WO2021046979A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2021046979A1
WO2021046979A1 PCT/CN2019/113050 CN2019113050W WO2021046979A1 WO 2021046979 A1 WO2021046979 A1 WO 2021046979A1 CN 2019113050 W CN2019113050 W CN 2019113050W WO 2021046979 A1 WO2021046979 A1 WO 2021046979A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air
energy storage
air duct
joint
Prior art date
Application number
PCT/CN2019/113050
Other languages
English (en)
French (fr)
Inventor
卢绍章
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910860429.0A external-priority patent/CN112556013A/zh
Priority claimed from CN201921527213.4U external-priority patent/CN210688499U/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021046979A1 publication Critical patent/WO2021046979A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0323Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater

Definitions

  • This application relates to the technical field of air conditioners, in particular to an air conditioner.
  • the mobile air conditioner in the process of lowering the ambient temperature, along with the heat discharge, the heat is usually discharged to the outside by the exhaust pipe. Therefore, due to the limitation of the exhaust pipe, the mobile air conditioner has a limited range of movement and cannot be moved arbitrarily. .
  • This application aims to solve at least one of the technical problems existing in the prior art. For this reason, this application is to propose an air conditioner, which is not restricted by the exhaust duct.
  • the air conditioner includes: a compressor system, the compressor system includes a first heat exchanger, a second heat exchanger, a compressor, and a throttling device, which are cyclically connected, in the compressor system Circulating refrigerant; a liquid pump system, the liquid pump system includes a third heat exchanger, an energy storage device, and a liquid pump device that are circulated in communication, the liquid pump system circulates a refrigerant carrier, and the energy storage device It includes an energy storage medium that takes energy from the second heat exchanger and stores energy, and the refrigerant exchanges heat with the energy storage medium, wherein the liquid pump device includes a first pump body and a gas-liquid separator, The gas-liquid separator includes an inlet, a gas outlet, and a liquid outlet.
  • the inlet of the first pump body is connected to the liquid outlet.
  • the outlets of the first pump body and the inlet of the gas-liquid separator One is connected to the third heat exchanger, and the other of the outlet of the first pump body and the inlet of the gas-liquid separator is connected to the energy storage device.
  • the air conditioner of the embodiment of the present application when the liquid pump system sends cold to the environment through the third heat exchanger, since the refrigerant and the energy storage medium exchange heat to release heat to the energy storage medium, the liquid pump system does not It will emit heat to the environment, so that the air conditioner can omit the exhaust pipe used for the hot air of the liquid pump system, so that the installation position of the air conditioner is not restricted and can be moved arbitrarily.
  • the liquid pump device further includes a first pipeline, and two ends of the first pipeline are a first end and a second end, respectively, and the first end and the first pump The body is connected with a first joint provided with the inlet, the second end is connected with the liquid outlet, and the first end is connected with the first joint by welding.
  • the length of the first joint is not less than 25 mm.
  • the liquid pump device further includes a first pipeline and a first connection joint.
  • the two ends of the first pipeline are a first end and a second end, respectively, and the first end is connected to the
  • the first connector of the first pump body is connected with the first joint provided with the inlet, the second end is connected with the liquid outlet, and the inner peripheral wall of the first end is formed as a first mating inclined surface.
  • the first mating inclined surface extends obliquely in a direction away from the central axis of the first pipeline
  • a second mating inclined surface is provided on the outer peripheral wall of the first joint
  • the outer periphery of the first joint The wall is provided with a first thread
  • the first thread is located on the side of the second mating inclined surface away from the first end
  • the inner peripheral wall of the first connecting joint is provided with a second thread.
  • a connecting joint is sheathed on the outer peripheral wall of the first end, the second thread is matched with the first thread, and the second matching inclined surface abuts against the first matching inclined surface.
  • the liquid pump device further includes a second pipeline. Two ends of the second pipeline are a third end and a fourth end, respectively. The third end is connected to the first pump.
  • the second joint provided with the outlet of the body is connected, the fourth end is connected to the third heat exchanger or the energy storage device, and the third end is connected to the second joint by welding.
  • the length of the second joint is not less than 25 mm.
  • the liquid pump device further includes a second pipeline and a second connection joint.
  • the two ends of the second pipeline are respectively a third end and a fourth end, and the third end is connected to the The second joint of the first pump body provided with the outlet is connected, the fourth end is connected to the third heat exchanger or the energy storage device, and the inner peripheral wall of the third end is formed as a third The mating slope, in the direction approaching the second joint, the third mating slope extends obliquely away from the central axis of the second pipeline, and a fourth mating slope is provided on the outer peripheral wall of the second joint ,
  • the outer peripheral wall of the second joint is provided with a third thread, the third thread is located on the side of the fourth mating inclined surface away from the third end, and the inner peripheral wall of the second connecting joint is provided with A fourth thread, the second connecting joint is sheathed on the outer peripheral wall of the third end, the fourth thread is matched with the third thread, and the fourth mating inclined surface abuts against the
  • the air conditioner further includes a casing having a first air duct and a second air duct that are independent of each other, and the casing is formed with a first air duct and a second air duct.
  • the first air inlet and the first air outlet are connected, the casing is also formed with a second air inlet and a second air outlet communicating with the second air duct, and the third heat exchanger is arranged on the The first air duct, the first heat exchanger is arranged in the second air duct.
  • the casing has a first layer space, a second layer space, and a third layer space arranged in order from top to bottom, and the first air duct is formed on the first layer.
  • the gas-liquid separator is located in the first layer of space
  • the second air duct is formed in the second layer of space
  • the first pump body is located in the second layer of space
  • the second heat exchanger and the energy storage device are arranged in the third layer of space.
  • an air duct member is provided in the first layer of space, the air duct member defines the first air duct, and the gas-liquid separator is detachably arranged in the air duct On the outer surface of the piece.
  • the outer surface of the air duct member is provided with a positioning ring and a buckle part spaced in the up and down direction, the positioning ring is sheathed on the upper end of the gas-liquid separator, and the clamp
  • the buckle includes two oppositely arranged elastic hooks, and the lower end of the gas-liquid separator is clamped between the two elastic hooks.
  • the level of the lowest point of the inlet is not lower than the level of the top of the third heat exchanger.
  • the air duct member defines a accommodating cavity and a rectifying cavity that communicate with each other, an air duct inlet communicating with the accommodating cavity is formed on the air duct member, and the rectifying cavity is far away A slit-shaped air duct outlet is formed on the wall at one end of the accommodating cavity, and a first ventilation device is provided in the accommodating cavity.
  • the air conditioner further includes a moving part and an intelligent control module, the moving part is arranged at the bottom of the housing, and the intelligent control module is connected to the moving part for controlling the movement. Component movement.
  • the energy storage device includes: a box body having the energy storage medium, the second heat exchanger is arranged in the energy storage medium, and the energy storage medium Take energy from the second heat exchanger and store energy; a fourth heat exchanger, the fourth heat exchanger is arranged in the energy storage medium to take energy from the energy storage medium, the liquid pump A device is connected between the third heat exchanger and the fourth heat exchanger, so that the refrigerant is circulated between the third heat exchanger and the fourth heat exchanger.
  • Fig. 1 is a system schematic diagram of an air conditioner according to an embodiment of the present application
  • Fig. 2 is a system schematic diagram of an air conditioner according to another embodiment of the present application.
  • Figure 3 is a front view of an air conditioner according to an embodiment of the present application.
  • Figure 4 is a left side view of the air conditioner shown in Figure 3;
  • Figure 5 is a cross-sectional view taken along line A-A in Figure 4.
  • Figure 6 is a rear view of the air conditioner shown in Figure 3;
  • FIG 7 is an internal structure diagram of the air conditioner shown in Figure 3;
  • Figure 8 is a left side view of the internal structure of the air conditioner shown in Figure 7;
  • Figure 9 is a rear view of the internal structure of the air conditioner shown in Figure 6;
  • Figure 10 is a left side view of an air conditioner according to another embodiment of the present application.
  • Figure 11 is a perspective view of the internal structure of the air conditioner shown in Figure 7;
  • FIG. 12 is a perspective view of the internal structure of the air conditioner shown in FIG. 7, and the third heat exchanger and the first ventilation device are not shown in the figure;
  • Figure 13 is an exploded view of the air conditioner shown in Figure 12;
  • Fig. 14 is a partial structural diagram of an air conditioner according to an embodiment of the present application.
  • FIG. 15 is an enlarged view of P shown in FIG. 14;
  • Fig. 16 is a partial structural diagram of an air conditioner according to an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a first pump body according to an embodiment of the present application.
  • FIG. 18 is a schematic cross-sectional view of the first pump body and part of the first pipeline after being connected according to an embodiment of the present application;
  • 19 is a schematic cross-sectional view of the first pump body and part of the first pipeline after being connected according to another embodiment of the present application;
  • 20 is a schematic cross-sectional view of the first pump body and part of the second pipeline after being connected according to an embodiment of the present application;
  • Fig. 21 is a partial structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 22 is a cross-sectional view according to Fig. 21.
  • Air conditioner 100
  • Compressor system 3 single cooling system 3a; heat pump system 3b;
  • Liquid pump system 4 third heat exchanger 41;
  • Liquid pump device 43 first pump body 431; inlet 431a; outlet 431b; first connector 4311; second mating slope 43111; first thread 43112; second connector 4312; fourth mating slope 43121; third thread 43122; Liquid separator 432; inlet 432a; liquid outlet 432b; gas outlet 432c; first pipe 433; first end 433a; second end 433b; second pipe 434; third end 434a; fourth end 434b; first Connecting joint 435; second thread 4351; second connecting joint 436; fourth thread 4361; third pipeline 437;
  • the first hoarding 512 The first hoarding 512
  • the air conditioner 100 may include a compressor system 3 and a liquid pump system 4.
  • the compressor system 3 may include a first heat exchanger 31, a second heat exchanger 32, a compressor 33, and a throttling device 34 that are cyclically connected, and a refrigerant 3a is circulated in the compressor system 3.
  • the compressor system 3 can be a single cooling system 3c (as shown in Fig. 1) or a heat pump system 3b (as shown in Fig. 2).
  • the compressor system 3 when the compressor system 3 is a heat pump system 3 b, the compressor system 3 may further include a four-way valve 35.
  • the outlet of the compressor 33 communicates with the inlet of the first heat exchanger 31, and the outlet of the first heat exchanger 31 communicates with the inlet of the throttling device 34 ,
  • the outlet of the throttling device 34 communicates with the inlet of the second heat exchanger 32, and the outlet of the second heat exchanger 32 communicates with the inlet of the compressor 33.
  • the first heat exchanger 31 is a condenser that exchanges heat with the environment.
  • the second heat exchanger 32 exchanges heat between the evaporator and the environment to achieve heat absorption (ie, release cold).
  • the refrigerant 3a in the compressor system 3 circulates through the compressor 33, the first heat exchanger 31 (ie condenser), the throttling device 34, and the second heat exchanger 32 (ie Evaporator) to realize the refrigeration cycle.
  • the liquid pump system 4 may include a third heat exchanger 41, an energy storage device 42, and a liquid pump device 43 that are cyclically connected.
  • the liquid pump system 4 circulates a refrigerant 4b, that is, the liquid pump device 43.
  • the liquid pump device 43 Connected between the third heat exchanger 41 and the energy storage device 42, the liquid pump device 43 causes the refrigerant 4b to circulate between the third heat exchanger 41 and the energy storage device 42, in other words, the liquid pump device 43, the second The third heat exchanger 41 and the energy storage device 42 form a circulation loop.
  • the refrigerant 4b in the third heat exchanger 41 can flow to the energy storage device 42, and the carrier in the energy storage device 42
  • the refrigerant 4b flows back to the third heat exchanger 41, and circulates accordingly.
  • the energy storage device 42 also includes an energy storage medium 4a that takes and stores energy from the second heat exchanger 32, that is, when the compressor system 3 is a single-cooling system 3c or a heat pump system 3b and executes In the cooling mode, the second heat exchanger 32 releases cold energy to the energy storage medium 4a, and the energy storage medium 4a absorbs the cold energy from the second heat exchanger 32 and stores the cold energy; and when the compressor system 3 is a heat pump system 3b and executes In the heating mode, the second heat exchanger 32 releases heat to the energy storage medium 4a, and the energy storage medium 4a absorbs heat from the second heat exchanger 32 and stores the heat.
  • an energy storage medium 4a that takes and stores energy from the second heat exchanger 32, that is, when the compressor system 3 is a single-cooling system 3c or a heat pump system 3b and executes In the cooling mode, the second heat exchanger 32 releases cold energy to the energy storage medium 4a, and the energy storage medium 4a absorbs heat from the second heat exchanger 32 and stores the
  • the refrigerant 4b exchanges heat with the energy storage medium 4a, that is, the energy (ie heat or cold) that the energy storage medium 4a obtains and stores from the second heat exchanger 32 can be heat exchanged to
  • the refrigerant 4b is carried and transported by the refrigerant 4b, so that when the liquid pump system 4 is working, the refrigerant 4b can transfer the energy in the energy storage medium 4a and release it to the In the environment, thereby changing the ambient temperature.
  • the refrigerant 4b absorbs the cold energy from the energy storage medium 4a and transfers it to be released into the environment through the third heat exchanger 41, thereby reducing the environmental temperature.
  • the refrigerant 4b absorbs heat from the energy storage medium 4a and transfers it to be released into the environment through the third heat exchanger 41, thereby increasing the ambient temperature.
  • the refrigerant 4b exchanges heat with the energy storage medium 4a to transfer heat to the energy storage medium. 4a releases heat, so that the liquid pump system 4 does not emit heat to the environment, so that the air conditioner 100 can omit the exhaust pipe used for the liquid pump system 4 to exhaust hot air, so that the installation position of the air conditioner 100 is not limited, Move freely.
  • the compressor system 3 in the air conditioner 100 can make ice on the energy storage medium 4a like the refrigeration system in the refrigerator, and the liquid pump system 4 can replace the mobile air conditioner in the related technology.
  • the refrigeration system can use the energy storage medium 4a to take cold from the second heat exchanger 32 in the compressor system 3 and store it, and release the cold into the environment through the refrigerant 4b and the third heat exchanger 41, thereby Reduce the ambient temperature.
  • the liquid pump system 4 is compared with the refrigeration system in the mobile air conditioner in the related art.
  • the exhaust pipe for exhausting the hot air of the liquid pump system 4 can be omitted, so that the air conditioner 100 can be moved arbitrarily, with a wide range of usage scenarios without restriction.
  • the compressor system 3 and the liquid pump system 4 may work at the same time or at different times.
  • the compressor system 3 can be operated first, so that the energy storage device 42 can store energy from the second heat exchanger 32, and then the compressor system 3 can be shut down to reduce energy consumption and noise.
  • the liquid pump system 4 can be turned on to use the energy stored in the energy storage device 42 to make the third heat exchanger 41 exchange heat with the environment, thereby adjusting the ambient temperature.
  • the air conditioner 100 can use the compressor system 3 to store energy while also using the liquid pump system 4 to discharge energy, thereby improving the endurance of the air conditioner 100.
  • the refrigerant 4b in the liquid pump system 4 exchanges cooling capacity with the environment on the one hand, and exchanges heat with the energy storage medium 4a on the other hand, indicating that the refrigerant 4b will not be concentrated. Discharge heat to the environment, and during the working process of the liquid pump system 4, the compressor system 3 may not work, so the compressor system 3 may not discharge heat to the environment.
  • the air conditioner 100 when the air conditioner 100 lowers the ambient temperature, since the heat can be discharged to the environment without accompanying heat, the reliability of the liquid pump system 4 in lowering the ambient temperature can be ensured, and the air conditioner 100 can also be omitted for the liquid pump system 4 An exhaust duct for discharging hot air, so that the air conditioner 100 can be placed in any position.
  • the air conditioner 100 may also include a roller device 6 (for example, as shown in FIG. 3), so that the air conditioner 100 can be freely Mobile, wide range of usage scenarios, unlimited.
  • the application is not limited to this, and the air conditioner 100 is not limited to a mobile air conditioner.
  • the energy storage device 42 according to some embodiments of the present application is described.
  • the energy storage device 42 according to the embodiment of the present application may be of various types. Two specific embodiments will be used as examples to introduce the energy storage device 42 according to the embodiment of the present application. However, the energy storage device 42 of the embodiment of the present application 42 is not limited to the following two embodiments.
  • the energy storage device 42 may include a box body 421 and a fourth heat exchanger 422.
  • the box body 421 has an energy storage medium 4a
  • the second heat exchanger 32 is arranged in the storage device.
  • the energy storage medium 4a takes energy from the second heat exchanger 32 and stores energy
  • the fourth heat exchanger 422 is provided in the energy storage medium 4a to take energy from the energy storage medium 4a
  • the liquid pump device 43 is connected to Between the third heat exchanger 41 and the fourth heat exchanger 422, so that the refrigerant 4b circulates between the third heat exchanger 41 and the fourth heat exchanger 422.
  • the compressor system 3 and the liquid pump system 4 do not work at the same time.
  • the compressor system 3 can work first.
  • the second heat exchanger 32 can release heat or cold to the energy storage medium 4a in the tank 421 to change the temperature of the energy storage medium 4a and store energy, and then it can be turned off. Compressor system 3 to save power and reduce noise.
  • the liquid pump device 43 can be turned on to make the liquid pump system 4 work.
  • the refrigerant 4b in the fourth heat exchanger 422 absorbs energy from the energy storage medium 4a and is transported under the action of the liquid pump device 43.
  • the refrigerant 4b After the heat exchange in the third heat exchanger 41, and then in the liquid pump Under the action of the device 43, it is transported back to the fourth heat exchanger 422 to continue to extract energy from the energy storage medium 4a. Repeated cycles can gradually take out the energy in the energy storage medium 4a and release it into the environment, thereby adjusting the ambient temperature.
  • the second heat exchanger 32 in the compressor system 3 can release heat or cold to the energy storage medium 4a in the tank 421, so as to change the temperature of the energy storage medium 4a and store energy.
  • the fourth heat exchanger 422 The refrigerant 4b in the medium absorbs energy from the energy storage medium 4a, and is transported to the third heat exchanger 41 under the action of the liquid pump device 43, so that the third heat exchanger 41 exchanges heat with the environment (that is, releases cold or releases heat).
  • the refrigerant 4b which has exchanged heat in the third heat exchanger 41, is transported back to the fourth heat exchanger 422 under the action of the liquid pump device 43, and continues to extract energy from the energy storage medium 4a, repeating the cycle .
  • the energy in the energy storage medium 4a can be gradually taken out and released into the environment, thereby adjusting the ambient temperature, so that when the compressor system 3 and the liquid pump system 4 work at the same time, the energy storage medium 4a can discharge energy while storing energy , Thereby improving the endurance of the air conditioner 100.
  • the specific type of the energy storage medium 4a is not limited, for example, it can be water, etc.
  • the water can freeze.
  • the cold capacity is stored locally, and the cost is low, and the effect of cold storage and cold extraction is good.
  • the specific type of the refrigerant 4b circulating in the liquid pump system 4 is not limited.
  • it may be an alcohol solution.
  • methanol, ethylene glycol, glycerol or low-carbon alcohol hydrates, etc. which can improve the effect of cooling and cooling.
  • the specifics of the energy storage medium 4a and the refrigerant 4b are not limited, as long as the freezing point of the refrigerant 4b is lower than the cold storage temperature of the energy storage medium 4a to ensure that the refrigerant 4b does not freeze and can circulate and flow.
  • the materials of the energy storage medium 4a and the refrigerant 4b can also be specifically selected according to actual requirements, which is not limited here.
  • the energy storage device 42 may not include the fourth heat exchanger 422, and the second heat exchanger 32 may not be provided in the box 421.
  • the energy storage device 42 may include a pipeline 423 in which the refrigerant 4b circulates.
