WO2021047312A1 - 光学变焦马达、摄像装置及光学变焦马达的组装方法 - Google Patents

光学变焦马达、摄像装置及光学变焦马达的组装方法 Download PDF

Info

Publication number
WO2021047312A1
WO2021047312A1 PCT/CN2020/104930 CN2020104930W WO2021047312A1 WO 2021047312 A1 WO2021047312 A1 WO 2021047312A1 CN 2020104930 W CN2020104930 W CN 2020104930W WO 2021047312 A1 WO2021047312 A1 WO 2021047312A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical zoom
lens support
zoom motor
base
magnet
Prior art date
Application number
PCT/CN2020/104930
Other languages
English (en)
French (fr)
Inventor
龚高峰
王建华
唐利新
Original Assignee
上海比路电子股份有限公司
上海比路电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海比路电子股份有限公司, 上海比路电子科技有限公司 filed Critical 上海比路电子股份有限公司
Publication of WO2021047312A1 publication Critical patent/WO2021047312A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • This application relates to the field of periscope focusing devices, and in particular, to an optical zoom motor, a camera device, and an assembly method of the optical zoom motor.
  • a mobile phone camera with a conventional vertical placement (that is, facing the outside on the surface of the mobile phone) has a small focal length and a limited optical zoom capability.
  • the periscope camera of this application is different from the vertical arrangement of traditional lenses. It is arranged horizontally in the mobile phone and adds optical conversion components. It consists of an optical zoom motor, lens group, prism, etc., and uses a special optical prism to let light Refraction enters the lens group to achieve imaging, which can achieve a higher optical zoom factor, so that the lens can clearly capture farther scenes.
  • the periscope structure has good application prospects when applied to smart phones.
  • the purpose of this application is to design an optical zoom motor with periscope function, coupled with the functional assistance of the prism part, and finally realize the parallel placement of the motor on the mobile phone, which further reduces the height of the mobile phone and achieves super Thin body and high-quality optical zoom imaging effect.
  • Various embodiments of the present application provide an optical zoom motor, a camera device, and an assembling method of the optical zoom motor, so as to solve the problem of poor zoom capability of the camera device due to the installation direction of the camera device in the prior art.
  • an optical zoom motor including: a housing; a base, the base is arranged below the housing and forms a accommodating space between the housing, and the housing includes a top wall and a circumferential side wall.
  • the wall is arranged opposite to the base, and the top wall is connected with the base through the circumferential side wall, one side wall of the circumferential side wall has an opening;
  • the lens support body is movably arranged in the accommodating space;
  • a plurality of driving magnets The driving magnet is arranged on the lens support; a plurality of driving coils, the driving coil is arranged on the base and corresponding to the driving magnet, the driving coil is energized to move the lens support toward or away from the opening; a plurality of lateral magnets, At least one lateral magnet is respectively arranged on a set of two oppositely arranged side walls of the circumferential side wall, and the lateral magnet and the opening are respectively arranged on different side walls; a plurality of lateral coils,
  • the lens support is suspended above the base, and there is an installation gap between the lens support and the base.
  • the optical zoom motor further includes a plurality of suspension wires, a suspension wire is correspondingly provided at each corner of the part of the base located in the housing, and a plurality of corners of the lens support body and a plurality of The suspension wire is correspondingly supported, so that the lens support body is suspended.
  • the housing includes: a shielding cover, the shielding cover has a top wall and a circumferential side wall: a frame, the frame is located in the accommodating space and connected to the top wall, and the lateral magnet is located on a side of the frame close to the base. Side; a plurality of magnet backplanes, the magnet backplane and the side magnet are arranged correspondingly, and the magnet backplane is located between the circumferential side wall and the side magnet, and the magnet backplane is made of magnetic isolation material.
  • the frame is connected to the lateral magnet; or the magnet back plate is connected to the lateral magnet; or the magnet back plate is connected to the frame.
  • At least three edges of the magnet backplane have flanges to enclose a cavity for accommodating the lateral magnets, and at least one edge of the magnet backplane is provided with a clip Protrusions, the clamping protrusions are matched with the clamping slots of the frame; or the frame has a bayonet facing the base, and the edge of the lateral magnet is clamped at the bayonet.
  • the width of the flange is equal to the thickness of the lateral magnet.
  • a glue groove is provided on the side of the frame away from the lens support, and the frame and the shielding cover are bonded by glue; or the frame and the shielding cover are connected by welding.
  • the base has a PCB board
  • the driving coil is electrically connected to the PCB board
  • at least a part of the base extends to the outside of the housing, so that the pins of the PCB board are exposed on the outside of the housing.
  • At least one relief gap is reserved at the edge of the circumferential side wall away from the top wall, and the base extends to the outside of the housing through the relief gap.
  • the base further has a seat body, the seat body has a plurality of positioning protrusions protruding toward the PCB board, the PCB board is provided with positioning holes, and the positioning protrusions are embedded in the positioning holes or abut against At the edge of the PCB board.
  • the lens support body is provided with a plurality of positioning notches, and the plurality of lateral coils are correspondingly clamped with the plurality of positioning notches; or the lens support body is provided with a communication groove, and the communication groove is embedded Connecting wires, and the plurality of lateral coils are electrically connected through the connecting wires.
  • a accommodating groove for accommodating the driving magnet is provided on a side of the lens support body close to the base.
  • the bottom of the accommodating groove is further provided with a magnetic conductive plate, and the driving magnet is located between the magnetic conductive plate and the driving coil.
  • a mounting groove is provided at the edge of the magnetic conductive plate, and the lens support body has a mounting protrusion embedded in the mounting groove.
  • the two accommodating grooves are respectively provided on a set of opposite sides of the lens support and extend along the movement direction of the lens support, and the two accommodating grooves Drive magnets are respectively arranged in the grooves.
  • the plurality of driving coils are in two groups, and the two groups of driving coils are arranged in one-to-one correspondence with the two accommodating grooves, and each group is provided with at least two driving coils, and they are in the same group.
  • the multiple drive coils inside are electrically connected to each other.
  • each group has two driving coils, and all the driving coils are respectively located at the four corners of the base, and the current directions of the two driving coils in one group are opposite when they are energized.
  • the optical zoom motor further includes at least one position sensor, each driving magnet is a monolithic magnet, and a monolithic magnet is divided into multiple regions to be magnetized into different polarities.
  • the magnet is divided into a first area and a second area along its thickness direction, and the first area is close to the driving coil relative to the second area.
  • the first area includes at least four first sub-areas, and the second area includes at least four first sub-areas.
  • At least two adjacent first sub-regions are F-shaped; or at least two adjacent second sub-regions are F-shaped.
  • the area sizes of at least two first sub-regions are different; or the magnetization conditions of multiple regions of the two driving magnets are different.
  • the optical zoom motor further includes: a plurality of springs, and each corner of the side of the lens support away from the base is provided with a spring correspondingly, and the spring is electrically connected to the lateral coil;
  • a suspension wire is provided at each corner of the part of the base located in the housing. The first end of each suspension wire is electrically connected to the PCB board of the base, and the second end of each suspension wire is electrically connected to the spring. So that the lens support body is suspended.
  • the PCB board has a plurality of first communication holes matched with the suspension wire; or the seat body of the base has a plurality of second communication holes matched with the suspension wire; or the second end of the suspension wire It is connected with the spring by welding; or the spring is provided with at least one insertion hole at a position corresponding to the lens support body, and the lens support body is provided with an insertion post matched with the insertion hole.
  • the lens support body is provided with a plurality of positioning notches, each positioning notch is provided with at least one hanging post, and a plurality of lateral coils are sleeved on the hanging post and connected to the multiple positioning notches.
  • Corresponding clamping; or at least one dispensing hole is provided at the position of the lens support corresponding to the lateral coil; or the corner of the lens support has at least one limit angle.
  • each magnet back plate has at least one glue gap connecting the lateral magnet and the circumferential side wall; or the frame is provided with an escape notch at the position corresponding to the communication groove of the lens support.
  • the side of the positioning protrusion away from the seat body has an adhesive groove; or a backing plate is also provided inside the seat body, and at least a part of the backing plate is exposed on the side of the seat body facing the PCB board , And the seat body and the backing plate are an integral structure; or the part of the seat body protruding from the shell has a clamping groove matching the shell; or the side of the seat body away from the clamping groove of the seat body has a side that protrudes toward the lens support
  • the receiving wall of the housing has a glue gap between the receiving wall and the shielding cover of the housing; or the end of the backing plate of the seat body close to the lateral magnet has a protruding wall that extends out of the housing, and at least the circumferential side wall of the shielding cover of the housing A part is overlapped on the protruding wall; or the seat body also has a positioning post protruding toward the PCB board, and the PCB board has a positioning opening that matches the positioning post
  • a position sensor is provided between the two driving coils in each group; the capacitor is arranged on the PCB board, and the capacitor is arranged in one of the position sensors far away One side of the other position sensor.
  • the application also provides a camera device, including the above-mentioned optical zoom motor.
  • the present application also provides an assembling method of an optical zoom motor.
  • the optical zoom motor is the above-mentioned optical zoom motor.
  • the assembling method includes: before installing the base of the optical zoom motor and the lens support body of the optical zoom motor, Place a temporary gasket between the base and the lens support; after the installation of the base and the lens support is complete, remove the temporary gasket from between the base and the lens support.
  • the temporary gasket is taken out after the base and the lens support are installed and the housing is connected to the base.
  • the assembly method further includes a pre-assembly step between placing temporary spacers: mounting the PCB of the base to the base of the base; and connecting the driving coil to the PCB.
  • the lens support when the lens support is installed on the base on which the temporary gasket is placed, the lens support is supported on the base by the suspension wire of the optical zoom motor.
  • the optical zoom motor in the present application includes a housing, a base, a lens support, a plurality of driving magnets, a plurality of driving coils, a plurality of lateral magnets, and a plurality of lateral coils.
  • the base is arranged below the housing and forms an accommodating space between the housing.
  • the housing includes a top wall and a circumferential side wall. The top wall is opposite to the base, and the top wall is connected to the base through the circumferential side wall.
  • One side wall has an opening; the lens support is movably arranged in the accommodating space; the drive magnet is arranged on the lens support; the drive coil is arranged on the base and corresponds to the drive magnet, and the drive coil is energized to make the lens support approach or Move in the direction away from the opening; at least one lateral magnet is respectively arranged on a set of two oppositely arranged side walls of the circumferential side wall, and the lateral magnet and the opening are respectively arranged on different side walls; The coil is arranged on the lens support, and the plurality of lateral coils are arranged corresponding to the plurality of lateral magnets.
