WO2021045459A1 - Mri를 이용한 뇌혈관 예비능 측정방법 - Google Patents

Mri를 이용한 뇌혈관 예비능 측정방법 Download PDF

Info

Publication number
WO2021045459A1
WO2021045459A1 PCT/KR2020/011615 KR2020011615W WO2021045459A1 WO 2021045459 A1 WO2021045459 A1 WO 2021045459A1 KR 2020011615 W KR2020011615 W KR 2020011615W WO 2021045459 A1 WO2021045459 A1 WO 2021045459A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
blood flow
brain
follow
reserve capacity
Prior art date
Application number
PCT/KR2020/011615
Other languages
English (en)
French (fr)
Inventor
태우석
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2021045459A1 publication Critical patent/WO2021045459A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention was made by the project number 1345263341 under the support of the Ministry of Education of the Republic of Korea.
  • the research management specialized institution of the project is the Korea Research Foundation, the name of the research project is "Personal Basic Research (Ministry of Education)", and the name of the research project is "Brain imaging-based heterogeneous brain neurological disease. Development of an artificial intelligence diagnosis system”, the host institution is Korea University, and the research period is 2017.06.01 ⁇ 2018.02.28.
  • the present invention was made by project number 1711059104 under the support of the Ministry of Science, Technology and Communication of the Republic of Korea.
  • the research management professional institution of the project is the Korea Research Foundation
  • the name of the research project is “Development of Brain Science Academy”
  • the name of the research project is "Reins related to emotional disorders. Identification of nuclear neural circuits and development of local control technology”, the leading institution is Korea University, and the research period is from October 1, 2017 to March 31, 2018.
  • the present invention was made in accordance with the project number 1345277902 under the support of the Ministry of Education of the Republic of Korea.
  • the research management institution of the project is the Korea Research Foundation
  • the name of the research project is “Personal Basic Research (Ministry of Education) (R&D)”
  • the name of the research project is “Brain Imaging-based Development of an artificial intelligence diagnosis system for heterogeneous neurological diseases”
  • the leading institution is Korea University
  • the research period is from March 1, 2018 to February 28, 2019.
  • the present invention was made by project number 1711073258 under the support of the Ministry of Science, Technology and Communication of the Republic of Korea.
  • the research management professional institution of the project is the Korea Research Foundation
  • the name of the research project is “R&D of Brain Science and Technology Development (R&D)”
  • the name of the research project is "Emotion Development of diagnostic technology through the analysis of magnetic resonance imaging (DTI) modulation of rein core neural circuits for disabled patients”
  • the host institution is Korea University
  • the research period is from April 1, 2018 to December 31, 2018.
  • the present invention relates to a method for measuring cerebrovascular reserve capacity using MRI.
  • Cerebrovascular Reserve Capacity refers to a brain perfusion mutation from a normal baseline. In other words, it refers to the ability to transport more blood flow than the amount of blood flowing in the cerebrovascular vessels in a normal normal state.
  • cerebrovascular reserve capacity is low in patients with narrowing of cerebrovascular vessels due to allied sclerosis or cerebral aneurysms. People with low cerebrovascular reserves have a very high risk of stroke or ischemic attack in severe exercise or stressful situations, even if they do not normally have problems. Therefore, people with low cerebrovascular reserves can take precautionary measures, whereas those whose cerebrovascular reserves are measured sufficiently high even if there are some problems with cerebrovascular capacity do not necessarily have to undergo invasive and dangerous cerebrovascular procedures .
  • the cerebral blood vessel reserve function is a method of artificially forcibly injecting CO 2 or administering a drug (Acetazolamide), which expands the patient's peripheral blood vessels as much as possible to create a stressed state, and in this state, the patient's cerebrovascular system is converted to a nuclear medical imaging device (SPECT) to measure the increase in blood flow to the brain.
  • SPECT nuclear medical imaging device
  • SPECT is a qualitative imaging method, it has a disadvantage in terms of objectivity in evaluating cerebrovascular reserve capacity according to the subjectivity of the reader. Also, in order to evaluate the cerebrovascular reserve through SPECT, it is necessary to take two shots, but since the shooting time of the two images is usually more than a day apart, the location of the brain in the SPECT scanner changes during the shooting, so that the exact same location can be distinguished in the SPECT image. There is also a disadvantage that it is difficult.
  • the Arterial Spin Labeling (ASL) technique is a magnetic resonance imaging technique for measuring local tissue perfusion using a freely diffusible intrinsic tracer (such as water), which is called a non-invasive perfusion technique. It is used in clinical and related research.
  • the existing ASL technique was proposed by Williams et al. (1992), who measured brain blood flow in rats using water as a free diffusion tracer, and two years later, Detre et al. used ASL to study human brain in a 1.5T MRI scan. The technique was applied. After that, this technique was mainly used for research due to the complex post-processing process and technical difficulties, but it could be used in clinical trials due to the development of the post-processing process, as well as sequence durability, reduction in collection time, increase in image resolution, and decrease in artifacts. Became.
  • the present inventors have made extensive research efforts to develop a method that can more conveniently and quickly measure cerebrovascular reserve capacity using MRI images.
  • MRI images before and after vasodilator injection were taken using an arterial spin labeling (ASL) technique, and after co-registration of the pre-injection image from the post-injection image, the subtracted blood flow sensitization image was converted into a high-resolution T1 MRI.
  • ASL arterial spin labeling
  • an object of the present invention is to provide a method of providing information for measuring cerebrovascular reserve capacity.
  • the present inventors have made extensive research efforts to develop a method that can more conveniently and quickly measure cerebrovascular reserve capacity using MRI images.
  • MRI images before and after vasodilator injection were taken using the arterial spin labeling (ASL) technique, and after co-registration of the pre-injection image from the post-injection image, the subtracted blood flow sensitization image was converted to high-resolution T1 MRI. It was found that it is possible to measure cerebrovascular reserve capacity more easily and quickly by overlaid on the image in a quantitative manner.
  • ASL arterial spin labeling
  • the present invention relates to a method for providing information for measuring cerebrovascular reserve capacity of a subject, comprising the following steps:
  • This step is a process of taking a baseline image of the brain for the subject. Through this process, an image of blood flow before vasodilation by the vasodilator of the subject can be obtained.
  • the subject is a patient suspected of having a carotid artery, a stenosis or blockage of a cerebral artery, a subarachnoid hemorrhage, etc. that affects blood flow in a cerebrovascular system, a central nervous system such as ischemic stroke, hemorrhagic stroke, or epilepsy.
  • Patients identified as having abnormalities are not limited thereto.
  • the baseline image may be an arterial spin labeling (ASL) image.
  • ASL arterial spin labeling
  • ASL arterial spin labeling
  • the arterial spin labeling image may display the amount of cerebral blood flow at a corresponding location in units of mL/100g tissue/min for each signal intensity (pixel value) of the ASL map.
  • This step is a process of photographing a follow-up image of the brain for the subject. Through this process, a blood flow image may be obtained after vasodilation by a vasodilator of the subject.
  • the follow-up image may be an arterial spin labeling (ASL) image.
  • ASL arterial spin labeling
  • the following-up image may include injecting a vasodilator into the subject.