  • the pipeline 423 may be provided inside or outside the tank 421 to exchange heat with the energy storage medium 4a.
  • the second heat exchanger 32 is arranged outside the box body 421 and close to or in contact with the box body 421 to exchange heat with the energy storage medium 4a. Therefore, the normal operation of the liquid pump system 4 can also be realized, which will not be repeated here.
  • the following only takes the liquid pump system 4 for lowering the ambient temperature as an example. After reading the following technical solutions, those skilled in the art can obviously understand the technical solution for the liquid pump system 4 for increasing the ambient temperature. .
  • liquid pump device 43 according to some embodiments of the present application will be described.
  • the liquid pump device 43 includes a first pump body 431 and a gas-liquid separator 432.
  • the gas-liquid separator 432 includes an inlet 432a, a gas outlet 432c, and a liquid outlet 432b.
  • the inlet 431a of the first pump body 431 is connected to the liquid outlet 432b, and the outlet 431b of the first pump body 431 and the inlet 432a of the gas-liquid separator 432 One of them is connected to the third heat exchanger 41, and the other of the outlet 431b of the first pump body 431 and the inlet 432a of the gas-liquid separator 432 is connected to the energy storage device 42.
  • the inlet 431a of the first pump body 431 is connected to the liquid outlet 432b.
  • the outlet 431b of the first pump body 431 is connected to the energy storage device 42, so that the first pump The body 431 drives the refrigerant 4b to flow from the third heat exchanger 41 through the inlet 432a to the gas-liquid separator 432. Since the refrigerant 4b is mixed with gas such as air, the refrigerant 4b mixed with the gas flows in the gas-liquid separator. Gas-liquid separation is achieved in 432 to separate gas and liquid refrigerant 4b.
  • the separated gas can be discharged from the gas outlet 432c, and the separated liquid refrigerant 4b can flow out of the gas-liquid separator 432 through the liquid outlet 432b and further Flow to the first pump body 431 and then to the energy storage device 42; or, the inlet 431a of the first pump body 431 is connected to the liquid outlet 432b, when the inlet 432a is connected to the energy storage device 42, the outlet 431b of the first pump body 431 is connected To the third heat exchanger 41, the first pump body 431 drives the refrigerant 4b to flow from the energy storage device 42 through the inlet 432a to the gas-liquid separator 432. Since the refrigerant 4b is mixed with gas, the refrigerant is mixed with gas.
  • the agent 4b realizes gas-liquid separation in the gas-liquid separator 432 to separate the gas and liquid carrier refrigerant 4b.
  • the separated gas can be discharged from the gas outlet 432c, and the separated liquid carrier refrigerant 4b can be further passed through the liquid outlet 432b. It flows through the first pump body 41 and then further flows to the third heat exchanger 41. Therefore, the gas-liquid separator 432 is always located upstream of the first pump body 431 in the flow direction of the refrigerant 4b.
  • the first pump body 431 such as a centrifugal pump, mainly relies on the pressure difference between the inside and outside of the pump cavity to achieve the purpose of pumping liquid.
  • gas such as air
  • the liquid mixed with gas Air flowing to the pump cavity of the first pump body 431 will form bubbles as the impeller rotates, resulting in a decrease in pressure difference, and thus the first pump body 431 cannot pump liquid.
  • the gas-liquid separator 432 is provided in the liquid pump device 43, and the gas-liquid separator 432 is located upstream of the first pump body 431, so that the gas refrigerant is mixed.
  • 4b can realize the separation of gas and liquid refrigerant 4b in the gas-liquid separator 432, ensuring that the liquid refrigerant 4b flows to the first pump body 431, avoiding the gas from entering the first pump body 431, thereby solving the problem of A problem that the pump body 431 cannot pump liquid.
  • the first pump body 431 and the gas-liquid separator 432 are provided in the box body 421.
  • the outlet 431b of the first pump body 431 is connected to the third heat exchanger 41
  • the inlet 432a of the gas-liquid separator 432 is connected to the fourth heat exchanger 422, so that the refrigerant 4b can be in the fourth heat exchanger 422. Circulates and circulates between and the third heat exchanger 41.
  • the first pump body 431 is provided outside the box body 421, and the first pump body 431 is provided outside the box body 421.
  • the outlet 431b of the pump body 431 is connected to the third heat exchanger 41, and the inlet 432a of the gas-liquid separator 432 is connected to the pipe 423, so that the refrigerant circulates between the pipe 423 and the third heat exchanger 41.
  • liquid pump device 43 may be connected between the inlet port of the third heat exchanger 41 and the discharge port of the energy storage device 42, and the liquid pump device 43 may also be connected to the discharge port of the third heat exchanger 41 and Between the inlet of the energy storage device 42, and between the inlet of the third heat exchanger 41 and the outlet of the energy storage device 42, and between the outlet of the third heat exchanger 41 and the inlet of the energy storage device 42 A liquid pump device 43 may also be provided in between.
  • the joint of the first pump body 431 with the inlet 431a is defined as the first joint 4311
  • the joint of the first pump body 431 with the outlet 431b is defined as the second joint 4312.
  • the liquid pump device 43 further includes a first pipe 433.
  • the two ends of the first pipe 433 are a first end 433a and a second end 433b, respectively.
  • 433a is connected to the first joint 4311
  • the second end 433b is connected to the liquid outlet 432b
  • the connection mode between the first end 433a and the first joint 4311 is not limited.
  • the first end 433a and the first joint 4311 may be connected by welding, for example, by ultrasonic welding, thereby improving connection reliability and good sealing.
  • the length L of the first joint 4311 is not less than 25mm.
  • the material between the first joint 4311 and the first end 433a is the same, such as copper parts, and the length L of the first joint 4311 is not less than 25mm, which can avoid
  • the heat generated during welding between the first joint 4311 and the first end 433a has an effect on the plastic structure in the first pump body 431, which improves the stability of the structure of the first pump body 431.
  • the first pipe 433 is made of copper.
  • first end 433a and the first joint 4311 can also be fixedly connected by a circlip, that is, the first end 433a is sleeved outside the first joint 4311, and then a snap spring is sleeved on the first end 433a to achieve tightening. Solid, thereby reducing the difficulty of assembly and improving assembly efficiency.
  • the first end 433a and the first joint 4311 may also be connected in other ways.
  • the liquid pump device 43 further includes a first connecting joint 435.
  • the inner peripheral wall of the first end 433a is formed as a first mating inclined surface.
  • the first mating inclined surface faces Extending obliquely away from the central axis of the first pipeline 433, the outer peripheral wall of the first joint 4311 is provided with a second mating inclined surface 43111 (for example, a part of the outer peripheral wall of the first joint 4311 adjacent to the first end 433a).
  • the outer peripheral wall of the 4311 is provided with a first thread 43112.
  • the first thread 43112 is located on the side of the second mating inclined surface 43111 away from the first end 433a.
  • the inner peripheral wall of the first connecting joint 435 is provided with a second thread 4351.
  • the connecting joint 435 is sheathed on the outer peripheral wall of the first end 433a, the second thread 4351 is matched with the first thread 43112, and the second mating inclined surface 43111 abuts against the first mating inclined surface. Therefore, it is beneficial to improve the sealing performance between the first joint 4311 and the first end 433a.
  • the inclination angle of the first mating slope ranges from 30° to 75°, for example, 45°, 50° or 60°.
  • connection manner between the second end 433b and the liquid outlet 432b is not limited.
  • the second end 433b and the liquid outlet 432b can be connected by welding, such as by ultrasonic welding, so as to improve the reliability of the connection; for example, the second end 433b can also be fixedly connected by a circlip, that is, the second end 433b is sleeved. Outside the liquid outlet 432b, the second end 433b is then sheathed with a circlip to achieve fastening, thereby reducing assembly difficulty and improving assembly efficiency.
  • the second end 433b and the liquid outlet 432b can also be connected in the manner described above between the first end 433a and the first joint 4311, that is, a connection joint, a mating bevel, and a threaded connection are used for connection.
  • the liquid pump device 43 further includes a second pipe 434.
  • the two ends of the second pipe 434 are respectively a third end 434a and a fourth end 434b, and the third end 434a It is connected to the second connector 4312, the fourth end 434b is connected to the third heat exchanger 41 or the energy storage device 42, and the connection mode between the third end 434a and the second connector 4312 is not limited.
  • the third end 434a and the second joint 4312 may be connected by welding, for example, by ultrasonic welding, so as to improve the reliability of the connection.
  • the length M of the second joint 4312 is not less than 25mm.
  • the material between the second joint 4312 and the third end 434a is the same, such as copper parts, and the length M of the second joint 4312 is not less than 25mm, which can avoid
  • the heat generated during welding between the second joint 4312 and the third end 434a has an effect on the plastic structure in the first pump body 431, which improves the stability of the structure of the first pump body 431.
  • the third end 434a and the second connector 4312 can also be fixedly connected by a circlip, that is, the third end 434a is sleeved outside the second connector 4312, and then a snap spring is sleeved on the third end 434a to achieve tightening. Solid, thereby reducing the difficulty of assembly and improving assembly efficiency.
  • the third end 434a and the second connector 4312 may also be connected in other ways.
  • the liquid pump device 43 further includes a second connecting joint 436, and the inner peripheral wall of the third end 434a is formed as a third mating inclined surface.
  • the mating inclined surface extends obliquely in the direction away from the central axis of the second pipeline 434, and a fourth mating inclined surface 43121 is provided on the outer peripheral wall of the second joint 4312 (for example, a part of the outer peripheral wall of the second joint 4312 adjacent to the third end 434a).
  • the outer peripheral wall of the second joint 4312 is provided with a third thread 43122, the third thread 43122 is located on the side of the fourth mating inclined surface 43121 away from the third end 434a, and the inner peripheral wall of the second connecting joint 436 is provided with a fourth thread 4361 ,
  • the second connecting joint 436 is sheathed on the outer peripheral wall of the third end 434a, the fourth thread 4361 is matched with the third thread 43122, and the fourth mating inclined surface 43121 abuts against the third mating inclined surface. Therefore, it is beneficial to improve the sealing performance between the second joint 4312 and the third end 434a.
  • the inclination angle of the third mating slope has a value range of 30-75°, for example, 45°, 50° or 60°.
  • first mating inclined surface to the fourth mating inclined surface 43121 are all formed as truncated cone surfaces.
  • the fourth end 434b is connected to the third heat exchanger 41 or the energy storage device is related to the flow direction of the refrigerant 4b, no matter which of the third heat exchanger 41 and the energy storage device 42 is connected to the fourth end 434b is connected, both of which define the third heat exchanger 41 and the interface connected to the fourth end 434b of the energy storage device as the first interface.
  • the connection mode between the first interface and the fourth end 434b is not limited.
  • the fourth end 434b and the first interface can be connected by ultrasonic welding, thereby improving the connection reliability; for example, it can also be fixedly connected by a circlip, that is, the fourth end 434b is sleeved on the first interface
  • a circlip is provided on the fourth end 434b to achieve fastening, thereby reducing assembly difficulty and improving assembly efficiency.
  • the fourth end 434b and the first interface can also be connected by the above-mentioned connection joint, mating bevel, and threaded connection.
  • the water pump cover of the first pump body 431 is made of copper or aluminum alloy. Since the first joint 4311 and the second joint 4312 are generally provided on the water pump cover, when the water pump cover of the first pump body 431 is set to copper In the case of high-quality or aluminum alloy parts, it can facilitate the welding connection between the first joint 4311 and the first pipe 433 and between the second joint 4312 and the second pipe 434. The heat generated by welding has little effect on the water pump cover. The cover is not easily deformed.
  • the inlet 432 a of the gas-liquid separator 432 is connected to the third heat exchanger 41 or the energy storage device 42 through the third pipeline 437. That is, when the fourth end 434b is connected to the third heat exchanger 41, the inlet 432a of the gas-liquid separator 432 is connected to the energy storage device 42 through the third pipeline 437, and when the fourth end 434b is connected to the energy storage device At 42 o'clock, the inlet 432a of the gas-liquid separator 432 is connected to the third heat exchanger 41 through the third pipeline 437.
  • the interface connected to the third pipeline 437 in the third heat exchanger 41 and the energy storage device 42 is defined as the second interface.
  • the connection mode between the second interface and the third pipeline 437 is not limited.
  • the third pipeline 437 and the second interface can be connected by ultrasonic welding, thereby improving the connection reliability; for example, it can also be fixedly connected by a circlip, that is, one end of the third pipeline 437 is sleeved Outside the second interface, a circlip is then sheathed at one end of the third pipeline 437 to achieve fastening, thereby reducing assembly difficulty and improving assembly efficiency.
  • the third pipeline 437 and the second interface can also be connected by the above-mentioned connection joint, mating inclined surface, and threaded connection.
  • the third pipeline 437 and the inlet 432a of the gas-liquid separator 432 are connected by ultrasonic welding, thereby improving the connection reliability; for example, the third pipeline 437 can also be fixedly connected by a circlip. The other end of the tube is sleeved outside the inlet 432a, and then a circlip is sleeved on the other end of the third pipe 437 to achieve fastening, thereby reducing assembly difficulty and improving assembly efficiency.
  • the third pipeline 437 and the inlet 432a can also be connected by the above-mentioned connection joint, mating inclined surface and threaded connection.
  • the air conditioner 100 further includes a casing 1.
  • the compressor system 3 and the liquid pump system 4 are both arranged in the casing 1 to be protected by the casing 1. , And make the air conditioner 100 an integral module, which is convenient to move, transport, install and use.
  • the casing 1 may have a first air duct 13a and a second air duct 13b that are independent of each other, that is, the first air duct 13a and the second air duct 13b are different air ducts.
  • the first air duct 13a can be located above or below the second air duct 13b.
  • a first air inlet 122 connected to the first air duct 13a may be formed on the casing 1 And the first air outlet 112, the casing 1 may also be formed with a second air inlet 191 and a second air outlet 123 communicating with the second air duct 13b, wherein the third heat exchanger 41 may be arranged in the first air duct 13a, the first heat exchanger 31 may be provided in the second air duct 13b.
  • the first heat exchanger 31 and the third heat exchanger 41 have less influence on each other when working at the same time, thereby improving the working reliability of the air conditioner 100.
  • the air conditioner 100 may further include a first ventilating device 2a, and the first ventilating device 2a is provided in the first air duct 13a to ventilate the first air duct 13a.
  • the speed at which the third heat exchanger 41 exchanges heat with the environment can be increased, so that the environment temperature can be quickly adjusted.
  • the first air inlet 122 may be formed on the rear surface 12 of the casing 1, and the first air outlet 112 may be formed on the front surface 11 of the casing 1.
  • the third heat exchanger 41 and the first ventilating device 2 a may be sequentially arranged in the front-to-rear direction, and the first ventilating device 2 a may be provided on the side of the third heat exchanger 41 far away from the first air inlet 122.
  • a first air inlet 122 may be formed on the rear surface 12 of the casing 1
  • a first air outlet 112 may be formed on the front surface 11 of the casing 1
  • the first ventilation device 2a is located at the third heat exchange
  • the third heat exchanger 41 is closer to the first air inlet 122 than the first ventilation device 2a, so that the third heat exchanger 41 can be located upstream of the first ventilation device 2a.
  • the speed at which the third heat exchanger 41 exchanges heat with the environment can be increased, and the blown wind will not be blocked by the third heat exchanger 41, so that the air blowing effect of the first ventilation device 2a can be optimized.
  • the air conditioner 100 may further include a second ventilation device 2b.
  • the first heat exchanger 31 is provided in the second air duct 13b, and the second ventilation device 2b ventilates the second air duct 13b. .
  • the speed at which the first heat exchanger 31 exchanges heat with the environment can be increased, so that the energy storage medium 4a can quickly store energy.
  • the second air inlet 191 may be formed on the side surface 19 of the casing 1, and the second air outlet 123 may be formed on the rear surface 12 of the casing 1.
  • the first heat exchanger 31 and the second ventilation device 2b are sequentially arranged in the left-right direction, and the second ventilation device 2b is provided on the side of the first heat exchanger 31 away from the second air inlet 191. That is, a second air inlet 191 is formed on the side surface 19 of the casing 1, a second air outlet 123 is formed on the rear surface 12 of the casing 1, and the first heat exchanger 31 is provided in the second ventilation device.
  • the first heat exchanger 31 may be located upstream of the second ventilation device 2b.
  • the speed at which the first heat exchanger 31 exchanges heat with the environment can be increased, and the blown air will not be blocked by the first heat exchanger 31, so that the air blowing effect of the second ventilation device 2b can be optimized.
  • the present application is not limited to this.
  • at least one of the first ventilation device 2a and the second ventilation device 2b may not be provided.
  • natural wind can be used to achieve heat exchange.
  • the first air inlet 122 and the second air outlet 123 may both be formed on the rear surface 12 of the casing 1, and the first air outlet 112 may be formed in the front of the casing 1.
  • the second air inlet 191 may be formed on the side surface 19 of the casing 1
  • the first air duct 13a may be located above the second air duct 13b
  • the upper end of the second air outlet 123 is located at a level L2 lower than the second air duct 13b.
  • the center of the air duct 13b is on the horizontal plane L1.
  • a first air inlet 122 and a second air outlet 123 may be formed on the rear surface 12 of the casing 1, and a first air outlet 112 may be formed on the front surface 11 of the casing 1.
  • a second air inlet 191 may be formed on the side surface 19 of 1, and the height of the horizontal plane L1 where the center of the second air duct 13b is located is higher than the height of the horizontal plane L2 where the upper end of the second air outlet 123 is located.
  • the present application is not limited to this.
  • the horizontal plane L3 where the center of the second air outlet 123 is located can also be flush with the horizontal plane L1 that is lower than the center of the second air duct 13b.
  • the second air duct 13b is quick to supply air.
  • the air conditioner 100 can be configured as a compressor system 3 and a liquid
  • the pump system 4 can work at the same time or at different times.
  • the airflow entering the second air duct 13b can exchange heat with the working first heat exchanger 31, so as to realize the rapid heat release of the first heat exchanger 31, and the liquid pump system 4 works At this time, the airflow entering the first air duct 13a can exchange heat with the third heat exchanger 41 in operation, so as to realize the rapid cooling of the third heat exchanger 41, and the first air duct 13a and the second air duct 13b
  • the air flow does not affect each other, and when the compressor system 3 and the liquid pump system 4 work at the same time, they can not interfere with each other.
  • the air conditioner 100 has a high endurance capability. At the same time, when using the air conditioner 100, the user can choose to store energy before using it, or choose to store energy while using it, so as to meet the needs of different application scenarios.
  • first ventilator 2a and the second ventilator 2b may be the same or different, for example, they may be an axial fan at the same time or a centrifugal fan at the same time, or one of them may be an axial fan at the same time.
  • the other is a centrifugal wind wheel, etc., which is not limited here.
  • the positions of the first air inlet 122, the first air outlet 112, the second air inlet 191, and the second air outlet 123 can be set according to actual needs, because the first heat exchanger 31 and the third heat exchanger 41 belong to The compressor system 3 and the liquid pump system 4, taking refrigeration as an example, when the compressor system 3 and the liquid pump system 4 work at the same time, the third heat exchanger 41 discharges cooling to the outside, and the first air duct 13a blows outward at this time Cold wind, but at the same time, the first heat exchanger 31 releases heat to the outside. At this time, the second air duct 13b blows hot air outward.
  • the second air outlet 123 and the first air inlet can be combined 122 are respectively arranged on different surfaces of the casing 1, or the distance between the first air inlet 122 and the second air outlet 123 is increased to reduce the effect of the air from the second air outlet 123 on the air from the first air inlet 122
  • the first air outlet 112 and the second air outlet 123 may not be on the same surface of the casing 1, thereby improving the user experience.
  • the ventilation device may not be operated.
  • the external natural wind or external air blowing device can be used to achieve heat exchange, thereby reducing energy consumption.
  • the air conditioner 100 may not include a ventilation device.
  • the air conditioner 100 can also be equipped with a battery.
  • the air conditioner 100 when the air conditioner 100 only uses the liquid pump system 4 to work, there is no need to connect the power cord, that is, when the compressor system 3 After finishing the work, the air conditioner 100 can be released from the plug-in mode, so that the air conditioner 100 can be moved at any time to increase the movable range of the mobile air conditioner and meet the requirements of different application scenarios.
