WO2021047076A1 - 空调及其控制方法、运行控制装置及存储介质 - Google Patents

空调及其控制方法、运行控制装置及存储介质 Download PDF

Info

Publication number
WO2021047076A1
WO2021047076A1 PCT/CN2019/123635 CN2019123635W WO2021047076A1 WO 2021047076 A1 WO2021047076 A1 WO 2021047076A1 CN 2019123635 W CN2019123635 W CN 2019123635W WO 2021047076 A1 WO2021047076 A1 WO 2021047076A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange unit
unit
circulation system
throttling
Prior art date
Application number
PCT/CN2019/123635
Other languages
English (en)
French (fr)
Inventor
周宏亮
岳宝
刘和成
大森宏
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to EP19945111.3A priority Critical patent/EP4001786B1/en
Publication of WO2021047076A1 publication Critical patent/WO2021047076A1/zh
Priority to US17/685,312 priority patent/US20220186963A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/875Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling heat-storage apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • This application relates to the field of air conditioning, and in particular, to an air conditioner, an air conditioner control method, an operation control device, and a computer-readable storage medium.
  • the existing air conditioner is equipped with an energy storage device, and its operation mode is roughly as follows: the air conditioner operates in the energy storage mode, so that the energy storage device stores energy in the energy storage mode, and the energy storage device completes the energy storage in the energy storage mode , The air conditioner uses the energy stored in the energy storage device to work.
  • Such structural products have poor continuity in use, and it is difficult to meet the different needs of users.
  • an object of the present application is to provide an air conditioner.
  • Another object of the present application is to provide a control method of an air conditioner.
  • Another object of this application is to provide an operation control device.
  • Another object of the present application is to provide a computer-readable storage medium.
  • an embodiment of the first aspect of the present application provides an air conditioner, including: a first medium circulation system, including a first heat exchange unit, a second heat exchange unit, a fifth heat exchange unit, and a first throttle Unit and a second throttling unit, the first heat exchange unit is connected in series between the first throttling unit and the second throttling unit, and the second throttling unit is connected in series with the first heat exchange unit Unit and the second heat exchange unit, the first throttling unit is connected in series between the fifth heat exchange unit and the first heat exchange unit, the first heat exchange unit and the first heat exchange unit
  • the five heat exchange units are used to exchange heat with the environment respectively; the energy storage device is provided with energy storage materials, and the second heat exchange unit exchanges heat with the energy storage materials.
  • the air conditioner provided by the above-mentioned embodiments of the present application forms a first medium circulation system.
  • the first medium performs work through the compressor, the first heat exchange unit, and the first throttling unit.
  • a medium uses the first heat exchange unit to release part of the cold energy it carries into the environment to realize room cooling.
  • the first medium uses the second throttling unit to further reduce the temperature, and the second heat exchange unit transfers the carried Lower cooling capacity is provided to the energy storage material to achieve energy storage, thereby meeting the synchronization requirements for cooling the room and the energy storage of the energy storage material, and in this way the first medium can provide the energy storage material with a lower evaporation temperature, so that The material utilization rate of energy storage materials is higher, and the energy storage process is more efficient.
  • the energy storage materials need to store energy first, and then use the cold energy stored by the energy storage materials to cool the room.
  • this structure has more diversified ways to provide cooling to the environment, making the product's use functions and operating modes more abundant, and this structure achieves an operating mode of simultaneous cooling of the room and energy storage of energy storage materials , Which makes it unnecessary to supply energy to the environment based on energy storage materials, and has better continuity of use, which can better meet the needs of users.
  • the air conditioner in the foregoing embodiment provided by the present application may also have the following additional technical features:
  • the first medium circulation system further includes: a third throttling unit, a branch formed by the first throttling unit, the first heat exchange unit, and the second throttling unit in series and the The third throttling unit is arranged in parallel; the first valve is connected to the third throttling unit, the fifth heat exchange unit and the first throttling unit, and the first valve has a first position and a second position.
  • the first valve at the first position controls the fifth heat exchange unit to conduct to the first throttling unit, and controls the fifth heat exchange unit to turn to the third throttling unit Cut off, controlling the fifth heat exchange unit to cut off to the first throttling unit at the second position, and controlling the fifth heat exchange unit to turn on to the third throttling unit.
  • the first medium circulation system further includes: a second valve, and a branch formed by the first throttling unit and the first heat exchange unit in series is arranged in parallel with the second valve, and
  • the second valve has a first conduction position and a first cut-off position. In the first conduction position, the second valve short-circuits the branch circuit provided in parallel therewith, and in the first cut-off position, the branch circuit is short-circuited.
  • the branches arranged in parallel are turned on.
  • the first medium circulation system further includes: a second valve, a branch formed by the first heat exchange unit and the second throttling unit in series is arranged in parallel with the second valve, and
  • the second valve has a first conduction position and a first cut-off position. In the first conduction position, the second valve short-circuits the branch circuit provided in parallel therewith, and in the first cut-off position, the branch circuit is short-circuited.
  • the branches arranged in parallel are turned on.
  • the first throttling unit is a capillary adapted to the first heat exchange unit
  • the second throttling unit is a capillary adapted to the second heat exchange unit
  • the first One or both of the throttling unit and the second throttling unit are expansion valves with adjustable openings.
  • the third throttling unit is a capillary tube adapted to the second heat exchange unit, or the third throttling unit is an expansion valve with an adjustable opening.
  • the second throttle unit is an expansion valve with an adjustable opening.
  • the first throttle unit is an expansion valve with an adjustable opening.
  • the first medium circulation system forms a first loop
  • the first heat exchange unit, the second heat exchange unit, the first throttling unit, and the second throttling unit form the first Part of the circuit
  • the first circuit is provided with a compressor and a reversing device
  • the compressor has an exhaust port and a return air port
  • the reversing device is connected to the exhaust port, the return air port, and the second reversing device.
  • the reversing device has a third position and a fourth position, and the reversing device connects the exhaust port with the fifth heat exchange unit at the third position Conduction, and conduction between the air return port and the second heat exchange unit, the reversing device conducts the exhaust port with the second heat exchange unit at the fourth position, and conducts The air return port is connected to the fifth heat exchange unit.
  • the first medium circulation system further includes: a third valve, and a branch formed by the second throttling unit and the second heat exchange unit in series is arranged in parallel with the third valve,
  • the third valve has a second conduction position and a second cut-off position, the third valve in the second conduction position short-circuits the branch circuit provided in parallel therewith, and in the second cut-off position
  • the branches arranged in parallel therewith are turned on.
  • a second medium circulation system formed with a second loop, and including a third heat exchange unit and a fourth heat exchange unit formed in the second loop, the third heat exchange unit The heat unit is used to exchange heat with the environment, and the fourth heat exchange unit exchanges heat with the energy storage material.
  • the energy storage device includes a container body, and the energy storage material is accommodated in the container body, wherein at least a part of the second heat exchange unit is located in the container body and is connected to the energy storage body. Material contact; and/or at least a part of the fourth heat exchange unit is located in the container body and is in contact with the energy storage material.
  • a driving device is provided in the second loop, and the driving device is adapted to drive the second medium in the second loop.
  • the power storage device is electrically connected to the drive device and supplies power to the drive device; and/or the power storage device is connected to the compressor of the first medium circulation system. Connecting and supplying power to the compressor of the first medium circulation system.
  • the first medium circulation system has a first fan, and the first fan is used to drive the airflow to exchange heat with the first heat exchange unit and the third heat exchange unit.
  • the first heat exchange unit and the third heat exchange unit are arranged along the wind direction, wherein the surface of one of the first heat exchange unit and the third heat exchange unit The temperature is higher than the surface temperature of the other, and the one of the first heat exchange unit and the third heat exchange unit with the higher surface temperature is located on the air inlet side of the one with the lower surface temperature.
  • it further includes: an electric heating device, and the first fan is configured to drive the airflow to exchange heat with the electric heating device, so that the electric heating device supplies heat to the environment.
  • a housing is further included, the air conditioner is an integrated air conditioner, and the housing is formed as a housing of the integrated air conditioner.
  • the embodiment of the second aspect of the present application provides an air conditioner control method used in any of the above technical solutions, including the following steps:
  • the first medium circulation system is controlled to operate in the first preset mode, so that the fifth heat exchange unit, the first throttling unit, and the first The heat exchange unit, the second throttling unit, and the second heat exchange unit are turned on, and control the second medium circulation system to close; control the first medium circulation system in the second preset mode according to the second mode indicated by the mode instruction Operation, so that the discharge port and the return port of the compressor are connected through the fifth heat exchange unit, the first throttling unit, the first heat exchange unit, the second throttling unit, and the second heat exchange unit, and the second heat exchange unit is controlled.
  • the second medium circulation system is running; the first medium circulation system is controlled to operate in the third preset mode according to the third mode indicated by the mode command, so that the exhaust port and the return port of the compressor pass through the fifth heat exchange unit, The first throttle unit, the first heat exchange unit, and the third valve are turned on, and control the operation of the second medium circulation system; according to the fourth mode indicated by the mode instruction, the first medium circulation system is controlled in the fourth preset mode Operate so that the compressor’s exhaust port and return port are connected via the fifth heat exchange unit, the second valve, the second throttling unit, and the second heat exchange unit, and control the operation of the second medium circulation system;
  • the fifth mode indicated by the mode command controls the first medium circulation system to operate in the fifth preset mode, so that the exhaust port and the return port of the compressor pass through the fifth heat exchange unit, the first valve, and the third throttle
  • the unit and the second heat exchange unit are turned on, and the second medium circulation system is controlled to close; according to the sixth mode indicated by the mode command, the first medium circulation
  • the opening degrees of the first throttle unit and the second throttle unit are respectively greater than zero, and the opening degrees of the first throttle unit are smaller than the second throttle unit.
  • the opening degree of the flow unit according to the tenth mode indicated by the mode instruction, the first medium circulation system is controlled to operate in the tenth preset mode, so that the exhaust port and the return air port of the compressor pass through the fifth heat exchange unit, The first throttling unit, the first heat exchange unit, the second throttling unit, and the second heat exchange unit are turned on, and the second medium circulation system is controlled to close, wherein, in the tenth preset mode, the first One The opening degree of the throttle unit is its maximum threshold value, and the opening degree of the second throttle unit is greater than zero and less than its maximum threshold value.
  • the control method of the air conditioner provided in the above-mentioned embodiments of the present application can realize the control to control the operation of the air conditioner in at least ten modes, and the operation mode of the air conditioner is more abundant, which can better meet the use requirements of the product.
  • the exhaust port and the return port of the compressor are controlled via the fifth heat exchange unit, the first throttling unit, the first heat exchange unit, the second throttling unit,
  • the second heat exchange unit is turned on and controls the second medium circulation system to close.
  • the driving device is controlled to close to stop the circulation of the second medium in the second medium circulation system to realize the closing of the second medium circulation system.
  • the first medium evaporates to a certain degree in the first heat exchange unit, it further evaporates in the second heat exchange unit, realizing weak cooling + ice storage, and making the temperature of the cold air provided to the environment softer , Will not produce a harsh cold feeling due to too low temperature, and enhance the comfortable experience of the product.
  • the compressor’s discharge port and return port are controlled via the fifth heat exchange unit, the first throttling unit, the first heat exchange unit, the second throttling unit, and the second heat exchange unit.
  • the unit is turned on and controls the operation of the second medium circulation system.
  • the drive device is further controlled to operate the second medium circulation system.
  • the first medium undergoes a certain degree of evaporation in the first heat exchange unit. It is then further evaporated in the second heat exchange unit, and at the same time, the driving device is controlled to circulate so that the second medium in the second medium circulation system circulates, so as to realize the operation of the second medium circulation system.
  • the second medium absorbs the cold energy of the energy storage material
  • the third heat exchange unit is released to the environment, so that the first heat exchange unit and the third heat exchange unit simultaneously provide cooling to the environment, which meets the user's demand for indoor cooling at a higher rate.
  • the discharge port and the return port of the compressor are controlled to conduct through the fifth heat exchange unit, the first throttling unit, the first heat exchange unit, and the third valve, and control the second
  • the medium circulation system is running. Specifically, for example, after the first medium is throttled by the first throttling unit, it enters the first heat exchange unit to evaporate to provide cooling to the environment, and the second heat exchange unit stops cooling the energy storage material, so that the first medium circulates
  • the cold energy generated by the work of the system is mainly used to cool the environment.
  • the second medium absorbs the cold energy of the energy storage material and releases it to the environment through the third heat exchange unit, thereby realizing the first heat exchange unit and the third heat exchange unit At the same time, it provides cooling to the environment and realizes strong cooling to meet the needs of users for indoor cooling at a higher rate.
  • the discharge port and the return port of the compressor are controlled to conduct through the fifth heat exchange unit, the second valve, the second throttling unit, and the second heat exchange unit, and control the second
  • the operation of the medium circulation system for example, after the first medium is throttled by the second throttling unit, it enters the second heat exchange unit and evaporates to supply cooling to the energy storage material.
  • the driving device is controlled to turn on to make the second medium circulate The second medium in the system circulates to realize the operation of the second medium circulation system.
  • the second medium absorbs the cold energy of the energy storage material and releases it to the environment through the third heat exchange unit to achieve strong cooling and make the temperature of the cold air provided to the environment It is softer and will not produce a harsh cold feeling due to too low temperature, which enhances the comfortable experience of the product.
  • the discharge port and the return port of the compressor are controlled to conduct through the fifth heat exchange unit, the first valve, the third throttling unit, and the second heat exchange unit, and control the second The medium circulation system is closed. Specifically, for example, after the first medium is throttled by the third throttling unit, it enters the second heat exchange unit and evaporates to provide cooling to the energy storage material.
  • the discharge port and the return port of the compressor are controlled to conduct through the fifth heat exchange unit, the second valve, the second throttling unit, and the second heat exchange unit, and control the second The medium circulation system is closed. Specifically, for example, after the first medium is throttled by the second throttling unit, it enters the second heat exchange unit and evaporates to provide cooling to the energy storage material.
  • the first heat exchange unit and the second first throttling unit do not work, so that The cold energy produced by the work of the first medium circulation system is mainly used for cooling the energy storage materials.
  • the driving device is controlled to shut down so that the second medium in the second medium circulation system stops circulating to realize the shutdown of the second medium circulation system and realize the order Ice storage is used to avoid unnecessary power consumption when the first heat exchange unit is not required to provide cooling to the environment, and to achieve energy saving and emission reduction of products.
  • the first medium circulation system is controlled to close, and the second medium circulation system is controlled to operate.
  • the compressor is controlled to close to stop the circulation of the first medium in the first medium circulation system to close the first medium circulation system
  • the driving device is controlled to turn on to allow the second medium in the second medium circulation system to circulate to realize The second medium circulation system runs.
  • the second medium absorbs the cold energy of the energy storage material and then releases it to the environment through the third heat exchange unit, so as to realize the cooling of the environment by the third heat exchange unit and the melting of ice to provide cooling to the environment.
  • the temperature of the cold air is softer, and will not produce a harsh cold feeling due to the low temperature, which improves the comfortable experience of the product.
  • the operation of the first fan of the first medium circulation system is controlled according to the eighth mode indicated by the mode command. At this time, since the first medium in the first medium circulation system does not need to circulate, the compressor can be controlled to shut down in this mode.
  • the operation of the electric heating device is controlled so that the first fan drives the airflow to exchange heat with the electric heating device, and the second medium circulation system is controlled to close, that is, the driving device is controlled to close, so that the electric heating device supplies heat to the environment.
  • the compressor’s discharge port and return port are controlled via the fifth heat exchange unit, the first throttling unit, the first heat exchange unit, the second throttling unit, and the second heat exchange unit.
  • the unit is turned on and controls the operation of the second medium circulation system, wherein, in the ninth preset mode, the opening degrees of the first throttling unit and the second throttling unit are respectively greater than zero, and the The opening degree of the first throttle unit is smaller than the opening degree of the second throttle unit.
  • a certain degree of evaporation is performed in the first heat exchange unit through the first medium, and then further evaporated in the second heat exchange unit to achieve weak cooling + ice storage, making the temperature of the cold air provided to the environment softer , Will not produce a harsh cold feeling due to low temperature, improve the comfortable experience of the product, and control the opening degree of the first throttling unit to be smaller than the opening degree of the second throttling unit, so that the first medium is in the second throttling
  • the unit is further throttled, and the throttle is more adequate.
  • the second medium circulation system operates.
  • the second medium absorbs the cold energy of the energy storage material and then releases it to the environment through the third heat exchange unit, thereby realizing that the first heat exchange unit and the third heat exchange unit provide cooling to the environment at the same time, which meets the needs of users The demand for indoor cooling at a higher rate.
  • the compressor’s exhaust port and return port are controlled via the fifth heat exchange unit, the first throttling unit, the first heat exchange unit, the second throttling unit, and the second heat exchange unit.
  • the unit is turned on and the second medium circulation system is controlled to close, wherein, in the tenth preset mode, the opening of the first throttling unit is its maximum threshold, and the opening of the second throttling unit Greater than zero and less than its maximum threshold. Since the opening degree of the first throttling unit is its maximum threshold, the first medium flows to the first heat exchange unit almost without being throttled when flowing through the first throttling unit, so the first heat exchange unit does not flow to the environment.
  • the first medium flows to the second throttling unit and is fully throttled by the second throttling unit to supply cooling to the energy storage material, thereby realizing single ice storage.
  • the air conditioning mode can be switched, further reducing the number of parts of the product, reducing the assembly steps of the product, and reducing the cost of the product.
  • the embodiment of the third aspect of the present application provides an operation control device suitable for an air conditioner.
  • the operation control device includes a processor, which can implement the air conditioner control method described in the above technical solution when the processor executes a computer program. Qualified steps.
  • the operation control device provided in the above-mentioned embodiment of the present application achieves all the above beneficial effects by implementing the air-conditioning control method provided in the above-mentioned technical solution, which will not be repeated here.
  • the embodiment of the fourth aspect of the present application provides an air conditioner, including the operation control device described in the above technical solution.
  • the air conditioner provided in the foregoing embodiment of the present application is provided with the operation control device described in the foregoing technical solution, thereby having all the above beneficial effects, which will not be repeated here.
  • the embodiment of the fifth aspect of the present application provides a computer-readable storage medium on which a computer program is stored, wherein, when the computer program is executed, it realizes the limitation of the air conditioner control method described in the above technical solution. A step of.
  • the embodiment of the fifth aspect of the present application provides a computer readable storage medium, and when the computer program stored therein is executed, the air conditioner control method described in the above technical solution is realized, thereby having all the above beneficial effects.
  • Fig. 1 is a schematic structural diagram of an air conditioner according to an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 11 is a flowchart of a control method of an air conditioner according to an embodiment of the present application.
  • Fig. 12 is a flowchart of a control method of an air conditioner according to an embodiment of the present application.
  • Fig. 13 is a flowchart of a control method of an air conditioner according to an embodiment of the present application.
  • Fig. 14 is a flowchart of a control method of an air conditioner according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an operation control device according to an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • first heat exchange unit 102 first heat exchange unit, 104 second heat exchange unit, 106 fifth heat exchange unit, 108 first throttling unit, 110 second throttling unit, 112 third throttling unit, 114 first valve, 116 second Valve, 118 compressor, 120 reversing device, 122 third valve, 200 energy storage device, 202 container body, 302 third heat exchange unit, 304 fourth heat exchange unit, 306 drive device, 400 power storage device, 500 electric heat Device, 602 first fan, 604 second fan, 800 operation control device, 802 processor, 804 memory, 900 housing, 910 chassis, 920 walking device, 930 cavity, 940 ventilation structure.
  • an embodiment of the first aspect of the present application provides an air conditioner, including a first medium circulation system and an energy storage device 200.
  • the first medium circulation system includes a first heat exchange unit 102, a second heat exchange unit 104, a fifth heat exchange unit 106, a first throttling unit 108, and a second throttling unit 110
  • the first heat exchange unit 102 is connected in series between the first throttling unit 108 and the second throttling unit 110
  • the second throttling unit 110 is connected in series between the first heat exchange unit 102 and the second heat exchange unit 104
  • the first The throttling unit 108 is connected in series between the fifth heat exchange unit 106 and the first heat exchange unit 102
  • the first heat exchange unit 102 and the fifth heat exchange unit 106 are used to exchange heat with the environment respectively.
  • the energy storage device 200 is provided with an energy storage material, and the second heat exchange unit 104 exchanges heat with the energy storage material.
  • the first medium circulation system provides circulation of the first medium.
  • the first medium is, for example, R290 (propane) refrigerant.
