WO2020243854A1 - 镜头透镜模组 - Google Patents

镜头透镜模组 Download PDF

Info

Publication number
WO2020243854A1
WO2020243854A1 PCT/CN2019/089717 CN2019089717W WO2020243854A1 WO 2020243854 A1 WO2020243854 A1 WO 2020243854A1 CN 2019089717 W CN2019089717 W CN 2019089717W WO 2020243854 A1 WO2020243854 A1 WO 2020243854A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
bracket
lens assembly
assembly
housing
Prior art date
Application number
PCT/CN2019/089717
Other languages
English (en)
French (fr)
Inventor
徐同明
赵后伟
Original Assignee
瑞声光学解决方案私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声光学解决方案私人有限公司 filed Critical 瑞声光学解决方案私人有限公司
Priority to PCT/CN2019/089717 priority Critical patent/WO2020243854A1/zh
Priority to CN201910487443.0A priority patent/CN110174741B/zh
Priority to US17/017,750 priority patent/US11635630B2/en
Publication of WO2020243854A1 publication Critical patent/WO2020243854A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to the field of optical imaging technology, and in particular to a lens module used in mobile electronic devices such as mobile phones.
  • optical lenses have been widely used in various electronic products.
  • light enters directly from the object side passes through the lens assembly in a straight line along the optical axis to the image side, and images the object through the lens assembly.
  • all the lens components in the prior art have an auto-focus function.
  • the focus driving component can drive the lens component to move relative to the bracket along the optical axis to capture a clear image.
  • the lens assembly will move slightly in a plane perpendicular to the optical axis, which seriously affects the sharpness of the image.
  • the purpose of the present invention is to provide a lens lens module capable of shooting clear images under the condition of shaking.
  • the present invention provides a lens lens module, including a housing, a first bracket, a lens assembly, a focus drive assembly, and an anti-shake drive assembly.
  • the first bracket is opposite to the housing along the lens assembly.
  • the optical axis is movably mounted in the housing, and the lens assembly is movable relative to the first bracket along the optical axis direction perpendicular to the lens assembly and along the lens assembly relative to the first bracket.
  • the optical axis is mounted in the first bracket in a non-movable manner, and the focus drive assembly is provided on the housing and the first bracket for driving the first bracket to drive the lens assembly along the
  • the optical axis direction of the lens assembly moves
  • the anti-shake driving assembly is provided on the lens assembly and the housing for driving the lens assembly to move in a direction perpendicular to the optical axis direction of the lens assembly, so
  • a first sliding structure for guiding the movement of the first bracket along the optical axis of the lens assembly is provided between the housing and the first bracket, and a guide sliding structure is provided between the housing and the lens assembly.
  • the lens assembly moves along a second sliding guide structure that is perpendicular to the direction of the optical axis of the lens assembly, and the first bracket is provided with a first escape opening for avoiding the anti-shake driving assembly.
  • the focus drive assembly includes a first magnetic steel and a first drive coil
  • the first magnetic steel is provided on one of the side of the first bracket and the side of the housing, so
  • the first driving coil is arranged on the other of the side of the first bracket and the side of the housing, and the first driving coil is arranged opposite to the first magnetic steel at a distance from the The first magnetic steel cooperates to drive the first bracket and the lens assembly to move along the optical axis direction of the lens assembly.
  • the lens lens module further includes a first pole plate, the first pole plate is arranged on a side of the first drive coil away from the first magnetic steel, the first pole plate It is arranged opposite to the first magnetic steel to be used for absorbing the first magnetic steel to support the first bracket and the lens assembly.
  • the first sliding guide structure includes a plurality of first balls arranged between the side of the housing and the side of the first bracket, and a plurality of first sliding balls arranged on the side of the housing. Grooves and a plurality of second sliding grooves provided on the side of the first bracket, the first sliding groove and the second sliding groove are enclosed to form a first ball for embedding, positioning, and guiding rolling of the first ball A housing space.
  • the anti-shake drive assembly includes a second magnet and a second drive coil.
  • the second magnet is provided on one of the top of the lens assembly and the top of the housing.
  • Two driving coils are arranged at the other of the top of the lens assembly and the top of the housing, and the second driving coil is arranged opposite to the second magnet for cooperation with the second magnet.
  • the lens assembly is driven to move in a direction perpendicular to the optical axis of the lens assembly.
  • the lens lens module further includes a second pole plate disposed on the side of the second drive coil away from the second magnetic steel, and the second pole plate It is arranged opposite to the second magnetic steel for absorbing the second magnetic steel to support the lens assembly, and the second driving coil is arranged between the second pole plate and the second magnetic steel .
  • the second sliding guide structure includes a plurality of second balls arranged between the top of the lens assembly and the first bracket, a plurality of third sliding grooves arranged on the top of the lens assembly, and A plurality of fourth sliding grooves are provided on the first bracket, and the third sliding groove and the fourth sliding groove are enclosed to form a second container for the bottom of the second ball to be embedded in positioning and guided rolling ⁇ .
  • the lens lens module further includes a circuit board arranged on the housing, the circuit board having a vertical plate extending vertically from one side of the housing and connected to the first drive coil, A horizontal plate extending laterally from the top of the vertical plate to the top of the housing and connected to the second drive coil, and an extension plate extending laterally from the bottom end of the vertical plate to the outside of the housing; and/or ,
  • the first bracket includes a top plate, a side plate extending vertically downward from one side of the top plate and used for fixing the first magnetic steel, and end plates connected to the top plate and the side plate on both sides, so
  • the fourth sliding groove and the first avoiding opening are provided on the top plate, the first sliding groove is provided on the outer side of the side plate, and the end plate is provided with light rays for avoiding the lens assembly Of through holes.
  • the housing includes a second support, a first cover, and a second cover.
  • the first support, the lens assembly, the focus drive assembly, and the anti-shake drive assembly are all located in the second support.
  • the first cover plate and the second cover plate are respectively wrapped around the outside of the second bracket from the top and bottom of the second bracket.
  • the second bracket is provided with an inner cavity for accommodating the first bracket and the lens assembly, communicates with the inner cavity for allowing the lens assembly to pass through an exposed light transmission hole,
  • the perforation communicated with the inner cavity and located on the side of the second bracket for the focus drive assembly to pass through, and communicated with the inner cavity and located on the top of the second bracket for avoiding the anti-shake drive assembly
  • the second avoid opening communicated with the inner cavity and located on the top of the second bracket for avoiding the anti-shake drive assembly The second avoid opening.
  • the present invention uses the focus drive assembly to drive the first bracket to drive the lens assembly to move along the optical axis of the lens assembly to realize the automatic focus adjustment of the lens assembly in the housing;
  • the anti-shake drive assembly drives the lens assembly to move vertically The direction of the optical axis of the lens assembly is moved to realize the anti-shake compensation of the lens assembly in the housing, so as to obtain a clear imaging effect.
  • FIG. 1 is a perspective view of a lens lens module provided by an embodiment of the present invention
  • Figure 2 is an exploded schematic diagram of Figure 1;
  • FIG. 3 is a side view of a lens lens module provided by an embodiment of the present invention.
  • Fig. 4 is a schematic cross-sectional view at A-A in Fig. 3;
  • FIG. 5 is a top view of a lens lens module provided by an embodiment of the present invention.
  • Fig. 6 is a schematic cross-sectional view at B-B in Fig. 5;
  • Figure 7 is a schematic cross-sectional view at C-C in Figure 5;
  • Figure 8 is a perspective view of the lens lens module with the first cover plate, the second cover plate and the imaging sensor removed;
  • Figure 9 is an exploded schematic diagram of Figure 8.
  • FIG. 10 is a perspective view of a first bracket provided by an embodiment of the present invention.
  • Fig. 11 is an enlarged structural diagram at D in Fig. 10;