  • both the first air inlet 122 and the second air inlet 191 may be provided with an anti-oil fume filter 9. Therefore, when the air conditioner 100 is used in a high oily smoke environment (such as a kitchen, etc.), the first air inlet 122 and the second air inlet 191 are provided with an oily smoke prevention filter 9, which can reduce oily smoke on the first air duct.
  • the anti-oil fume filter 9 can be It can be installed by drawing and other methods, which is convenient for disassembly and assembly, which is convenient for the user to clean and replace the oil fume prevention filter 9.
  • the casing 1 may have a first layer space 101, a second layer space 102, and a third layer space 103 arranged in order from top to bottom.
  • the channel 13a is formed in the first layer of space 101
  • the gas-liquid separator 432 is located in the first layer of space 101
  • the second air channel 13b is formed in the second layer of space 102
  • the first pump body 431 is located in the second layer of space 102
  • the second heat exchanger 32 and the energy storage device 42 are arranged in the third layer space 103.
  • the overall layout of the air conditioner 100 is more coordinated, the upper and lower spaces are reasonably used, and the stability is good, and it can be steadily supported on the ground or travels on the ground.
  • the gas-liquid separator 432 is located above the first pump body 431, and the gas-liquid separator 432 has a good gas-liquid separation effect, which is conducive to the liquid refrigerant 4b entering the first pump body 431, avoiding gas entry Into the first pump body 431, thereby solving the problem that the first pump body 431 cannot pump liquid.
  • the height of the first air duct 13a is relatively high, so as to ensure that the height of the third heat exchanger 41 in the first air duct 13a is relatively high, so as to improve the cold air exchanged with the third heat exchanger 41 to reach the ground quickly, that is, The blowing distance and time of the cold air are prolonged, so that the ambient temperature can be better reduced, and at the same time, the air out of the first air duct 13a can be more easily felt by the user, so as to improve the user's comfort.
  • the compressor 33 may be provided in the second space 102.
  • the compressor 33 can be more conveniently connected with the first heat exchanger 31 above and the second heat exchanger 32 below it, shortening the transportation pipeline of the refrigerant 3a, thereby reducing costs and improving the leakage of the refrigerant 3a.
  • the problem further improves the transportation reliability of the refrigerant 3a, and the working reliability of the compressor system 3 is improved.
  • the compressor 33 in the second space 102, the center of gravity and vibration of the whole machine can be reduced, so that the air conditioner 100 can work more smoothly.
  • the air conditioner 100 may further include a second ventilating device 2b arranged in the second air duct 13b and ventilating the second air duct 13b.
  • the second ventilating device 2b It is provided between the first heat exchanger 31 and the compressor 33. Therefore, when the second ventilation device 2b is in operation, it is not affected by the compressor 33, and the ventilation effect of the second air duct 13b can be improved.
  • the first layer of space 101 is provided with an air duct member 1011, the air duct member 1011 defines the first air duct 13a, and the gas-liquid separator 432 is detachably arranged in On the outer surface of the duct member 1011. Therefore, the gas-liquid separator 432 can be easily connected to the third heat exchanger 41 located in the first layer space 101, and the detachable arrangement between the air duct 1011 and the gas-liquid separator 432 is convenient for the gas-liquid separator The replacement and maintenance of 432, and the gas-liquid separator 432 is placed in the upper position of the air conditioner 100, is more conducive to gas-liquid separation.
  • connection mode between the air duct 1011 and the gas-liquid separator 432 is not limited.
  • the gas-liquid separator 432 and the air duct 1011 may be connected by fasteners.
  • the outer surface of the air duct member 1011 is provided with a positioning ring 10111 and a buckle portion 10112 spaced in the up and down direction, and the positioning ring 10111 is sleeved on the upper end of the gas-liquid separator 432,
  • the buckle portion 10112 includes two oppositely arranged elastic hooks 10112a (for example, arranged opposite to each other in the front and rear direction), and the lower end of the gas-liquid separator 432 is locked between the two elastic hooks 10112a. Therefore, the structure is simple and easy to disassemble. .
  • the level of the lowest point of the inlet 432a is not lower than the level of the top of the third heat exchanger 41.
  • the inlet 432a is located at the upper position of the gas-liquid separator 432
  • the gas outlet 432c is located at the top of the gas-liquid separator 432
  • the liquid outlet 432b is located at the bottom of the gas-liquid separator 432
  • the lowest level of the inlet 432a is higher than the first
  • the air cavity in the gas-liquid separator 432 can be located at the upper or top position of the air conditioner 100, so that the refrigerant 4b mixed with air is in the gas-liquid separator 432 It can separate gas and liquid well.
  • the air duct member 1011 defines a receiving cavity 21a and a rectifying cavity 11a that communicate with each other, and an air duct inlet communicating with the receiving cavity 21a is formed on the air duct member 1011.
  • a slit-shaped air duct outlet 111 is formed on the wall of the rectifying cavity 11a at one end away from the accommodating cavity 21a, the accommodating cavity 21a is provided with a first ventilation device 2a, and the accommodating cavity 21a and the rectifying cavity 11a are in the first
  • the ventilation devices 211 are arranged in the axial direction.
  • the first ventilation device 2a drives the air flow from the air duct inlet 113 into the air duct member 1011, flows through the accommodating cavity 21a and the rectifying cavity 11a in turn, and is discharged into the room from the air duct outlet 111. Can improve the indoor ambient temperature.
  • the airflow flows through the rectifying cavity 11a, the airflow can be rectified to make the flow of the airflow more orderly. After the air flow is rectified by the rectifying cavity 11a, it is discharged into the room from the slit-shaped air duct outlet 111.
  • the power and speed of the first ventilation device 211 are the same, the air supply distance can be increased, so that the air supply is farther. To better cooling/heating effect, and lower energy consumption and noise.
  • the air duct outlet 111 may be directed to the front to discharge the wind, and the air duct outlet 111 may also be directed to the front and obliquely upward to discharge the wind.
  • the air duct outlet 111 may extend in a straight line or in a curved line.
  • the air duct outlet 111 may have a long strip shape, an arc shape or a ring shape (for example, a circular ring shape, an elliptical ring shape, a polygonal ring shape, etc.).
  • the air duct outlet 111 is formed in a ring shape, and the air duct outlet 111 may be arranged around the central axis of the first ventilation device 2a.
  • the air outlet range can be made larger, while increasing the air outlet speed to increase the air outlet distance, the air conditioner 100 can have a larger air outlet range, and the cooling/heating performance of the air conditioner 100 can be further improved. .
  • the first ventilation device 2a may be a centrifugal wind wheel, so that the air supply distance can be further increased.
  • the air duct outlet 111 can discharge air along the axial direction of the first ventilation device 2a.
  • the first air inlet 122 on the cabinet 1 of the air conditioner 100 is opposite to the air duct inlet 113 in the axial direction of the first ventilation device 211, and the external airflow enters the cabinet 1 through the first air inlet 122, and It enters the air duct 1011 from the air duct inlet 113 and exchanges heat with the third heat exchanger 41, and is pressurized by the first ventilating device 2a and then flung out radially from the first ventilating device 2a. After the accommodating cavity 21a and the rectifying cavity 11a are changed in direction, they are ejected from the air duct outlet 111.
  • the air flow changes from the radial direction of the first ventilation device 2a to generally along the axial direction of the first ventilation device 2a, and the axial direction of the first ventilation device 2a may be along the front-rear direction Extend, at this time, the air can be sent to the front, and the rectification effect of the rectifying cavity 11a can make the air flow in the backward direction become more orderly and reduce the air flow loss.
  • most of the air duct member 1011 may be located in the casing 1, and a part of the air duct member 1011 adjacent to the air duct outlet 111 may be located outside the casing 1.
  • the portion of the rectifying cavity 11a adjacent to the accommodating cavity 21a may have a ring shape extending around the central axis of the first ventilating device 2a, thereby making it possible to pass through the first ventilating device
  • the pressurized air flow 2a is thrown out radially from the first ventilating device 2a and turned back, so that the air flow of each part in the circumferential direction of the first ventilating device 2a can directly flow into the rectifying cavity 11a, reducing flow loss.
  • the air duct inlet 113 and the air duct outlet 111 are arranged on both axial sides of the first ventilator 2a, so that the first air inlet 122 and the air duct outlet 111 are located on both axial sides of the first ventilator 2a , So that when the airflow flows through the internal space of the air conditioner 100, the airflow can generally flow along the axial direction of the first ventilation device 2a, so that the flow path of the airflow is simple and the flow path of the airflow can be reduced, and the flow loss of the airflow can be reduced. Therefore, the air flow can be blown farther, and the mutual interference and influence of the air flow between the first air inlet 122 and the air duct outlet 111 can be reduced.
  • the air duct member 1011 includes a first air duct member 1a and a second air duct member 7a that are connected, and the first air duct member 1a includes a first rectifying shell 111c and a first air duct member 1a.
  • the second rectifying shell 112c and the baffle 113c, the first rectifying shell 111c and the second rectifying shell 112c may be cylindrical or cone-shaped, and the baffle 113c may be substantially perpendicular to the rotation axis of the first ventilation device 211.
  • the first rectifying shell 111c is arranged around the outer circumference of the baffle 113c and the first rectifying shell 111c is connected to the baffle 113c.
  • the baffle 113c is located at one end of the first rectifying shell 111c adjacent to the second air duct member 7a, and the second rectifying shell 112c surrounds The outer circumference of the first rectifying shell 111c is arranged and the second rectifying shell 112c and the first rectifying shell 111c are spaced apart.
  • the first rectifying shell 111c, the second rectifying shell 112c and the baffle 113c jointly define a rectifying cavity 11a, and the second air duct member 7a has a cylindrical shape and defines a receiving cavity 21a, and the second air duct member 7a may have a cylindrical shape.
  • the airflow After the airflow flows into the accommodating cavity 21a and is pressurized by the first ventilation device 2a, the airflow can be thrown out through the radial direction of the first ventilation device 2a, and the baffle 113c can prevent the airflow from diverging in the axial direction when it flows through the first ventilation device 2a. At the same time, it facilitates the formation of the rectifying cavity 11a and the receiving cavity 21a, and makes the structure of the air duct member 1011 simple.
  • a side of the rectifying cavity 11a that faces the accommodating cavity 21a is open to communicate with the accommodating cavity 21a, and the airflow flows through the first ventilating device 2a and then flows out through the radial direction of the first ventilating device 2a,
  • the flow direction of the air flow is changed from the radial direction of the first ventilator 2a to generally along the axial direction of the first ventilator 2a.
  • the air flows through the rectifying cavity 11a it passes through the wind The channel discharge port 111 blows out.
  • the air inlet of the rectifying cavity 11a has a larger space and area, and after the air flows through the first ventilation device 2a, it can directly flow into the rectifying cavity 11a through the containing cavity 21a, thereby reducing air flow loss.
  • the flow area of the rectifying cavity 11a gradually decreases. Therefore, during the rectification process of the airflow through the rectifying cavity 11a, the flow velocity of the airflow can be gradually increased in the flow direction of the airflow, so that the airflow can flow out of the air duct outlet 111 at a relatively high speed, thereby making the air conditioner 100 The air supply distance is farther.
  • the air duct member 1011 includes a first air duct member 1a and a second air duct member 7a that are detachably connected, the first air duct member 1a defines a rectifying cavity 11a, and the second air duct member 7a
  • the accommodating cavity 21a is defined inside.
  • the second air duct member 7a of the same specification can be matched with the first air duct member 1a with different rectifying cavities 11a or air duct outlets 111, so that only the structure of the first air duct member 1a can be changed and the other structures of the air conditioner 100 remain unchanged In the case of low air conditioners, air conditioners with different air outlet effects can be produced, which reduces the types of materials and saves production costs.
  • first air duct member 1a and the second air duct member 7a can be detachably connected by a buckle structure; or, the first air duct member 1a and the second air duct member 7a can also be connected through Fasteners, such as screws, are detachably connected; or, the first air duct member 1a and the second air duct member 7a are detachably connected through a snap structure and a fastener.
  • the width of the air duct outlet 111 is W, W is not greater than 0.05D, and D is the diameter of the first ventilation device 2a. In this way, it can be ensured that the air exiting the air duct outlet has a relatively large air exit speed, so that it can be ensured that the air conditioner 100 can send air to a far place.
  • the air conditioner 100 includes moving parts and an intelligent control module.
  • the intelligent control module can be integrated on the circuit board of the air conditioner 100.
  • the moving parts such as universal wheels are arranged at the bottom of the casing, and the intelligent control module is connected to the moving parts. It is used to control the movement of moving parts, so as to realize the movement of the entire air conditioner 100.
  • the air conditioner 100 in this embodiment can be automatically moved under the control of the intelligent control module, and manpower movement is no longer required, thereby making it more flexible. High, in turn capable of various controlled movements, which is conducive to improving the user experience.
  • the air conditioner 100 may further include a water receiving system 5, which is provided in the cabinet 1 and includes a first water receiving tray 51 and a second water receiving tray 52,
  • the first water receiving tray 51 is arranged above the second water receiving tray 52
  • the third heat exchanger 41 is arranged on the first water receiving tray 51
  • the first heat exchanger 31 and the compressor 33 are both arranged on the second water receiving tray.
  • the tray 52 is above and below the first water receiving tray 51.
  • condensed water When the third heat exchanger 41 performs cooling work, due to the cold and heat exchange, condensed water will be formed on the surface of the third heat exchanger 41 and part of the refrigerant pipeline connected to the third heat exchanger 41, and the condensed water can be The condensed water that drips on the first drain pan 51, and the condensed water on the surface of the refrigerant pipe or the refrigerant pipe between the first drain pan 51 and the second drain pan 52 can drip on the first drain pan 51. On the second drip tray 52. In this way, it is possible to prevent the water accumulating in the air conditioner 100 from damaging the circuit, and to improve the working reliability of the air conditioner 100.
  • the first water receiving tray 51 has a drip hole 5112, and the drip hole 5112 is opposite to the first heat exchanger 31. Therefore, water can be dripped at the drip hole 5112, and the first heat exchanger 31 is arranged opposite to the drip hole 5112, and the condensed water dripping on the first drip tray 51 can be collected and dripped from the drip hole 5112.
  • the temperature of the first heat exchanger 31 can be reduced by the condensed water, thereby increasing the temperature of the first heat exchanger 31. 31's heat dissipation efficiency.
  • the condensed water is recycled, it is possible to prevent the user from actively discharging the condensed water in the water receiving system 5, or to reduce the number of times the user regularly discharges the condensed water in the water receiving device, thereby reducing the labor intensity of the user.
  • the drip hole 5112 when the drip hole 5112 is arranged opposite to the first heat exchanger 31, the drip hole 5112 can be located directly above the first heat exchanger 31, so that the condensed water can directly drip onto the first heat exchanger 31.
  • the drip hole 5112 when the drip hole 5112 is not located directly above the first heat exchanger 31, for example, it can be diagonally above.
  • a draft tube (for example) can be used between the drip hole 5112 and the first heat exchanger 31. The figure does not show this example) and other devices, which divert the condensed water to the surface of the first heat exchanger 31, which will not be repeated here.
  • the extension direction is spaced apart. Therefore, the condensed water can drip down from the spaced and evenly distributed multiple drip holes 5112, so that the condensed water dripping on the surface of the first heat exchanger 31 can be more uniform, and the utilization rate of the condensed water can be improved. At the same time, the heat dissipation efficiency of the first heat exchanger 31 is improved.
  • the water receiving system 5 may further include a water pump 53, and the water pump 53 may pump the water in the second water receiving tray 52 to the first water receiving tray 51.
  • the condensed water in the first water receiving pan 51 and the second water receiving pan 52 can drip onto the first heat exchanger 31, so that the heat release speed of the first heat exchanger 31 can be increased, thereby speeding up the first heat exchanger 31.
  • the cooling speed of the second heat exchanger 32 can also increase the utilization rate of condensed water.
  • the condensed water in the second drain pan 52 may include the condensed water that drips onto the surface of the first heat exchanger 31 from the drip hole 5112 but has not evaporated, and the condensed water located in the first drain pan 51 and The condensed water that condenses on the surface of the refrigerant pipe or the refrigerant pipe between the second water receiving pans 52 and drips into the second water receiving pan 52.
  • the second water receiving tray 52 may also have a water diversion groove 5211, and the water inlet of the water pump 53 is in communication with the water diversion groove 5211. Therefore, the condensed water in the second drain pan 52 can be drained to the water inlet of the water pump 53 through the draining effect of the drain trough 5211, and then the condensed water can be pumped to the first drain pan 51 by the water pump 53, thereby leading
  • the water tank 5211 can speed up the accumulation speed of the condensed water in the second water receiving pan 52, and improve the working efficiency of the water pump 53 and the drainage effect of the second water receiving pan 52.
  • the first water receiving tray 51 may include a first bottom plate 511 and a first enclosure plate 512.
  • the first enclosure plate 512 extends upward from the edge of the first bottom plate 511.
  • a first water containing cavity 510 is defined between 512 and the first bottom plate 511.
  • the first water containing chamber 510 can better collect the dripping condensate, reduce the probability of the condensed water flowing outside the first drain pan 51, and improve the working reliability of the air conditioner 100.
  • the first drain pan 51 has a simple structure and is convenient for processing.
  • the second water receiving tray 52 may include a second bottom plate 521 and a second enclosure plate 522.
  • the second enclosure plate 522 extends upward from the edge of the second bottom plate 521.
  • a second water containing cavity 520 is defined between the 522 and the second bottom plate 521. Therefore, the second water containing chamber 520 can better collect the dripping condensate, reduce the probability of the condensed water flowing out of the second drain pan 52, and improve the working reliability of the air conditioner 100.
  • the second drain pan The structure of 52 is simple and convenient for processing.
  • the first ventilating device 2a may also be provided on the first water receiving tray 51. In the front-to-rear direction, the first ventilating device 2a may be located on the front side of the third heat exchanger 41. . Therefore, the second ventilation device 2b can increase the speed at which the first heat exchanger 31 exchanges heat with the environment, and the second ventilation device 2b will not be blocked by the first heat exchanger 31 when blowing forward, so that the first heat exchanger 31 can be improved. The heat exchange efficiency of a heat exchanger 31 and the air supply distance of the second ventilation device 2b are increased.
  • a second ventilation device 2b may also be provided on the second water receiving tray 52.
  • the second ventilation device 2b may be located in the first heat exchanger 31 and the compressor. Between 33. Therefore, the second ventilation device 2b may not be affected by the compressor 33 when it is working, and by arranging the compressor 33 on the second drain pan 52, the center of gravity and vibration of the whole machine can be reduced, so that the air conditioner 100 Work more smoothly.
  • the second heat exchanger 32 and the energy storage device 42 are both arranged below the second water receiving tray 52, so that the layout of the whole machine can be optimized.
  • the condensed water does not flow to other components (such as roller bearings, electrical components, etc.) or outside the casing 1, thereby avoiding other components (such as rollers). Bearings, electrical components, etc.) are damaged or flow out of the casing 1, thereby improving the safety and working reliability of the air conditioner 100.
  • the water receiving system 5 is not limited to the example in which the first heat exchanger 31 and the third heat exchanger 41 are located in independent air ducts, that is, when The first heat exchanger 31 and the third heat exchanger 41 are arranged in the same air duct, that is, in the embodiment where the first air duct 13a and the second air duct 13b are connected to each other, that is, they are not independent air ducts.
  • the water receiving system 5 according to the embodiment of the present application can be applied.
  • the compressor system 3 and the liquid pump system 4 can work at different times, and the compressor system 3 can be operated first to accumulate energy, and then run The liquid pump system 4 performs cooling, so that the first heat exchanger 31 and the third heat exchanger 41 can share a set of ventilation devices to reduce the overall complexity of the air conditioner 100, making the air conditioner 100 compact, compact, low cost.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • a plurality of means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种空调器(100),包括:压缩机系统(3);液泵系统(4),液泵系统(4)包括第三换热器(41)、蓄能装置(42)和液泵装置(43),液泵装置(43)包括第一泵体(431)和气液分离器(432),气液分离器(432)包括入口(432a)、气体出口(432c)和液体出口(432b),第一泵体(431)的进口(431a)与液体出口(432b)相连,第一泵体(431)的出口(431b)和入口(432a)中的其中一个连接至第三换热器(41)、另一个连接至蓄能装置(42)。