  • the optical zoom motor with the above structure since one side wall of the circumferential side wall of the shielding cover of the housing has an opening, compared with the conventional optical zoom motor with the opening at the top, the optical zoom in the present application is compared
  • the overall thickness of the camera device can be reduced by changing the installation direction of the optical zoom motor.
  • this setting can also increase the zoom driving space range of the camera device parallel to the direction of the mobile phone, for clear capture. The sceneries create favorable conditions to obtain a more perfect image imaging effect.
  • the cooperation of the driving magnets and the driving coils can drive the lens support to move in the accommodating space , To achieve the purpose of driving the optical zoom of the lens.
  • the position of the lens support relative to the opening can be adjusted by driving the lens support through the cooperation of the lateral magnet and the lateral coil, thereby ensuring the anti-shake performance of the optical zoom motor.
  • the objective of driving the optical zoom of the lens is achieved, and at the same time it has an effective anti-shake function, and the structure of the present application is used to effectively reduce the overall thickness of the camera device, solve the problem of the limitation of the thickness of the mobile phone, and overcome the conventional vertical placement The problem of narrow zoom range caused by the camera and insufficient optical zoom capability
  • Fig. 1 shows an exploded view of an optical zoom motor according to a specific embodiment of the present application
  • Figure 2 shows a schematic diagram of the positional relationship between the housing and the lateral magnet in Figure 1;
  • Figure 3 shows a top view of Figure 2
  • FIG. 4 shows a schematic diagram of the positional relationship between the lens support body and the lateral coil of the optical zoom motor in the present application
  • FIG. 5 shows a schematic diagram of the structure of the lens support body and the lateral coils at another angle in FIG. 4;
  • FIG. 6 shows a schematic diagram of the positional relationship among the lateral coil, the driving magnet, and the lens support of the optical zoom motor in the present application
  • FIG. 7 shows a schematic structural diagram of the combined state of the base body and the PCB board of the optical zoom motor in the present application
  • FIG. 8 shows a schematic diagram of the positional relationship between the seat body, the PCB board and the driving coil of the optical zoom motor in the present application
  • FIG. 9 shows a schematic diagram of the positional relationship between the lens support body and the base of the optical zoom motor in the present application.
  • FIG. 10 shows a schematic diagram of the structure of the optical zoom motor in the present application.
  • FIG. 11 shows a schematic diagram of the cooperation relationship between the optical zoom motor and the prism motor in the present application
  • FIG. 12 shows a schematic structural diagram of a frame with a glue groove of an optical zoom motor in another embodiment of the present application.
  • FIG. 13 shows a schematic structural diagram of a magnet back plate in another embodiment of the present application.
  • Figure 14 shows a schematic diagram of the position of the avoidance gap of the frame in the present application.
  • FIG. 15 shows a schematic diagram of the positional relationship between the lens support body, the frame, and the base in another embodiment of the present application
  • FIG. 16 shows a schematic diagram of the positional relationship between the lens support body and the base in FIG. 15;
  • FIG. 17 shows a schematic diagram of the positional relationship between the base body of the base in FIG. 15 and the PCB board;
  • FIG. 18 shows a schematic structural view of the seat body in FIG. 17 from another angle
  • Figure 19 shows a schematic diagram of the position of the mating surface of the lens support in the present application.
  • FIG. 20 shows a schematic diagram of the positional relationship among the PCB board, the capacitor, and the position sensor in the present application
  • FIG. 21 shows a schematic diagram of the positional relationship between the mounting protrusion and the glue injection hole of the lens support of a specific embodiment of the present application
  • FIG. 22 shows a schematic structural diagram of a magnetic conductive plate of a specific embodiment of the present application.
  • Fig. 23 shows an exploded view of an optical zoom motor of another specific embodiment of the present application.
  • the present application provides an optical zoom motor, a camera device, and an assembling method of the optical zoom motor.
  • the imaging device in the present application includes the following optical zoom motor.
  • the camera device in this application includes, but is not limited to, a smart phone with a camera function.
  • the optical zoom motor in this application when used on a smart phone, it can not only improve the performance of the camera module of the smart phone, but also effectively reduce the overall thickness of the smart phone, and can effectively solve the problem of the smart phone.
  • the protruding problem of the camera is to solve the problem that the rear camera of the smart phone protrudes from the back shell of the smart phone.
  • the camera device in this application can also be used in the fields of miniature imaging and photography such as tablets, computers, and automotive electronics.
  • the optical zoom motor in the present application includes a housing 10, a base 20, a lens support 30, a plurality of driving magnets 40, a plurality of driving coils 50, a plurality of lateral magnets 60, and a plurality of sides.
  • the base 20 is arranged under the housing 10 and forms an accommodation space between the housing 10 and the housing 10.
  • the housing 10 includes a top wall 111 and a circumferential side wall 112. The top wall 111 is arranged opposite to the base 20, and the top wall 111 passes through the circumferential side wall.
  • the lens support 30 is movably arranged in the accommodating space;
  • the driving magnet 40 is arranged on the lens support 30;
  • the driving coil 50 is arranged on the base 20 and corresponding to the drive magnet 40, the drive coil 50 is energized to make the lens support 30 move closer to or away from the opening 113;
  • a set of two oppositely arranged side walls of the circumferential side wall 112 are respectively provided with at least One lateral magnet 60, and the lateral magnet 60 and the opening 113 are respectively arranged on different side walls;
  • the lateral coil 70 is arranged on the lens support 30, and a plurality of lateral coils 70 correspond to a plurality of lateral magnets 60 Set up.
  • the optical zoom motor with the above structure since one side wall of the peripheral side wall 112 of the base 20 has an opening 113, compared with the conventional optical zoom motor with the opening at the top, the optical zoom in this application is compared
  • the overall thickness of the camera device can be reduced by changing the installation direction of the optical zoom motor.
  • this setting can also increase the zoom driving space range of the camera device parallel to the direction of the mobile phone, for clear capture. The sceneries create favorable conditions to obtain a more perfect image imaging effect.
  • the lens support can be driven by the cooperation of the driving magnet 40 and the driving coil 50
  • the body 30 moves in the accommodating space to achieve the purpose of driving the optical zoom of the lens.
  • the position of the lens support 30 relative to the opening 113 can be adjusted by driving the lens support 30 through the cooperation of the lateral magnet 60 and the lateral coil 70, thereby ensuring the anti-shake performance of the optical zoom motor.
  • the objective of driving the optical zoom of the lens is achieved, and at the same time it has an effective anti-shake function, and the structure of the application is used to effectively reduce the overall thickness of the camera device, solve the problem of the limitation of the thickness of the mobile phone, and overcome the conventional vertical placement.
  • the camera facing the outside on the surface of the mobile phone results in a narrow zoom range and insufficient optical zoom capability.
  • a group of opposite side walls of the housing 10 may all be provided with openings 113, and another group of opposite side walls may be provided with lateral magnets 60.
  • the installation positions of the lateral coil 70 and the lateral magnet 60 are interchangeable, but it should be noted that the fixing and electrical conduction methods of the lateral coil 70 after the interchange will be different. Complexity.
  • the interchanged lateral magnets 60 may cause magnetic interference to the position sensor 200 on the base 20 to a certain extent, and affect the feedback accuracy.
  • the optical zoom motor in this application and a mobile phone with a camera function, special attention should be paid to the installation direction of the optical zoom motor.
  • the optical zoom motor needs to be arranged parallel to the rear shell of the mobile phone or parallel to the mobile phone screen. It is also said that when the optical zoom motor in this application is used, when the lens support 30 is driven to focus, the lens support The direction of movement of 30 is parallel to the back cover of the mobile phone or the mobile phone screen.
  • the prism motor 100 and the prism system that is, add one at the end of the lens. 45-degree prism driving system for daylighting.
  • the structural feature of the prism motor 100 is that the incident surface of the prism motor 100 is parallel to the back cover of the mobile phone or the mobile phone screen and can capture the target to be photographed, and the reflective surface of the prism motor 100 is aligned with the opening 113 of the shielding cover 11, ie, the lens.
  • the specific approach is to align the lens along an optical axis parallel to the fuselage, and then reflect the light entering the camera to the optical zoom lens and image sensor through the reflection of the prism.
  • the vertical installation direction of the camera is the longer equivalent focal length toward the outside on the surface of the mobile phone.
  • the lens support 30 is suspended above the base 20, and there is an installation gap between the lens support 30 and the base 20. Since the direction of movement of the lens support 30 is always parallel to the base 20 during the movement, the friction between the lens support 30 and the base 20 can be effectively reduced by setting the installation gap, thereby effectively ensuring the optical The service life of the zoom motor. Moreover, through this arrangement, the influence of the base 20 on the movement of the lens support 30 can be reduced, thereby ensuring that the movement of the lens support 30 is more sensitive.
  • the optical zoom motor further includes a plurality of suspension wires 80.
  • Each corner of the part of the base 20 located in the housing 10 is provided with a suspension wire 80 correspondingly.
  • the multiple corners of the lens support 30 and the plurality of suspension wires 80 corresponds to the support, so that the lens support 30 is suspended.
  • the suspension wire 80 can not only realize the electrical connection in the optical zoom motor, but also because the lens support 30 is suspended above the base 20, the suspension wire 80 can ensure the connection between the lens support 30 and the base 20.
  • the suspension wire 80 can also limit the movement of the lens support 30 and provide support for the lens support 30.
  • the housing 10 includes a shielding cover 11, a frame 12, and a plurality of magnet back plates 13.
  • the shielding cover 11 has a top wall 111 and a circumferential side wall 112: the frame 12 is located in the accommodating space and connected to the top wall 111, the lateral magnet 60 is located on the side of the frame 12 close to the base 20; the magnet back plate 13 and the lateral magnet 60 is correspondingly arranged, and the magnet back plate 13 is located between the circumferential side wall 112 and the lateral magnet 60, and the magnet back plate 13 is made of a magnetically insulating material.
  • the side magnet 60 can be effectively fixed by providing the frame 12 and a plurality of magnet back plates 13.
  • the side magnet 60 can also be magnetically shielded, which not only ensures the use effect of the side magnet 60, but also reduces the influence of the side magnet 60 on other components of the camera. .
  • the frame 12 is clamped to the lateral magnet 60.
  • the magnet back plate 13 is clamped to the lateral magnet 60.
  • the magnet back plate 13 is connected to the frame 12.
  • the frame 12 is connected to the magnet back plate 13, and the lateral magnet 60 is arranged on the magnet back plate 13, and the lateral magnet 60 is clamped through the frame 12 and the magnet back plate 13, respectively. While keeping the lateral magnet 60 fixed, the lateral magnet 60 can also be aligned with the lateral coil 70.
  • the magnet back plate 13 are provided with flanges 131 to enclose a cavity for accommodating the lateral magnet 60, and at least one edge of the magnet back plate 13 is provided with a clamping protrusion 132 ,
  • the clamping protrusion 132 is matched with the clamping slot 121 of the frame 12; or the frame 12 has a bayonet 122 facing the base 20, and the edge of the lateral magnet 60 is clipped at the bayonet 122.
  • the width of the flange 131 is equal to the thickness of the lateral magnet 60.
  • the flange 131 can hold the lateral magnet 60 well.
  • the protruding end of the flange 131 is folded upward to wrap the edge of the lateral magnet 60 to prevent the lateral magnet 60 from coming out.
