WO2021047057A1 - 一种基于异丙醇法制备双氧水的系统及工艺 - Google Patents

一种基于异丙醇法制备双氧水的系统及工艺 Download PDF

Info

Publication number
WO2021047057A1
WO2021047057A1 PCT/CN2019/120197 CN2019120197W WO2021047057A1 WO 2021047057 A1 WO2021047057 A1 WO 2021047057A1 CN 2019120197 W CN2019120197 W CN 2019120197W WO 2021047057 A1 WO2021047057 A1 WO 2021047057A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
isopropanol
micro
gas
hydrogen peroxide
Prior art date
Application number
PCT/CN2019/120197
Other languages
English (en)
French (fr)
Inventor
张志炳
黄传峰
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021047057A1 publication Critical patent/WO2021047057A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/026Preparation from organic compounds from alcohols

Definitions

  • the invention relates to the technical field of hydrogen peroxide preparation, in particular to a system and process for preparing hydrogen peroxide based on an isopropanol method.
  • Hydrogen peroxide a green chemical product, has oxidizing and reducing properties. It is a good oxidant. It is reduced to water during use without introducing impurities. Pure hydrogen peroxide is a viscous liquid and can Mix with water in any proportion;
  • hydrogen peroxide can produce a variety of inorganic peroxides, among which the more common ones are sodium perborate and sodium percarbonate, both of which are additives to detergents, which have bleaching and disinfection effects and are used in huge amounts;
  • the principle of the existing isopropanol oxidation method for preparing hydrogen peroxide is that isopropanol is used as a raw material, hydrogen peroxide or other oxides are used as initiators, and air or oxygen is used for liquid phase oxidation to generate hydrogen peroxide and acetone.
  • the method has the following problems
  • the present invention provides a system and process for preparing hydrogen peroxide based on the isopropanol method to overcome the problem that the gas and liquid cannot be fully mixed in the prior art and reduce the reaction rate of the entire gas-liquid system.
  • the present invention provides a system for preparing hydrogen peroxide based on the isopropanol method, including:
  • the reactor is used to provide a reaction place for air or oxygen and isopropanol solution.
  • the reactor includes: set up on the top to load air or oxygen, isopropanol solution and initiator, and it is air or oxygen and isopropanol.
  • the alcohol solution provides a mixed reaction zone in the reaction space and a solvent extraction zone arranged below to transport and separate liquid-liquid materials after the reaction is completed;
  • the micro-interface generator which is arranged at a designated position in the mixing reaction zone, converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it to the air or oxygen, so that the air or oxygen is broken to form a diameter ⁇ 1 ⁇ m , And ⁇ 1mm micron-sized bubbles to increase the mass transfer area between the isopropanol solution and air or oxygen, reduce the thickness of the liquid film, reduce the mass transfer resistance, and mix the isopropanol solution with the micron-sized bubbles to form after being broken Gas-liquid emulsion to enhance the mass transfer efficiency and reaction efficiency between the isopropanol solution and air or oxygen within the preset operating conditions;
  • the recovery device is set on the top of the reactor to condense the unreacted isopropanol gas output from the reactor and return it to the reactor after condensation to recover and reuse the reaction raw material isopropanol .
  • the micro-interface generator is a pneumatic micro-interface generator, and the micro-interface generator is arranged in the mixing reaction zone and located at the bottom of the reaction zone, and is used to break air or oxygen into micro-sized micro-sized bubbles After the crushing is completed, the micron-sized bubbles are output to the reactor and mixed with the isopropanol solution in the reactor to form a gas-liquid emulsion.
  • the mixed reaction zone includes:
  • An air source feed pipe which is arranged on the side wall of the reactor and connected to the micro-interface generator, and is used to deliver air or oxygen to the micro-interface generator so that the micro-interface generator can break the air or oxygen;
  • An isopropanol feed port which is arranged on the side wall of the reactor and above the gas source feed pipe, and is used to deliver the isopropanol solution to the inside of the reactor;
  • An initiator feed port which is arranged on the side wall of the reactor and above the isopropanol feed port, and is used to deliver the initiator to the inside of the reactor;
  • the material conduction part is arranged inside the reactor and is used to lead the materials in the reactor to the solvent extraction zone after the reaction is completed.
  • the solvent extraction zone includes:
  • An extractant feed pipe which is arranged on the side wall of the reactor, and is used to deliver the extractant to the inside of the reactor;
  • a stirring device which is arranged inside the reactor and is used to fully stir the extract
  • the discharge port is set at the bottom of the reactor to output the extracted materials.
  • the reclaimer includes:
  • the first transfer pipe one end of which is connected with the reactor, and the other end is connected with the isopropanol feed port, to output unreacted isopropanol gas from the reactor;
  • a circulating pump installed on the transfer pipe to output unreacted isopropanol gas in the reactor;
  • the condensing box is located outside the transfer tube and is used to condense the isopropanol gas in the transfer tube to convert the isopropanol gas into the isopropanol liquid.
  • the material conduction part includes:
  • a buffer chamber which is located in the reactor and has a cone-shaped bottom, which is used to store the reacted materials in the reactor;
  • the second transfer tube is connected with the buffer chamber and is used to transfer the materials in the reactor to the solvent extraction zone after the reaction is completed.
  • the part of the transfer pipe located inside the condensing box is continuously bent.
  • the stirring device includes:
  • a drive motor which is installed inside the reactor and is a power output device
  • the stirring blade is connected with the output shaft of the driving motor, and is used for stirring the extractant and the mixture until the acetone in the mixture is dissolved in the extractant.
  • the present invention provides a process for preparing hydrogen peroxide based on the isopropanol method, including:
  • Step 1 Transport the isopropanol solution into the reactor through the isopropanol feed port, and transport the initiator into the reactor through the initiator feed port;
  • Step 2 Transport air or oxygen into the reactor through the gas source feed pipe.
  • the gas source feed pipe will transport the air or oxygen to the micro-interface generator, and the micro-interface generator breaks the air or oxygen.
  • Step 3 The gas-liquid emulsion reacts under the action of the initiator to produce a mixture of hydrogen peroxide and acetone. After the reaction is completed, the mixture flows down into the solvent extraction zone, and the unreacted isopropanol gas passes through the circulating pump Work, it is transported in the first transfer pipe, passes through the condensation box, is condensed into isopropanol liquid, and enters the reactor again from the isopropanol feed port to participate in the reaction repeatedly;
  • Step 4 After the mixture enters the solvent extraction zone, the extractant is fed into the reactor through the extractant feed pipe, and the stirring device works to stir the mixture.
  • the acetone is dissolved in the extractant, and the hydrogen peroxide is used for extraction.
  • the agent is separated, after the stirring is completed, the mixture is separated into layers after standing, and the hydrogen peroxide and the extract are respectively output through the discharge port;
  • Step 5 Fractional distillation is performed on the extract to obtain acetone.
  • reaction temperature in the reactor in the process is 80-85° C.
  • reaction pressure is 1 atm.
  • the beneficial effect of the present invention is that the present invention forms micro-sized micro-sized bubbles by breaking air or oxygen.
  • the micro-sized bubbles have physical and chemical properties that conventional bubbles do not have.
  • the volume and surface area of the sphere are determined by the The calculation formula shows that the total surface area of bubbles is inversely proportional to the diameter of a single bubble under the condition that the total volume is constant. It can be seen that the total surface area of micron-sized bubbles is huge, so that the micron-sized bubbles are mixed with the raw material isopropanol to form a gas-liquid emulsification.
  • the lower reaction temperature In order to increase the contact area of the gas-liquid two-phase, and achieve the effect of enhancing the mass transfer in the lower preset operating condition range, that is, the lower reaction temperature;
  • the system reactor of the present invention includes a mixed reaction zone, and the mixed reaction zone includes a material conduction part, which is arranged inside the reactor to lead the materials in the reactor to the solvent extraction zone after the reaction is completed. Make the preparation system have good continuity.
  • system reactor of the present invention includes a solvent extraction zone for liquid-liquid separation of materials after the reaction is completed, which ensures the integrity of the hydrogen peroxide preparation process to a greater extent and enables the preparation system to have good continuity.
  • a recovery device is installed on the reactor, and the recovery device is used to condense the unreacted isopropanol gas output from the reactor and return it to the reactor after condensation to recover the reaction raw material isopropanol and repeat Utilization makes the raw material cycle a closed loop cycle, effectively avoiding the waste of raw material isopropanol.
  • the micro-interface generator is a pneumatic micro-interface generator, and the micro-interface generator is arranged in the mixing reaction zone and located at the bottom of the reaction zone, and is used to break air or oxygen into micro-sized micro-sized bubbles After the crushing is completed, the micron-level bubbles are output to the reactor and mixed with the isopropanol solution in the reactor to form a gas-liquid emulsion, thereby improving the mixing efficiency of the materials in the reactor and the micron-level bubbles.
