WO2021047121A1 - 一种边坡失稳后粒子位移临界值的确定方法 - Google Patents

一种边坡失稳后粒子位移临界值的确定方法 Download PDF

Info

Publication number
WO2021047121A1
WO2021047121A1 PCT/CN2019/130226 CN2019130226W WO2021047121A1 WO 2021047121 A1 WO2021047121 A1 WO 2021047121A1 CN 2019130226 W CN2019130226 W CN 2019130226W WO 2021047121 A1 WO2021047121 A1 WO 2021047121A1
Authority
WO
WIPO (PCT)
Prior art keywords
slope
particle
displacement
critical value
group
Prior art date
Application number
PCT/CN2019/130226
Other languages
English (en)
French (fr)
Inventor
李亮
褚雪松
袁长丰
翟明
刘旭
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021047121A1 publication Critical patent/WO2021047121A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Definitions

  • the invention belongs to the technical field of slope stability and risk analysis, and in particular relates to a method for determining the critical value of particle displacement after a slope is unstable.
  • Slope stability is one of the three classic problems of soil mechanics.
  • the stress, deformation and stability analysis methods caused by deterministic factors have gradually become perfect and mature.
  • the risk exposure caused by the uncertain factors included in the analysis process It's becoming more obvious. Therefore, the reliability and risk analysis of slope stability have become more and more concerned topics of scientific researchers and engineers.
  • risk analysis a convenient, fast and effective method for determining the critical value of particle sliding displacement after slope instability is urgently needed.
  • the present invention provides a method for determining the critical value of particle displacement after slope instability, which can quickly and effectively determine the critical value of particle displacement after instability, organize the data to obtain a practical table, and It is further used for the risk analysis of slope stability.
  • the technical solution adopted by the present invention to solve the technical problem is: a method for determining the critical value of particle displacement after slope instability, and the purpose is to determine the smooth particle hydrodynamics method (SPH) when analyzing the stability of cohesive soil slope.
  • SPH smooth particle hydrodynamics method
  • Step 1 The sliding earthwork volume after the slope instability is only related to the slope height h and the slope angle ⁇ , so the slope height h 1 ,h 2 ,...,h of the n groups of cohesive soil slopes are rationally designed according to the idea of equalization. n and slope angles a 1 ,a 2 ,...,a n , where n is a positive integer;
  • Step 2 For the i-th group of cohesive soil slopes, 1 ⁇ i ⁇ n, and i is a positive integer, use the finite difference strength reduction method for analysis to obtain the safety factor Fs i and the plastic zone penetration zone;
  • Step 3 Draw the middle line of the penetrating zone of the plastic zone, and calculate the sliding earthwork A i under the finite difference method for the i-th group of cohesive soil slopes based on this line;
  • Step 4 Analyze the i-th group of cohesive soil slopes with the smooth particle fluid dynamics method, and use the safety factor Fs i obtained by the finite difference method as the reduction factor of the soil strength, and calculate the i-th group of cohesive soil slopes after they fail to stabilize
  • Step 5 Use MATLAB software to calculate the critical value d* i of particle displacement after the i-th group of cohesive soil slope instability
  • the soil of each group of slopes will be composed of N particles.
  • the order of each particle is arranged in descending order of displacement. Record the displacement of each particle as d 1 , d 2 ,..., d j ,..., d N in turn ;
  • the parameter A* i be the sliding earthwork of the i-th slope calculated by the smooth particle fluid dynamics method, and the parameter d* i is the critical value of the particle displacement of the i-th slope;
  • Step 7 Set the critical value of particle displacement The corresponding slope height h and slope angle ⁇ are made into a practical table for use in slope risk analysis.
  • the invention has the following beneficial effects: the invention compares the landslide earthwork calculated by the finite difference strength reduction method and the smooth particle hydrodynamics method (SPH) to determine the critical value of the displacement after instability, organize the data to obtain a practical table, and further For the risk analysis of slope stability, the method of the present invention enables the critical value to be obtained quickly and effectively.