  • the width of the flange 131 can also be smaller or larger than the thickness of the lateral magnet 60, but the fixing effect of the magnet back plate 13 on the lateral magnet 60 needs to be ensured.
  • the frame 12 and the shielding cover 11 are connected by welding.
  • a glue groove 123 is provided on the side of the frame 12 away from the lens support 30, and the frame 12 and the shielding cover 11 are bonded by glue. By using glue to bond, it is easier to maintain the connection between the shielding cover 11 and the frame 12.
  • the base 20 has a PCB board 21, the driving coil 50 is electrically connected to the PCB board 21, and at least a part of the base 20 extends to the outside of the housing 10 so that the pins 25 of the PCB board 21 are exposed
  • At least one relief gap 114 is reserved at the edge of the circumferential side wall 112 away from the top wall 111, and the base 20 extends to the outside of the housing 10 through the relief gap 114.
  • the optical zoom motor can be electrically connected to the camera device through the base 20 and the portion of the PCB board 21 that protrudes out of the housing 10.
  • the shielding cover 11 has three recesses 114, and the circumferential sidewall 112 with the recesses 114 and the circumferential side with the opening 113
  • the walls 112 are not the same side wall.
  • the base 20 further has a seat body 22 with a plurality of positioning protrusions 23 protruding toward the PCB board 21.
  • the PCB board 21 is provided with positioning holes 24, and the positioning protrusions 23 are embedded in the positioning holes 24 or abut against the positioning holes 24. Connected to the edge of the PCB board 21. With this arrangement, the positioning protrusion 23 can effectively limit the position of the PCB board 21, thereby effectively preventing relative shaking between the PCB board 21 and the base 22.
  • the lens support body 30 is provided with a plurality of positioning notches 31, and the plurality of lateral coils 70 are correspondingly clamped with the plurality of positioning notches 31; the lens support body 30 is provided with a communication groove 32, and the communication groove 32 is embedded with communication
  • the lead wire 33 is electrically connected to the plurality of lateral coils 70 through the connecting lead wire 33.
  • the number of lateral coils 70 and positioning notches 31 are both two, and the two lateral coils 70 are arranged oppositely, and the two lateral coils 70 respectively correspond to the circumferential side of the housing 10
  • the walls 112 are perpendicular to the circumferential side walls 112 having the openings 113, respectively.
  • a side of the lens support 30 close to the base 20 is provided with an accommodating groove 34 for accommodating the driving magnet 40.
  • the two accommodating grooves 34 are respectively provided on a set of opposite sides of the lens support 30 and extend along the movement direction of the lens support 30, and the two accommodating grooves 34 Drive magnets 40 are respectively provided in the grooves 34.
  • a glue injection hole 342 is also provided in the accommodating groove 34, so that glue can be injected into the glue hole 342 to enhance the fixation of the magnetic conductive plate 35.
  • the bottom of the accommodating groove 34 is further provided with a magnetic conductive plate 35, and the driving magnet 40 is located between the magnetic conductive plate 35 and the driving coil 50.
  • the magnetic conductive plate 35 By providing the magnetic conductive plate 35, it can not affect the induction between the drive magnet 40 and the drive coil 50 at the same time can also play a certain role in fixing the drive magnet 40, which can effectively prevent the drive magnet 40 from falling from the lens support. Dropped on 30.
  • the magnetic conductive plate 35 and the lens support 30 may be an integral structure.
  • the magnetic conductive plate 35 and the lens support 30 may also be of separate structure.
  • a mounting groove 36 is provided at the edge of the magnetic conductive plate 35, and the lens support 30 has an embedded mounting groove. 36 within the mounting protrusion 341.
  • the plurality of driving coils 50 are in two groups, and the two groups of driving coils 50 are arranged in one-to-one correspondence with the two accommodating grooves 34, and each group is provided with at least two driving coils 50, and there are more than one in the same group.
  • the driving coils 50 are electrically connected to each other. Through this arrangement, it can be ensured that the two sets of driving coils 50 can respectively induce induction with the driving magnets 40 in different accommodating grooves 34, thereby ensuring that the induction between the driving magnets 40 and the driving coils 50 is more sensitive.
  • each group has two driving coils 50, and all the driving coils 50 are respectively located at the four corners of the base 20, and the current directions of the two driving coils 50 of one group are opposite when they are energized.
  • the two drive coils 50 of the other group have the same current direction when they are energized.
  • the two sets of driving coils 50 cooperate with their corresponding driving magnets 40 to satisfy the left-hand rule.
  • the optical zoom motor further includes at least one position sensor 200.
  • Each driving magnet 40 is a monolithic magnet.
  • the monolithic magnet is divided into a plurality of regions to be magnetized into different polarities.
  • Each driving magnet 40 extends along its thickness. The direction is divided into a first area 41 and a second area 42, and the first area 41 is close to the driving coil 50 relative to the second area 42.
  • the first area 41 includes at least four first sub-areas 411
  • the second area 42 includes at least The four first sub-regions 411 correspond to at least four second sub-regions 421 one-to-one, and the polarities of two adjacent first sub-regions 411 are different, and the polarities of two adjacent second sub-regions 421 are different, and The polarities of the first sub-regions 411 and the second sub-regions 421 arranged corresponding to each other are different, all the first sub-regions 411 and all the second sub-regions 421 collectively constitute a plurality of regions, and at least one group is arranged adjacently in the first region 41
  • the orthographic projections of the two first sub-regions 411 are located on the position sensor 200.
  • At least two adjacent first sub-regions 411 are F-shaped.
  • At least two adjacent second sub-regions 421 are F-shaped.
  • the area sizes of the at least two first sub-regions 411 are different.
  • the magnetization conditions of multiple regions of the two driving magnets 40 are different.
  • the magnetic pole of the magnet matches the current direction of the coil so that the direction of the combined force is consistent.
  • the optical zoom motor further includes a plurality of springs 90 and a plurality of suspension wires 80.
  • a spring 90 is correspondingly provided at each corner of the side of the lens support 30 away from the base 20, and the spring 90 is electrically connected to the lateral coil 70; each corner of the part of the base 20 located in the housing 10 is correspondingly provided
  • There is a suspension wire 80 the first end of each suspension wire 80 is electrically connected with the PCB board 21 of the base 20, and the second end of each suspension wire 80 is electrically connected with the spring 90, so that the lens support 30 is suspended. Since the lens support 30 is suspended on the base 20 in this application, when the lens support 30 moves, the spring 90 is connected to the suspension wire 80 to effectively protect the suspension wire 80 and prevent the suspension wire from being suspended. 80 is damaged due to deformation.
  • the PCB board 21 has a plurality of first communication holes 211 matched with the suspension wires 80.
  • the seat body 22 of the base 20 has a plurality of second communication holes 221 that cooperate with the suspension wires 80.
  • the first communication hole 211 may have an extra space between the second communication hole 221 and the suspension wire 80.
  • the second end of the suspension wire 80 and the spring 90 are connected by welding.
  • At least one insertion hole 91 is provided at the position of the spring 90 corresponding to the lens support 30, and the lens support 30 is provided with an insertion post 37 that matches with the insertion hole 91.
  • welding may be performed between the plug hole 91 and the plug post 37.
  • the lens support body 30 is provided with a plurality of positioning notches 31, and each positioning notch 31 is provided with at least one string-hanging post 38, and a plurality of lateral coils 70 are sleeved on the string-hanging post 38 and connected to the multiple positioning notches 31. Corresponding card connection. It should be noted that after the lateral coil 70 is installed on the hanging post 38, the hanging post 38 protrudes from the lateral coil 70, so that the lateral coil 70 can be protected by the hanging post 38 to prevent the opposite side Impact on the coil.
  • At least one dispensing hole 381 is provided at the position of the lens support 30 corresponding to the lateral coil 70.
  • each magnet back plate 13 has at least one glue gap 133 connecting the lateral magnet 60 and the circumferential side wall 112.
  • the frame 12 is provided with an escape notch 124 at a position corresponding to the communication groove 32 of the lens support body 30.
  • a glue groove 231 is provided on the side of the positioning protrusion 23 away from the seat body 22.
  • a backing plate 222 is also provided inside the seat body 22, and at least a part of the backing plate 222 is exposed on the side of the seat body 22 facing the PCB board 21, and the seat body 22 and the backing plate 222 are integrally formed.
  • the part of the seat body 22 that extends out of the housing 10 has a clamping groove 223 that matches with the housing 10; or the side of the seat body 22 away from the clamping groove 223 of the seat body 22 has a side that extends toward the lens support body 30.
  • one end of the backing plate 222 of the seat 22 close to the lateral magnet 60 has a protruding wall 225 protruding from the housing 10, and at least a part of the circumferential side wall 112 of the shielding cover 11 of the housing 10 overlaps the protruding On the wall 225.
  • the base body 22 further has a positioning pillar 226 protruding toward the PCB board 21, and the PCB board 21 has a positioning opening 212 that cooperates with the positioning pillar 226.
  • the seat body 22 has a counter groove 227 facing the lens support body 30, and the side of the lens support body 30 facing the counter groove 227 has a mating surface 391 that is matched with the counter groove 227, the counter groove 227 and the mating surface
  • Temporary gaskets are set between 391. With this arrangement, after the installation of the housing 10 is completed, the temporary gasket can be taken out more easily.
  • one position sensor 200 is set between the two driving coils in each group; the capacitor 300 is arranged on the PCB board 21, and the capacitor 300 is arranged in one of the positions The sensor 200 is away from the side of the other position sensor 200. It should be pointed out that one of the position sensors 200 feedbacks and calculates the driving position of the lens in the direction parallel to the lateral magnet 60 through the induction of magnetic field strength, and further controls the lens to achieve the image by inputting the current to the driving coil 50 The clearest location point.
  • the other position sensor 200 feeds back and calculates the positional jitter deviation of the lens in the direction perpendicular to the lateral magnet 60 through magnetic field strength induction, and further adjusts and corrects the lens by inputting a certain amount of current to the lateral coil 70 To achieve the purpose of anti-shake.
  • each Hall chip has multiple Hall elements.
  • the pin 25 connected to each Hall chip controls the VCC access circuit on the Hall chip.
  • the voltage supply voltage, the working voltage inside the VDD device is the working voltage of the chip, the SDA serial data line and the SCL clock data line.
  • each Hall element is respectively connected to a set of side coils 70 connected in series, so as to correct the positional deviation caused by the shaking of the lens support 30 in the direction perpendicular to the side coil 70.
  • the present application also includes an assembling method of an optical zoom motor.
  • the optical zoom motor is the above-mentioned optical zoom motor.
  • the assembling method includes: before mounting the base 20 of the optical zoom motor and the lens support body 30 of the optical zoom motor, First, place a temporary gasket between the two; after the base 20 and the lens support 30 are installed, the temporary gasket is taken out from between the base 20 and the lens support 30.
  • the temporary gasket is taken out.
  • the assembly method further includes a pre-assembly step between placing temporary spacers: mounting the PCB board 21 of the base 20 to the base body 22 of the base 20; and connecting the driving coil 50 to the PCB board 21.
  • the lens support 30 when the lens support 30 is installed on the base 20 on which the temporary spacer is placed, the lens support 30 is supported on the base 20 by the suspension wire 80 of the optical zoom motor.
  • optical zoom motor in this application can effectively reduce the overall thickness of the camera device
  • the mobile phone adopts the optical zoom motor in this application, it can effectively increase the focal length of the camera module of the mobile phone;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Lens Barrels (AREA)