  • Figure 12 is a perspective view from another angle of the first bracket provided by the embodiment of the present invention.
  • Figure 13 is a perspective view of a lens barrel provided by an embodiment of the present invention.
  • Figure 14 is an enlarged structural view at E in Figure 13;
  • FIG. 15 is a perspective view of a second bracket provided by an embodiment of the present invention.
  • Fig. 16 is an enlarged structural view at F in Fig. 15;
  • Figure 17 is a perspective view of a second cover provided by an embodiment of the present invention.
  • Lens lens module 10, housing; 11, second bracket; 111, first sliding groove; 112, inner cavity; 113, light-transmitting hole; 114, perforation; 115, second escape opening; 116 , The bottom surface of the first groove; 117, the first notch; 118, the first side wall; 12, the first cover; 13, the second cover; 131, the first baffle; 132, the second baffle; 133, Connecting plate; 134, gap; 20, circuit board; 21, vertical plate; 22, horizontal plate; 23, extension plate; 30, first bracket; 31, top plate; 311, first escape opening; 312, fourth chute 313, the bottom surface of the fourth groove; 314, the fourth notch; 315, the fourth side wall; 32, the side plate; 321, the second sliding groove; 322, the first accommodating space; 323, the first accommodating groove; 324, the bottom surface of the second groove; 325, the second notch; 326, the second side wall; 33, the end plate; 331, the through hole; 40, the lens assembly; 41, the lens barrel;
  • Focus drive assembly 51, first magnet; 52, first drive coil; 53, first pole plate; 60, anti-shake drive assembly; 61, second magnet; 62, second drive coil; 63 70, the first sliding guide structure; 71, the first ball; 80, the second sliding guide structure; 81, the second ball; 90, the imaging sensor.
  • an element when an element is referred to as being “fixed on” or “disposed on” another element, the element may be directly on the other element or there may be a centering element at the same time.
  • an element When an element is referred to as being “connected” to another element, it can be directly connected to the other element or an intermediate element may also exist.
  • an embodiment of the present invention provides a lens lens module 1.
  • the lens lens module 1 includes a housing 10, a circuit board 20, a first bracket 30, a lens assembly 40, a focus drive assembly 50, and an anti-shake drive
  • the assembly 60, the first sliding guide structure 70 and the second sliding guide structure 80, the circuit board 20 is arranged on the housing 10, and the first bracket 30 is mounted on the housing 10 in a movable manner relative to the housing 10 along the optical axis direction of the lens assembly 40
  • the focus drive assembly 50 and the anti-shake drive assembly 60 are electrically connected to the circuit board 20.
  • the lens assembly 40 is movable relative to the first bracket 30 along the direction perpendicular to the optical axis of the lens assembly 40, and the lens assembly 40 is relative to the first bracket 30.
  • the focus drive assembly 50 is arranged on the housing 10 and the first bracket 30 for driving the first bracket 30 to drive the lens assembly 40 along the lens assembly 40. Movement in the direction of the optical axis (the direction indicated by the X axis in FIG. 1) is to move along the length of the housing 10 to realize the automatic focusing of the lens assembly 40 in the housing 10.
  • the anti-shake drive assembly 60 is provided on the lens assembly 40 and the housing 10 for driving the lens assembly 40 to move in a direction perpendicular to the optical axis direction of the lens assembly 40 (the direction indicated by the Y axis in FIG. 1), that is, along the housing Moving in the width direction of 10 realizes the anti-shake compensation of the lens assembly 40 in the housing 10.
  • the first sliding guide structure 70 is provided between the housing 10 and the first bracket 30, and the first sliding guide structure 70 is used to guide the first bracket 30 to move along the optical axis of the lens assembly 40;
  • the second sliding guide structure 80 is provided between the housing 10 and the lens assembly 40.
  • the second sliding structure 80 is used to guide the lens assembly 40 to move in a direction perpendicular to the optical axis direction of the lens assembly 40.
  • the lens assembly 40 may move slightly in a plane perpendicular to the optical axis.
  • the anti-shake driving assembly 60 drives the lens assembly 40 to make the opposite displacement with the cooperation of the second sliding structure 80.
  • the first bracket 30 is provided with a first avoiding opening 311 for avoiding the anti-shake driving assembly 60, so that the anti-shake driving assembly 60 can directly drive the lens assembly 40 on the first support 30 Move within.
  • the focus drive assembly 50 includes a first magnet 51, a first drive coil 52, and a first pole plate 53, and the positions of the first magnet 51 and the first drive coil 52 can be exchanged, that is, the A magnetic steel 51 is provided on the outer side of the first bracket 30, and the first drive coil 52 is provided on the side of the housing 10 through the circuit board 20 and is arranged opposite to the first magnetic steel 51.
  • the first drive coil 52 is provided at On the outer side of the first bracket 30, the first magnetic steel 51 is provided on the side of the housing 10 and is spaced and opposed to the first drive coil 52.
  • the first magnetic steel 51 is provided on the outer side of the first bracket 30, the first drive coil 52 is provided on the side of the housing 10, and the first drive coil 52 is electrically connected to the circuit board 20 to generate a magnetic field.
  • the first drive coil 52 is used to cooperate with the first magnet 51 to drive the first bracket 30 to drive the lens assembly 40 to move along the optical axis of the lens assembly 40.
  • the first pole plate 53 is fixed on the side of the housing 10 and is connected to the The first magnets 51 are arranged opposite to each other.
  • the first pole plate 53 is arranged on the side of the first drive coil 52 away from the first magnet 51.
  • the first pole plate 53 is arranged on the first drive coil 52 and the circuit Between the plates 20 or the first pole plate 53 is arranged on the side of the circuit board 20 away from the first driving coil 52, and the first pole plate 53 is used to adsorb the first magnet 51 to support the first bracket 30 and the lens assembly 40 Specifically, the first electrode plate 53 is disposed on the side of the circuit board 20 away from the first driving coil 52.
  • the first sliding guide structure 70 includes a plurality of first balls 71 arranged between the side of the housing 10 and the side of the first bracket 30, a plurality of first sliding grooves 111 arranged on the side of the housing 10, and a plurality of A second sliding groove 321 on the side of the bracket 30, the first sliding groove 111 and the second sliding groove 321 are enclosed and formed for the first accommodating space 322 where the first ball 71 is embedded, positioned and guided to roll.
  • the height of the ball 71 is greater than the sum of the heights of the first sliding groove 111 and the second sliding groove 321.
  • the number of the first rolling balls 71 is four, which are respectively arranged around the first magnetic steel 51.
  • the number and distribution of the first rolling balls 71 may not be limited to this.
  • the anti-shake drive assembly 60 includes a second magnet 61, a second drive coil 62, and a second pole plate 63.
  • the positions of the second magnet 61 and the second drive coil 62 can be interchanged, namely The second magnetic steel 61 is arranged on the top of the lens assembly 40, and the second drive coil 62 is arranged on the top of the housing 10 and is arranged opposite to the second magnetic steel 61; or, the second drive coil 62 is arranged on the top of the lens assembly 40, The second magnetic steel 61 is arranged on the top of the housing 10 and is arranged opposite to the second driving coil 62 at intervals.
  • the second magnet 61 is provided on the top of the lens assembly 40
  • the second drive coil 62 is provided on the top of the housing 10
  • the second drive coil 62 is electrically connected to the circuit board 20 to generate magnetic field force.
  • the second driving coil 62 is used to cooperate with the second magnet 61 to drive the lens assembly 40 to move along the direction perpendicular to the optical axis of the lens assembly 40.
  • the second pole plate 63 is fixed on the top of the housing 10 and is arranged opposite to the second magnet 61 at intervals.
  • the second pole plate 63 is provided on the side of the second drive coil 62 away from the second magnet 61.
  • the second pole plate 63 is provided between the second drive coil 62 and the circuit board 20 or the second pole plate 63 is provided on the side of the circuit board 20 far away from the second driving coil 62, the second pole plate 63 is used to attract the second magnet 61 to support the lens assembly 40, specifically, the second pole plate 63 is provided on the second driving coil Between 62 and the circuit board 20.
  • the circuit board 20 has a vertical plate 21, a horizontal plate 22, and an extension plate 23.
  • the vertical plate 21 extends vertically from one side of the housing 10 and is connected to the first drive coil 52.