  • the solvent extraction zone includes: an extractant feed pipe arranged on the side wall of the reactor to deliver the extractant to the inside of the reactor; a stirring device arranged inside the reactor, so
  • the stirring device includes a drive motor, which is installed inside the reactor and is a power output device; a stirring blade, which is connected to the output shaft of the drive motor, and works by the motor to drive the stirring blade
  • the extractant and the mixture are stirred until the acetone in the mixture is dissolved in the extractant, which further improves the hydrogen peroxide preparation process and makes the hydrogen peroxide preparation more efficient.
  • the recovery device includes: a first transfer pipe, one end of which is connected to the reactor, and the other end is connected to an isopropanol feed port, for outputting unreacted isopropanol gas from the reactor;
  • a circulating pump is installed on the transfer pipe to output unreacted isopropanol gas in the reactor;
  • a condensing box which is located outside the transfer pipe, is used to treat the isopropanol gas in the transfer pipe Carry out condensation to convert isopropanol gas into isopropanol liquid.
  • the part of the transfer tube inside the condensation box is continuously bent, which prolongs the time of isopropanol in the condensation box, so that the isopropanol in the first transfer tube is fully cooled, and the isopropanol is more fully cooled.
  • the material conduction part includes: a buffer chamber, which is located in the reactor and has a cone-shaped bottom for storing the reacted materials in the reactor; and a second transfer pipe, which is connected to the buffer chamber, It is used to transfer the materials in the reactor to the solvent extraction zone after the reaction is completed.
  • the materials after the reaction can be collected in the buffer chamber under the action of their own gravity.
  • the second transfer pipe is provided with an electric control valve to open the electric control The material that has been reacted by the valve enters the solvent extraction zone along the second transfer pipe for extraction, and has strong maneuverability.
  • Figure 1 is a schematic diagram of the structure of a system for preparing hydrogen peroxide based on the isopropanol method according to the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • FIG. 1 is a schematic structural diagram of a system for preparing hydrogen peroxide based on an isopropanol method according to the present invention, which includes a reactor 1, a micro-interface generator 2 and a recovery device 3.
  • the micro-interface generator 2 is arranged inside the reactor 1 to break air or oxygen to form micro-scale micro-sized bubbles and mix the micro-scale bubbles with the materials in the reactor to form a gas-liquid emulsion.
  • the recovery device 3 is connected to the reactor 1 and is used to condense the unreacted isopropanol gas output from the reactor and return it to the reactor after condensation to recover the reaction raw material isopropanol and repeat use.
  • the isopropanol solution and initiator are first delivered into the reactor 1, while air or oxygen is delivered into the reactor 1, and the air or oxygen will enter the micro-interface generator 2.
  • the micro-interface generator 2 Break the air or oxygen to form micron-sized micro-sized bubbles and mix the micro-sized bubbles with the isopropanol solution to form a gas-liquid emulsion.
  • the gas-liquid emulsion undergoes a liquid-phase oxidation reaction under the action of an initiator to produce hydrogen peroxide and acetone.
  • the reactor 1 discharges the gas generated during the reaction to the recovery device 3.
  • the recovery device 3 condenses the unreacted isopropanol gas output from the reactor and refluxes it back to the reactor after condensing.
  • micro-interface generator 2 of the present invention can also be used in other multi-phase reactions, such as via micro-interface, micro-nano interface, ultra-micro interface, micro-bubble biochemical reactor or micro-bubble biological reaction.
  • micro-mixing using micro-mixing, micro-fluidization, ultra-micro-fluidization, micro-bubble fermentation, micro-bubble bubbling, micro-bubble mass transfer, micro-bubble transfer, micro-bubble reaction, micro-bubble absorption, micro-bubble oxygenation, micro-bubble Bubble contact and other processes or methods to make materials form multi-phase micro-mixed flow, multi-phase micro-nano flow, multi-phase emulsified flow, multi-phase micro-structured flow, gas-liquid-solid micro-mixed flow, gas-liquid-solid micro-nano flow, gas-liquid-solid emulsification Flow, gas-liquid-solid microstructure flow, micro-bubble, micro-bubble flow, micro-foam, micro-foam flow, micro-gas-liquid flow, gas-liquid micro-nano emulsion flow, ultra-micro flow, micro-dispersion flow, two micro-mixed flows, Micro-turbulent flow, micro-bubble flow, micro-turbul
  • the reactor 1 of the present invention includes a mixed reaction zone 11 and a solvent extraction zone 12.
  • the mixing reaction zone 11 is located at the upper part of the reactor 1 and is used to fully mix the isopropanol solution with micron air or oxygen bubbles.
  • the solvent extraction zone 12 is located in the lower part of the reactor 1 and is used for liquid-liquid separation of materials after the reaction is completed, to ensure the integrity of the hydrogen peroxide preparation process to a large extent, and make the preparation system have good continuity.
  • the mixing reaction zone 11 When the reactor 1 is running, the mixing reaction zone 11 will respectively receive isopropanol solution, initiator and micron air or oxygen bubbles and fully mix the three to make the air or oxygen and the isopropanol solution perform liquid-phase oxidation After the reaction is completed, the mixed reaction zone 11 transports the completed reaction mixture to the solvent extraction zone 12.
  • the solvent extraction zone 12 performs liquid-liquid separation of the materials after the reaction is completed. It can be understood that the sidewalls of the solvent extraction zone 12 Visible glass is embedded on the top to make the liquid-liquid separation operation visible.
  • the mixing reaction zone 11 of the present invention includes a gas source feed pipe 111, an isopropanol feed port 112, an initiator feed port 113, and a material conduction part 114.
  • the gas source feed pipe 111 is arranged on the side wall of the reactor 1 and connected to the micro-interface generator 2 for conveying air or oxygen.
  • the isopropanol inlet 112 is arranged on the side wall of the reactor 1, and the inlet end of the isopropanol inlet 112 includes two branch inlets, one of which is used for conveying newly injected isopropanol Solution, the other branch inlet is connected to the first transfer pipe, and is used to deliver the recovered isopropanol solution to the reactor 1.
  • the initiator feed port 113 is arranged on the side wall of the reactor 1 and above the isopropanol feed port 112 to deliver a specified type of initiator to the reactor 1.
  • the material conduction part is arranged inside the reactor 1 to lead the material in the reactor 1 to the solvent extraction zone 12 after the reaction is completed.
  • the material conduction part includes a buffer chamber 1141 and a second transfer tube 1142.
  • the material conduction portion 114 enters the solvent extraction zone 12.
  • the mixture is located in the buffer chamber 1141, the bottom of the buffer chamber 1141 is tapered, and the reacted materials can be collected in the In the buffer chamber 1141, the second transfer tube 1142 is connected with the buffer chamber 1141 to transfer the materials in the reactor to the solvent extraction zone 12 after the reaction is completed.
  • the second transfer tube 1142 is provided with an electronic control valve, After opening the electronic control valve, the reacted materials enter the solvent extraction zone 12 along the second transfer pipe.
  • the isopropanol feed port 112 When the mixing reaction zone 11 is operating, the isopropanol feed port 112 will deliver the isopropanol solution into the reactor 1, and the gas source feed pipe 111 will deliver air or oxygen to the reactor 1.
  • the micro-interface generator 2 breaks air or oxygen to form micro-sized micro-sized bubbles, and mixes the micro-sized bubbles with the isopropanol solution to form a gas-liquid emulsion. After the gas-liquid emulsion is mixed with the initiator The oxidation reaction begins to occur under the action of the initiator. After the reaction is completed, the mixture in the mixing reaction zone 11 enters the solvent extraction zone 12 through the material conduction portion 114. During the entering process, the mixture is located in the buffer chamber 1141.
  • the second transfer pipe 1142 is connected with the buffer chamber 1141 to transfer the materials in the reactor After the reaction is completed, it is transferred to the solvent extraction zone 12, the second transfer 1142 pipe is provided with an electric control valve, and the electric control valve is opened. The reacted material enters the solvent extraction zone 12 along the second transfer pipe for extraction. , Strong maneuverability.
  • the gas source feed pipe 111 is arranged on the side wall of the reactor, and the outlet of the gas source feed pipe 111 is connected to the micro-interface generator 2 to deliver air or oxygen to the micro-interface generator. ⁇ 2.
  • the air source feed pipe 111 will transport air or oxygen to the micro-interface generator 2, and the micro-interface generator 2 will break the air or oxygen into micron-level bubbles, and output the micron-level bubbles To the inside of the reactor 1 and mix with the isopropanol solution.
  • the material and size of the gas source feed pipe 111 are not specifically limited in this embodiment, as long as the gas source feed pipe 111 can deliver a specified volume of air or oxygen within a specified time. .
  • the material conducting part 114 includes a buffer chamber 1141 and a second transfer pipe 1142.
  • the mixture material enters the solvent extraction zone 12
  • the mixture is located in the buffer chamber 1141, and the bottom of the buffer chamber 1141 is tapered.
  • the reacted materials can be collected in the buffer chamber 1141 under the action of their own gravity, and the second transfer pipe 1142 is connected with the buffer chamber 1141 to transfer the materials in the reactor to the solvent extraction zone 12 after the reaction is completed.
