-changing vehicle and behind the target lane-changing lane.
  • an embodiment of the present application provides a method for constructing a lane-changing trajectory of a simulated vehicle, which is executed by the target lane-changing vehicle, for example, executed by the simulated vehicle 01.
  • the position of the target lane-changing vehicle is taken as the origin
  • the center line of the current lane of the target lane-changing vehicle is the ordinate along the driving direction
  • the normal direction of the center line is the abscissa
  • FIG. 1B is a schematic flowchart of a method for constructing a lane-changing trajectory of a simulated vehicle provided by an embodiment of the application. As shown in Fig. 1B, the method for constructing the lane-changing trajectory of the simulated vehicle includes the following steps:
  • Step S101 Determine the target vehicle in front according to the position of the target lane-changing vehicle.
  • the position of the target lane-changing vehicle is reflected by the positional relationship between the center of mass of the target lane-changing vehicle and the lane line of the current lane, according to whether the center of mass of the target lane-changing vehicle crosses the The lane line of the current lane is determined from the preceding vehicle in the target lane and the preceding vehicle in the current lane.
  • Step S102 Determine the target lane change according to the longitudinal speed of the target lane-changing vehicle at each moment in the lane-changing process, the longitudinal velocity of the target vehicle in front, and the distance between the target vehicle in front and the target lane-changing vehicle Target longitudinal driving data during the lane change process.
  • Step S103 Determine the target lateral driving data in the lane changing process of the target lane-changing vehicle according to the preset initial lateral driving data, the preset end lateral driving data and the preset lane changing time during the lane changing process.
  • Step S104 When the preset lane changing conditions are met, or the preset lane changing conditions are not met and it is determined to continue changing lanes, if the following vehicle in the target lane decelerates, then based on the target lateral driving data and the target longitudinal direction The driving data constructs the first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • Step S105 When the preset lane changing conditions are not met and it is determined to continue changing lanes, if the following vehicle does not decelerate, update the acceleration in the target longitudinal driving data so that the updated longitudinal velocity is greater than the following vehicle
  • the longitudinal speed of the target lane is lower than the longitudinal speed of the preceding vehicle on the target lane
  • the first lane-changing vehicle in the lane-changing trajectory coordinate system is constructed based on the updated longitudinal driving data and the target lateral driving data 2. Change lane trajectory.
  • Step S106 When the preset lane changing conditions are not met and it is determined not to continue changing lanes, update the horizontal driving data and the vertical driving data in the process of changing back to the original lane, and update the horizontal driving data and the longitudinal driving data in the process of changing back to the original lane.
  • the longitudinal driving data constructs the first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • the determining the target vehicle ahead according to the position of the target lane-changing vehicle includes: determining whether the center of mass of the target lane-changing vehicle crosses the lane line of the current lane from the vehicle ahead in the target lane and the current vehicle The target vehicle ahead is determined from the vehicle ahead in the lane.
  • the ratio of the lane-changing scene corresponding to the first lane-changing trajectory, the second lane-changing trajectory, the first lane-changing trajectory, and the second lane-changing trajectory corresponding to the second lane-changing trajectory is set ; Constructing the lane-changing scene of the target lane-changing vehicle based on the set ratio of the lane-changing scene.
  • the method for constructing a lane-changing trajectory of a simulated vehicle constructs a lane-changing trajectory coordinate system in which the driving situation during the switching process is represented by horizontal driving data and longitudinal driving data, respectively.
  • Different situations encountered in the process combined with horizontal driving data and vertical driving data to construct different lane-changing trajectories, and when the vehicle behind the vehicle in the target lane adopts impolite acceleration and cannot complete the lane-changing at one time, construct Change back to the trajectory of the original lane; making the simulated trajectory better reflect the reality and provide an effective decision-making basis for actual autonomous driving applications.
  • FIG. 2 is a schematic flowchart of a method for constructing a lane-changing trajectory of a simulated vehicle provided by an embodiment of the present application.
  • the described method operation steps, but based on conventional or non-creative work may include more or less operation steps.
  • the sequence of steps listed in the embodiments is only one way of the execution order of many steps, and does not represent the only execution order.
  • the actual system or server product is executed, it can be executed sequentially or in parallel according to the methods shown in the embodiments or the drawings (for example, a parallel processor or a multi-threaded processing environment).
  • the method may include:
  • the position of the target lane-changing vehicle is taken as the origin, the center line of the road along the driving direction is the ordinate (s direction), and the normal direction of the center line is the abscissa (d direction) , Construct the lane-changing trajectory coordinate system; correspondingly, when determining the trajectory in the lane-changing trajectory coordinate system later, use the centerline of the road as a reference, and use the longitudinal distance (that is, the distance along the centerline along the driving direction) and the horizontal distance ( That is, the distance from the center line) to describe.
  • the driving data during the lane-changing process of the target lane-changing vehicle can be divided into lateral driving data and longitudinal driving data.
  • the lateral travel data may include lateral speed, lateral acceleration, and lateral position (that is, the lateral offset distance from the center line);
  • the longitudinal travel data may include longitudinal velocity, longitudinal acceleration, and longitudinal position.
  • the target vehicle in front may be a vehicle that has an influence on the longitudinal driving data of the target lane-changing vehicle during the process of controlling the lane-changing target vehicle.
  • the target lane-changing vehicle crosses the lane line of the current lane, it can be considered that the target lane-changing vehicle has entered the target lane.
  • the impact of the preceding vehicle on the vehicle in the original lane can be ignored.
  • the vehicle ahead on the target lane can be regarded as the vehicle ahead.
  • the target lane-changing vehicle when the center of mass of the target lane-changing vehicle does not cross the lane line of the current lane, it can be considered that the target lane-changing vehicle is in the initial stage of lane-changing.
  • the target lane When controlling the longitudinal speed of the vehicle, the target lane will be The speed and distance, and the speed and distance of the preceding vehicle in the current lane are considered together. Accordingly, the distance between the preceding vehicle in the target lane and the preceding vehicle in the current lane may be smaller than the target lane-changing vehicle The preceding vehicle is used as the target preceding vehicle.
  • S205 Determine the lane change of the target lane-changing vehicle according to the longitudinal speed of the target lane-changing vehicle at each moment in the lane-changing process, the longitudinal velocity of the target vehicle in front, and the distance between the target vehicle in front and the target lane-changing vehicle Target longitudinal driving data in the process.
  • the distance between the target vehicle ahead and the target lane-changing vehicle may be the longitudinal distance between the target vehicle ahead and the target lane-changing vehicle.
  • each time corresponds to a simulation step, for example, the simulation step is 1s, correspondingly, each time corresponds to every second.
  • the time period of the lane-changing process can be set in advance. Accordingly, it can be based on the longitudinal speed of the target lane-changing vehicle at each moment in the time period, the longitudinal speed of the target vehicle ahead, and the The distance between the target vehicle in front and the target lane-changing vehicle determines the target longitudinal driving data during the lane-changing process of the target lane-changing vehicle.
  • the car-following algorithm may be combined to determine the target longitudinal driving data during the lane-changing process of the target lane-changing vehicle.
  • s0 is the minimum safe distance between the target vehicle in front and the target lane-changing vehicle
  • v0 is the free-flow vehicle speed, which is a constant
  • v is the vehicle speed of the target lane-changing vehicle at the last moment (the previous simulation step)
  • s is the target The distance between the vehicle ahead and the target vehicle in lane change
  • T is the safe time interval
  • a is the acceleration of the vehicle ahead of the target at the previous moment
  • b is the comfort deceleration, which is a constant
  • ⁇ v is the vehicle at the previous time when the target vehicle changes lanes and the vehicle in front of the target The speed difference.
  • the lane-changing process is interrupted due to the safety distance and the target lane-changing vehicle needs to ride in a straight line or change back to the original lane, it is determined whether the center of mass of the current target lane-changing vehicle crosses the lane line of the current lane.
  • the current target vehicle is determined so as to update the longitudinal driving data of the target lane-changing vehicle based on the current longitudinal speed of the target vehicle ahead of the target vehicle and the distance between the current target vehicle and the target lane-changing vehicle.
  • S207 Determine the preset initial lateral driving data, the preset end lateral driving data and the preset lane changing time during the lane changing process.
  • the lateral driving behavior is described by a high-order polynomial.
  • the preset initial lateral driving data corresponding to the start time of the lane change, the preset end lateral driving data at the end of the lane change, and the preset lane changing time required for the lane change may be determined first.
  • S209 Determine the target lateral driving data during the lane changing process of the target lane-changing vehicle according to the preset initial lateral driving data, the preset end lateral driving data, and the preset lane-changing time.
  • the target lateral driving data in the process of determining the target lane-changing vehicle can be combined with high-order polynomials to determine the target lateral driving data.
  • Use h (general The lane width) represents the distance from the center line of the original lane to the center line of the target lane.
  • Qd0 0
  • a fifth-order polynomial can be used to describe the position of the vehicle at any time t in the lateral direction.
  • Qd a0+a1t+a2t2+a3t3+a4t4+a5t5
  • Qd0 0
  • QdT h
  • the polynomial coefficients a0, a1, a2, a3, a4, and a5 can be solved.
  • a4 1/2T4[-30h-(14VdT+16Vd0)T+(3a0-2a1)T2;
  • a5 1/2T5[12h-6(VdT+Vd0)T+(a1-a0)T2.
  • FIG. 4 is a schematic diagram of a curve of the lateral position (lateral offset distance) that changes with time during the lane change according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a lateral speed curve that changes with time during the lane change process provided by an embodiment of the present application. .
  • the lateral acceleration during the lane changing process can be determined, as shown in FIG. 6, which is a lateral velocity curve that changes with time during the lane changing process provided by an embodiment of the present application. Schematic.
  • satisfying the lane changing conditions may include target changing The distance between the vehicle on the target lane and the vehicle ahead and/or the distance between the vehicle behind is greater than a certain preset safety distance.
  • the preset lane changing conditions when the preset lane changing conditions are met, or the preset lane changing conditions are not met and it is determined to continue changing lanes, if the following vehicle in the target lane decelerates, it may be based on the target lateral driving data and the target
  • the longitudinal driving data constructs the first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • the first target lane-changing data (including speed, acceleration, and position) of the target lane-changing vehicle may be determined according to the target lateral driving data and the target longitudinal driving data; based on the first target lane-changing data Construct the first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • the longitudinal acceleration should be carried out to make the target
  • the longitudinal acceleration of the lane-changing vehicle is higher than that of the following vehicle in the target lane, but is limited by the maximum acceleration (the maximum acceleration can be determined based on the longitudinal driving data of the target lane-changing vehicle and the preceding vehicle in the target lane to ensure that the target lane-changing vehicle is accelerating At the same time, the vehicle ahead on the target lane is not installed) and the longitudinal driving data of the vehicle ahead on the target lane are restricted.
  • the acceleration in the target longitudinal driving data is updated so that the updated longitudinal velocity is greater than the The longitudinal speed of the following vehicle is less than the longitudinal speed of the preceding vehicle on the target lane. Then, based on the updated longitudinal driving data and the target lateral driving data, the target lane-changing vehicle is constructed in the lane-changing trajectory coordinates The second lane change trajectory in the series.
  • the second target lane-changing driving data may be determined according to the updated longitudinal driving data and the target lateral driving data; the target lane-changing vehicle is constructed based on the second target lane-changing driving data in the lane-changing trajectory coordinate system The second lane change trajectory in.
  • the original lane when the preset lane changing conditions are not met and it is determined not to continue changing lanes, the original lane can be changed immediately, and the surrounding conditions can be observed later to decide whether to restart a new lane changing process. Specifically, update the lateral driving data and the longitudinal driving data in the process of changing back to the original lane; construct the target lane-changing vehicle in the lane-changing trajectory coordinates based on the lateral driving data and the longitudinal driving data in the process of changing back to the original lane The first in the series changed back to the original lane trajectory.
  • the horizontal driving data and the vertical driving data during the process of updating and changing back to the original lane may include:
  • the target lane-changing vehicle before the preset lane-changing conditions are not met, the target lane-changing vehicle will change lanes based on the target lateral driving data and the target longitudinal driving data.
  • the preset lane-changing conditions are not met at a certain time
  • the lateral travel data at that time (the initial time of changing back to the original lane) can be determined from the target lateral travel data.
  • switching back to the lane means switching back to the centerline position. Accordingly, the lateral position, lateral acceleration, and velocity in the lateral driving data at the end time are all zero.
  • S2155 Determine the lateral travel data in the process of changing back to the original lane according to the lateral travel data at the initial time, the lateral travel data at the end time, and the first preset change-back time.
  • the time required to change back to the original lane It is the first preset change-back time T1.
  • a polynomial can be combined to determine the horizontal line data in the process of switching back to the original lane. Specifically, the polynomial is used to determine the horizontal line data in the process of switching back to the original lane. Refer to the above related steps. , I won’t repeat it here.
  • the center of mass of the target lane-changing vehicle is converted from the lane line that crosses the current lane to the lane line that does not cross the current lane.
  • the center of mass of the target lane-changing vehicle does not cross the current lane
  • the preceding vehicle with the smaller current distance may be selected as the target preceding vehicle.