  • the horizontal plate 22 extends from the top of the vertical plate 21. It extends laterally on the top of the housing 10 and is connected to the second drive coil 62.
  • the extension plate 23 laterally extends from the bottom end of the vertical plate 21 to the outside of the housing 10 to be connected to an external power source to provide power to the first drive coil 52 and the second drive coil. 62 provides current.
  • the second sliding structure 80 includes a plurality of second balls 81 arranged between the top of the lens assembly 40 and the first bracket 30, a plurality of third sliding grooves 413 arranged on the top of the lens assembly 40, and a plurality of third sliding grooves 413 arranged on the first bracket
  • the fourth sliding groove 312, the third sliding groove 413 and the fourth sliding groove 312 on 30 are enclosed to form a second accommodating space 417 for the second ball 81 to be embedded, positioned and guided to roll.
  • the first sliding groove 111 has a first groove bottom surface 116, a first groove 117 arranged opposite to the first groove bottom surface 116, and two first groove bottom surfaces 116 connected to each other.
  • the first side wall 118 is arranged opposite to the first notch 117 and spaced in the height direction of the housing 10 (the direction indicated by the Z axis in FIG. 1).
  • the second slide groove 321 has a second groove bottom surface 324, and The second groove bottom surface 324 is spaced and opposed to the second notches 325 and two second side walls 326 are spaced and opposed in the height direction of the housing 10 (the direction indicated by the Z axis in FIG. 1 ).
  • the two first side walls 118 are vertical planes extending from the first notch 117 to the first groove bottom surface 116 at equal intervals, and the two second side walls 326 are from the second notch 325 to
  • the second groove bottom surface 324 is an inclined surface extending with a decreasing pitch.
  • the first ball can only move in the sliding groove along the optical axis of the lens assembly. In this way, the first sliding groove 111 and the second sliding groove 321 cooperate It may be restricted that the first bracket 30 does not move relative to the housing 10 in the height direction of the housing 10 (the direction indicated by the Z axis in FIG. 1 ).
  • the two first side walls 118 and the two second side walls 326 can also be set to extend from the slot to the bottom surface of the slot with a decreasing spacing. Slopes; or, the two first side walls 118 are set as slopes extending from the first notch 117 to the bottom surface 116 of the first groove with a gradually decreasing spacing, and the two second side walls 326 are set from the second A vertical plane extending from the notch 325 to the bottom surface of the second groove 324 at equal intervals.
  • the third sliding groove 413 has a third groove bottom surface 414, a third groove 415 arranged opposite to the third groove bottom surface 414, and two connected between the third groove bottom surface 414 and the third groove 415 and between the lens assembly
  • the third side walls 416 are arranged opposite to each other in the optical axis direction.
  • the fourth sliding groove 312 has a fourth groove bottom surface 313, a fourth notch 314 arranged opposite to the fourth groove bottom surface 313, and two in the optical axis direction of the lens assembly.
  • the fourth sidewalls 315 are arranged oppositely at intervals.
  • the two third side walls 416 are inclined surfaces extending from the third notch 415 to the bottom surface 414 of the third groove at a decreasing interval, and the two fourth side walls 315 are from the fourth notch.
  • 314 to the fourth groove bottom surface 313 is a vertical plane extending at equal intervals.
  • the second ball can only move in the sliding groove along the direction perpendicular to the optical axis of the lens assembly.
  • the third sliding groove 413 and the fourth sliding groove The cooperation between 312 can restrict the lens assembly 40 from moving relative to the first bracket 30 in the optical axis direction.
  • the two third side walls 416 and the two fourth side walls 315 can also be set to extend from the slot to the bottom surface of the slot with a trend of decreasing spacing. Slope; or, the two third side walls 416 are set as vertical planes extending from the third slot 415 to the bottom surface 414 of the third groove at equal intervals, and the two fourth side walls 315 are set from the fourth slot 314 to the bottom surface 313 of the fourth groove are extended inclined surfaces with a gradually decreasing pitch.
  • the number of the first magnet 51 and the first drive coil 52 is one, and the first magnet 51 is mounted on the first bracket 30 Close to the middle of the outer part of the first sliding guide structure 70, the first driving coil 52 is arranged on the housing 10 through the circuit board 20 and is arranged opposite to the first magnet 51, and the first driving coil 52 is matched with the first magnet 51 In order to drive the lens assembly 40 to move more smoothly along the vertical optical axis.
  • the number of the second magnet 61 and the second drive coil 62 are both two.
  • the two second magnets 61 are both mounted on the top of the lens assembly 40.
  • the two second drive coils 62 are both provided on the housing 10 and connected to the two second magnets.
  • the magnets 61 are arranged opposite each other at intervals, and the two second drive coils 62 respectively cooperate with the two second magnets 61 so as to drive the lens assembly 40 to move more smoothly along the vertical optical axis.
  • the first magnet 51 And the number and distribution of the first drive coil 52, the second magnet 61, and the second drive coil 62 are not limited to this.
  • the first bracket 30 includes a top plate 31, a side plate 32 extending vertically downward from one side of the top plate 31 and used to fix the first magnet 51, and end plates connected to the top plate 31 and the side plate 32 on both sides. 33.
  • the fourth slide groove 312 and the first escape opening 311 are provided on the top plate 31, and the first slide groove 111 is provided on the outer side of the side plate 32. In this way, the first slide groove 111 can be conveniently processed on the end plate 33.
  • a through hole 331 for avoiding the light of the lens assembly 40 is opened so that external light can enter the lens assembly 40 from the housing 10.
  • the lens lens module 1 further includes an imaging sensor 90
  • the housing 10 includes a second bracket 11, a first cover 12 and a second cover 13, a first bracket 30, and a lens assembly 40
  • the focus drive assembly 50 and the anti-shake drive assembly 60 are located in the second bracket 11
  • the imaging sensor 90 is detachably mounted on the end of the second bracket 11 near the image side of the lens assembly 40
  • the plates 13 all have a first baffle 131, a second baffle 132 vertically spaced apart from the first baffle 131, and a connecting plate 133 provided between the first baffle 131 and the second baffle 132, wherein the second baffle The baffle 132 is located close to the side of the first electrode plate 53, and the first cover plate 12 is wrapped from the top of the second support 11 on the outside of the upper end of the second support 11, and covers a part of the first electrode plate 53, but Not in contact with the first support 30, the second cover 13 is wrapped around the lower end of the second support 11 from
  • the second bracket 11 is provided with an inner cavity 112 for accommodating the first bracket 30 and the lens assembly 40, and is communicated with the inner cavity 112 for the lens assembly 40 to pass through an exposed light transmission Hole 113, a perforation 114 connected to the inner cavity 112 and located on the side of the second bracket 11 for the focus drive assembly 50 to penetrate, and connected to the inner cavity 112 and located on the top of the second bracket 11 for avoiding anti-shake driving
  • the second escape opening 115 of the component 60 is provided on the first bracket 30.
  • the lens assembly 40 includes a lens barrel 41 and a plurality of lenses 42 arranged in the lens barrel 41.
  • the lens barrel 41 includes a barrel body.
  • the main body 411 and the two protruding parts 412, a number of lenses 42 are all located in the barrel body 411, the two protruding parts 412 are respectively provided at the top ends of the barrel body 411 along the vertical optical axis direction, and the four third sliding grooves 413 are equally equal They are separately arranged on the two protrusions 412, and the axes of the two third sliding grooves 413 on the same protrusion 412 are not on the same straight line, and two protrusions 412 are also provided for two second magnets. 61 fixed second accommodating groove 418, the second accommodating groove 418 is provided between the two third sliding grooves 413.
  • the first driving coil 52 is fixed on the circuit board 20 and cooperates with the first magnetic steel 51 in the first accommodating groove 323 through the through hole 114 to produce a drive for driving the lens assembly 40 and the first bracket 30 along With the force of the optical axis moving, the second drive coil 62 is fixed on the circuit board 20 and cooperates with the second magnet 61 in the second accommodating groove 418 through the second avoiding opening 115 and the first avoiding opening 311 to produce A force used to drive the lens assembly 40 to move in a direction perpendicular to the optical axis.