  • An electronic control valve is provided on the second transmission 1142 pipe, and the reacted materials after opening the electronic control valve enter the solvent extraction zone 12 along the second transmission pipe for extraction, and the maneuverability is strong.
  • the solvent extraction zone 12 of the present invention is located in the lower part of the reactor 1, and the solvent extraction zone 12 is used for liquid-liquid separation of materials after the reaction is completed.
  • the solvent extraction zone 12 includes: extraction Agent feed pipe 121, which is arranged on the side wall of the reactor to deliver the extractant to the inside of the reactor; a stirring device 122, which is arranged inside the reactor, and the stirring device 122 includes a driving motor 1221, It is installed inside the reactor and is a power output device; a stirring blade 1222, which is connected to the output shaft of the driving motor, works by the motor, and drives the stirring blade to perform the extraction agent and the mixture Stir until the acetone in the mixture is dissolved in the extractant, the hydrogen peroxide preparation process is further improved, and the hydrogen peroxide preparation efficiency is higher.
  • the extractant feed pipe When the solvent extraction zone 12 is running, the extractant feed pipe will transport the extractant into the reactor, the extractant contacts the mixture, and the motor works to drive the stirring blade to the extractant and the mixture. Stir until the acetone in the mixture is dissolved in the extractant. After the stirring, the mixture in the solvent extraction zone is allowed to stand. After standing for a certain period of time, the mixture is separated into layers. One layer is hydrogen peroxide and the other layer is acetone-dissolved.
  • the extractant it is understandable that the stirring time and the extraction time are not specifically limited in this embodiment, as long as the extractant and the mixture can be fully mixed and there is obvious separation after standing.
  • the micro-interface generator 2 of the present invention is arranged at the bottom of the mixing reaction zone 11 to break up air or oxygen to form micron-sized bubbles.
  • the micro-interface generator 2 will break the air or oxygen to form micro-sized bubbles, and mix the micro-sized bubbles with the isopropanol solution to form a gas-liquid emulsion.
  • the micro-interface generator 2 of the present invention is a pneumatic micro-interface generator, which is connected to the air source feed pipe 111 to crush and form the air or oxygen conveyed by the air source feed pipe 111. Micron-sized bubbles on the micron scale.
  • the air source feed pipe 111 will transport air or oxygen to the micro-interface generator 2, and the micro-interface generator 2 will break the air or oxygen into micrometer-scale micrometers.
  • the micro-interface generator 2 will output the micro-level bubbles to the inside of the reactor 1 and mix them with the isopropanol solution to form a gas-liquid emulsion to fully react.
  • the recovery device 3 of the present invention includes a first transfer pipe 31, a circulation pump 32 and a condensation tank 33.
  • One end of the first transfer pipe is connected to the reactor, and the other end is connected to the isopropanol feed port for unreacted isopropanol gas output from the reactor, and a circulation pump is installed in the transfer pipe
  • the upper part is used to output the unreacted isopropanol gas in the reactor
  • the condensation box is located outside the transfer tube to condense the isopropanol gas in the transfer tube to convert the isopropanol gas into the isopropanol liquid
  • the circulating pump 32 starts to operate and draws the unreacted isopropanol gas along the first transfer pipe, and the isopropanol gas is in the first transfer pipe.
  • the condensation box 33 cools the isopropanol gas in the first transfer tube, circulating cooling water is passed through the condensation box, and the first transfer tube
  • the isopropanol gas is cooled into isopropanol liquid after passing through the condensing box, and returned to the reactor.
  • This process turns the raw material cycle into a closed loop.
  • the raw material isopropanol can be reused until it is reused.
  • the utilization rate is high and the raw material is effectively avoided. Propanol wasted.
  • the model and power of the circulating pump 32 are not specifically limited in this embodiment, as long as the circulating pump 32 can reach its designated working state.
  • one end of the first transfer pipe is connected to the reactor, and the other end is connected to an isopropanol feed port, and the isopropanol feed port 112 is arranged on the side wall of the reactor 1, and the
  • the inlet end of the isopropanol feed port 112 includes two branch inlets, one of the branch inlets is used to transport the newly injected isopropanol solution, and the other branch inlet is connected to the first transfer pipe and is used to transport the recovery to the reactor 1.
  • the isopropanol solution is used to output the unreacted isopropanol gas from the reactor, and the circulating pump is installed on the transfer pipe to output the unreacted isopropanol gas in the reactor.
  • the condensing box is located The outside of the transfer tube is used to condense the isopropanol gas in the transfer tube to convert the isopropanol gas into isopropanol liquid.
  • the circulating pump 32 starts Operation and extract the unreacted isopropanol gas along the first transfer tube.
  • the condensing box 33 is opposite to the The isopropanol gas in the first transfer tube is cooled, and circulating cooling water is passed through the condensing tank.
  • the isopropanol gas in the first transfer tube is cooled into isopropanol liquid after passing through the condensing tank, and returns to In the reactor, the part of the transfer tube located inside the condensation box is continuously bent, which prolongs the time of isopropanol in the condensation box, so that the isopropanol in the first transfer tube is fully cooled. Propanol is more fully converted from gas to liquid.
  • a process based on the system for preparing hydrogen peroxide by the isopropanol method includes the following steps:
  • Step 1 Transport the isopropanol solution into the reactor through the isopropanol feed port, and transport the initiator into the reactor through the initiator feed port;
  • Step 2 Transport air or oxygen into the reactor through the gas source feed pipe.
  • the gas source feed pipe will transport the air or oxygen to the micro-interface generator, and the micro-interface generator breaks the air or oxygen.
  • Step 3 The gas-liquid emulsion reacts under the action of the initiator to produce a mixture of hydrogen peroxide and acetone. After the reaction is completed, the mixture flows down into the solvent extraction zone, and the unreacted isopropanol gas passes through the circulating pump Work, it is transported in the first transfer pipe, passes through the condensation box, is condensed into isopropanol liquid, and enters the reactor again from the isopropanol feed port to participate in the reaction repeatedly;
  • Step 4 After the mixture enters the solvent extraction zone, the extractant is fed into the reactor through the extractant feed pipe, and the stirring device works to stir the mixture.
  • the acetone is dissolved in the extractant, and the hydrogen peroxide is used for extraction.
  • the agent is separated, after the stirring is completed, the mixture is separated into layers after standing, and the hydrogen peroxide and the extract are respectively output through the discharge port;
  • Step 5 Fractional distillation is performed on the extract to obtain acetone.
  • the initiator is benzoyl peroxide. It is understandable that the range of preset operating conditions can be adjusted flexibly according to different product requirements or different initiators to ensure the full and effective progress of the reaction, thereby ensuring the reaction rate, and achieving the purpose of strengthening the reaction. At the same time, the type of initiator is not specifically limited in this embodiment, as long as it can ensure the smooth progress of the strengthening reaction.
  • the reaction temperature in the reactor is 80° C.
  • the reaction pressure is 1 atm
  • the air flow rate is 2.5 ml/s.
  • the gas-liquid ratio in the micro-interface generator is 800:1.
  • the conversion rate of H 2 O 2 is 57.5%, and the conversion rate of acetone is 40.2%.
  • the reaction time is 15h.
  • the reaction temperature in the reactor is 81° C.
  • the reaction pressure is 1 atm
  • the air flow rate is 3.0 ml/s.
  • the gas-liquid ratio in the micro-interface generator is 900:1.
  • the weight ratio of initiator to isopropylene solution is 4.5:100
  • the conversion rate of H 2 O 2 is 57.0%, and the conversion rate of acetone is 40.1%.
  • the reaction time is 15h.
  • the reaction temperature in the reactor is 82° C.
  • the reaction pressure is 1 atm
  • the air flow rate is 3.0 ml/s.
  • the gas-liquid ratio in the micro-interface generator is 1000:1.
  • the weight ratio of initiator to isopropylene solution is 5:100
  • the reaction time is 15h.
  • the reaction temperature in the reactor is 83° C.
  • the reaction pressure is 1 atm
  • the air flow rate is 3.5 ml/s.
  • the gas-liquid ratio in the micro-interface generator is 800:1.
  • the weight ratio of initiator to isopropylene solution is 6:100
  • the reaction time is 14.5h.
  • the reaction temperature in the reactor is 84° C.
  • the reaction pressure is 1 atm
  • the oxygen flow rate is 1.5 ml/s.
  • the gas-liquid ratio in the micro-interface generator is 900:1.
  • the reaction time is 15h.
  • the reaction temperature in the reactor is 85° C.
  • the reaction pressure is 1 atm
  • the oxygen flow rate is 1.2 ml/s.
  • the gas-liquid ratio in the micro-interface generator is 1000:1.
  • the weight ratio of initiator to isopropylene solution is 6:100
  • the conversion rate of H 2 O 2 is 57.0%, and the conversion rate of acetone is 41.5%.
  • the reaction time is 15h.
  • the existing technology is used to oxidize propylene to prepare hydrogen peroxide, wherein the process parameters selected in this embodiment are the same as those in the sixth embodiment.
  • the reaction time is 36h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种基于异丙醇法制备双氧水的系统及工艺,包括:反应器(1)、微界面发生器(2)和回收器(3)。该系统及工艺通过破碎空气或氧气使其形成微米尺度的微米级气泡,使微米级气泡与原料液混合形成气液乳化物,以增大气液两相的相界面积,并达到在较低预设操作条件范围内强化传质的效果;同时,微米级气泡能够与原料液充分混合形成气液乳化物,通过将气液两相充分混合,能够保证系统中的异丙醇溶液能够与空气或氧气充分接触,有效提高了所述系统的反应效率同时提高双氧水转化率。