  • the injection of the vasodilator is 5 minutes to 2 hours before, 5 minutes to 1 hour, 5 minutes to 30 minutes, 5 minutes to 20 minutes, 5 minutes before acquiring the follow-up image.
  • the injection may be performed, but is not limited thereto.
  • the vasodilator may be used without limitation as long as it is a material that can be used for cerebral vasodilation in the art.
  • the vasodilator may be acetazolamide (ZoladinTM , Acetazolamide), or CO 2 gas.
  • the acquisition of the baseline image and the follow-up image may be performed while the subject maintains a position in a magnetic resonance imaging (MRI) device.
  • MRI magnetic resonance imaging
  • the subject Since the baseline image and the follow-up image must be matched to each other after acquisition to subtract the signal intensity of the image, the subject maintains its position inside the MRI device so that the position or size of the image does not change due to changes in the subject's posture, etc. It is preferably obtained from.
  • the follow-up image must be obtained from the same position as much as possible.
  • This step is a step of co-registration of each image to arrange the spatial positions of the follow-up image and the baseline image equally, and subtracting the baseline image of the same position from the follow-up image.
  • the concatenation means making the two images overlap each other by equally adjusting the direction, position, and size of the sections of the two images.
  • the step is a step of subtracting the signal intensity (pixel value) of the arterial spin labeling image of the baseline image from the signal intensity of the arterial spin labeling image of the follow-up image to obtain a subtraction image.
  • the signal intensity (pixel value) of the subtracted image is equal to a value obtained by subtracting the signal intensity (pixel value) of the arterial spin labeling image of the baseline image from the signal intensity (pixel value) of the arterial spin labeling image of the follow-up image.
  • the signal intensity represents the amount of blood flow in the unit of mL/100g tissue/min.
  • the blood flow rate of the subtracted image can be obtained by the following equation 1, the follow-up ASL image and the baseline ASL image are combined, and the signal intensity (blood flow) of the follow-up ASL image is equal to the signal of the baseline ASL image at the same location.
  • the signal intensity (blood flow) value of the subtracted image represents a positive value (+) or a negative value (-) according to the difference in the signal intensity value (pixel value) of each corresponding ASL image. do.
  • the signal intensity (blood flow) value of the subtracted image is positive, it indicates that the cerebral blood flow has increased after administration of the vasodilator, and if the signal intensity (blood flow) value of the subtracted image is negative, the cerebral blood flow decreases after administration of the vasodilator. It indicates that it was done. In particular, when the signal intensity value of the subtracted image indicates a negative value, it indicates that there is a decrease in blood flow in a nearby brain region due to blood vessel damage or the like.
  • This step is a process of overlaying the acquired subtraction image on a separately captured high-resolution T1-weighted MRI image.
  • T1 MRI The location and contours of the brain are observed more clearly in T1 MRI than in ASL MRI. Therefore, in order to more accurately identify the area of the brain whose blood flow has increased or decreased, a process of obtaining a T1-MRI image and overlaying a subtraction image on the T1-MRI image is required.
  • the two images overlap each other by equally adjusting the direction, position, and size of the section of the T1 MRI image and the ASL MRI image, similar to the matching step.
  • the method of the present invention may further include the step of checking a portion (area) in the brain where the blood flow has changed and the blood flow change.
  • the amount of change in blood flow may be quantitatively measured by measuring a pixel value of the subtracted image.
  • the subtraction image is overlaid on the T1-MRI image, and i) when the pixel value of the subtraction image is a positive value, recovery from a functional impairment of the brain region where the pixel value is located. It is predicted that the prognosis for is good, and ii) when the pixel value of the subtracted image is negative, the prognosis for recovery from impairment of the function of the brain region where the pixel value is located is predicted to be poor.
  • Predicting that the prognosis is good is the same as the expression that the vascular preparative ability is high, and predicting that the prognosis is poor is the same as the expression that the vascular reserve is low.
  • the high and low vascular preparative ability may be determined by comparing the signal intensity value of the subtracted image obtained from the method of the present invention described above from a normal subject who does not have cerebrovascular disease.
  • the step of providing information that the prognosis is highly likely to be improved only when treatment is performed on the cerebrovascular region at the corresponding location is additionally included.
  • the treatment includes surgery such as stent insertion and administration of antiplatelet agents, anticoagulants, thrombolytic agents, and the like.
  • the present invention relates to a method of measuring cerebrovascular reserve capacity using an MRI image, and when using the method of the present invention, since it is possible to measure cerebrovascular reserve capacity easily and efficiently, it is useful for diagnosis and prognosis of diseases related to cerebrovascular reserve capacity. Can be used.
  • FIG. 1 is a schematic diagram showing a method of measuring the cerebrovascular reserve capacity of the present invention.
  • FIG. 2A is a diagram illustrating a vasodilator injection (baseline, upper left), after a vasodilator injection (follow-up, upper right), and a vasodilator injection taken using an arterial spin labeling (ASL) technique according to an embodiment of the present invention. It is an image of the degree of blood flow increase before/after (bottom left) and the degree of blood flow decrease before/after vasodilator injection (bottom right).
  • ASL arterial spin labeling
  • 2B is an image of measuring brain blood flow reserve capacity obtained according to an embodiment of the present invention.
  • 3 is an image of measuring brain blood flow reserve capacity using the compared SPECT technique to confirm the excellence of the method for measuring cerebrovascular reserve capacity of the present invention.
  • the cerebrovascular reserve capacity was measured using the following method for stroke patients.
  • the program for processing the ASL and T1 images used statistical paramateric mapping 12 (SPM12), and the ASL and T1 images were both taken on the same MRI while the same patient was lying down.
  • SPM12 statistical paramateric mapping 12
  • a baseline image was taken using an arterial spin labeling (ASL) technique (top left in FIG. 2A).
  • ASL arterial spin labeling
  • Zoladin a vasodilator
  • the amount of cerebral blood flow taken by ASL is expressed as mL/100g tissue/min of each pixel value of the ASL map. If the subtracted image is positive, it indicates the increased cerebral blood flow after administration of the vasodilator, and if the subtracted image is negative, it indicates the decreased cerebral blood flow after administration of the vasodilator.
  • the amount of change in blood flow was quantitatively measured through the brightness of the image by equally adjusting the threshold level at the time of each blood flow image capturing.
  • the brain blood flow reserve capacity was measured using the existing SPECT technique.
  • SPECT was photographed using a SPECT gamma camera, a nuclear medicine medical device.
  • a baseline image was taken using the SPECT technique (left of FIG. 3), and after 24 hours, Zoladin, a vasodilator was injected, and a follow-up image was taken. Was done (right side of Fig. 3). Then, the two images were compared (reading performed) to evaluate the increase or decrease in blood flow.
  • SPECT has a disadvantage in that the value of the image pixel is a qualitative imaging method that does not directly indicate blood flow, and two images are taken with the half-life of the radioactive isotope (6 hours).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Neurology (AREA)
  • Artificial Intelligence (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