Abstract

一种镜头透镜模组(1),包括外壳(10)、第一支架(30)、镜头组件(40)、对焦驱动组件(50)和防抖驱动组件(60),第一支架(30)以相对外壳(10)沿镜头组件(40)之光轴方向可移动的方式安装于外壳(10)内,镜头组件(40)以相对第一支架(30)沿垂直镜头组件(40)之光轴方向可移动且相对第一支架(30)沿镜头组件(40)之光轴方向不可移动的方式安装于第一支架(30)内,对焦驱动组件(50)设于外壳(10)与第一支架(30)上以用于驱动第一支架(30)带动镜头组件(40)沿镜头组件(40)的光轴方向移动,防抖驱动组件(60)设于镜头组件(40)与外壳(10)上以用于驱动镜头组件(40)沿与镜头组件(40)之光轴方向垂直的方向移动。对焦驱动组件(50)驱动第一支架(30)带动镜头组件(40)沿镜头组件(40)的光轴方向移动,实现其自动调焦;防抖驱动组件(60)驱动镜头组件(40)沿垂直镜头组件(40)之光轴的方向移动,实现其防抖补偿。

Description

镜头透镜模组 技术领域
本发明涉及光学成像技术领域,尤其涉及一种应用于手机等移动电子设备内的镜头透镜模组。
背景技术
近年来,随着成像技术的发展及具有成像功能的电子产品的兴起,光学镜头被广泛地应用在各种电子产品中。一般光线都是直接从物侧射入,沿着光轴直线通过镜头组件到达像侧,通过镜头组件来对物体进行成像。但是,现有技术中镜头组件都具有自动对焦功能,在拍摄时,对焦驱动组件可以驱动镜头组件相对支架沿光轴方向运动以拍摄清晰图像。然而,在发生抖动的拍摄情况下,镜头组件会在垂直于光轴的平面内发生微小移动,从而严重影响了图像的拍摄清晰度。
因此,有必要提供一种镜头透镜模组来解决现有镜头组件在抖动情况下拍摄图像清晰度差的问题。
技术问题
本发明的目的在于提供一种能在抖动情况下拍摄清晰图像的镜头透镜模组。
技术解决方案
本发明的技术方案如下:
为实现上述目的,本发明提供了一种镜头透镜模组,包括外壳、第一支架、镜头组件、对焦驱动组件和防抖驱动组件,所述第一支架以相对所述外壳沿所述镜头组件之光轴方向可移动的方式安装于所述外壳内,所述镜头组件以相对所述第一支架沿垂直所述镜头组件之光轴方向可移动且相对所述第一支架沿所述镜头组件之光轴方向不可移动的方式安装于所述第一支架内,所述对焦驱动组件设于所述外壳与所述第一支架上以用于驱动所述第一支架带动所述镜头组件沿所述镜头组件的光轴方向移动,所述防抖驱动组件设于所述镜头组件与所述外壳上以用于驱动所述镜头组件沿与所述镜头组件之光轴方向垂直的方向移动,所述外壳和所述第一支架之间设有用于引导所述第一支架沿所述镜头组件的光轴方向移动的第一导滑结构,所述外壳和所述镜头组件之间设有用于引导所述镜头组件沿与所述镜头组件之光轴方向垂直的方向移动的第二导滑结构,所述第一支架上设有用于避让所述防抖驱动组件的第一避让开口。
作为一种改进,所述对焦驱动组件包括第一磁钢和第一驱动线圈,所述第一磁钢设于所述第一支架的侧部和所述外壳的侧部的其中之一,所述第一驱动线圈设于所述第一支架的侧部和所述外壳的侧部的其中之另一,所述第一驱动线圈与所述第一磁钢间隔相对设置以用于与所述第一磁钢配合驱动所述第一支架和所述镜头组件沿所述镜头组件的光轴方向移动。
作为一种改进,所述镜头透镜模组还包括第一极板,所述第一极板设于所述第一驱动线圈之远离所述第一磁钢的一侧,所述第一极板与所述第一磁钢间隔相对设置以用于吸附所述第一磁钢以支撑所述第一支架和所述镜头组件。
作为一种改进,所述第一导滑结构包括若干个设于所述外壳侧部与所述第一支架侧部之间的第一滚珠、若干个设于所述外壳侧部的第一滑槽以及若干个设于所述第一支架侧部的第二滑槽,所述第一滑槽与所述第二滑槽围合形成用于供所述第一滚珠嵌入定位并导向滚动的第一容置空间。
作为一种改进,所述防抖驱动组件包括第二磁钢和第二驱动线圈,所述第二磁钢设于所述镜头组件的顶部和所述外壳的顶部的其中之一,所述第二驱动线圈设于所述镜头组件的顶部和所述外壳的顶部的其中之另一,所述第二驱动线圈与所述第二磁钢间隔相对设置以用于与所述第二磁钢配合驱动所述镜头组件沿垂直所述镜头组件的光轴方向移动。
作为一种改进,所述镜头透镜模组还包括第二极板,所述第二极板设于所述第二驱动线圈之远离所述第二磁钢的一侧,所述第二极板与所述第二磁钢间隔相对设置以用于吸附所述第二磁钢以支撑所述镜头组件,所述第二驱动线圈设于所述第二极板与所述第二磁钢之间。
作为一种改进,所述第二导滑结构包括若干个设于所述镜头组件顶部与所述第一支架之间的第二滚珠、若干个设于所述镜头组件顶部的第三滑槽以及若干个设于所述第一支架上的第四滑槽,所述第三滑槽与所述第四滑槽围合形成用于供所述第二滚珠底部嵌入定位并导向滚动的第二容置空间。
作为一种改进,所述镜头透镜模组还包括设于所述外壳上的电路板,所述电路板具有从所述外壳一侧竖向延伸并与所述第一驱动线圈连接的竖板、从所述竖板的顶端横向延伸于所述外壳的顶部并与所述第二驱动线圈连接的横板以及从所述竖板的底端横向延伸至所述外壳外的延伸板;且/或,
所述第一支架包括顶板、从所述顶板一侧竖向向下延伸并用于固定所述第一磁钢的侧板以及两侧分别与所述顶板和所述侧板连接的端板,所述第四滑槽和所述第一避让开口设于所述顶板上,所述第一滑槽设于所述侧板的外侧部,所述端板上开设有用于避让所述镜头组件之光线的通孔。
作为一种改进,所述外壳包括第二支架、第一盖板及第二盖板,所述第一支架、镜头组件、对焦驱动组件和防抖驱动组件都位于所述第二支架内,所述第一盖板和第二盖板分别从所述第二支架的顶部和底部包裹于所述第二支架的外侧。
作为一种改进,所述第二支架设有用于容置所述第一支架和所述镜头组件的内腔、与所述内腔连通以用于供镜头组件一端穿设外露的透光孔、与所述内腔连通且位于第二支架侧部以供所述对焦驱动组件穿设的穿孔以及与所述内腔连通且位于所述第二支架顶部以用于避让所述防抖驱动组件的第二避让开口。
有益效果
本发明的有益效果是:本发明通过利用对焦驱动组件驱动第一支架带动镜头组件沿镜头组件的光轴方向移动,实现镜头组件在外壳内自动调焦;利用防抖驱动组件驱动镜头组件沿垂直镜头组件之光轴的方向移动,实现镜头组件在外壳内防抖补偿,以便于得到清晰的成像效果。
附图说明
图1为本发明实施例提供的镜头透镜模组的立体图;
图2为图1的爆炸示意图;
图3为本发明实施例提供的镜头透镜模组的侧视图;
图4为图3中A-A处的剖面示意图;
图5为本发明实施例提供的镜头透镜模组的俯视图;
图6为图5中B-B处的剖面示意图;