Description

一种基于异丙醇法制备双氧水的系统及工艺 技术领域
本发明涉及双氧水制备技术领域,尤其涉及一种基于异丙醇法制备双氧水的系统及工艺。
背景技术
双氧水,一种绿色化工产品,具有氧化性,还原性,是一种较好的氧化剂,其在使用过程中本身被还原成水,不会引入杂质,纯净的过氧化氢是粘稠液体,能以任何比例与水混合;
最初双氧水仅用于医药和军工,后随化学工业的发展,双氧水逐步用于化学品合成、纺织、造纸、环保、食品、医药、冶金及农业等领域,市场需求日益扩大;
双氧水在用于各类织物漂白过程中,对纤维强度损伤较小,织物不易泛黄,手感适宜,对于环境无污染;
双氧水在化学合成方面,双氧水可制造多种无机过氧化物,其中较为常见的是过硼酸钠和过碳酸钠,两者均为洗涤剂的添加剂,具有漂白和消毒功效,用量巨大;
双氧水在处理有毒废水和废气方面,对硫化物、氰化物具有较好的分解作用,其具有处理范围广、效果好、且不产生二次污染的优点。
我国现有生产双氧水的厂家主要采用传统的电解法工艺制备双氧水,吨位小、成本高,少数厂家采用蒽醌法制备双氧水,产量也不能满足市场需求,随化学工业发展,采用异丙醇氧化法生产双氧水在降低综合成本的同时可得到重要化工产品丙酮而被业界青睐。
现有异丙醇氧化法制备双氧水的原理为,以异丙醇为原料,采用过氧化氢或其他氧化物为引发剂,用空气或氧气进行液相氧化,生成过氧化氢和丙酮,所述方法存在下述问题
所述方法中将空气或氧气通入液相异丙醇原料中时,气液两项混合,产生加大较多气泡,由于气泡较多较大,致使气液两项无法充分混合,降低整个气液系 统的反应速率。
发明内容
为此,本发明提供一种基于异丙醇法制备双氧水的系统及工艺,用以克服现有技术中气液两项无法充分混合,降低整个气液系统的反应速率的问题。
一方面,本发明提供一种基于异丙醇法制备双氧水的系统,包括:
反应器,用以为空气体或氧气与异丙醇溶液提供反应场所,所述反应器包括:设置在上方,用以装载空气或氧气、异丙醇溶液和引发剂并为空气或氧气和异丙醇溶液提供反应空间的混合反应区以及设置在下方,用以对反应完成后物料进行输送和液液分离的溶剂萃取区;
微界面发生器,其设置在所述混合反应区内的指定位置,将气体的压力能和/或液体的动能转变为气泡表面能并传递给空气或氧气,使空气或氧气破碎形成直径≥1μm、且<1mm的微米级气泡以提高异丙醇溶液与空气或氧气间的传质面积,减小液膜厚度,降低传质阻力,并在破碎后将异丙醇溶液与微米级气泡混合形成气液乳化物,以在预设操作条件范围内强化异丙醇溶液与空气或氧气间的传质效率和反应效率;
回收器,其设置在所述反应器顶部,用以对反应器输出的未反应完的异丙醇气体进行冷凝并在冷凝后回流至反应器内以对反应原料异丙醇进行回收并重复利用。
进一步地,所述微界面发生器为气动式微界面发生器,所述微界面发生器设置在所述混合反应区内并位于反应区底部,用以将空气或氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至反应器、并与反应器内的异丙醇溶液混合形成气液乳化物。
进一步地,所述混合反应区包括:
气源进料管,其设置在所述反应器侧壁且与所述微界面发生器相连,用以将空气或氧气输送至微界面发生器以使微界面发生器对空气或氧气进行破碎;
异丙醇进料口,其设置在所述反应器侧壁并位于所述气源进料管上方,用以将异丙醇溶液输送至反应器内部;
引发剂进料口,其设置在所述反应器侧壁并位于所述异丙醇进料口上方,用 以将引发剂输送至反应器内部;
物料传导部,其设置在所述反应器内部,用以将反应器内物料在反应完毕后导出至溶剂萃取区。
进一步地,所述溶剂萃取区包括:
萃取剂进料管,其设置在所述反应器侧壁,用以将萃取剂输送至反应器内部;
搅拌装置,其设置在所述反应器内部,用于对萃取液进行充分搅拌;
出料口,其设置在所述反应器底端,用以将萃取完毕的物料输出。
进一步地,所述回收器包括:
第一传输管,其一端与所述反应器相连,另一端与异丙醇进料口相连,用以对反应器输出的未反应完的异丙醇气体;
循环泵,其与安装在所述传输管上,用以输出反应器中未反应完的异丙醇气体;
冷凝箱,其与位于所述传输管外部,用以对传输管内的异丙醇气体进行冷凝至异丙醇气体转化为异丙醇液体。
进一步地,所述物料传导部包括:
缓冲室,其位于所述反应器内,底部呈锥形,用于储存反应器中反应完毕的物料;
第二传输管,其与所述缓冲室相连,用以将反应器内物料在反应完毕后传输至溶剂萃取区。
位于所述冷凝箱内部的传输管部分为连续弯折形。
进一步地,所述搅拌装置包括:
驱动电机,其安装于所述反应器的内部,为动力输出设备;
搅拌桨叶,其与所述驱动电机的输出端轴连接,用以对萃取剂和混合物进行搅拌至混合物中的丙酮溶解于萃取剂中。
另一方面,本发明提供一种基于异丙醇法制备双氧水的工艺,包括:
步骤1:通过所述异丙醇进料口向反应器内输送异丙醇溶液,并通过所述引发剂进料口向反应器内输送引发剂;
步骤2:通过所述气源进料管向反应器内输送空气或氧气,气源进料管会将空气或氧气输送至所述微界面发生器,微界面发生器对空气或氧气进行破碎,形成微米尺度的微米级气泡,破碎完成后,微界面发生器将微米级气泡输出至反应 器内并与异丙醇溶液在所述混合反应区混合形成气液乳化物;
步骤3:气液乳化物在引发剂的作用下发生反应,生成双氧水和丙酮混合物,反应完成后,混合物向下流动进入所述溶剂萃取区,未反应完的异丙醇气体通过所述循环泵工作,在所述第一传输管被传输,途径所述冷凝箱,被冷凝为异丙醇液体,由所述异丙醇进料口再次进入到所述反应器中重复参与反应;
步骤4:混合物进入所述溶剂萃取区后,通过所述萃取剂进料管向反应器内输送萃取剂,通过所述搅拌装置工作,对混合物进行搅拌,丙酮溶解于萃取剂中,双氧水与萃取剂分离,搅拌完毕后混合物通过静置后分层,通过所述出料口分别输出双氧水和萃取液;
步骤5:对萃取液进行分馏分离,得到丙酮。
进一步地,所述工艺中反应器内的反应温度为80-85℃,反应压力为1atm。
与现有技术相比,本发明的有益效果在于,本发明通过破碎空气或氧气使其形成微米尺度的微米级气泡,微米级气泡具备常规气泡所不具备的理化性质,由球体体积及表面积的计算公式可知,在总体积不变的情况下,气泡的总表面积与单个气泡直径成反比,由此可知微米级气泡的总表面积巨大,使微米级气泡与原料异丙醇液混合形成气液乳化物,以增大气液两相的接触面积,并达到在较低预设操作条件范围内即较低的反应温度下强化传质的效果;
此外,本发明所述系统反应器包括混合反应区,所述混合反应区包括物料传导部,其设置在所述反应器内部,用以将反应器内物料在反应完毕后导出至溶剂萃取区,使制备系统具有好的连续性。
此外,本发明所述系统反应器包括溶剂萃取区,用以对反应完成后物料进行液液分离,较大程度上保证双氧水制备过程的完整性,使制备系统具有好的连续性。
尤其,本发明在反应器上设置回收器,回收器用以对反应器输出的未反应完的异丙醇气体进行冷凝并在冷凝后回流至反应器内以对反应原料异丙醇进行回收并重复利用,使原料循环成为闭环循环,有效避免原料异丙醇浪费。
进一步地,所述微界面发生器为气动式微界面发生器,所述微界面发生器设置在所述混合反应区内并位于反应区底部,用以将空气或氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至反应器、并与反应器内的异丙 醇溶液混合形成气液乳化物,从而提高反应器内物料与微米级气泡的混合效率。