  • SPH smooth particle hydrodynamics method
  • Fig. 1 is a flowchart of an embodiment provided by the present invention
  • FIG. 2 is a flowchart of step 5 in an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a specific calculation example model in an embodiment of the present invention.
  • Figure 4 is a verification diagram of the method of the present invention.
  • a method for determining the critical value of particle displacement after slope instability is described in the present invention.
  • the purpose of the present invention is to determine the smooth particle hydrodynamics method (SPH) to analyze the stability of cohesive soil slopes.
  • SPH smooth particle hydrodynamics method
  • the finite difference strength reduction method is used to calculate the safety factor of the slope and the penetration zone of the plastic development zone, and the middle line of the penetration zone is drawn, and then the sliding earthwork after the slope instability is calculated;
  • the smooth particle hydrodynamics method (SPH) is used to calculate the sliding displacement and displacement cloud diagram of the soil particles after the slope instability, and the soil volume of the particles is accumulated one by one according to the order of the particle displacement, and compared with the finite difference strength reduction method Comparing the earthwork volume of, get the critical value of particle displacement under this working condition. Finally, repeat the above steps to calculate the critical value of particle displacement under different working conditions and organize them into a practical table.
  • Step 1 Under the condition that the thickness of the soil layer under the slope is constant, the change of the material parameters of the soil will only change the safety factor of the slope to be studied, but will not change the shape and position of the sliding failure surface, and the sliding after the slope is unstable
  • the amount of earthwork is only related to the slope height h and the slope angle ⁇ , so the slope heights h 1 , h 2 ,..., h n and slope angles a 1 , a 2 , ...,a n , where n is a positive integer;
  • Step 2 For the i-th group of cohesive soil slopes, 1 ⁇ i ⁇ n, and i is a positive integer, use the finite difference strength reduction method for analysis to obtain the safety factor Fs i and the plastic zone penetration zone;
  • Step 3 Draw the middle line of the penetrating zone of the plastic zone, and calculate the sliding earthwork A i under the finite difference method for the i-th group of cohesive soil slopes based on this line;
  • Step 4 Use the smooth particle hydrodynamics method (SPH) to analyze the i-th group of cohesive soil slopes, and use the safety factor Fs i obtained by the finite difference method as the reduction factor of soil strength to calculate the i-th group of cohesive soil slopes Particle displacement file and slope displacement cloud diagram after instability;
  • SPH smooth particle hydrodynamics method
  • Step 5 Use MATLAB software to calculate the critical value d* i of particle displacement after the i-th group of cohesive soil slope instability
  • the soil of each group of slopes will be composed of N particles.
  • the order of each particle is from large to large. For small arrangement, mark the displacement of each particle as d 1 , d 2 ,..., d j ,..., d N in turn ;
  • the parameter A* i is the sliding earthwork of the i-th slope calculated by the smooth particle hydrodynamics method (SPH), and the parameter d* i is the critical value of the particle displacement of the i-th slope;
  • Step 5.2 Judge whether d* i ⁇ d j is established, where 1 ⁇ j ⁇ N, and j is a positive integer;
  • Step 5.4 Judge whether
  • Step 7 Set the critical value of particle displacement The corresponding slope height h and slope angle ⁇ are made into a practical table for use in slope risk analysis.
  • the safety factor of the slope is 1.204, which is a stable slope and its sliding failure surface can be obtained.
  • Fig. 4 is a verification diagram used in this calculation example of the present invention. It can be seen that the sliding soil composed of particles larger than the critical value of displacement is related to the sliding soil. The extreme equilibrium sliding surface fits very consistently, which proves that the present invention is an effective method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