본 발명은 MRI 이미지를 이용한 뇌혈관 예비능 측정방법에 관한 것으로, 본 발명의 방법을 이용하는 경우 간편하고 효율적으로 뇌혈관 예비능을 측정할 수 있으므로, 뇌혈관 예비능과 관련된 질환의 진단 및 예후 예측 용도로 유용하게 사용될 수 있다.

Description

MRI를 이용한 뇌혈관 예비능 측정방법
본 발명은 대한민국 교육부의 지원 하에서 과제번호 1345263341에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 한국연구재단, 연구사업명은 “개인기초연구(교육부)”, 연구과제명은 “뇌영상기반 이종 뇌신경질환 인공지능 진단시스템 개발”, 주관기관은 고려대학교, 연구기간은 2017.06.01 ~ 2018.02.28 이다.
본 발명은 대한민국 과학기술정보통신부의 지원 하에서 과제번호 1711059104에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 한국연구재단, 연구사업명은 “뇌과학원천기술개발”, 연구과제명은 “정서장애 관련 고삐핵 신경회로 규명 및 국소적 조절기술개발”, 주관기관은 고려대학교, 연구기간은 2017.10.01 ~ 2018.03.31 이다.
본 발명은 대한민국 교육부의 지원 하에서 과제번호 1345277902에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 한국연구재단, 연구사업명은 “개인기초연구(교육부)(R&D)”, 연구과제명은 “뇌영상기반 이종 뇌신경질환 인공지능 진단시스템 개발”, 주관기관은 고려대학교, 연구기간은 2018.03.01 ~ 2019.02.28이다.
본 발명은 대한민국 과학기술정보통신부의 지원 하에서 과제번호 1711073258에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 한국연구재단, 연구사업명은 “뇌과학원천기술개발(R&D)”, 연구과제명은 “정서장애 환자 고삐핵 신경회로 자기공명영상(DTI) 변조분석을 통한 진단기술 개발”, 주관기관은 고려대학교, 연구기간은 2018.04.01 ~ 2018.12.31이다.
본 특허출원은 2019년 9월 3일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2019-0108956호에 대하여 우선권을 주장하며, 상기 특허출원의 개시사항은 본 명세서에 참조로서 삽입된다.
본 발명은 MRI를 이용한 뇌혈관 예비능 측정방법에 관한 것이다.
뇌혈관 예비능(Cerebrovascular Reserve Capacity)이란 정상적인 기준선(baseline)으로부터의 뇌 관류 변이를 의미한다. 다른 말로, 정상적인 평상시 상태의 뇌혈관 내에 흐르는 혈류량 보다 더 많은 혈류를 수송할 수 있는 능력을 의미한다. 예를 들어 동맹경화 등으로 인해 뇌혈관이 좁아져 있거나, 뇌동맥류가 있는 환자의 경우는 뇌혈관 예비능이 낮다. 뇌혈관 예비능이 낮은 사람들은 평상시에는 문제가 없더라도 심한 운동이나 스트레스 상황에서 뇌졸중이나 허혈 발작의 위험도가 매우 높다. 따라서, 뇌혈관 예비능이 낮게 측정된 사람들은 미리 예방적인 조치를 할 수 있으며, 반면 뇌혈관에 다소 문제가 있더라도 뇌혈관 예비능이 충분히 높게 측정된 사람들은 침습적이고 위험한 뇌혈관 시술 등을 반드시 해야하는 것은 아니다.
뇌혈관 예비능은 인위적으로 CO2를 강제주입하거나, 약물(Acetazolamide)을 투여하는 방법으로 환자의 뇌 말초혈관을 최대한 확장시켜 스트레스 상태로 만든 후, 이러한 상태에서 환자의 뇌혈관계를 핵의학 영상기기 (SPECT)로서 뇌혈류량의 증가를 측정한다.
SPECT는 정성적(qualitative)인 영상 검사법이라는 점에서 판독자의 주관에 따라서 뇌혈관 예비능에 대한 평가의 객관성의 측면에서 단점이 있다. 또한, SPECT를 통한 뇌혈관 예비능 평가를 위해서는 2회 촬영을 해야 하나 두 영상의 촬영 시점이 보통 하루 이상 차이가 나기 때문에, 촬영 시 SPECT scanner에서 뇌의 위치가 변해서 SPECT 영상에서 정확하게 같은 위치를 구분하기가 힘들다는 단점도 있다.
한편, 동맥 스핀 라벨링(Arterial Spin Labeling; ASL) 기법이란 자유롭게 확산 가능한 내부 추적자(intrinsic tracer)(예컨대 물)를 사용하여 국소적인 조직 관류를 측정하기 위한 자기공명영상 기법으로, 비침습적인 관류 기술이라는 점에서 임상 및 관련 연구에 활용되고 있다.
기존의 ASL 기법은 Williams 등(1992)에 의해 제안되었는데, 이들은 물을 자유 확산 추적자로 사용하여 쥐의 뇌 혈류를 측정하였고, 그로부터 2년 후, Detre 등이 1.5T MRI 스캔에서 인간 뇌 연구에 ASL 기법을 적용하였다. 그 후, 이 기법은 복잡한 후처리 과정과 기술적 어려움으로 인해 주로 연구에만 사용되었으나, 시퀀스 내구성, 수집시간 감소, 이미지 해상도 증가 및 아티팩트 감소뿐만 아니라, 후처리 과정의 발전으로 인해 임상 실험에도 사용할 수 있게 되었다.