  • S2159 Determine to switch back to the original according to the longitudinal speed of the target lane-changing vehicle, the longitudinal speed of the target vehicle in front, and the distance between the target vehicle in front and the target lane-changing vehicle from the initial time to the end time. Longitudinal driving data during lanes.
  • constructing the first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system based on the lateral driving data and longitudinal driving data in the process of changing back to the original lane may include: According to the lateral driving data in the process of switching back to the original lane and the target longitudinal driving data, the first target switching back driving data in the process of switching back to the original lane is determined; and the target lane switching is constructed based on the first target switching back driving data The vehicle is first switched back to the original lane trajectory in the lane-changing trajectory coordinate system.
  • this specification constructs a lane-changing trajectory coordinate system, and then, in this coordinate system, the driving situation during the changeover process is represented by horizontal driving data and vertical driving data, respectively.
  • the horizontal driving data and the vertical driving data combine the horizontal driving data and the vertical driving data to construct different lane-changing trajectories, and the vehicle behind the vehicle in the target lane adopts impolite acceleration and cannot complete the lane change at one time
  • construct the trajectory of changing back to the original lane make the simulated trajectory better reflect the real situation, and provide an effective auxiliary decision-making basis for the actual autonomous driving application.
  • FIG. 7B is a schematic flowchart of a method for constructing a lane-changing trajectory of a simulated vehicle when the preset lane-changing condition is not met in an embodiment of the application. As shown in FIG. 7B, when the preset lane changing condition is not met, the method further includes the following steps:
  • Step S701 The time when the preset lane changing condition is not satisfied and the lane changing is determined not to be continued is taken as the initial time of turning the front of the vehicle, and the lateral driving data at the initial time is determined.
  • Step S702 Determine the lateral travel data at the end of turning the front of the vehicle.
  • Step S703 Determine the lateral driving data in the process of turning the front of the car according to the lateral driving data at the initial time, the lateral driving data at the end time, and the preset turning-off time.
  • the lateral driving data (Qdc, Vdc, Adc) corresponding to the initial time tc when the front of the car is broken correspondingly, the lateral driving data at the end time can be (Qdc, 0, 0), that is, the front of the car is broken.
  • the vehicle remains in the same lateral position, and the lateral acceleration and speed are 0.
  • the lateral driving data of the target lane-changing vehicle can be updated.
  • Step S704 based on whether the center of mass of the target lane-changing vehicle crosses the lane line of the current lane from the initial moment to the end moment, from the preceding vehicle on the target lane and the preceding vehicle on the current lane, real-time Update the target vehicle ahead from the initial time to the end time.
  • Step S705 Determine the correctness according to the longitudinal speed of the target vehicle in front of the lane-changing vehicle, the longitudinal speed of the target vehicle in front, and the distance between the target vehicle in front and the target lane-changing vehicle from the initial time to the end time. Longitudinal driving data during the front of the car.
  • the target vehicle ahead can be updated in time, and then combined with the longitudinal speed of the target vehicle ahead and the target vehicle ahead
  • the distance from the target lane-changing vehicle is updated with the longitudinal driving data in the process of turning the front of the vehicle.
  • Step S706 based on the lateral driving data and longitudinal driving data in the process of turning the front of the vehicle, constructing the turning head trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • the target driving data of the driving of the front of the car is determined; based on the target driving data, the target lane-changing vehicle is constructed in the place. Describe the trajectory of the front of the vehicle in the lane-changing trajectory coordinate system.
  • FIG. 7C is a flow diagram of the method for constructing a simulation vehicle lane-changing trajectory after the front of the vehicle is broken in an embodiment of the application. As shown in FIG. 7C, the method further includes the following steps:
  • Step S711 Determine the riding time to continue driving in the vertical direction from the horizontal position in the horizontal driving data at the end time of turning the front of the car;
  • Step S712 Construct a riding trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system based on the riding time, the lateral traveling data and the longitudinal traveling data at the end time of the frontal turning.
  • FIG. 7D is a schematic flowchart of a method for constructing a lane-changing trajectory of a simulated vehicle when it is determined that the following vehicle decelerates and gives way after continuing to change lanes in an embodiment of the application. As shown in FIG. 7D, the method may further include the following steps:
  • Step S721 Regarding the process of continuing the driving along the longitudinal direction of the target lane-changing vehicle from the lateral position in the lateral driving data at the time when the front of the vehicle is turned off, as a straight-line riding process;
  • Step S722 Use the time at which the following vehicle decelerates during the straight-line riding process as the initial time for continuing to change lanes;
  • Step S723 Determine the lateral driving data at the initial moment of continuing to change lanes
  • Step S724 Determine the lateral driving data at the end time of continuing to change lanes
  • Step S725 Determine the lateral driving data in the process of continuing to change lanes according to the lateral driving data at the initial time of continuing the lane change, the lateral driving data at the ending time, and the preset lane changing time.
  • the lateral driving data at the initial time of continuing to change lanes is (Qdc, 0, 0)
  • the lateral driving data at the end of continuing to change lanes is (h, 0, 0)
  • h is the width of the road. That is, at the end of the continued lane change, the target lane-changing vehicle is offset by a lane distance from the center line of the original lane.
  • T4 the time required to continue the lane change.
  • Step S727 According to the longitudinal speed of the target lane-changing vehicle, the longitudinal speed of the target vehicle in front, and the distance between the target vehicle in front and the target lane-changing vehicle from the initial time of the continued lane change to the end time. Longitudinal driving data in the process of determining the distance and continuing the lane change;
  • the target vehicle ahead can be updated in time, and then combined with the longitudinal speed of the target vehicle ahead and the target vehicle ahead.
  • the distance to the target lane-changing vehicle updates the longitudinal driving data during the lane-changing process.
  • Step S728 Construct a third lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system based on the lateral driving data and the longitudinal driving data during the continued lane-changing process.
  • the third target lane-changing data in the process of continuing the lane-changing is determined according to the lateral driving data in the process of continuing the lane-changing process and the target longitudinal driving data; the target lane-changing data is constructed based on the third target lane-changing driving data.
  • FIG. 7E is a schematic flowchart of a method for constructing a lane-changing trajectory of a simulated vehicle when changing back to the original lane in an embodiment of the application. As shown in FIG. 7E, the method may further include the following steps:
  • Step S731 When the duration of the straight-line riding process is greater than or equal to the preset riding time, and the following vehicle is not decelerating, the time after the preset riding time is used as the initial time of changing back to the original lane;
  • Step S732 Determine the lateral driving data at the initial moment of changing back to the original lane
  • Step S733 Determine the lateral driving data at the end time of the change back to the original lane
  • Step S734 Determine the lateral driving data in the process of changing back to the original lane according to the lateral driving data at the initial time of changing back to the original lane, the lateral driving data at the ending time, and the second preset changing back time;
  • the lateral driving data at the initial time of changing back to the original lane is (Qdc,0,0), and the lateral driving data at the end of changing back to the original lane is (0,0,0), and the original The time required for the lane is T5.
  • the lateral driving data of the target lane-changing vehicle can be updated.
  • Step S735 Based on whether the center of mass of the target lane-changing vehicle crosses the lane line of the current lane from the initial moment of the change back to the original lane to the end moment, from the preceding vehicle on the target lane and the current lane In the preceding vehicle, real-time update of the target preceding vehicle from the initial time of the change back to the original lane to the end time;
  • Step S736 According to the longitudinal speed of the target lane-changing vehicle, the longitudinal speed of the target vehicle in front, and the distance between the target vehicle in front and the target lane-changing vehicle from the initial time of changing back to the original lane to the end time Determine the longitudinal driving data in the process of changing back to the original lane;
  • the target vehicle ahead can be updated in time, and then combined with the longitudinal speed of the target vehicle ahead and the target front vehicle.
  • the distance between the vehicle and the target lane-changing vehicle updates the longitudinal driving data during the process of changing back to the original lane.
  • Step S737 constructing a second lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system according to the lateral driving data and the longitudinal driving data in the process of changing back to the original lane.
  • the second target switching back to driving data in the process of switching back to the original lane is determined; constructing based on the second target switching back to driving data
  • the target lane-changing vehicle is second in the lane-changing trajectory coordinate system to switch back to the original lane trajectory.
  • the target lane-changing vehicle when the preset lane-changing conditions are not met and the lane-changing is determined to continue, the target lane-changing vehicle still changes lanes using the target lateral driving data and longitudinal driving data, which may cause a collision accident. Correspondingly, it can be recorded Collision accident.
  • the trajectories of different situations in the above lane change process can be set to be activated at a certain ratio, and the sub-situations in each situation can also be set to be activated at a certain ratio.
  • the method further includes:
  • the lane-changing scene of the target lane-changing vehicle is constructed based on the lane-changing scene with the set ratio.
  • the proportion of the lane-changing scene corresponding to the trajectory of different lane-changing situations is set to ensure that the total lane-changing scene of the simulation system better reflects the actual situation.
  • the autonomous driving application provides an effective basis for decision-making assistance.
  • FIG. 8 is a schematic flow chart of a lane-changing simulation driving provided by an embodiment of the present application. Specific ones can include:
  • S801 The target lane-changing vehicle starts lane-changing.
  • S803 Determine whether the center of mass of the target lane-changing vehicle crosses the lane line.
  • step S805 When the result of the judgment in step S803 is no, the vehicle in front of the target lane and the original lane is combined with the vehicle in front of which the distance from the host vehicle is smaller to update the longitudinal speed.
  • step S807 When the judgment result of step S803 is yes, update the longitudinal speed in combination with the preceding vehicle on the original lane.
  • step S811 If the following vehicle decelerates, return to step S811 to change lanes directly.
  • step S823 If the result of step S813 is no, confirm whether to change back to the original lane.
  • step S833 When the result of step S823 is YES, change back to the original lane.
  • the lane-changing scene formed by the trajectory constructed based on the method for constructing the simulated vehicle lane-changing trajectory provided in this manual can better simulate the actual lane-changing scene in simulated driving.
  • the embodiment of the present application also provides a device for constructing a simulated vehicle lane-changing trajectory. As shown in FIG. 9A, the device includes:
  • the lane-changing trajectory coordinate system construction module 901 is used to take the location of the target lane-changing vehicle as the origin, the centerline of the current lane of the target lane-changing vehicle along the driving direction as the ordinate, and the normal direction of the centerline as the horizontal Coordinates, construct the coordinate system of the lane-changing trajectory;
  • the target vehicle ahead determination module 902 is configured to determine the target vehicle ahead according to the position of the target lane-changing vehicle;
  • the target longitudinal driving data determination module 903 is configured to determine the longitudinal speed of the target lane-changing vehicle, the longitudinal speed of the target vehicle in front, and the distance between the target vehicle in front and the target lane-changing vehicle at each moment in the lane-changing process. The distance determines the target longitudinal driving data during the lane changing process of the target lane-changing vehicle;
  • the target lateral driving data determining module 904 is configured to determine the target lateral direction of the target lane-changing vehicle during the lane-changing process according to the preset initial lateral driving data, the preset end-of-lateral driving data, and the preset lane-changing time during the lane-changing process.
  • Driving data is configured to determine the target lateral direction of the target lane-changing vehicle during the lane-changing process according to the preset initial lateral driving data, the preset end-of-lateral driving data, and the preset lane-changing time during the lane-changing process.
  • the first lane-changing trajectory construction module 905 is used for when the preset lane-changing conditions are met, or when the preset lane-changing conditions are not met and it is determined to continue the lane-changing, if the following vehicle in the target lane decelerates, based on the The target lateral driving data and the target longitudinal driving data construct a first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • the second lane-changing trajectory construction module 906 is configured to update the acceleration in the target longitudinal driving data if the following vehicle does not decelerate when the preset lane-changing conditions are not met and it is determined to continue the lane-changing, so that the updated acceleration
  • the longitudinal speed of the vehicle is greater than the longitudinal speed of the following vehicle, and is less than the longitudinal speed of the preceding vehicle on the target lane; based on the updated longitudinal driving data and the target lateral driving data, the target lane-changing vehicle is constructed in the The second lane-changing trajectory in the lane-changing trajectory coordinate system;
  • the first lane changing back to the original lane trajectory construction module 907 is used to update the horizontal driving data and longitudinal driving data in the process of changing back to the original lane when the preset lane changing conditions are not met and the lane changing is determined not to continue, and according to the changing lanes.
  • the horizontal driving data and the longitudinal driving data in the process of returning to the original lane construct the first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • the target vehicle ahead determining module 902 is further configured to determine whether the center of mass of the target lane-changing vehicle crosses the lane line of the current lane, from the vehicle ahead on the target lane and the vehicle ahead on the current lane. Determine the target vehicle ahead.
  • the target lateral driving data determining module 904 includes a data determining sub-module and a target lateral driving data determining sub-module;
  • the data determining sub-module is used to determine the preset initial lateral driving data, the preset end lateral driving data and the preset lane changing time during the lane changing process;
  • the target lateral driving data determining sub-module is configured to determine the target lateral driving data of the target lane-changing vehicle during the lane changing process according to the preset initial lateral driving data, the preset end lateral driving data, and the preset lane-changing time.