Abstract

一种光学变焦马达、摄像装置及光学变焦马达的组装方法。其中,光学变焦马达包括:外壳(10);底座(20),底座(20)设置在外壳(10)的下方并与外壳(10)之间形成容置空间,外壳(10)包括顶壁(111)和周向侧壁(112),顶壁(111)与底座(20)相对设置,且顶壁(111)通过周向侧壁(112)与底座(20)连接;透镜支撑体(30),透镜支撑体(30)活动设置在容置空间内;多个驱动磁石(40),驱动磁石(40)设置在透镜支撑体(30)上;多个驱动线圈(50),驱动线圈(50)设置在底座(20)上且对应驱动磁石(40),驱动线圈(50)通电以使透镜支撑体(30)向靠近或远离开口部(113)的方向运动;多个侧向磁石(60),周向侧壁(112)的一组相对设置的两个侧壁上分别各设置有至少一个侧向磁石(60);多个侧向线圈(70),侧向线圈(70)设置在透镜支撑体(30)上。该方案解决了现有技术中摄像装置因安装方向导致变焦能力差的问题。

Description

光学变焦马达、摄像装置及光学变焦马达的组装方法 技术领域
本申请涉及潜望式对焦装置领域,具体而言,涉及一种光学变焦马达、摄像装置及光学变焦马达的组装方法。
背景技术
近年来随着市场需求,手机摄像头为适应新的发展趋势,具有高像素、大光圈、超薄型的要求。
现有的自动对焦装置均是利用音圈马达同镜头以及影像传感器、电路板累加高度形成,由于手机像素的提高以及产品高度要求越来越薄,现有技术在产品的使用上出现瓶颈。大光圈以及高像素的镜头整体的光学高度比较高,造成现有累计的产品高度无法满足超薄的手机机身的需求。同时由于影像传感器的组装会出现偏差,造成光线中心和影像传感器中心无法重合,影响了影像传感器的成像质量,导致最终输出的照片达不到最佳的效果。
由于手机厚度的限制,采用常规竖向放置(即在手机表面上朝向外部)的手机摄像头焦距较小,光学变焦能力有限。而本申请的潜望式摄像头区别于传统镜头的竖向排列方式,在手机内横向排放,并增加了光学转换部件,由光学变焦马达、镜头组、棱镜等组成,以特殊的光学三棱镜让光线折射进入镜头组,实现成像,能够达到较高的光学变焦倍数,使镜头能够清晰拍摄到更远处的景物。潜望式结构,应用到智能手机上具有良好的运用前景。
在此,本申请旨在通过设计出一种具潜望式功能的光学变焦马达,配以棱镜部分的功能辅助,最终实现将马达平行放置在手机上,进一步使得手机高度得以大大降低,实现超薄机身及高质量光学变焦成像的效果。
发明内容
本申请的多个实施例提供了一种光学变焦马达、摄像装置及光学变焦马达的组装方法,以解决现有技术中摄像装置因安装方向导致变焦能力差的问题。
在本申请的一个实施例中,提供了一种光学变焦马达,包括:外壳;底座,底座设置在外壳的下方并与外壳之间形成容置空间,外壳包括顶壁和周向侧壁,顶壁与底座相对设置,且顶壁通过周向侧壁与底座连接,周向侧壁的一个侧壁上具有开口部;透镜支撑体,透镜支撑体活动设置在容置空间内;多个驱动磁石,驱动磁石设置在透镜支撑体上;多个驱动线圈,驱动线圈设置在底座上且对应驱动磁石,驱动线圈通电以使透镜支撑体向靠近或远离开口部的方向运动;多个侧向磁石,周向侧壁的一组相对设置的两个侧壁上分别各设置有至少一个侧向磁石,且侧向磁石和开口部分别设置在不同的侧壁上;多个侧向线圈,侧向线圈设置在透镜支撑体上,且多个侧向线圈对应多个侧向磁石设置。
在本申请的一个优选实施例中,透镜支撑体悬浮设置在底座上方,且透镜支撑体与底座之间具有安装间隙。
在本申请的一个优选实施例中,光学变焦马达还包括多个悬丝,底座位于外壳内的部分的各角部处均对应设置有一个悬丝,透镜支撑体的多个角部与多个悬丝对应支撑,以使透镜支撑体悬浮设置。
在本申请的一个优选实施例中,外壳包括:屏蔽罩,屏蔽罩具有顶壁和周向侧壁:框架,框架位于容置空间内且与顶壁连接,侧向磁石位于框架靠近底座的一侧;多个磁石背板,磁石背板与侧向磁石对应设置,且磁石背板位于周向侧壁与侧向磁石之间,磁石背板是隔磁材料制成的。
在本申请的一个优选实施例中,框架与侧向磁石卡接;或者磁石背板与侧向磁石卡接;或者磁石背板与框架连接。
在本申请的一个优选实施例中,磁石背板的至少三个边缘处具有翻边,以围成用于容置侧向磁石的腔体,且磁石背板的至少一个边缘处设置有卡接凸起,卡接凸起与框架的卡槽配合;或者框架具有朝向底座的卡口,侧向磁石的边缘卡接在卡口处。
在本申请的一个优选实施例中,翻边的宽度等于侧向磁石的厚度。
在本申请的一个优选实施例中,框架远离透镜支撑体的一侧具有胶水槽,框架与屏蔽罩之间通过胶水粘接;或者框架与屏蔽罩之间通过焊接连接。
在本申请的一个优选实施例中,底座具有PCB板,驱动线圈与PCB板电连接,底座的至少一部分伸出至外壳的外侧,以使PCB板的引脚裸露在外壳的外侧。
在本申请的一个优选实施例中,周向侧壁远离顶壁的边缘处预留有至少一个让位缺口,底座经让位缺口处伸出至外壳的外侧。
在本申请的一个优选实施例中,底座还具有座体,座体具有朝向PCB板伸出的多个定位凸起,PCB板设置有定位孔,且定位凸起嵌入定位孔内或抵接在PCB板的边缘处。
在本申请的一个优选实施例中,透镜支撑体上设置有多个定位缺口,多个侧向线圈与多个定位缺口对应卡接;或者透镜支撑体上设置有连通槽,连通槽内埋设有连通导线,多个侧向线圈之间通过连通导线电连接。
在本申请的一个优选实施例中,透镜支撑体靠近底座的一侧设置有用于容置驱动磁石的容置凹槽。
在本申请的一个优选实施例中,容置凹槽的槽底还设置有导磁板,驱动磁石位于导磁板与驱动线圈之间。
在本申请的一个优选实施例中,导磁板的边缘处设置有安装槽,透镜支撑体具有嵌入安装槽内的安装凸起。
在本申请的一个优选实施例中,容置凹槽为两个,两个容置凹槽分别设置在透镜支撑体的一组对边上并沿透镜支撑体的运动方向延伸,且两个容置凹槽内各设置有驱动磁石。
在本申请的一个优选实施例中,多个驱动线圈为两组,两组驱动线圈与两个容置凹槽一一对应设置,且各组内均设置有至少两个驱动线圈,且同组内的多个驱动线圈彼此电连接。
在本申请的一个优选实施例中,各组内均有两个驱动线圈,且所有驱动线圈分别位于底座的四个角部处,其中一组的两个驱动线圈通电时的电流方向相反。
在本申请的一个优选实施例中,光学变焦马达还包括至少一个位置传感器,各驱动磁石均为一整块磁石,一整块磁石分为多个区域以充磁成不同的极性,各驱动磁石沿其厚度方向分为第一区域和第二区域,且第一区域相对于第二区域靠近驱动线圈,第一区域包括至少四个第一子区域,第二区域包括与至少四个第一子区域一一对应的至少四个第二子区域,且相邻两个第一子区域的极性不同,相邻两个第二子区域的极性不同,且彼此对应设置的第一子区域和第二子区域的极性不同,所有第一子区域和所有第二子区域公共构成多个区域,第一区域内至少一组相邻设置的两个第一子区域的正投影位于位置传感器上。
在本申请的一个优选实施例中,至少两个相邻的第一子区域呈F形;或者至少两个相邻的第二子区域呈F形。
在本申请的一个优选实施例中,至少两个第一子区域的面积大小不同;或者两个驱动磁石的多个区域的充磁情况不同。
在本申请的一个优选实施例中,光学变焦马达还包括:多个弹簧,透镜支撑体远离底座的一侧的各角部处均对应设置有一个弹簧,且弹簧与侧向线圈电连接;多个悬丝,底座位于外壳内的部分的各角部处均对应设置有一个悬丝,各悬丝的第一端与底座的PCB板电连接,各悬丝的第二端与弹簧电连接,以使透镜支撑体悬浮设置。
在本申请的一个优选实施例中,PCB板具有多个与悬丝配合的第一连通孔;或者底座的座体具有多个与悬丝配合的第二连通孔;或者悬丝的第二端与弹簧之间通过焊接连接;或者弹簧对应透镜支撑体的位置处设置有至少一个插接孔,述透镜支撑体设置有与插接孔配合的插接柱。
在本申请的一个优选实施例中,透镜支撑体设置有多个定位缺口,各定位缺口内设置有至少一个挂线柱,多个侧向线圈套设在挂线柱上并与多个定位缺口对应卡接;或者透镜支撑体对应侧向线圈的位置处设置有至少一个点胶孔;或者透镜支撑体的角部处具有至少一个限位角。
在本申请的一个优选实施例中,各磁石背板均各具有至少一个连通侧向磁石和周向侧壁的点胶缝;或者框架对应透镜支撑体的连通槽的位置处设置有避让缺口。
在本申请的一个优选实施例中,定位凸起远离座体的一侧具有粘胶槽;或者座体内部还设置有垫板,且垫板的至少一部分裸露于座体朝向PCB板的一侧,且座体与垫板为一体成型 结构;或者座体伸出外壳的部分具有与外壳配合的卡接凹槽;或者座体远离座体的卡接凹槽的一侧具有朝向透镜支撑体伸出的承接壁,承接壁与外壳的屏蔽罩之间具有点胶缝隙;或者座体的垫板靠近侧向磁石的一端具有伸出外壳的突出壁,且外壳的屏蔽罩的周向侧壁的至少一部分搭接在突出壁上;或者座体还具有朝向PCB板伸出的定位柱,PCB板具有与定位柱配合的定位开孔;或者座体朝向透镜支撑体具有沉槽,透镜支撑体朝向沉槽的一侧具有与沉槽配合的配合面,沉槽和配合面之间设置有临时垫片。
在本申请的一个优选实施例中,两个位置传感器,各组内的两个驱动线圈之间均设置有一个位置传感器;电容,电容设置在PCB板上,且电容设置在其中一个位置传感器远离另一个位置传感器的一侧。
本申请还提供了一种摄像装置,包括上述的光学变焦马达。
本申请还提供了一种光学变焦马达的组装方法,光学变焦马达是上述的光学变焦马达,组装方法包括:在将光学变焦马达的底座和光学变焦马达的透镜支撑体进行安装前,先在二者之间放置临时垫片;底座和透镜支撑体安装完成后,将临时垫片从底座和透镜支撑体之间取出。
在本申请的一个优选实施例中,底座和透镜支撑体安装完成且将外壳与底座连接后,再将临时垫片取出。
在本申请的一个优选实施例中,组装方法还包括在放置临时垫片之间的预装步骤:将底座的PCB板安装至底座的座体上;将驱动线圈连接在PCB板上。
在本申请的一个优选实施例中,在放置有临时垫片的底座上安装透镜支撑体时,通过光学变焦马达的悬丝将透镜支撑体支撑在底座上。
应用本申请的技术方案,本申请中的光学变焦马达包括外壳、底座、透镜支撑体、多个驱动磁石、多个驱动线圈、多个侧向磁石以及多个侧向线圈。底座设置在外壳的下方并与外壳之间形成容置空间,外壳包括顶壁和周向侧壁,顶壁与底座相对设置,且顶壁通过周向侧壁与底座连接,周向侧壁的一个侧壁上具有开口部;透镜支撑体活动设置在容置空间内;驱动磁石设置在透镜支撑体上;驱动线圈设置在底座上且对应驱动磁石,驱动线圈通电以使透镜支撑体向靠近或远离开口部的方向运动;周向侧壁的一组相对设置的两个侧壁上分别各设置有至少一个侧向磁石,且侧向磁石和开口部分别设置在不同的侧壁上;侧向线圈设置在透镜支撑体上,且多个侧向线圈对应多个侧向磁石设置。
使用上述结构的光学变焦马达时,由于外壳的屏蔽罩的周向侧壁的一个侧壁上具有开口部,所以与传统的开口设置在顶部的光学变焦马达相比在将本申请中的光学变焦马达安装在摄像装置上时,可以通过改变光学变焦马达的安装方向来减少摄像装置的整体厚度,同时这样设置还能够提高平行于手机方向的摄像装置的可变焦驱动空间范围,为清晰捕获更远处景物创造了有利条件,可获得更为完美的图像成像效果。又由于在本申请中分别设置有多个驱动磁石、多个驱动线圈、多个侧向磁石以及多个侧向线圈,所以通过驱动磁石和驱动线圈的 配合能够驱动透镜支撑体在容置空间中移动,达到驱动镜头的光学变焦的目的。而通过侧向磁石和侧向线圈的配合能够通过驱动透镜支撑体来调整透镜支撑体相对开口部的位置,从而保证了光学变焦马达的防抖性能。因此,达到了驱动镜头的光学变焦目的,同时具有有效的防抖功能,而且使用本申请的结构来有效地降低摄像装置的整体厚度,解决了手机厚度的限制问题,克服了常规竖向放置的摄像头所导致可变焦范围狭窄,光学变焦能力不足的问题