  • the first heat exchange unit 102, the second heat exchange unit 104, and the fifth heat exchange unit 106 are, for example, tubes.
  • the fin heat exchanger can also set the first heat exchange unit 102, the second heat exchange unit 104, and the fifth heat exchange unit 106 to be parallel flow heat exchangers and other heat exchangers, among which the heat exchanger is for example with Fins are used to increase heat exchange efficiency.
  • heat exchangers without fins can also be used.
  • the first throttling unit 108 and the second throttling unit 110 are, for example, capillary tubes.
  • electronic expansion valves or thermal expansion valves can also be used.
  • the energy storage material is, for example, ice.
  • the first medium circulation system further includes a compressor 118 connected in series between the second heat exchange unit 104 and the fifth heat exchange unit 106, and the compression pair comes from the second heat exchange unit 104.
  • the first throttling unit 108 is connected to the fifth heat exchange unit 106 and the first heat exchange unit 102, and is configured to The refrigerant throttling treatment of the fifth heat exchange unit 106, and the refrigerant after throttling treatment is delivered to the first heat exchange unit 102, and the first medium flows into the second throttling after heat exchange with the environment through the first heat exchange unit 102 Unit 110, the second throttling unit 110 performs further throttling treatment on the refrigerant, and transports the throttling treated refrigerant to the second heat exchange unit 104, and the first medium passes through the second heat exchange unit 104 to the energy storage
  • the material provides cooling so that the energy storage material stores energy.
  • a second fan 604 is also provided in the first medium circulation system.
  • the second fan 604 is configured to drive the airflow to exchange heat with the fifth heat exchange unit 106.
  • the first medium circulation system operates, specifically, compression After the compressor 118 compresses the refrigerant, it discharges the high-temperature and high-pressure refrigerant formed by the compression process into the fifth heat exchange unit 106.
  • the fifth heat exchange unit 106 serves as a condenser to exchange heat between the refrigerant and the airflow to cool the refrigerant.
  • the normal temperature and high pressure refrigerant formed by the cooling process is discharged into the first throttling unit 108.
  • the normal temperature and high pressure refrigerant is throttled by the first throttling unit 108 and then discharged into the first heat exchange unit 102.
  • the first heat exchange unit 102 serves as The evaporator is used for the refrigerant to absorb heat to achieve cooling of the environment.
  • the first medium after heat exchange with the environment in the first heat exchange unit 102 continues to flow into the second throttling unit 110 and passes through the second throttling unit 110.
  • the second heat exchange unit 104 After flowing into the second heat exchange unit 104, the second heat exchange unit 104 serves as an evaporator to supply cold to the energy storage material in the energy storage device 200, so that the energy storage material can store energy.
  • the first medium circulation system passes through The two throttling processes can not only provide cooling to the environment through the first heat exchange unit 102, but also realize the energy storage of the energy storage device 200.
  • the air conditioner provided by the above-mentioned embodiment of the present application forms a first medium circulation system.
  • the first medium performs work through the compressor 118, the first heat exchange unit 102, and the first throttling unit 108. After that, the first medium releases part of the cold carried into the environment through the first heat exchange unit 102 to realize room cooling. After that, the first medium uses the second throttling unit 110 to further reduce the temperature and passes through the second heat exchange unit.
  • the unit 104 provides the carried cold energy to the energy storage material to achieve energy storage, so as to meet the synchronization requirements for cooling the room and the energy storage of the energy storage material, and in this way, the first medium can provide lower evaporation to the energy storage material Temperature makes the material utilization rate of energy storage materials higher, and the energy storage process is also more efficient. Compared with the prior art, the energy storage materials need to store energy first, and then use the cold energy stored by the energy storage materials to cool the room.
  • this structure realizes more diversified ways of cooling the environment, making the product use functions and operating modes more abundant, and this structure realizes simultaneous cooling of the room and energy storage of energy storage materials
  • the operating mode makes it unnecessary to provide cooling to the environment based on energy storage materials to complete energy storage, and the continuity of use is better, which can better meet the needs of users.
  • the first medium circulation system further includes a third throttling unit 112 and a first valve 114.
  • the third throttling unit 112 is, for example, a capillary tube.
  • an electronic expansion valve or a thermal expansion valve can also be used.
  • the first valve 114 can be a three-way valve.
  • the first throttling unit 108, the first heat exchange unit 102, and the second throttling unit 110 are connected in series to form a branch and the second throttling unit.
  • the three throttling units 112 are arranged in parallel, wherein the fifth heat exchange unit 106 is in communication with the inlet of the first valve 114, and the first throttling unit 108 and the third throttling unit 112 are respectively connected to the two outlets of the first valve 114 one by one.
  • the first valve 114 has a first position and a second position, and the first valve 114 controls the fifth heat exchange unit 106 to conduct to the first throttling unit 108 at the first position, and controls the fifth heat exchange unit 106 It cuts off to the third throttling unit 112, controls the fifth heat exchange unit 106 to cut off to the first throttling unit 108 at the second position, and controls the fifth heat exchange unit 106 to turn on to the third throttling unit 112.
  • the branch circuit formed by the first throttling unit 108, the first heat exchange unit 102, and the second throttling unit 110 in series is distributed in parallel with the third throttling unit 112, and the first valve 114 is used to selectively control the fifth
  • the heat exchange unit 106 is connected to one of the two parallel branches, so that, as shown in FIG. 1, when the first valve 114 controls the fifth heat exchange unit 106 and the first throttling unit 108, the first heat exchange unit 102 And the second throttling unit 110 are turned on to switch the air conditioner to the "first mode" operation mode.
  • the second heat exchange unit 104 supplies cold to the energy storage material for energy storage, and at the same time, the first heat exchange unit 102 Supply cold to the environment, forming weak cold supply + ice storage.
  • the first valve 114 controls the fifth heat exchange unit 106 and the third throttling unit 112 to conduct, so that the air conditioner switches to the "fifth mode" operation, at this time, the first medium passes through the third throttling unit. After the throttling of the unit 112, it enters the second heat exchange unit 104 to evaporate to provide cooling to the energy storage material.
  • the first throttling unit 108, the first heat exchange unit 102, and the second throttling unit 110 do not work, forming a single storage unit. ice. That is, the first medium circulation loop stops supplying cooling to the environment.
  • the first medium circulation system mainly performs work on the energy storage material to avoid unnecessary cooling when the first heat exchange unit 102 is not required to supply cooling to the environment.
  • the power consumption of the product can realize the energy saving and emission reduction of the product, and at the same time further enrich the function and operation mode of the product, which can better meet the demand of the product.
  • the first medium circulation system further includes a second valve 116.
  • the second valve 116 can be an on-off valve, the first throttling unit 108 and the first heat exchange valve.
  • the branch formed by the unit 102 in series is arranged in parallel with the second valve 116.
  • the second valve 116 has a first conducting position and a first cut-off position.
  • the second valve 116 is in the first conducting position so that the branch arranged in parallel therewith is short-circuited.
  • the second throttle unit 110 is, for example, an expansion valve with an adjustable opening. At the first cut-off position, the branch connected in parallel therewith is turned on.
  • the branch circuit formed by the first throttling unit 108 and the first heat exchange unit 102 in series is distributed in parallel with the second valve 116, and the second valve 116 is used to selectively control the first throttling unit 108 and the first heat exchange.
  • the second valve 116 controls the branch circuit formed in series by the first throttle unit 108 and the first heat exchange unit 102 to be turned on, so that the air conditioner is switched to the "first mode" operation mode.
  • the second heat exchange unit 104 supplies cold to the energy storage material for energy storage, and at the same time, the first heat exchange unit 102 supplies cold to the environment.
  • the air conditioner is switched to the "fifth mode" operation.
  • the first medium passes through After the second throttling unit 110 is throttled, it enters the second heat exchange unit 104 to evaporate to provide cooling to the energy storage material.
  • the first throttling unit 108 and the first heat exchange unit 102 do not work, that is, the first medium
  • the circulation loop stops supplying cooling to the environment.
  • the first medium circulation system mainly performs work on the energy storage materials to avoid unnecessary power consumption when the first heat exchange unit 102 is not required to supply cooling to the environment, and to realize the product Energy saving and emission reduction, while further enriching the functions and operating modes of the product, and can better meet the needs of the use of the product.
  • the branch formed by the first heat exchange unit 102 and the second throttling unit 110 in series is arranged in parallel with the second valve 116, and the second valve 116 has a first conduction position and In the first cut-off position, the second valve 116 in the first conduction position short-circuits the branches arranged in parallel therewith, and in the first cut-off position makes the branches arranged in parallel therewith conductive.
  • the first throttle unit 108 is an expansion valve with an adjustable opening.
  • the branch circuit formed by the series connection of the first heat exchange unit 102 and the second throttling unit 110 is distributed in parallel with the second valve 116, and the second valve 116 is used to selectively control the first heat exchange unit 102 and the second throttling.
  • the second valve 116 controls the branch circuit formed by the first heat exchange unit 102 and the second throttling unit 110 to be turned on, so that the air conditioner is switched to the "first mode" operation.
  • the second heat exchange unit 104 The energy storage material supplies cold for energy storage, and at the same time, the first heat exchange unit 102 supplies cold to the environment.
  • the air conditioner switches to the "fifth mode" operation.
  • the first medium passes through the first throttling unit 108. After throttling, it enters the second heat exchange unit 104 to evaporate to provide cooling to the energy storage material.
  • the first heat exchange unit 102 and the second throttling unit 110 do not work, that is, the first medium circulation loop stops supplying the environment.
  • the first medium circulation system mainly performs work on the energy storage materials to avoid unnecessary power consumption when the first heat exchange unit 102 is not needed to provide cooling to the environment, and to achieve product energy saving and emission reduction, and at the same time It further enriches the functions and operating modes of the product, and can better meet the needs of the product.
  • the first medium circulation system further includes a compressor 118 and a reversing device 120, wherein the first heat exchange unit 102 and the second heat exchange unit 104.
  • the first throttling unit 108, the second throttling unit 110, the compressor 118, and the reversing device 120 form a first circuit.
  • the compressor 118 has an exhaust port and a return port, and the reversing device 120 is connected to the exhaust port and return
  • the air port, the second heat exchange unit 104 and the fifth heat exchange unit 106 are connected, the reversing device 120 has a third position and a fourth position, and the reversing device 120 connects the exhaust port to the fifth heat exchange unit 106 at the third position.
  • the reversing device 120 connects the exhaust port with the second heat exchange unit 104 at the fourth position, and connects the air return port with the fifth heat exchange unit 106 Conduction.
  • the first heat exchange unit 102, the second heat exchange unit 104, the first throttling unit 108, the second throttling unit 110 and the compressor 118 are arranged in the first circuit, and the reversing device 120 is used to control the first circuit
  • the flow direction of the first medium can realize the switch of evaporation or condensation between the first heat exchange unit 102 and the fifth heat exchange unit 106 in the first loop, so as to realize the cooling and heating of the environment by the first heat exchange unit 102 Switch, and further realize heating through the first medium circulation system, so that the operation mode of the product is further enriched, and the use function of the product is further enriched.
  • the first medium circulation system further includes: a third valve 122, a second throttling unit 110 and a second heat exchange unit 104 formed in series
  • the branch circuit is arranged in parallel with the third valve 122.
  • the third valve 122 has a second conduction position and a second cut-off position.
  • the third valve 122 is in the second conduction position so that the branch circuit arranged in parallel therewith is short-circuited.
  • the position makes the branch connected in parallel with it conduct. In this way, the conversion of the air conditioning mode can be realized by only one third valve 122, which is beneficial to reduce the number of parts of the product, reduce the assembly steps of the product, and reduce the cost of the product.
  • the third valve 122 controls the second throttling unit
  • the branch circuit formed by 110 and the second heat exchange unit 104 in series is turned on to switch the air conditioner to the "first mode" operation.
  • the second heat exchange unit 104 supplies cold energy to the energy storage material for energy storage, and at the same time, the first The heat exchange unit 102 supplies cooling to the environment.
  • the first medium enters the first heat exchange unit 102 after being throttled by the first throttling unit 108
  • the second throttling unit 110 and the second heat exchange unit 104 do not work, that is, the first medium circulation loop stops supplying cooling to the energy storage material.
  • the first medium circulation system is mainly The environment does work to avoid unnecessary power consumption when the second heat exchange unit 104 is not needed to supply cooling to the energy storage material, realize energy saving and emission reduction of the product, and further enrich the function and operation mode of the product. Can meet the needs of the product.
  • This embodiment is combined with the fourth embodiment.
  • the flow direction of the first medium in the first circuit is controlled, so that the first heat exchange unit 102 serves as a condenser to supply heat to the environment.
  • the second throttling unit 110 and the second heat exchange unit 104 are short-circuited, so that the second throttling unit 110 and the second heat exchange unit 104 do not work, so that the energy storage device 200 does not work in the air conditioning heating condition.
  • the air conditioner also includes a second medium circulation system for circulating a second medium
  • the second medium is, for example, an aqueous glycol solution as a refrigerant
  • the second medium circulation system includes a third heat exchange unit 302 and a fourth heat exchange unit 304, where the third heat exchange unit 302 and the fourth heat exchange unit 304 are connected in series to form a second loop, and the third heat exchange unit 302 is used In order to exchange heat with the environment, the fourth heat exchange unit 304 exchanges heat with the energy storage material.
  • the energy storage material after the energy storage is completed can also release the cold energy into the environment through the third heat exchange unit 302 to provide cooling to the environment, so that the air conditioner switches to the "seventh mode” operation to achieve ice melting and cooling.
  • the first heat exchange unit 102 and the third heat exchange unit 302 simultaneously Environmental cooling, realizing strong cooling.
  • a driving device 306 is provided in the second loop, and the driving device 306 is adapted to drive the second medium in the second loop.
  • the driving device 306 is a water pump.
  • the water pump is arranged between the third heat exchange unit 302 and the fourth heat exchange unit 304, and is in communication with the third heat exchange unit 302 and the fourth heat exchange unit 304, and the driving device 306 drives
  • the second medium flows in the second circuit, so that after the second medium provides cooling to the environment through the third heat exchange unit 302, it can efficiently return to the fourth heat exchange unit 304 to absorb the cold energy from the energy storage material. In this way, the first The continuity and uniformity of cooling at the three heat exchange unit 302 are better, which improves the comfort experience of the product.
  • the product is operated in the "seventh mode" according to demand.
  • the first medium circulation system is stopped, and the second medium circulation system is operated.
  • the driving device 306 is used to drive the flow of the second medium in the second circuit, so that the cold energy of the energy storage material is provided to the second medium through the fourth heat exchange unit 304, and then the second medium enters the third heat exchange unit 302 through The third heat exchange unit 302 releases the cold energy into the environment to provide cooling, where the cold source of the cooling comes from the energy storage material.
  • the energy storage device 200 includes a container body 202, and the energy storage material is contained in the container body 202.
  • the container body 202 is a water tank with energy storage materials in the water tank.
  • At least a part of the unit 104 is located in the container body 202 and is in contact with the energy storage material. In this way, the heat exchange of the energy storage material of the second heat exchange unit 104 is more efficient, the heat transfer loss is reduced, and the energy efficiency of the product is improved.
  • At least a part of the fourth heat exchange unit 304 is located in the container body 202 and is in contact with the energy storage material. In this way, the heat exchange between the fourth heat exchange unit 304 and the energy storage material is more efficient, the heat transfer loss is reduced, and the energy efficiency of the product is improved.
  • the second heat exchange unit 104 and the fourth heat exchange unit 304 are tube-fin heat exchangers with two flow paths.
  • the container body 202 is attached with a heat-preserving structure for keeping the container body 202 warm (specifically, the heat-preserving structure may be a heat-preserving cotton or a heat-preserving coating attached to the outer surface of the container body 202).
  • the heat-preserving structure may be a heat-preserving cotton or a heat-preserving coating attached to the outer surface of the container body 202).
  • the air conditioner further includes a power storage device 400, and the power storage device 400 is electrically connected to the driving device 306 and supplies power to the driving device 306.
  • the product can be used unplugged in one or more of the modes, breaking through the location restriction of the power cord, and improving the product experience.
  • the power storage device 400 is electrically connected to the compressor 118 of the first medium circulation system and supplies power to the compressor 118 of the first medium circulation system.
  • the power storage device 400 includes a battery, and the battery is electrically connected to the compressor 118 to start the compressor 118. In this way, the product can be used unplugged in one or more of the modes, breaking through the location restriction of the power cord, and improving the product experience.
  • the air conditioner further includes a first fan 602, and the first fan 602 drives the airflow to exchange heat with the first heat exchange unit 102 and the third heat exchange unit 302. In this way, the assembly structure of the product is simplified, and the cost of the product and the operating energy consumption are reduced.
  • first heat exchange unit 102 and the third heat exchange unit 302 are arranged along the wind direction, wherein the surface temperature of one of the first heat exchange unit 102 and the third heat exchange unit 302 is higher than the other.
  • the surface temperature of the first heat exchange unit 102 and the third heat exchange unit 302 with the higher surface temperature is located on the air inlet side of the lower surface temperature.
  • the third heat exchange unit 302 is designed to be located on the upstream side of the first heat exchange unit 102 along the flow direction of the air flow driven by the first fan 602, so that the third heat exchange unit 302 and When the first heat exchange unit 102 evaporates at the same time, the air flow passes through the third heat exchange unit 302 and the first heat exchange unit 102 to form a two-stage heat exchange, which can achieve a lower air outlet temperature, thereby further expanding the supply to the environment.
  • the cold temperature adjustable range further enriches the use functions of the product and can better meet the needs of users.
  • the air conditioner further includes an electric heating device 500
  • the first fan 602 is configured to drive the airflow to exchange heat with the electric heating device 500, so that the electric heating device 500 supplies heat to the environment.
  • the first fan 602 drives the airflow to exchange heat with the electric heating device 500, so that the heated airflow heats the environment, which further enriches the heating form of the product and enriches the product functions.
  • the air conditioner further includes a housing 900, the air conditioner is an integrated air conditioner, and the housing 900 is formed as a housing 900 of the integrated air conditioner.
  • the air conditioner is set as an integrated air conditioner, so that the included first medium circulation system and other components are all contained in the casing 900 of the integrated air conditioner to form an integrated structure, which is more convenient for the product to move anywhere, and the product is flexible in use Further improve.
  • the housing 900 is formed with a cavity 930, and a chassis 910 is also formed under the cavity 930 of the housing 900.
  • the cavity 930 and the chassis 910 enclose an accommodating space.
  • the medium circulation system, the second medium circulation system and other components are all accommodated in the containing space.
  • a walking device 920 is provided on the chassis 910 to facilitate the movement of the air conditioner.
  • the walking device 920 may be a roller as shown in FIG. Of course, it can also be a universal wheel, a crawler device, etc.
  • the housing 900 is also provided with one or more ventilation structures 940 suitable for suction or exhaust of the housing 900, and the ventilation structures 940 may be, for example, air holes or grille structures.
  • an embodiment of the second aspect of the present application provides a control method for an air conditioner used in any of the above embodiments, including the following steps:
  • Step 1102 Receive a mode command
  • Step 1104 Determine the mode indicated by the received mode command, and control the operation of the air conditioner according to the mode indicated by the mode command;
  • the step 1104 specifically includes the following steps:
  • Step 1104a Control the first medium circulation system to operate in the first preset mode according to the first mode indicated by the mode instruction, and control the second medium circulation system to close;
  • Step 1104b Control the first medium circulation system to operate in the second preset mode according to the second mode indicated by the mode instruction, and control the operation of the second medium circulation system;
  • Step 1104c Control the first medium circulation system to operate in the third preset mode according to the third mode indicated by the mode instruction, and control the operation of the second medium circulation system;
  • Step 1104d Control the first medium circulation system to operate in the fourth preset mode according to the fourth mode indicated by the mode instruction, and control the operation of the second medium circulation system;
  • Step 1104e Control the first medium circulation system to operate in the fifth preset mode according to the fifth mode indicated by the mode instruction, and control the second medium circulation system to close;
  • Step 1104f Control the first medium circulation system to operate in the sixth preset mode according to the sixth mode indicated by the mode instruction, and control the second medium circulation system to close;
  • Step 1104g Control the first medium circulation system to close according to the seventh mode indicated by the mode instruction, and control the operation of the second medium circulation system;
  • Step 1104h Control the operation of the first fan 602 of the first medium circulation system according to the eighth mode indicated by the mode command, control the operation of the electric heating device 500, and control the shutdown of the second medium circulation system;
  • Step 1104i Control the first medium circulation system to operate in the ninth preset mode according to the ninth mode indicated by the mode instruction, and control the operation of the second medium circulation system;
  • Step 1104j Control the first medium circulation system to operate in the tenth preset mode according to the tenth mode indicated by the mode instruction, and control the second medium circulation system to close.
  • the control method of the air conditioner provided in the above-mentioned embodiments of the present application can realize the control to control the operation of the air conditioner in at least ten modes, and the operation mode of the air conditioner is more abundant, which can better meet the use requirements of the product.
  • Step 1104a Control the first medium circulation system to operate in the first preset mode according to the first mode indicated by the mode command, so that the exhaust port and the return port of the compressor 118 pass through the fifth heat exchange unit 106 and the first section.
  • the flow unit 108, the first heat exchange unit 102, the second throttling unit 110, and the second heat exchange unit 104 are turned on, and the second medium circulation system is controlled to close.
  • the driving device 306 is controlled to shut down to stop the circulation of the second medium in the second medium circulation system to realize the shut down of the second medium circulation system.
  • the first medium evaporates to a certain degree in the first heat exchange unit 102, it is further evaporated in the second heat exchange unit 104, so that the temperature of the cold air provided to the environment is softer, and the temperature will not be over-temperature. It is low and produces a harsh cold feeling, which enhances the comfortable experience of the product.