进一步地,所述溶剂萃取区包括:萃取剂进料管,其设置在所述反应器侧壁,用以将萃取剂输送至反应器内部;搅拌装置,其设置在所述反应器内部,所述搅拌装置包括驱动电机,其安装于所述反应器的内部,为动力输出设备;搅拌桨叶,其与所述驱动电机的输出端轴连接,通过所述电机工作,带动所述搅拌桨叶对萃取剂和混合物进行搅拌至混合物中的丙酮溶解于萃取剂中,进一步完善双氧水制备过程,使双氧水制备效率更高。
进一步地,所述回收器包括:第一传输管,其一端与所述反应器相连,另一端与异丙醇进料口相连,用以对反应器输出的未反应完的异丙醇气体;循环泵,其与安装在所述传输管上,用以输出反应器中未反应完的异丙醇气体;冷凝箱,其与位于所述传输管外部,用以对传输管内的异丙醇气体进行冷凝至异丙醇气体转化为异丙醇液体。位于所述冷凝箱内部的传输管部分为连续弯折形,延长异丙醇在所述冷凝箱内的时间,从而使所述第一传输管内的异丙醇得到充分冷却,异丙醇更加充分的由气态转化为液态。
进一步地,所述物料传导部包括:缓冲室,其位于所述反应器内,底部呈锥形,用于储存反应器中反应完毕的物料;第二传输管,其与所述缓冲室相连,用以将反应器内物料在反应完毕后传输至溶剂萃取区,反应完毕的物料在自身重力作用下可汇集于所述缓冲室内,所述第二传输管上设置有电控阀门,打开电控阀门反应完毕的物料沿所述第二传输管进入到所述溶剂萃取区,进行萃取,可操控性强。
附图说明
图1为本发明所述一种基于异丙醇法制备双氧水的系统的结构示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关 系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1所示,其为本发明所述基于一种基于异丙醇法制备双氧水的系统的结构示意图,包括反应器1、微界面发生器2和回收器3。所述微界面发生器2设置在所述反应器1内部,用以将空气或氧气破碎形成微米尺度的微米级气泡并将微米级气泡与反应器内的物料混合形成气液乳化物。所述回收器3与所述反应器1相连,用以对反应器输出的未反应完的异丙醇气体进行冷凝并在冷凝后回流至反应器内以对反应原料异丙醇进行回收并重复利用。
当所述系统运行时,先向反应器1内输送异丙醇溶液和引发剂,同时向反应器1内输送空气或氧气,空气或氧气会进入所述微界面发生器2,微界面发生器2将空气或氧气破碎形成微米尺度的微米级气泡并使微米级气泡与异丙醇溶液混合形成气液乳化物,气液乳化物在引发剂作用下进行液相氧化反应生成含有双氧水和丙酮的混合物,反应器1会将反应过程中产生的气体排出至回收器3,回收器3对反应器输出的未反应完的异丙醇气体进行冷凝并在冷凝后回流至反应器内以对反应原料异丙醇进行回收并重复利用。本领域的技术人员可以理解的是,本发明所述微界面发生器2还可用于其它多相反应中,如通过微界面、微纳界面、超微界面、微泡生化反应器或微泡生物反应器等设备,使用微混合、微流化、超微流化、微泡发酵、微泡鼓泡、微泡传质、微泡传递、微泡反应、微泡吸收、微泡增氧、微泡接触等工艺或方法,以使物料形成多相微混流、多相微纳流、多相乳化流、多相微结构流、气液固微混流、气液固微纳流、气液固乳化流、气液固微结构流、微米级气泡、微米级气泡流、微泡沫、微泡沫流、微气液流、气液微纳乳化流、超微流、微分散流、两项微混流、微湍流、微泡流、微鼓泡、微鼓泡流、微纳鼓泡以及微纳鼓泡流等由微米尺度颗粒形成的多相流体、或由微纳尺度颗粒形成的多相流体(简称微界面流体),从而有效地增大了反应过程中所述气 相和/或液相与液相和/或固相之间的相界传质面积。
请继续参阅图1所示,本发明所述反应器1包括混合反应区11和溶剂萃取区12。其中所述混合反应区11位于所述反应器1的上部,用以将异丙醇溶液与微米级空气或氧气气泡充分混合。所述溶剂萃取区12位于所述反应器1的下部,用以对反应完成后物料进行液液分离,较大程度上保证双氧水制备过程的完整性,使制备系统具有好的连续性。当反应器1运行时,所述混合反应区11会分别接收异丙醇溶液、引发剂和微米级空气或氧气气泡并将三者充分混合以使空气或氧气与异丙醇溶液进行液相氧化反应,反应完成后,混合反应区11将反应完成的混合物输送至溶剂萃取区12,溶剂萃取区12对反应完成后物料进行液液分离,可以理解的是,所述溶剂萃取区12的侧壁上嵌接有可视玻璃,使液液分离操作时具有可视性。
请继续参阅图1所示,本发明所述混合反应区11包括气源进料管111、异丙醇进料口112、引发剂进料口113、物料传导部114。其中,所述气源进料管111设置在所述反应器1侧壁并与所述微界面发生器2相连,用以输送空气或氧气。所述异丙醇进料口112设置在所述反应器1侧壁,所述异丙醇进料口112的进口端包括两个分支进口,其中一个分支进口用于输送新注入的异丙醇溶液,另一个分支进口与第一传输管相连,用以向反应器1输送回收的异丙醇溶液。所述引发剂进料口113设置在所述反应器1侧壁并位于所述异丙醇进料口112上方,用以向反应器1输送指定种类的引发剂。所述物料传导部设置在所述反应器1内部,用以将反应器1内物料在反应完毕后导出至溶剂萃取区12,所述物料传导部包括缓冲室1141和第二传输管1142,所述物料传导部114进入至所述溶剂萃取区12,在进入过程中,混合物位于所述缓冲室1141内,缓冲室1141底部呈锥形,反应完毕的物料在自身重力作用下可汇集于所述缓冲室1141内,第二传输管1142与所述缓冲室1141相连,用以将反应器内物料在反应完毕后传输至溶剂萃取区12,所述第二传输1142管上设置有电控阀门,打开电控阀门反应完毕的物料沿所述第二传输管进入到所述溶剂萃取区12。
当所述混合反应区11运行时,所述异丙醇进料口112会向所述反应器1内部输送异丙醇溶液,所述气源进料管111会将空气或氧气输送至所述微界面发生器2,微界面发生器2将空气或氧气破碎形成微米尺度的微米级气泡,并使微米 级气泡与异丙醇溶液混合形成气液乳化物,气液乳化物与引发剂混合后在引发剂的作用下开始发生氧化反应,反应完成后,混合反应区11内的混合物通过所述物料传导部114进入至所述溶剂萃取区12,在进入过程中,混合物位于所述缓冲室1141内,缓冲室1141底部呈锥形,反应完毕的物料在自身重力作用下可汇集于所述缓冲室1141内,第二传输管1142与所述缓冲室1141相连,用以将反应器内物料在反应完毕后传输至溶剂萃取区12,所述第二传输1142管上设置有电控阀门,打开电控阀门反应完毕的物料沿所述第二传输管进入到所述溶剂萃取区12,进行萃取,可操控性强。
具体而言,所述气源进料管111设置在所述反应器侧壁且气源进料管111的出口与所述微界面发生器2相连,用以将空气或氧气输送至微界面发生器2。当混合反应区11运行时,气源进料管111会将空气或氧气输送至所述微界面发生器2,微界面发生器2会将空气或氧气破碎形成微米级气泡,将微米级气泡输出至反应器1内部并与异丙醇溶液进行混合。可以理解的是,所述气源进料管111的材质和尺寸本实施例均不做具体限制,只要满足所述气源进料管111能够在指定时间内输送指定体积的空气或氧气即可。