Description

空调器
本申请基于申请号为201910860429.0和201921527213.4,申请日为2019年9月11日的两件中国专利申请提出,并要求该两件中国专利申请的优先权,该两件中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,尤其是涉及一种空调器。
背景技术
相关技术中的一些移动空调,在降低环境温度过程中,伴随热量排出,通常采用排风管将热量排出到室外,因此,受排风管的限制,致使移动空调的移动范围有限,不能任意移动。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请在于提出一种空调器,空调器不受排风管的限制。
根据本申请实施例的空调器,包括:压缩机系统,所述压缩机系统包括循环连通的:第一换热器、第二换热器、压缩机和节流装置,所述压缩机系统内循环流通制冷剂;液泵系统,所述液泵系统包括循环连通的:第三换热器、蓄能装置和液泵装置,所述液泵系统内循环流通载冷剂,所述蓄能装置包括从所述第二换热器取能并蓄能的蓄能介质,所述载冷剂与所述蓄能介质热交换,其中,所述液泵装置包括第一泵体和气液分离器,所述气液分离器包括入口、气体出口和液体出口,所述第一泵体的进口与所述液体出口相连,所述第一泵体的出口和所述气液分离器的入口中的其中一个连接至所述第三换热器,所述第一泵体的出口和所述气液分离器的入口中的另一个连接至所述蓄能装置。
根据本申请实施例的空调器,在液泵系统通过第三换热器向环境送冷的过程中,由于载冷剂与蓄能介质交换热量以向蓄能介质放热,从而液泵系统不会向环境排放热量,进而使得空调器可以省去用于液泵系统排热风的排风管等,使得空调器的设置位置不受限制,可以任意移动。
根据本申请的一些实施例,所述液泵装置还包括第一管路,所述第一管路的两端分别为第一端和第二端,所述第一端与所述第一泵体的设有所述进口的第一接头相连,所述第二端与所述液体出口相连,所述第一端与所述第一接头通过焊接相连。
根据本申请的一些实施例,所述第一接头的长度不小于25mm。
根据本申请的一些实施例,所述液泵装置还包括第一管路和第一连接接头,所述第一管路的两端分别为第一端和第二端,所述第一端与所述第一泵体的设有所述进口的第一接头相连,所述第二端与所述液体出口相连,所述第一端的内周壁形成为第一配合斜面,在朝向靠近所述第一接头的方向上,所述第一配合斜面朝向远离第一管路的中心轴 线的方向倾斜延伸,所述第一接头的外周壁上设有第二配合斜面,所述第一接头的外周壁上设有第一螺纹,所述第一螺纹位于所述第二配合斜面的远离所述第一端的一侧,所述第一连接接头的内周壁上设有第二螺纹,所述第一连接接头外套在所述第一端的外周壁上、所述第二螺纹与所述第一螺纹配合且所述第二配合斜面与所述第一配合斜面相抵。
根据本申请的一些实施例,所述液泵装置还包括第二管路,所述第二管路的两端分别为第三端和第四端,所述第三端与所述第一泵体的设有所述出口的第二接头相连,所述第四端连接至所述第三换热器或所述蓄能装置,所述第三端与所述第二接头通过焊接相连。
根据本申请的一些实施例,所述第二接头的长度不小于25mm。
根据本申请的一些实施例,所述液泵装置还包括第二管路和第二连接接头,所述第二管路的两端分别为第三端和第四端,所述第三端与所述第一泵体的设有所述出口的第二接头相连,所述第四端连接至所述第三换热器或所述蓄能装置,所述第三端的内周壁形成为第三配合斜面,在朝向靠近所述第二接头的方向上,所述第三配合斜面朝向远离第二管路的中心轴线的方向倾斜延伸,所述第二接头的外周壁上设有第四配合斜面,所述第二接头的外周壁上设有第三螺纹,所述第三螺纹位于所述第四配合斜面的远离所述第三端的一侧,所述第二连接接头的内周壁上设有第四螺纹,所述第二连接接头外套在所述第三端的外周壁上、所述第四螺纹与所述第三螺纹配合且所述第四配合斜面与所述第三配合斜面相抵。
根据本申请的一些实施例,所述空调器还包括机壳,所述机壳内具有相互独立的第一风道和第二风道,所述机壳上形成有与所述第一风道连通的第一进风口和第一出风口,所述机壳上还形成有与所述第二风道连通的第二进风口和第二出风口,所述第三换热器设于所述第一风道,所述第一换热器设于所述第二风道。
根据本申请的一些实施例,所述机壳内具有自上向下依次排布的第一层空间、第二层空间和第三层空间,所述第一风道形成在所述第一层空间内,所述气液分离器位于所述第一层空间内,所述第二风道形成在所述第二层空间内,所述第一泵体位于所述第二层空间内,所述第二换热器和所述蓄能装置设在所述第三层空间内。
根据本申请的一些实施例,所述第一层空间内设有风道件,所述风道件限定出所述第一风道,所述气液分离器可拆卸地设在所述风道件的外表面上。
根据本申请的一些实施例,所述风道件的外表面上设有沿上下方向间隔开的定位圈和卡扣部,所述定位圈外套在所述气液分离器的上端,所述卡扣部包括两个相对设置的弹性卡勾,所述气液分离器的下端卡设在两个所述弹性卡勾之间。
根据本申请的一些实施例,所述入口的最低处所在的水平高度不低于所述第三换热器的顶端所在的水平高度。
根据本申请的一些实施例,所述风道件内限定出相互连通的容纳腔和整流腔,所述风道件上形成有与所述容纳腔连通的风道进口,所述整流腔的远离所述容纳腔的一端的 壁上形成有呈狭缝状的风道排出口,所述容纳腔内设有第一通风装置。
根据本申请的一些实施例,空调器还包括移动部件和智能控制模块,所述移动部件设在所述壳体的底部,所述智能控制模块与所述移动部件连接以用于控制所述移动部件运动。
根据本申请的一些实施例,所述蓄能装置包括:箱体,所述箱体内具有所述蓄能介质,所述第二换热器设于所述蓄能介质内,所述蓄能介质从所述第二换热器取能并蓄能;第四换热器,所述第四换热器设在所述蓄能介质内,以从所述蓄能介质取能,所述液泵装置连接在所述第三换热器与所述第四换热器之间,以使所述载冷剂在所述第三换热器与所述第四换热器之间循环。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请一个实施例的空调器的系统示意图;
图2是根据本申请另一个实施例的空调器的系统示意图;
图3是根据本申请一个实施例的空调器的主视图;
图4是图3中所示的的空调器的左视图;
图5是沿图4中A-A线的剖视图;
图6是图3中所示的空调器的后视图;
图7是图3中所示的空调器的内部结构图;
图8是图7中所示的空调器的内部结构的左视图;
图9是图6中所示的空调器的内部结构的后视图;
图10是根据本申请另一个实施例的空调器的左视图;
图11是图7中所示的空调器的内部结构的立体图;
图12是图7中所示的空调器的内部结构的立体图,图未示出第三换热器和第一通风装置;
图13是图12中所示的空调器的爆炸图;
图14是根据本申请一个实施例的空调器的部分结构示意图;
图15是根据图14所示的P处的放大图;
图16是根据本申请一个实施例的空调器的部分结构示意图;
图17是根据本申请一个实施例的第一泵体的结构示意图;
图18是根据本申请一个实施例的第一泵体和部分第一管路连接后的剖视示意图;
图19是根据本申请另一个实施例的第一泵体和部分第一管路连接后的剖视示意图;
图20是根据本申请一个实施例的第一泵体与部分第二管路连接后的剖视示意图;
图21是根据本申请一个实施例的空调器的部分结构示意图;
图22是根据图21所示的剖视图。
附图标记:
空调器100;
机壳1;第一层空间101;风道件1011;第一风道件1a;整流腔11a;风道排出口111;第一整流壳111c;第二整流壳112c;挡板113c;风道进口113;第二风道件7a;容纳腔21a;第三风道件3c;
定位圈10111;卡扣部10112;弹性卡勾10112a;第二层空间102;第三层空间103;
前表面11;第一出风口112;后表面12;第一进风口122;第二出风口123侧表面19;第二进风口191;
第一风道13a;第二风道13b;
第一通风装置2a;第二通风装置2b;
压缩机系统3;单冷系统3a;热泵系统3b;
第一换热器31;第二换热器32;压缩机33;节流装置34;四通阀35;
液泵系统4;第三换热器41;
蓄能装置42;箱体421;第四换热器422;管路423;
液泵装置43;第一泵体431;进口431a;出口431b;第一接头4311;第二配合斜面43111;第一螺纹43112;第二接头4312;第四配合斜面43121;第三螺纹43122;气液分离器432;入口432a;液体出口432b;气体出口432c;第一管路433;第一端433a;第二端433b;第二管路434;第三端434a;第四端434b;第一连接接头435;第二螺纹4351;第二连接接头436;第四螺纹4361;第三管路437;
接水系统5;
第一接水盘51;第一盛水腔510;
第一底板511;第一边沿5111;滴水孔5112;
第一围板512;
第二接水盘52;第二盛水腔520;
第二底板521;引水槽5211;
第二围板522;
水泵53;
滚轮装置6;防油烟过滤网9。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。 这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,描述根据本申请实施例的空调器100。
如图1所示,根据本申请实施例的空调器100,可以包括压缩机系统3和液泵系统4。
如图1所示,压缩机系统3可以包括循环连通的:第一换热器31、第二换热器32、压缩机33和节流装置34,压缩机系统3内循环流通制冷剂3a。其中,压缩机系统3可以为单冷系统3c(如图1所示)或者热泵系统3b(如图2所示)。结合图2,当压缩机系统3为热泵系统3b时,压缩机系统3还可以包括四通阀35。
其中,“单冷系统”和“热泵系统”的概念、其他构成以及工作原理均为本领域技术人员所熟知。下面仅以压缩机系统3为单冷系统3c为例,简要介绍压缩机系统3的构成和工作过程,在本领域技术人员阅读了下面的技术方案后,显然能够理解压缩机系统3为热泵系统3b的构成和工作过程。
如图1所示,当压缩机系统3为单冷系统3c时,压缩机33的出口与第一换热器31的进口连通,第一换热器31的出口与节流装置34的进口连通,节流装置34的出口与第二换热器32的进口连通,第二换热器32的出口与压缩机33的进口连通,此时,第一换热器31为冷凝器与环境交换热量实现放热,第二换热器32为蒸发器与环境交换热量实现吸热(即放冷)。当单冷系统3c工作时,压缩机系统3中的制冷剂3a依次循环流经压缩机33、第一换热器31(即冷凝器)、节流装置34、第二换热器32(即蒸发器),以实现制冷循环。
如图1所示,液泵系统4可以包括循环连通的:第三换热器41、蓄能装置42和液泵装置43,液泵系统4内循环流通载冷剂4b,即液泵装置43连接在第三换热器41与蓄能装置42之间,液泵装置43使载冷剂4b在第三换热器41和蓄能装置42之间循环,或者说,液泵装置43、第三换热器41和蓄能装置42之间构成循环回路,当液泵装置43工作时,第三换热器41中的载冷剂4b可以流向蓄能装置42,蓄能装置42中的载冷剂4b再流回第三换热器41,依此循环。
如图1所示,蓄能装置42还包括从第二换热器32取能并蓄能的蓄能介质4a,也就是说,当压缩机系统3为单冷系统3c或热泵系统3b并执行制冷模式时,第二换热器32向蓄能介质4a释放冷量,蓄能介质4a从第二换热器32吸收冷量并储存冷量;而当压缩机系统3为热泵系统3b并执行制热模式时,第二换热器32向蓄能介质4a释放热量,蓄能介质4a从第二换热器32吸收热量并储存热量。
如图1所示,载冷剂4b与蓄能介质4a热交换,也就是说,蓄能介质4a从第二换热器32获取并储存的能量(即热量或者冷量),可以热交换给载冷剂4b,并由载冷剂4b携带输送,这样,在液泵系统4工作时,载冷剂4b就可以将蓄能介质4a中的能量转移,并通过第三换热器41释放到环境中,从而改变环境温度。例如,当蓄能介质4a 中储存的为冷量时,载冷剂4b从蓄能介质4a吸收冷量并转移,以通过第三换热器41释放到环境中,从而降低环境温度。又例如,当蓄能介质4a中储存的为热量时,载冷剂4b从蓄能介质4a吸收热量并转移,以通过第三换热器41释放到环境中,从而提高环境温度。
由此,根据本申请实施例的空调器100,在液泵系统4通过第三换热器41向环境送冷的过程中,由于载冷剂4b与蓄能介质4a交换热量以向蓄能介质4a放热,从而液泵系统4不会向环境排放热量,进而使得空调器100可以省去用于液泵系统4排热风的排风管等,使得空调器100的设置位置不受限制,可以任意移动。
在本申请的一些具体实施例中,空调器100中的压缩机系统3,可以类似冰箱中的制冷系统那样,对蓄能介质4a进行制冰,而液泵系统4可以代替相关技术中移动空调中的制冷系统,可以利用蓄能介质4a从压缩机系统3中的第二换热器32取冷并蓄冷,并通过载冷剂4b和第三换热器41将冷量释放到环境中,从而降低环境温度。这样,在液泵系统4工作的过程中,由于载冷剂4b与蓄能介质4a交换热量向蓄能介质4a放热,从而液泵系统4相对于相关技术中移动空调中的制冷系统来说,可以省去用于液泵系统4排热风的排风管等,进而使得空调器100可以任意移动,使用场景广泛,不受限制。
此外,在本申请的一些实施例中,由于设置具有蓄能介质4a的液泵系统4,压缩机系统3和液泵系统4可以同时工作、也可以不同时工作。例如当不同时工作时,可以先使压缩机系统3工作,使得蓄能装置42从第二换热器32蓄能,此后可以关闭压缩机系统3,以降低能耗、降低噪音。之后,在需要调节环境温度时,可以打开液泵系统4,以利用蓄能装置42所蓄能量使第三换热器41与环境交换热量,从而调节环境温度。又例如当同时工作时,空调器100可以在利用压缩机系统3蓄能的同时还利用液泵系统4放能,进而提高空调器100的续航能力。
此外,在利用液泵系统4降低环境温度时,液泵系统4中载冷剂4b一方面与环境交换冷量、另一方面与蓄能介质4a交换热量,从而说明载冷剂4b不会集中向环境中排放热量,而且,在液泵系统4工作的过程中,压缩机系统3可以不工作,从而压缩机系统3也可以不向环境排放热量。由此,空调器100在降低环境温度时,由于可以不伴随热量向环境中排放,从而可以保证液泵系统4降低环境温度的可靠性,而且空调器100还可以省去用于液泵系统4排放热风的排风管,从而使得空调器100可以放置在任何位置,当空调器100为移动空调时,空调器100还可以包括滚轮装置6(例如图3所示),从而空调器100可以随意移动,使用场景广泛,不受限制。当然,本申请不限于此,空调器100不限于移动空调。
下面,描述根据本申请一些实施例的蓄能装置42。
具体而言,根据本申请实施例的蓄能装置42可以为多种,下面将以两个具体实施例为例介绍根据本申请实施例的蓄能装置42,但是本申请实施例的蓄能装置42不限于以下两个实施例。
实施例一
在本实施例一中,如图1所示,蓄能装置42可以包括:箱体421和第四换热器422,箱体421内具有蓄能介质4a,第二换热器32设在蓄能介质4a内,蓄能介质4a从第二换热器32取能并蓄能,第四换热器422设在蓄能介质4a内以从蓄能介质4a取能,液泵装置43连接在第三换热器41与第四换热器422之间,以使载冷剂4b在第三换热器41与第四换热器422之间循环。
其中,在压缩机系统3和液泵系统4不同时工作的情况下。压缩机系统3可以先工作,此时,第二换热器32可以向箱体421内的蓄能介质4a释放热量或冷量,以使蓄能介质4a的温度改变并蓄能,之后可以关闭压缩机系统3,以节约电能、降低噪音等。之后,可以将液泵装置43打开,使液泵系统4工作,此时,第四换热器422中的载冷剂4b从蓄能介质4a吸取能量,并在液泵装置43的作用下输送至第三换热器41,以使第三换热器41与环境交换热量(即放冷或放热),在第三换热器41中交换热量后的载冷剂4b、再在液泵装置43的作用下输送回第四换热器422,继续从蓄能介质4a中取能,反复循环,可以将蓄能介质4a中的能量逐渐取出并释放到环境中,从而调节环境温度。
其中,在压缩机系统3和液泵系统4同时工作的情况下。压缩机系统3中的第二换热器32可以向箱体421内的蓄能介质4a释放热量或冷量,以使蓄能介质4a的温度改变并蓄能,同时,第四换热器422中的载冷剂4b从蓄能介质4a吸取能量,并在液泵装置43的作用下输送至第三换热器41,以使第三换热器41与环境交换热量(即放冷或放热),在第三换热器41中交换热量后的载冷剂4b、再在液泵装置43的作用下输送回第四换热器422,继续从蓄能介质4a中取能,反复循环,可以将蓄能介质4a中的能量逐渐取出并释放到环境中,从而调节环境温度,由此在压缩机系统3和液泵系统4同时工作时,蓄能介质4a可以一边蓄能一边放能,从而提高空调器100的续航能力。
需要说明的是,上述实施例一中,蓄能介质4a的具体类型不限,例如可以是水等,在压缩机系统3使蓄能介质4a蓄冷的过程中,水可以结冰,以较好地储存冷量,且成本低,蓄冷、取冷效果好,而且,在本实施例一中,液泵系统4中循环的载冷剂4b的具体类型也不限,例如可以是醇类溶液,例如甲醇、乙二醇、丙三醇或低碳类醇水合物等,从而可以提高取冷和放冷效果。但是,需要说明的是,蓄能介质4a和载冷剂4b的具体不限,只要载冷剂4b的凝固点低于蓄能介质4a的蓄冷温度,保证载冷剂4b不凝固可以循环流动即可。另外,当液泵装置43用于调高环境温度时,蓄能介质4a和载冷剂4b的材质也可以根据实际要求具体选择,这里不作限定。
实施例二
在本实施例二中,如图2所示,蓄能装置42还可以不包括第四换热器422,且第二换热器32可以不设置在箱体421内。此时,蓄能装置42可以包括管路423,载冷剂4b在管路423中流通,管路423可以设在箱体421内部或者外部以与蓄能介质4a交换热量,第二换热器32设在箱体421外部且靠近或接触箱体421以与蓄能介质4a交换热量。由此,同样可以实现液泵系统4的正常工作,这里不作赘述。为了简化描述,下面 仅以液泵系统4用于降低环境温度为例进行说明,在本领域技术人员阅读了下面的技术方案后,显然能够理解液泵系统4用于调高环境温度的技术方案。