图7为图5中C-C处的剖面示意图;
图8为镜头透镜模组去掉第一盖板、第二盖板和成像传感器后的立体图;
图9为图8的爆炸示意图;
图10为本发明实施例提供的第一支架一个角度的立体图;
图11为图10中D处的放大结构图;
图12为本发明实施例提供的第一支架另一个角度的立体图;
图13为本发明实施例提供的镜筒的立体图;
图14为图13中E处的放大结构图;
图15为本发明实施例提供的第二支架的立体图;
图16为图15中F处的放大结构图;
图17为本发明实施例提供的第二盖板的立体图。
图中:1、镜头透镜模组;10、外壳;11、第二支架;111、第一滑槽;112、内腔;113、透光孔;114、穿孔;115、第二避让开口;116、第一槽底面;117、第一槽口;118、第一侧壁;12、第一盖板;13、第二盖板;131、第一挡板;132、第二挡板;133、连接板;134、缺口;20、电路板;21、竖板;22、横板;23、延伸板;30、第一支架;31、顶板;311、第一避让开口;312、第四滑槽;313、第四槽底面;314、第四槽口;315、第四侧壁;32、侧板;321、第二滑槽;322、第一容置空间;323、第一容置槽;324、第二槽底面;325、第二槽口;326、第二侧壁;33、端板;331、通孔;40、镜头组件;41、镜筒;411、筒身本体;412、凸出部;413、第三滑槽;414、第三槽底面;415、第三槽口;416、第三侧壁;417、第二容置空间;418、第二容置槽;42、镜片;50、对焦驱动组件;51、第一磁钢;52、第一驱动线圈;53、第一极板;60、防抖驱动组件;61、第二磁钢;62、第二驱动线圈;63、第二极板;70、第一导滑结构;71、第一滚珠;80、第二导滑结构;81、第二滚珠;90、成像传感器。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
需要说明的是,本实用新型实施例中所有方向性指示(诸如上、下、内、外、顶部、底部……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
还需要说明的是,当元件被称为“固定于”或“设置于”另一个元件上时,该元件可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为“连接”另一个元件,它可以是直接连接另一个元件或者可能同时存在居中元件。
请参阅图1-17,本发明实施例提供一种镜头透镜模组1,镜头透镜模组1包括外壳10、电路板20、第一支架30、镜头组件40、对焦驱动组件50、防抖驱动组件60、第一导滑结构70及第二导滑结构80,电路板20设于外壳10上,第一支架30以相对外壳10沿镜头组件40之光轴方向可移动的方式安装于外壳10内,对焦驱动组件50和防抖驱动组件60均与电路板20电性连接,镜头组件40以相对第一支架30沿垂直镜头组件40之光轴方向可移动且镜头组件40相对第一支架30沿镜头组件40之光轴方向不可移动的方式安装于第一支架30内,对焦驱动组件50设于外壳10与第一支架30上以用于驱动第一支架30带动镜头组件40沿镜头组件40的光轴方向(图1中X轴所指示的方向)移动,即为沿外壳10的长度方向移动,实现镜头组件40在外壳10内自动调焦。防抖驱动组件60设于镜头组件40与外壳10上以用于驱动镜头组件40沿与镜头组件40之光轴方向垂直的方向(图1中Y轴所指示的方向)移动,即为沿外壳10的宽度方向移动,实现镜头组件40在外壳10内防抖补偿。
具体应用中,第一导滑结构70设于外壳10和第一支架30之间,第一导滑结构70用于引导第一支架30沿镜头组件40的光轴方向移动;第二导滑结构80设于外壳10和镜头组件40之间,第二导滑结构80用于引导镜头组件40沿与镜头组件40之光轴方向垂直的方向移动。在发生抖动的拍摄情况下,镜头组件40可能在垂直于光轴的平面内发生微小移动,此时,防抖驱动组件60在第二导滑结构80的配合下驱动镜头组件40做相反的位移,以补偿抖动量,从而获取高清图像,第一支架30上设有用于避让防抖驱动组件60的第一避让开口311,以便于防抖驱动组件60能直接驱动镜头组件40在第一支架30内移动。
如图3至图4,对焦驱动组件50包括第一磁钢51、第一驱动线圈52以及第一极板53,第一磁钢51与第一驱动线圈52的设置位置可以互换,即第一磁钢51设于第一支架30的外侧部,第一驱动线圈52通过电路板20设于外壳10的侧部并与第一磁钢51间隔相对设置,或者,第一驱动线圈52设于第一支架30的外侧部,第一磁钢51设于外壳10的侧部并与第一驱动线圈52间隔相对设置。
优选地,本实施例中第一磁钢51设于第一支架30的外侧部,第一驱动线圈52设于外壳10的侧部,第一驱动线圈52与电路板20电性连接以产生磁场力,第一驱动线圈52以用于与第一磁钢51配合驱动第一支架30带动镜头组件40沿镜头组件40的光轴方向移动,第一极板53固定于外壳10的侧部并与第一磁钢51间隔相对设置,第一极板53设于第一驱动线圈52之远离第一磁钢51的一侧,可选择地,第一极板53设于第一驱动线圈52与电路板20之间或者第一极板53设于电路板20之远离第一驱动线圈52的一侧,第一极板53以用于吸附第一磁钢51以支撑第一支架30和镜头组件40,具体地,第一极板53设于电路板20之远离第一驱动线圈52的一侧。
第一导滑结构70包括若干个设于外壳10侧部与第一支架30侧部之间的第一滚珠71、若干个设于外壳10侧部的第一滑槽111以及若干个设于第一支架30侧部的第二滑槽321,第一滑槽111与第二滑槽321围合形成以用于供第一滚珠71嵌入定位并导向滚动的第一容置空间322,该第一滚珠71的高度大于第一滑槽111和第二滑槽321的高度之和。本实施例中第一滚珠71的数量为四个,分别设置于第一磁钢51的四周,当然,在具体应用中,第一滚珠71的数量和分布方式可以不限于此。
如图5至图7,防抖驱动组件60包括第二磁钢61、第二驱动线圈62及第二极板63,第二磁钢61和第二驱动线圈62的设置位置可以互换,即第二磁钢61设于镜头组件40的顶部,第二驱动线圈62设于外壳10的顶部并与第二磁钢61间隔相对设置;或者,第二驱动线圈62设于镜头组件40的顶部,第二磁钢61设于外壳10的顶部并与第二驱动线圈62间隔相对设置。