그러나, 아직까지 동맥 스핀 라벨링(ASL) 이미지에 대하여, 영상 차감법을 이용하여 정량적으로 뇌혈관 예비능을 측정(진단)한 사례는 없다.
본 발명자들은 MRI 이미지를 이용하여 보다 간편하고 신속하게 뇌혈관 예비능을 측정할 수 있는 방법을 개발하고자 예의 연구 노력하였다. 그 결과, 동맥 스핀 라벨링(ASL) 기법을 이용하여 혈관확장제 주입 전후의 MRI 이미지를 촬영하고, 주입 후 영상으로부터 주입 전 영상을 합치(co-registration)한 후, 차감된 혈류 증감 영상을 고해상도 T1 MRI 영상에 오버레이함으로써 보다 간편하고 신속하면서도 정량적(quantitative)으로 뇌혈관 예비능을 측정할 수 있음을 규명함으로써, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 뇌혈관 예비능(Cerebrovascular Reserve Capacity) 측정을 위한 정보제공방법을 제공하는 것이다.
본 발명자들은 MRI 이미지를 이용하여 보다 간편하고 신속하게 뇌혈관 예비능을 측정할 수 있는 방법을 개발하고자 예의 연구 노력하였다. 그 결과, 동맥 스핀 라벨링(ASL) 기법을 이용하여 혈관확장제 주입 전후의 MRI 이미지를 촬영하고, 주입 후 영상으로부터 주입 전 영상을 합치(co-registration)한 후, 차감된 혈류 증감 영상을 고해상도 T1 MRI 영상에 오버레이함으로써 보다 간편하고 신속하게 정량적(quantitative)으로 뇌혈관 예비능을 측정할 수 있음을 규명하였다.
본 발명의 일 양태에 따르면, 본 발명은 다음 단계를 포함하는, 피검자(subject)의 뇌혈관 예비능(Cerebrovascular Reserve Capacity) 측정을 위한 정보제공방법에 관한 것이다:
피검자의 뇌의 베이스라인(baseline) 영상을 획득하는 단계;
피검자의 뇌의 팔로업(follow-up) 영상을 획득하는 단계;
상기 팔로업 영상에서 상기 베이스라인 영상을 합치(co-registration)하여 차감(subtracted) 영상을 획득하는 단계; 및
상기 차감 영상을 T1-강조 MRI 영상에 오버레이(overlay)하는 단계.
이하, 본 발명의 방법에 대하여 상세히 설명한다.
베이스라인(baseline) 영상을 획득하는 단계
본 단계는 피검자를 대상으로 하여 뇌의 베이스라인 영상을 촬영하는 과정이다. 본 과정에 의해 피검자의 혈관확장제에 의한 혈관 확장 전 혈류 영상을 획득할 수 있다.
본 발명의 일 구현예에 있어서, 상기 피검자는 뇌혈관의 혈류에 영향을 미치는 경동맥, 뇌동맥의 협착 또는 폐색, 뇌지주막하 출혈 등이 의심되는 환자, 허혈성 뇌졸중, 출혈성 뇌졸중, 또는 뇌전증 등 중추신경계 이상이 있는 것으로 확인된 환자 등이나, 이에 한정되는 것은 아니다.
상기 베이스라인 영상은 동맥 스핀 라벨링(Arterial spin labeling; ASL) 영상일 수 있다.
본 명세서에서 "동맥 스핀 라벨링(ASL)"이란 MRI에서 동맥 내 혈액의 물분자와 같이 자유롭게 확산이 가능한 내부 추적자를 사용하여 혈액을 표지한 후 뇌동맥 내의 국소적인 혈류의 차이를 정량화하여 확인하는 자기공명영상 기법으로, 비침습적이고 조영제를 사용하지 않기 때문에 소아나 신장기능저하 환자에게도 적용이 가능하여 여러 임상에서 유용하게 사용할 수 있는 장점이 있다.
상기 동맥 스핀 라벨링 영상은 상응하는 위치의 뇌혈류량을 ASL map의 각 신호강도(화소값)에 대하여 mL/100g tissue/min의 단위로 표시할 수 있다.
팔로업(follow-up) 영상을 획득하는 단계
본 단계는 피검자를 대상으로 하여 뇌의 팔로업 영상을 촬영하는 과정이다. 본 과정에 의해 피검자의 혈관확장제에 의한 혈관 확장 후 혈류 영상을 획득할 수 있다.
상기 팔로업 영상은 동맥 스핀 라벨링(ASL) 영상일 수 있다. 동맥 스핀 라벨링 영상 및 이로부터 측정된 혈류량에 대한 설명은 상술한 베이스라인 영상의 획득 단계에서와 동일하게 적용된다.
상기 팔로업 영상 획득 전에 피검자에 혈관확장제를 주입하는 단계를 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 혈관확장제의 주입은 팔로업 영상 획득하기 5분 내지 2시간 전, 5분 내지 1시간 전, 5분 내지 30분 전, 5분 내지 20분 전, 5분 내지 15분 전, 보다 구체적으로 10분 내지 2시간 전, 10분 내지 1시간 전, 10분 내지 30분 전, 10분 내지 20분 전, 10분 내지 15분 전, 약 1시간 전, 약 30분 전, 약 20분 전, 약 15분 전, 약 10분 전, 또는 약 5분 전에 주입될 수 있으나, 이에 한정되는 것은 아니다.