一种边坡失稳后粒子位移临界值的确定方法,属于边坡稳定和风险分析技术领域,包括步骤1:设计n组粘性土边坡的坡高和坡角;步骤2:对于第i组边坡,用有限差分强度折减法分析,得到安全系数Fs i和塑性区贯通带;步骤3:画出塑性区贯通带的中间线,计算出有限差分法下的滑动土方量A i;步骤4:用光滑粒子流体动力学方法分析第i组边坡,将得到的安全系数Fs i作为土体强度的折减系数,计算得到第i组粘性土边坡失稳后的粒子位移文件和边坡位移云图;步骤5:计算第i组粘性土边坡失稳后的粒子位移临界值d* i;步骤6:令i=i+1,且1≤i≤n,重复步骤2~步骤5,得到所有坡高、坡角相对应的粒子位移临界值;步骤7:将得到的粒子位移临界值与其对应的坡高h、坡角α制作成实用表格,供边坡风险分析用。使得临界值的获得快捷、有效。

Description

一种边坡失稳后粒子位移临界值的确定方法 技术领域
本发明属于边坡稳定和风险分析技术领域,尤其涉及一种边坡失稳后粒子位移临界值的确定方法。
背景技术
边坡稳定作为土力学三大经典问题之一,确定性因素导致的应力、变形和稳定性分析方法已渐趋于完善和成熟,而分析过程中所包含的不确定性因素致使的风险暴露的愈加明显。所以边坡稳定的可靠度和风险分析成为科研工作者和工程师越发关注的课题。而进行风险分析时边坡失稳后粒子滑动的位移临界值亟需一种方便快捷、行之有效的确定方法。
发明内容
根据以上现有技术的不足,本发明提供了一种边坡失稳后粒子位移临界值的确定方法,其能快捷、有效地确定失稳后粒子的位移临界值,整理数据得到实用表格,并进一步用于边坡稳定的风险分析。
本发明解决的技术问题采用的技术方案为:一种边坡失稳后粒子位移临界值的确定方法,目的在于确定光滑粒子流体动力学方法(SPH)分析粘性土边坡稳定问题时土体粒子的位移临界值,以便应用于风险分析。具体包括步骤:
步骤1:边坡失稳后的滑动土方量只与坡高h和坡角α相关,故按照均分思想合理设计n组粘性土边坡的坡高h 1,h 2,...,h n和坡角a 1,a 2,...,a n,n为正整数;
步骤2、对于第i组粘性土边坡,1≤i≤n,且i为正整数,使用有限差分强度折减法进行分析,得到其安全系数Fs i和塑性区贯通带;
步骤3、画出塑性区贯通带的中间线,并基于此线计算出第i组粘性土边坡 有限差分法下的滑动土方量A i
步骤4、用光滑粒子流体动力学方法分析第i组粘性土边坡,将有限差分法得到的安全系数Fs i作为土体强度的折减系数,计算得到第i组粘性土边坡失稳后的粒子位移文件和边坡位移云图;
步骤5、用MATLAB软件计算第i组粘性土边坡失稳后的粒子位移临界值d* i
用光滑粒子流体动力学方法对边坡进行稳定性分析时,每组边坡的土体将由N个粒子组成,在计算得到的粒子位移文件中,各个粒子的顺序按位移由大到小排列,依次将每个粒子的位移记为d 1,d 2,…,d j,…,d N
记参数A* i为光滑粒子流体动力学方法计算得到的第i组边坡的滑动土方量,参数d* i为第i组边坡的粒子位移临界值;
5.1、将A* i的初值赋为0,d* i的初值赋为该组边坡最大的粒子位移,即d* i=d 1,令j=1;
5.2、判断d* i≤d j是否成立,其中1≤j≤N,j为正整数;
若成立,则进行步骤5.3;
若不成立,则进行步骤5.4;
5.3、令A* i=A* i+0.04,其中0.04m 2为一个粒子的土方量,令j=j+1,跳至步骤5.2继续进行;
5.4、判断|A* i-A i|/A i<1%是否成立,即判断两种方法所计算的土方量误差是否在1%以内;
若成立,即输出粒子位移临界值d* i
若不成立,则令A* i=0,d* i=d* i-0.001,令j=1,因为粒子位移最小精确到千分位,跳至步骤5.2继续进行。
步骤6、令i=i+1,且1≤i≤n,重复步骤2~步骤5的过程,得到所有坡高、坡角相对应的粒子位移临界值
Figure PCTCN2019130226-appb-000001
步骤7、将得到的粒子位移临界值
Figure PCTCN2019130226-appb-000002
与其对应的坡高h、坡角α制作成实用表格,以供作边坡风险分析时使用。
本发明具有以下有益效果:本发明通过对比有限差分强度折减法和光滑粒子流体动力学方法(SPH)计算得到的滑坡土方量,从而确定失稳后的位移临界值,整理数据得到实用表格,进一步用于边坡稳定的风险分析,本发明所述方法使得临界值的获得快捷、有效。
附图说明
图1是本发明所提供实施例的流程框图;
图2是本发明所提供实施例中步骤5的流程图;