  • An embodiment of the present application also provides a device for constructing a simulated vehicle lane-changing trajectory. As shown in FIG. 9B, the device includes:
  • the lane-changing trajectory coordinate system construction module 910 is configured to take the location of the target lane-changing vehicle as the origin, the centerline of the current lane of the target lane-changing vehicle along the driving direction as the ordinate, and the normal direction of the centerline as the horizontal Coordinates, construct the coordinate system of the lane-changing trajectory;
  • the target vehicle ahead determination module 920 is configured to determine the target vehicle ahead from the vehicle ahead in the target lane and the vehicle ahead in the current lane based on whether the center of mass of the target lane-changing vehicle crosses the lane line of the current lane;
  • the target longitudinal driving data determination module 930 is used to determine the longitudinal speed of the target lane-changing vehicle, the longitudinal speed of the target vehicle in front, and the distance between the target vehicle in front and the target lane-changing vehicle at each moment in the lane-changing process. The distance determines the target longitudinal driving data during the lane changing process of the target lane-changing vehicle;
  • the data determining module 940 is used to determine the preset initial lateral driving data, the preset end lateral driving data, and the preset lane changing time during the lane changing process;
  • the target lateral driving data determining module 950 is configured to determine the target lateral driving data during the lane changing process of the target lane-changing vehicle according to the preset initial lateral driving data, the preset end lateral driving data, and the preset lane-changing time;
  • the first lane-changing trajectory construction module 960 is used for when the preset lane-changing conditions are met, or when the preset lane-changing conditions are not met and the lane-changing is determined to continue, if the following vehicle on the target lane decelerates, based on the The target lateral driving data and the target longitudinal driving data construct a first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system;
  • the second lane-changing trajectory construction module 970 is configured to update the acceleration in the target longitudinal driving data if the following vehicle does not decelerate when the preset lane-changing condition is not met and it is determined to continue the lane-changing, so that the updated acceleration
  • the longitudinal speed of the vehicle is greater than the longitudinal speed of the following vehicle, and is less than the longitudinal speed of the preceding vehicle on the target lane; based on the updated longitudinal driving data and the target lateral driving data, the target lane-changing vehicle is constructed in the The second lane change trajectory in the lane change trajectory coordinate system.
  • the first lane changing back to the original lane trajectory construction module 980 is used to update the horizontal driving data and longitudinal driving data in the process of changing back to the original lane when the preset lane changing conditions are not met and the lane changing is determined not to continue, and according to the changing lanes.
  • the horizontal driving data and the longitudinal driving data in the process of returning to the original lane construct the first lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system.
  • the first lane changing back to the original lane trajectory construction module 980 is specifically configured to: use the time when the preset lane changing condition is not met as the initial time of changing back to the original lane, and determine the lateral driving data at the initial time;
  • the vehicle ahead in the target lane and the vehicle in the current lane are updated in real time.
  • the device when the preset lane changing condition is not met, the device further includes:
  • the first initial moment determination module 981 is configured to use the moment that does not meet the preset lane-changing condition as the initial moment of breaking the front of the vehicle;
  • the first lateral driving data determining module 982 is configured to determine the lateral driving data at the initial moment
  • the second lateral driving data determining module 983 is used to determine the lateral driving data at the end of turning the front of the vehicle;
  • the first lateral driving data update module 984 is configured to determine the lateral driving data in the process of turning the front of the car into the front according to the lateral driving data at the initial moment, the lateral driving data at the ending moment, and the preset turning-in time;
  • the second target vehicle ahead update module 985 is used to determine whether the center of mass of the target lane-changing vehicle crosses the lane line of the current lane from the initial moment to the end moment, from the previous vehicle on the target lane and the current Among the preceding vehicles on the lane, update the target preceding vehicle from the initial time to the end time in real time;
  • the first longitudinal driving data update module 986 is used to update the target vehicle's longitudinal speed according to the target vehicle's longitudinal speed, the target vehicle's longitudinal speed, the target vehicle's and the target vehicle's longitudinal speed from the initial time to the end time.
  • the distance between the road vehicles determines the longitudinal driving data in the process of turning the front of the car;
  • the turning head trajectory construction module 987 is configured to construct the turning head trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system based on the lateral driving data and the longitudinal driving data during the turning-front turning process.
  • the device further includes:
  • the straight-line riding process determining module 988 is configured to continue the driving process along the longitudinal direction of the target lane-changing vehicle from the horizontal position in the horizontal driving data at the time when the front of the vehicle is turned off as a straight-line riding process;
  • the second initial time determining module 989 is configured to use the time at which the following vehicle decelerates during the straight-line riding process as the initial time for continuing to change lanes;
  • the third lateral driving data determining module 990 is used to determine the lateral driving data at the initial moment when the lane is changed continuously;
  • the fourth lateral driving data determining module 991 is used to determine the lateral driving data at the end time of continuing to change lanes
  • the second lateral driving data update module 992 is configured to determine the lateral driving data in the process of continuing to change lanes according to the lateral driving data at the initial time of continuing to change lanes, the lateral driving data at the ending time, and the preset time to continue changing lanes;
  • the second target vehicle in front update module 993 is configured to determine whether the center of mass of the target lane-changing vehicle crosses the lane line of the current lane from the initial moment of the continued lane change to the end moment. Among the preceding vehicle and the preceding vehicle in the current lane, update the target preceding vehicle from the initial time of the continued lane change to the end time in real time;
  • the second longitudinal driving data update module 994 is used to update the longitudinal speed of the target lane-changing vehicle, the longitudinal speed of the target vehicle in front, and the target front-end vehicle from the initial time of the continued lane change to the end time.
  • the distance between the vehicle and the target lane-changing vehicle determines the longitudinal driving data during the continued lane-changing process;
  • the third lane-changing trajectory construction module 995 is configured to construct a third lane-changing trajectory of the target lane-changing vehicle in the lane-changing trajectory coordinate system based on the lateral driving data and the longitudinal driving data during the continued lane-changing process.
  • the device further includes:
  • the third initial moment determination module 9871 is used for when the duration of the straight-line riding process is greater than or equal to the preset riding time, and the following vehicle is not decelerating, use the time after the preset riding time as the change The initial moment of returning to the original lane;
  • the fifth lateral driving data determining module 9872 is configured to determine the lateral driving data at the initial moment of changing back to the original lane;
  • the sixth lateral driving data determining module 9873 is configured to determine the lateral driving data at the end time of the change back to the original lane;
  • the third lateral driving data update module 9874 is configured to determine the lateral driving data in the process of changing back to the original lane according to the lateral driving data at the initial time of changing back to the original lane, the lateral driving data at the ending time, and the second preset changing back time;
  • the third target vehicle in front update module 9875 is used for starting from the target lane based on whether the center of mass of the target lane-changing vehicle crosses the lane line of the current lane from the initial moment of the change back to the original lane to the end moment Among the preceding vehicle and the preceding vehicle on the current lane, real-time update of the target preceding vehicle from the initial time of changing back to the original lane to the ending time;
  • the third longitudinal driving data update module 9876 is configured to calculate the longitudinal speed of the target lane-changing vehicle, the longitudinal speed of the target vehicle in front, and the target vehicle from the initial moment of changing back to the original lane to the end moment.
  • the distance between the vehicle ahead and the target lane-changing vehicle determines the longitudinal driving data during the process of changing back to the original lane;
  • the second lane-changing trajectory construction module 9878 is configured to construct the second lane-changing vehicle in the lane-changing trajectory coordinate system according to the lateral driving data and the longitudinal driving data during the lane-changing process. Back to the original lane trajectory.
  • the device further includes:
  • a riding time determination module 9879 which is used to determine the riding time to continue driving along the longitudinal direction from the lateral position in the lateral driving data at the end time of turning the front of the vehicle;
  • the riding trajectory construction module 9880 is configured to construct the riding time of the target lane-changing vehicle in the lane-changing trajectory coordinate system based on the riding time, the lateral traveling data and the longitudinal traveling data at the end time of the front-end driving. Line trajectory.
  • the device further includes a recording module, which is used to record the collision accident if the following vehicle does not decelerate when the preset lane-changing condition is not met and it is determined to continue the lane-changing.
  • the device further includes:
  • the ratio setting module of the lane-changing scene is used to set the lane-changing trajectory corresponding to the first lane-changing trajectory, the second lane-changing trajectory, the first lane-changing trajectory, and the lane-changing trajectory corresponding to the second lane-changing trajectory.
  • the lane-changing scene construction module is used to construct the lane-changing scene of the target lane-changing vehicle based on the lane-changing scene with a set ratio.
  • the device and method embodiments in the device embodiments are based on the same application concept.
  • the embodiment of the application provides a device for constructing a lane-changing trajectory of a simulated vehicle.
  • the device for constructing a lane-changing trajectory of a simulated vehicle includes a processor and a memory.
  • the memory stores at least one instruction, at least a program, a code set, or an instruction set.
  • the at least one instruction, the at least one program, the code set or the instruction set is loaded and executed by the processor to implement the method for constructing a lane-changing trajectory of a simulated vehicle as provided in the foregoing method embodiment.
  • the memory can be used to store software programs and modules, and the processor executes various functional applications and data processing by running the software programs and modules stored in the memory.
  • the memory may mainly include a program storage area and a data storage area, where the program storage area may store an operating system, application programs required by functions, etc.; the data storage area may store data created according to the use of the device, etc.
  • the memory may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the memory may also include a memory controller to provide the processor with access to the memory.
  • FIG. 10 is a hardware structural block diagram of a server for a method for constructing a lane-changing trajectory of a simulated vehicle provided by an embodiment of the present application.
  • the server 1000 may have relatively large differences due to different configurations or performances, and may include one or more central processing units (CPU) 1010 (the processor 1010 may include, but is not limited to, microprocessors).
  • CPU central processing units
  • a processing device such as an MCU or a programmable logic device FPGA
  • a memory 1030 for storing data
  • one or more storage media 1020 for storing application programs 1023 or data 1022 (for example, one or one storage device with a large amount of storage).
  • the memory 1030 and the storage medium 1020 may be short-term storage or permanent storage.
  • the program stored in the storage medium 1020 may include one or more modules, and each module may include a series of instruction operations on the server.
  • the central processing unit 1010 may be configured to communicate with the storage medium 1020, and execute a series of instruction operations in the storage medium 1020 on the server 1000.
  • the server 1000 may also include one or more power supplies 1060, one or more wired or wireless network interfaces 1050, one or more input and output interfaces 1040, and/or one or more operating systems 1021, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, etc.
  • one or more power supplies 1060 one or more wired or wireless network interfaces 1050, one or more input and output interfaces 1040, and/or one or more operating systems 1021, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, etc.
  • the input/output interface 1040 can be used to receive or send data via a network.
  • the above-mentioned specific examples of the network may include a wireless network provided by the communication provider of the server 1000.
  • the input/output interface 1040 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices through a base station to communicate with the Internet.
  • the input/output interface 1040 may be a radio frequency (RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF radio frequency
  • the structure shown in FIG. 10 is only for illustration, and does not limit the structure of the above electronic device.
  • the server 1000 may also include more or fewer components than shown in FIG. 10, or have a different configuration from that shown in FIG.
  • the embodiment of the present application also provides a storage medium, which can be set in a server to store at least one instruction and at least one section related to a method for constructing a simulated vehicle lane-changing trajectory in the method embodiment.
  • a program, a code set or an instruction set, the at least one instruction, the at least one program, the code set or an instruction set is loaded and executed by the processor to implement the method for constructing a simulated vehicle lane-changing trajectory provided by the foregoing method embodiment.
  • the aforementioned storage medium may be located in at least one network server among multiple network servers in the computer network.
  • the above-mentioned storage medium may include, but is not limited to: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk, etc.
  • Various media that can store program codes may include, but is not limited to: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk, etc.
  • the lane change trajectory coordinate system is constructed in this application, and then, in the coordinate system, the transition to the process
  • the driving situation is represented by the horizontal driving data and the vertical driving data respectively.
  • the horizontal driving data and the vertical driving data are combined to construct different lane-changing trajectories, and they are behind the vehicle on the target lane.