优选地,本实施例中第二磁钢61设于镜头组件40的顶部,第二驱动线圈62设于外壳10的顶部,第二驱动线圈62与电路板20电性连接以产生磁场力,第二驱动线圈62用于与第二磁钢61配合驱动镜头组件40沿垂直镜头组件40的光轴方向移动,第二极板63固定于外壳10的顶部并与第二磁钢61间隔相对设置,第二极板63设于第二驱动线圈62之远离第二磁钢61的一侧,可选择地,第二极板63设于第二驱动线圈62与电路板20之间或者第二极板63设于电路板20之远离第二驱动线圈62的一侧,第二极板63用于吸附第二磁钢61以支撑镜头组件40,具体地,第二极板63设于第二驱动线圈62与电路板20之间。
本实施例中电路板20具有竖板21、横板22以及延伸板23,竖板21从外壳10的一侧竖向延伸并与第一驱动线圈52连接,横板22从竖板21的顶端横向延伸于外壳10的顶部并与第二驱动线圈62连接,延伸板23从竖板21的底端横向延伸至外壳10外以与外部电源连接,以给第一驱动线圈52和第二驱动线圈62提供电流。
第二导滑结构80包括若干个设于镜头组件40顶部与第一支架30之间的第二滚珠81、若干个设于镜头组件40顶部的第三滑槽413以及若干个设于第一支架30上的第四滑槽312,第三滑槽413与第四滑槽312围合形成用于供第二滚珠81嵌入定位并导向滚动的第二容置空间417,该第二滚珠81的高度大于第三滑槽413和第四滑槽312的高度之和,本实施例中第二滚珠81的数量为四个,四个第二滚珠81都设于各自的第二容置空间417内,在具体应用中,第二滚珠81的数量和分布方式可以不限于此。
如图2、图10至图16所示,上述第一滑槽111具有第一槽底面116、与第一槽底面116间隔相对设置的第一槽口117以及两个连接于第一槽底面116与所示第一槽口117之间且在外壳10高度方向(图1中Z轴所指示的方向)间隔相对设置的第一侧壁118,第二滑槽321具有第二槽底面324、与第二槽底面324间隔相对设置的第二槽口325以及两个在外壳10高度方向(图1中Z轴所指示的方向)间隔相对设置的第二侧壁326。本实施例中,两个第一侧壁118为从第一槽口117至第一槽底面116以等间距延伸设置的竖直平面,两个第二侧壁326为从第二槽口325至第二槽底面324以间距逐渐减小的趋势延伸设置的斜面,第一滚珠只能在滑槽内沿镜头组件之光轴方向移动,这样,第一滑槽111和第二滑槽321间配合可以限定第一支架30在外壳10高度方向相对外壳10不移动(图1中Z轴所指示的方向)。当然了,具体应用中,作为替代的实施方案,也可将两个第一侧壁118和两个第二侧壁326都设为从槽口至槽底面以间距逐渐减小的趋势延伸设置的斜面;或者,将两个第一侧壁118设为从第一槽口117至第一槽底面116以间距逐渐减小的趋势延伸设置的斜面,两个第二侧壁326设为从第二槽口325至第二槽底面324以等间距延伸设置的竖直平面。
第三滑槽413具有第三槽底面414、与第三槽底面414间隔相对设置的第三槽口415以及两个连接于第三槽底面414与第三槽口415之间且在镜头组件之光轴方向间隔相对设置的第三侧壁416,第四滑槽312具有第四槽底面313、与第四槽底面313间隔相对设置的第四槽口314以及两个在镜头组件之光轴方向间隔相对设置的第四侧壁315。本实施例中,两个第三侧壁416为从第三槽口415至第三槽底面414以间距逐渐减小的趋势延伸设置的斜面,两个第四侧壁315为从第四槽口314至第四槽底面313以等间距延伸设置的竖直平面,第二滚珠只能在滑槽内沿镜头组件之光轴方向垂直的方向移动,这样,第三滑槽413和第四滑槽312间配合可以限定镜头组件40在光轴方向相对第一支架30不移动。当然了,具体应用中,作为替代的实施方案,也可将两个第三侧壁416和两个第四侧壁315都设为从槽口至槽底面以间距逐渐减小的趋势延伸设置的斜面;或者,将两个第三侧壁416设为从第三槽口415至第三槽底面414以等间距延伸设置的竖直平面,两个第四侧壁315设为从第四槽口314至第四槽底面313以间距逐渐减小的趋势延伸设置的斜面。
请进一步参阅图2、图8至图9,优选地,本实施例中,第一磁钢51和第一驱动线圈52的数量都为一个,且第一磁钢51安装于第一支架30之靠近第一导滑结构70的外侧部的中部,第一驱动线圈52通过电路板20设于外壳10上并与第一磁钢51间隔相对设置,第一驱动线圈52与第一磁钢51配合以便于驱动镜头组件40沿垂直光轴方向移动时更加平稳。
第二磁钢61以及第二驱动线圈62的数量都为两个,两第二磁钢61均安装于镜头组件40的顶部,两第二驱动线圈62均设于外壳10上并与两第二磁钢61一一间隔相对设置,两第二驱动线圈62分别与两第二磁钢61配合以便于驱动镜头组件40沿垂直光轴方向移动时更加平稳,在具体应用中,第一磁钢51和第一驱动线圈52、第二磁钢61和第二驱动线圈62的数量和分布方式不限于此。
请参阅图10,第一支架30包括顶板31、从顶板31一侧竖向向下延伸并用于固定第一磁钢51的侧板32以及两侧分别与顶板31和侧板32连接的端板33,第四滑槽312和第一避让开口311设于顶板31上,第一滑槽111设于侧板32的外侧部,这样,可以方便对第一滑槽111进行加工,端板33上开设有用于避让镜头组件40之光线的通孔331,以便于外部光线从外壳10进入到镜头组件40内。
请参阅图2、图3和图17,镜头透镜模组1还包括成像传感器90,外壳10包括第二支架11、第一盖板12和第二盖板13,第一支架30、镜头组件40、对焦驱动组件50和防抖驱动组件60都位于第二支架11内,成像传感器90可拆卸安装于第二支架11之靠近镜头组件40像侧的端部,第一盖板12和第二盖板13都具有第一挡板131、与第一挡板131竖向间隔设置的第二挡板132以及设于第一挡板131与第二挡板132之间的连接板133,其中第二挡板132靠近位于第一极板53的一侧,第一盖板12从第二支架11的顶部包裹于第二支架11上端部的外侧,并覆盖于第一极板53其中一部,但并不与第一支架30接触,第二盖板13从第二支架11的底部包裹于第二支架11下端部外侧,且第二盖板13的第二挡板132上设有用于避让电路板20的缺口134,第一盖板12和第二盖板13与第二支架11围合形成用于安置镜头组件40和第一支架30的第三容置空间,第一盖板12和第二盖板13都卡扣安装于第二支架11上。