  • the first medium circulation system works, the compressor 118 starts, and after the compressor 118 compresses the first medium, the high-temperature and high-pressure first medium formed by the compression process is compressed. It is discharged into the fifth heat exchange unit 106.
  • the fifth heat exchange unit 106 serves as a condenser for the first medium to exchange heat with the airflow to cool the first medium. After the higher temperature gaseous first medium turns into a liquid state, it then flows through the first medium.
  • a valve 114 three-way valve).
  • the first valve 114 is connected to the first throttling unit 108, and the first medium that is slightly throttled by the first throttling unit 108 in the first heat exchange unit 102
  • the lower temperature evaporates and absorbs heat.
  • the first heat exchange unit 102 acts as an evaporator to provide cold energy to the outside through the first fan 602.
  • the first medium is deeply throttled by the second throttling unit 110 and then flows into the second in the container body 202.
  • the heat exchange unit 104 evaporates and absorbs the heat of the container body 202 to make ice at a lower temperature.
  • the evaporated first medium enters the compressor 118 in a gaseous state to complete the refrigerant cycle, and the driving device 306 (for example, a water pump) does not start.
  • the second medium circulation system does not work.
  • the driving device 306 should be activated to switch the air conditioner operating mode to the "third mode” or “seventh mode” to prevent the ice in the container body 202 from being changed in the second
  • the temperature of the thermal unit 104 is lower than the freezing point of the second medium under the continuous heat absorption effect, so that the second medium freezes and hinders the circulation of the second medium.
  • Step 1104b control the first medium circulation system to operate in the second preset mode according to the second mode indicated by the mode command, so that the fifth heat exchange between the exhaust port and the return port of the compressor 118
  • the unit 106, the first throttling unit 108, the first heat exchange unit 102, the second throttling unit 110, and the second heat exchange unit 104 are turned on and control the operation of the second medium circulation system.
  • the drive device 306 is further controlled to operate to make the second medium circulation system operate.
  • the first medium passes through the first heat exchange unit 102 first.
  • the driving device 306 is controlled to be turned on to allow the second medium in the second medium circulation system to circulate, so as to realize the operation of the second medium circulation system.
  • the third heat exchange unit 302 After absorbing the cold energy of the energy storage material, it is released to the environment through the third heat exchange unit 302, thereby realizing that the first heat exchange unit 102 and the third heat exchange unit 302 simultaneously provide cooling to the environment, realizing strong cooling and satisfying the user’s requirements for the indoor environment. The need for a higher rate of cooling.
  • the operation process of the first medium circulation system is the same as the operation process of the first medium circulation system in step 1104a, which will not be repeated here.
  • the second medium circulation system works, the driving device 306 is activated, and the second medium circulation and the first medium circulation run simultaneously.
  • the second medium with higher temperature enters the fourth heat exchange unit 304 in the container body 202 through the drive device 306 to exchange heat with the energy storage material in the container body 202, and then flows through the third heat exchange unit 302 through the first fan. 602 provides cooling to the environment.
  • the cooling power of the second medium in the container body 202 may be greater than the cooling power of the second heat exchange unit 104.
  • the ratio of ice to water in the container body 202 will gradually decrease As the ice melts, the power of the fourth heat exchange unit 304 for external cooling continues to decrease.
  • the fourth heat exchange unit 304's effect on the external cooling capacity disappears, and the driving device should be turned off at this time 306. Switch to the "first mode" or the "fifth mode".
  • Step 1104c Control the first medium circulation system to operate in the third preset mode according to the third mode indicated by the mode command, so that the exhaust port and the return port of the compressor 118 pass through the fifth heat exchange unit 106 and the first section.
  • the flow unit 108, the first heat exchange unit 102, and the third valve 122 are turned on and control the operation of the second medium circulation system.
  • the first medium is throttled by the first throttling unit 108, it enters the first heat exchange unit 102 to evaporate to provide cooling to the environment, and the second heat exchange unit 104 stops cooling the energy storage material, so that the first The cold energy generated by the work of a medium circulation system is mainly used to cool the environment.
  • the second medium absorbs the cold energy of the energy storage material and then releases it to the environment through the third heat exchange unit 302, thereby realizing the first heat exchange unit 102 and
  • the third heat exchange unit 302 provides cooling to the environment at the same time, realizing strong cooling, and meeting the user's demand for indoor cooling at a higher rate.
  • the first medium circulation system works, the compressor 118 starts, and after the compressor 118 compresses the first medium, it discharges the high temperature and high pressure first medium formed by the compression process into the first medium.
  • Fifth heat exchange unit 106 the fifth heat exchange unit 106 serves as a condenser for heat exchange between the first medium and the airflow to cool the first medium.
  • the gaseous first medium with a higher temperature turns into a liquid state, and then flows through the first heat exchange unit 102, and evaporate and absorb heat at a lower temperature in the first heat exchange unit 102.
  • the first heat exchange unit 102 acts as an evaporator to provide cold energy to the outside through the first fan 602, and the third valve 122 is turned on to make the second section
  • the flow unit 110 and the second heat exchange unit 104 are short-circuited, and the evaporated first medium enters the compressor 118 in a gaseous state to complete the refrigerant cycle.
  • the operation process of the second medium circulation system is the same as the operation process of the second medium circulation system in step 1104b, which will not be repeated here.
  • Step 1104d Control the first medium circulation system to operate in the fourth preset mode according to the fourth mode indicated by the mode command, so that the exhaust port and the return port of the compressor 118 pass through the fifth heat exchange unit 106 and the second valve 116.
  • the second throttling unit 110 and the second heat exchange unit 104 are turned on, and control the operation of the second medium circulation system.
  • the first medium is throttled by the second throttling unit 110, it enters the second heat exchange unit 104 to evaporate to provide cooling to the energy storage material.
  • the driving device 306 is controlled to turn on to make the second medium circulating system
  • the second medium circulates to realize the operation of the second medium circulation system.
  • the second medium absorbs the cold energy of the energy storage material and releases it to the environment through the third heat exchange unit 302 to achieve strong cooling and make the temperature of the cold air provided to the environment more It is soft and will not produce a harsh cold feeling due to low temperature, which enhances the comfortable experience of the product.
  • the second valve 116 is controlled to open, so that the first throttling unit 108 and the first heat exchange unit 102 are short-circuited, the first medium circulation system works, and the compressor 118 starts.
  • the compressor 118 compresses the first medium, it discharges the high-temperature and high-pressure first medium formed by the compression process into the fifth heat exchange unit 106.
  • the fifth heat exchange unit 106 serves as a condenser for heat exchange between the first medium and the airflow to achieve the The temperature of a medium is lowered, the gaseous first medium with a higher temperature turns into a liquid state, and then flows through the second heat exchange unit 104, and evaporates and absorbs heat at a lower temperature in the second heat exchange unit 104.
  • the second heat exchange unit 104 acts as The evaporator supplies cold to the energy storage material.
  • the operation process of the second medium circulation system is the same as the operation process of the second medium circulation system in step 1104b, which will not be repeated here.
  • the second valve 116 is controlled to be closed, and the first throttling unit 108 is connected to the first heat exchange unit 102.
  • the operation steps of the air conditioner are the same as step 1104b, and will not be repeated here. .
  • Step 1104e as shown in FIG. 4, according to the fifth mode indicated by the mode command, the first medium circulation system is controlled to operate in the fifth preset mode, so that the exhaust port and the return port of the compressor 118 are exchanged through the fifth heat.
  • the unit 106, the first valve 114, the third throttling unit 112, and the second heat exchange unit 104 are turned on, and control the second medium circulation system to close.
  • the first medium is throttled by the third throttling unit 112
  • the second throttling unit 110 does not work, so that the cold energy generated by the work of the first medium circulation system is mainly used for cooling the energy storage materials, and at the same time, the control driving device 306 is closed to stop the second medium in the second medium circulation system from circulating
  • the second medium circulation system is closed, and only ice storage is realized, so as to avoid unnecessary power consumption when the first heat exchange unit 102 is not needed to supply cooling to the environment, and realize energy saving and emission reduction of products.
  • the first valve 114 in the "fifth preset mode", the first valve 114 is connected to the third throttle unit 112, the first medium circulation system works, the compressor 118 starts, and the compressor 118 After the first medium is compressed, the high-temperature and high-pressure first medium formed by the compression process is discharged into the fifth heat exchange unit 106.
  • the fifth heat exchange unit 106 serves as a condenser for heat exchange between the first medium and the airflow to realize the heat exchange between the first medium and the airflow.
  • the higher temperature gaseous first medium When the temperature is lowered, the higher temperature gaseous first medium is transformed into a liquid state, and then it is throttled by the third throttling unit 112 and then flows to the second heat exchange unit 104, and the second heat exchange unit 104 evaporates and absorbs heat at a lower temperature.
  • the first heat exchange unit 102 serves as an evaporator to provide cold energy to the outside through the first fan 602, and the evaporated first medium enters the compressor 118 in a gaseous state to complete the refrigerant cycle.
  • the first medium does not pass through the first throttling unit 108, the first heat exchange unit 102, and the second throttling unit 110, the first fan 602 does not work, the driving device 306 does not work, and the second medium circulation system works , Do not provide cooling to the environment.
  • the compressor 118 When all the water in the container body 202 turns into ice, the compressor 118 should be controlled to shut down, stop the circulation of the first medium, or switch to other working modes to prevent the ice in the container body 202 from being trapped in the second heat exchange unit 104. Under the effect of continuous heat absorption, the temperature is lower than the freezing point of the second medium, so that the second medium freezes and hinders the operation of the refrigerant circulation.
  • Step 1104f as shown in FIG. 8, according to the sixth mode indicated by the mode command, the first medium circulation system is controlled to operate in the sixth preset mode, so that the exhaust port and the return port of the compressor 118 pass through the fifth heat exchange
  • the unit 106, the second valve 116, the second throttling unit 110, and the second heat exchange unit 104 are turned on, and the second medium circulation system is controlled to close.
  • the control driving device 306 is closed to stop the second medium in the second medium circulation system to realize the second medium circulation
  • the system is shut down to realize single ice storage, in order to avoid unnecessary power consumption when the first heat exchange unit 102 is not needed to supply cooling to the environment, and realize energy saving and emission reduction of products.
  • Step 1104g controls the first medium circulation system to close and controls the second medium circulation system to operate according to the seventh mode indicated by the mode instruction.
  • the compressor 118 is controlled to shut down to stop the circulation of the first medium in the first medium circulation system to close the first medium circulation system, and at the same time, the driving device 306 is controlled to turn on to allow the second medium in the second medium circulation system to circulate.
  • the second medium absorbs the cold energy of the energy storage material and then releases it to the environment through the third heat exchange unit 302, so as to realize the third heat exchange unit 302 to provide cooling to the environment and to realize the melting and cooling.
  • Step 1104h the operation of the first fan 602 of the first medium circulation system is controlled according to the eighth mode indicated by the mode instruction.
  • this mode The compressor 118 can be controlled to turn off accordingly.
  • the operation of the electric heating device 500 is controlled so that the first fan 602 drives the airflow to exchange heat with the electric heating device 500, and the second medium circulation system is controlled to close, that is, the driving device 306 is controlled to close. In this way, The electric heating device 500 supplies heat to the environment.
  • both the compressor 118 and the driving device 306 stop working, and both the first medium circulation system and the second medium circulation system stop running and are mounted on the first fan 602.
  • the nearby electric heating device 500 is energized, and the first fan 602 is turned on to supply heat to the outside through the air duct.
  • Step 1104i controls the first medium circulation system to operate in the ninth preset mode according to the ninth mode indicated by the mode command, so that the exhaust port and the return port of the compressor 118 are exchanged through the fifth heat.
  • the unit 106, the first throttling unit 108, the first heat exchange unit 102, the second throttling unit 110, and the second heat exchange unit 104 are turned on and control the operation of the second medium circulation system, wherein, in the ninth preset mode , The opening degrees of the first throttle unit 108 and the second throttle unit 110 are respectively greater than zero, and the opening degrees of the first throttle unit 108 are smaller than the opening degrees of the second throttle unit 110.
  • a certain degree of evaporation is carried out in the first heat exchange unit 102 through the first medium, and then further evaporated in the second heat exchange unit 104, which can form a "first mode" operation, so that the The temperature of the cold air is softer and will not produce a harsh cold feeling due to the low temperature, which improves the comfortable experience of the product.
  • the opening degree of the first throttle unit 108 is controlled to be smaller than the opening degree of the second throttle unit 110, so that the A medium is further throttled in the second throttle unit 110, and the throttle is more fully throttled.
  • the second medium circulation system operates.
  • the second medium absorbs the cold energy of the energy storage material and then releases it to the environment through the third heat exchange unit 302, so that the first heat exchange unit 102 and the third heat exchange unit 302 can simultaneously cool the environment. To meet the needs of users for indoor cooling at a higher rate.
  • Step 1104j Control the first medium circulation system to operate in the tenth preset mode according to the tenth mode indicated by the mode command, so that the exhaust port and the return port of the compressor 118 pass through the fifth heat exchange unit 106 and the first section.
  • the flow unit 108, the first heat exchange unit 102, the second throttling unit 110, and the second heat exchange unit 104 are turned on, and the second medium circulation system is controlled to close.
  • the opening degree of the unit 108 is its maximum threshold value
  • the opening degree of the second throttle unit 110 is greater than zero and less than its maximum threshold value.
  • the opening degree of the first throttling unit 108 is its maximum threshold, the first medium flows to the first heat exchange unit 102 when it flows through the first throttling unit 108 without being throttled, so the first heat exchange unit 102 does not supply cooling to the environment, and then the first medium flows to the second throttling unit 110 and is fully throttled by the second throttling unit 110 to supply cold to the energy storage material, thereby realizing single ice storage.
  • the air conditioning mode can be switched, which further reduces the number of parts of the product, reduces the assembly steps of the product, and reduces the cost of the product.
  • the process of ice storage conditions specifically includes the following steps:
  • Step 1202 Start the ice storage condition. Specifically, it is determined to start the ice storage condition according to the detected mode command.
  • Step 1204 Control the second fan 604 to run, and control the compressor 118 to start at the first frequency
  • step 1206 is executed: controlling the frequency of the compressor 118 to increase to the second frequency;
  • Step 1208 Determine whether the temperature of the energy storage medium is lower than or equal to the first preset temperature. If yes, go to step 1212 to control the second fan 604 to turn off and control the compressor 118 to turn off; otherwise, go to step 1210 to determine that the compressor 118 is Whether the operating time at the second frequency is greater than or equal to the preset cold storage time, if yes, execute step 1212, control the second fan 604 to turn off, and control the compressor 118 to turn off, if not, return to step 1206, that is, control the compressor 118 and the second The second fan 604 continues to operate in the current state.
  • the opening and closing of the compressor 118 and the second fan 604 are controlled to avoid excessive energy storage of the energy storage material and more precise control.
  • the threshold of the first preset duration is 10 seconds to 20 seconds, for example, the first preset duration is 15 seconds;
  • the threshold for the preset cold storage duration is 90 minutes to 150 minutes, for example, the preset cold storage duration is 120 minutes;
  • the threshold of the first preset temperature is 3°C to 8°C, for example, the first preset temperature is 5°C.
  • the cooling mode control method of the air conditioner in any of the foregoing embodiments specifically includes the following steps:
  • Step 1302 Control the air conditioner to operate according to the default outlet temperature and the default gear position of the first fan 602;
  • Step 1304 Detect input information
  • Step 1306 Determine whether the output information includes the input and outlet air temperature. If the detected output information includes the input and outlet air temperature, perform step 1308: Use the input air temperature as the set air outlet temperature. If the output information does not include the input air outlet temperature, then perform step 1310: use the default air outlet temperature as the set air outlet temperature;
  • Step 1312 Determine whether the output information includes input gear information; if the detected output information includes input gear information, perform step 1314: Control the first fan 602 to operate according to the input gear information, if it is detected If the output information does not include the input gear information, step 1316 is executed: the first fan 602 is controlled to operate according to the default gear of the first fan 602.
  • Step 1318 Detect the air outlet temperature of the air conditioner
  • Step 1320 Determine whether the detected outlet air temperature is higher than the set outlet temperature by more than the first preset value; if yes, proceed to Step 1322: Control the driving device 306 to run at the preset maximum speed, otherwise proceed to Step 1324: Determine the detected Whether the outlet air temperature is higher than the set outlet air temperature by more than a second preset value, if the detected outlet air temperature is higher than the set outlet temperature by more than the second preset value, step 1326 is executed: the rotation speed of the driving device 306 is controlled by The current rotation speed is increased by the preset difference. If the difference between the detected outlet air temperature and the set outlet temperature is less than the second preset value, step 1328 is executed: controlling the rotation speed of the driving device 306 to decrease the preset difference from the current rotation speed.
  • the input information is selected by the user according to their own needs, and the input information includes multiple gear information, and each gear includes the rotation speed of the first fan 602 corresponding to it.
  • the value range of the first preset value is 3°C to 8°C, for example, the first preset value is 5°C;
  • the second preset value ranges from -2°C to 2°C, for example, the first preset value is 0°C.
  • Step 1402 Start the ice storage condition
  • Step 1404 Control the second fan 604 to start running at the first speed, and control the compressor 118 to start at the first frequency;
  • step 1406 control the rotation speed of the second fan 604 to increase to the second rotation speed, and control the frequency of the compressor 118 to increase to the second frequency;
  • Step 1408 Determine whether the temperature of the energy storage medium is lower than or equal to the second preset temperature, if yes, proceed to step 1410: Control the second fan 604 to run at reduced speed, and control the compressor 118 to run at reduced frequency, if not, return to step 1406, that is, control the second fan 604 to run at the current speed, and control the compressor 118 to run at the current frequency;
  • Step 1412 Determine whether the temperature of the energy storage medium is higher than or equal to the third preset temperature
  • step 1406 that is, control the second fan 604 to run at an increase in speed, and control the compressor 118 to run at an increase in frequency
  • step 1410 that is, to control the second fan 604 to run at the current speed, and control The compressor 118 runs at the current frequency.
  • step 1422 Simultaneously with step 1402 is step 1422, specifically,
  • Step 1422 Start the cooling condition
  • Step 1424 Detect input information
  • Step 1426 Control the air conditioner to operate according to the default air outlet temperature and the default gear position of the first fan 602;
  • Step 1428 Determine whether the output information includes the input and outlet air temperature. If the detected output information includes the input and outlet air temperature, proceed to Step 1430: Use the input air temperature as the set air outlet temperature. If the output information does not include the input air outlet temperature, step 1432 is executed: the default air outlet temperature is used as the set air outlet temperature;
  • Step 1434 Determine whether the output information includes input gear information; if the detected output information includes input gear information, perform step 1436: Control the first fan 602 to operate according to the input gear information, if it is detected If the output information does not include the input gear information, step 1438 is executed: the first fan 602 is controlled to operate according to the default gear of the first fan 602.
  • Step 1440 Detect the air outlet temperature of the air conditioner
  • Step 1442 Determine whether the detected outlet air temperature is higher than the set outlet temperature by more than the first preset value; if yes, proceed to step 1444: control the driving device 306 to run at the preset maximum speed, otherwise proceed to step 1442: judge the detected Whether the outlet air temperature is higher than the set outlet air temperature by more than a second preset value, if the detected outlet air temperature is higher than the set outlet temperature by more than the second preset value, step 1448 is executed: the rotation speed of the driving device 306 is controlled by The current rotation speed is increased by the preset difference. If the difference between the detected outlet air temperature and the set outlet temperature is less than the second preset value, step 1450 is executed: controlling the rotation speed of the driving device 306 to decrease the preset difference from the current rotation speed.
  • the embodiment of the third aspect of the present application provides an operation control device 800 suitable for air conditioners.
  • the operation control device 800 includes a processor 802.
  • the processor 802 can implement the control method of the air conditioner as in the above embodiment when the processor 802 executes a computer program. Qualified steps.
  • the operation control device 800 further includes a memory 804, and the memory 804 stores a computer program.
  • the processor 802 executes the computer program, it can implement the steps defined by the air conditioner control method in the foregoing embodiment.
  • the operation control device 800 provided in the above-mentioned embodiment of the present application achieves all the above beneficial effects by implementing the air-conditioning control method provided in the above-mentioned embodiment, which will not be repeated here.
  • the embodiment of the fourth aspect of the present application provides an air conditioner, including the operation control device 800 in the foregoing embodiment.
  • the air conditioner provided in the above-mentioned embodiment of the present application is provided with the operation control device 800 in the above-mentioned embodiment, thereby having all the above beneficial effects, which will not be repeated here.
  • the air conditioner includes a first medium circulation system, a second medium circulation system, and an energy storage device 200.
  • the operation control device 800 is electrically connected to the first medium circulation system, the second medium circulation system, and the energy storage device 200, and according to the mode command The indicated working mode controls the operation of the first medium circulation system, the second medium circulation system, and the energy storage device 200.
  • the embodiment of the fifth aspect of the present application provides a computer-readable storage medium, and when the computer program stored therein is executed, the control method of the air conditioner in the above-mentioned embodiment is realized, thereby having all the above beneficial effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提供了一种空调及其控制方法、运行控制装置及存储介质,空调包括:第一介质循环系统,包括第一换热单元、第二换热单元、第五换热单元、第一节流单元和第二节流单元,第一换热单元串联于第一节流单元与第二节流单元之间,第二节流单元串联于第一换热单元与第二换热单元之间,第一节流单元串联于第五换热单元与第一换热单元之间,第一换热单元和第五换热单元用于分别与环境换热;蓄能装置,设有蓄能材料,第二换热单元与蓄能材料换热。本方案提供的空调,实现对环境供冷的方式更具多样性,使得产品的使用功能和运行模式更加丰富,且实现了同步对房间供冷及对蓄能材料蓄能的运行模式,使用连续性更好,更能满足用户的使用需求。