  • the vehicle adopts impolite acceleration and cannot complete the lane change at one time, construct a trajectory to change back to the original lane; the simulated trajectory can better reflect the reality and provide an effective auxiliary decision-making basis for actual autonomous driving applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请公开了一种仿真车辆换道轨迹的构建方法、装置及设备,所述方法包括:构建换道轨迹坐标系,根据目标换道车辆的位置确定目标前车;根据换道过程中目标换道车辆和目标前车的纵向速度、目标前车与目标换道车辆间的距离确定目标纵向行驶数据;根据换道过程中的预设初始横向行驶数据、预设结束横向行驶数据和预设换道时间确定目标横向行驶数据;当满足预设换道条件时,或,不满足预设换道条件且确定继续换道时,如果后车减速,构建第一换道轨迹;当不满足预设换道条件且确定继续换道时,如果后车未减速,更新纵向行驶数据;构建第二换道轨迹。当不满足预设换道条件且确定不继续换道时,更新换回原车道过程中的横向行驶数据和纵向行驶数据,构建第一换回原车道轨迹。

Description

一种仿真车辆换道轨迹的构建方法、装置、设备及存储介质
本申请要求于2019年9月9日提交中国专利局、申请号为201910857583.2、名称为“一种仿真车辆换道轨迹的构建方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及互联网通信技术领域,尤其涉及一种仿真车辆换道轨迹的构建方法、装置及设备。
背景
自动驾驶系统的开发都需要从仿真到实车测试的过程,基于自动驾驶仿真系统的仿真实验作为一种零风险、快速迭代、可复现的测试方法,为自动驾驶上路奠定了坚实的基础。
目前,自动驾驶仿真系统中的车辆换道场景中,仅仅考虑到车辆在规定的时间内从本车道一点到相邻车道另一点之间的轨迹规划,即对车辆从原车道换到目标车道的行为进行了模拟。但在现实世界中,在路况比较拥堵或者驾驶员行为比较激进的情况下,车辆变换车道的过程很有可能在一些因素的干扰下无法一次性完成,如相邻目标车道上处于本车后方的车辆可能采取不礼让的加速行为,使得本车在该车道上的安全距离无法保证换道行为的顺利完成。
技术内容
本申请实施例提供了一种仿真车辆换道轨迹的构建方法,所述方法由目标换道车辆执行,包括:
以目标换道车辆所在位置为原点,所述目标换道车辆的当前车道的中心线沿行驶方向为纵坐标,所述中心线的法线方向为横坐标,构建换道轨迹坐标系,所述方法包括:
根据目标换道车辆的位置确定目标前车;
根据换道过程中每个时刻的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定所述目标换道车辆换道过程中的目标纵向行驶数据;
根据换道过程中的预设初始横向行驶数据、预设结束横向行驶数据和和预设换道时间确定所述目标换道车辆换道过程中的目标横向行驶数据;
当满足预设换道条件时,或,不满足预设换道条件且确定继续换道时,如果所述目标车道上的后车减速,则基于所述目标横向行驶数据和目标纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换道轨迹;
当不满足预设换道条件且确定继续换道时,如果所述后车未减速,则更新所述目标纵向行驶数据中的加速度,以使更新后的纵向速度大于所述后车的纵向速度,且小于所述目标车道上的前车的纵向速度;基于更新后的纵向行驶数据和所述目标横向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换道轨迹;
当不满足预设换道条件且确定不继续换道时,更新换回原车道过程中的横向行驶数据和纵向行驶数据,并根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹。
本申请实施例还提供了一种仿真车辆换道轨迹的构建装置,所述装置包括:
换道轨迹坐标系构建模块,用于以目标换道车辆所在位置为原点,所述目标换道车辆的当前车道的中心线沿行驶方向为纵坐标,所述中心线的法线方向为横坐标,构建换道轨迹坐标系;
目标前车确定模块,用于根据目标换道车辆的位置确定目标前车确定目标前车;
目标纵向行驶数据确定模块,用于根据换道过程中每个时刻的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定所述目标换道车辆换道过程中的目标纵向行驶数据;
目标横向行驶数据确定模块,用于根据换道过程中的预设初始横向行驶数据、预设结束横向行驶数据和和预设换道时间确定所述目标换道车辆换道过程中的 目标横向行驶数据;
第一换道轨迹构建模块,用于当满足预设换道条件时,或,不满足预设换道条件且确定继续换道时,如果所述目标车道上的后车减速,则基于所述目标横向行驶数据和目标纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换道轨迹;
第二换道轨迹构建模块,用于当不满足预设换道条件且确定继续换道时,如果所述后车未减速,则更新所述目标纵向行驶数据中的加速度,以使更新后的纵向速度大于所述后车的纵向速度,且小于所述目标车道上的前车的纵向速度;基于更新后的纵向行驶数据和所述目标横向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换道轨迹;
第一换回原车道轨迹构建模块,用于当不满足预设换道条件且确定不继续换道时,更新换回原车道过程中的横向行驶数据和纵向行驶数据,并根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹。
在一些实施例中,所述目标前车确定模块,进一步用于根据目标换道车辆的质心是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中确定目标前车。
在一些实施例中,所述第一换回原车道轨迹构建模块,还用于将不满足预设换道条件的时刻作为换回原车道的初始时刻,确定所述初始时刻的横向行驶数据;确定换回车道的结束时刻的横向行驶数据;根据所述初始时刻的横向行驶数据、所述结束时刻的横向行驶数据和第一预设换回时间确定换回原车道过程中的横向行驶数据;基于所述目标换道车辆的质心在所述初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述初始时刻至所述结束时刻内的目标前车;根据所述初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定换回原车道过程中的纵向行驶数据。
在一些实施例中,所述装置进一步包括:第一初始时刻确定模块,用于将 不满足预设换道条件的时刻作为掰正车头的初始时刻;第一横向行驶数据确定模块,用于确定所述初始时刻的横向行驶数据;第二横向行驶数据确定模块,用于确定掰正车头的结束时刻的横向行驶数据;第一横向行驶数据更新模块,用于根据所述初始时刻的横向行驶数据、所述结束时刻的横向行驶数据和预设掰正时间确定掰正车头过程中的横向行驶数据;第二目标前车更新模块,用于基于所述目标换道车辆的质心在所述初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述初始时刻至所述结束时刻内的目标前车;第一纵向行驶数据更新模块,用于根据所述初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定掰正车头过程中的纵向行驶数据;掰正车头轨迹构建模块,用于基于所述掰正车头过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的掰正车头轨迹。
在一些实施例中,所述装置还包括:直线骑行过程确定模块,用于将所述目标换道车辆从掰正车头结束时刻的横向行驶数据中的横向位置沿纵向继续行驶过程作为直线骑行过程;第二初始时刻确定模块,用于将直线骑行过程中所述后车减速的时刻作为继续换道的初始时刻;第三横向行驶数据确定模块,用于确定继续换道的初始时刻的横向行驶数据;第四横向行驶数据确定模块,用于确定继续换道的结束时刻的横向行驶数据;第二横向行驶数据更新模块,用于根据所述继续换道的初始时刻的横向行驶数据、结束时刻的横向行驶数据和预设继续换道时间确定继续换道过程中的横向行驶数据;第二目标前车更新模块,用于基于所述目标换道车辆的质心在所述继续换道的初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述继续换道的初始时刻至所述结束时刻内的目标前车;第二纵向行驶数据更新模块,用于根据所述继续换道的初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定继续换道过程中的纵向行驶数据;第三换道轨迹构建模块,用于基于所述继续换道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第三换道轨迹。
在一些实施例中,所述装置还包括:第三初始时刻确定模块,用于当所述直线骑行过程的持续时间大于等于预设骑行时间,且所述后车未减速时,将骑行预设骑行时间后的时刻作为换回原车道的初始时刻;第五横向行驶数据确定模块,用于确定所述换回原车道的初始时刻的横向行驶数据;第六横向行驶数据确定模块,用于确定所述换回原车道的结束时刻的横向行驶数据;第三横向行驶数据更新模块,用于根据换回原车道的初始时刻的横向行驶数据、结束时刻的横向行驶数据和第二预设换回时间确定换回原车道过程中的横向行驶数据;第三目标前车更新模块,用于基于所述目标换道车辆的质心在所述换回原车道的初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述换回原车道的初始时刻至所述结束时刻内的目标前车;第三纵向行驶数据更新模块,用于根据所述换回原车道的初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定换回原车道过程中的纵向行驶数据;第二换回原车道轨迹构建模块,用于根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换回原车道轨迹。
在一些实施例中,所述装置还包括:骑行时间确定模块,用于确定从掰正车头的结束时刻的横向行驶数据中的横向位置沿纵向继续行驶的骑行时间;骑行轨迹构建模块,用于基于所述骑行时间、所述掰正车头的结束时刻的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的骑行轨迹。
在一些实施例中,所述装置还包括:换道场景的比例设置模块,用于设置所述第一换道轨迹、所述第二换道轨迹、所述第一换回原车道轨迹、和所述第二换回原车道轨迹对应的换道场景的比例;换道场景构建模块,用于基于设置好比例的换道场景构建所述目标换道车辆的换道场景。
在一些实施例中,所述装置还包括:记录模块,用于当不满足预设换道条件且确定继续换道时,如果所述后车未减速,记录碰撞事故。
本申请实施例还提供了一种仿真车辆换道轨迹的构建设备,所述设备包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指 令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如本申请实施例所述的仿真车辆换道轨迹的构建方法。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如上述的仿真车辆换道轨迹的构建方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案和优点,下面将对实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1A是本申请实施例提供的一种应用环境的示意图;
图1B为本申请实施例提供的一种仿真车辆换道轨迹的构建方法的流程示意图;
图2是本申请实施例提供的一种仿真车辆换道轨迹的构建方法的流程示意图;
图3是本申请实施例提供的一种换道轨迹坐标系的示意图;
图4是本申请实施例提供的一种在换道过程中随时间变化的横向位置(横向偏移距离)曲线示意图;
图5是本申请实施例提供的一种在换道过程中随时间变化的横向速度曲线示意图;
图6是本申请实施例提供的一种在换道过程中随时间变化的横向速度曲线示意图;
图7A是本申请实施例提供的一种更新换回原车道过程中的横向行驶数据和纵向行驶数据的流程示意图;
图7B是本申请实施例提供的不满足预设换道条件时仿真车辆换道轨迹的构建方法的流程示意图;
图7C是本申请实施例提供的在掰正车头后仿真车辆换道轨迹的构建方法的 流程示意图;
图7D是本申请实施例提供的在确定后车减速礼让后继续换道时仿真车辆换道轨迹的构建方法的流程示意图;
图7E是本申请实施例提供的在换回原车道时仿真车辆换道轨迹的构建方法的流程示意图;
图8是本申请实施例提供的一种换道模拟驾驶的流程示意图;
图9A是本申请实施例提供的一种仿真车辆换道轨迹的构建装置的结构示意图;
图9B是本申请实施例提供的一种仿真车辆换道轨迹的构建装置的结构示意图;
图10是本申请实施例提供的一种仿真车辆换道轨迹的构建方法的服务器的硬件结构框图。
实施方式
为了下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
相关技术中,并没有考虑到现实世界中路况比较拥堵或者驾驶员行为比较激进时,车辆变换车道的过程很有可能在一些因素的干扰下无法一次性完成的情况,因此,相关技术中的车辆换道场景会造成仿真结果难以反应现实情况的问题,无 法为实际的自动驾驶应用提供有效的辅助决策依据。
基于此,本申请实施例提供一种仿真车辆换道轨迹的构建方法,可以使得仿真的轨迹更好的反应现实情况,能够为实际的自动驾驶应用提供有效的辅助决策依据。
请参阅图1A,图1A是本申请实施例提供的一种仿真车辆换道轨迹的构建方法所适用的应用环境的示意图,如图1A所示,该应用环境至少包括仿真车辆01、仿真车辆02、仿真车辆03和仿真车辆04。
具体的,仿真车辆01可以为车辆驾驶仿真系统中需要进行换道的目标换道车辆;具体的,仿真车辆02可以为车辆驾驶仿真系统中位于目标换道车辆所在的当前车道上,且在所述目标换道车辆前面的前车;仿真车辆03可以为车辆驾驶仿真系统中位于目标换道车辆的目标车道上,且在所述目标换道车道前面的前车;仿真车辆03可以为车辆驾驶仿真系统中位于目标换道车辆的目标车道上,且在所述目标换道车道后面的后车。
基于以上应用环境,本申请实施例提供一种仿真车辆换道轨迹的构建方法,由目标换道车辆执行,例如由仿真车辆01执行。在构建仿真车辆换道轨迹之前,以目标换道车辆所在位置为原点,所述目标换道车辆的当前车道的中心线沿行驶方向为纵坐标,所述中心线的法线方向为横坐标,构建换道轨迹坐标系。
图1B为本申请实施例提供的一种仿真车辆换道轨迹的构建方法的流程示意图。如图1B所示,该仿真车辆换道轨迹的构建方法包括以下步骤:
步骤S101、根据目标换道车辆的位置确定目标前车。
在一些实施例中,所述目标换道车辆的位置由所述目标换道车辆的质心与所述当前车道的车道线的位置关系来反映,根据所述目标换道车辆的质心是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中确定所述目标前车。
步骤S102、根据换道过程中每个时刻的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定所述目标换道车辆换道过程中的目标纵向行驶数据。
步骤S103、根据换道过程中的预设初始横向行驶数据、预设结束横向行驶数据和和预设换道时间确定所述目标换道车辆换道过程中的目标横向行驶数据。
步骤S104、当满足预设换道条件时,或,不满足预设换道条件且确定继续换道时,如果所述目标车道上的后车减速,则基于所述目标横向行驶数据和目标纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换道轨迹。