下面,描述根据本申请一些实施例的液泵装置43。
在一些实施例中,如图1和图2所示,液泵装置43包括第一泵体431和气液分离器432。其中,气液分离器432包括入口432a、气体出口432c和液体出口432b,第一泵体431的进口431a与液体出口432b相连,第一泵体431的出口431b和气液分离器432的入口432a中的其中一个连接至第三换热器41,第一泵体431的出口431b和气液分离器432的入口432a中的另一个连接至蓄能装置42。
也就是说,第一泵体431的进口431a与液体出口432b相连,当入口432a连接至第三换热器41时,第一泵体431的出口431b连接至蓄能装置42,这样第一泵体431驱动载冷剂4b可以从第三换热器41经过入口432a流向气液分离器432,由于载冷剂4b内混合有气体例如空气,混合有气体的载冷剂4b在气液分离器432内实现气液分离以分离出气体和液态的载冷剂4b,分离出的气体可从气体出口432c排出,分离出的液态载冷剂4b可经过液体出口432b流出气液分离器432并进一步流向第一泵体431,接着流向蓄能装置42;或者,第一泵体431的进口431a与液体出口432b相连,当入口432a连接至蓄能装置42时,第一泵体431的出口431b连接至第三换热器41,这样第一泵体431驱动载冷剂4b从蓄能装置42经过入口432a流向气液分离器432,由于载冷剂4b内混合有气体,混合有气体的载冷剂4b在气液分离器432内实现气液分离以分离出气体和液态的载冷剂4b,分离出的气体可从气体出口432c排出,分离出的液态载冷剂4b可经过液体出口432b进一步流经第一泵体41,接着进一步流向第三换热器41。由此,在载冷剂4b的流动方向上,气液分离器432始终位于第一泵体431的上游。
相关技术中,第一泵体431例如离心泵在工作过程中,主要是依靠泵腔内外的压差来实现泵送液体的目的,但是当液体中混有气体例如空气时,混有气体的液体流向第一泵体431的泵腔,空气会随着叶轮旋转形成气泡,导致压差减小,进而导致第一泵体431无法泵送液体。
由此,根据本申请实施例的空调器,通过在液泵装置43中设置气液分离器432,并使得气液分离器432位于第一泵体431的上游,从而混有气体的载冷剂4b可在气液分离器432内实现气体和液体载冷剂4b的分离后,保证液体载冷剂4b流向第一泵体431,避免了气体进入到第一泵体431内,从而解决了第一泵体431无法泵送液体的问题。
例如在图1所示的示例中,当根据本申请实施例的液泵装置43用在上述实施例一中的蓄能装置42时,第一泵体431和气液分离器432设在箱体421外,第一泵体431的出口431b连接至第三换热器41,气液分离器432的入口432a连接至第四换热器422,以使得载冷剂4b可以在第四换热器422和第三换热器41之间循环流通。
又例如在图2所示的示例中,当根据本申请实施例的液泵装置43用在上述实施例二中的蓄能装置42时,第一泵体431设在箱体421外,第一泵体431的出口431b连接 至第三换热器41,气液分离器432的入口432a连接至管路423,以使制冷剂在管路423与第三换热器41之间循环流通。
需要说明的是,液泵装置43可以连接在第三换热器41的进入口和蓄能装置42的排出口之间,液泵装置43也可以连接在第三换热器41的排出口和蓄能装置42的进入口之间,而且,第三换热器41的进入口和蓄能装置42的排出口之间、以及第三换热器41的排出口和蓄能装置42的进入口之间还可以分别都设有液泵装置43。
无论采用上述哪一理解方式,为简化描述:将第一泵体431的设有进口431a的接头定义为第一接头4311,将第一泵体431的设有出口431b的接头定义为第二接头4312。
在一些实施例中,如图14-图19所示,液泵装置43还包括第一管路433,第一管路433的两端分别为第一端433a和第二端433b,第一端433a与第一接头4311相连,第二端433b与液体出口432b相连,第一端433a与第一接头4311之间的连接方式不限。
可选地,第一端433a与第一接头4311之间可以采用焊接相连例如可以通过超声波焊接的方式相连,从而提高连接可靠性,密封性好。此外,第一接头4311的长度L不小于25mm,例如,第一接头4311和第一端433a之间的材质相同,例如均为铜件且第一接头4311的长度L不小于25mm,这样可以避免在第一接头4311和第一端433a之间焊接时的热量对第一泵体431内的塑料结构产生的影响,提高第一泵体431的结构的稳定性。可选地,第一管路433为铜质。
可选地,第一端433a与第一接头4311之间还可以通过卡簧固定连接,即将第一端433a套设在第一接头4311外,然后再在第一端433a外套设卡簧实现紧固,从而降低装配难度,提高装配效率。
可选地,第一端433a与第一接头4311之间还可以采用其他的方式相连。例如,如图18所示,液泵装置43还包括第一连接接头435,第一端433a的内周壁形成为第一配合斜面,在朝向靠近第一接头4311的方向上,第一配合斜面朝向远离第一管路433的中心轴线的方向倾斜延伸,第一接头4311的外周壁上设有第二配合斜面43111(例如第一接头4311的邻近第一端433a的部分外周壁),第一接头4311的外周壁上设有第一螺纹43112,第一螺纹43112位于第二配合斜面43111的远离第一端433a的一侧,第一连接接头435的内周壁上设有第二螺纹4351,第一连接接头435外套在第一端433a的外周壁上、第二螺纹4351与第一螺纹43112配合且第二配合斜面43111与第一配合斜面相抵。由此,有利于提高第一接头4311与第一端433a之间的密封性。此外,第一配合斜面的倾斜角度(第一配合斜面与第一管路433的中心轴线之间的夹角)的取值范围为30-75°,例如,45°、50°或60°。
在一些示例中,第二端433b与液体出口432b之间的连接方式不限。例如,第二端433b与液体出口432b之间可以通过焊接相连,例如可以通过超声波焊接的方式相连,从而提高连接可靠性;又例如,还可以通过卡簧固定连接,即将第二端433b套设在液体出口432b外,然后再在第二端433b外套设卡簧实现紧固,从而降低装配难度,提高装配效率。除此之外,第二端433b和液体出口432b还可以采用上述第一端433a与第 一接头4311之间的方式进行连接,即采用连接接头、配合斜面以及螺纹连接的方式进行连接。
在一些示例中,如图14和图20所示,液泵装置43还包括第二管路434,第二管路434的两端分别为第三端434a和第四端434b,第三端434a与第二接头4312相连,第四端434b连接至第三换热器41或蓄能装置42,第三端434a与第二接头4312之间的连接方式不限。
可选地,第三端434a与第二接头4312之间可以采用焊接相连例如可以通过超声波焊接的方式相连,从而提高连接可靠性。此外,第二接头4312的长度M不小于25mm,例如,第二接头4312和第三端434a之间的材质相同,例如均为铜件且第二接头4312的长度M不小于25mm,这样可以避免在第二接头4312和第三端434a之间焊接时的热量对第一泵体431内的塑料结构产生的影响,提高第一泵体431的结构的稳定性。
可选地,第三端434a与第二接头4312之间还可以通过卡簧固定连接,即将第三端434a套设在第二接头4312外,然后再在第三端434a外套设卡簧实现紧固,从而降低装配难度,提高装配效率。
可选地,第三端434a与第二接头4312之间还可以采用其他的方式相连。例如,如图17和图20所示,液泵装置43还包括第二连接接头436,第三端434a的内周壁形成为第三配合斜面,在朝向靠近第二接头4312的方向上,第三配合斜面朝向远离第二管路434的中心轴线的方向倾斜延伸,第二接头4312的外周壁(例如第二接头4312的邻近第三端434a的部分外周壁)上设有第四配合斜面43121,第二接头4312的外周壁上设有第三螺纹43122,第三螺纹43122位于第四配合斜面43121的远离第三端434a的一侧,第二连接接头436的内周壁上设有第四螺纹4361,第二连接接头436外套在第三端434a的外周壁上、第四螺纹4361与第三螺纹43122配合且第四配合斜面43121与第三配合斜面相抵。由此,有利于提高第二接头4312与第三端434a之间的密封性。此外,第三配合斜面的倾斜角度(第三配合斜面与第二管路434的中心轴线之间的夹角)的取值范围为30-75°,例如,45°、50°或60°。
具体地,第一配合斜面至第四配合斜面43121均形成为截圆锥面。
在一些示例中,第四端434b连接至第三换热器41或蓄能装置与载冷剂4b的流向有关,无论第三换热器41和蓄能装置42中的哪一个与第四端434b相连,均将第三换热器41和蓄能装置中与第四端434b相连的接口定义为第一接口。其中,第一接口与第四端434b之间的连接方式不限。
可选地,第四端434b与第一接口之间可以通过超声波焊接的方式相连,从而提高连接可靠性;又例如,还可以通过卡簧固定连接,即将第四端434b套设在第一接口外,然后再在第四端434b外套设卡簧实现紧固,从而降低装配难度,提高装配效率。当然,第四端434b与第一接口之间还可以采用上述的连接接头、配合斜面以及螺纹连接的方式进行连接。
可选地,第一泵体431的水泵盖为铜质或铝合金,由于第一接头4311和第二接头 4312一般均设在水泵盖上,当将第一泵体431的水泵盖设置为铜质或铝合金件时,可以便于第一接头4311与第一管路433之间以及第二接头4312与第二管路434之间的焊接连接,焊接产生的热量对水泵盖的影响小,水泵盖不容易变形。
在一些示例中,气液分离器432的入口432a通过第三管路437连接至第三换热器41或蓄能装置42。也就是说,当第四端434b连接至第三换热器41时,气液分离器432的入口432a通过第三管路437连接至蓄能装置42,当第四端434b连接至蓄能装置42时,气液分离器432的入口432a通过第三管路437连接至第三换热器41。无论第三换热器41和蓄能装置中的哪一个与第三管路437相连,均将第三换热器41和蓄能装置42中与第三管路437相连的接口定义为第二接口。其中,第二接口与第三管路437之间的连接方式不限。
可选地,第三管路437与第二接口之间可以通过超声波焊接的方式相连,从而提高连接可靠性;又例如,还可以通过卡簧固定连接,即将第三管路437的一端套设在第二接口外,然后再在第三管路437的一端外套设卡簧实现紧固,从而降低装配难度,提高装配效率。当然,第三管路437与第二接口之间还可以采用上述的连接接头、配合斜面以及螺纹连接的方式进行连接。
可选地,第三管路437与气液分离器432的入口432a之间通过超声波焊接的方式相连,从而提高连接可靠性;又例如,还可以通过卡簧固定连接,即将第三管路437的另一端套设在入口432a外,然后再在第三管路437的另一端外套设卡簧实现紧固,从而降低装配难度,提高装配效率。当然,第三管路437与入口432a之间还可以采用上述的连接接头、配合斜面以及螺纹连接的方式进行连接。
下面,描述根据本申请空调器100关于结构排布的一些具体实施例。
如图3所示,根据本申请实施例的空调器100还包括机壳1,结合图4-图5,压缩机系统3和液泵系统4均设在机壳1内以被机壳1保护,且使得空调器100为一个整体模块,便于移动、运输、安装和使用。
如图5所示,机壳1内可以具有相互独立的第一风道13a和第二风道13b,也就是说,第一风道13a和第二风道13b为不同的风道,互不连通、以相互独立,第一风道13a可以位于第二风道13b的上方或者下方,结合图3-图6,机壳1上可以形成有与第一风道13a连通的第一进风口122和第一出风口112,机壳1上还可以形成有与第二风道13b连通的第二进风口191和第二出风口123,其中,第三换热器41可以设于第一风道13a,第一换热器31可以设于第二风道13b。由此,使得第一换热器31与第三换热器41在同时工作时彼此之间的影响较小,从而提高空调器100的工作可靠性。
需要说明的是,上述“上方”指的是包括但不限于是正上方,例如还可以是斜上方,此外“下方”指的是包括但不限于是正下方,例如还可以是斜下方,在此不作赘述。
如图22所示,在一些实施例中,空调器100还可以包括第一通风装置2a,第一通风装置2a设于第一风道13a,以使第一风道13a通风。由此,可以提高第三换热器41 与环境交换热量的速度,从而快速调节环境温度。
如图3和图6所示,在一些具体实施例中,第一进风口122可以形成在机壳1的后表面12上,第一出风口112可以形成在机壳1的前表面11上,结合图8,第三换热器41和第一通风装置2a可以沿前后方向依次排列,且第一通风装置2a可以设在第三换热器41的远离第一进风口122的一侧。也就是说,在机壳1的后表面12上可以形成有第一进风口122,在机壳1的前表面11上可以形成有第一出风口112,第一通风装置2a位于第三换热器41的前侧,以使第三换热器41比第一通风装置2a更靠近第一进风口122,从而第三换热器41可以位于第一通风装置2a的上游。由此,可以提高第三换热器41与环境交换热量的速度,并且吹出的风还不会被第三换热器41阻挡,从而可以优化第一通风装置2a的送风效果。
如图9所示,在一些实施例中,空调器100还可以包括第二通风装置2b,第一换热器31设于第二风道13b,第二通风装置2b使第二风道13b通风。由此,可以提高第一换热器31与环境交换热量的速度,从而使得蓄能介质4a可以快速蓄能。
如图4和图6所示,在一些具体实施例中,第二进风口191可以形成在机壳1的侧表面19上,第二出风口123可以形成在机壳1的后表面12上,结合图5,第一换热器31和第二通风装置2b沿左右方向依次排列,且第二通风装置2b设在第一换热器31的远离第二进风口191的一侧。也就是说,在机壳1的侧表面19上形成有第二进风口191,在机壳1的后表面12上形成有第二出风口123,第一换热器31设在第二通风装置2b和第二进风口191之间,以使第一换热器31较第二通风装置2b更靠近第二进风口191,当第二通风装置2b工作时会在第二风道13b内形成气流以使第二风道13b通风,此时,第一换热器31可以位于第二通风装置2b的上游。由此,可以提高第一换热器31与环境交换热量的速度,并且吹出的风还不会被第一换热器31阻挡,从而可以优化第二通风装置2b的送风效果。
当然,本申请不限于此,在本申请的其他一些实施例中,第一通风装置2a和第二通风装置2b中的至少一个还可以不设置,此时可以通过自然风来实现热量交换。
在一些具体示例中,如图10所示,第一进风口122和第二出风口123可以均形成在机壳1的后表面12上,第一出风口112形可以成在机壳1的前表面11上,第二进风口191可以形成在机壳1的侧表面19上,第一风道13a可以位于第二风道13b的上方,第二出风口123的上端所在水平面L2低于第二风道13b的中心所在水平面L1。也就是说,在机壳1的后表面12上可以同时形成有第一进风口122和第二出风口123,在机壳1的前表面11上可以形成有第一出风口112,在机壳1的侧表面19上可以形成有第二进风口191,第二风道13b的中心所在的水平面L1的高度高于第二出风口123的上端所在的水平面L2的高度。
由此,不但可以在机壳1内保证第一风道13a和第二风道13b之间相互独立、互不干扰,在机壳1外,可以降低第二出风口123排出的风向第一进风口122回流的气流短路问题,从而可以进一步提高第一风道13a和第二风道13b之间的相互独立性。当然, 本申请不限于此,在本申请的其他实施例中,第二出风口123的中心所在水平面L3还可以平齐于低于第二风道13b的中心所在水平面L1,由此,可以提高第二风道13b的送风快捷性。
如上文,根据本申请实施例的空调器100,由于可以设置两个不同的风道(即第一风道13a和第二风道13b),因此空调器100可以构造成压缩机系统3和液泵系统4既可以同时工作,也可以不同时工作。其中,压缩机系统3工作时,进入第二风道13b内的气流可以与工作中的第一换热器31交换热量,从而实现第一换热器31的快速放热,液泵系统4工作时,进入第一风道13a内的气流可以与工作中的第三换热器41交换热量,从而实现第三换热器41的快速放冷,并且第一风道13a和第二风道13b的气流互不影响,压缩机系统3和液泵系统4同时工作时,可以互不干扰。由此,空调器100的续航能力较高,同时,用户在使用空调器100时,即可以选择先蓄能再使用,又可以选择边蓄能边使用,从而满足不同应用场景需求。
需要说明的是,第一通风装置2a和第二通风装置2b的类型可以相同,也可以不同,例如可以同时为轴流风轮或同时为离心风轮,又例如可以是其中一个为轴流风轮,另一个为离心风轮等,在此不作限定。
此外,第一进风口122、第一出风口112、第二进风口191和第二出风口123的位置可以根据实际需要进行设置,由于第一换热器31与第三换热器41分别属于压缩机系统3和液泵系统4,以制冷时为例,当压缩机系统3和液泵系统4同时工作时,第三换热器41对外放冷,此时第一风道13a向外吹冷风,但同时第一换热器31则对外放热,此时第二风道13b则向外吹热风,因此,为了增加用户使用舒适度,例如可以将第二出风口123和第一进风口122分别设在机壳1的不同表面,或者加大第一进风口122与第二出风口123之间间隔的距离,降低第二出风口123的出风对第一进风口122的进风造成的影响,避免回风短路问题,另外,第一出风口112与第二出风口123也可以不在机壳1的同一表面,从而提高用户体验。