상기 혈관확장제는 당업계에서 뇌 혈관확장 용도로 사용될 수 있는 물질이라면 제한 없이 사용될 수 있다. 일 구현예에 따르면, 상기 혈관확장제는 아세타졸라마이드(ZoladinTM, Acetazolamide), 또는 CO2 기체일 수 있다.
본 발명의 일구현예에 있어서, 상기 베이스라인 영상과 팔로업 영상의 획득은 피검자가 자기공명영상 디바이스(magnetic resonance imaging (MRI) device) 내에 위치를 유지하는 상태에서 이루어질 수 있다.
상기 베이스라인 영상과 팔로업 영상은 획득 후 서로 합치시켜 영상의 신호강도를 차감하여야 하므로, 피검자의 자세 변화 등에 따라 영상의 위치나 크기가 달라지지 않도록, 피검자가 MRI 디바이스 내부에 위치를 유지하는 상태에서 획득되는 것이 바람직하다.
그러나, 부득이하게 피검자가 MRI 디바이스 내부에 위치를 유지하지 못하는 경우에는 최대한 동일한 위치에서 팔로업 영상이 획득될 수 있도록 하여야 한다.
팔로업 영상에서 베이스라인 영상을 합치(co-registration)하여 차감(subtracted) 영상을 획득하는 단계
본 단계는 팔로업 영상과 베이스라인 영상의 공간적 위치를 동일하게 배치하기 위하여 각 영상을 합치(co-registration)시키고, 팔로업 영상으로부터 같은 위치의 베이스라인 영상을 차감(subtracted)하는 단계이다.
상기 합치는 두 영상의 section의 방향, 위치, 및 크기를 동일하게 조절하여 두 영상이 서로 오버랩되도록 만드는 것을 의미한다.
보다 구체적으로는, 상기 단계는 팔로업 영상의 동맥 스핀 라벨링 영상의 신호강도에서 베이스라인 영상의 동맥 스핀 라벨링 영상의 신호강도(화소값)를 차감하여 차감 영상을 획득하는 단계이다.
상기 차감 영상의 신호강도(화소값)는 상기 팔로업 영상의 동맥 스핀 라벨링 영상의 신호강도(화소값)에서 베이스라인 영상의 동맥 스핀 라벨링 영상의 신호강도(화소값)를 차감한 값과 같다.
본 발명이 일 구현예에 있어서, 상기 신호강도(화소값)는 mL/100g tissue/min 단위의 혈류량을 나타낸다.
따라서, 상기 차감 영상의 혈류량은 하기 식 1에 의하여 획득될 수 있으며, 팔로업 ASL 영상과 베이스라인 ASL 영상을 합치하고 팔로업 ASL 영상의 신호강도(혈류량)를 같은 위치의 베이스라인 ASL 영상의 신호강도(혈류량)로 차감하면, 대응되는 각 ASL 영상의 신호강도 값(화소 값)의 차이에 따라 차감 영상의 신호강도(혈류량) 값이 양의 값(+)이나 음의 값(-)을 나타내게 된다.
이때, 차감 영상의 신호강도(혈류량) 값이 양의 값이면 혈관확장제 투여 후에 뇌혈류량이 증가하였음을 나타내고, 차감 영상의 신호강도(혈류량) 값이 음의 값이면 혈관확장제 투여 후에 뇌혈류량이 감소하였음을 나타낸다. 특히 차감 영상의 신호강도 값이 음의 값을 나타내는 경우는 혈관 손상 등으로 인하여 인근 뇌영역의 혈류량 감소 등이 있음을 나타낸다.
식 1
[차감 영상의 신호강도] = 팔로업 ASL 영상의 신호강도 - 베이스라인 ASL 영상의 신호강도
차감 영상을 T1-MRI 영상에 오버레이(overlay)하는 단계
본 단계는 획득된 차감 영상을 별도로 촬영한 고해상도 T1-강조 MRI 영상에 오버레이(overlay)하는 과정이다.
뇌의 위치와 윤곽은 ASL MRI에 비하여 T1 MRI에서 더 명료하게 관찰된다. 따라서 혈류가 증감된 뇌의 부위를 보다 정확히 확인하기 위하여는 T1-MRI 영상을 획득하고, T1-MRI 영상 위에 차감 영상을 오버레이 하는 과정이 필요하다.
상기 오버레이 과정은 상기 합치 단계와 마찬가지로, T1 MRI 영상과 상기 ASL MRI 영상의 section의 방향, 위치, 및 크기를 동일하게 조절하여 두 영상이 서로 오버랩되도록 한다.
본 발명의 일 구현예에 있어서, 본 발명의 방법은 혈류량이 변화된 뇌 내의 부위(영역) 및 혈류 변화량을 확인하는 단계를 더 포함하는 것일 수 있다. 상기 T1-MRI 영상 위에 차감 영상을 오버레이 하고, 혈류가 변화된 뇌 위치 및 혈류 변화량을 확인함으로써, 향후 혈류량이 변화된 뇌 부위와 관련된 뇌 기능의 손상 또는 회복 예후를 예측할 수 있는 데 임상적 의의가 있다.
상기 혈류 변화량은 상기 차감 영상의 화소 값을 측정함으로써 정량적으로 측정될 수 있다.
본 발명의 일 구현예에 있어서, 상기 T1-MRI 영상 위에 상기 차감 영상을 오버레이하고, i) 상기 차감 영상의 화소값이 양의 값인 경우에는 해당 화소값이 위치한 뇌 부위의 기능의 손상으로부터의 회복에 대한 예후가 양호한 것으로 예측하고, ii) 상기 차감 영상의 화소값이 음의 값인 경우에는 해당 화소값이 위치한 뇌 부위의 기능의 손상으로부터의 회복에 대한 예후가 불량한 것으로 예측하는 것이다.
상기 예후가 양호한 것으로 예측한다는 것은 혈관예비능이 높다는 표현과 동일하고, 상기 예후가 불량한 것으로 예측한다는 것은 혈관예비능이 낮다는 표현과 동일하다.