图3是本发明所提供实施例中具体算例模型示意图;
图4是本发明方法的验证图;
具体实施方式
下面结合附图对本发明做进一步描述。
实施例一:
如图1~图4所示,本发明所述的一种边坡失稳后粒子位移临界值的确定方法,本发明的目的在于确定光滑粒子流体动力学方法(SPH)分析粘性土边坡稳定问题时土体粒子的位移临界值,以便应用于风险分析。
首先,用有限差分强度折减法计算得到边坡的安全系数以及塑性发展区贯通带,并画出贯通带的中间线,进而计算出边坡失稳后的滑动土方量;
然后,用光滑粒子流体动力学方法(SPH)计算得到边坡失稳后土体粒子的滑动位移和位移云图,并按粒子位移的大小顺序逐个累加粒子的土方量,并与 有限差分强度折减法的土方量作对比,得到该工况下的粒子位移临界值,最后,重复以上步骤,计算不同工况下的粒子位移临界值,并整理成实用表格。
具体包括如下步骤:
步骤1:在坡下土层厚度一定的情况下,土体的材料参数变化只会改变拟研究边坡的安全系数,而不会改变滑动破坏面的形状和位置,边坡失稳后的滑动土方量只与坡高h和坡角α相关,故按照均分思想合理设计n组粘性土边坡的坡高h 1,h 2,...,h n和坡角a 1,a 2,...,a n,n为正整数;
步骤2、对于第i组粘性土边坡,1≤i≤n,且i为正整数,使用有限差分强度折减法进行分析,得到其安全系数Fs i和塑性区贯通带;
步骤3、画出塑性区贯通带的中间线,并基于此线计算出第i组粘性土边坡有限差分法下的滑动土方量A i
步骤4、用光滑粒子流体动力学方法(SPH)分析第i组粘性土边坡,将有限差分法得到的安全系数Fs i作为土体强度的折减系数,计算得到第i组粘性土边坡失稳后的粒子位移文件和边坡位移云图;
步骤5、用MATLAB软件计算第i组粘性土边坡失稳后的粒子位移临界值d* i
用光滑粒子流体动力学方法(SPH)对边坡进行稳定性分析时,每组边坡的土体将由N个粒子组成,在计算得到的粒子位移文件中,各个粒子的顺序按位移由大到小排列,依次将每个粒子的位移记为d 1,d 2,…,d j,…,d N
记参数A* i为光滑粒子流体动力学方法(SPH)计算得到的第i组边坡的滑动土方量,参数d* i为第i组边坡的粒子位移临界值;
步骤5.1、将A* i的初值赋为0,d* i的初值赋为该组边坡最大的粒子位移,即d* i=d 1,令j=1,因为粒子位移文件中,各个粒子的顺序按位移由大到小排列, 依次将每个粒子的位移记为d 1,d 2,…,d N,最大的粒子位移即为d 1
步骤5.2、判断d* i≤d j是否成立,其中1≤j≤N,j为正整数;
若成立,则进行步骤5.3;
若不成立,则进行步骤5.4;
步骤5.3、令A* i=A* i+0.04,其中0.04m 2为一个粒子的土方量,令j=j+1,跳至步骤5.2继续进行;
步骤5.4、判断|A* i-A i|/A i<1%是否成立,即判断两种方法所计算的土方量误差是否在1%以内;
若成立,即输出粒子位移临界值d* i
若不成立,则令A* i=0,d* i=d* i-0.001,j=1,因为粒子位移最小精确到千分位,跳至步骤5.2继续进行。
步骤6、令i=i+1,且1≤i≤n,重复步骤2~步骤5的过程,得到所有坡高、坡角相对应的粒子位移临界值
Figure PCTCN2019130226-appb-000003
步骤7、将得到的粒子位移临界值
Figure PCTCN2019130226-appb-000004
与其对应的坡高h、坡角α制作成实用表格,以供作边坡风险分析时使用。
根据表1,以一实际算例说明本发明的可行性。
某粘性土边坡,其几何尺寸如图3所示,土的重度γ=19kN/m 3,粘聚力c=55kPa,内摩擦角
Figure PCTCN2019130226-appb-000005
计算该边坡失稳后粒子位移的临界值。
首先,由极限平衡法易知该边坡安全系数为1.204,是一稳定边坡,并可以得到其滑动破坏面。
然后查表1可知,该边坡失稳后其粒子位移临界值为0.7363m,图4为本发明用于该算例的验证图,可以看出大于位移临界值的粒子组成的滑动土体与极限平衡滑动面贴合得十分一致,证明了本发明是一种行之有效的方法。
表1、边坡失稳后粒子位移临界值的实用表(单位:m)
Figure PCTCN2019130226-appb-000006
以上所述为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书以及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (2)