此外,需要说明的是,当压缩机系统3和/或液泵系统4工作时,还可以不运行通风装置,此时,可以利用利用外界自然风或者外界吹风装置实现热量交换,从而降低能耗。因此,根据本申请实施例的空调器100也可以不包括通风装置。另外,当通风装置和液泵装置43的耗电较小时,空调器100还可以具备电池,这样,当空调器100仅采用液泵系统4工作时,就无需连接电源线,即当压缩机系统3结束工作后,空调器100可以脱离插电模式,从而可以随时移动空调器100,提高移动空调的可移动范围,满足不同应用场景需求。
在一些实施例中,如图4和图6所示,第一进风口122和第二进风口191均可以设有防油烟过滤网9。由此,空调器100在高油烟的环境中使用时(例如厨房等),通过在第一进风口122和第二进风口191均设有防油烟过滤网9,可以降低油烟对第一风道13a与第二风道13b内的组件(例如第一换热器31、第三换热器41、第一通风装置2a、第二通风装置2b)造成影响,并且,防油烟过滤网9可以为抽拉等方式安装,拆装方 便,便于用户对防油烟过滤网9的清洗及更换。
在一些实施例中,如图5和图14所示,机壳1内可以具有自上向下依次排布的第一层空间101、第二层空间102和第三层空间103,第一风道13a形成在第一层空间101内,气液分离器432位于第一层空间101内,第二风道13b形成在第二层空间102内,第一泵体431位于第二层空间102内,第二换热器32和蓄能装置42设在第三层空间103内。由此,空调器100的整机布局更加协调,上下空间利用合理,平稳性好,可以平稳地支撑在地面上或者在地面上行进。而且,气液分离器432位于第一泵体431的上方,气液分离器432具有良好的气液分离效果,这样有利于液体的载冷剂4b进入到第一泵体431,避免了气体进入到第一泵体431内,从而解决了第一泵体431无法泵送液体的问题。
此外,第一风道13a的高度较高,从而保证第一风道13a内的第三换热器41的高度较高,改善与第三换热器41交换后的冷空气快速到达地面,即延长了冷气的吹送距离和时间,从而可以更好地降低环境温度,同时第一风道13a的出风可以更容易被用户感受到,以提高用户使用舒适度。
在一些实施例中,如图5所示,压缩机33可以设于第二层空间102。由此,压缩机33可以更加方便地与其上方的第一换热器31和其下方的第二换热器32连接,缩短制冷剂3a的运输管路,从而降低成本,改善制冷剂3a的泄漏问题,进而提高制冷剂3a的运输可靠性,提高压缩机系统3的工作可靠性。而且,通过将压缩机33设在第二层空间102,还可以降低整机重心和振动,使得空调器100更加平稳地工作。
在一些实施例中,如图5所示,空调器100还可以包括设于第二风道13b且使第二风道13b通风的第二通风装置2b,在左右方向上,第二通风装置2b设在第一换热器31与压缩机33之间。由此,第二通风装置2b在工作时,可以不被压缩机33影响,提高第二风道13b的通风效果。
在一些实施例中,如图14和图21所示,第一层空间101内设有风道件1011,风道件1011限定出第一风道13a,气液分离器432可拆卸地设在风道件1011的外表面上。由此,可以便于气液分离器432与位于第一层空间101内的第三换热器41进行连接,同时风道件1011与气液分离器432之间的可拆卸设置便于气液分离器432的更换和维修,而且气液分离器432置于空调器100的上部位置,更有利于气液分离。
风道件1011与气液分离器432之间的连接方式不限。例如,气液分离器432与风道件1011之间可以通过紧固件相连。又如,如图14-图15所示,风道件1011的外表面上设有沿上下方向间隔开的定位圈10111和卡扣部10112,定位圈10111外套在气液分离器432的上端,卡扣部10112包括两个相对设置的弹性卡勾10112a(例如沿前后方向相对设置),气液分离器432的下端卡设在两个弹性卡勾10112a之间,由此,结构简单,便于拆卸。
在本申请的一些示例中,入口432a的最低处所在的水平高度不低于第三换热器41的顶端所在的水平高度。例如,入口432a位于气液分离器432的上部位置,气体出口 432c位于气液分离器432的顶部,液体出口432b位于气液分离器432的底部,入口432a的最低处所在的水平高度高于第三换热器41的顶端所在的水平高度,气液分离器432内的空气腔体可以位于空调器100的上部位置或顶部位置,这样混有空气的载冷剂4b在气液分离器432内可以很好地气液分离。
在本申请的一些实施例中,参照图21和图22,风道件1011内限定出相互连通的容纳腔21a和整流腔11a,风道件1011上形成有与容纳腔21a连通的风道进口113,整流腔11a的远离容纳腔21a的一端的壁上形成有呈狭缝状的风道排出口111,容纳腔21a内设有第一通风装置2a,容纳腔21a和整流腔11a在第一通风装置211的轴向方向上排布。在空调器100工作时,第一通风装置2a驱动气流从风道进口113进入风道件1011内,依次流经容纳腔21a和整流腔11a,并从风道排出口111排出至室内。可以改善室内的环境温度。在气流流经整流腔11a的过程中,可以对气流进行整流,使得气流的流动更为有序。气流经整流腔11a整流后从呈狭缝状的风道排出口111排出至室内,在第一通风装置211的功率和转速相同的情况下,可以增加送风距离,使得送风更远,起到更好的制冷/制热效果,并且能耗和噪音均较低。
其中,风道排出口111可以朝向正前方出风,风道排出口111也可以朝向前并朝向斜向上出风。
可选地,风道排出口111可以呈直线延伸,也可以呈曲线延伸。例如,风道排出口111可以呈长条形、弧形或环形(例如圆环形、椭圆环形、多边环形等)。
例如,风道排出口111形成为环形,风道排出口111可以环绕第一通风装置2a的中心轴线设置。由此,可以使得出风范围较大,在提高出风速度以增加出风距离的同时,可以使得空调器100具有较大的出风范围,可以进一步地提高空调器100的制冷/制热性能。
根据Q(风量)=S(出风面积)·V(风速),相同风量下,出风面积越小,出风风速越大,因此同样风量下可以将风送的更远,起到更好的制冷/制热效果。同时,根据伯努利方程,对于不可压流体,有:ρgh+0.5ρv2+p=C,即:重力时能+动能+压力势能=常数。对于气体,重力势能可以忽略,因此动能越大,压力越小。因此对于高速射流,会在射流区形成显著低压,该低压会对周围空气形成吸附牵引作用,从而使总的气流流量增大,可进一步起到远距离送风的效果。
可选地,第一通风装置2a可以为离心风轮,由此可以进一步地提高送风距离。在第一通风装置2a为离心风轮时,风道排出口111可以沿第一通风装置2a的轴向出风。
具体地,空调器100的机壳1上的第一进风口122与风道进口113在第一通风装置211的轴向方向上相对,外部气流经由第一进风口122进入机壳1内,并从风道进口113进入风道件1011内并与第三换热器41换热,再由第一通风装置2a增压后从第一通风装置2a径向甩出,甩出的高压的气流再经容纳腔21a及整流腔11a变向后,从风道排出口111喷射出来。在气流从容纳腔21a流向整流腔11a的过程中,气流由第一通风装置2a的径向变向为大体沿第一通风装置2a的轴向,第一通风装置2a的轴向可以沿前 后方向延伸,此时可以实现朝向前送风,通过整流腔11a的整流作用,可以使得变向后的气流变得更为有序,减少气流损失。
其中,风道件1011的大部分可以位于机壳1内,风道件1011的邻近风道排出口111的部分可以位于机壳1外。
可选地,在第一通风装置2a为离心风轮时,整流腔11a至少邻近容纳腔21a的部分可以呈围绕第一通风装置2a的中心轴线延伸的环形,由此可以使得经第一通风装置2a增压后的气流从第一通风装置2a径向甩出并变向后,使得第一通风装置2a的周向方向上的各个部分的气流可以直接流入整流腔11a内,减少流动损失。
可选地,风道进口113和风道排出口111设置在第一通风装置2a的轴向两侧,由此使得第一进风口122和风道排出口111位于第一通风装置2a的轴向两侧,使得气流在流经空调器100内部空间的过程中,气流大体可以沿第一通风装置2a的轴向流动,使得气流的流动路径简单且可以减少气流的流动路径,减少气流的流动损失,进一步地使得气流吹出更远,并且可以减少第一进风口122和风道排出口111之间的气流的相互干扰、影响。
根据本申请的一些实施例,参照图21和图22,风道件1011包括相连的第一风道件1a和第二风道件7a,第一风道件1a包括第一整流壳111c、第二整流壳112c以及挡板113c,第一整流壳111c和第二整流壳112c可以呈圆筒形或锥筒形,挡板113c可以与第一通风装置211的旋转轴线大致垂直。第一整流壳111c围绕挡板113c的外周设置且第一整流壳111c与挡板113c相连,挡板113c位于第一整流壳111c的邻近第二风道件7a的一端,第二整流壳112c围绕第一整流壳111c的外周设置且第二整流壳112c和第一整流壳111c间隔开,第一整流壳111c、第二整流壳112c和挡板113c共同限定出整流腔11a,第二风道件7a呈筒形且限定出容纳腔21a,第二风道件7a可以呈圆筒形。在气流流入容纳腔21a经第一通风装置2a增压后,使得气流可以经第一通风装置2a的径向甩出,同时挡板113c可以防止气流流经第一通风装置2a时沿轴向发散,同时方便整流腔11a及容纳腔21a的形成,且使得风道件1011的结构简单。
可选地,参照图21和图22,整流腔11a的朝向容纳腔21a的一侧敞开以与容纳腔21a连通,气流流经第一通风装置2a后经第一通风装置2a的径向流出,在气流由容纳腔21a流入整流腔11a的过程中,气流的流动方向由第一通风装置2a的径向变向为大体沿第一通风装置2a的轴向,气流流经整流腔11a之后经风道排出口111吹出。由此,使得整流腔11a的气流进风口具有较大的空间和面积,在气流流经第一通风装置2a之后可以直接经容纳腔21a流入整流腔11a内,减少气流流动损失。
根据本申请的一些实施例,参照图21和图22,在气流的流动方向上,整流腔11a的流通面积逐渐减小。由此,在气流流经整流腔11a整流的过程,在气流的流动方向上,可以使得气流的流速逐渐增大,以使得气流通过较大的速度流出风道排出口111,从而使得空调器100的送风距离更远。
根据本申请的一些实施例,风道件1011包括可拆卸相连的第一风道件1a和第二风 道件7a,第一风道件1a内限定出整流腔11a,第二风道件7a内限定出容纳腔21a。由此,通过使得整流腔11a和容纳腔21a通过两个可拆卸的部分分别限定出,方便了空调器100内部零部件例如第一通风装置211的维护、更换等,并且可以根据出风要求,同一规格的第二风道件7a可以配合具有不同整流腔11a或风道排出口111的第一风道件1a,从而可以仅更改第一风道件1a结构且空调器100的其他结构不变的情况下,可以生产出具有不同出风效果的空调器,减少物料种类,节约生产成本。
可选地,第一风道件1a和第二风道件7a之间可以通过卡扣结构实现可拆卸地相连;或者,第一风道件1a和第二风道件7a之间也可以通过紧固件例如螺钉实现可拆卸地相连;或者,第一风道件1a和第二风道件7a之间通过卡扣结构和紧固件实现可拆卸地相连。
可选地,风道排出口111的宽度为W,W不大于0.05D,D为第一通风装置2a的直径。由此,可以保证风道排出口的出风具有较大的出风速度,从而可以保证该空调器100可以向较远的地方送风。
下面,描述根据本申请一些实施例的移动部件。
在一些示例中,空调器100包括移动部件和智能控制模块,智能控制模块可以集成在空调器100的电路板上,移动部件例如万向轮设在机壳的底部,智能控制模块与移动部件连接以用于控制移动部件运动,从而实现整个空调器100的移动,由此,本实施例中的空调器100可以在智能控制模块的控制下自动地移动,不再需要人力移动,从而灵活性更高,进而能够各种受控的移动,有利于提高用户的使用体验。
下面,描述根据本申请一些实施例的用于空调器100的接水系统5。
在一些实施例中,如图11所示,空调器100还可以包括接水系统5,接水系统5设在机壳1内,且包括第一接水盘51和第二接水盘52,第一接水盘51设在第二接水盘52的上方,第三换热器41设在第一接水盘51上,第一换热器31和压缩机33均设在第二接水盘52上且位于第一接水盘51的下方。第三换热器41在进行放冷工作时,由于冷热交换,在第三换热器41表面和连接在第三换热器41的部分载冷剂管路上会形成冷凝水,冷凝水可以滴落在第一接水盘51上,另外位于第一接水盘51和第二接水盘52之间的制冷剂管路或载冷剂管路表面凝结的冷凝水,可以滴落在第二接水盘52上。由此,可以避免空调器100内部积水烧损线路,提高空调器100的工作可靠性。
在一些实施例中,如图12所示,第一接水盘51上具有滴水孔5112,滴水孔5112与第一换热器31相对。由此,滴水孔5112处可以滴水,且在滴水孔5112的下方相对设置有第一换热器31,滴落在第一接水盘51上的冷凝水能够聚集并从滴水孔5112处滴落到第一换热器31的表面,由于冷凝水在第一换热器31表面蒸发时会吸收热量,因此,可以通过冷凝水降低第一换热器31的温度,进而提高第一换热器31的散热效率。此外,由于冷凝水被回收利用,从而可以避免用户主动排放接水系统5中冷凝水,或者减少用户定时排放接水装置中冷凝水的次数,减轻用户的劳动强度。
需要说明的是,滴水孔5112与第一换热器31相对设置时,滴水孔5112可以位于第一换热器31的正上方设置,从而可以使冷凝水直接滴落到第一换热器31上,此外,当滴水孔5112不位于第一换热器31的正上方设置时,例如可以是斜上方,此时在滴水孔5112与第一换热器31之间可以利用例如导流管(图未示出该示例)等装置,将冷凝水导流至第一换热器31表面,在此不作赘述。
在一些实施例中,如图12-图13所示,滴水孔5112可以为多个且均设在第一接水盘51的第一边沿5111处,多个滴水孔5112沿第一边沿5111的延伸方向间隔开分布。由此,冷凝水可以由间隔开且均匀分布的多个滴水孔5112处向下滴落,使滴落在第一换热器31表面的冷凝水可以较为均匀,从而可以提高冷凝水的利用率,同时提高第一换热器31的散热效率。
在一些实施例中,如图13所示,接水系统5还可以包括:水泵53,水泵53可以将第二接水盘52内的水泵送至第一接水盘51。由此,第一接水盘51与第二接水盘52中的冷凝水均可以滴落到第一换热器31上,从而可以提高第一换热器31的放热速度,进而加快第二换热器32的制冷速度,同时,还可以提高冷凝水的利用率。可以理解的是,在第二接水盘52内的冷凝水可以包括,由滴水孔5112滴落到第一换热器31表面但并没有蒸发的冷凝水,以及位于第一接水盘51和第二接水盘52之间的制冷剂管路或载冷剂管路表面凝结并滴落在第二接水盘52中的冷凝水。
在一些实施例中,如图13所示,第二接水盘52上还可以具有引水槽5211,水泵53的进水口与引水槽5211连通。由此,可以先通过引水槽5211的引流作用将第二接水盘52中的冷凝水引流到水泵53的进水口处,再由水泵53将冷凝水泵送至第一接水盘51,从而引水槽5211可以加快第二接水盘52中的冷凝水的聚集速度,提高水泵53的工作效率和第二接水盘52的排水效果。
在一些实施例中,如图13所示,第一接水盘51可以包括第一底板511和第一围板512,第一围板512由第一底板511的边沿向上延伸,第一围板512与第一底板511之间限定出第一盛水腔510。由此,第一盛水腔510可以较好地收集滴落的冷凝水,降低冷凝水流到第一接水盘51以外的概率,提高空调器100的工作可靠性,此外,第一接水盘51的结构简单,方便加工。
在一些实施例中,如图13所示,第二接水盘52可以包括第二底板521和第二围板522,第二围板522由第二底板521的边沿向上延伸,第二围板522与第二底板521之间限定出第二盛水腔520。由此,第二盛水腔520可以较好地收集滴落的冷凝水,降低冷凝水流到第二接水盘52以外的概率,提高空调器100的工作可靠性,此外,第二接水盘52的结构简单,方便加工。
在一些具体示例中,如图11所示,第一接水盘51上还可以设有第一通风装置2a,在前后方向上,第一通风装置2a可以位于第三换热器41的前侧。由此,通过第二通风装置2b可以提高第一换热器31与环境交换热量的速度,并且第二通风装置2b向前吹风时还不会被第一换热器31阻挡,从而可以提高第一换热器31的换热效率,和增加第 二通风装置2b的送风距离。
在一些具体示例中,如图13所示,第二接水盘52上还可以设有第二通风装置2b,在左右方向上,第二通风装置2b可以位于第一换热器31和压缩机33之间。由此,第二通风装置2b在工作时,可以不被压缩机33影响,而且,通过将压缩机33设在第二接水盘52上,还可以降低整机重心和振动,使得空调器100更加平稳地工作。
在一些具体示例中,如图13所示,第二换热器32和蓄能装置42均设在第二接水盘52的下方,从而可以优化整机布局。
综上,根据本申请实施例的接水系统5,使得冷凝水不会流到其它零部件(例如滚轮轴承、电器元件等)上或机壳1外,从而可以避免造成其它零部件(例如滚轮轴承、电器元件等)的损坏或流到机壳1外,进而提高空调器100的安全性和工作可靠性。
此外,需要说明的是,根据本申请实施例的接水系统5,不限于应用在第一换热器31与第三换热器41分别位于相互独立的风道中的示例,也就是说,当第一换热器31与第三换热器41设在同一个风道中,即在第一风道13a和第二风道13b相互连通、即不为相互独立的风道的实施例中,也可以应用根据本申请实施例的接水系统5。此外,当第一换热器31和第三换热器41共用同一个风道时,压缩机系统3和液泵系统4可以不同时工作,可以先运行压缩机系统3进行蓄能,再运行液泵系统4进行放冷,从而第一换热器31和第三换热器41可以共用一套通风装置,以降低空调器100的整机复杂性,使得空调器100的结构紧凑、小巧、成本低。
需要说明的是,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (15)

  1. 一种空调器,其特征在于,包括:
    压缩机系统,所述压缩机系统包括循环连通的:第一换热器、第二换热器、压缩机和节流装置,所述压缩机系统内循环流通制冷剂;
    液泵系统,所述液泵系统包括循环连通的:第三换热器、蓄能装置和液泵装置,所述液泵系统内循环流通载冷剂,所述蓄能装置包括从所述第二换热器取能并蓄能的蓄能介质,所述载冷剂与所述蓄能介质热交换,
    其中,所述液泵装置包括第一泵体和气液分离器,所述气液分离器包括入口、气体出口和液体出口,所述第一泵体的进口与所述液体出口相连,所述第一泵体的出口和所述气液分离器的入口中的其中一个连接至所述第三换热器,所述第一泵体的出口和所述气液分离器的入口中的另一个连接至所述蓄能装置。
  2. 根据权利要求1所述的空调器,其特征在于,所述液泵装置还包括第一管路,所述第一管路的两端分别为第一端和第二端,所述第一端与所述第一泵体的设有所述进口的第一接头相连,所述第二端与所述液体出口相连,所述第一端与所述第一接头通过焊接相连。
  3. 根据权利要求2所述的空调器,其特征在于,所述第一接头的长度不小于25mm。
  4. 根据权利要求1-2中任一项所述的空调器,其特征在于,所述液泵装置还包括第一管路和第一连接接头,所述第一管路的两端分别为第一端和第二端,所述第一端与所述第一泵体的设有所述进口的第一接头相连,所述第二端与所述液体出口相连,所述第一端的内周壁形成为第一配合斜面,在朝向靠近所述第一接头的方向上,所述第一配合斜面朝向远离第一管路的中心轴线的方向倾斜延伸,所述第一接头的外周壁上设有第二配合斜面,所述第一接头的外周壁上设有第一螺纹,所述第一螺纹位于所述第二配合斜面的远离所述第一端的一侧,所述第一连接接头的内周壁上设有第二螺纹,所述第一连接接头外套在所述第一端的外周壁上、所述第二螺纹与所述第一螺纹配合且所述第二配合斜面与所述第一配合斜面相抵。
  5. 根据权利要求1-4中任一项所述的空调器,其特征在于,所述液泵装置还包括第二管路,所述第二管路的两端分别为第三端和第四端,所述第三端与所述第一泵体的设有所述出口的第二接头相连,所述第四端连接至所述第三换热器或所述蓄能装置,所述第三端与所述第二接头通过焊接相连。
  6. 根据权利要求5所述的空调器,其特征在于,所述第二接头的长度不小于25mm。
  7. 根据权利要求1-6中任一项所述的空调器,其特征在于,所述液泵装置还包括第二管路和第二连接接头,所述第二管路的两端分别为第三端和第四端,所述第三端与所述第一泵体的设有所述出口的第二接头相连,所述第四端连接至所述第三换热器或所述蓄能装置,所述第三端的内周壁形成为第三配合斜面,在朝向靠近所述第二接头的方向上,所述第三配合斜面朝向远离第二管路的中心轴线的方向倾斜延伸,所述第二接头的外周壁上设 有第四配合斜面,所述第二接头的外周壁上设有第三螺纹,所述第三螺纹位于所述第四配合斜面的远离所述第三端的一侧,所述第二连接接头的内周壁上设有第四螺纹,所述第二连接接头外套在所述第三端的外周壁上、所述第四螺纹与所述第三螺纹配合且所述第四配合斜面与所述第三配合斜面相抵。
  8. 根据权利要求1-7中任一项所述的空调器,其特征在于,所述空调器还包括机壳,所述机壳内具有相互独立的第一风道和第二风道,所述机壳上形成有与所述第一风道连通的第一进风口和第一出风口,所述机壳上还形成有与所述第二风道连通的第二进风口和第二出风口,所述第三换热器设于所述第一风道,所述第一换热器设于所述第二风道。
  9. 根据权利要求8所述的空调器,其特征在于,所述机壳内具有自上向下依次排布的第一层空间、第二层空间和第三层空间,所述第一风道形成在所述第一层空间内,所述气液分离器位于所述第一层空间内,所述第二风道形成在所述第二层空间内,所述第一泵体位于所述第二层空间内,所述第二换热器和所述蓄能装置设在所述第三层空间内。
  10. 根据权利要求9所述的空调器,其特征在于,所述第一层空间内设有风道件,所述风道件限定出所述第一风道,所述气液分离器可拆卸地设在所述风道件的外表面上。
  11. 根据权利要求10所述的空调器,其特征在于,所述风道件的外表面上设有沿上下方向间隔开的定位圈和卡扣部,所述定位圈外套在所述气液分离器的上端,所述卡扣部包括两个相对设置的弹性卡勾,所述气液分离器的下端卡设在两个所述弹性卡勾之间。
  12. 根据权利要求10所述的空调器,其特征在于,所述入口的最低处所在的水平高度不低于所述第三换热器的顶端所在的水平高度。
  13. 根据权利要求10所述的空调器,其特征在于,所述风道件内限定出相互连通的容纳腔和整流腔,所述风道件上形成有与所述容纳腔连通的风道进口,所述整流腔的远离所述容纳腔的一端的壁上形成有呈狭缝状的风道排出口,所述容纳腔内设有第一通风装置。
  14. 根据权利要求8所述的空调器,其特征在于,还包括移动部件和智能控制模块,所述移动部件设在所述机壳的底部,所述智能控制模块与所述移动部件连接以用于控制所述移动部件运动。
  15. 根据权利要求1-14中任一项所述的空调器,其特征在于,所述蓄能装置包括:
    箱体,所述箱体内具有所述蓄能介质,所述第二换热器设于所述蓄能介质内,所述蓄能介质从所述第二换热器取能并蓄能;
    第四换热器,所述第四换热器设在所述蓄能介质内,以从所述蓄能介质取能,所述液泵装置连接在所述第三换热器与所述第四换热器之间,以使所述载冷剂在所述第三换热器与所述第四换热器之间循环。
PCT/CN2019/113050 2019-09-11 2019-10-24 空调器 WO2021046979A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910860429.0 2019-09-11
CN201921527213.4 2019-09-11
CN201910860429.0A CN112556013A (zh) 2019-09-11 2019-09-11 空调器
CN201921527213.4U CN210688499U (zh) 2019-09-11 2019-09-11 空调器

Publications (1)

Publication Number Publication Date
WO2021046979A1 true WO2021046979A1 (zh) 2021-03-18

Family

ID=74865944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113050 WO2021046979A1 (zh) 2019-09-11 2019-10-24 空调器

Country Status (1)

Country Link
WO (1) WO2021046979A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042227A (zh) * 1988-10-28 1990-05-16 斯南普罗吉蒂联合股票公司 单泵泵多送相气液混合物的方法
JP2000039178A (ja) * 1998-07-24 2000-02-08 Miyamoto Kenji 可搬式冷暖房装置
KR20110073764A (ko) * 2009-12-24 2011-06-30 엘지전자 주식회사 이동식 축열형 공기조화기
CN203518105U (zh) * 2013-10-18 2014-04-02 吴利民 可移动微型化冷热两用空调
CN203907804U (zh) * 2014-05-30 2014-10-29 广东美的集团芜湖制冷设备有限公司 移动空调
CN109579197A (zh) * 2019-01-14 2019-04-05 张晓庆 移动空调及其制冷方法
CN209371426U (zh) * 2019-01-14 2019-09-10 北京丰联奥睿科技有限公司 一种动力热管多联空调一体机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042227A (zh) * 1988-10-28 1990-05-16 斯南普罗吉蒂联合股票公司 单泵泵多送相气液混合物的方法
JP2000039178A (ja) * 1998-07-24 2000-02-08 Miyamoto Kenji 可搬式冷暖房装置
KR20110073764A (ko) * 2009-12-24 2011-06-30 엘지전자 주식회사 이동식 축열형 공기조화기
CN203518105U (zh) * 2013-10-18 2014-04-02 吴利民 可移动微型化冷热两用空调
CN203907804U (zh) * 2014-05-30 2014-10-29 广东美的集团芜湖制冷设备有限公司 移动空调
CN109579197A (zh) * 2019-01-14 2019-04-05 张晓庆 移动空调及其制冷方法
CN209371426U (zh) * 2019-01-14 2019-09-10 北京丰联奥睿科技有限公司 一种动力热管多联空调一体机

Similar Documents

Publication Publication Date Title
CN212618645U (zh) 一种厨房空气调节系统
CN102022786A (zh) 一体式空调器
CN100516697C (zh) 一体式空调器的排水结构
CN105444283A (zh) 一种窗式空调器
CN210861422U (zh) 空调器
CN210688498U (zh) 空调器
KR20060127550A (ko) 이동형 수냉식 에어컨
CN110307630B (zh) 一种空调器用液式蒸发器
CN102455023A (zh) 一体型窗式空调器
WO2021046979A1 (zh) 空调器
CN101995059B (zh) 一体型空调器
CN214949408U (zh) 吊顶空调器
CN102141030A (zh) 压缩机的储液罐结构
CN110701851A (zh) 一种风冷式医用冷藏箱的循环风道
CN205481611U (zh) 冷却装置及具该冷却装置的空调
CN210688499U (zh) 空调器
JP2007240107A (ja) 室外機の補助冷却装置
WO2021046980A1 (zh) 空调器
CN210220100U (zh) 一种可更换出风方式的移动式工业冷气机
KR200222092Y1 (ko) 수냉식 이동형 에어콘의 결합구조
CN112556013A (zh) 空调器
WO1998044302A1 (fr) Dispositif de refrigeration par absorption a refroidissement par air
CN220793487U (zh) 一种冷凝器及应用该冷凝器的吸油烟机
CN218096312U (zh) 空调室外机和空调器
CN215597538U (zh) 空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944936

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19944936

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19944936

Country of ref document: EP

Kind code of ref document: A1