본 발명의 일 구현예에 있어서, 상기 혈관예비능의 높고 낮음은 뇌혈관 질환을 가지지 않은 정상 피검자로부터 상술한 본 발명의 방법으로부터 얻은 차감 영상의 신호강도 값과 비교하는 단계에 의해 판단될 수 있다.
본 발명의 일 구현예에 있어서, 상기 혈관 예비능이 낮은 경우 해당 위치의 뇌혈관 부위에 치료를 수행하여야 예후가 개선될 가능성이 높다는 정보를 제공하는 단계를 추가적으로 포함한다. 상기 치료는 스텐트 삽입 등의 수술 및 항혈소판제, 항응고제, 혈전용해제 등의 투여를 포함한다.
본 발명은 MRI 이미지를 이용한 뇌혈관 예비능 측정방법에 관한 것으로, 본 발명의 방법을 이용하는 경우 간편하고 효율적으로 뇌혈관 예비능을 측정할 수 있으므로, 뇌혈관 예비능과 관련된 질환의 진단 및 예후 예측 용도로 유용하게 사용될 수 있다.
도 1은 본 발명의 뇌혈관 예비능 측정방법을 개략적으로 나타낸 모식도이다.
도 2a는 본 발명의 일 실시예에 따라 동맥 스핀 라벨링(ASL) 기법을 이용하여 촬영된 혈관확장제 주입 전(baseline, 왼쪽 위), 혈관확장제 주입 후(follow-up, 오른쪽 위), 혈관확장제 주입 전/후 혈류 증가 정도(왼쪽 아래) 및 혈관확장제 주입 전/후 혈류 감소 정도(오른쪽 아래)의 이미지이다.
도 2b는 본 발명의 일 실시예에 따라 획득한 뇌혈류 예비능 측정 이미지이다.
도 3은 본 발명의 뇌혈관 예비능 측정방법의 우수함을 확인하기 위하여 비교된 SPECT 기법을 이용한 뇌혈류 예비능 측정 이미지이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예: 본 발명의 방법을 이용한 뇌혈관 예비능 측정
뇌졸중 환자를 대상으로 하기의 방법을 사용하여 뇌혈관 예비능을 측정하였다. 이때, 상기 ASL 및 T1 영상 처리를 위한 프로그램은 SPM12(statistical paramateric mapping 12)를 이용하였으며, ASL 및 T1 영상은 동일 환자가 누워있는 동안 모두 동일한 MRI에서 촬영하였다.
구체적으로, 먼저 동맥 스핀 라벨링(Arterial Spin Labeling; ASL) 기법을 이용하여 베이스라인(baseline) 영상을 촬영하였다(도 2a의 왼쪽 위). 10분 후, 혈관확장제인 졸라딘(Zoladin)을 주입하고 팔로업(follow-up) 영상을 촬영하였다(도 2a의 오른쪽 위).
그 다음, 촬영된 상기 팔로업 영상에서 상기 베이스라인 영상을 차감하여 차감(subtracted) 영상[차감 영상=팔로업-베이스라인]을 획득하였다. 한편, ASL에 의해 촬영된 뇌혈류량은 ASL map의 각 화소 값의 mL/100g tissue/min 로 표시된다. 차감 영상이 양의 값이면 혈관확장제 투여 후에 증가한 뇌혈류량을 나타내며, 차감 영상이 음의 값이면 혈관확장제 투여 후에 감소한 뇌혈류량을 나타낸다. 이때, 상기 각 혈류 영상 촬영 시의 한계 레벨(Threshold level)을 동일하게 조정하여 영상의 밝기를 통해 혈류 변화량을 정량적으로 측정하였다.
마지막으로, 별도로 촬영한 고해상도 T1 MRI 영상 위에 상기 차감 영상을 오버레이(overlay)하였다. 두 영상의 오버레이는 SPM12의 co-registration 기능을 이용하였다.
도 2b에서 확인할 수 있듯이, 본 발명의 방법을 사용하는 경우 혈류가 변화된 뇌 위치를 정확히 찾을 수 있을 뿐 아니라, 혈류 변화량을 측정할 수 있었다. 이러한 결과는, 향후 혈류 변화량이 측정된 뇌 부위와 관련된 뇌 기능의 손상 또는 회복 예후를 예측할 수 있는 데 임상적 의의가 있다.
비교예: SPECT(single-photon emission computed tomography; 단일광자 단층촬영)를 이용한 뇌혈류 예비능 측정
상기 실시예의 결과에 기초하여, 본 발명의 방법의 우수성을 확인하기 위하여 기존의 SPECT 기법을 이용하여 뇌혈류 예비능을 측정하였다. 이때, SPECT는 핵의학 의료기기인 SPECT 감마 카메라를 이용하여 촬영하였다.
구체적으로, 먼저 SPECT 기법을 이용하여 베이스라인(baseline) 영상을 촬영하고(도 3의 왼쪽), 24시간 후, 혈관확장제인 졸라딘(Zoladin)을 주입하고 팔로업(follow-up) 영상을 촬영하였다(도 3의 오른쪽). 그 다음, 상기 양쪽 영상을 비교(판독의 수행)하여 혈류의 증감을 평가하였다.
비교 결과, 본 발명의 방법에 비하여, SPECT는 영상 화소의 값이 직접적으로 혈류량을 나타내지 않는 정성적(qualitative)인 영상 검사법이라는 단점이 있으며, 방사성 동위원소의 반감기(6시간)으로 두 영상의 촬영 시점이 하루 이상 차이를 두어야 하기 때문에 촬영 시 SPECT scanner에서 뇌의 위치가 변해서 SPECT 영상에서 정확하게 같은 위치를 구분하기가 힘들다는 단점이 있다.