  1. 一种边坡失稳后粒子位移临界值的确定方法,其特征在于,包括如下步骤:
    步骤1:边坡失稳后的滑动土方量只与坡高h和坡角α相关,故按照均分思想合理设计n组粘性土边坡的坡高h 1,h 2,...,h n和坡角a 1,a 2,...,a n,n为正整数;
    步骤2、对于第i组粘性土边坡,1≤i≤n,且i为正整数,使用有限差分强度折减法进行分析,得到其安全系数Fs i和塑性区贯通带;
    步骤3、画出塑性区贯通带的中间线,并基于此线计算出第i组粘性土边坡有限差分法下的滑动土方量A i
    步骤4、用光滑粒子流体动力学方法分析第i组粘性土边坡,将有限差分法得到的安全系数Fs i作为土体强度的折减系数,计算得到第i组粘性土边坡失稳后的粒子位移文件和边坡位移云图;
    步骤5、用MATLAB软件计算第i组粘性土边坡失稳后的粒子位移临界值d* i
    步骤6、令i=i+1,且1≤i≤n,重复步骤2~步骤5的过程,得到所有坡高、坡角相对应的粒子位移临界值
    Figure PCTCN2019130226-appb-100001
    步骤7、将得到的粒子位移临界值
    Figure PCTCN2019130226-appb-100002
    与其对应的坡高h、坡角α制作成实用表格,以供作边坡风险分析时使用。
  2. 根据权利要求1所述的边坡失稳后粒子位移临界值的确定方法,其特征在于,步骤5的具体实现过程为:
    用光滑粒子流体动力学方法对边坡进行稳定性分析时,每组边坡的土体将由N个粒子组成,N为正整数,在计算得到的粒子位移文件中,各个粒子的顺序按位移由大到小排列,依次将每个粒子的位移记为d 1,d 2,…,d j,…,d N
    记参数A* i为光滑粒子流体动力学方法计算得到的第i组边坡的滑动土方 量,参数d* i为第i组边坡的粒子位移临界值;
    步骤如下:
    步骤5.1、将A* i的初值赋为0,d* i的初值赋为该组边坡最大的粒子位移,即d* i=d 1,令j=1;
    步骤5.2、判断d* i≤d j是否成立,其中1≤j≤N,j为正整数;
    若成立,则进行步骤5.3;
    若不成立,则进行步骤5.4;
    步骤5.3、令A* i=A* i+0.04,其中0.04m 2为一个粒子的土方量,令j=j+1,跳至步骤5.2继续进行;
    步骤5.4、判断|A* i-A i|/A i<1%是否成立,即判断两种方法所计算的土方量误差是否在1%以内;
    若成立,即输出粒子位移临界值d* i
    若不成立,则令A* i=0,d* i=d* i-0.001,j=1,跳至步骤5.2继续进行。
PCT/CN2019/130226 2019-09-12 2019-12-31 一种边坡失稳后粒子位移临界值的确定方法 WO2021047121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910861265.3 2019-09-12
CN201910861265.3A CN110569609B (zh) 2019-09-12 2019-09-12 一种边坡失稳后粒子位移临界值的确定方法