Description

空调及其控制方法、运行控制装置及存储介质
本申请要求于2019年09月11日提交中国专利局、申请号为“2019108606883”、发明名称为“空调及其控制方法、运行控制装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调领域,具体而言,涉及一种空调、一种空调的控制方法、一种运行控制装置及一种计算机可读存储介质。
背景技术
现有的空调,设有蓄能装置,其运行模式大致为:空调以蓄能模式运行,以使蓄能装置在蓄能模式下进行蓄能,蓄能装置在蓄能模式下完成蓄能后,空调进行利用蓄能装置蓄存的能量工作,这样的结构产品的使用连续性差,难以满足用户的不同需求。
发明内容
为了解决上述技术问题至少之一,本申请的一个目的在于提供一种空调。
本申请的另一个目的在于提供一种空调的控制方法。
本申请的再一个目的在于提供一种运行控制装置。
本申请的又一个目的在于提供一种计算机可读存储介质。
为实现上述目的,本申请第一方面的实施例提供了一种空调,包括:第一介质循环系统,包括第一换热单元、第二换热单元、第五换热单元、第一节流单元和第二节流单元,所述第一换热单元串联于所述第一节流单元与所述第二节流单元之间,所述第二节流单元串联于所述第一换热单元与所述第二换热单元之间,所述第一节流单元串联于所述第五换热单元与所述第一换热单元之间,所述第一换热单元和所述第五换热单元用于分别与环境换热;蓄能装置,设有蓄能材料,所述第二换热单元与所述蓄能材 料换热。
本申请上述实施例提供的空调,形成有第一介质循环系统,在第一介质循环系统的循环回路中,第一介质经由压缩机、第一换热单元及第一节流单元做功后,第一介质通过第一换热单元将所携带的一部分冷量释放到环境中,实现房间供冷,之后第一介质利用第二节流单元进一步降低温度,并通过第二换热单元将所携带的更低的冷量提供给蓄能材料实现蓄能,从而满足对房间供冷以及对蓄能材料蓄能的同步性需求,且这样第一介质可向蓄能材料提供更低的蒸发温度,使得蓄能材料的材料利用率更高,蓄能过程也更加高效,相比于现有技术中需使蓄能材料先蓄能、再利用蓄能材料所蓄存的冷量来对房间进行供冷的方案而言,本结构实现对环境供冷的方式更具多样性,使得产品的使用功能和运行模式更加丰富,且本结构实现了同步对房间供冷及对蓄能材料蓄能的运行模式,使得对环境供冷无须基于蓄能材料完成蓄能的前提,使用连续性更好,更能满足用户的使用需求。
另外,本申请提供的上述实施例中的空调还可以具有如下附加技术特征:
上述技术方案中,第一介质循环系统还包括:第三节流单元,所述第一节流单元、所述第一换热单元及所述第二节流单元串联形成的支路与所述第三节流单元并联设置;第一阀门,与所述第三节流单元、所述第五换热单元及所述第一节流单元相连,所述第一阀门具有第一位置和第二位置,且所述第一阀门在所述第一位置控制所述第五换热单元向所述第一节流单元导通,且控制所述第五换热单元向所述第三节流单元截止,在所述第二位置控制所述第五换热单元向所述第一节流单元截止,且控制所述第五换热单元向所述第三节流单元导通。
上述技术方案中,所述第一介质循环系统还包括:第二阀门,所述第一节流单元和所述第一换热单元串联形成的支路与所述第二阀门并联设置,所述第二阀门具有第一导通位置和第一截止位置,所述第二阀门在所述第一导通位置使得与之并联设置的所述支路短路,在所述第一截止位置使得与之并联设置的所述支路导通。
上述技术方案中,所述第一介质循环系统还包括:第二阀门,所述第一换热单元和所述第二节流单元串联形成的支路与所述第二阀门并联设置,所述第二阀门具有第一导通位置和第一截止位置,所述第二阀门在所述第一导通位置使得与之并联设置的所述支路短路,在所述第一截止位置使得与之并联设置的所述支路导通。
上述技术方案中,所述第一节流单元为适配所述第一换热单元的毛细管,所述第二节流单元为适配所述第二换热单元的毛细管;或所述第一节流单元和所述第二节流单元其中之一或全部为开度可调的膨胀阀。
上述技术方案中,所述第三节流单元为适配所述第二换热单元的毛细管,或所述第三节流单元为开度可调的膨胀阀。
上述技术方案中,所述第二节流单元为开度可调的膨胀阀。
上述技术方案中,所述第一节流单元为开度可调的膨胀阀。
上述任一技术方案中,所述第一介质循环系统形成有第一回路,所述第一换热单元、第二换热单元、第一节流单元及第二节流单元形成所述第一回路的一部分,其中,所述第一回路设有压缩机和换向装置,所述压缩机具有排气口和回气口,所述换向装置与所述排气口、回气口、第二换热单元及第五换热单元相连,所述换向装置具有第三位置和第四位置,且所述换向装置在所述第三位置将所述排气口与所述第五换热单元导通,以及将所述回气口与所述第二换热单元导通,所述换向装置在所述第四位置将所述排气口与所述第二换热单元导通,以及将所述回气口与所述第五换热单元导通。
上述任一技术方案中,所述第一介质循环系统还包括:第三阀门,所述第二节流单元和所述第二换热单元串联形成的支路与所述第三阀门并联设置,所述第三阀门具有第二导通位置和第二截止位置,所述第三阀门在所述第二导通位置使得与之并联设置的所述支路短路,在所述第二截止位置使得与之并联设置的所述支路导通。
上述任一技术方案中,还包括:第二介质循环系统,形成有第二回路,且包括形成于所述第二回路中的第三换热单元和第四换热单元,所述第三换热单元用于与环境换热,所述第四换热单元与所述蓄能材料换热。
上述技术方案中,所述蓄能装置包括容器体,所述蓄能材料容置于所述容器体内,其中,所述第二换热单元的至少一部分位于所述容器体内并与所述蓄能材料接触;和/或所述第四换热单元的至少一部分位于所述容器体内并与所述蓄能材料接触。
上述技术方案中,所述第二回路中设有驱动装置,所述驱动装置适配为对所述第二回路中的第二介质进行驱动。
上述技术方案中,还包括蓄电装置;所述蓄电装置与所述驱动装置电连接且向所述驱动装置供电;和/或所述蓄电装置与所述第一介质循环系统的压缩机电连接且向所述第一介质循环系统的所述压缩机供电。
上述技术方案中,所述第一介质循环系统具有第一风机,所述第一风机用于驱动气流与所述第一换热单元及所述第三换热单元换热。
上述技术方案中,所述第一换热单元和所述第三换热单元沿风向排列,其中,所述第一换热单元和所述第三换热单元这两者中的一者的表面温度高于另一者的表面温度,且所述第一换热单元和所述第三换热单元中表面温度高的一者位于表面温度低的一者的进风侧。
上述技术方案中,还包括:电热装置,所述第一风机配置为驱动气流与所述电热装置换热,使得所述电热装置向环境供热。
上述任一技术方案中,还包括外壳,所述空调为一体式空调,所述外壳形成为所述一体式空调的外壳。
本申请第二方面的实施例提供了一种用于上述任一技术方案的空调的控制方法,包括以下步骤:
根据模式指令所指示的第一模式控制第一介质循环系统以第一预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统关闭;根据所述模式指令所指示的第二模式控制第一介质循环系统以第二预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统运行;根据所述模式指令所指示的第三模式控制第一介质循环系统以第三预设模式运行,使得压缩机的排气口与回气 口之间经由第五换热单元、第一节流单元、第一换热单元、第三阀门导通,并控制第二介质循环系统运行;根据所述模式指令所指示的第四模式控制第一介质循环系统以第四预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第二阀门、第二节流单元、第二换热单元导通,并控制第二介质循环系统运行;根据所述模式指令所指示的第五模式控制第一介质循环系统以第五预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一阀门、第三节流单元、第二换热单元导通,并控制第二介质循环系统关闭;根据所述模式指令所指示的第六模式控制第一介质循环系统以第六预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第二阀门、第二节流单元、第二换热单元导通,并控制第二介质循环系统关闭;根据所述模式指令所指示的第七模式控制第一介质循环系统关闭,并控制第二介质循环系统运行;根据所述模式指令所指示的第八模式控制第一介质循环系统的第一风机运行,控制电热装置运行,使得所述第一风机驱动气流与所述电热装置换热,控制第二介质循环系统关闭;根据所述模式指令所指示的第九模式控制第一介质循环系统以第九预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统运行,其中,在所述第九预设模式中,所述第一节流单元和所述第二节流单元的开度分别大于零,且所述第一节流单元的开度小于所述第二节流单元的开度;根据所述模式指令所指示的第十模式控制第一介质循环系统以第十预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统关闭,其中,在所述第十预设模式中,所述第一节流单元的开度为其最大阈值,所述第二节流单元的开度大于零且小于其最大阈值。
本申请上述实施例提供的空调的控制方法,可以实现控制以至少十种模式控制空调运行,空调的运行模式更加丰富,更能满足产品的使用需求。
更具体例如,根据模式指令所指示的第一模式控制压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流 单元、第二换热单元导通,并控制第二介质循环系统关闭。具体例如,控制驱动装置关闭以使得第二介质循环系统中的第二介质停止流通实现第二介质循环系统关闭。这样,通过第一介质在第一换热单元内先进行一定程度的蒸发后,再在第二换热单元内进一步蒸发,实现弱供冷+蓄冰,使得向环境提供的冷风的温度更加柔和,不会因温度过低而产生生硬的冷感,提升产品的使用舒适体验。
根据模式指令所指示的第二模式控制压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统运行。基于“第一模式”中第一介质循环系统的运行状态,进一步控制驱动装置工作以使得第二介质循环系统运行,这样,通过第一介质在第一换热单元内先进行一定程度的蒸发,再在第二换热单元内进一步蒸发,同时,控制驱动装置开启以使得第二介质循环系统中的第二介质流通,实现第二介质循环系统运行,第二介质吸收蓄能材料的冷量后通过第三换热单元向环境释放,从而实现第一换热单元及第三换热单元同时对环境供冷,满足用户对于室内以更高的速率降温的需求。
根据模式指令所指示的第三模式控制压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第三阀门导通,并控制第二介质循环系统运行。具体例如,第一介质经由第一节流单元节流后,进入第一换热单元中蒸发,以向环境供冷,且第二换热单元停止向蓄能材料供冷,使得第一介质循环系统做功产生的冷量主要用于对环境供冷,同时,第二介质吸收蓄能材料的冷量后通过第三换热单元向环境释放,从而实现第一换热单元及第三换热单元同时对环境供冷,实现强供冷,满足用户对于室内以更高的速率降温的需求。
根据模式指令所指示的第四模式控制压缩机的排气口与回气口之间经由第五换热单元、第二阀门、第二节流单元、第二换热单元导通,并控制第二介质循环系统运行,具体例如,第一介质经第二节流单元节流后,进入第二换热单元中蒸发,以向蓄能材料供冷,同时,控制驱动装置开启以使得第二介质循环系统中的第二介质流通,实现第二介质循环系统运行, 第二介质吸收蓄能材料的冷量后通过第三换热单元向环境释放,实现强供冷,使得向环境提供的冷风的温度更加柔和,不会因温度过低而产生生硬的冷感,提升产品的使用舒适体验。
根据模式指令所指示的第五模式控制压缩机的排气口与回气口之间经由第五换热单元、第一阀门、第三节流单元、第二换热单元导通,并控制第二介质循环系统关闭。具体例如,第一介质经第三节流单元节流后,进入第二换热单元中蒸发,以向蓄能材料供冷,第一换热单元、第一节流单元及第二节流单元不工作,使得第一介质循环系统做功产生的冷量主要用于对蓄能材料供冷,同时,控制驱动装置关闭以使得第二介质循环系统中的第二介质停止流通实现第二介质循环系统关闭,实现单蓄冰,以当不需要使用第一换热单元向环境进行供冷的模式下避免不必要的功耗,实现产品的节能减排。
根据模式指令所指示的第六模式控制压缩机的排气口与回气口之间经由第五换热单元、第二阀门、第二节流单元、第二换热单元导通,并控制第二介质循环系统关闭。具体例如,第一介质经第二节流单元节流后,进入第二换热单元中蒸发,以向蓄能材料供冷,第一换热单元及第二第一节流单元不工作,使得第一介质循环系统做功产生的冷量主要用于对蓄能材料供冷,同时,控制驱动装置关闭以使得第二介质循环系统中的第二介质停止流通实现第二介质循环系统关闭,实现单蓄冰,以当不需要使用第一换热单元向环境进行供冷的模式下避免不必要的功耗,实现产品的节能减排。
根据模式指令所指示的第七模式控制第一介质循环系统关闭,并控制第二介质循环系统运行。具体例如,控制压缩机关闭以使得第一介质循环系统中的第一介质停止流通实现第一介质循环系统关闭,同时,控制驱动装置开启以使得第二介质循环系统中的第二介质流通,实现第二介质循环系统运行,第二介质吸收蓄能材料的冷量后通过第三换热单元向环境释放,从而实现第三换热单元对环境供冷,实现融冰供冷,使得向环境提供的冷风的温度更加柔和,不会因温度过低而产生生硬的冷感,提升产品的使用舒适体验。
根据模式指令所指示的第八模式控制第一介质循环系统的第一风机运行,这时,由于第一介质循环系统内的第一介质无需流通,该模式下可相应控制压缩机关闭,另外,控制电热装置运行,使得第一风机驱动气流与电热装置换热,且控制第二介质循环系统关闭,也即控制驱动装置关闭,这样,使得电热装置向环境供热。
根据模式指令所指示的第九模式控制压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统运行,其中,在所述第九预设模式中,所述第一节流单元和所述第二节流单元的开度分别大于零,且所述第一节流单元的开度小于所述第二节流单元的开度。具体例如,通过第一介质在第一换热单元内先进行一定程度的蒸发,再在第二换热单元内进一步蒸发,实现弱供冷+蓄冰,使得向环境提供的冷风的温度更加柔和,不会因温度过低而产生生硬的冷感,提升产品的使用舒适体验,同时控制第一节流单元的开度小于第二节流单元的开度,使得第一介质在第二节流单元中被进一步节流,节流更充分。第二介质循环系统运行,第二介质吸收蓄能材料的冷量后通过第三换热单元向环境释放,从而实现第一换热单元及第三换热单元同时对环境供冷,满足用户对于室内以更高的速率降温的需求。
根据模式指令所指示的第十模式控制压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统关闭,其中,在所述第十预设模式中,所述第一节流单元的开度为其最大阈值,所述第二节流单元的开度大于零且小于其最大阈值。因第一节流单元的开度为其最大阈值,这样,第一介质在流经第一节流单元时几乎未被节流就流向第一换热单元,所以第一换热单元不向环境供冷,之后第一介质流向第二节流单元并被第二节流单元充分节流,以向蓄能材料供冷,从而实现单蓄冰。这样,仅通过控制调节第一节流单元及第二节流单元的开度就可以实现空调模式的转换,进一步减少产品的零件数量,减少产品的装配步骤,降低产品的成本。
本申请第三方面的实施例提供了一种运行控制装置,适用于空调,运行控制装置包括:处理器,所述处理器执行计算机程序时能够实现如上述 技术方案中所述的空调的控制方法限定的步骤。
本申请上述实施例提供的运行控制装置,通过实现如上述技术方案中提供的空调的控制方法,从而具有以上全部有益效果,在此不在赘述。
本申请第四方面的实施例提供了一种空调,包括上述技术方案中所述的运行控制装置。
本申请上述实施例提供的空调,通过设置有上述技术方案中所述的运行控制装置,从而具有以上全部有益效果,在此不在赘述。
本申请第五方面的实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被执行时,实现如上述技术方案中所述的空调的控制方法所限定的步骤。
本申请第五方面的实施例提供了一种计算机可读存储介质,其存储的计算机程序被执行时通过实现上述技术方案中所述的空调的控制方法,从而具有以上全部有益效果。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例所述空调的结构示意图;
图2是本申请一个实施例所述空调的结构示意图;
图3是本申请一个实施例所述空调的结构示意图;
图4是本申请一个实施例所述空调的结构示意图;
图5是本申请一个实施例所述空调的结构示意图;
图6是本申请一个实施例所述空调的结构示意图;
图7是本申请一个实施例所述空调的结构示意图;
图8是本申请一个实施例所述空调的结构示意图;
图9是本申请一个实施例所述空调的结构示意图;
图10是本申请一个实施例所述空调的结构示意图;