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的一个具体实施例的光学变焦马达的爆炸图;
图2示出了图1中外壳与侧向磁石的位置关系示意图;
图3示出了图2的俯视图;
图4示出了本申请中光学变焦马达的透镜支撑体与侧向线圈的位置关系示意图;
图5示出了图4中另一个角度的透镜支撑体与侧向线圈的结构示意图;
图6示出了本申请中的光学变焦马达的侧向线圈、驱动磁石以及透镜支撑体之间的位置关系示意图;
图7示出了本申请中的光学变焦马达的座体与PCB板组合状态的结构示意图;
图8示出了本申请中的光学变焦马达的座体、PCB板与驱动线圈之间的位置关系示意图;
图9示出了本申请中的光学变焦马达的透镜支撑体与底座之间的位置关系示意图;
图10示出了本申请中的光学变焦马达的结构示意图;
图11示出了本申请中的光学变焦马达与棱镜马达的配合关系示意图;
图12示出了本申请的另一个实施例中的光学变焦马达的具有胶水槽的框架的结构示意图。
图13示出了本申请的另一个实施例中的磁石背板的结构示意图;
图14示出了本申请中框架的避让缺口的位置示意图;
图15示出了本申请的另一个实施例中透镜支撑体、框架以及底座之间的位置关系示意图;
图16示出了图15中的透镜支撑体与底座之间的位置关系示意图;
图17示出了图15中底座的座体与PCB板之间的位置关系示意图;
图18示出了图17中的座体的另一个角度的结构示意图;
图19示出了本申请中透镜支撑体的配合面的位置示意图;
图20示出了本申请中PCB板、电容以及位置传感器之间的位置关系示意图;
图21示出了本申请的一个具体实施例的透镜支撑体的安装凸起和注胶孔的位置关系示意图;
图22示出了本申请的一个具体实施例的导磁板的结构示意图;
图23示出了本申请的另一个具体实施例的光学变焦马达的爆炸图。
其中,上述附图包括以下附图标记:
10、外壳;11、屏蔽罩;111、顶壁;112、周向侧壁;113、开口部;114、让位缺口;12、框架;121、卡槽;122、卡口;123、胶水槽;124、避让缺口;13、磁石背板;131、翻边;132、卡接凸起;133、点胶缝;20、底座;21、PCB板;211、第一连通孔;212、定位开孔;22、座体;221、第二连通孔;222、垫板;223、卡接凹槽;224、承接壁;225、突出壁;226、定位柱;227、沉槽;23、定位凸起;231、粘胶槽;24、定位孔;25、引脚;30、透镜支撑体;31、定位缺口;32、连通槽;33、连通导线;34、容置凹槽;341、安装凸起;342、注胶孔;35、导磁板;36、安装槽;37、插接柱;38、挂线柱;381、点胶孔;39、限位角;391、配合面;40、驱动磁石;41、第一区域;411、第一子区域;42、第二区域;421、第二子区域;50、驱动线圈;60、侧向磁石;70、侧向线圈;80、悬丝;90、弹簧;91、插接孔;100、棱镜马达;200、位置传感器;300、电容。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
为了解决现有技术中摄像装置因安装方向导致变焦能力差光学变焦马达的问题,本申请提供了一种光学变焦马达、、摄像装置及光学变焦马达的组装方法。
其中,本申请中的摄像装置包括下述的光学变焦马达。
需要指出的是,本申请中的摄像装置包括但并不限于具有拍照功能的智能手机。并且,在将本申请中的光学变焦马达使用在智能手机上时,不仅可以提高智能手机的相机模块的使用性能,而且还能够有效地减少智能手机的整体厚度,并且能够有效地解决智能手机后置摄像头外凸的问题,即解决智能手机的后置摄像头突出于智能手机的后壳。
还需要说明的是,本申请中的摄像装置除了应用在手机领域外,还可以应用在平板、电脑、汽车电子等微型影像照相领域。
如图1至图10所示,本申请中的光学变焦马达包括外壳10、底座20、透镜支撑体30、多个驱动磁石40、多个驱动线圈50、多个侧向磁石60以及多个侧向线圈70。底座20设置在外壳10的下方并与外壳10之间形成容置空间,外壳10包括顶壁111和周向侧壁112,顶壁111与底座20相对设置,且顶壁111通过周向侧壁112与底座20连接,周向侧壁112的一个侧壁上具有开口部113;透镜支撑体30活动设置在容置空间内;驱动磁石40设置在透镜支撑体30上;驱动线圈50设置在底座20上且对应驱动磁石40,驱动线圈50通电以使透镜支撑体30向靠近或远离开口部113的方向运动;周向侧壁112的一组相对设置的两个侧壁上分别各设置有至少一个侧向磁石60,且侧向磁石60和开口部113分别设置在不同的侧壁上;侧向线圈70设置在透镜支撑体30上,且多个侧向线圈70对应多个侧向磁石60设置。
使用上述结构的光学变焦马达时,由于底座20的周向侧壁112的一个侧壁上具有开口部113,所以与传统的开口设置在顶部的光学变焦马达相比在将本申请中的光学变焦马达安装在摄像装置上时,可以通过改变光学变焦马达的安装方向来减少摄像装置的整体厚度,同时这样设置还能够提高平行于手机方向的摄像装置的可变焦驱动空间范围,为清晰捕获更远处景物创造了有利条件,可获得更为完美的图像成像效果。又由于在本申请中分别设置有多个驱动磁石40、多个驱动线圈50、多个侧向磁石60以及多个侧向线圈70,所以通过驱动磁石40和驱动线圈50的配合能够驱动透镜支撑体30在容置空间中移动,达到驱动镜头的光学变焦的目的。而通过侧向磁石60和侧向线圈70的配合能够通过驱动透镜支撑体30来调整透镜支撑体30相对开口部113的位置,从而保证了光学变焦马达的防抖性能。因此,达到了驱动镜头的光学变焦目的,同时具有有效的防抖功能,而且使用本申请的结构来有效地降低摄像装置的整体厚度,解决了手机厚度的限制问题,克服了常规竖向放置即在手机表面上朝向外部的摄像头所导致可变焦范围狭窄,光学变焦能力不足的问题。
需要说明的是在本申请中,外壳10的一组相对设置的侧壁上可以均设置有开口部113,且另一组相对设置的侧壁上设置有侧向磁石60。
需要指出的是,在本申请中透镜支撑体30的所有运动的运动方向均是与底座20平行的。并且在本申请中侧向线圈70与侧向磁石60之间的安装位置是可以互换的,但需要说明的是,互换后的侧向线圈70的固定及电气导通方式会有一定的复杂性。另外,互换后的侧向磁石60会一定程度存在对底座20上的位置传感器200造成磁气干扰,影响反馈精度。
如图11所示,还需要说明的是,在将本申请中的光学变焦马达以及使用在具有拍照功能的手机上时,需要特别注意光学变焦马达的安装方向。在进行组装时,需要将光学变焦马达与手机后壳平行设置或者与手机屏幕平行设置,也有是说当使用本申请中的光学变焦马达时,在驱动透镜支撑体30进行对焦时,透镜支撑体30的运动方向是与手机后壳或者手机屏幕是平行的。此时,为了保证手机的相机模块的正常使用,在实际摄像过程中,除了需要使用本申请中的光学变焦马达的同时,还要搭配棱镜马达100与棱镜系统一同使用,即在镜头末端增加一个45度的棱镜采光的驱动系统。其结构特征为,棱镜马达100的入射面平行于手机后壳或者手机屏幕并能够对待拍摄的目标进行采集,并且棱镜马达100的反射面对准屏蔽罩11的开口部113即镜头。具体的实现途径为,沿着一条与机身平行的光学轴线对准镜头,然后通 过棱镜的反射将进入摄像头内的光线反射到光学变焦镜头和图像传感器上,如此一来即可创造出比传统摄像头的竖向安装方向即在手机表面上朝向外部更长的等效焦距。
具体地,透镜支撑体30悬浮设置在底座20上方,且透镜支撑体30与底座20之间具有安装间隙。由于透镜支撑体30在运动的过程中其运动的方向相对于底座20始终是平行的,所以通过设置安装间隙可以有效地减少透镜支撑体30与底座20之间的摩擦,进而能够有效地保证光学变焦马达的使用寿命。并且,通过这样设置还可以减少底座20对透镜支撑体30的运动产生的影响,进而保证透镜支撑体30的运动更加灵敏。
具体地,光学变焦马达还包括多个悬丝80,底座20位于外壳10内的部分的各角部处均对应设置有一个悬丝80,透镜支撑体30的多个角部与多个悬丝80对应支撑,以使透镜支撑体30悬浮设置。通过设置悬丝80不仅能够实现光学变焦马达中的电连接,而且由于透镜支撑体30是悬浮设置在底座20上方的,所以通过悬丝80能够保证透镜支撑体30与底座20之间的连接,并且还可以通过悬丝80对透镜支撑体30的运动进行一定的限位作用以及对透镜支撑体30提供支撑力。
具体地,外壳10包括屏蔽罩11、框架12、多个磁石背板13。屏蔽罩11具有顶壁111和周向侧壁112:框架12位于容置空间内且与顶壁111连接,侧向磁石60位于框架12靠近底座20的一侧;磁石背板13与侧向磁石60对应设置,且磁石背板13位于周向侧壁112与侧向磁石60之间,磁石背板13是隔磁材料制成的。通过设置屏蔽罩11,可以有效地对光学变焦马达中的其他组件起到保护作用。而通过设置框架12和多个磁石背板13可以有效地对侧向磁石60进行固定。并且,通过设置磁石背板13还可以对侧向磁石60起到隔磁的作用,这样不仅能够保证侧向磁石60的使用效果,而且还可以减少侧向磁石60对摄像装置的其他组件产生影响。
可选地,框架12与侧向磁石60卡接。
可选地,磁石背板13与侧向磁石60卡接。
可选地,磁石背板13与框架12连接。
在本申请的一个具体实施例中,框架12与磁石背板13连接,并且侧向磁石60设置在磁石背板13上并通过框架12和磁石背板13分别对侧向磁石60进行卡接,在使得侧向磁石60保持固定的同时还可以使得侧向磁石60对准侧向线圈70。
具体地,磁石背板13的至少三个边缘处具有翻边131,以围成用于容置侧向磁石60的腔体,且磁石背板13的至少一个边缘处设置有卡接凸起132,卡接凸起132与框架12的卡槽121配合;或者框架12具有朝向底座20的卡口122,侧向磁石60的边缘卡接在卡口122处。通过这样设置,可以有效地保证磁石背板13或者框架12对侧向磁石60的固定效果,有效地保证了侧向磁石60的稳定性,并且在光学变焦马达受到撞击或者震动时,可以保证侧向磁石60与屏蔽罩11之间不会出现相对晃动。
可选地,翻边131的宽度等于侧向磁石60的厚度。通过这样设置,可以有效地对侧向磁石60起到保护作用,并且通过这样设置还能够对透镜支撑体30的运动起到一定的限位作用。翻边131能够很好地托住侧向磁石60。进一步可选地,翻边131的外伸端向上翻折,以包裹住侧向磁石60的边缘,以防止侧向磁石60脱出。
当然,根据实际的使用情况,翻边131的宽度也可以小于或者大于侧向磁石60的厚度,但是需要保证磁石背板13对侧向磁石60的固定效果。
在本申请的一个具体实施例中,框架12与屏蔽罩11之间通过焊接连接。