具体而言,所述物料传导部114包括缓冲室1141和第二传输管1142,混合物料在进入所述溶剂萃取区12过程中,混合物位于所述缓冲室1141内,缓冲室1141底部呈锥形,反应完毕的物料在自身重力作用下可汇集于所述缓冲室1141内,第二传输管1142与所述缓冲室1141相连,用以将反应器内物料在反应完毕后传输至溶剂萃取区12,所述第二传输1142管上设置有电控阀门,打开电控阀门反应完毕的物料沿所述第二传输管进入到所述溶剂萃取区12,进行萃取,可操控性强。
请继续参阅图1所示,本发明所述溶剂萃取区12位于所述反应器1下部,溶剂萃取区12,用以对反应完成后物料进行液液分离,所述溶剂萃取区12包括:萃取剂进料管121,其设置在所述反应器侧壁,用以将萃取剂输送至反应器内部;搅拌装置122,其设置在所述反应器内部,所述搅拌装置122包括驱动电机1221,其安装于所述反应器的内部,为动力输出设备;搅拌桨叶1222,其与所述驱动电机的输出端轴连接,通过所述电机工作,带动所述搅拌桨叶对萃取剂和混合物进行搅拌至混合物中的丙酮溶解于萃取剂中,进一步完善双氧水制备过程,使双 氧水制备效率更高。
当所述溶剂萃取区12运行时,萃取剂进料管会将萃取剂输送至所述反应器内,萃取剂与混合物接触,通过所述电机工作,带动所述搅拌桨叶对萃取剂和混合物进行搅拌至混合物中的丙酮溶解于萃取剂中,搅拌完毕后,对溶剂萃取区内混合物进行静置,静置一定时间后,混合物分层,一层为双氧水,另一层为溶解有丙酮的萃取剂,可以理解的是,搅拌时间和萃取时间本实施例均不做具体限制,只要满足萃取剂和混合物能够充分混合,静置后具有明显分层即可。
请继续参阅图1所示,本发明所述微界面发生器2设置在所述混合反应区11底部,用以破碎空气或氧气以形成微米级气泡。当反应器1运行时,所述微界面发生器2会对空气或氧气进行破碎以形成微米级气泡,并将微米级气泡与异丙醇溶液混合形成气液乳化物。
具体而言,本发明所述微界面发生器2为气动式微界面发生器,其与所述气源进料管111相连,用以对气源进料管111输送的空气或氧气进行破碎并形成微米尺度的微米级气泡。当所述反应器1在运行时,所述气源进料管111会将空气或氧气输送至所述微界面发生器2,微界面发生器2会将空气或氧气破碎并形成微米尺度的微米级气泡,破碎完成后,微界面发生器2会将微米级气泡输出至反应器1内部并与异丙醇溶液混合形成气液乳化物以充分反应。
请继续参阅图1所示,本发明所述回收器3包括第一传输管31、循环泵32和冷凝箱33。其中所述第一传输管一端与所述反应器相连,另一端与异丙醇进料口相连,用以对反应器输出的未反应完的异丙醇气体,循环泵安装在所述传输管上,用以输出反应器中未反应完的异丙醇气体,冷凝箱位于所述传输管外部,用以对传输管内的异丙醇气体进行冷凝至异丙醇气体转化为异丙醇液体,当所述反应器1中物料进行反应的过程中,所述循环泵32开始运作并将未反应完毕的异丙醇气体沿所述第一传输管抽出,异丙醇气体在所述第一传输管内运动过程中,途径所述冷凝箱33,所述冷凝箱33对所述第一传输管内的异丙醇气体进行冷却,所述冷凝箱内通有循环冷却水,所述第一传输管内的异丙醇气体经所述冷凝箱后被冷却成异丙醇液体,回流至反应器内,此过程使原料循环成为闭环循环,原料异丙醇可等到重复利用,利用率高同时有效避免原料异丙醇浪费。可以理解的是,所述循环泵32的型号及功率本实施例均不作具体限制,只要满足循环泵32能够 达到其指定的工作状态即可。
具体而言,所述第一传输管一端与所述反应器相连,另一端与异丙醇进料口相连,所述异丙醇进料口112设置在所述反应器1侧壁,所述异丙醇进料口112的进口端包括两个分支进口,其中一个分支进口用于输送新注入的异丙醇溶液,另一个分支进口与第一传输管相连,用以向反应器1输送回收的异丙醇溶液,用以对反应器输出的未反应完的异丙醇气体,循环泵安装在所述传输管上,用以输出反应器中未反应完的异丙醇气体,冷凝箱位于所述传输管外部,用以对传输管内的异丙醇气体进行冷凝至异丙醇气体转化为异丙醇液体,当所述反应器1中物料进行反应的过程中,所述循环泵32开始运作并将未反应完毕的异丙醇气体沿所述第一传输管抽出,异丙醇气体在所述第一传输管内运动过程中,途径所述冷凝箱33,所述冷凝箱33对所述第一传输管内的异丙醇气体进行冷却,所述冷凝箱内通有循环冷却水,所述第一传输管内的异丙醇气体经所述冷凝箱后被冷却成异丙醇液体,回流至反应器内,位于所述冷凝箱内部的传输管部分为连续弯折形,延长异丙醇在所述冷凝箱内的时间,从而使所述第一传输管内的异丙醇得到充分冷却,异丙醇更加充分的由气态转化为液态。
为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
一种基于异丙醇法制备双氧水的系统的工艺,包括以下步骤:
步骤1:通过所述异丙醇进料口向反应器内输送异丙醇溶液,并通过所述引发剂进料口向反应器内输送引发剂;
步骤2:通过所述气源进料管向反应器内输送空气或氧气,气源进料管会将空气或氧气输送至所述微界面发生器,微界面发生器对空气或氧气进行破碎,形成微米尺度的微米级气泡,破碎完成后,微界面发生器将微米级气泡输出至反应器内并与异丙醇溶液在所述混合反应区混合形成气液乳化物;
步骤3:气液乳化物在引发剂的作用下发生反应,生成双氧水和丙酮混合物,反应完成后,混合物向下流动进入所述溶剂萃取区,未反应完的异丙醇气体通过所述循环泵工作,在所述第一传输管被传输,途径所述冷凝箱,被冷凝为异丙醇液体,由所述异丙醇进料口再次进入到所述反应器中重复参与反应;
步骤4:混合物进入所述溶剂萃取区后,通过所述萃取剂进料管向反应器内输送萃取剂,通过所述搅拌装置工作,对混合物进行搅拌,丙酮溶解于萃取剂中,双氧水与萃取剂分离,搅拌完毕后混合物通过静置后分层,通过所述出料口分别输出双氧水和萃取液;
步骤5:对萃取液进行分馏分离,得到丙酮。
其中,所述引发剂选用过氧化苯甲酰。可以理解的是,可以根据不同的产品要求或不同的引发剂,而灵活地进行预设操作条件的范围调整,以确保反应的充分有效进行,进而保证反应速率,达到了强化反应的目的。同时,本实施例中不具体限定引发剂的种类,只要能够确保强化反应顺利进行即可。
实施例1
使用上述系统及工艺进行异丙烯氧化制备双氧水,其中:
所述工艺中反应器内的反应温度为80℃,反应压强为1atm,空气流速为2.5ml/s。
所述微界面发生器内的气液比为800:1。
引发剂与异丙烯溶液重量比4:100
经检测,使用所述系统及工艺后,H 2O 2的转化率为57.5%,丙酮的转化率为40.2%。
反应时间为15h。
实施例2
使用上述系统及工艺进行异丙烯氧化制备双氧水,其中:
所述工艺中反应器内的反应温度为81℃,反应压强为1atm,空气流速为3.0ml/s。
所述微界面发生器内的气液比为900:1。
引发剂与异丙烯溶液重量比4.5:100
经检测,使用所述系统及工艺后,H 2O 2的转化率为57.0%,丙酮的转化率为40.1%。
反应时间为15h。
实施例3
使用上述系统及工艺进行异丙烯氧化制备双氧水,其中:
所述工艺中反应器内的反应温度为82℃,反应压强为1atm,空气流速为3.0ml/s。
所述微界面发生器内的气液比为1000:1。
引发剂与异丙烯溶液重量比5:100