图11是本申请一个实施例所述空调的控制方法的流程图;
图12是本申请一个实施例所述空调的控制方法的流程图;
图13是本申请一个实施例所述空调的控制方法的流程图;
图14是本申请一个实施例所述空调的控制方法的流程图;
图15是本申请一个实施例所述运行控制装置的结构示意图;
图16是本申请一个实施例所述空调的结构示意图。
其中,图1至图16中的附图标记与部件名称之间的对应关系为:
102第一换热单元,104第二换热单元,106第五换热单元,108第一节流单元,110第二节流单元,112第三节流单元,114第一阀门,116第二阀门,118压缩机,120换向装置,122第三阀门,200蓄能装置,202容器体,302第三换热单元,304第四换热单元,306驱动装置,400蓄电装置,500电热装置,602第一风机,604第二风机,800运行控制装置,802处理器,804存储器,900外壳,910底盘,920行走装置,930腔体,940通风结构。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图10描述根据本申请一些实施例空调。
如图1至图10所示,本申请第一方面的实施例提供一种空调,包括第一介质循环系统及蓄能装置200。
具体地,如图1所示,第一介质循环系统包括第一换热单元102、第二换热单元104、第五换热单元106、第一节流单元108和第二节流单元110,第一换热单元102串联于第一节流单元108与第二节流单元110之间,第二节流单元110串联于第一换热单元102与第二换热单元104之间, 第一节流单元108串联于第五换热单元106与第一换热单元102之间,第一换热单元102和第五换热单元106用于分别与环境换热。
蓄能装置200,设有蓄能材料,第二换热单元104与蓄能材料换热。
详细地,第一介质循环系统供第一介质循环流通,第一介质例如为R290(丙烷)制冷剂,第一换热单元102、第二换热单元104、第五换热单元106例如为管翅式换热器,当然,也可以设置第一换热单元102、第二换热单元104、第五换热单元106为平行流换热器等其他换热器,其中换热器例如带有翅片以增加换热效率,当然也可以采用没有翅片的换热器,第一节流单元108及第二节流单元110例如为毛细管,当然也可以采用电子膨胀阀或热力膨胀阀。蓄能材料例如为冰。
当然,蓄能材料具有多种选择,除了冰以外,本领域技术人员也可选用其他类型的相变材料作为蓄能材料,在此不再一一列举,但在不脱离本设计构思的前提下均属于本方案的保护范围。
如图1所示,本实施例中,第一介质循环系统还包括串联在第二换热单元104与第五换热单元106之间的压缩机118,压缩对来自于第二换热单元104的制冷剂压缩处理,并将压缩处理后的制冷剂向第五换热器输送;第一节流单元108连接第五换热单元106及第一换热单元102,且配置为对来自于第五换热单元106的制冷剂节流处理,并将节流处理后的制冷剂向第一换热单元102输送,第一介质经第一换热单元102与环境换热后流入第二节流单元110,第二节流单元110对制冷剂进行进一步的节流处理,并将节流处理后的制冷剂向第二换热单元104输送,第一介质通过第二换热单元104向蓄能材料供冷以使得蓄能材料蓄能。
这样,第一换热单元102、第二换热单元104、第五换热单元106、压缩机118、第一节流单元108和第二节流单元110串联于同一回路,具体实施例中,在第一介质循环系统中还设有第二风机604,第二风机604配置为驱动气流与第五换热单元106换热,在制冷工况中,第一介质循环系统运行,具体地,压缩机118对制冷剂压缩处理后,将压缩处理形成的高温高压制冷剂排入第五换热单元106,第五换热单元106作为冷凝器供制冷剂与气流换热实现对制冷剂降温后,将降温处理形成的常温高压制冷剂 排入第一节流单元108,常温高压的制冷剂经第一节流单元108节流后排入第一换热单元102中,第一换热单元102作为蒸发器以供制冷剂吸热,以实现对环境降温,第一换热单元102中与环境换热后的第一介质继续流入第二节流单元110中,并经第二节流单元110节流后排入第二换热单元104中,第二换热单元104作为蒸发器向蓄能装置200中的蓄能材料供冷,以使得蓄能材料蓄能,这样,第一介质循环系统通过两次节流处理即可以通过第一换热单元102向环境供冷,又可以实现蓄能装置200蓄能。
本申请上述实施例提供的空调,形成有第一介质循环系统,在第一介质循环系统的循环回路中,第一介质经由压缩机118、第一换热单元102及第一节流单元108做功后,第一介质通过第一换热单元102将所携带的一部分冷量释放到环境中,实现房间供冷,之后第一介质利用第二节流单元110进一步降低温度,并通过第二换热单元104将所携带的冷量提供给蓄能材料实现蓄能,从而满足对房间供冷以及对蓄能材料蓄能的同步性需求,且这样第一介质可向蓄能材料提供更低的蒸发温度,使得蓄能材料的材料利用率更高,蓄能过程也更加高效,相比于现有技术中需使蓄能材料先蓄能、再利用蓄能材料所蓄存的冷量来对房间进行供冷的方案而言,本结构实现对环境供冷的方式更具多样性,使得产品的使用功能和运行模式更加丰富,且本结构实现了同步对房间供冷及对蓄能材料蓄能的运行模式,使得对环境供冷无须基于蓄能材料完成蓄能的前提,使用连续性更好,更能满足用户的使用需求。
实施例1:
如图2所示,除了上述实施例的特征以外,还进一步限定了:第一介质循环系统还包括第三节流单元112及第一阀门114,详细地,第三节流单元112例如为毛细管,当然也可以采用电子膨胀阀或热力膨胀阀,第一阀门114可以采用三通阀,第一节流单元108、第一换热单元102及第二节流单元110串联形成的支路与第三节流单元112并联设置,其中,第五换热单元106与第一阀门114的进口连通,第一节流单元108和第三节流单元112分别与第一阀门114的两个出口一一对应连通,第一阀门114具有第一位置和第二位置,且第一阀门114在第一位置控制第五换热单元106 向第一节流单元108导通,且控制第五换热单元106向第三节流单元112截止,在第二位置控制第五换热单元106向第一节流单元108截止,且控制第五换热单元106向第三节流单元112导通。使第一节流单元108、第一换热单元102及第二节流单元110串联形成的支路与第三节流单元112之间形成并联分布,利用第一阀门114可选择地控制第五换热单元106与该两个并联支路之一导通,这样,如图1所示,当第一阀门114控制第五换热单元106与第一节流单元108、第一换热单元102及第二节流单元110导通,使空调切换为“第一模式”的运行模式,这时,第二换热单元104向蓄能材料供冷进行蓄能,同时,第一换热单元102向环境供冷,形成弱供冷+蓄冰。
如图4所示,当第一阀门114控制第五换热单元106与第三节流单元112导通,使空调切换为“第五模式”运行,这时,第一介质经由第三节流单元112节流后,进入第二换热单元104中蒸发,以向蓄能材料供冷,第一节流单元108、第一换热单元102及第二节流单元110不工作,形成单蓄冰。也即,第一介质循环回路停止向环境供冷,这样,第一介质循环系统主要对蓄能材料做功,以当不需要使用第一换热单元102向环境进行供冷的模式下避免不必要的功耗,实现产品的节能减排,同时进一步丰富了产品的功能和运行模式,更能满足产品的使用需求。
实施例2:
本实施例与上述任一实施例的不同之处在于,第一介质循环系统还包括第二阀门116,详细地,第二阀门116可以采用开关阀,第一节流单元108和第一换热单元102串联形成的支路与第二阀门116并联设置,第二阀门116具有第一导通位置和第一截止位置,第二阀门116在第一导通位置使得与之并联设置的支路短路,其中,第二节流单元110例如为开度可调的膨胀阀。在第一截止位置使得与之并联设置的支路导通。使第一节流单元108和第一换热单元102串联形成的支路与第二阀门116之间形成并联分布,利用第二阀门116可选择地控制第一节流单元108和第一换热单元102串联形成的支路的导通或短路,这样,仅通过一个第二阀门116就可以实现空调模式的转换,有利于减小产品的零件数量,减少产品的装配 步骤,降低产品的成本,详细地,如图7所示,第二阀门116控制第一节流单元108和第一换热单元102串联形成的支路导通,使空调切换为“第一模式”的运行模式,这时,第二换热单元104向蓄能材料供冷进行蓄能,同时,第一换热单元102向环境供冷。
如图8所示,当第二阀门116控制第一节流单元108和第一换热单元102串联形成的支路短路,使空调切换为“第五模式”运行,这时,第一介质经由第二节流单元110节流后,进入第二换热单元104中蒸发,以向蓄能材料供冷,第一节流单元108及第一换热单元102不工作,也即,第一介质循环回路停止向环境供冷,这样,第一介质循环系统主要对蓄能材料做功,以当不需要使用第一换热单元102向环境进行供冷的模式下避免不必要的功耗,实现产品的节能减排,同时进一步丰富了产品的功能和运行模式,更能满足产品的使用需求。
实施例3:
本实施例与实施例2的不同之处在于,第一换热单元102和第二节流单元110串联形成的支路与第二阀门116并联设置,第二阀门116具有第一导通位置和第一截止位置,第二阀门116在第一导通位置使得与之并联设置的支路短路,在第一截止位置使得与之并联设置的支路导通。其中,第一节流单元108为开度可调的膨胀阀。使第一换热单元102和第二节流单元110串联形成的支路与第二阀门116之间形成并联分布,利用第二阀门116可选择地控制第一换热单元102和第二节流单元110串联形成的支路的导通或短路,这样,仅通过一个第二阀门116就可以实现空调模式的转换,有利于减小产品的零件数量,减少产品的装配步骤,降低产品的成本,详细地,第二阀门116控制第一换热单元102和第二节流单元110串联形成的支路导通,使空调切换为“第一模式”运行,这时,第二换热单元104向蓄能材料供冷进行蓄能,同时,第一换热单元102向环境供冷。
当第二阀门116控制第一换热单元102和第二节流单元110串联形成的支路短路,使空调切换为“第五模式”运行,这时,第一介质经由第一节流单元108节流后,进入第二换热单元104中蒸发,以向蓄能材料供冷,第一换热单元102和第二节流单元110不工作,也即,第一介质循环回路 停止向环境供冷,这样,第一介质循环系统主要对蓄能材料做功,以当不需要使用第一换热单元102向环境进行供冷的模式下避免不必要的功耗,实现产品的节能减排,同时进一步丰富了产品的功能和运行模式,更能满足产品的使用需求。
实施例4:
本实施例与上述任一实施例的不同之处在于,如图10所示,第一介质循环系统还包括压缩机118和换向装置120,其中第一换热单元102、第二换热单元104、第一节流单元108、第二节流单元110、压缩机118及换向装置120形成第一回路,压缩机118具有排气口和回气口,换向装置120与排气口、回气口、第二换热单元104及第五换热单元106相连,换向装置120具有第三位置和第四位置,且换向装置120在第三位置将排气口与第五换热单元106导通,以及将回气口与第二换热单元104导通,换向装置120在第四位置将排气口与第二换热单元104导通,以及将回气口与第五换热单元106导通。设置第一换热单元102、第二换热单元104、第一节流单元108、第二节流单元110及压缩机118形成于第一回路中,并利用换向装置120控制第一回路中的第一介质的流向,可以实现第一回路中第一换热单元102与第五换热单元106之间进行蒸发或冷凝的切换,从而实现第一换热单元102对环境供冷供热的切换,进一步通过第一介质循环系统实现制热,使得产品的运行模式进一步丰富化,进一步丰富产品的使用功能。
实施例5:
本实施例与上述任一实施例的不同之处在于,如图10所示,第一介质循环系统还包括:第三阀门122,第二节流单元110和第二换热单元104串联形成的支路与第三阀门122并联设置,第三阀门122具有第二导通位置和第二截止位置,第三阀门122在第二导通位置使得与之并联设置的支路短路,在第二截止位置使得与之并联设置的支路导通。这样,仅通过一个第三阀门122就可以实现空调模式的转换,有利于减小产品的零件数量,减少产品的装配步骤,降低产品的成本,详细地,第三阀门122控制第二节流单元110和第二换热单元104串联形成的支路导通,使空调切换 为“第一模式”运行,这时,第二换热单元104向蓄能材料供冷进行蓄能,同时,第一换热单元102向环境供冷。
当第三阀门122控制第二节流单元110和第二换热单元104串联形成的支路短路,这时,第一介质经由第一节流单元108节流后,进入第一换热单元102中蒸发,以向环境供冷,第二节流单元110及第二换热单元104不工作,也即,第一介质循环回路停止向蓄能材料供冷,这样,第一介质循环系统主要对环境做功,以当不需要使用第二换热单元104向蓄能材料进行供冷的模式下避免不必要的功耗,实现产品的节能减排,同时进一步丰富了产品的功能和运行模式,更能满足产品的使用需求。
本实施例与实施例4结合,在换向装置120控制第一回路中的第一介质的流向,使得第一换热单元102作为冷凝器对环境供热,同时,通过第三阀门122将第二节流单元110及第二换热单元104短路,使得第二节流单元110及第二换热单元104不工作,以实现在空调制热工况中,蓄能装置200不工作。
实施例6:
如图1所示,除了上述任一实施例的特征以外,还进一步限定了:空调还包括供第二介质循环流通的第二介质循环系统,第二介质例如为乙二醇水溶液作为载冷剂,第二介质循环系统包括第三换热单元302和第四换热单元304,其中第三换热单元302和第四换热单元304串联形成第二回路,其中,第三换热单元302用于与环境换热,第四换热单元304与蓄能材料换热。这样,完成蓄能后的蓄能材料也可经由第三换热单元302将冷量释放到环境中实现对环境供冷,从而使得空调切换至“第七模式”运行,实现融冰供冷,且根据具体需求,也可使控制第一换热单元102与第一节流单元108、第三换热单元302导通,并且使第二介质循环系统同时处于运行状态,从而使得空调切换至“第二模式”运行,以使供给到蓄能材料的冷量进一步由第二介质输送到第三换热单元302处释放到环境中,第一换热单元102及第三换热单元302同时对环境供冷,实现强供冷。
进一步地,第二回路中设有驱动装置306,驱动装置306适配为对第二回路中的第二介质进行驱动。举例而言,驱动装置306为水泵,水泵设 于第三换热单元302与第四换热单元304之间,并且与第三换热单元302及第四换热单元304连通,驱动装置306驱动第二回路中的第二介质流动,实现第二介质经由第三换热单元302向环境供冷后,能高效地回到第四换热单元304中从蓄能材料吸收冷量,这样,第三换热单元302处供冷的连续性和均匀性更好,提升产品的使用舒适体验。
例如,根据需求使产品运行“第七模式”,具体例如,如图4所示,蓄能材料中蓄存有一定能量后,使第一介质循环系统停止运行,使第二介质循环系统运行,如利用驱动装置306驱动第二回路中的第二介质流动,使得蓄能材料的冷量经由第四换热单元304提供给第二介质,之后,第二介质进入第三换热单元302中经由第三换热单元302将冷量释放到环境中实现供冷,其中,该供冷的冷源来自于蓄能材料。
上述任一实施例中,蓄能装置200包括容器体202,蓄能材料容置于容器体202内,举例而言,容器体202为水箱,水箱内存有蓄能材料,其中,第二换热单元104的至少一部分位于容器体202内并与蓄能材料接触。这样,第二换热单元104蓄能材料的换热更加高效,减少传热损耗,提升产品的能效。
上述任一实施例中,第四换热单元304的至少一部分位于容器体202内并与蓄能材料接触。这样,第四换热单元304与蓄能材料的换热更加高效,减少传热损耗,提升产品的能效。
例如,第二换热单元104和第四换热单元304为具有两个流路的管翅式换热器。
举例地,容器体202外附设有用于对容器体202保温的保温结构(具体例如,保温结构可为附设于容器体202的外表面的保温棉或保温涂层等)。这样对容器体202内的蓄能材料保温,减少蓄能材料不必要的热损失,提升产品的能效。
上述任一实施例中,空调还包括蓄电装置400,蓄电装置400与驱动装置306电连接且向驱动装置306供电。这样可实现产品在其中的一个或多个模式中实现不插电使用,突破电源线的位置制约性,提升产品的使用体验。
举例地,蓄电装置400与第一介质循环系统的压缩机118电连接且向第一介质循环系统的压缩机118供电。举例而言,蓄电装置400包括蓄电池,蓄电池与压缩机118电连接以启动压缩机118。这样可实现产品在其中的一个或多个模式中实现不插电使用,突破电源线的位置制约性,提升产品的使用体验。
上述任一实施例中,空调还包括第一风机602,第一风机602驱动气流与第一换热单元102及第三换热单元302换热。这样,更简化了产品的组装结构,实现降低产品的成本和运行能耗。