如图12所示,在本申请的另一个具体的实施例中,框架12远离透镜支撑体30的一侧具有胶水槽123,框架12与屏蔽罩11之间通过胶水粘接。通过使用胶水粘接的方式,可以更加容易地使屏蔽罩11与框架12之间保持连接。
具体地,如图7所示,底座20具有PCB板21,驱动线圈50与PCB板21电连接,底座20的至少一部分伸出至外壳10的外侧,以使PCB板21的引脚25裸露在外壳10的外侧。在这里需要指出的是,由于在本申请中光学变焦马达安装在摄像装置内部的方式与传统的光学变焦马达安装在摄像装置中的方式是不同的,在本申请中PCB板21以及底座20伸出外壳10的外侧的部分是不具有弯折部分的,这样设置可以有效地减少光学变焦马达的整体厚度。
可选地,周向侧壁112远离顶壁111的边缘处预留有至少一个让位缺口114,底座20经让位缺口114处伸出至外壳10的外侧。通过这样设置,可以使光学变焦马达通过底座20以及PCB板21伸出外壳10的外侧的部分与摄像装置实现电连接。
如图1和图2所示,在本申请的一个具体实施例中屏蔽罩11具有三个让位缺口114,且具有让位缺口114的周向侧壁112与具有开口部113的周向侧壁112不是同一侧壁。
具体地,底座20还具有座体22,座体22具有朝向PCB板21伸出的多个定位凸起23,PCB板21设置有定位孔24,且定位凸起23嵌入定位孔24内或抵接在PCB板21的边缘处。这样设置,可以通过定位凸起23有效地对PCB板21起到限位作用,从而能够有效地防止PCB板21与座体22之间出现相对晃动。
具体地,透镜支撑体30上设置有多个定位缺口31,多个侧向线圈70与多个定位缺口31对应卡接;透镜支撑体30上设置有连通槽32,连通槽32内埋设有连通导线33,多个侧向线圈70之间通过连通导线33电连接。
在本申请的一个具体实施例中侧向线圈70和定位缺口31的数量均为两个,且两个侧向线圈70相对设置,并且两个侧向线圈70分别对应的外壳10的周向侧壁112分别与具有开口部113的周向侧壁112垂直。并且,通过这样设置,当侧向磁石60与侧向线圈70产生感应时,侧向磁石60固定不动,而侧向线圈70和透镜支撑体30一同运动。
具体地,透镜支撑体30靠近底座20的一侧设置有用于容置驱动磁石40的容置凹槽34。
可选地,容置凹槽34为两个,两个容置凹槽34分别设置在透镜支撑体30的一组对边上并沿透镜支撑体30的运动方向延伸,且两个容置凹槽34内各设置有驱动磁石40。
在本申请的一个具体实施例中,容置凹槽34为两个,并且两个容置凹槽34平行设置。还需要指出的是,在本申请中两个容置凹槽34内的磁石的设置方式是不同的。
需要说明的是,如图21所示,在本申请中容置凹槽34内还设置有注胶孔342,从而可以通过向注胶孔342中注胶以增强对导磁板35的固定。
具体地,容置凹槽34的槽底还设置有导磁板35,驱动磁石40位于导磁板35与驱动线圈50之间。通过设置导磁板35,这样能够在不影响驱动磁石40和驱动线圈50之间的感应的同时还能够对驱动磁石40起到一定的固定作用,从而能够有效地防止驱动磁石40从透镜支撑体30上掉落。
需要说明的是,此时导磁板35与透镜支撑体30可以是一体结构。
当然,如图22和图23所示,导磁板35与透镜支撑体30也可以是分体结构,此时导磁板35的边缘处设置有安装槽36,透镜支撑体30具有嵌入安装槽36内的安装凸起341。
具体地,多个驱动线圈50为两组,两组驱动线圈50与两个容置凹槽34一一对应设置,且各组内均设置有至少两个驱动线圈50,且同组内的多个驱动线圈50彼此电连接。通过这样设置,能够保证两组驱动线圈50可以分别与不同的容置凹槽34中的驱动磁石40产生感应,从而保证驱动磁石40和驱动线圈50之间的感应更加灵敏。
具体地,各组内均有两个驱动线圈50,且所有驱动线圈50分别位于底座20的四个角部处,其中一组的两个驱动线圈50通电时的电流方向相反。并且另一组的两个驱动线圈50通电时的电流方向相同。这两组驱动线圈50分别与其对应驱动磁石40相配合,以满足左手定则。
具体地,光学变焦马达还包括至少一个位置传感器200,各驱动磁石40均为一整块磁石,一整块磁石分为多个区域以充磁成不同的极性,各驱动磁石40沿其厚度方向分为第一区域41和第二区域42,且第一区域41相对于第二区域42靠近驱动线圈50,第一区域41包括至少四个第一子区域411,第二区域42包括与至少四个第一子区域411一一对应的至少四个第二子区域421,且相邻两个第一子区域411的极性不同,相邻两个第二子区域421的极性不同,且彼此对应设置的第一子区域411和第二子区域421的极性不同,所有第一子区域411和所有第二子区域421公共构成多个区域,第一区域41内至少一组相邻设置的两个第一子区域411的正投影位于位置传感器200上。
可选地,至少两个相邻的第一子区域411呈F形。
可选地,至少两个相邻的第二子区域421呈F形。可选地,至少两个第一子区域411的面积大小不同。
可选地,两个驱动磁石40的多个区域的充磁情况不同。
磁石的磁极与线圈的电流方向相匹配,以使组合出来的力的方向是一致的。
在本申请中,光学变焦马达还包括多个弹簧90和多个悬丝80。透镜支撑体30远离底座20的一侧的各角部处均对应设置有一个弹簧90,且弹簧90与侧向线圈70电连接;底座20位于外壳10内的部分的各角部处均对应设置有一个悬丝80,各悬丝80的第一端与底座20的PCB板21电连接,各悬丝80的第二端与弹簧90电连接,以使透镜支撑体30悬浮设置。由于在本申请中透镜支撑体30是悬浮在底座20上的,所以当透镜支撑体30进行运动是,通过设置弹簧90和悬丝80连接,能够有效地对悬丝80进行保护,防止悬丝80因变形而产生损坏。
具体地,PCB板21具有多个与悬丝80配合的第一连通孔211。
具体地,底座20的座体22具有多个与悬丝80配合的第二连通孔221。
需要说明的是,在本申请中第一连通孔211可第二连通孔221与悬丝80之间均具有多余的空间。
可选地,悬丝80的第二端与弹簧90之间通过焊接连接。
可选地,弹簧90对应透镜支撑体30的位置处设置有至少一个插接孔91,述透镜支撑体30设置有与插接孔91配合的插接柱37。并且,为了保证连接的稳定性,可以使插接孔91与插接柱37之间进行焊接。
具体地,透镜支撑体30设置有多个定位缺口31,各定位缺口31内设置有至少一个挂线柱38,多个侧向线圈70套设在挂线柱38上并与多个定位缺口31对应卡接。需要说明的是,当侧向线圈70安装在挂线柱38上之后,挂线柱38是突出于侧向线圈70的,这样可以通过挂线柱38对侧向线圈70进行保护,防止对侧向线圈产生撞击。
如图16所示,透镜支撑体30对应侧向线圈70的位置处设置有至少一个点胶孔381。通过这样设置可以进一步保证侧向线圈70安装在透镜支撑体30上的稳定性。
可选地,透镜支撑体30的角部处具有至少一个限位角39。通过这样设置,可以有效地对透镜支撑体的运动进行限位。
如图13所示,各磁石背板13均各具有至少一个连通侧向磁石60和周向侧壁112的点胶缝133。通过这样设置,可以有效地保证侧向磁石60与磁石背板13连接的稳定性。
如图14和图15所示,框架12对应透镜支撑体30的连通槽32的位置处设置有避让缺口124。通过这样设置,在透镜支撑体30运动的过程中可以有效地防止连通导线33与框架12之间产生撞击。
具体地,定位凸起23远离座体22的一侧具有粘胶槽231。通过这样设置,可以使驱动线圈50与定位凸起23之间的连接更加牢固。
在本申请中,座体22内部还设置有垫板222,且垫板222的至少一部分裸露于座体22朝向PCB板21的一侧,且座体22与垫板222为一体成型结构。
在本申请中,座体22伸出外壳10的部分具有与外壳10配合的卡接凹槽223;或者座体22远离座体22的卡接凹槽223的一侧具有朝向透镜支撑体30伸出的承接壁224,承接壁224与外壳10的屏蔽罩11之间具有点胶缝隙。通过设置点胶缝隙,能够在座体22与外壳10完成组装后,通过向点胶缝隙中点胶,可以保证座体22与外壳10之间的连接更加牢固。
如图18所示,座体22的垫板222靠近侧向磁石60的一端具有伸出外壳10的突出壁225,且外壳10的屏蔽罩11的周向侧壁112的至少一部分搭接在突出壁225上。
如图17所示,座体22还具有朝向PCB板21伸出的定位柱226,PCB板21具有与定位柱226配合的定位开孔212。通过这样设置,可以保证PCB板21能够更加准确的安装在座体22上,并能够有效地减少PCB板21与座体22之间产生的晃动。
如图17和图19所示,座体22朝向透镜支撑体30具有沉槽227,透镜支撑体30朝向沉槽227的一侧具有与沉槽227配合的配合面391,沉槽227和配合面391之间设置有临时垫片。通过这样设置,在完成外壳10的安装后,能够更加容易的将临时垫片取出。
如图20所示,两个位置传感器200,各组内的两个驱动线圈之间均设置有一个位置传感器200;电容300,电容300设置在PCB板21上,且电容300设置在其中一个位置传感器200远离另一个位置传感器200的一侧。需要指出的是,其中一个位置传感器200,通过磁场强弱感应来反馈和演算镜头在平行于侧向磁石60的方向的驱动位置,并进一步通过向驱动线圈50输入电流的大小来控制镜头达到图像最清晰的位置点。而另一个位置传感器200则通过磁场强弱感应来反馈和演算镜头在垂直于侧向磁石60的方向上的位置抖动偏位,并进一步通过向侧向线圈70输入一定电流大小来调整和纠正镜头的偏位,以此达到防抖的目的。
需要指出的是,其中一个位置传感器200是霍尔芯片,每个霍尔芯片上具有多个霍尔元件,与每个霍尔芯片连接的引脚25分别控制霍尔芯片上VCC接入电路的电压供电电压、VDD器件内部的工作电压即芯片的工作电压、SDA串行数据线以及SCL时钟数据线。并且,每个霍尔元件分别与一组串联的侧向线圈70连接,从而对透镜支撑体30在垂直于侧向线圈70方向上的抖动造成的位置偏差进行补正。
并且,在本申请中还包括光学变焦马达的组装方法,光学变焦马达是上述的光学变焦马达,组装方法包括:在将光学变焦马达的底座20和光学变焦马达的透镜支撑体30进行安装前,先在二者之间放置临时垫片;底座20和透镜支撑体30安装完成后,将临时垫片从底座20和透镜支撑体30之间取出。
具体地,底座20和透镜支撑体30安装完成且将外壳10与底座20连接后,再将临时垫片取出。
具体地,组装方法还包括在放置临时垫片之间的预装步骤:将底座20的PCB板21安装至底座20的座体22上;将驱动线圈50连接在PCB板21上。
具体地,在放置有临时垫片的底座20上安装透镜支撑体30时,通过光学变焦马达的悬丝80将透镜支撑体30支撑在底座20上。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1、使用本申请中的光学变焦马达,能够有效地减少摄像装置的整体厚度;
2、当手机采用本申请中是光学变焦马达时,能够有效地提升手机相机模块的焦距;
3、有效地提高了光学变焦马达的使用性能。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (32)