请参阅图9和图13,第二支架11设有用于容置第一支架30和镜头组件40的内腔112、与内腔112相连通以用于供镜头组件40一端穿设外露的透光孔113、与内腔112相连通且位于第二支架11的侧部以供对焦驱动组件50穿设的穿孔114以及与内腔112相连通且位于第二支架11顶部以用于避让防抖驱动组件60的第二避让开口115。第一支架30上相对应的设有供第一磁钢51固定的第一容置槽323,镜头组件40包括镜筒41及设于镜筒41内的若干镜片42,镜筒41包括筒身本体411以及两凸出部412,若干镜片42均位于筒身本体411内,两凸出部412分别沿垂直光轴方向设于筒身本体411顶部两端,四个第三滑槽413等均分设于两凸出部412上,且同一凸出部412上的两第三滑槽413的轴线不在同一直线上,两凸出部412上还设有两个分别用于供两第二磁钢61固定的第二容置槽418,第二容置槽418设于两第三滑槽413之间。
本实施例中的第一驱动线圈52固定于电路板20上且通过穿孔114与第一容置槽323内的第一磁钢51相配合,产生用于驱动镜头组件40和第一支架30沿光轴方向移动的作用力,第二驱动线圈62固定于电路板20上且通过第二避让开口115和第一避让开口311与第二容置槽418内的第二磁钢61相配合,产生用于驱动镜头组件40沿与光轴相垂直方向移动的作用力。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种镜头透镜模组,其特征在于:包括外壳、第一支架、镜头组件、对焦驱动组件和防抖驱动组件,所述第一支架以相对所述外壳沿所述镜头组件之光轴方向可移动的方式安装于所述外壳内,所述镜头组件以相对所述第一支架沿垂直所述镜头组件之光轴方向可移动且相对所述第一支架沿所述镜头组件之光轴方向不可移动的方式安装于所述第一支架内,所述对焦驱动组件设于所述外壳与所述第一支架上以用于驱动所述第一支架带动所述镜头组件沿所述镜头组件的光轴方向移动,所述防抖驱动组件设于所述镜头组件与所述外壳上以用于驱动所述镜头组件沿与所述镜头组件之光轴方向垂直的方向移动,所述外壳和所述第一支架之间设有用于引导所述第一支架沿所述镜头组件的光轴方向移动的第一导滑结构,所述外壳和所述镜头组件之间设有用于引导所述镜头组件沿与所述镜头组件之光轴方向垂直的方向移动的第二导滑结构,所述第一支架上设有用于避让所述防抖驱动组件的第一避让开口。
  2. 根据权利要求1所述的镜头透镜模组,其特征在于,所述对焦驱动组件包括第一磁钢和第一驱动线圈,所述第一磁钢设于所述第一支架的侧部和所述外壳的侧部的其中之一,所述第一驱动线圈设于所述第一支架的侧部和所述外壳的侧部的其中之另一,所述第一驱动线圈与所述第一磁钢间隔相对设置以用于与所述第一磁钢配合驱动所述第一支架和所述镜头组件沿所述镜头组件的光轴方向移动。
  3. 根据权利要求2所述的镜头透镜模组,其特征在于,所述镜头透镜模组还包括第一极板,所述第一极板设于所述第一驱动线圈之远离所述第一磁钢的一侧,所述第一极板与所述第一磁钢间隔相对设置以用于吸附所述第一磁钢以支撑所述第一支架和所述镜头组件。
  4. 根据权利要求3所述的镜头透镜模组,其特征在于,所述第一导滑结构包括若干个设于所述外壳侧部与所述第一支架侧部之间的第一滚珠、若干个设于所述外壳侧部的第一滑槽以及若干个设于所述第一支架侧部的第二滑槽,所述第一滑槽与所述第二滑槽围合形成用于供所述第一滚珠嵌入定位并导向滚动的第一容置空间。
  5. 根据权利要求4所述的镜头透镜模组,其特征在于,所述防抖驱动组件包括第二磁钢和第二驱动线圈,所述第二磁钢设于所述镜头组件的顶部和所述外壳的顶部的其中之一,所述第二驱动线圈设于所述镜头组件的顶部和所述外壳的顶部的其中之另一,所述第二驱动线圈与所述第二磁钢间隔相对设置以用于与所述第二磁钢配合驱动所述镜头组件沿垂直所述镜头组件的光轴方向移动。
  6. 根据权利要求5所述的镜头透镜模组,其特征在于,所述镜头透镜模组还包括第二极板,所述第二极板设于所述第二驱动线圈之远离所述第二磁钢的一侧,所述第二极板与所述第二磁钢间隔相对设置以用于吸附所述第二磁钢以支撑所述镜头组件,所述第二驱动线圈设于所述第二极板与所述第二磁钢之间。
  7. 根据权利要求6所述的镜头透镜模组,其特征在于,所述第二导滑结构包括若干个设于所述镜头组件顶部与所述第一支架之间的第二滚珠、若干个设于所述镜头组件顶部的第三滑槽以及若干个设于所述第一支架上的第四滑槽,所述第三滑槽与所述第四滑槽围合形成用于供所述第二滚珠底部嵌入定位并导向滚动的第二容置空间。
  8. 根据权利要求7所述的镜头透镜模组,其特征在于,所述镜头透镜模组还包括设于所述外壳上的电路板,所述电路板具有从所述外壳一侧竖向延伸并与所述第一驱动线圈连接的竖板、从所述竖板的顶端横向延伸于所述外壳的顶部并与所述第二驱动线圈连接的横板以及从所述竖板的底端横向延伸至所述外壳外的延伸板;且/或,
    所述第一支架包括顶板、从所述顶板一侧竖向向下延伸并用于固定所述第一磁钢的侧板以及两侧分别与所述顶板和所述侧板连接的端板,所述第四滑槽和所述第一避让开口设于所述顶板上,所述第一滑槽设于所述侧板的外侧部,所述端板上开设有用于避让所述镜头组件之光线的通孔。
  9. 根据权利要求1所述的镜头透镜模组,其特征在于,所述外壳包括第二支架、第一盖板及第二盖板,所述第一支架、镜头组件、对焦驱动组件和防抖驱动组件都位于所述第二支架内,所述第一盖板和第二盖板分别从所述第二支架的顶部和底部包裹于所述第二支架的外侧。
  10. 根据权利要求9所述的镜头透镜模组,其特征在于,所述第二支架设有用于容置所述第一支架和所述镜头组件的内腔、与所述内腔连通以用于供镜头组件一端穿设外露的透光孔、与所述内腔连通且位于第二支架侧部以供所述对焦驱动组件穿设的穿孔以及与所述内腔连通且位于所述第二支架顶部以用于避让所述防抖驱动组件的第二避让开口。
PCT/CN2019/089717 2019-06-01 2019-06-01 镜头透镜模组 WO2020243854A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/089717 WO2020243854A1 (zh) 2019-06-01 2019-06-01 镜头透镜模组
CN201910487443.0A CN110174741B (zh) 2019-06-01 2019-06-05 镜头透镜模组
US17/017,750 US11635630B2 (en) 2019-06-01 2020-09-11 Camera lens module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089717 WO2020243854A1 (zh) 2019-06-01 2019-06-01 镜头透镜模组