Claims (7)

  1. 다음 단계를 포함하는, 피검자(subject)의 뇌혈관 예비능(Cerebrovascular Reserve Capacity) 측정을 위한 정보제공방법:
    (a) 피검자의 뇌에 대한 베이스라인(baseline) 영상을 획득하는 단계;
    (b) 피검자의 뇌에 대한 팔로업(follow-up) 영상을 획득하는 단계;
    (c) 상기 팔로업 영상에서 상기 베이스라인 영상을 합치(co-registration)하고, 팔로업 영상으로부터 베이스라인 영상을 차감한 차감 영상을 획득하는 단계; 및
    (d) 상기 차감 영상을 T1-강조 MRI 영상에 오버레이(overlay)하는 단계.
  2. 제1항에 있어서, 상기 방법은 팔로업 영상 획득 전에 혈관확장제를 주입하는 단계를 더 포함하는 것인, 방법.
  3. 제2항에 있어서, 상기 혈관확장제는 아세타졸라마이드(Acetazolamide), 또는 CO2 기체인, 방법.
  4. 제1항에 있어서, 상기 베이스라인 영상 및 팔로업 영상은 동맥 스핀 라벨링(Arterial spin labeling; ASL) 기법에 의해 촬영된 영상인 것인, 방법.
  5. 제1항에 있어서, 상기 방법은 (e) 혈류가 변화된 뇌의 부위 및 혈류 변화량을 확인하는 단계를 더 포함하는 것인, 방법.
  6. 제5항에 있어서, 상기 혈류 변화량은 상기 차감 영상의 화소 값으로 측정되는 것인, 방법.
  7. 제6항에 있어서, i) 상기 차감 영상의 화소값이 양의 값인 경우에는 해당 화소값이 위치한 뇌 부위의 기능의 손상으로부터의 회복에 대한 예후가 양호한 것으로 예측하고, ii) 상기 차감 영상의 화소값이 음의 값인 경우에는 해당 화소값이 위치한 뇌 부위의 기능의 손상으로부터의 회복에 대한 예후가 불량한 것으로 예측하는 것인, 방법.
PCT/KR2020/011615 2019-09-03 2020-08-31 Mri를 이용한 뇌혈관 예비능 측정방법 WO2021045459A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0108956 2019-09-03
KR1020190108956A KR20210027905A (ko) 2019-09-03 2019-09-03 Mri를 이용한 뇌혈관 예비능 측정방법