经检测,使用所述系统及工艺后,H 2O 2的转化率为57.1%,丙酮的转化率为39.6%。
反应时间为15h。
实施例4
使用上述系统及工艺进行异丙烯氧化制备双氧水,其中:
所述工艺中反应器内的反应温度为83℃,反应压强为1atm,空气流速为3.5ml/s。
所述微界面发生器内的气液比为800:1。
引发剂与异丙烯溶液重量比6:100
经检测,使用所述系统及工艺后,H 2O 2的转化率为57.8%,丙酮的转化率为41.2%。
反应时间为14.5h。
实施例5
使用上述系统及工艺进行异丙烯氧化制备双氧水,其中:
所述工艺中反应器内的反应温度为84℃,反应压强为1atm,氧气流速为1.5ml/s。
所述微界面发生器内的气液比为900:1。
引发剂与异丙烯溶液重量比4:100
经检测,使用所述系统及工艺后,H 2O 2的转化率为56.4%,丙酮的转化率为41.2%。
反应时间为15h。
实施例6
使用上述系统及工艺进行异丙烯氧化制备双氧水,其中:
所述工艺中反应器内的反应温度为85℃,反应压强为1atm,氧气流速为1.2ml/s。
所述微界面发生器内的气液比为1000:1。
引发剂与异丙烯溶液重量比6:100
经检测,使用所述系统及工艺后,H 2O 2的转化率为57.0%,丙酮的转化率为41.5%。
反应时间为15h。
对比例
使用现有技术进行丙异烯氧化制备双氧水,其中,本实施例选用的工艺参数与所述实施例6中的工艺参数相同。
经检测,使用所述系统及工艺后,H 2O 2的转化率为42.6%,丙酮的转化率为30.4%。
反应时间为36h。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于异丙醇法制备双氧水的系统,其特征在于,包括:
    反应器,用以为空气体或氧气与异丙醇溶液提供反应场所,所述反应器包括:设置在上方,用以装载空气或氧气、异丙醇溶液和引发剂并为空气或氧气和异丙醇溶液提供反应空间的混合反应区以及设置在下方,用以对反应完成后物料进行输送和液液分离的溶剂萃取区;
    微界面发生器,其设置在所述混合反应区内的指定位置,将气体的压力能和/或液体的动能转变为气泡表面能并传递给空气或氧气,使空气或氧气破碎形成直径≥1μm、且<1mm的微米级气泡以提高异丙醇溶液与空气或氧气间的传质面积,减小液膜厚度,降低传质阻力,并在破碎后将异丙醇溶液与微米级气泡混合形成气液乳化物,以在预设操作条件范围内强化异丙醇溶液与空气或氧气间的传质效率和反应效率;
    回收器,其设置在所述反应器顶部,用以对反应器输出的未反应完的异丙醇气体进行冷凝并在冷凝后回流至反应器内以对反应原料异丙醇进行回收并重复利用。
  2. 根据权利要求1所述的一种基于异丙醇法制备双氧水的系统,其特征在于,所述微界面发生器为气动式微界面发生器,所述微界面发生器设置在所述混合反应区内并位于反应区底部,用以将空气或氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至反应器、并与反应器内的异丙醇溶液混合形成气液乳化物。
  3. 根据权利要求1所述的一种基于异丙醇法制备双氧水的系统,其特征在于,所述混合反应区包括:
    气源进料管,其设置在所述反应器侧壁且与所述微界面发生器相连,用以将空气或氧气输送至微界面发生器以使微界面发生器对空气或氧气进行破碎;
    异丙醇进料口,其设置在所述反应器侧壁并位于所述气源进料管上方,用以将异丙醇溶液输送至反应器内部;
    引发剂进料口,其设置在所述反应器侧壁并位于所述异丙醇进料口上方,用以将引发剂输送至反应器内部;
    物料传导部,其设置在所述反应器内部,用以将反应器内物料在反应完毕后导出至溶剂萃取区。
  4. 根据权利要求1所述的一种基于异丙醇法制备双氧水的系统,其特征在于,所述溶剂萃取区包括:
    萃取剂进料管,其设置在所述反应器侧壁,用以将萃取剂输送至反应器内部;
    搅拌装置,其设置在所述反应器内部,用于对萃取液进行充分搅拌;
    出料口,其设置在所述反应器底端,用以将萃取完毕的物料输出。
  5. 根据权利要求1所述的一种基于异丙醇法制备双氧水的系统,其特征在于,所述回收器包括:
    第一传输管,其一端与所述反应器相连,另一端与异丙醇进料口相连,用以对反应器输出的未反应完的异丙醇气体;
    循环泵,其与安装在所述传输管上,用以输出反应器中未反应完的异丙醇气体;
    冷凝箱,其与位于所述传输管外部,用以对传输管内的异丙醇气体进行冷凝至异丙醇气体转化为异丙醇液体。
  6. 根据权利要求3所述的一种基于异丙醇法制备双氧水的系统,其特征在于,所述物料传导部包括:
    缓冲室,其位于所述反应器内,底部呈锥形,用于储存反应器中反应完毕的物料;
    第二传输管,其与所述缓冲室相连,用以将反应器内物料在反应完毕后传输至溶剂萃取区。
  7. 根据权利要求4所述的一种基于异丙醇法制备双氧水的工艺,其特征在于,所述搅拌装置包括:
    驱动电机,其安装于所述反应器的内部,为动力输出设备;
    搅拌桨叶,其与所述驱动电机的输出端轴连接,用以对萃取剂和混合物进行搅拌至混合物中的丙酮溶解于萃取剂中。
  8. 根据权利要求5所述的一种基于异丙醇法制备双氧水的系统,其特征在于,位于所述冷凝箱内部的传输管部分为连续弯折形。
  9. 一种基于异丙醇法制备双氧水的工艺,其特征在于,包括:
    步骤1:通过所述异丙醇进料口向反应器内输送异丙醇溶液,并通过所述引发剂进料口向反应器内输送引发剂;
    步骤2:通过所述气源进料管向反应器内输送空气或氧气,气源进料管会将空气或氧气输送至所述微界面发生器,微界面发生器对空气或氧气进行破碎,形成微米尺度的微米级气泡,破碎完成后,微界面发生器将微米级气泡输出至反应器内并与异丙醇溶液在所述混合反应区混合形成气液乳化物;
    步骤3:气液乳化物在引发剂的作用下发生反应,生成双氧水和丙酮混合物,反应完成后,混合物向下流动进入所述溶剂萃取区,未反应完的异丙醇气体通过所述循环泵工作,在所述第一传输管被传输,途径所述冷凝箱,被冷凝为异丙醇液体,由所述异丙醇进料口再次进入到所述反应器中重复参与反应;
    步骤4:混合物进入所述溶剂萃取区后,通过所述萃取剂进料管向反应器内输送萃取剂,通过所述搅拌装置工作,对混合物进行搅拌,丙酮溶解于萃取剂中,双氧水与萃取剂分离,搅拌完毕后混合物通过静置后分层,通过所述出料口分别输出双氧水和萃取液;
    步骤5:对萃取液进行分馏分离,得到丙酮。
  10. 根据权利要求9所述的一种基于异丙醇法制备双氧水的工艺,其特征在于,所述工艺中反应器内的反应温度为80-85℃,反应压力为1atm。
PCT/CN2019/120197 2019-09-14 2019-11-22 一种基于异丙醇法制备双氧水的系统及工艺 WO2021047057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910867794.4 2019-09-14
CN201910867794.4A CN112499597A (zh) 2019-09-14 2019-09-14 一种基于异丙醇法制备双氧水的系统及工艺

Publications (1)

Publication Number Publication Date
WO2021047057A1 true WO2021047057A1 (zh) 2021-03-18

Family

ID=74865647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120197 WO2021047057A1 (zh) 2019-09-14 2019-11-22 一种基于异丙醇法制备双氧水的系统及工艺

Country Status (2)

Country Link
CN (1) CN112499597A (zh)
WO (1) WO2021047057A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387332A (zh) * 2021-07-16 2021-09-14 南京延长反应技术研究院有限公司 一种制备双氧水的微界面氧化系统以及氧化方法
CN115259099B (zh) * 2022-06-13 2023-05-19 四川大学 一种制备h2o2的光化学合成法
CN115417432B (zh) * 2022-10-14 2023-07-28 天津渤化工程有限公司 一种重灰生产工艺系统及其生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1318525A (en) * 1969-10-22 1973-05-31 Burmah Oil Trading Ltd Production of hydrogen peroxide
CN104557468A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 一种苯酚羟基化的方法
CN105170049A (zh) * 2015-09-11 2015-12-23 中国石油化工股份有限公司 利用微通道反应器制备过氧化氢的方法
CN105985272A (zh) * 2015-03-06 2016-10-05 中国石油化工股份有限公司 一种硫醚氧化方法
CN106430108A (zh) * 2016-10-10 2017-02-22 中国石油大学(北京) 一种超重力条件下利用蒽醌法制备过氧化氢的系统及方法
CN110002993A (zh) * 2019-04-19 2019-07-12 南京大学 一种间氰甲基苯甲酸甲酯的合成系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1318525A (en) * 1969-10-22 1973-05-31 Burmah Oil Trading Ltd Production of hydrogen peroxide
CN104557468A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 一种苯酚羟基化的方法
CN105985272A (zh) * 2015-03-06 2016-10-05 中国石油化工股份有限公司 一种硫醚氧化方法
CN105170049A (zh) * 2015-09-11 2015-12-23 中国石油化工股份有限公司 利用微通道反应器制备过氧化氢的方法
CN106430108A (zh) * 2016-10-10 2017-02-22 中国石油大学(北京) 一种超重力条件下利用蒽醌法制备过氧化氢的系统及方法
CN110002993A (zh) * 2019-04-19 2019-07-12 南京大学 一种间氰甲基苯甲酸甲酯的合成系统及方法

Also Published As

Publication number Publication date
CN112499597A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2021047057A1 (zh) 一种基于异丙醇法制备双氧水的系统及工艺
CN210045215U (zh) 低压气液强化乳化床反应装置
US6838061B1 (en) Reactor for carrying out gas-liquid, liquid, liquid-liquid or gas-liquid-solid chemical reactions
CN206184414U (zh) 一种撞击流混合反应器
WO2022041426A1 (zh) 一种环状碳酸酯的微界面制备系统及方法
CN101274249B (zh) 新型液液多相反应器
CN111359547A (zh) 一种油煤共加氢微界面强化乳化床反应系统
CN111961026A (zh) 一种环状碳酸酯的强化微界面制备系统及方法
CN106237966A (zh) 用于甲苯类物质氧化生产芳香醛的反应器
WO2021047044A1 (zh) 一种基于蒽醌法制备双氧水的系统及工艺
CN206184413U (zh) 一种撞击流混合反应器
CN111686665A (zh) 一种微界面强化反应系统
CN203002341U (zh) 新型高效气-液-固三相混合自吸式搅拌机
CN111686654A (zh) 一种煤焦油加氢微界面乳化床强化反应系统
WO2020155505A1 (zh) 低压气液强化乳化床反应装置及方法
CN213528594U (zh) 一种连续化制备过氧化物并连续应用于氧化反应的装置
CN109603720A (zh) 超重力氧化反应器装置及应用
CN100368380C (zh) 制备3,3’-二氯联苯胺盐酸盐工艺
US20200254405A1 (en) Solid-gas-liquid (sgl) reactor for leaching polymetal minerals and/or concentrates based on lead, copper, zinc, iron and/or the mixtures thereof
CN212127521U (zh) 一种基于异丙醇法制备双氧水的系统
CN1800161B (zh) 一种用于连续生产过氧化甲乙酮的方法和微反应装置
CN112169720A (zh) 一种纳微界面强化反应系统
CN108299177A (zh) 一种2-甲基-1,4-萘醌的全连续流合成工艺
CN104562082B (zh) 一种废铜溶解制备含铜溶液的方法
CN2455353Y (zh) 浸没循环撞击流反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945284

Country of ref document: EP

Kind code of ref document: A1