步骤S105、当不满足预设换道条件且确定继续换道时,如果所述后车未减速,则更新所述目标纵向行驶数据中的加速度,以使更新后的纵向速度大于所述后车的纵向速度,且小于所述目标车道上的前车的纵向速度;基于更新后的纵向行驶数据和所述目标横向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换道轨迹。
步骤S106、当不满足预设换道条件且确定不继续换道时,更新换回原车道过程中的横向行驶数据和纵向行驶数据,并根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹。
在一些实施例中,所述根据目标换道车辆的位置确定目标前车,包括:根据所述目标换道车辆的质心是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中确定所述目标前车。
在一些实施例中,设置所述第一换道轨迹、所述第二换道轨迹、所述第一换回原车道轨迹、和所述第二换回原车道轨迹对应的换道场景的比例;基于设置好比例的换道场景构建所述目标换道车辆的换道场景。
本申请提供的仿真车辆换道轨迹的构建方法,通过构建换道轨迹坐标系,在该坐标系中,将换到过程中的行驶情况以横向行驶数据和纵向行驶数据分别进行表示,针对换道过程中遇到的不同情况,结合横向行驶数据和纵向行驶数据构建不同的换道轨迹,且在目标车道上处于本车后方的车辆采取不礼让的加速行为而无法一次性完成换道时,构建换回原车道的轨迹;使得仿真的轨迹可以更好的反应现实情况,为实际的自动驾驶应用提供有效的辅助决策依据。
本申请实施例还提供一种仿真车辆换道轨迹的构建方法,图2是本申请实施例提供的一种仿真车辆换道轨迹的构建方法的流程示意图,本说明书提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中 的一种方式,不代表唯一的执行顺序。在实际中的系统或服务器产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。具体的如图2所示,所述方法可以包括:
S201:以目标换道车辆所在位置为原点,所述目标换道车辆的当前车道的中心线沿行驶方向为纵坐标,所述中心线的法线方向为横坐标,构建换道轨迹坐标系。
本说明书实施例中,如图3所示,以目标换道车辆所在位置为原点,道路的中心线沿行驶方向为纵坐标(s方向),中心线的法线方向为横坐标(d方向),构建换道轨迹坐标系;相应的,后续在换道轨迹坐标系中确定轨迹时,以道路的中心线为参考,使用纵向距离(即沿着中心线沿行驶方向的距离)和横向距离(即偏离中心线的距离)来描述。相应的,可以将目标换道车辆换道过程中的行驶数据划分为横向行驶数据和纵向行驶数据。具体的,横向行驶数据可以包括横向速度、横向加速度和横向位置(即相对中心线的横向偏移距离);纵向行驶数据可以包括纵向速度、纵向加速度和纵向位置。
S203:基于目标换道车辆的质心是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中确定目标前车。
本说明书实施例中,目标前车可以在控制目标换道车辆换道过程中,对目标换道车辆的纵向行驶数据有影响的车辆。
在实际应用中,当目标换道车辆的质心跨越所述当前车道的车道线时,可以认为目标换道车辆已经进入目标车道,相应的,可以不考虑原车道中前车对本车的影响,只考虑目标车道中前车的速度和距离等行驶对目标换道车辆的影响。相应的,可以将目标车道上前车作为目标前车。
在实际应用中,当目标换道车辆的质心未跨越所述当前车道的车道线时,可以认为目标换道车辆处于换道的初始阶段,在控制纵向车速的时候会将目标车道上前车的速度和距离、当前车道上的前车的速度和距离一起考虑,相应的,可以将所述目标车道上的前车和当前车道上的前车中,与所述目标换道车辆的距离较小的前车作为目标前车。
S205:根据换道过程中每个时刻的目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定所述目标换道车辆换 道过程中的目标纵向行驶数据。
本说明书实施例中,目标前车与目标换道车辆间的距离可以为目标前车与目标换道车辆在纵向上的距离。
在实际应用中,在仿真系统中,每个时刻对应着一个仿真步长,例如仿真步长为1s,相应的,每个时刻对应着每一秒。本说明书实施例中,可以预先设定换道过程的时间段,相应的,可以基于该时间段内的每个时刻的目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定所述目标换道车辆换道过程中的目标纵向行驶数据。具体的,本说明书实施例中,可以结合跟驰算法来确定目标换道车辆换道过程中的目标纵向行驶数据。
在一个具体的实施例中,下面所示的跟驰算法的公式如下:
Figure PCTCN2020113135-appb-000001
Figure PCTCN2020113135-appb-000002
其中,s0是目标前车与目标换道车辆间的最小安全距离;v0是自由流车速,为常数;v是目标换道车辆的上一时刻(上一仿真步长)的车速;s是目标前车与目标换道车辆间的距离;T是安全时距;a是目标前车上一时刻的加速度;b是舒适减速度,为常数;Δv是目标换道车辆与目标前车上一时刻的车速差。
此外,需要说明的是,如果换道过程由于安全距离的原因中断,目标换道车辆需要直线骑行或者换回原车道时,则根据当前目标换道车辆的质心是否跨越当前车道的车道线来确定当前的目标车辆,以便基于当前的目标车辆的目标前车的纵向速度、以及当前的目标前车与目标换道车辆间的距离来更新目标换道车辆的纵向行驶数据。
S207:确定换道过程中的预设初始横向行驶数据、预设结束横向行驶数据和预设换道时间。
本说明书实施例中,横向的驾驶行为则由高阶多项式来描述。换道过程中,在横向上车辆的行驶数据可以看成从t=t0(换道开始时刻)到t=T(换道结束时刻)的变化。
本说明书实施例中,可以先确定换道开始时刻对应的预设初始横向行驶数据、换道结束时刻的预设结束横向行驶数据,以及换道所需的预设换道时间。
S209:根据预设初始横向行驶数据、预设结束横向行驶数据和和预设换道时间确定所述目标换道车辆换道过程中的目标横向行驶数据。
本说明书实施例中,在确定目标换道车辆换道过程中的目标横向行驶数据可以结合高阶多项式进行目标横向行驶数据的确定,具体的,假设换道初始时刻t0=0,用(Qd0,Vd0,Ad0)来描述t=0时刻的在横向上的位置、速度和加速度,用(QdT,VdT,AdT)来描述t=T时刻的在横向上的位置、速度和加速度,用h(一般为车道宽度)代表原车道中线到目标车道中线的距离,相应的,Vd0=VdT=0,Ad0=AdT=0,Qd0=0,QdT=h。
这样共有六个边界条件,相应的,可以采用五次多项式来描述车辆在横向上任一时刻t的位置Qd=a0+a1t+a2t2+a3t3+a4t4+a5t5,基于Vd0=VdT=0,Ad0=AdT=0,Qd0=0,QdT=h可以求解出多项式系数a0、a1、a2、a3、a4和a5。
a0=Qd0;
a1=Vd0;
a2=0.5a0;
a3=1/2T3[20h-(8VdT+12Vd0)T-(3a0-a1)T2;
a4=1/2T4[-30h-(14VdT+16Vd0)T+(3a0-2a1)T2;
a5=1/2T5[12h-6(VdT+Vd0)T+(a1-a0)T2。
在得到多项式系数a0、a1、a2、a3、a4和a5之后,可以确定每个时刻目标换道车辆的横向位置;在一个具体的实施例中,如图4所示,假设车道宽度4米,换道时长4秒,图4是本申请实施例提供的一种在换道过程中随时间变化的横向位置(横向偏移距离)曲线示意图。
进一步的,基于该换道过程中的横向位置以及初始横向行驶数据和预设结束横向行驶数据中的横向速度,可以确定换道过程中的每一时时刻的横向速度。在一个具体的实施例中,假设车道宽度4米,换道时长4秒,如图5所示,图5是本申请实施例提供的一种在换道过程中随时间变化的横向速度曲线示意图。
进一步的,基于该换道过程中横向速度,可以确定换道过程中横向加速度,如图6所示,图6是本申请实施例提供的一种在换道过程中随时间变化的横向速 度曲线示意图。
S211:当满足预设换道条件时,或,不满足预设换道条件且确定继续换道时,如果所述目标车道上的后车减速,则基于所述目标横向行驶数据和目标纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换道轨迹。
在实际应用中,车辆换道过程中,在确定具有换道意愿的同时,还需要基于安全性的考虑,确定是否满足换道条件,本说明书实施例中,可以满足换道条件可以包括目标换道车辆与目标车道上的前车的距离和/或后车距离大于一定的预设安全距离。
本说明书实施例中,当满足预设换道条件,或不满足预设换道条件且确定继续换道时,如果所述目标车道上的后车减速,可以基于所述目标横向行驶数据和目标纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换道轨迹。具体的,可以根据所述目标横向行驶数据和目标纵向行驶数据确定所述目标换道车辆的第一目标换道行驶数据(包括速度、加速度和位置);基于所述第一目标换道行驶数据构建目标换道车辆在所述换道轨迹坐标系中的第一换道轨迹。
S213:当不满足预设换道条件且确定继续换道时,如果所述后车未减速,则更新所述目标纵向行驶数据中的加速度,以使更新后的纵向速度大于所述后车的纵向速度,且小于所述目标车道上的前车的纵向速度;基于更新后的纵向行驶数据和所述目标横向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换道轨迹。
在实际应用中,在不满足预设换道条件且确定继续换道时,如果所述后车未减速的情况下,若继续换道,为了避免碰撞事故,要对纵向进行加速,以使目标换道车辆的纵向加速高于目标车道上的后车,但受限于最大加速度(最大加速度可以基于目标换道车辆与目标车道上前车的纵向行驶数据确定,以保证目标换道车辆在加速的同时不还装上目标车道上的前车)和目标车道上的前车的纵向行驶数据的限制。本说明书实施例中,当不满足预设换道条件且确定继续换道时,如果所述后车未减速,更新所述目标纵向行驶数据中的加速度,以使更新后的纵向速度大于所述后车的纵向速度,且小于所述目标车道上的前车的纵向速度,接着,基于更新后的纵向行驶数据和所述目标横向行驶数据构建所述目标换道车辆 在所述换道轨迹坐标系中的第二换道轨迹。具体的,可以根据更新后的纵向行驶数据和所述目标横向行驶数据确定第二目标换道行驶数据;基于所述第二目标换道行驶数据构建目标换道车辆在所述换道轨迹坐标系中的第二换道轨迹。
S215:当不满足预设换道条件且确定不继续换道时,更新换回原车道过程中的横向行驶数据和纵向行驶数据;并根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹。
本说明书实施例中,当不满足预设换道条件且确定不继续换道时,可以立即换回原始车道,后续可以观察周边状况以决定是否重新启动一个新的换道过程。具体的,更新换回原车道过程中的横向行驶数据和纵向行驶数据;基于所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹。
本说明书实施例中,如图7A所示,更新换回原车道过程中的横向行驶数据和纵向行驶数据可以包括:
S2151:将不满足预设换道条件且确定不继续换道的时刻作为换回原车道的初始时刻,确定所述初始时刻的横向行驶数据。
本说明书实施例中,在不满足预设换道条件之前,目标换道车辆会基于目标横向行驶数据和目标纵向行驶数据进行换道行驶,相应的,当某一时刻,不满足预设换道条件时,可以从目标横向行驶数据中确定该时刻(换回原车道的初始时刻)的横向行驶数据。
S2153:确定换回车道的结束时刻的横向行驶数据。
本说明书实施例中,换回车道即换回中心线位置,相应的,结束时刻的横向行驶数据中的横向位置、横向加速度和速度均为0。
S2155:根据所述初始时刻的横向行驶数据、所述结束时刻的横向行驶数据和第一预设换回时间确定换回原车道过程中的横向行驶数据。
本说明书实施例中,假设换回原车道的初始时刻的横向行驶数据为(Qdc,Vdc,Adc),结束时刻的横向行驶数据为(0,0,0),换回原车道所需的时间为第一预设换回时间T1,相应的,可以结合多项式确定换回原车道过程中的横向行数据,具体的,这里结合多项式确定换回原车道过程中的横向行数据可以 参见上述相关步骤,在此不再赘述。
S2157:基于所述目标换道车辆的质心在所述初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述初始时刻至所述结束时刻内的目标前车;
本说明书实施例中,在换回原车道过程中,目标换道车辆的质心由跨越当前车道的车道线转换成未跨越当前车道的车道线,相应的,当目标换道车辆的质心未跨越当前车道的车道线时,可以基于目标车道上的前车和当前车道上的前车中,与所述目标换道车辆的当前距离,选取当前距离较小的前车作为目标前车。
S2159:根据所述初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定换回原车道过程中的纵向行驶数据。
本说明书实施例中,这里确定换回原车道过程中的纵向行驶数据可以参见上述确定目标纵向行驶数据的相关步骤,在此不再赘述。
本说明书实施例中,基于所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹可以包括:根据所述换回原车道过程中的横向行驶数据和所述目标纵向行驶数据确定换回原车道过程中的第一目标换回行驶数据;基于所述第一目标换回行驶数据构建目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹。
由以上本说明书实施例提供的技术方案可见,本说明书通过构建换道轨迹坐标系,然后,在该坐标系中,将换到过程中的行驶情况以横向行驶数据和纵向行驶数据分别进行表示,针对换道过程中遇到的不同情况,结合横向行驶数据和纵向行驶数据构建不同的换道轨迹,且在目标车道上处于本车后方的车辆采取不礼让的加速行为而无法一次性完成换道时,构建换回原车道的轨迹;使得仿真的轨迹可以更好的反应现实情况,为实际的自动驾驶应用提供有效的辅助决策依据。
在一些实施例中,当不满足预设换道条件且确定不继续换道时,可以掰正车头至与车道线平行,直线骑行,以便进一步观察后车状态,根据其是否会减速礼让再伺机决定下一步动作。图7B为本申请实施例中不满足预设换道条件时仿真车辆换道轨迹的构建方法的流程示意图。如图7B所示,在当不满足预设换道条件时,所述方法还包括以下步骤:
步骤S701、将不满足预设换道条件且确定不继续换道的时刻作为掰正车头的初始时刻,确定所述初始时刻的横向行驶数据。
步骤S702、确定掰正车头的结束时刻的横向行驶数据。
步骤S703、根据所述初始时刻的横向行驶数据、所述结束时刻的横向行驶数据和预设掰正时间确定掰正车头过程中的横向行驶数据。
本说明书实施例中,假设掰正车头的初始时刻tc对应的横向行驶数据(Qdc,Vdc,Adc),相应的,结束时刻的横向行驶数据可以为(Qdc,0,0),即掰正车头,本车保持在相同的横向位置,横向加速度和速度为0。假设预设的车头掰正时间T2,相应的结合多项式,可以对目标换道车辆的横向行驶数据进行更新。具体的步骤可参见上述相关步骤,在此不再赘述。
步骤S704、基于所述目标换道车辆的质心在所述初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述初始时刻至所述结束时刻内的目标前车。
步骤S705、根据所述初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定掰正车头过程中的纵向行驶数据。
本说明书实施例中,可以结合掰正车头过程中,目标换道车辆的质心是否跨越所述当前车道的车道线,及时更新目标前车,然后,结合目标前车的纵向速度,以及目标前车与目标换道车辆间的距离更新掰正车头过程中的纵向行驶数据。
步骤S706、基于所述掰正车头过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的掰正车头轨迹。
具体的,根据所述掰正车头过程中的横向行驶数据和所述目标纵向行驶数据确定掰正车头过程中的目标掰正行驶数据;基于所述目标掰正行驶数据构建目标换道车辆在所述换道轨迹坐标系中的掰正车头轨迹。