进一步地,第一换热单元102和第三换热单元302沿风向排列,其中,第一换热单元102和第三换热单元302这两者中的一者的表面温度高于另一者的表面温度,且第一换热单元102和第三换热单元302中表面温度高的一者位于表面温度低的一者的进风侧。设置第一换热单元102和第三换热单元302中表面温度高的一者位于表面温度低的一者的进风侧,以供冷为例进行说明,当第一换热单元102的蒸发温度低于第三换热单元302的情况,沿第一风机602所驱动的气流的流向,设计第三换热单元302位于第一换热单元102上游侧,这样,第三换热单元302与第一换热单元102内同时蒸发时,气流依次经过第三换热单元302与第一换热单元102形成两级换热,可以实现更低的出风温度,从而更进一步拓宽了对环境供冷的温度可调区间,进一步丰富了产品的使用功能,更能满足用户的使用需求。当然,本领域技术人员结合上述论述过程可以对供冷场景进行充分地理解,在此不再赘述。
上述任一实施例中,如图5所示,空调还包括电热装置500,第一风机602配置为驱动气流与电热装置500换热,使得电热装置500向环境供热。使第一风机602驱动气流与电热装置500换热,以使升温后的气流对环境制热,更进一步丰富了产品的供热形式,使得产品功能丰富化。
上述任一实施例中,如图16所示,空调还包括外壳900,空调为一体式空调,外壳900形成为一体式空调的外壳900。设置空调为一体式空调,这样,所包含的第一介质循环系统等部件均容置于该一体式空调的外壳900内形成一个整体式的结构,更方便于产品随处移动,产品的使用灵活性进 一步提升。
更详细地,如图13所示,外壳900形成有腔体930,且外壳900的腔体930的下方还形成有底盘910,腔体930与底盘910合围出容纳空间,空调所包含的第一介质循环系统、第二介质循环系统等部件均容置于容纳空间中,底盘910上设有行走装置920,以方便空调的移动,举例地,行走装置920具体可如图13所示为滚轮,当然,也可为万向轮、履带装置等。且可以理解的是,外壳900上还设有一个或多个适于供外壳900进行吸气或排气的通风结构940,该通风结构940可例如为风孔或格栅结构等。
如图11所示,本申请第二方面的实施例提供了一种用于上述任一实施例的空调的控制方法,包括以下步骤:
步骤1102:接收模式指令;
步骤1104:确定接收到的模式指令所指示的模式,并根据模式指令所指示的模式控制空调运行;
其中步骤1104具体包括以下步骤:
步骤1104a:根据模式指令所指示的第一模式控制第一介质循环系统以第一预设模式运行,并控制第二介质循环系统关闭;
步骤1104b:根据模式指令所指示的第二模式控制第一介质循环系统以第二预设模式运行,并控制第二介质循环系统运行;
步骤1104c:根据模式指令所指示的第三模式控制第一介质循环系统以第三预设模式运行,并控制第二介质循环系统运行;
步骤1104d:根据模式指令所指示的第四模式控制第一介质循环系统以第四预设模式运行,并控制第二介质循环系统运行;
步骤1104e:根据模式指令所指示的第五模式控制第一介质循环系统以第五预设模式运行,并控制第二介质循环系统关闭;
步骤1104f:根据模式指令所指示的第六模式控制第一介质循环系统以第六预设模式运行,并控制第二介质循环系统关闭;
步骤1104g:根据模式指令所指示的第七模式控制第一介质循环系统关闭,并控制第二介质循环系统运行;
步骤1104h:根据模式指令所指示的第八模式控制第一介质循环系统的 第一风机602运行,控制电热装置500运行,控制第二介质循环系统关闭;
步骤1104i:根据模式指令所指示的第九模式控制第一介质循环系统以第九预设模式运行,并控制第二介质循环系统运行;
步骤1104j:根据模式指令所指示的第十模式控制第一介质循环系统以第十预设模式运行,并控制第二介质循环系统关闭。
本申请上述实施例提供的空调的控制方法,可以实现控制以至少十种模式控制空调运行,空调的运行模式更加丰富,更能满足产品的使用需求。
下面对空调每种工作模式的控制方法具体说明。
步骤1104a,根据模式指令所指示的第一模式控制第一介质循环系统以第一预设模式运行,使得压缩机118的排气口与回气口之间经由第五换热单元106、第一节流单元108、第一换热单元102、第二节流单元110、第二换热单元104导通,并控制第二介质循环系统关闭。
具体例如,控制驱动装置306关闭以使得第二介质循环系统中的第二介质停止流通实现第二介质循环系统关闭。这样,通过第一介质在第一换热单元102内先进行一定程度的蒸发后,再在第二换热单元104内进一步蒸发,使得向环境提供的冷风的温度更加柔和,不会因温度过低而产生生硬的冷感,提升产品的使用舒适体验。
详细地,如图2所示,在“第一模式”中,第一介质循环系统工作,压缩机118启动,压缩机118对第一介质压缩处理后,将压缩处理形成的高温高压第一介质排入第五换热单元106,第五换热单元106作为冷凝器供第一介质与气流换热实现对第一介质降温后,较高温度的气态第一介质转变为液态,之后流经第一阀门114(三通阀),在此模式下第一阀门114连接第一节流单元108,通过第一节流单元108轻度节流后的第一介质在第一换热单元102中以较低温度蒸发吸收热量,第一换热单元102作为蒸发器通过第一风机602向外部提供冷量,之后第一介质经过第二节流单元110深度节流后流入容器体202中的第二换热单元104,以更低的温度蒸发吸收容器体202的热量进行制冰,蒸发后的第一介质以气态进入压缩机118,完成制冷剂循环,驱动装置306(例如:水泵)不启动,第二介质循环系统不工作。
当容器体202中的水全部转变为冰的时候,应启动驱动装置306,将空调工作模式切换至“第三模式”或“第七模式”,以防止容器体202中的冰在第二换热单元104的持续吸热作用下温度低于第二介质的冰点,使第二介质结冰阻碍第二介质循环的运行。
步骤1104b,如图3所示,根据模式指令所指示的第二模式控制第一介质循环系统以第二预设模式运行,使得压缩机118的排气口与回气口之间经由第五换热单元106、第一节流单元108、第一换热单元102、第二节流单元110、第二换热单元104导通,并控制第二介质循环系统运行。
具体例如,基于“第一模式”中第一介质循环系统的运行状态,进一步控制驱动装置306工作以使得第二介质循环系统运行,这样,通过第一介质在第一换热单元102内先进行一定程度的蒸发后,再在第二换热单元104内进一步蒸发,同时,控制驱动装置306开启以使得第二介质循环系统中的第二介质流通,实现第二介质循环系统运行,第二介质吸收蓄能材料的冷量后通过第三换热单元302向环境释放,从而实现第一换热单元102及第三换热单元302同时对环境供冷,实现强供冷,满足用户对于室内以更高的速率降温的需求。
举例而言,如图3所示,其中,在“第二预设模式”中,第一介质循环系统的运行过程与步骤1104a中的第一介质循环系统的运行过程相同在此不再赘述。
且,第二介质循环系统工作,驱动装置306启动,第二介质循环与第一介质循环同时运行。温度较高的第二介质经由驱动装置306进入容器体202中的第四换热单元304与容器体202中的蓄能材料进行热量交换降温后流经第三换热单元302,通过第一风机602向环境供冷。
由于第一风机602的风会先后流经第三换热单元302和第一换热单元102,风温更低,在相同风量下,可以增加对外界的供冷量。根据驱动装置306功率的大小,第二介质在容器体202中的取冷功率有可能大于第二换热单元104的制冷功率,这种情况下容器体202中冰与水的比例会逐渐变小,随着冰的融化第四换热单元304向外供冷的功率在不断减小,当冰完全融化后,第四换热单元304对外界冷量的增幅作用消失,此时应关闭驱 动装置306,切换至“第一模式”或“第五模式”。
步骤1104c,根据模式指令所指示的第三模式控制第一介质循环系统以第三预设模式运行,使得压缩机118的排气口与回气口之间经由第五换热单元106、第一节流单元108、第一换热单元102、第三阀门122导通,并控制第二介质循环系统运行。
具体例如,第一介质经由第一节流单元108节流后,进入第一换热单元102中蒸发,以向环境供冷,且第二换热单元104停止向蓄能材料供冷,使得第一介质循环系统做功产生的冷量主要用于对环境供冷,同时,第二介质吸收蓄能材料的冷量后通过第三换热单元302向环境释放,从而实现第一换热单元102及第三换热单元302同时对环境供冷,实现强供冷,满足用户对于室内以更高的速率降温的需求。
举例而言,在“第三预设模式”中,第一介质循环系统工作,压缩机118启动,压缩机118对第一介质压缩处理后,将压缩处理形成的高温高压第一介质排入第五换热单元106,第五换热单元106作为冷凝器供第一介质与气流换热实现对第一介质降温,较高温度的气态第一介质转变为液态,之后流经第一换热单元102,且在第一换热单元102中以较低温度蒸发吸收热量,第一换热单元102作为蒸发器通过第一风机602向外部提供冷量,第三阀门122导通,使得第二节流单元110与第二换热单元104被短路,蒸发后的第一介质以气态进入压缩机118,完成制冷剂循环。
在“第三预设模式”的模式中,第二介质循环系统的运行过程与步骤1104b中的第二介质循环系统的运行过程相同在此不再赘述。
步骤1104d,根据模式指令所指示的第四模式控制第一介质循环系统以第四预设模式运行,使得压缩机118的排气口与回气口之间经由第五换热单元106、第二阀门116、第二节流单元110、第二换热单元104导通,并控制第二介质循环系统运行。
具体例如,第一介质经第二节流单元110节流后,进入第二换热单元104中蒸发,以向蓄能材料供冷,同时,控制驱动装置306开启以使得第二介质循环系统中的第二介质流通,实现第二介质循环系统运行,第二介质吸收蓄能材料的冷量后通过第三换热单元302向环境释放,实现强供 冷,使得向环境提供的冷风的温度更加柔和,不会因温度过低而产生生硬的冷感,提升产品的使用舒适体验。
举例而言,在“第四预设模式”中,控制第二阀门116开启,使得第一节流单元108与第一换热单元102被短路,第一介质循环系统工作,压缩机118启动,压缩机118对第一介质压缩处理后,将压缩处理形成的高温高压第一介质排入第五换热单元106,第五换热单元106作为冷凝器供第一介质与气流换热实现对第一介质降温,较高温度的气态第一介质转变为液态,之后流经第二换热单元104,且在第二换热单元104中以较低温度蒸发吸收热量,第二换热单元104作为蒸发器向蓄能材料供冷。在“第四预设模式”中,第二介质循环系统的运行过程与步骤1104b中的第二介质循环系统的运行过程相同在此不再赘述。
可以理解的,如图7所示,控制第二阀门116关闭,第一节流单元108与第一换热单元102导通,此时,空调的运行步骤与步骤1104b相同,在此不再赘述。
步骤1104e,如图4所示,根据模式指令所指示的第五模式控制第一介质循环系统以第五预设模式运行,使得压缩机118的排气口与回气口之间经由第五换热单元106、第一阀门114、第三节流单元112、第二换热单元104导通,并控制第二介质循环系统关闭。
具体例如,第一介质经第三节流单元112节流后,进入第二换热单元104中蒸发,以向蓄能材料供冷,第一换热单元102、第一节流单元108及第二节流单元110不工作,使得第一介质循环系统做功产生的冷量主要用于对蓄能材料供冷,同时,控制驱动装置306关闭以使得第二介质循环系统中的第二介质停止流通实现第二介质循环系统关闭,实现单蓄冰,以当不需要使用第一换热单元102向环境进行供冷的模式下避免不必要的功耗,实现产品的节能减排。
举例而言,如图4所示,在“第五预设模式”中,第一阀门114与第三节流单元112之间导通,第一介质循环系统工作,压缩机118启动,压缩机118对第一介质压缩处理后,将压缩处理形成的高温高压第一介质排入第五换热单元106,第五换热单元106作为冷凝器供第一介质与气流换 热实现对第一介质降温,较高温度的气态第一介质转变为液态,之后通过第三节流单元112节流后流向第二换热单元104,且在第二换热单元104中以较低温度蒸发吸收热量,第一换热单元102作为蒸发器通过第一风机602向外部提供冷量,蒸发后的第一介质以气态进入压缩机118,完成制冷剂循环。在此模式下,第一介质不经过第一节流单元108、第一换热单元102、第二节流单元110,第一风机602不工作,驱动装置306不工作,第二介质循环系统工作,不给环境供冷。
当容器体202中的水全部转变为冰的时候,应该控制关闭压缩机118,停止第一介质循环,或者切换到其他工作模式,以防止容器体202中的冰在第二换热单元104的持续吸热作用下温度低于第二介质的冰点,使第二介质结冰阻碍载冷剂循环的运行。
步骤1104f,如图8所示,根据模式指令所指示的第六模式控制第一介质循环系统以第六预设模式运行,使得压缩机118的排气口与回气口之间经由第五换热单元106、第二阀门116、第二节流单元110、第二换热单元104导通,并控制第二介质循环系统关闭。
具体例如,第一介质经第二节流单元110节流后,进入第二换热单元104中蒸发,以向蓄能材料供冷,第一换热单元102及第二第一节流单元108不工作,使得第一介质循环系统做功产生的冷量主要用于对蓄能材料供冷,同时,控制驱动装置306关闭以使得第二介质循环系统中的第二介质停止流通实现第二介质循环系统关闭,实现单蓄冰,以当不需要使用第一换热单元102向环境进行供冷的模式下避免不必要的功耗,实现产品的节能减排。
步骤1104g,如图5所示,根据模式指令所指示的第七模式控制第一介质循环系统关闭,并控制第二介质循环系统运行。
具体例如,控制压缩机118关闭以使得第一介质循环系统中的第一介质停止流通实现第一介质循环系统关闭,同时,控制驱动装置306开启以使得第二介质循环系统中的第二介质流通,实现第二介质循环系统运行,第二介质吸收蓄能材料的冷量后通过第三换热单元302向环境释放,从而实现第三换热单元302对环境供冷,实现融冰供冷,使得向环境提供的冷 风的温度更加柔和,不会因温度过低而产生生硬的冷感,提升产品的使用舒适体验。
步骤1104h,如图6所示,根据模式指令所指示的第八模式控制第一介质循环系统的第一风机602运行,这时,由于第一介质循环系统内的第一介质无需流通,该模式下可相应控制压缩机118关闭,另外,控制电热装置500运行,使得第一风机602驱动气流与电热装置500换热,且控制第二介质循环系统关闭,也即控制驱动装置306关闭,这样,使得电热装置500向环境供热。
举例而言,如图6所示,在“第八模式”中,压缩机118和驱动装置306都停止工作,第一介质循环系统和第二介质循环系统都停止运行,搭载在第一风机602旁的电热装置500通电,第一风机602开启,通过风道向外供热。
步骤1104i,如图9所示,根据模式指令所指示的第九模式控制第一介质循环系统以第九预设模式运行,使得压缩机118的排气口与回气口之间经由第五换热单元106、第一节流单元108、第一换热单元102、第二节流单元110、第二换热单元104导通,并控制第二介质循环系统运行,其中,在第九预设模式中,第一节流单元108和第二节流单元110的开度分别大于零,且第一节流单元108的开度小于第二节流单元110的开度。
具体例如,通过第一介质在第一换热单元102内先进行一定程度的蒸发后,再在第二换热单元104内进一步蒸发,这样可以形成“第一模式”运行,使得向环境提供的冷风的温度更加柔和,不会因温度过低而产生生硬的冷感,提升产品的使用舒适体验,同时控制第一节流单元108的开度小于第二节流单元110的开度,使得第一介质在第二节流单元110中被进一步节流,节流更充分。第二介质循环系统运行,第二介质吸收蓄能材料的冷量后通过第三换热单元302向环境释放,从而实现第一换热单元102及第三换热单元302同时对环境供冷,满足用户对于室内以更高的速率降温的需求。
步骤1104j,根据模式指令所指示的第十模式控制第一介质循环系统以第十预设模式运行,使得压缩机118的排气口与回气口之间经由第五换热 单元106、第一节流单元108、第一换热单元102、第二节流单元110、第二换热单元104导通,并控制第二介质循环系统关闭,其中,在第十预设模式中,第一节流单元108的开度为其最大阈值,第二节流单元110的开度大于零且小于其最大阈值。
因第一节流单元108的开度为其最大阈值,这样,第一介质在流经第一节流单元108时几乎未被节流就流向第一换热单元102,所以第一换热单元102不向环境供冷,之后第一介质流向第二节流单元110并被第二节流单元110充分节流,以向蓄能材料供冷,从而实现单蓄冰。这样,仅通过控制调节第一节流单元108及第二节流单元110的开度就可以实现空调模式的转换,进一步减少产品的零件数量,减少产品的装配步骤,降低产品的成本。
进一步地,如图12所示,上述任一方法中,蓄冰工况的过程具体包括以下步骤:
步骤1202:蓄冰工况启动,详细地,根据检测到的模式指令并确定开启蓄冰工况。
步骤1204:控制第二风机604运行,且控制压缩机118以第一频率启动;
经过第一预设时长后,执行步骤1206:控制压缩机118的频率上升至第二频率;
步骤1208:判断蓄能介质的温度是否低于等于第一预设温度,若是,则执行步骤1212,控制第二风机604关闭,且控制压缩机118关闭,否则执行步骤1210,判断压缩机118在第二频率下的运行时长是否大于等于预设蓄冷时长,若是,则执行步骤1212,控制第二风机604关闭,且控制压缩机118关闭,若否则返回步骤1206,也即控制压缩机118及第二风机604继续以当前状态运行。