  1. 一种光学变焦马达,其特征在于,包括:
    外壳(10);
    底座(20),所述底座(20)设置在所述外壳(10)的下方并与所述外壳(10)之间形成容置空间,所述外壳(10)包括顶壁(111)和周向侧壁(112),所述顶壁(111)与所述底座(20)相对设置,且所述顶壁(111)通过所述周向侧壁(112)与所述底座(20)连接,所述周向侧壁(112)的一组相对设置的侧壁上具有开口部(113);
    透镜支撑体(30),所述透镜支撑体(30)活动设置在所述容置空间内;
    多个驱动磁石(40),所述驱动磁石(40)设置在所述透镜支撑体(30)上;
    多个驱动线圈(50),所述驱动线圈(50)设置在所述底座(20)上且对应所述驱动磁石(40),所述驱动线圈(50)通电以使所述透镜支撑体(30)向靠近或远离所述开口部(113)的方向运动;
    多个侧向磁石(60),所述周向侧壁(112)的一组相对设置的两个侧壁上分别各设置有至少一个所述侧向磁石(60),且所述侧向磁石(60)和所述开口部(113)分别设置在不同的所述侧壁上;
    多个侧向线圈(70),所述侧向线圈(70)设置在所述透镜支撑体(30)上,且多个所述侧向线圈(70)对应多个所述侧向磁石(60)设置。
  2. 根据权利要求1所述的光学变焦马达,其特征在于,所述透镜支撑体(30)悬浮设置在所述底座(20)上方,且所述透镜支撑体(30)与所述底座(20)之间具有安装间隙。
  3. 根据权利要求1所述的光学变焦马达,其特征在于,所述光学变焦马达还包括多个悬丝(80),所述底座(20)位于所述外壳(10)内的部分的各角部处均对应设置有一个所述悬丝(80),所述透镜支撑体(30)的多个角部与多个所述悬丝(80)对应支撑,以使所述透镜支撑体(30)悬浮设置。
  4. 根据权利要求1所述的光学变焦马达,其特征在于,所述外壳(10)包括:
    屏蔽罩(11),所述屏蔽罩(11)具有所述顶壁(111)和所述周向侧壁(112):
    框架(12),所述框架(12)位于所述容置空间内且与所述顶壁(111)连接,所述侧向磁石(60)位于所述框架(12)靠近所述底座(20)的一侧;
    多个磁石背板(13),所述磁石背板(13)与所述侧向磁石(60)对应设置,且所述磁石背板(13)位于所述周向侧壁(112)与所述侧向磁石(60)之间,所述磁石背板(13)是隔磁材料制成的。
  5. 根据权利要求4所述的光学变焦马达,其特征在于,
    所述框架(12)与所述侧向磁石(60)卡接;或者
    所述磁石背板(13)与所述侧向磁石(60)卡接;或者
    所述磁石背板(13)与所述框架(12)连接。
  6. 根据权利要求4所述的光学变焦马达,其特征在于,
    所述磁石背板(13)的至少三个边缘处具有翻边(131),以围成用于容置所述侧向磁石(60)的腔体,且所述磁石背板(13)的至少一个边缘处设置有卡接凸起(132),所述卡接凸起(132)与所述框架(12)的卡槽(121)配合;或者
    所述框架(12)具有朝向所述底座(20)的卡口(122),所述侧向磁石(60)的边缘卡接在所述卡口(122)处。
  7. 根据权利要求6所述的光学变焦马达,其特征在于,所述翻边(131)的宽度等于所述侧向磁石(60)的厚度。
  8. 根据权利要求4所述的光学变焦马达,其特征在于,
    所述框架(12)远离所述透镜支撑体(30)的一侧具有胶水槽(123),所述框架(12)与所述屏蔽罩(11)之间通过胶水粘接;或者
    所述框架(12)与所述屏蔽罩(11)之间通过焊接连接。
  9. 根据权利要求1所述的光学变焦马达,其特征在于,所述底座(20)具有PCB板(21),所述驱动线圈(50)与所述PCB板(21)电连接,所述底座(20)的至少一部分伸出至所述外壳(10)的外侧,以使所述PCB板(21)的引脚(25)裸露在所述外壳(10)的外侧。
  10. 根据权利要求9所述的光学变焦马达,其特征在于,所述周向侧壁(112)远离所述顶壁(111)的边缘处预留有至少一个让位缺口(114),所述底座(20)经所述让位缺口(114)处伸出至所述外壳(10)的外侧。
  11. 根据权利要求9所述的光学变焦马达,其特征在于,所述底座(20)还具有座体(22),所述座体(22)具有朝向所述PCB板(21)伸出的多个定位凸起(23),所述PCB板(21)设置有定位孔(24),且所述定位凸起(23)嵌入所述定位孔(24)内或抵接在所述PCB板(21)的边缘处。
  12. 根据权利要求1所述的光学变焦马达,其特征在于,
    所述透镜支撑体(30)上设置有多个定位缺口(31),多个所述侧向线圈(70)与多个所述定位缺口(31)对应卡接;或者
    所述透镜支撑体(30)上设置有连通槽(32),所述连通槽(32)内埋设有连通导线(33),多个所述侧向线圈(70)之间通过所述连通导线(33)电连接。
  13. 根据权利要求1至12中任一项所述的光学变焦马达,其特征在于,所述透镜支撑体(30)靠近所述底座(20)的一侧设置有用于容置所述驱动磁石(40)的容置凹槽(34)。
  14. 根据权利要求13所述的光学变焦马达,其特征在于,所述容置凹槽(34)的槽底还设置有导磁板(35),所述驱动磁石(40)位于所述导磁板(35)与所述驱动线圈(50)之间。
  15. 根据权利要求14所述的光学变焦马达,其特征在于,所述导磁板(35)的边缘处设置有安装槽(36),所述透镜支撑体(30)具有嵌入所述安装槽(36)内的安装凸起(341)。
  16. 根据权利要求13所述的光学变焦马达,其特征在于,所述容置凹槽(34)为两个,两个所述容置凹槽(34)分别设置在所述透镜支撑体(30)的一组对边上并沿所述透镜支撑体(30)的运动方向延伸,且两个所述容置凹槽(34)内各设置有所述驱动磁石(40)。
  17. 根据权利要求16所述的光学变焦马达,其特征在于,多个所述驱动线圈(50)为两组,两组所述驱动线圈(50)与两个所述容置凹槽(34)一一对应设置,且各组内均设置有至少两个所述驱动线圈(50),且同组内的多个所述驱动线圈(50)彼此电连接。
  18. 根据权利要求17所述的光学变焦马达,其特征在于,各组内均有两个所述驱动线圈(50),且所有所述驱动线圈(50)分别位于所述底座(20)的四个角部处,其中一组的两个所述驱动线圈(50)通电时的电流方向相反。
  19. 根据权利要求1所述的光学变焦马达,其特征在于,所述光学变焦马达还包括至少一个位置传感器(200),各所述驱动磁石(40)均为一整块磁石,所述一整块磁石分为多个区域以充磁成不同的极性,各所述驱动磁石(40)沿其厚度方向分为第一区域(41)和第二区域(42),且所述第一区域(41)相对于所述第二区域(42)靠近所述驱动线圈(50),所述第一区域(41)包括至少四个第一子区域(411),所述第二区域(42)包括与至少四个所述第一子区域(411)一一对应的至少四个第二子区域(421),且相邻两个所述第一子区域(411)的极性不同,相邻两个所述第二子区域(421)的极性不同,且彼此对应设置的所述第一子区域(411)和所述第二子区域(421)的极性不同,所有所述第一子区域(411)和所有所述第二子区域(421)公共构成所述多个区域,所述第一区域(41)内至少一组相邻设置的两个所述第一子区域(411)的正投影位于所述位置传感器(200)上。
  20. 根据权利要求19所述的光学变焦马达,其特征在于,
    至少两个相邻的所述第一子区域(411)呈F形;或者
    至少两个相邻的所述第二子区域(421)呈F形。
  21. 根据权利要求19所述的光学变焦马达,其特征在于,
    至少两个所述第一子区域(411)的面积大小不同;或者
    两个所述驱动磁石(40)的所述多个区域的充磁情况不同。
  22. 根据权利要求1所述的光学变焦马达,其特征在于,所述光学变焦马达还包括:
    多个弹簧(90),所述透镜支撑体(30)远离所述底座(20)的一侧的各角部处均对应设置有一个所述弹簧(90),且所述弹簧(90)与所述侧向线圈(70)电连接;
    多个悬丝(80),所述底座(20)位于所述外壳(10)内的部分的各角部处均对应设置有一个所述悬丝(80),各所述悬丝(80)的第一端与所述底座(20)的PCB板(21)电连接,各所述悬丝(80)的第二端与所述弹簧(90)电连接,以使所述透镜支撑体(30)悬浮设置。
  23. 根据权利要求22所述的光学变焦马达,其特征在于,
    所述PCB板(21)具有多个与所述悬丝(80)配合的第一连通孔(211);或者
    所述底座(20)的座体(22)具有多个与所述悬丝(80)配合的第二连通孔(221);或者
    所述悬丝(80)的第二端与所述弹簧(90)之间通过焊接连接;或者
    所述弹簧(90)对应所述透镜支撑体(30)的位置处设置有至少一个插接孔(91),所述述透镜支撑体(30)设置有与所述插接孔(91)配合的插接柱(37)。
  24. 根据权利要求1所述的光学变焦马达,其特征在于,
    所述透镜支撑体(30)设置有多个定位缺口(31),各所述定位缺口(31)内设置有至少一个挂线柱(38),多个所述侧向线圈(70)套设在所述挂线柱(38)上并与多个所述定位缺口(31)对应卡接;或者
    所述透镜支撑体(30)对应所述侧向线圈(70)的位置处设置有至少一个点胶孔(381);或者
    所述透镜支撑体(30)的角部处具有至少一个限位角(39)。
  25. 根据权利要求4所述的光学变焦马达,其特征在于,
    各所述磁石背板(13)均具有至少一个连通所述侧向磁石(60)和所述周向侧壁(112)的点胶缝(133);或者
    所述框架(12)对应所述透镜支撑体(30)的连通槽(32)的位置处设置有避让缺口(124)。
  26. 根据权利要求11所述的光学变焦马达,其特征在于,
    所述定位凸起(23)远离所述座体(22)的一侧具有粘胶槽(231);或者
    所述座体(22)内部还设置有垫板(222),且所述垫板(222)的至少一部分裸露于所述座体(22)朝向所述PCB板(21)的一侧,且所述座体(22)与所述垫板(222)为一体成型结构;或者
    所述座体(22)伸出所述外壳(10)的部分具有与所述外壳(10)配合的卡接凹槽(223);或者
    所述座体(22)远离所述座体(22)的卡接凹槽(223)的一侧具有朝向所述透镜支撑体(30)伸出的承接壁(224),所述承接壁(224)与所述外壳(10)的屏蔽罩(11)之间具有点胶缝隙;或者
    所述座体(22)的垫板(222)靠近所述侧向磁石(60)的一端具有伸出所述外壳(10)的突出壁(225),且所述外壳(10)的屏蔽罩(11)的周向侧壁(112)的至少一部分搭接在所述突出壁(225)上;或者
    所述座体(22)还具有朝向所述PCB板(21)伸出的定位柱(226),所述PCB板(21)具有与所述定位柱(226)配合的定位开孔(212);或者
    所述座体(22)朝向所述透镜支撑体(30)具有沉槽(227),所述透镜支撑体(30)朝向所述沉槽(227)的一侧具有与所述沉槽(227)配合的配合面(391),所述沉槽(227)和所述配合面(391)之间设置有临时垫片。
  27. 根据权利要求18所述的光学变焦马达,其特征在于,所述光学变焦马达还包括:
    两个位置传感器(200),各组内的两个所述驱动线圈(50)之间均设置有一个所述位置传感器(200);
    电容(300),所述电容(300)设置在PCB板(21)上,且所述电容(300)设置在其中一个所述位置传感器(200)远离另一个所述位置传感器(200)的一侧。
  28. 一种摄像装置,其特征在于,包括权利要求1至27中任一项所述的光学变焦马达。
  29. 一种光学变焦马达的组装方法,其特征在于,所述光学变焦马达是权利要求1至27中任一项所述的光学变焦马达,所述组装方法包括:
    在将所述光学变焦马达的底座(20)和所述光学变焦马达的透镜支撑体(30)进行安装前,先在二者之间放置临时垫片;
    所述底座(20)和所述透镜支撑体(30)安装完成后,将所述临时垫片从所述底座(20)和所述透镜支撑体(30)之间取出。
  30. 根据权利要求29所述的组装方法,其特征在于,所述底座(20)和所述透镜支撑体(30)安装完成且将所述外壳(10)与所述底座(20)连接后,再将所述临时垫片取出。
  31. 根据权利要求29所述的组装方法,其特征在于,所述组装方法还包括在放置所述临时垫片之间的预装步骤:
    将所述底座(20)的PCB板(21)安装至所述底座(20)的座体(22)上;
    将所述驱动线圈(50)连接在所述PCB板(21)上。
  32. 根据权利要求29所述的组装方法,其特征在于,在放置有所述临时垫片的所述底座(20)上安装所述透镜支撑体(30)时,通过所述光学变焦马达的悬丝(80)将所述透镜支撑体(30)支撑在所述底座(20)上。
PCT/CN2020/104930 2019-09-10 2020-07-27 光学变焦马达、摄像装置及光学变焦马达的组装方法 WO2021047312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910854438.9 2019-09-10
CN201910854438.9A CN110488451A (zh) 2019-09-10 2019-09-10 光学变焦马达、摄像装置及光学变焦马达的组装方法

Publications (1)

Publication Number Publication Date
WO2021047312A1 true WO2021047312A1 (zh) 2021-03-18

Family

ID=68557251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104930 WO2021047312A1 (zh) 2019-09-10 2020-07-27 光学变焦马达、摄像装置及光学变焦马达的组装方法

Country Status (2)

Country Link
CN (1) CN110488451A (zh)
WO (1) WO2021047312A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777741A (zh) * 2021-09-04 2021-12-10 新思考电机有限公司 连续变焦驱动磁轭组、组装方法、透镜驱动装置及摄像装置
CN115473981A (zh) * 2021-06-11 2022-12-13 宁波舜宇光电信息有限公司 马达、摄像模组及其组装方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488451A (zh) * 2019-09-10 2019-11-22 上海比路电子股份有限公司 光学变焦马达、摄像装置及光学变焦马达的组装方法
CN113163071B (zh) * 2020-01-22 2022-09-16 宁波舜宇光电信息有限公司 摄像模组
CN114167570B (zh) * 2020-09-10 2023-06-06 华为技术有限公司 光学镜头、摄像模组、电子设备及摄像模组的拍摄方法
CN114500776B (zh) * 2020-10-27 2024-03-12 宁波舜宇光电信息有限公司 摄像模组、镜头组件和其驱动马达以及电子设备
CN112492217B (zh) * 2020-12-17 2022-07-08 维沃移动通信有限公司 电子设备和控制方法
CN112684568A (zh) * 2020-12-30 2021-04-20 上海比路电子股份有限公司 一种具有连续光学变焦的潜望式马达
CN114859498A (zh) * 2021-02-05 2022-08-05 信泰光学(深圳)有限公司 变焦镜头
CN113067967A (zh) * 2021-03-04 2021-07-02 维沃移动通信有限公司 镜头模组及电子设备
CN115407475A (zh) * 2021-05-11 2022-11-29 华为技术有限公司 光学镜头、摄像模组以及电子设备
CN113555992B (zh) * 2021-07-21 2022-06-21 上海比路电子股份有限公司 一种三轴自动对焦的防抖潜望马达
CN115701117A (zh) * 2021-07-29 2023-02-07 华为技术有限公司 摄像模组和电子设备
CN113900212A (zh) * 2021-10-29 2022-01-07 河南皓泽电子股份有限公司 镜头驱动机构
CN116095438B (zh) * 2022-12-31 2023-09-15 上海比路电子股份有限公司 光圈快门调节装置、摄像模组及移动终端
CN116995873A (zh) * 2023-05-10 2023-11-03 包头江馨微电机科技有限公司 一种音圈马达磁体与壳体组装用治具及组装设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086325A (ja) * 2007-09-28 2009-04-23 Fujinon Corp 撮影ユニット、および撮影装置
CN107360349A (zh) * 2016-05-10 2017-11-17 台湾东电化股份有限公司 摄像系统及其镜头单元
CN109581617A (zh) * 2018-11-28 2019-04-05 东莞佩斯讯光电技术有限公司 一种驱动结构及潜望镜式摄像模组
CN209299310U (zh) * 2018-01-25 2019-08-23 台湾东电化股份有限公司 光学系统
CN110488451A (zh) * 2019-09-10 2019-11-22 上海比路电子股份有限公司 光学变焦马达、摄像装置及光学变焦马达的组装方法
CN210442563U (zh) * 2019-09-10 2020-05-01 上海比路电子股份有限公司 光学变焦马达及摄像装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773105A (zh) * 2016-11-22 2017-05-31 上海比路电子股份有限公司 一种平移式光学防抖透镜驱动装置
CN107193106A (zh) * 2017-04-12 2017-09-22 瑞声科技(新加坡)有限公司 镜头驱动装置
WO2020243854A1 (zh) * 2019-06-01 2020-12-10 瑞声光学解决方案私人有限公司 镜头透镜模组
WO2020243869A1 (zh) * 2019-06-01 2020-12-10 瑞声光学解决方案私人有限公司 应用于潜望式镜头模组的棱镜装置和潜望式镜头模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086325A (ja) * 2007-09-28 2009-04-23 Fujinon Corp 撮影ユニット、および撮影装置
CN107360349A (zh) * 2016-05-10 2017-11-17 台湾东电化股份有限公司 摄像系统及其镜头单元
CN209299310U (zh) * 2018-01-25 2019-08-23 台湾东电化股份有限公司 光学系统
CN109581617A (zh) * 2018-11-28 2019-04-05 东莞佩斯讯光电技术有限公司 一种驱动结构及潜望镜式摄像模组
CN110488451A (zh) * 2019-09-10 2019-11-22 上海比路电子股份有限公司 光学变焦马达、摄像装置及光学变焦马达的组装方法
CN210442563U (zh) * 2019-09-10 2020-05-01 上海比路电子股份有限公司 光学变焦马达及摄像装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115473981A (zh) * 2021-06-11 2022-12-13 宁波舜宇光电信息有限公司 马达、摄像模组及其组装方法
CN113777741A (zh) * 2021-09-04 2021-12-10 新思考电机有限公司 连续变焦驱动磁轭组、组装方法、透镜驱动装置及摄像装置
CN113777741B (zh) * 2021-09-04 2024-05-14 新思考电机有限公司 连续变焦驱动磁轭组、组装方法、透镜驱动装置及摄像装置

Also Published As

Publication number Publication date
CN110488451A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021047312A1 (zh) 光学变焦马达、摄像装置及光学变焦马达的组装方法
JP7292470B2 (ja) レンズ駆動モータ
JP7132401B2 (ja) レンズ駆動モジュール
US11662549B2 (en) Lens driving device with a magnet adhered to an elastic member
US11509805B2 (en) Camera module with improved curing stability
US20190289180A1 (en) Imaging module and circuit board mechanism thereof
WO2021135186A1 (zh) 棱镜马达及成像系统
CN111580238B (zh) 镜头驱动模块
US11886035B2 (en) Optical mechanism and lens module thereof
WO2021135185A1 (zh) 光学变焦马达、摄像装置及移动终端
WO2020243853A1 (zh) 一种镜头透镜模组
US20240128836A1 (en) Optical element driving mechanism
CN111142313B (zh) 使用弹簧片的摄影模块及电子装置
KR20140011850A (ko) 카메라 모듈
CN210442563U (zh) 光学变焦马达及摄像装置
CN210442562U (zh) 棱镜马达及成像系统
US11561410B2 (en) Driving mechanism for optical element
CN214125403U (zh) 光学元件驱动机构的载体
TWI408491B (zh) 相機模組
KR102551233B1 (ko) 카메라 모듈 및 광학기기
CN211123444U (zh) 棱镜马达及成像系统
CN211123441U (zh) 光学变焦马达、摄像装置及移动终端
CN217283127U (zh) 光学元件驱动机构的上盖
CN214125402U (zh) 光学元件驱动机构的底座
CN214125405U (zh) 光学元件驱动机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863194

Country of ref document: EP

Kind code of ref document: A1