本说明书实施例中,在掰正车头后,沿掰正后的方向直线骑行一段时间,图7C为本申请实施例中在掰正车头后仿真车辆换道轨迹的构建方法的流程示意图。如图7C所示,所述方法还包括以下步骤:
步骤S711、确定从掰正车头的结束时刻的横向行驶数据中的横向位置沿纵 向继续行驶的骑行时间;
步骤S712、基于所述骑行时间、所述掰正车头的结束时刻的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的骑行轨迹。
本说明书实施例中,在掰正车头后,沿掰正后的方向直线骑行过程中,可以观察后车是否减速礼让,在后车减速礼让后,可以继续换道。图7D为本申请实施例中在确定后车减速礼让后继续换道时仿真车辆换道轨迹的构建方法的流程示意图。如图7D所示,所述方法还可以包括以下步骤:
步骤S721、将所述目标换道车辆从掰正车头结束时刻的横向行驶数据中的横向位置沿纵向继续行驶过程作为直线骑行过程;
步骤S722、将直线骑行过程中所述后车减速的时刻作为继续换道的初始时刻;
步骤S723、确定继续换道的初始时刻的横向行驶数据;
步骤S724、确定继续换道的结束时刻的横向行驶数据;
步骤S725、根据所述继续换道的初始时刻的横向行驶数据、结束时刻的横向行驶数据和预设继续换道时间确定继续换道过程中的横向行驶数据。
本说明书实施例中,假设继续换道的初始时刻的横向行驶数据为(Qdc,0,0),继续换道的结束时刻的横向行驶数据为(h,0,0),h为道路宽度,即继续换道结束时,目标换道车辆相对于原车道的中心线偏移了一个车道的距离,假设继续换道所需时间为T4。同理结合多项式,可以对目标换道车辆的横向行驶数据进行更新。具体的步骤可参见上述相关步骤,在此不再赘述。
步骤S726、基于所述目标换道车辆的质心在所述继续换道的初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述继续换道的初始时刻至所述结束时刻内的目标前车;
步骤S727、根据所述继续换道的初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定继续换道过程中的纵向行驶数据;
本说明书实施例中,可以结合继续换道过程中,目标换道车辆的质心是否跨越所述当前车道的车道线,及时更新目标前车,然后,结合目标前车的纵向速 度,以及目标前车与目标换道车辆间的距离更新继续换道过程中的纵向行驶数据。
步骤S728、基于所述继续换道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第三换道轨迹。
具体的,根据所述继续换道过程中的横向行驶数据和所述目标纵向行驶数据确定继续换道过程中的第三目标换道行驶数据;基于所述第三目标换道行驶数据构建目标换道车辆在所述换道轨迹坐标系中的第三换道轨迹。
本说明书实施例中,在掰正车头后,沿掰正后的方向直线骑行过程中,可以观察后车是否减速礼让,若在直线骑行一段一时间后,后车依然未减速礼让,可以换回原车道。图7E为本申请实施例中在换回原车道时仿真车辆换道轨迹的构建方法的流程示意图。如图7E所示,所述方法还可以包括以下步骤:
步骤S731、当所述直线骑行过程的持续时间大于等于预设骑行时间,且所述后车未减速时,将骑行预设骑行时间后的时刻作为换回原车道的初始时刻;
步骤S732、确定所述换回原车道的初始时刻的横向行驶数据;
步骤S733、确定所述换回原车道的结束时刻的横向行驶数据;
步骤S734、根据换回原车道的初始时刻的横向行驶数据、结束时刻的横向行驶数据和第二预设换回时间确定换回原车道过程中的横向行驶数据;
本说明书实施例中,假设换回原车道的初始时刻的横向行驶数据为(Qdc,0,0),换回原车道的结束时刻的横向行驶数据为(0,0,0),换回原车道所需时间为T5。同理结合多项式,可以对目标换道车辆的横向行驶数据进行更新。具体的步骤可参见上述相关步骤,在此不再赘述。
步骤S735、基于所述目标换道车辆的质心在所述换回原车道的初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述换回原车道的初始时刻至所述结束时刻内的目标前车;
步骤S736、根据所述换回原车道的初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定换回原车道过程中的纵向行驶数据;
本说明书实施例中,可以结合换回原车道过程中,目标换道车辆的质心是 否跨越所述当前车道的车道线,及时更新目标前车,然后,结合目标前车的纵向速度,以及目标前车与目标换道车辆间的距离更新换回原车道过程中的纵向行驶数据。
步骤S737、根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换回原车道轨迹。
具体的,根据所述换回原车道过程中的横向行驶数据和所述目标纵向行驶数据确定换回原车道过程中的第二目标换回行驶数据;基于所述第二目标换回行驶数据构建目标换道车辆在所述换道轨迹坐标系中的第二换回原车道轨迹。
在另一些实施例中,当不满足预设换道条件且确定继续换道时,目标换道车辆依然以目标横向行驶数据和纵向行驶数据进行换道,会造成碰撞事故,相应的,可以记录碰撞事故。
在另一些实施例中,在仿真中系统中,以上换道过程中的不同情形的轨迹可以设定为以一定的比例激活,每种情形下的子情形也可以设定为以一定的比例激活。相应的,所述方法还包括:
设置所述第一换道轨迹、所述第二换道轨迹、所述第一换回原车道轨迹、和所述第二换回原车道轨迹对应的换道场景的比例;
基于设置好比例的换道场景构建所述目标换道车辆的换道场景。
本说明书实施例中,在仿真系统中构建换道场景时,通过设置不同换道情形的轨迹对应的换道场景的比例,以保证仿真系统的总换道场景更好的反应现实情况,为实际的自动驾驶应用提供有效的辅助决策依据。
在一个具体的实施例中,如图8所述,图8是本申请实施例提供的一种换道模拟驾驶的流程示意图。具体的可以包括:
S801:目标换道车辆启动换道。
S803:判断目标换道车辆的质心是否跨越车道线。
S805:当步骤S803判断的结果为否,结合目标车道和原车道的前车中,与本车距离较小的前车进行纵向速度更新。
S807:当步骤S803判断的结果为是,结合原车道上前车进行纵向速度更新。
S809:判断是否满足预设换道条件。
S811:若满足预设换道条件,直接换道。
S813:若不满足预设换道条件,判断是否继续换道。
S815:若继续换道,判断目标车道上的后车是否减速。
若后车减速,返回步骤S811直接换道。
S817:若后车未减速,确认是否继续换道。
S819:若不继续换道,在纵向上加速,但保证不碰撞到目标车道上的前车。
S821:若继续换道,记录碰撞事故。
S823:若步骤S813判断的结果为否,确认是否换回原车道。
S825:若不换回原车道,掰正车头,直线行驶。
S827:判断后车是否减速。
S829:若后车减速,由当前位置向目标车道继续换道。
S831:若后车不减速,由当前位置换回原车道。
S833:当步骤S823判断的结果为是,换回原车道。
基于本说明书提供的仿真车辆换道轨迹的构建方法所构建的轨迹所形成的换道场景,在仿真驾驶中,可以更好的模拟实际的换道场景。
本申请实施例还提供了一种仿真车辆换道轨迹的构建装置,如图9A所示,所述装置包括:
换道轨迹坐标系构建模块901,用于以目标换道车辆所在位置为原点,所述目标换道车辆的当前车道的中心线沿行驶方向为纵坐标,所述中心线的法线方向为横坐标,构建换道轨迹坐标系;
目标前车确定模块902,用于根据目标换道车辆的位置确定目标前车;
目标纵向行驶数据确定模块903,用于根据换道过程中每个时刻的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定所述目标换道车辆换道过程中的目标纵向行驶数据;
目标横向行驶数据确定模块904,用于根据换道过程中的预设初始横向行驶数据、预设结束横向行驶数据和和预设换道时间确定所述目标换道车辆换道过程中的目标横向行驶数据;
第一换道轨迹构建模块905,用于当满足预设换道条件时,或,不满足预设换道条件且确定继续换道时,如果所述目标车道上的后车减速,则基于所述目标横向行驶数据和目标纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换道轨迹。
第二换道轨迹构建模块906,用于当不满足预设换道条件且确定继续换道时,如果所述后车未减速,则更新所述目标纵向行驶数据中的加速度,以使更新后的纵向速度大于所述后车的纵向速度,且小于所述目标车道上的前车的纵向速度;基于更新后的纵向行驶数据和所述目标横向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换道轨迹;
第一换回原车道轨迹构建模块907,用于当不满足预设换道条件且确定不继续换道时,更新换回原车道过程中的横向行驶数据和纵向行驶数据,并根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹。
在一些实施例中,所述目标前车确定模块902,进一步用于根据目标换道车辆的质心是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中确定目标前车。
在一些实施例中,所述目标横向行驶数据确定模块904包括数据确定子模块和目标横向行驶数据确定子模块;
其中,所述数据确定子模块,用于确定换道过程中的预设初始横向行驶数据、预设结束横向行驶数据和预设换道时间;
所述目标横向行驶数据确定子模块,用于根据预设初始横向行驶数据、预设结束横向行驶数据和和预设换道时间确定所述目标换道车辆换道过程中的目标横向行驶数据。
本申请实施例还提供了一种仿真车辆换道轨迹的构建装置,如图9B所示,所述装置包括:
换道轨迹坐标系构建模块910,用于以目标换道车辆所在位置为原点,所述目标换道车辆的当前车道的中心线沿行驶方向为纵坐标,所述中心线的法线方向 为横坐标,构建换道轨迹坐标系;
目标前车确定模块920,用于基于目标换道车辆的质心是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中确定目标前车;
目标纵向行驶数据确定模块930,用于根据换道过程中每个时刻的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定所述目标换道车辆换道过程中的目标纵向行驶数据;
数据确定模块940,用于确定换道过程中的预设初始横向行驶数据、预设结束横向行驶数据和预设换道时间;
目标横向行驶数据确定模块950,用于根据预设初始横向行驶数据、预设结束横向行驶数据和和预设换道时间确定所述目标换道车辆换道过程中的目标横向行驶数据;
第一换道轨迹构建模块960,用于当满足预设换道条件时,或,不满足预设换道条件且确定继续换道时,如果所述目标车道上的后车减速,则基于所述目标横向行驶数据和目标纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换道轨迹;
第二换道轨迹构建模块970,用于当不满足预设换道条件且确定继续换道时,如果所述后车未减速,则更新所述目标纵向行驶数据中的加速度,以使更新后的纵向速度大于所述后车的纵向速度,且小于所述目标车道上的前车的纵向速度;基于更新后的纵向行驶数据和所述目标横向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换道轨迹。
第一换回原车道轨迹构建模块980,用于当不满足预设换道条件且确定不继续换道时,更新换回原车道过程中的横向行驶数据和纵向行驶数据,并根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹。
在一些实施例中,第一换回原车道轨迹构建模块980,具体用于:将不满足预设换道条件的时刻作为换回原车道的初始时刻,确定所述初始时刻的横向行驶数据;
确定换回车道的结束时刻的横向行驶数据;
根据所述初始时刻的横向行驶数据、所述结束时刻的横向行驶数据和第一 预设换回时间确定换回原车道过程中的横向行驶数据;
基于所述目标换道车辆的质心在所述初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述初始时刻至所述结束时刻内的目标前车;
根据所述初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定换回原车道过程中的纵向行驶数据。
在一些实施例中,当不满足预设换道条件时,所述装置还包括:
第一初始时刻确定模块981,用于将不满足预设换道条件的时刻作为掰正车头的初始时刻;
第一横向行驶数据确定模块982,用于确定所述初始时刻的横向行驶数据;
第二横向行驶数据确定模块983,用于确定掰正车头的结束时刻的横向行驶数据;
第一横向行驶数据更新模块984,用于根据所述初始时刻的横向行驶数据、所述结束时刻的横向行驶数据和预设掰正时间确定掰正车头过程中的横向行驶数据;
第二目标前车更新模块985,用于基于所述目标换道车辆的质心在所述初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述初始时刻至所述结束时刻内的目标前车;
第一纵向行驶数据更新模块986,用于根据所述初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定掰正车头过程中的纵向行驶数据;
掰正车头轨迹构建模块987,用于基于所述掰正车头过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的掰正车头轨迹。
在一些实施例中,所述装置还包括:
直线骑行过程确定模块988,用于将所述目标换道车辆从掰正车头结束时刻的横向行驶数据中的横向位置沿纵向继续行驶过程作为直线骑行过程;
第二初始时刻确定模块989,用于将直线骑行过程中所述后车减速的时刻作 为继续换道的初始时刻;
第三横向行驶数据确定模块990,用于确定继续换道的初始时刻的横向行驶数据;
第四横向行驶数据确定模块991,用于确定继续换道的结束时刻的横向行驶数据;
第二横向行驶数据更新模块992,用于根据所述继续换道的初始时刻的横向行驶数据、结束时刻的横向行驶数据和预设继续换道时间确定继续换道过程中的横向行驶数据;
第二目标前车更新模块993,用于基于所述目标换道车辆的质心在所述继续换道的初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述继续换道的初始时刻至所述结束时刻内的目标前车;
第二纵向行驶数据更新模块994,用于根据所述继续换道的初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定继续换道过程中的纵向行驶数据;
第三换道轨迹构建模块995,用于基于所述继续换道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第三换道轨迹。
在一些实施例中,所述装置还包括:
第三初始时刻确定模块9871,用于当所述直线骑行过程的持续时间大于等于预设骑行时间,且所述后车未减速时,将骑行预设骑行时间后的时刻作为换回原车道的初始时刻;
第五横向行驶数据确定模块9872,用于确定所述换回原车道的初始时刻的横向行驶数据;
第六横向行驶数据确定模块9873,用于确定所述换回原车道的结束时刻的横向行驶数据;
第三横向行驶数据更新模块9874,用于根据换回原车道的初始时刻的横向行驶数据、结束时刻的横向行驶数据和第二预设换回时间确定换回原车道过程中的横向行驶数据;
第三目标前车更新模块9875,用于基于所述目标换道车辆的质心在所述换回原车道的初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述换回原车道的初始时刻至所述结束时刻内的目标前车;
第三纵向行驶数据更新模块9876,用于根据所述换回原车道的初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定换回原车道过程中的纵向行驶数据;
第二换回原车道轨迹构建模块9878,用于根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换回原车道轨迹。
在一些实施例中,所述装置还包括:
骑行时间确定模块9879,用于确定从掰正车头的结束时刻的横向行驶数据中的横向位置沿纵向继续行驶的骑行时间;