这样,根据蓄能装置200的蓄能介质的温度以及压缩机118在第二频率下的运行时长控制压缩机118及第二风机604的开闭,避免蓄能材料被过度蓄能,控制更精准。
其中,第一预设时长的阈值为10秒~20秒,例如,第一预设时长为15 秒;
预设蓄冷时长的阈值为90分钟~150分钟,例如,预设蓄冷时长为120分钟;
第一预设温度的阈值为3℃~8℃,例如,第一预设温度为5℃。
进一步地,如图13所示,上述任一实施例中空调的供冷工况控制方法具体包括以下步骤:
步骤1302:控制空调根据默认出风温度和第一风机602默认档位运行;
步骤1304:检测输入信息;
步骤1306:判断输出信息中是否包含有输入出风温度,若检测到的输出信息中包含有输入出风温度,则执行步骤1308:以输入出风温度作为设定出风温度,若检测到的输出信息中未包含输入出风温度,则执行步骤1310:以默认出风温度作为设定出风温度;
步骤1312:判断输出信息中是否包含有输入档位信息;若检测到的输出信息中包含有输入档位信息,则执行步骤1314:控制第一风机602根据输入档位信息运行,若检测到的输出信息中未包含输入档位信息,则执行步骤1316:则控制第一风机602根据第一风机602默认档位运行。
步骤1318:检测空调的出风温度;
步骤1320:判断检测的出风温度是否比设定出风温度高第一预设值以上;若是,则执行步骤1322:控制驱动装置306以预设最大转速运行,否则执行步骤1324:判断检测的出风温度是否比设定出风温度高第二预设值以上,若检测的出风温度比设定出风温度高第二预设值以上,则执行步骤1326:控制驱动装置306的转速由当前转速增加预设差值,若检测的出风温度与设定出风温度之差小于第二预设值,则执行步骤1328:控制驱动装置306的转速由当前转速减小预设差值。
可以理解的,输入信息有用户根据自身的需求选定,输入信息中包含多个档位信息,每个档位包括与之对应的第一风机602的转速。
第一预设值的取值范围为3℃~8℃,例如,第一预设值为5℃;
第二预设值的取值范围为-2℃~2℃,例如,第一预设值为0℃。
根据模式指令所指示的第五模式控制第一介质循环系统的第一风机 602运行,并控制电热装置500700运行,使得第一风机602驱动气流与电热装置500700换热,且控制第二介质循环系统关闭。
更进一步地,如图14所示,上述任一实施例中,当空调同时运行蓄冰工况及供冷工况时,也即空调处于混合模式时,具体包括以下步骤:
步骤1402:蓄冰工况启动;
步骤1404:控制第二风机604以第一转速启动运行,且控制压缩机118以第一频率启动;
经过第一预设时长后,执行步骤1406:控制第二风机604的转速上升至第二转速,且控制压缩机118的频率上升至第二频率;
步骤1408:判断蓄能介质的温度是否低于等于第二预设温度,若是,则执行步骤1410:控制第二风机604降速运行,且控制压缩机118降频运行,若否,则返回步骤1406,也即,控制第二风机604以当前转速运行,且控制压缩机118以当前频率运行;
步骤1412:判断蓄能介质的温度是否高于等于第三预设温度;
若是,则返回步骤1406,也即,控制第二风机604升速运行,且控制压缩机118升频运行,若否,则返回步骤1410,也即控制第二风机604以当前转速运行,且控制压缩机118以当前频率运行。
与步骤1402同时进行的还有步骤1422,具体地,
步骤1422:供冷工况启动;
步骤1424:检测输入信息;
步骤1426:控制空调根据默认出风温度和第一风机602默认档位运行;
步骤1428:判断输出信息中是否包含有输入出风温度,若检测到的输出信息中包含有输入出风温度,则执行步骤1430:以输入出风温度作为设定出风温度,若检测到的输出信息中未包含输入出风温度,则执行步骤1432:以默认出风温度作为设定出风温度;
步骤1434:判断输出信息中是否包含有输入档位信息;若检测到的输出信息中包含有输入档位信息,则执行步骤1436:控制第一风机602根据输入档位信息运行,若检测到的输出信息中未包含输入档位信息,则执行步骤1438:则控制第一风机602根据第一风机602默认档位运行。
步骤1440:检测空调的出风温度;
步骤1442:判断检测的出风温度是否比设定出风温度高第一预设值以上;若是,则执行步骤1444:控制驱动装置306以预设最大转速运行,否则执行步骤1442:判断检测的出风温度是否比设定出风温度高第二预设值以上,若检测的出风温度比设定出风温度高第二预设值以上,则执行步骤1448:控制驱动装置306的转速由当前转速增加预设差值,若检测的出风温度与设定出风温度之差小于第二预设值,则执行步骤1450:控制驱动装置306的转速由当前转速减小预设差值。
如图15所示。本申请第三方面的实施例提供了一种运行控制装置800,适用于空调,运行控制装置800包括:处理器802,处理器802执行计算机程序时能够实现如上述实施例中的空调的控制方法限定的步骤。
具体地,运行控制装置800还包括存储器804,存储器804存储有计算机程序,处理器802执行计算机程序时能够实现如上述实施例中的空调的控制方法限定的步骤。
本申请上述实施例提供的运行控制装置800,通过实现如上述实施例中提供的空调的控制方法,从而具有以上全部有益效果,在此不在赘述。
本申请第四方面的实施例提供了一种空调,包括上述实施例中的运行控制装置800。
本申请上述实施例提供的空调,通过设置有上述实施例中的运行控制装置800,从而具有以上全部有益效果,在此不在赘述。
详细地,空调包括第一介质循环系统、第二介质循环系统及蓄能装置200,运行控制装置800与第一介质循环系统、第二介质循环系统及蓄能装置200电连接,并根据模式指令所指示的工作模式控制第一介质循环系统、第二介质循环系统及蓄能装置200运行。
本申请第五方面的实施例提供了一种计算机可读存储介质,其存储的计算机程序被执行时通过实现上述实施例中的空调的控制方法,从而具有以上全部有益效果。
在本申请中,术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接, 或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种空调,其中,包括:
    第一介质循环系统,包括,
    第一换热单元、第二换热单元、第五换热单元、第一节流单元和第二节流单元,
    所述第一换热单元串联于所述第一节流单元与所述第二节流单元之间,
    所述第二节流单元串联于所述第一换热单元与所述第二换热单元之间,
    所述第一节流单元串联于所述第五换热单元与所述第一换热单元之间,
    所述第一换热单元和所述第五换热单元用于分别与环境换热;
    蓄能装置,设有蓄能材料,所述第二换热单元与所述蓄能材料换热。
  2. 根据权利要求1所述的空调,其中,
    所述第一介质循环系统还包括:
    第三节流单元,
    所述第一节流单元、所述第一换热单元及所述第二节流单元串联形成的支路与所述第三节流单元并联设置;
    第一阀门,
    与所述第三节流单元、所述第五换热单元及所述第一节流单元相连,所述第一阀门具有第一位置和第二位置,且所述第一阀门在所述第一位置控制所述第五换热单元向所述第一节流单元导通,且控制所述第五换热单元向所述第三节流单元截止,在所述第二位置控制所述第五换热单元向所述第一节流单元截止,且控制所述第五换热单元向所述第三节流单元导通。
  3. 根据权利要求1所述的空调,其中,
    所述第一介质循环系统还包括:
    第二阀门,
    所述第一节流单元和所述第一换热单元串联形成的支路与所述第二阀门并联设置,
    所述第二阀门具有第一导通位置和第一截止位置,所述第二阀门在所述第一导通位置使得与之并联设置的所述支路短路,在所述第一截止位置使得与之并联设置的所述支路导通。
  4. 根据权利要求1所述的空调,其中,
    所述第一介质循环系统还包括:
    第二阀门,
    所述第一换热单元和所述第二节流单元串联形成的支路与所述第二阀门并联设置,
    所述第二阀门具有第一导通位置和第一截止位置,所述第二阀门在所述第一导通位置使得与之并联设置的所述支路短路,在所述第一截止位置使得与之并联设置的所述支路导通。
  5. 根据权利要求1所述的空调,其中,
    所述第一节流单元为适配所述第一换热单元的毛细管,所述第二节流单元为适配所述第二换热单元的毛细管;或
    所述第一节流单元和所述第二节流单元其中之一或全部为开度可调的膨胀阀。
  6. 根据权利要求2所述的空调,其中,
    所述第三节流单元为适配所述第二换热单元的毛细管,或
    所述第三节流单元为开度可调的膨胀阀。
  7. 根据权利要求3所述的空调,其中,
    所述第二节流单元为开度可调的膨胀阀。
  8. 根据权利要求4所述的空调,其中,
    所述第一节流单元为开度可调的膨胀阀。
  9. 根据权利要求1至8中任一项所述的空调,其中,
    所述第一介质循环系统形成有第一回路,所述第一换热单元、第二换热单元、第一节流单元及第二节流单元形成所述第一回路的一部分,其中,
    所述第一回路设有压缩机和换向装置,
    所述压缩机具有排气口和回气口,
    所述换向装置与所述排气口、回气口、第二换热单元及第五换热单元相连,
    所述换向装置具有第三位置和第四位置,且所述换向装置在所述第三位置将所述排气口与所述第五换热单元导通,以及将所述回气口与所述第二换热单元导通,所述换向装置在所述第四位置将所述排气口与所述第二换热单元导通,以及将所述回气口与所述第五换热单元导通。
  10. 根据权利要求1至8中任一项所述的空调,其中,
    所述第一介质循环系统还包括:
    第三阀门,
    所述第二节流单元和所述第二换热单元串联形成的支路与所述第三阀门并联设置,
    所述第三阀门具有第二导通位置和第二截止位置,所述第三阀门在所述第二导通位置使得与之并联设置的所述支路短路,在所述第二截止位置使得与之并联设置的所述支路导通。
  11. 根据权利要求1至8中任一项所述的空调,其中,还包括:
    第二介质循环系统,
    形成有第二回路,且包括形成于所述第二回路中的第三换热单元和第四换热单元,所述第三换热单元用于与环境换热,所述第四换热单元与所述蓄能材料换热。
  12. 根据权利要求11所述的空调,其中,
    所述蓄能装置包括容器体,所述蓄能材料容置于所述容器体内,其中,
    所述第二换热单元的至少一部分位于所述容器体内并与所述蓄能材料接触;和/或
    所述第四换热单元的至少一部分位于所述容器体内并与所述蓄能材料接触。
  13. 根据权利要求12所述的空调,其中,
    所述第二回路中设有驱动装置,所述驱动装置适配为对所述第二回路中的第二介质进行驱动。
  14. 根据权利要求13所述的空调,其中,
    还包括蓄电装置;
    所述蓄电装置与所述驱动装置电连接且向所述驱动装置供电;和/或
    所述蓄电装置与所述第一介质循环系统的压缩机电连接且向所述第一介质循环系统的所述压缩机供电。
  15. 根据权利要求11所述的空调,其中,
    所述第一介质循环系统具有第一风机,所述第一风机用于驱动气流与所述第一换热单元及所述第三换热单元换热。
  16. 根据权利要求15所述的空调,其中,
    所述第一换热单元和所述第三换热单元沿风向排列,其中,所述第一换热单元和所述第三换热单元这两者中的一者的表面温度高于另一者的表面温度,且所述第一换热单元和所述第三换热单元中表面温度高的一者位于表面温度低的一者的进风侧。
  17. 根据权利要求15所述的空调,其中,还包括:
    电热装置,
    所述第一风机配置为驱动气流与所述电热装置换热,使得所述电热装置向环境供热。
  18. 根据权利要求1至8中任一项所述的空调,其中,
    还包括外壳,
    所述空调为一体式空调,所述外壳形成为所述一体式空调的外壳。
  19. 一种用于如权利要求11至17中任一项所述的空调的控制方法,其中,包括以下步骤:
    根据模式指令所指示的第一模式控制第一介质循环系统以第一预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统关闭;
    根据所述模式指令所指示的第二模式控制第一介质循环系统以第二预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统运行;
    根据所述模式指令所指示的第三模式控制第一介质循环系统以第三预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第三阀门导通,并控制第二介质循环系统运行;
    根据所述模式指令所指示的第四模式控制第一介质循环系统以第四预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第二阀门、第二节流单元、第二换热单元导通,并控制第二介质循环系统运行;
    根据所述模式指令所指示的第五模式控制第一介质循环系统以第五预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一阀门、第三节流单元、第二换热单元导通,并控制第二介质循环系统关闭;
    根据所述模式指令所指示的第六模式控制第一介质循环系统以第六预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第二阀门、第二节流单元、第二换热单元导通,并控制第二介质循环系统关闭;
    根据所述模式指令所指示的第七模式控制第一介质循环系统关闭,并控制第二介质循环系统运行;
    根据所述模式指令所指示的第八模式控制第一介质循环系统的第一风机运行,控制电热装置运行,使得所述第一风机驱动气流与所述电热装置换热,控制第二介质循环系统关闭;
    根据所述模式指令所指示的第九模式控制第一介质循环系统以第九预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统运行,其中,在所述第九预设模式中,所述第一节流单元和所述第二节流单元的开度分别大于零,且所述第一节流单元的开度小于所述第二节流单元的开度;
    根据所述模式指令所指示的第十模式控制第一介质循环系统以第十预设模式运行,使得压缩机的排气口与回气口之间经由第五换热单元、第一节流单元、第一换热单元、第二节流单元、第二换热单元导通,并控制第二介质循环系统关闭,其中,在所述第十预设模式中,所述第一节流单元的开度为其最大阈值,所述第二节流单元的开度大于零且小于其最大阈值。
  20. 一种运行控制装置,适用于空调,其中,包括:
    处理器,
    所述处理器执行计算机程序时能够实现如权利要求19所述的空调的控制方法限定的步骤。
  21. 一种空调,其中,包括如权利要求20所述的运行控制装置。
  22. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被执行时,实现如权利要求19所述的空调的控制方法所限定的步骤。
PCT/CN2019/123635 2019-09-11 2019-12-06 空调及其控制方法、运行控制装置及存储介质 WO2021047076A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19945111.3A EP4001786B1 (en) 2019-09-11 2019-12-06 Air conditioner and control method therefor, operation control apparatus and storage medium
US17/685,312 US20220186963A1 (en) 2019-09-11 2022-03-02 Air Conditioner and Control Method Therefor, Operation Control Apparatus and Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910860688.3 2019-09-11
CN201910860688.3A CN112484227A (zh) 2019-09-11 2019-09-11 空调及其控制方法、运行控制装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/685,312 Continuation US20220186963A1 (en) 2019-09-11 2022-03-02 Air Conditioner and Control Method Therefor, Operation Control Apparatus and Storage Medium

Publications (1)

Publication Number Publication Date
WO2021047076A1 true WO2021047076A1 (zh) 2021-03-18

Family

ID=74866900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123635 WO2021047076A1 (zh) 2019-09-11 2019-12-06 空调及其控制方法、运行控制装置及存储介质

Country Status (4)

Country Link
US (1) US20220186963A1 (zh)
EP (1) EP4001786B1 (zh)
CN (1) CN112484227A (zh)
WO (1) WO2021047076A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1451916A (zh) * 2003-05-20 2003-10-29 南京大学 汽车空调器
CN2802328Y (zh) * 2005-06-10 2006-08-02 河南新飞电器有限公司 一种蓄能复合型空调系统
CN101344296A (zh) * 2007-07-13 2009-01-14 南开技术学院 冷媒分流储冰式恒温空调系统
JP2012026686A (ja) * 2010-07-27 2012-02-09 Mitsubishi Electric Corp 負荷側装置及び冷凍・冷蔵システム
CN108870596A (zh) * 2018-07-18 2018-11-23 芜湖锦晔双腾新能源科技有限公司 一种蓄电、蓄冰一体式空调

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240431A (ja) * 1988-07-29 1990-02-09 Hiroshi Akashi 氷蓄熱システム
FR2950423B1 (fr) * 2009-09-22 2012-11-16 Valeo Systemes Thermiques Dispositif de conditionnement d'air pour une installation de chauffage,ventilation et/ou climatisation.
DE102017214672A1 (de) * 2017-08-22 2019-02-28 Hochschule für angewandte Wissenschaften München Betriebsverfahren für ein Kühl- und/oder Heizsystem und Kühl- und/oder Heizsystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1451916A (zh) * 2003-05-20 2003-10-29 南京大学 汽车空调器
CN2802328Y (zh) * 2005-06-10 2006-08-02 河南新飞电器有限公司 一种蓄能复合型空调系统
CN101344296A (zh) * 2007-07-13 2009-01-14 南开技术学院 冷媒分流储冰式恒温空调系统
JP2012026686A (ja) * 2010-07-27 2012-02-09 Mitsubishi Electric Corp 負荷側装置及び冷凍・冷蔵システム
CN108870596A (zh) * 2018-07-18 2018-11-23 芜湖锦晔双腾新能源科技有限公司 一种蓄电、蓄冰一体式空调

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4001786A4

Also Published As

Publication number Publication date
EP4001786B1 (en) 2023-05-10
US20220186963A1 (en) 2022-06-16
EP4001786A1 (en) 2022-05-25
EP4001786A4 (en) 2022-09-21
CN112484227A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
CN112339527B (zh) 一种新能源汽车热管理系统及其工作方法
WO2021169946A1 (zh) 电动汽车热管理系统
CN108556660B (zh) 一种电动汽车热管理系统
CN111231657A (zh) 车辆热管理系统及其控制方法、车辆
CN108224840B (zh) 一种热泵空调系统和控制方法
CN213007493U (zh) 电动汽车及其热管理系统
KR101189417B1 (ko) 차량의 온도 조절장치
WO2019085956A1 (zh) 喷气增焓热泵空调系统和包括该热泵空调系统的电动车
CN111251802B (zh) 车辆的热管理系统及车辆
CN216659503U (zh) 车辆热管理系统
CN110385963B (zh) 一种电动汽车空调系统及其控制方法
CN112484226B (zh) 空调及其控制方法、运行控制装置及存储介质
CN111251801B (zh) 车辆的热管理系统及车辆
WO2021047076A1 (zh) 空调及其控制方法、运行控制装置及存储介质
US20230356564A1 (en) Thermal management system with improved working efficiency of compressor
CN110186135B (zh) 一种冷水扇和移动式空调一体机
CN108633223B (zh) 一种空调电池热泵的控制方法
CN207859887U (zh) 喷气增焓热泵空调系统和包括该热泵空调系统的电动车
JP2006017440A (ja) ヒートポンプ空調機
WO2020042459A1 (zh) 空调设备
JP3266930B2 (ja) 電気自動車用空調装置
CN114811907B (zh) 空调控制方法及空调
CN221023691U (zh) 一种储能式轨道车辆的综合热管理系统总成及储能式轨道车辆
US11780293B2 (en) In-vehicle temperature control system
CN111251803B (zh) 车辆的热管理系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019945111

Country of ref document: EP

Effective date: 20220221

NENP Non-entry into the national phase

Ref country code: DE