Publications (1)

Publication Number Publication Date
WO2021045459A1 true WO2021045459A1 (ko) 2021-03-11

Family

ID=74852962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011615 WO2021045459A1 (ko) 2019-09-03 2020-08-31 Mri를 이용한 뇌혈관 예비능 측정방법

Country Status (2)

Country Link
KR (1) KR20210027905A (ko)
WO (1) WO2021045459A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150145088A (ko) * 2014-06-18 2015-12-29 가천대학교 산학협력단 자기 공명 영상 시스템에서 혈관벽 영상을 획득하는 방법
WO2016167047A1 (ja) * 2015-04-15 2016-10-20 学校法人岩手医科大学 磁気共鳴イメージング装置及び画像作成方法
KR20180008134A (ko) * 2016-07-15 2018-01-24 연세대학교 산학협력단 분획 혈류 예비력 예측 방법
WO2018172201A1 (en) * 2017-03-24 2018-09-27 Koninklijke Philips N.V. Intravascular blood flow sensing based on vortex shedding
KR20190094214A (ko) * 2016-12-15 2019-08-12 백스터 인터내셔널 인코포레이티드 감지된 정맥 파형으로부터 환자 파라미터들을 모니터링하고 결정하기 위한 시스템 및 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699528B1 (ko) 2015-06-30 2017-01-24 삼성전자 주식회사 자기 공명 영상 장치 및 자기 공명 영상의 생성 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150145088A (ko) * 2014-06-18 2015-12-29 가천대학교 산학협력단 자기 공명 영상 시스템에서 혈관벽 영상을 획득하는 방법
WO2016167047A1 (ja) * 2015-04-15 2016-10-20 学校法人岩手医科大学 磁気共鳴イメージング装置及び画像作成方法
KR20180008134A (ko) * 2016-07-15 2018-01-24 연세대학교 산학협력단 분획 혈류 예비력 예측 방법
KR20190094214A (ko) * 2016-12-15 2019-08-12 백스터 인터내셔널 인코포레이티드 감지된 정맥 파형으로부터 환자 파라미터들을 모니터링하고 결정하기 위한 시스템 및 방법
WO2018172201A1 (en) * 2017-03-24 2018-09-27 Koninklijke Philips N.V. Intravascular blood flow sensing based on vortex shedding

Also Published As

Publication number Publication date
KR20210027905A (ko) 2021-03-11

Similar Documents

Publication Publication Date Title
Oppenheim et al. Magnetic resonance imaging morphology of the corpus callosum in monozygotic twins
Burgmans et al. Age differences in speed of processing are partially mediated by differences in axonal integrity
Lange et al. Neuroimaging in chronic fatigue syndrome
Caspi et al. Changes in the intracranial volume from early adulthood to the sixth decade of life: A longitudinal study
WO2017051944A1 (ko) 의료 영상 판독 과정에서 사용자의 시선 정보를 이용한 판독 효율 증대 방법 및 그 장치
WO2020138925A1 (ko) 인공지능 기반 혈류 구간 분류 방법 및 시스템
WO2020231007A2 (ko) 의료기계 학습 시스템
WO2020055039A1 (ko) 파킨슨 병 진단 장치 및 방법
WO2015147595A1 (ko) 의료 영상에서 아티팩트와 병변을 구분하는 방법
WO2020101264A1 (ko) 관상동맥석회화점수 산정 방법 및 장치
Griffith et al. Memory relationships between MRI volumes and resting PET metabolism of medial temporal lobe structures
Vriesman et al. Simultaneous assessment of colon motility in children with functional constipation by cine-MRI and colonic manometry: a feasibility study
WO2020179950A1 (ko) 딥러닝 기반 뇌 질환 진행 예측 방법 및 장치
WO2024053925A1 (ko) 아밀로이드 혈관병증 의심 환자에 대한 아밀로이드 펫 양성 예측 방법 및 장치
WO2021045459A1 (ko) Mri를 이용한 뇌혈관 예비능 측정방법
WO2021187700A2 (ko) 경동맥 초음파 진단 방법
Pérez-Ramírez et al. Brain functional connectivity alterations in a rat model of excessive alcohol drinking: A resting-state network analysis
Kuzniecky et al. Guidelines for neuroimaging evaluation of patients with uncontrolled epilepsy considered for surgery
WO2021187699A1 (ko) 경동맥 초음파 진단 시스템
WO2017090805A1 (ko) 인구통계학적 요소 및 운동학적 요소를 기반으로 피험자의 골격근 단면적 산출 모델을 결정하는 방법 및 장치
WO2022197165A1 (ko) 관상동맥 협착의 중증도 평가에 필요한 정보를 제공하는 방법
WO2017111315A1 (ko) Mra 영상을 이용하여 관류 특성 확인용 추가 영상을 얻기 위한 방법 및 시스템
Nichols et al. Do patient data ever exceed the partial volume limit in gated SPECT studies?
WO2021215821A1 (ko) 심정지 후 증후군 환자의 신경학적 예후를 예측하는 방법
WO2021251777A1 (ko) 전신 ct 스캔 3d 모델링 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860337

Country of ref document: EP

Kind code of ref document: A1