骑行轨迹构建模块9880,用于基于所述骑行时间、所述掰正车头的结束时刻的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的骑行轨迹。
在一些实施例中,所述装置还包括:记录模块,用于当不满足预设换道条件且确定继续换道时,如果所述后车未减速,记录碰撞事故。
在一些实施例中,所述装置还包括:
换道场景的比例设置模块,用于设置所述第一换道轨迹、所述第二换道轨迹、所述第一换回原车道轨迹、和所述第二换回原车道轨迹对应的换道场景的比例;
换道场景构建模块,用于基于设置好比例的换道场景构建所述目标换道车辆的换道场景。
所述的装置实施例中的装置与方法实施例基于同样的申请构思。
本申请实施例提供了一种仿真车辆换道轨迹的构建设备,该仿真车辆换道轨迹的构建设备包括处理器和存储器,该存储器中存储有至少一条指令、至少一段程序、代码集或指令集,该至少一条指令、该至少一段程序、该代码集或指令集 由该处理器加载并执行以实现如上述方法实施例所提供的仿真车辆换道轨迹的构建方法。
存储器可用于存储软件程序以及模块,处理器通过运行存储在存储器的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、功能所需的应用程序等;存储数据区可存储根据所述设备的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器还可以包括存储器控制器,以提供处理器对存储器的访问。
本申请实施例所提供的方法实施例可以在移动终端、计算机终端、服务器或者类似的运算装置中执行。以运行在服务器上为例,图10是本申请实施例提供的一种仿真车辆换道轨迹的构建方法的服务器的硬件结构框图。如图10所示,该服务器1000可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(Central Processing Units,CPU)1010(处理器1010可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器1030,一个或一个以上存储应用程序1023或数据1022的存储介质1020(例如一个或一个以上海量存储设备)。其中,存储器1030和存储介质1020可以是短暂存储或持久存储。存储在存储介质1020的程序可以包括一个或一个以上模块,每个模块可以包括对服务器中的一系列指令操作。更进一步地,中央处理器1010可以设置为与存储介质1020通信,在服务器1000上执行存储介质1020中的一系列指令操作。服务器1000还可以包括一个或一个以上电源1060,一个或一个以上有线或无线网络接口1050,一个或一个以上输入输出接口1040,和/或,一个或一个以上操作系统1021,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
输入输出接口1040可以用于经由一个网络接收或者发送数据。上述的网络具体实例可包括服务器1000的通信供应商提供的无线网络。在一个实例中,输入输出接口1040包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,输入输出接口1040可以为射频(Radio Frequency,RF)模块,其用于通过无线方式 与互联网进行通讯。
本领域普通技术人员可以理解,图10所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,服务器1000还可包括比图10中所示更多或者更少的组件,或者具有与图10所示不同的配置。
本申请的实施例还提供了一种存储介质,所述存储介质可设置于服务器之中以保存用于实现方法实施例中一种仿真车辆换道轨迹的构建方法相关的至少一条指令、至少一段程序、代码集或指令集,该至少一条指令、该至少一段程序、该代码集或指令集由该处理器加载并执行以实现上述方法实施例提供的仿真车辆换道轨迹的构建方法。
在本实施例中,上述存储介质可以位于计算机网络的多个网络服务器中的至少一个网络服务器。在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
由上述本申请提供的仿真车辆换道轨迹的构建方法、装置、服务器或存储介质的实施例可见,本申请中通过构建换道轨迹坐标系,然后,在该坐标系中,将换到过程中的行驶情况以横向行驶数据和纵向行驶数据分别进行表示,针对换道过程中遇到的不同情况,结合横向行驶数据和纵向行驶数据构建不同的换道轨迹,且在目标车道上处于本车后方的车辆采取不礼让的加速行为而无法一次性完成换道时,构建换回原车道的轨迹;使得仿真的轨迹可以更好的反应现实情况,为实际的自动驾驶应用提供有效的辅助决策依据。
需要说明的是:上述本申请实施例先后顺序仅仅为了描述,不代表实施例的优劣。且上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置和服务器实施例而言,由于其基本相似于方法实施例,所以描述的 比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指示相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种仿真车辆换道轨迹的构建方法,由目标换道车辆执行,以目标换道车辆所在位置为原点,所述目标换道车辆的当前车道的中心线沿行驶方向为纵坐标,所述中心线的法线方向为横坐标,构建换道轨迹坐标系,所述方法包括:
    根据目标换道车辆的位置确定目标前车;
    根据换道过程中每个时刻的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定所述目标换道车辆换道过程中的目标纵向行驶数据;
    根据换道过程中的预设初始横向行驶数据、预设结束横向行驶数据和和预设换道时间确定所述目标换道车辆换道过程中的目标横向行驶数据;
    当满足预设换道条件时,或,不满足预设换道条件且确定继续换道时,如果所述目标车道上的后车减速,则基于所述目标横向行驶数据和目标纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换道轨迹;
    当不满足预设换道条件且确定继续换道时,如果所述后车未减速,则更新所述目标纵向行驶数据中的加速度,以使更新后的纵向速度大于所述后车的纵向速度,且小于所述目标车道上的前车的纵向速度;基于更新后的纵向行驶数据和所述目标横向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换道轨迹;
    当不满足预设换道条件且确定不继续换道时,更新换回原车道过程中的横向行驶数据和纵向行驶数据,并根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹。
  2. 根据权利要求1所述的方法,其中,所述根据目标换道车辆的位置确定目标前车,包括:
    根据所述目标换道车辆的质心是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中确定所述目标前车。
  3. 根据权利要求1所述的方法,其中,所述更新换回原车道过程中的横向行驶数据和纵向行驶数据包括:
    将不满足预设换道条件的时刻作为换回原车道的初始时刻,确定所述初始时刻的横向行驶数据;
    确定换回车道的结束时刻的横向行驶数据;
    根据所述初始时刻的横向行驶数据、所述结束时刻的横向行驶数据和第一预设换回时间确定换回原车道过程中的横向行驶数据;
    基于所述目标换道车辆的质心在所述初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述初始时刻至所述结束时刻内的目标前车;
    根据所述初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定换回原车道过程中的纵向行驶数据。
  4. 根据权利要求1所述的方法,其中,当不满足预设换道条件时,所述方法还包括:
    将不满足预设换道条件的时刻作为掰正车头的初始时刻,确定所述初始时刻的横向行驶数据;
    确定掰正车头的结束时刻的横向行驶数据;
    根据所述初始时刻的横向行驶数据、所述结束时刻的横向行驶数据和预设掰正时间确定掰正车头过程中的横向行驶数据;
    基于所述目标换道车辆的质心在所述初始时刻至所述结束时刻内是否跨越 所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述初始时刻至所述结束时刻内的目标前车;
    根据所述初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定掰正车头过程中的纵向行驶数据;
    基于所述掰正车头过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的掰正车头轨迹。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    将所述目标换道车辆从掰正车头结束时刻的横向行驶数据中的横向位置沿纵向继续行驶过程作为直线骑行过程;
    将直线骑行过程中所述后车减速的时刻作为继续换道的初始时刻;
    确定继续换道的初始时刻的横向行驶数据;
    确定继续换道的结束时刻的横向行驶数据;
    根据所述继续换道的初始时刻的横向行驶数据、结束时刻的横向行驶数据和预设继续换道时间确定继续换道过程中的横向行驶数据;
    基于所述目标换道车辆的质心在所述继续换道的初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述继续换道的初始时刻至所述结束时刻内的目标前车;
    根据所述继续换道的初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定继续换道过程中的纵向行驶数据;
    基于所述继续换道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第三换道轨迹。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    当所述直线骑行过程的持续时间大于等于预设骑行时间,且所述后车未减速时,将骑行预设骑行时间后的时刻作为换回原车道的初始时刻;
    确定所述换回原车道的初始时刻的横向行驶数据;
    确定所述换回原车道的结束时刻的横向行驶数据;
    根据换回原车道的初始时刻的横向行驶数据、结束时刻的横向行驶数据和第二预设换回时间确定换回原车道过程中的横向行驶数据;
    基于所述目标换道车辆的质心在所述换回原车道的初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述换回原车道的初始时刻至所述结束时刻内的目标前车;
    根据所述换回原车道的初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定换回原车道过程中的纵向行驶数据;
    根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换回原车道轨迹。
  7. 根据权利要求4所述的方法,其中,所述方法还包括:
    确定从掰正车头的结束时刻的横向行驶数据中的横向位置沿纵向继续行驶的骑行时间;
    基于所述骑行时间、所述掰正车头的结束时刻的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的骑行轨迹。
  8. 根据权利要求4所述的方法,其中,所述方法还包括:
    设置所述第一换道轨迹、所述第二换道轨迹、所述第一换回原车道轨迹、和所述第二换回原车道轨迹对应的换道场景的比例;
    基于设置好比例的换道场景构建所述目标换道车辆的换道场景。
  9. 根据权利要求1所述的方法,其中,当不满足预设换道条件且确定继续换道时,如果所述后车未减速,所述方法还包括:记录碰撞事故。
  10. 一种仿真车辆换道轨迹的构建装置,包括:
    换道轨迹坐标系构建模块,用于以目标换道车辆所在位置为原点,所述目标换道车辆的当前车道的中心线沿行驶方向为纵坐标,所述中心线的法线方向为横坐标,构建换道轨迹坐标系;
    目标前车确定模块,用于根据目标换道车辆的位置确定目标前车;
    目标纵向行驶数据确定模块,用于根据换道过程中每个时刻的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定所述目标换道车辆换道过程中的目标纵向行驶数据;
    目标横向行驶数据确定模块,用于根据换道过程中的预设初始横向行驶数据、预设结束横向行驶数据和和预设换道时间确定所述目标换道车辆换道过程中的目标横向行驶数据;
    第一换道轨迹构建模块,用于当满足预设换道条件时,或,不满足预设换道条件且确定继续换道时,如果所述目标车道上的后车减速,则基于所述目标横向行驶数据和目标纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换道轨迹;
    第二换道轨迹构建模块,用于当不满足预设换道条件且确定继续换道时,如果所述后车未减速,则更新所述目标纵向行驶数据中的加速度,以使更新后的纵向速度大于所述后车的纵向速度,且小于所述目标车道上的前车的纵向速度;基于更新后的纵向行驶数据和所述目标横向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第二换道轨迹;
    第一换回原车道轨迹构建模块,用于当不满足预设换道条件且确定不继续 换道时,更新换回原车道过程中的横向行驶数据和纵向行驶数据,并根据所述换回原车道过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的第一换回原车道轨迹。
  11. 根据权利要求10所述的装置,其中,所述目标前车确定模块,还用于根据所述目标换道车辆的质心是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中确定所述目标前车。
  12. 根据权利要求10所述的装置,其中,所述第一换回原车道轨迹构建模块,还用于将不满足预设换道条件的时刻作为换回原车道的初始时刻,确定所述初始时刻的横向行驶数据;确定换回车道的结束时刻的横向行驶数据;根据所述初始时刻的横向行驶数据、所述结束时刻的横向行驶数据和第一预设换回时间确定换回原车道过程中的横向行驶数据;基于所述目标换道车辆的质心在所述初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述初始时刻至所述结束时刻内的目标前车;根据所述初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定换回原车道过程中的纵向行驶数据。
  13. 根据权利要求10所述的装置,其中,所述装置进一步包括:第一初始时刻确定模块,用于将不满足预设换道条件的时刻作为掰正车头的初始时刻;第一横向行驶数据确定模块,用于确定所述初始时刻的横向行驶数据;第二横向行驶数据确定模块,用于确定掰正车头的结束时刻的横向行驶数据;第一横向行驶数据更新模块,用于根据所述初始时刻的横向行驶数据、所述结束时刻的横向行驶数据和预设掰正时间确定掰正车头过程中的横向行驶数据;第二目标前车更新模块,用于基于所述目标换道车辆的质心在所述初始时刻至所述结束时刻内是否跨越所述当前车道的车道线,从目标车道上的前车和当前车道上的前车中,实时更新所述初始时刻至所述结束时刻内的目标前车;第一纵向行驶数据更新模块,用于根据所述初始时刻至所述结束时刻内的所述目标换道车辆的纵向速度、所述目标前车的纵向速度、所述目标前车与目标换道车辆间的距离确定掰正车头过程中 的纵向行驶数据;掰正车头轨迹构建模块,用于基于所述掰正车头过程中的横向行驶数据和纵向行驶数据构建所述目标换道车辆在所述换道轨迹坐标系中的掰正车头轨迹。
  14. 一种仿真车辆换道轨迹的构建设备,所述设备包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1至9任一项所述的仿真车辆换道轨迹的构建方法。