Publications (1)

Publication Number Publication Date
WO2021047121A1 true WO2021047121A1 (zh) 2021-03-18

Family

ID=68779429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130226 WO2021047121A1 (zh) 2019-09-12 2019-12-31 一种边坡失稳后粒子位移临界值的确定方法

Country Status (2)

Country Link
CN (1) CN110569609B (zh)
WO (1) WO2021047121A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118171373A (zh) * 2024-05-13 2024-06-11 西南交通大学 一种坡体滑动失稳临界位移的计算方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110569609B (zh) * 2019-09-12 2020-04-17 青岛理工大学 一种边坡失稳后粒子位移临界值的确定方法
CN111310392B (zh) * 2020-03-04 2021-04-27 青岛理工大学 一种用于评估基坑开挖边坡失稳面积放大效应的方法
CN112016224B (zh) * 2020-07-28 2022-11-18 西南大学 基于sph的土坡滑面分析判定方法、系统、终端及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106227904A (zh) * 2016-02-06 2016-12-14 湖北工业大学 一种基于边坡力分布特征的防护措施设计方法
JP2017116971A (ja) * 2015-12-21 2017-06-29 公益財団法人鉄道総合技術研究所 降雨による斜面崩壊と地震の複合災害に対する運転規制の基準値変更システム
CN109457739A (zh) * 2018-11-08 2019-03-12 青岛理工大学 一种基于下游构筑物受损程度的边坡安全度评价方法
CN110569609A (zh) * 2019-09-12 2019-12-13 青岛理工大学 一种边坡失稳后粒子位移临界值的确定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547070B1 (ko) * 2014-12-05 2015-08-26 연세대학교 산학협력단 선행 강우 효과를 고려한 비탈면 해석 방법 및 시스템
CN108334719B (zh) * 2018-03-26 2021-08-17 四川理工学院 一种基于sph法的土质边坡稳定性及滑坡运动过程分析方法
CN109359361B (zh) * 2018-09-30 2019-06-28 青岛理工大学 边坡失稳后果量化分析方法
CN109977554B (zh) * 2019-03-28 2020-06-30 青岛理工大学 一种边坡滑动面积的评估方法
CN110210175A (zh) * 2019-06-21 2019-09-06 贵州正业工程技术投资有限公司 一种复合地基填方边坡有限元稳定性计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116971A (ja) * 2015-12-21 2017-06-29 公益財団法人鉄道総合技術研究所 降雨による斜面崩壊と地震の複合災害に対する運転規制の基準値変更システム
CN106227904A (zh) * 2016-02-06 2016-12-14 湖北工业大学 一种基于边坡力分布特征的防护措施设计方法
CN109457739A (zh) * 2018-11-08 2019-03-12 青岛理工大学 一种基于下游构筑物受损程度的边坡安全度评价方法
CN110569609A (zh) * 2019-09-12 2019-12-13 青岛理工大学 一种边坡失稳后粒子位移临界值的确定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118171373A (zh) * 2024-05-13 2024-06-11 西南交通大学 一种坡体滑动失稳临界位移的计算方法

Also Published As

Publication number Publication date
CN110569609B (zh) 2020-04-17
CN110569609A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2021047121A1 (zh) 一种边坡失稳后粒子位移临界值的确定方法
CN111310392B (zh) 一种用于评估基坑开挖边坡失稳面积放大效应的方法
CN104899380B (zh) 一种基于蒙特卡洛模拟的边坡稳定可靠度敏感性分析方法
Babuska et al. Verification and validation in computational engineering and science: basic concepts
CN110765614A (zh) 一种基于滑坡破坏形态的边坡风险综合评估方法
CN111931369B (zh) 降雨型滑坡稳定性分析及运动距离测算方法、设备及介质
CN113338904B (zh) 一种海上油井产能评价方法
WO2020093863A1 (zh) 一种基于下游构筑物受损程度的边坡安全度评价方法
CN109359361A (zh) 边坡失稳后果量化分析方法
CN111914444A (zh) 基于粒子群优化和蒙特卡罗模拟的滑坡有限元区间分析法
Sobotka et al. Verification of stress-intensity factor solutions by uncertainty quantification
CN112711868A (zh) 一种计算地震作用下均质边坡动力安全系数的拟静力法
Hariri et al. Modeling of elastic/plastic contact between nominally flat rough surfaces using an n-point asperity model
CN113239435B (zh) 一种水库最优放水速度确定的方法
CN111651906B (zh) 一种高效的大变形尾矿固结渗透性能求解方法
CN113158314B (zh) 边坡稳定性分析方法
Guo et al. Finite-volume multi-stage scheme for advection-diffusion modeling in shallow water flows
CN108760119A (zh) 一种考虑粒径尺寸效应的岩堆主动土压力作用点修正方法
Fan et al. Effect of wall stress models and subgrid-scale models for flow past a cylinder at Reynolds number 3900
CN109284538B (zh) 一种桥梁斜坡桩基长度折减方法
Rahman et al. Applications of random finite element method in bearing capacity problems
Fochesatto et al. Effect of crack patterns on the stress distribution of hard chromium coatings under sliding contact: stochastic modeling approach
Pralong et al. A level-set method for modeling the evolution of glacier geometry
CN114357718A (zh) 一种库岸边坡岩土体强度参数最大弱化系数确定方法
Fritsch et al. Modeling the surface pressure spectrum on rough walls in pressure gradients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19944674

Country of ref document: EP

Kind code of ref document: A1