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/017,750 Continuation US11635630B2 (en) 2019-06-01 2020-09-11 Camera lens module

Publications (1)

Publication Number Publication Date
WO2020243854A1 true WO2020243854A1 (zh) 2020-12-10

Family

ID=67697015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089717 WO2020243854A1 (zh) 2019-06-01 2019-06-01 镜头透镜模组

Country Status (3)

Country Link
US (1) US11635630B2 (zh)
CN (1) CN110174741B (zh)
WO (1) WO2020243854A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524934A (ja) * 2019-06-01 2021-09-16 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像モジュール及びペリスコープ撮像レンズ
US11556047B2 (en) 2019-08-16 2023-01-17 Tdk Taiwan Corp. Optical member driving mechanism including matrix structure that corresponds to noise
CN110488451A (zh) * 2019-09-10 2019-11-22 上海比路电子股份有限公司 光学变焦马达、摄像装置及光学变焦马达的组装方法
CN110703538A (zh) * 2019-10-15 2020-01-17 瑞声通讯科技(常州)有限公司 镜头模组
CN112153285A (zh) * 2020-09-23 2020-12-29 上海创功通讯技术有限公司 一种摄像装置
CN112866568B (zh) * 2021-01-04 2022-06-10 维沃移动通信有限公司 摄像头模组和电子设备
CN113067967A (zh) * 2021-03-04 2021-07-02 维沃移动通信有限公司 镜头模组及电子设备
CN113315892B (zh) * 2021-05-14 2022-09-30 杭州海康威视数字技术股份有限公司 摄像机
TWI812244B (zh) * 2022-04-13 2023-08-11 大陽科技股份有限公司 相機模組與電子裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135195A (zh) * 2011-12-01 2013-06-05 佛山普立华科技有限公司 变焦镜头以及成像装置
CN204086644U (zh) * 2014-08-25 2015-01-07 瑞声精密制造科技(常州)有限公司 镜头驱动装置
CN104407487A (zh) * 2014-12-19 2015-03-11 深圳市世尊科技有限公司 一种通过纯平移运动实现光学防抖的音圈马达
CN104849943A (zh) * 2015-01-19 2015-08-19 瑞声声学科技(深圳)有限公司 镜头驱动装置
CN106054494A (zh) * 2015-04-10 2016-10-26 三星电机株式会社 镜头驱动装置及包括该镜头驱动装置的相机模块
KR20180024145A (ko) * 2016-08-29 2018-03-08 주식회사 엠씨넥스 카메라 모듈
CN107819978A (zh) * 2016-09-12 2018-03-20 三星电机株式会社 相机模块致动器及相机模块

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3545233B2 (ja) * 1998-12-08 2004-07-21 シャープ株式会社 球面収差検出装置および光ピックアップ装置
JP5208691B2 (ja) * 2008-11-14 2013-06-12 三星電子株式会社 像ぶれ補正装置
JP2010262178A (ja) * 2009-05-08 2010-11-18 Mitsumi Electric Co Ltd レンズ駆動装置
US9563066B2 (en) * 2011-02-28 2017-02-07 Hoya Corporation Position controller for optical element
US8498528B2 (en) * 2011-02-28 2013-07-30 Hoya Corporation Position controller for image-stabilizing insertable/removable optical element
US9531953B2 (en) * 2013-10-11 2016-12-27 Samsung Electro-Mechanics Co., Ltd. Camera module and portable electronic device including the same
KR102179952B1 (ko) * 2013-11-25 2020-11-17 삼성전자주식회사 광학조절장치
KR101725442B1 (ko) * 2014-03-07 2017-04-11 자화전자(주) 카메라 렌즈 모듈
US9578242B2 (en) * 2014-04-11 2017-02-21 Samsung Electro-Mechanics Co., Ltd. Camera module
CN205507322U (zh) * 2016-01-22 2016-08-24 南昌欧菲光电技术有限公司 具有对焦及防抖功能的摄像头模组
CN105573014A (zh) * 2016-01-22 2016-05-11 南昌欧菲光电技术有限公司 具有对焦及防抖功能的摄像头模组
JP2017161805A (ja) * 2016-03-11 2017-09-14 コニカミノルタ株式会社 レンズ鏡筒
WO2018007981A1 (en) * 2016-07-07 2018-01-11 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
KR101892811B1 (ko) * 2016-09-08 2018-10-05 삼성전기주식회사 카메라 모듈의 액츄에이터
CN106716242A (zh) * 2016-10-24 2017-05-24 江西森阳科技股份有限公司 一种相机模块
KR101771439B1 (ko) * 2017-02-24 2017-08-28 마이크로엑츄에이터(주) 자동 초점 조절장치
CN108303778B (zh) * 2018-02-12 2020-09-18 瑞声光学解决方案私人有限公司 镜头驱动装置
CN108600594B (zh) * 2018-07-09 2020-04-28 Oppo广东移动通信有限公司 成像模组、摄像头组件和电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135195A (zh) * 2011-12-01 2013-06-05 佛山普立华科技有限公司 变焦镜头以及成像装置
CN204086644U (zh) * 2014-08-25 2015-01-07 瑞声精密制造科技(常州)有限公司 镜头驱动装置
CN104407487A (zh) * 2014-12-19 2015-03-11 深圳市世尊科技有限公司 一种通过纯平移运动实现光学防抖的音圈马达
CN104849943A (zh) * 2015-01-19 2015-08-19 瑞声声学科技(深圳)有限公司 镜头驱动装置
CN106054494A (zh) * 2015-04-10 2016-10-26 三星电机株式会社 镜头驱动装置及包括该镜头驱动装置的相机模块
KR20180024145A (ko) * 2016-08-29 2018-03-08 주식회사 엠씨넥스 카메라 모듈
CN107819978A (zh) * 2016-09-12 2018-03-20 三星电机株式会社 相机模块致动器及相机模块

Also Published As

Publication number Publication date
US20200409171A1 (en) 2020-12-31
CN110174741A (zh) 2019-08-27
CN110174741B (zh) 2022-07-26
US11635630B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2020243854A1 (zh) 镜头透镜模组
KR102132018B1 (ko) 카메라 모듈
KR101498356B1 (ko) 렌즈 액츄에이터
WO2020243853A1 (zh) 一种镜头透镜模组
WO2021072821A1 (zh) 镜头模组
KR102497828B1 (ko) 카메라 모듈
JP7120760B2 (ja) 駆動機構
KR20200009823A (ko) 조리개모듈 및 이를 포함하는 카메라 모듈
CN112770060A (zh) 光学元件驱动机构
KR20190137730A (ko) 렌즈 조립체
TWI528704B (zh) 致動器及具有該致動器之相機模組
US20230341653A1 (en) Optical system
TW202134765A (zh) 光學圖像穩定化攝像裝置
KR20220068098A (ko) 카메라 모듈
KR101673428B1 (ko) 자동초점 및 손떨림방지 기능을 갖는 카메라 모듈
KR101511065B1 (ko) 렌즈 구동용 엑츄에이터 및 이를 포함하는 카메라 렌즈 조립체
WO2023000486A1 (zh) 一种三轴自动对焦的防抖潜望马达
CN214125403U (zh) 光学元件驱动机构的载体
CN213244124U (zh) 摄像模组、移动终端以及车载设备
KR101751133B1 (ko) 카메라 모듈
CN113194244A (zh) 光学元件驱动机构的上盖
JP2020177248A (ja) レンズ駆動装置、カメラ装置及び電子機器
KR102516966B1 (ko) Ois 카메라 모듈
CN216531446U (zh) 摄像头模组及电子设备
CN214125402U (zh) 光学元件驱动机构的底座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19931752

Country of ref document: EP

Kind code of ref document: A1