  15. 一种计算机可读存储介质,其存储有可由计算机设备执行的计算机程序,当所述程序在计算机设备上运行时,使得所述计算机设备执行权利要求1至9任一项所述的仿真车辆换道轨迹的构建方法。
PCT/CN2020/113135 2019-09-09 2020-09-03 一种仿真车辆换道轨迹的构建方法、装置、设备及存储介质 WO2021047438A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20862295.1A EP3989015A4 (en) 2019-09-09 2020-09-03 METHOD, DEVICE AND DEVICE FOR CONSTRUCTING A SIMULATED LANE CHANGING TRAJECTORY AND STORAGE MEDIA
US17/527,700 US20220073076A1 (en) 2019-09-09 2021-11-16 Method, apparatus, and device for constructing simulated vehicle lane change trajectory, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910857583.2 2019-09-09
CN201910857583.2A CN110780602B (zh) 2019-09-09 2019-09-09 一种仿真车辆换道轨迹的构建方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/527,700 Continuation US20220073076A1 (en) 2019-09-09 2021-11-16 Method, apparatus, and device for constructing simulated vehicle lane change trajectory, and storage medium

Publications (1)

Publication Number Publication Date
WO2021047438A1 true WO2021047438A1 (zh) 2021-03-18

Family

ID=69384179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113135 WO2021047438A1 (zh) 2019-09-09 2020-09-03 一种仿真车辆换道轨迹的构建方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20220073076A1 (zh)
EP (1) EP3989015A4 (zh)
CN (1) CN110780602B (zh)
WO (1) WO2021047438A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516331A (zh) * 2022-02-10 2022-05-20 苏州挚途科技有限公司 车辆换道控制方法、装置和电子设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444018B (zh) * 2019-07-30 2020-11-03 腾讯科技(深圳)有限公司 仿真城市系统的控制方法和装置、存储介质及电子装置
CN110780602B (zh) * 2019-09-09 2022-02-18 腾讯科技(深圳)有限公司 一种仿真车辆换道轨迹的构建方法、装置及设备
CN111539371B (zh) * 2020-05-06 2022-02-01 腾讯科技(深圳)有限公司 一种车辆控制的方法、装置、设备及存储介质
CN113954834A (zh) * 2020-07-15 2022-01-21 荷兰移动驱动器公司 变道规划方法及车载装置
CN111856968B (zh) * 2020-07-31 2023-07-21 成都信息工程大学 一种基于并行计算的大规模交通仿真系统及方法
CN114084136B (zh) * 2020-08-05 2024-01-30 上海汽车集团股份有限公司 车辆变道过程中的纵向控制跟车目标选择方法及装置
CN112286188B (zh) * 2020-10-20 2022-09-30 腾讯科技(深圳)有限公司 车辆行驶的控制方法、装置、设备及计算机可读存储介质
CN112230565B (zh) * 2020-10-28 2022-07-19 腾讯科技(深圳)有限公司 车辆的模拟驾驶方法、装置、电子设备及计算机可读存储介质
CN113138084B (zh) * 2021-04-22 2024-03-08 华路易云科技有限公司 用于调整虚拟车流的方法、装置及设备
CN114103956B (zh) * 2021-12-02 2023-11-24 腾讯科技(深圳)有限公司 车辆控制方法、装置及计算机程序产品
US20230331231A1 (en) * 2022-04-19 2023-10-19 Aptiv Technologies Limited Dynamically Calculating Lane Change Trajectories
CN115116231B (zh) * 2022-08-26 2023-02-03 深圳市城市交通规划设计研究中心股份有限公司 一种车路协同微观仿真系统、方法、电子设备及存储介质
CN116129652B (zh) * 2023-04-10 2023-08-01 深圳市城市交通规划设计研究中心股份有限公司 单交叉口网联车辆车速引导方法、电子设备及存储介质
CN117842073A (zh) * 2024-03-07 2024-04-09 中国第一汽车股份有限公司 目标车辆换道意图识别方法、装置及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898232A1 (en) * 2006-09-08 2008-03-12 Ford Global Technologies, LLC Method and system for collision avoidance
CN104282033A (zh) * 2014-08-12 2015-01-14 中国科学院计算技术研究所 一种针对车辆动画仿真的一体化换道行为模拟方法
DE102013021813A1 (de) * 2013-12-20 2015-06-25 Audi Ag Fahrerassistenzsystem mit adaptiver Reaktionsschwelle
CN104960524A (zh) * 2015-07-16 2015-10-07 北京航空航天大学 基于车车通信的多车协同换道控制系统及其方法
CN109035863A (zh) * 2018-08-09 2018-12-18 北京智行者科技有限公司 车辆强制换道行驶方法
CN109948801A (zh) * 2019-02-15 2019-06-28 浙江工业大学 基于驾驶员换道心理分析的车辆换道概率输出模型建立方法
CN110780602A (zh) * 2019-09-09 2020-02-11 腾讯科技(深圳)有限公司 一种仿真车辆换道轨迹的构建方法、装置及设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841853B2 (ja) * 1995-01-12 2006-11-08 本田技研工業株式会社 車両用運転状況監視装置
EP2756992A1 (en) * 2013-01-21 2014-07-23 Volvo Car Corporation Motor vehicle safety arrangement and method
US9555801B2 (en) * 2014-03-05 2017-01-31 Denso International America, Inc. Active steering safety system
JP6103716B2 (ja) * 2014-06-17 2017-03-29 富士重工業株式会社 車両の走行制御装置
JP5970513B2 (ja) * 2014-09-29 2016-08-17 富士重工業株式会社 運転支援制御装置
JP6462494B2 (ja) * 2015-05-29 2019-01-30 株式会社デンソー 運転支援装置及び運転支援方法
CN106611504B (zh) * 2015-10-23 2019-09-17 中国移动通信集团公司 一种车速引导方法及装置
CN107672584B (zh) * 2016-07-29 2022-05-03 福特环球技术公司 超车车道控制的系统和方法
CN106926844B (zh) * 2017-03-27 2018-10-19 西南交通大学 一种基于实时环境信息的动态自动驾驶换道轨迹规划方法
CN106981202A (zh) * 2017-05-22 2017-07-25 中原智慧城市设计研究院有限公司 一种基于车道模型的车辆来回变道检测方法
JP2019003234A (ja) * 2017-06-09 2019-01-10 トヨタ自動車株式会社 運転支援装置
CN107315411B (zh) * 2017-07-04 2020-04-21 合肥工业大学 一种基于车车协同下无人驾驶车辆的换道轨迹规划方法
CN108682184A (zh) * 2018-04-25 2018-10-19 江苏大学 一种应用于双向两车道的车辆超车辅助控制方法及系统
CN109017792B (zh) * 2018-07-16 2020-08-14 东南大学 基于车路协同技术针对车辆变道行为的生态驾驶方法
CN109035862B (zh) * 2018-08-06 2020-04-14 清华大学 一种基于车车通信的多车协同换道控制方法
CN109177974B (zh) * 2018-08-28 2020-01-03 清华大学 一种智能汽车的人机共驾型车道保持辅助方法
CN109799821A (zh) * 2019-01-25 2019-05-24 汉腾汽车有限公司 一种基于状态机的自动驾驶控制方法
CN109976355B (zh) * 2019-04-26 2021-12-10 腾讯科技(深圳)有限公司 轨迹规划方法、系统、设备及存储介质
CN110069887B (zh) * 2019-05-05 2022-04-15 腾讯科技(深圳)有限公司 一种驾驶仿真方法、装置、设备及存储介质
CN110103969B (zh) * 2019-05-16 2020-11-13 广州小鹏汽车科技有限公司 一种车辆控制方法、装置、系统及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898232A1 (en) * 2006-09-08 2008-03-12 Ford Global Technologies, LLC Method and system for collision avoidance
DE102013021813A1 (de) * 2013-12-20 2015-06-25 Audi Ag Fahrerassistenzsystem mit adaptiver Reaktionsschwelle
CN104282033A (zh) * 2014-08-12 2015-01-14 中国科学院计算技术研究所 一种针对车辆动画仿真的一体化换道行为模拟方法
CN104960524A (zh) * 2015-07-16 2015-10-07 北京航空航天大学 基于车车通信的多车协同换道控制系统及其方法
CN109035863A (zh) * 2018-08-09 2018-12-18 北京智行者科技有限公司 车辆强制换道行驶方法
CN109948801A (zh) * 2019-02-15 2019-06-28 浙江工业大学 基于驾驶员换道心理分析的车辆换道概率输出模型建立方法
CN110780602A (zh) * 2019-09-09 2020-02-11 腾讯科技(深圳)有限公司 一种仿真车辆换道轨迹的构建方法、装置及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3989015A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516331A (zh) * 2022-02-10 2022-05-20 苏州挚途科技有限公司 车辆换道控制方法、装置和电子设备
CN114516331B (zh) * 2022-02-10 2024-04-09 苏州挚途科技有限公司 车辆换道控制方法、装置和电子设备

Also Published As

Publication number Publication date
US20220073076A1 (en) 2022-03-10
CN110780602B (zh) 2022-02-18
EP3989015A1 (en) 2022-04-27
EP3989015A4 (en) 2022-10-26
CN110780602A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2021047438A1 (zh) 一种仿真车辆换道轨迹的构建方法、装置、设备及存储介质
CN110427021B (zh) 用于生成自动驾驶车辆交叉路口导航指令的系统和方法
JP7231372B2 (ja) 自律走行車ポリシー生成
CN113071520B (zh) 车辆行驶控制方法及装置
US10137896B2 (en) Method and system for operating autonomous driving vehicles using graph-based lane change guide
CN113071493B (zh) 车辆变道控制的方法、设备、存储介质和程序产品
CN109697875B (zh) 规划行驶轨迹的方法及装置
US20200001863A1 (en) Planning parking trajectory for self-driving vehicles
JP2021113049A (ja) 自動運転車両計画方法、装置、電子機器及び記憶媒体
US20180297596A1 (en) Path Planning Method, Apparatus, And System
JP2023547745A (ja) 車両の障害物回避方法、装置、電子機器、記憶媒体
CN113682318B (zh) 车辆行驶控制方法及装置
US11866070B2 (en) Vehicle control method and apparatus, storage medium, and electronic device
JP2022110069A (ja) シミュレーションシーンの生成方法、装置、電子機器及び記憶媒体
CN113053112B (zh) 车辆轨迹预测方法、车辆预测轨迹分析方法、装置及车辆
CN111539371B (zh) 一种车辆控制的方法、装置、设备及存储介质
JPWO2011018854A1 (ja) シミュレータ
US20230339513A1 (en) Method for testing autonomous-driving algorithm, and related device
CN111688717B (zh) 用于控制车辆通行的方法和装置
CN112116226A (zh) 仿真车辆的控制方法、装置、计算机设备和存储介质
KR20230004396A (ko) 차선변경 제어 방법, 장치, 전자 기기 및 저장 매체
JP7224421B1 (ja) 経路予測装置、経路予測方法、および車両管制システム
CN114633765A (zh) 基于概率栅格图的速度决策方法及其装置、相关产品
JP6522068B2 (ja) 道路形状予測装置、他車両進路予測装置、及び運転補助装置
JP7158517B2 (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE