WO2015147595A1 - 의료 영상에서 아티팩트와 병변을 구분하는 방법 - Google Patents
의료 영상에서 아티팩트와 병변을 구분하는 방법 Download PDFInfo
- Publication number
- WO2015147595A1 WO2015147595A1 PCT/KR2015/003049 KR2015003049W WO2015147595A1 WO 2015147595 A1 WO2015147595 A1 WO 2015147595A1 KR 2015003049 W KR2015003049 W KR 2015003049W WO 2015147595 A1 WO2015147595 A1 WO 2015147595A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- interest
- regions
- images
- lesion
- cardiac
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 210000000056 organ Anatomy 0.000 claims abstract description 18
- 230000000747 cardiac effect Effects 0.000 claims description 84
- 230000003902 lesion Effects 0.000 claims description 79
- 244000309464 bull Species 0.000 claims description 43
- 230000002107 myocardial effect Effects 0.000 claims description 40
- 210000004165 myocardium Anatomy 0.000 claims description 27
- 230000002526 effect on cardiovascular system Effects 0.000 claims description 20
- 230000010412 perfusion Effects 0.000 claims description 20
- 208000028867 ischemia Diseases 0.000 claims description 16
- 230000000302 ischemic effect Effects 0.000 claims description 15
- 210000000748 cardiovascular system Anatomy 0.000 claims description 6
- 238000002059 diagnostic imaging Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 14
- 210000004204 blood vessel Anatomy 0.000 description 6
- 239000002872 contrast media Substances 0.000 description 6
- 208000029078 coronary artery disease Diseases 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 5
- 210000004351 coronary vessel Anatomy 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 210000003484 anatomy Anatomy 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 210000005240 left ventricle Anatomy 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000002603 single-photon emission computed tomography Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 238000010968 computed tomography angiography Methods 0.000 description 2
- 238000002586 coronary angiography Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000025033 vasoconstriction Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 238000010207 Bayesian analysis Methods 0.000 description 1
- 101000666730 Homo sapiens T-complex protein 1 subunit alpha Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000021908 Myocardial disease Diseases 0.000 description 1
- 102100038410 T-complex protein 1 subunit alpha Human genes 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 238000009662 stress testing Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
- A61B6/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/503—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/507—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
- G06T7/0016—Biomedical image inspection using an image reference approach involving temporal comparison
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10076—4D tomography; Time-sequential 3D tomography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
Definitions
- the present disclosure relates to a method of distinguishing artifacts from lesions in a medical image as a whole, and particularly to organs photographed at multiple phases. ), And how to automatically distinguish between artifacts and lesions.
- Coronary artery disease is the narrowing of blood vessels or narrowing of blood vessels, disrupting blood flow. Coronary arteries are blood vessels that supply blood to the myocardium, and CAD blocks or changes the way blood is sprayed through the myocardial, resulting in lesions such as myocardial ischemia.
- FIG. 1 is a diagram illustrating an example of a CTP image of a heart.
- CTA computed tomography angiography
- CTP computed tomography perfusion
- the ischemic region in the cardiac image obtained by this CTP is the region whose brightness is lower than the average (dark).
- the heart image may include some kind of noise such as beam-hardening artifact and transient motion artifact.
- beam-hardening artifacts in which the signal of the cardiac CTP image falls due to the strong signal of the contrast agent in the aorta adjacent to the heart are generated.
- Such beam-hardening artifacts or transient motion artifacts have a problem of decreasing the reliability of whether the found ischemic region is a true lesion.
- FIG. 2 is a diagram illustrating an example of a Bull's Eye Map.
- the myocardium of the left ventricle is divided into 16 short axis images along the major axis, and each short axis image is divided into 36 segments.
- the myocardium is thus divided into 576 (16x36) polygonal surfaces.
- Myocardial perfusion information by SPECT is visualized with a Bull's Eye Map given to the 576 polygonal surfaces based on the result of registration (see FIG. 2).
- True lesions can be determined by the intuition or experience of a doctor using 3D cardiac images or visual information using a two-dimensional Bull's Eye Map. However, there is a problem among doctors, and there is a problem that does not provide an objective and quantitative verification basis for visual judgment.
- US Patent Publication No. 2009/0161938 discloses a method for assessing the presence of lesions (eg, ischemia) by stressing the heart, observing movement and thickness, and quantifying the volume of heart function by meshing the volume data of the heart.
- lesions eg, ischemia
- a technique for performing functional quantitative calculations is disclosed.
- the techniques disclosed in this document relate to methods of stress testing heart function and do not disclose methods or means for removing artifacts from cardiac images.
- a method for distinguishing artifacts from lesions in a medical image comprising a plurality of periods of time with respect to an organ being exercised acquiring medical images of an organ in multiphase; Classifying a region of interest in each of the medical images; And distinguishing the artifact from the lesion by evaluating the degree of overlap between the ROIs.
- FIG. 1 is a view showing an example of a CTP image of the heart
- FIG. 2 is a diagram illustrating an example of a Bull's Eye Map
- FIG. 3 is a view for explaining an example of a method for distinguishing an artifact from a lesion in a medical image according to the present disclosure
- FIG. 4 is a diagram illustrating an example of a method of obtaining 3D cardiac images in multiphase
- FIG. 5 is a diagram illustrating an example of 3D cardiac images obtained in multiphase
- FIG. 6 is a diagram illustrating an example of an artifact in 3D cardiac images acquired in multiphase
- FIG. 7 is a diagram illustrating an example in which a cardiac image is short-aligned
- FIG. 10 is a diagram illustrating an example of an algorithm framework for complementary information-based rigid body matching
- FIG. 11 is a diagram illustrating an example of a lesion in Bull's Eye Maps
- FIG. 12 is a diagram illustrating an example of an artifact in Bull's Eye Maps
- FIG. 13 is a view for explaining an example of a method for extracting lesions
- FIG. 14 illustrates another example of a method of extracting a lesion.
- FIG. 3 is a view for explaining an example of a method for distinguishing an artifact from a lesion in a medical image according to the present disclosure.
- Distinguishing artifacts from lesions in medical imaging can improve the accuracy of distinguishing artifacts from true ischemic areas in, for example, CTP in patients suspected of having coronary artery disease. Can be used for To distinguish between artifacts and lesions, the quantitative parameters used in the CTP analysis can be used together with the visual analysis.
- a method of distinguishing artifacts from lesions in a medical image first, medical images of an organ are acquired at a plurality of phases with respect to an organ exercising. Then, the ROI is distinguished from each of the medical images. Next, the degree of overlap between the regions of interest is evaluated to distinguish between artifacts and lesions.
- the method of distinguishing artifacts from lesions in the medical image according to the present disclosure may be well applied to moving organs (eg, heart, lung, etc.), and is particularly effective when applied to organs such as a periodically moving heart.
- moving organs eg, heart, lung, etc.
- organs such as a periodically moving heart.
- the following description will focus on the heart.
- a 3D cardiac perfusion image (hereinafter referred to as a cardiac image) in which a heart is taken at multiple phases in a periodic exercise of the heart using a medical imaging device such as CT to obtain a medical image of an organ. Acquire them (S11). The myocardial and cardiovascular segments are then segmented for each of the 3D cardiac images obtained to correlate myocardial perfusion with the anatomy of the blood vessels, and the myocardium is fed by the cardiovascular system according to the cardiovascular structure. The myocardial regions are saved (divide) (S21). Next, 3D cardiac images divided into myocardial regions are matched (S31), and a Bull's Eye Map of each of the matched 3D cardiac images is generated (S41).
- a region of interest is extracted from each of Bull's Eye Maps (S51).
- the overlapping number of regions of interest at each point of the heart images is calculated (S61).
- a ratio of the size of the overlapped region to the size of the union of the regions of interest is calculated (S71).
- the artifact and the lesion are classified according to the degree of overlap (S81).
- the degree of overlap may be the number of overlap, the size ratio, or may consider both the number and size ratio of overlap.
- dividing into the myocardial regions (S31) may be omitted.
- the process of matching the 3D heart images (S31) may be omitted.
- the artifact and the lesion may be distinguished by extracting a region of interest from the matched 3D heart images and evaluating the degree of overlap from the regions of interest as 3D volume data without generating a Bull's Eye Map.
- FIG. 4 is a diagram for explaining an example of a method of acquiring 3D cardiac images in multiphase.
- cardiac images photographed at a plurality of times are acquired (S11).
- CT images are used to acquire cardiac images of the heart at multiple phases in the heartbeat period.
- the heartbeat period is about 1 second.
- 10 phases of heart images can be acquired within this time interval.
- FIG. 4 shows a Time Attenuation Curve (TAC) that is taken out over time after the contrast medium rises in the arteries and myocardium and reaches the peak, respectively.
- TAC Time Attenuation Curve
- the ischemic region can be found by acquiring a CTP image as a contrast medium is filled up and out (contrast dynamic image).
- this method is hard to perform because of the high radiation dose, high-end CT device required, long breath hold time (e.g. 30 seconds), There is a drawback that can be applied only to the systolic phase.
- the cardiac RR interval (eg, RR interval is 1000 msec, assuming that the heart beats 60 times a minute) Acquire cardiac images in multiphase.
- the plurality of phases each represent a specific moment of the heartbeat.
- Phase 30% is usually seen as a systole of the heart.
- Each of these cardiac images is a static image, but in the present example, since the plurality of cardiac images are used, the cardiac motion can be seen.
- the method according to the present example has the advantage that the radiation exposure is small, easy to perform like CCTA, and the wall motion abnormality of the heart wall can be seen.
- FIG. 5 is a diagram illustrating an example of 3D cardiac images acquired in multiphase.
- CT protocol for acquiring cardiac images an AMC protocol (25 minutes) and a second degeneration dual-source CT are used.
- FIG. 6 is a diagram illustrating an example of an artifact in 3D cardiac images acquired in multiphase.
- the heart takes 10 phase cardiac images in the R-R interval.
- FIG. 6 shows three phase cardiac images shown on different axes. Dark areas (indicated by arrows) at the 30% phase may appear as ischemia areas. However, in the 40% and 80% phases the corresponding areas (marked with *) are bright. If such dark areas are inconsistent in cardiac images, they are most likely artifacts. In other words, the probability of finding a true lesion is low.
- tracking the consistency of darker areas (interests), which are less than average brightness in multiphase cardiac images can distinguish artifacts and lesions more accurately than conventional methods.
- Some of the acquired heart images may be discarded due to poor condition. If a region of interest is consistent in the remaining cardiac images that are the target of the determination, the region of interest is likely to be a lesion. Alternatively, if the region of interest in one phase of the cardiac image does not appear in another phase of heart image, the region of interest can be viewed as an artifact.
- cardiac images may be registered or a Bull's eye map, which is a two-dimensional image, for more objective and quantitative determination. This will be described later.
- FIG. 7 is a diagram illustrating an example in which a cardiac image is uniaxially aligned.
- the cardiac image is aligned in the direction of the short axis of the myocardium.
- FIG. 7 shows a cardiac image (upper left) and a short axis alignment (upper center) along the scan axis direction of the CT.
- Models of the myocardium of the left and right ventricle are shown on the right side of FIG. 7.
- the myocardium has a long axis and a short axis as shown in FIG. 7.
- the scan direction of the CT is not parallel to the long axis and the short axis of the myocardium. Therefore, the cardiac image is preferably aligned in a short axis or long axis direction in order to determine and evaluate a cardiac image as a three-dimensional data.
- one of the cardiac images may be a reference of the registration.
- FIG 8 and 9 illustrate an example of blood vessel-based myocardial region division.
- Cardiac images are images of perfusion of the myocardium. Therefore, it is desirable to have cardiovascular, myocardial and perfusion anatomically related for solving problems such as finding blood vessels related to the ischemic area.
- the myocardium and cardiovascular can be segmented for each of the 3D cardiac images, and the myocardium can be divided into myocardial regions that are fed by the cardiovascular system according to the cardiovascular structure (S21). .
- a process of dividing only the cardiac image, which is the basis of registration, into myocardial regions may be performed, and the remaining cardiac images may be divided into myocardial regions based on the matching information.
- the myocardium and cardiovascular are segmented based on the uniaxially aligned cardiac image as described above, and the myocardium is divided into myocardial regions which are fed by the cardiovascular system according to the cardiovascular structure.
- cardiovascular is segmented by adaptive dilation-based cardiovascular segmentation based on cardiac images.
- a template-based cardiovascular labeling and modification process is performed.
- cardiovascular Diameter-Dilation-based myocardial region division and fertilization are performed.
- Cardiovascular Diameter-Dilation based myocardial region dividing and modification process includes generating a distance map so that the size of the myocardial regions is proportional to the diameter of the cardiovascular system.
- the coronary right coronary artery (RCA), left anterior Descending branch (LAD), and circumflex branch (LCX) have different diameters depending on their location, and the larger the diameter, the larger the size of the myocardial region. .
- RCA, LAD, and LCX circumflex branch
- template-based deformable models may be used as shown in FIG. 8A.
- the template is a predefined area model using a thick-section image and a deformation model (M. Kaus et al., 2004) can be referred to.
- the above-described division of blood vessels and myocardium and segmentation into myocardial regions may be performed by an automatic algorithm.
- the automatic algorithm since the automatic algorithm is not always successful, the result of the above-described region division may be compared with imaging, clinical medicine or animal experiments.
- the process may be modified by the volume fitting and manual editing module.
- Volume fitting provides an easy way for the user to modify myocardial areas that are divided according to the vessel structure. For example, the myocardial region is modified using a limited number of control points, and a free-form deformable model may be applied (see FIG. 8 (b)).
- the free-form deformable model in volume fitting is defined by the following equation (2).
- Fitting is a problem of finding control points.
- Manual Editing can be performed by region modification by moving control points.
- the cardiovascular and myocardium (left ventricle shown in FIG. 9) divided by the above process is configured to have a three-dimensional coordinate value composed of a short axis radius, a rotation angle from a short axis, and a long axis height in the three-dimensional image shown in FIG. 9.
- a two-dimensional image parallel to the short axis is formed on the apex side. That is, except for the height, the three-dimensional coordinates correspond to the two-dimensional image.
- FIG. 10 is a diagram illustrating an example of an algorithm framework of complementary information-based rigid matching.
- Multiphase cardiac images showing myocardial perfusion show the R-R interval motion of the heart, so a comparison process is required to compare the multiphase cardiac images (S31).
- the registration process is performed after dividing into myocardial regions, but unlike this example, the registration process may be performed after multiphase cardiac images are obtained and before dividing into myocardial regions.
- Bull's Eye Map itself is a kind of standardization and has an effect of registration
- the method of distinguishing artifacts from lesions in the medical image according to the present example does not necessarily include a process of registration between 3D heart images.
- the accuracy of the degree of overlap between the ROIs extracted from Bull's Eye Maps to be described later may be further improved.
- Rigid registration and non-rigid registration can be used together to match multiphase cardiac images.
- the remaining cardiac images are matched based on one cardiac image by mutual information based rigid registration.
- the matching becomes a problem of obtaining a transformation matrix T maximizing the NMI.
- the myocardium is projected in the long axis direction so that the myocardial regions and cardiovascular (RCA, LAD, LCX) Acquired as a two-dimensional image (Bull's Eye Map).
- the divided cardiovascular and myocardium have a three-dimensional coordinate value composed of a short axis radius, a rotation angle from a short axis, and a long axis height in the three-dimensional image shown in FIG. 9.
- a two-dimensional image parallel to the short axis is formed on the apex side. That is, except for the height, the three-dimensional coordinates correspond to a two-dimensional image (Bull's Eye Map).
- FIG. 9 shows coronary artery RCA, LAD and LCX and myocardial regions.
- Myocardial regions represented by Bull's Eye Map, are divided according to the structure of coronary artery RCA, LAD, and LCX.
- the size of each myocardial region is preferably formed to be proportional to the diameter of coronary artery RCA, LAD and LCX, respectively.
- myocardial region based CT perfusion result overlay Based on the myocardial regions divided according to the cardiovascular structure in the Bull's Eye Maps thus obtained, myocardial region based CT perfusion result overlay, myocardial region based perfusion analysis, and anatomy function mismatch / match analysis can be performed.
- 11 is a diagram illustrating an example of a lesion in Bull's Eye Maps.
- each bull's eye map is thrashed to find a region suspected of being an ischemia region, and then a region of interest is extracted (S51).
- the ROI is distinguished from the ROI by assigning a threshold holding value (eg, a HU value) to find an area lower than the average brightness.
- a threshold holding value eg, a HU value
- each point in the Bull's Eye Map is different in color (no color is shown in FIG. 11 but color is shown in contrast).
- Red and yellow green are normal areas with high density due to smooth blood supply to the myocardium.
- Blue and purple are areas of interest that are supplied with or less blood than the amount of blood required for the myocardium.
- the doctor or expert can visually determine that the region of interest appears in a relatively consistent region from phase 20% -90%.
- the method of distinguishing artifacts from lesions (true ischemic regions) in medical images according to the present disclosure can provide objective political information on the consistency of ischemic regions in multiphase cardiac images, and improve the basis of verification of visual judgment. Improves accuracy in distinguishing true ischemic areas. This is further described below.
- FIG. 12 is a diagram for explaining an example of artifacts in Bull's Eye Maps.
- the positions where the region of interest appears in the 20%, 30%, and 40% phase Bull's Eye Map are remarkably different, and in particular, the dark areas are very small or weak in the 40% phase Bull's Eye Map.
- the location of the region of interest is not consistent in the remaining phase Bull's Eye Map.
- Artifacts such as beam-hardening artifacts and transient motion artifacts do not appear in all phases, but appear temporarily and disappear.
- true ischemic areas are consistently dark across all available phases. Thus, it is determined that the regions of interest (dark regions) shown in FIG. 12 are not truly ischemic regions.
- FIG. 13 is a diagram illustrating an example of a method of extracting a lesion.
- a region of interest is extracted by thrashing each Bull's Eye Map.
- the reference region 110 in the Bull's Eye Map and two ROIs 120 and 130 extracted from other Bull's Eye Maps are overlapped.
- a number of overlapping regions of interest may be used (S61).
- Software may automatically calculate the number of overlapping regions of interest at each point constituting the regions of interest 110, 120, 130, or at each point in the Bull's Eye Map. The greater the number of overlapping regions of interest (eg, 101), the higher the probability of lesions (true ischemic regions).
- the ratio of the area of the overlapping area including the points whose overlapping number is greater than or equal to the area of the union of the areas of interest may be obtained (S71).
- a region where at least one of the number of overlaps and the ratio of areas is greater than or equal to the reference is determined as the ture lesion, and the area that is less than the reference is added to the artifact. It can be judged that.
- a lesion probability function that weights the number of overlaps and the area ratio, respectively, to find the probability that the set of points (pixels) where the number of overlaps is greater than or equal to K and the area ratio is greater than or equal to K It may be.
- the method of distinguishing the artifact from the lesion in the medical image according to the present disclosure does not necessarily include generating a Bull's Eye Map.
- regions of interest eg, 210, 220, and 230
- the number of overlaps of the ROI may be obtained. If the number of overlaps is greater than or equal to six (e.g., six), the lesion can be determined.
- volume 1 of the union of the 3D ROIs 210, 220, and 230 is obtained. Further, volume 2 of the overlapped area consisting of points with overlapping numbers of N or more is obtained. If the volume ratio (volume 2 / volume 1) is greater than or equal to the reference (e.g. 0.5), it can be determined as a lesion (e.g. 201), and if less, it can be determined as an artifact.
- the reference e.g. 0.5
- each pixel or voxel may be obtained by logistic regression analysis or bayesian analysis. As a result, the lesion may be probable.
- the method of distinguishing artifacts from lesions in the medical images illustrated in FIGS. 3 to 14 may be performed automatically by one or more software or in combination with a user interface. For example, it is possible to configure the software to perform each step shown in FIG.
- the accuracy is improved in distinguishing the artifact from the ischemia region.
- (1) a method of distinguishing artifacts from lesions in medical images comprising: obtaining medical images of organs in a plurality of phases with respect to a moving organ; Classifying a region of interest in each of the medical images; And distinguishing the artifact from the lesion by evaluating the degree of overlap between the ROIs.
- (2) acquiring a medical image of the organ includes: acquiring 3D cardiac perfusion images obtained by capturing the heart at a plurality of times in one heartbeat period of the heart using a medical imaging apparatus; How to distinguish between artifacts and lesions in a medical image.
- Multiphase cardiac images in the present disclosure are not necessarily limited to those obtained in the heartbeat period. Cardiac images of different phases may be obtained at different heart rate cycles.
- (3) extracting the lesion may include: classifying an inconsistent region of medical images among the regions of interest into artifacts; And dividing a consistent area in the medical images among the regions of interest into a divided area. 11.
- the extracting of the lesion may include: calculating an overlapping number of the ROIs for each point constituting the ROIs, and distinguishing the artifacts from the lesions in the medical image.
- extracting the lesion comprises: calculating a ratio of the size of the overlapping region between the regions of interest to the size of the union of the regions of interest.
- (6) extracting the lesion may include: obtaining an overlapping number of the ROIs for each point constituting the ROIs; Obtaining a ratio of the size of the overlapped area consisting of points whose overlapping number is greater than or equal to the size of the union of the ROIs; And determining a lesion in which at least one of the ratio of the number of overlapping and the size is greater than or equal to the reference.
- distinguishing the ROIs includes: generating respective Bull's Eye Maps of 3D cardiac images; And extracting regions of interest as regions suspected of ischemia by thrashing Bull's Eye Maps to find an ischemia region.Isolating artifacts and lesions in a medical image comprising a How to.
- distinguishing the ROIs includes: registering the acquired 3D cardiac images; Generating respective Bull's Eye Maps of the matched 3D cardiac images; And extracting regions of interest as regions suspected of ischemia by thrashing Bull's Eye Maps to find an ischemia region.Isolating artifacts and lesions in a medical image comprising a How to.
- (9) distinguishing the ROIs includes: registering the acquired 3D cardiac images; And extracting 3D regions of interest as regions suspected of ischemia by thrashing the matched 3D cardiac images to find an ischemia region. How to distinguish a lesion.
- Myocardial and cardiovascular are segmented for each of the 3D cardiac images obtained prior to the step of dividing the regions of interest, and the myocardium is divided into myocardial regions where the myocardium is fed by the cardiovascular system according to the cardiovascular structure. Steps to distinguish between artifacts and lesions in a medical image comprising a.
- acquiring a medical image of an organ includes: acquiring 3D cardiac images of a heart at a plurality of phases at regular intervals in an RR cycle of the heartbeat by CT perfusion (CTP);
- the distinguishing regions of interest may include: registering the acquired 3D cardiac images; Generating respective Bull's Eye Maps of the matched 3D cardiac images; And extracting regions of interest by thrashing Bull's Eye Maps to find an ischemia region, and extracting lesions comprises: region of interest for each point constituting regions of interest Obtaining a overlapping number of; Obtaining a ratio of the size of the overlapped area consisting of points whose overlapping number is N to the size of the union of the ROIs; And determining a lesion having at least one of a superimposed number and a ratio greater than or equal to the reference. 2.
- the accuracy of distinguishing between artifacts and true ischemic regions in the CTP of patients suspected of having coronary artery disease is improved.
- the method for distinguishing artifacts from lesions in another medical image provides a basis for verifying visual judgment on multiphase heart images.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Optics & Photonics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Quality & Reliability (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- Pulmonology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
본 개시는 의료 영상에서 아티팩트(artifact)와 병변(diseased area)을 구분하는 방법에 있어서, 운동하는 장기(organ)에 대해 복수의 시기(multiphase)에서 장기의 의료 영상들을 획득하는 단계; 의료 영상들 각각에서 관심 영역을 구분하는 단계; 그리고 관심 영역들 간의 중첩 정도를 평가하여 아티팩트와 병변을 구분하는 단계;를 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법에 관한 것이다.
Description
본 개시(Disclosure)는 전체적으로 의료 영상에서 아티팩트와 병변을 구분하는 방법법(METHOD OF CLASSIFYING AN ARTIFACT AND A DISEASED AREA IN A MEDICAL IMAGE)에 관한 것으로, 특히 복수의 시기(multiphase)에 촬영된 장기(organ)의 의료 영상을 비교하여 자동으로 아티팩트와 병변을 구분하는 방법에 관한 것이다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
관상동맥 질환(CAD; Coronary Artery Disease)은 협착이나 혈관이 좁아져 혈액의 흐름이 방해 받는 것이다. 관상동맥은 심근에 피를 공급하는 혈관들로서, CAD로 인해 심근(myocardial)을 통해 피가 뿌려지는 길이 막히거나 바뀌며, 그 결과 심근 허혈(myocardial ischemia)과 같은 병변이 발생할 수 있다.
도 1은 심장의 CTP 영상의 일 예를 나타내는 도면이다.
심장에 대한 CT 또는 MRI 등에 의해 획득된 의료 영상을 기초로 CAD를 평가하는 방법이 다양하게 연구되어 왔다. CT를 이용한 방법으로 CTA(computed tomography angiography), CTP(computed tomography perfusion) 등이 이용된다. 예를 들어, 동맥에 조영제를 투입하고 심근에 조영제가 차오르고 나가는 다이네믹 퍼퓨젼(dynamic perfusion)을 보거나, 하나의 CT 슬라이스를 시각적으로 보고 허혈 영역을 판단하는 방법(static perfusion)이 사용된다(도 1 참조).
이러한 CTP에 의해 획득된 심장 영상에서 허혈 영역은 밝기가 평균보다 낮은(어두운) 영역이다. 의사나 사용자에게 양질의 정보를 제공하기 위해서는 의료 영상의 질을 향상하는 것이 중요하다. 심장 영상에는 beam-hardening artifact 및 Transient motion artifact와 같은 일종의 노이즈가 포함될 수 있다. 특히, 심장 바로 옆의 대동맥에 차있는 조영제가 강한 신호를 내기 때문에 심장 CTP 영상의 신호가 떨어지는 beam-hardening artifact가 발생하는 것으로 알려져 있다. 이러한 beam-hardening artifact 또는 Transient motion artifact는 찾아진 허혈 영역이 진정한 병변(true lesion)인지 여부에 대해 신뢰성을 떨어뜨리는 문제가 있다.
도 2는 Bull's Eye Map의 일 예를 나타내는 도면이다.
한편, 다양한 의료 영상을 통합하거나, 진단 및 평가를 위해 시각화하는 연구가 있다. 예를 들어, 논문 Three-dimensional registration of myocardial perfusion SPECT and CT coronary angiography(Annals of Nuclear Medicine Vol. 19, No. 3, 207-215, 2005)에는 CT coronary angiography (CTCA) 및 myocardial perfusion SPECT 정보를 통합하기 위한 정합(registration)의 방법이 개시되어 있다.
상기 논문에서는 좌심실의 심근을 장축 방향을 따라 16개의 단축 방향 이미지로 나누고, 다시 각 단축 방향 이미지를 36개의 세그먼트(segment)로 나눈다. 따라서 심근은 576(16x36)개의 다각형 표면(polygonal surface)으로 나누어진다. SPECT에 의한 심근 관류 정보가 정합의 결과를 기초로 상기 576개의 다각형 표면에 주어진 불스아이맵(Bull's Eye Map)으로 시각화된다(도 2 참조).
3D 심장 영상 또는 2차원의 Bull's Eye Map을 이용한 시각적 정보를 이용하여 의사의 직관이나 경험에 의해 진정한 병변(true lesion)을 판단할 수 있다. 그러나 의사마다 편차가 있고 시각적 판단에 대한 객관적이고 정량적인 검증 근거를 주지 못하는 문제가 있다.
미국 공개특허공보 제2009/0161938호에는 심장에 스트레스를 주고 움직임과 두께를 관찰하여 병변(예: ischemia) 유무를 평가하는 방법으로서, 심장의 볼륨 데이터를 메시(mesh)화하여 심장 기능의 양적인(functional quantitative) 계산을 하는 기술이 개시되어 있다. 그러나 이 문헌에 개시된 기술은 심장 기능을 스트레스 테스트하는 방법에 관한 것으로 심장 영상에서 아티팩트를 제거하는 방법이나 수단을 개시하지 못한다.
따라서 객관적이고 정량적인 정보를 기초로 자동화된 방식에 의해 의료 영상에서 아티팩트와 진정한 병변을 구분하는 방법이 요구된다.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 의료 영상에서 아티팩트(artifact)와 병변(diseased area)을 구분하는 방법에 있어서, 운동하는 장기(organ)에 대해 복수의 시기(multiphase)에서 장기의 의료 영상들을 획득하는 단계; 의료 영상들 각각에서 관심 영역을 구분하는 단계; 그리고 관심 영역들 간의 중첩 정도를 평가하여 아티팩트와 병변을 구분하는 단계;를 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법이 제공된다.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.
도 1은 심장의 CTP 영상의 일 예를 나타내는 도면,
도 2는 Bull's Eye Map의 일 예를 나타내는 도면,
도 3은 본 개시에 따른 의료 영상에서 아티팩트와 병변을 구분하는 방법의 일 예를 설명하는 도면,
도 4는 multiphase에서 3D 심장 영상들을 획득하는 방법의 일 예를 설명하는 도면,
도 5는 multiphase에서 획득된 3D 심장 영상들의 일 예를 설명하는 도면,
도 6은 multiphase에서 획득된 3D 심장 영상들에서 아티팩트의 일 예를 설명하는 도면,
도 7은 심장 영상이 단축정렬되는 일 예를 설명하는 도면,
도 8 및 도 9는 혈관 기반 심근 영역 나누기의 일 예를 설명하는 도면,
도 10은 상호보완정보 기반 강체정합의 알고리즘 프레임워크를 일 예를 보여주는 도면,
도 11은 Bull's Eye Map들에서 병변의 일 예를 설명하는 도면,
도 12는 Bull's Eye Map들에서 아티팩트의 일 예를 설명하는 도면,
도 13은 병변을 추출하는 방법의 일 예를 설명하는 도면,
도 14는 병변을 추출하는 방법의 다른 예를 설명하는 도면.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 3은 본 개시에 따른 의료 영상에서 아티팩트와 병변을 구분하는 방법의 일 예를 설명하는 도면이다.
의료 영상에서 아티팩트(artifact)와 병변(diseased area)을 구분하는 방법은 예를 들어, 관상동맥 질환(coronary artery disease)을 가진 것으로 의심되는 환자의 CTP에서 아티팩트와 진정한 허혈 영역의 구분의 정확도 향상을 위해 사용될 수 있다. 이를 위해 아티팩트와 병변을 구분하는 방법은 CTP analysis에서 사용되는 정량적 파라미터들을 활용하며, 시각적인 분석(visual analysis)과 함께 사용될 수 있다.
의료 영상에서 아티팩트와 병변을 구분하는 방법에 있어서, 먼저 운동하는 장기(organ)에 대해 복수의 시기(multiphase)에서 장기의 의료 영상들을 획득한다. 이후, 의료 영상들 각각에서 관심 영역을 구분한다. 다음으로, 관심 영역들 간의 중첩 정도를 평가하여 아티팩트와 병변을 구분한다.
본 개시에 따른 의료 영상에서 아티팩트와 병변을 구분하는 방법은 움직이는 장기(organ; 예: 심장, 폐 등)에 잘 적용될 수 있고, 특히 주기적으로 움직이는 심장과 같은 장기에 적용되면 효과적이다. 이하 심장을 중심으로 설명한다.
예를 들어, 장기의 의료 영상을 얻기 위해 CT와 같은 의료 영상 촬영 장치를 이용하여 심장의 주기적 운동에서 복수의 시기(multiphase)에 심장을 촬영한 3D 심장 관류 영상(CT perfusion image; 이하 심장 영상)들을 획득한다(S11). 이후, 심근 관류와 혈관의 해부학적 구조(anatomy)를 연관시켜 분석하기 위해, 획득된 3D 심장 영상들 각각에 대해 심근 및 심혈관을 분할(segmentation)하고, 심근을 심혈관의 구조에 따라 심혈관에 의해 먹여 살려지는 심근 영역들로 나눌 수(divide) 있다(S21). 다음, 심근 영역들이 나누어진 3D 심장 영상들을 정합하고(S31), 정합된 3D 심장 영상들 각각의 Bull's Eye Map을 생성한다(S41). 이후, Bull's Eye Map들각각으로부터 관심 영역을 추출한다(S51). 심장 영상들의 각 점에서 관심 영역들의 중첩 개수를 구한다(S61). 다음, 관심 영역들의 합집합의 사이즈에 대한 중첩 영역의 사이즈의 비율을 구한다(S71). 중첩 정도에 따라 아티팩트와 병변을 구분한다(S81). 여기서 중첩 정도는 중첩 개수이거나, 사이즈 비율이거나 또는 중첩 개수와 사이즈 비율을 모두 고려한 것일 수 있다.
본 개시에 따른 의료 영상에서 아티팩트와 병변을 구분하는 방법에서는 상기 예와 다른 예로서, 심근 영역들로 나누는 과정(S31)은 생략할 수 있다.
또한, 다른 예로서, Bull's Eye Map이 일종의 정합 효과를 가지기 때문에 3D 심장 영상들을 정합하는 과정(S31)을 생략할 수도 있다.
또한, 더욱 다른 예로서, Bull's Eye Map을 생성하지 않고, 정합된 3D 심장 영상들에서 관심 영역을 추출하여 3D 볼륨 데이터인 관심 영역들로부터 중첩 정도를 평가하여 아티팩트와 병변을 구분할 수도 있다.
이하, 각 과정을 상세히 설명한다.
도 4는 multiphase에서 3D 심장 영상들을 획득하는 방법의 일 예를 설명하는 도면이다.
본 예에서 복수의 시기에 촬영된 심장 영상들이 획득된다(S11). 예를 들어, CT를 이용하여 심장의 1박동 주기에서 복수의 시기(multiphase)에 심장을 촬영한 심장 영상들을 획득한다. 심장의 1박동 주기는 약 1초이며, 일 예로 이 시간 간격 내에서 10개 phase의 심장 영상들을 획득할 수 있다.
도 4에는 동맥과 심근에 조영제가 차올라 각각 피크에 도달한 후 시간이 지남에 따라 빠져나가는 Time Attenuation Curve(TAC)가 도시되어 있다.
조영제가 차오르고 빠져나가는 전체적으로 CTP 영상을 획득하여 허혈 영역을 찾을 수 있다(조영제 dynamic 영상). 그러나 이러한 방법은 방사선 피폭량이 크고(high radiation dose),high-end CT 장치가 필요하고 긴 시간 숨을 참아야 하며(long breath hold time; 예 30초)하기 때문에 수행이 어렵고(hard to perform), 심장 수축기(systolic phase)에만 적용될 있는 단점이 있다.
본 예에서는 심근에 조영제의 강도가 피크에 도달한 시간 간격 동안에 심전도 기준으로 심장의 R-R 구간(예를 들어, 1분에 60회 뛴다고 가정할 때, R-R 구간은 1000 msec)에서 복수의 시기(multiphase)에 심장 영상들을 획득한다. 복수의 시기는 각각 심장 박동의 특정 순간을 나타낸다. phase 30%를 보통 심장 수축기로 본다. 이러한 심장 영상 각각은 static 영상이지만, 본 예에서는 이러한 복수의 심장 영상을 이용하므로 심장의 운동을 볼 수 있다. 본 예에 따른 방법은 방사선 피폭량이 작고, CCTA와 같이 수행이 쉬우며, 심장 벽의 비정상 운동(Wall motion abnormality)를 볼 수 있는 장점이 있다.
도 5는 multiphase에서 획득된 3D 심장 영상들의 일 예를 설명하는 도면이다.
심장 영상들을 획득하기 위한 CT Protocol의 일 예로 AMC protocol (25 minutes), Second degeneration dual-source CT가 사용된다. Very smooth kernel (B10f) reconstruction, 10-mm thick MPR image with narrow window setting CT Perfusion에서 phase 0% ~ 90% of R-R interval, 10% increment 조건에 의한 Multiphase 심장 영상들이 도시되어 있다.
심장 영상들에서 심근 관류의 결함의 단서(Diagnostic clue of perfusion defect)를 찾을 수 있다. 예를 들어, 관상동맥 영역(coronary territory)에서 어두운 영역(Low density lesion)을 볼 수 있고, 심장 영상들의 cine image에서 일관되게 어두운 영역(Persistent lesion)은 아티팩트가 아니라 진정한 병변일 확률이 높다. 한편, Transient motion 또는 beam-hardening artifact로 인해 일부의 심장 영상에서는 어둡고 어떤 심장 영상에서는 밝은 영역, 즉 일관되지 않은 어두운 영역은 아티팩트일 확률이 높다. 또한, 심장 영상들의 cine image로부터 Complementary regional wall motion abnormality를 찾을 수도 있다.
도 6은 multiphase에서 획득된 3D 심장 영상들에서 아티팩트의 일 예를 설명하는 도면이다.
예를 들어, 심장을 R-R 구간에서 10 phase의 심장 영상들을 찍는다. 도 6에는 서로 다른 축으로 도시된 3개 phase 심장 영상들이 도시되어 있다. 30% phase에서 어두운 영역(화살표로 표시됨)은 일응 허혈(ischemia) 영역으로 보일 수 있다. 그러나 40% 및 80% phase에서 해당 영역(*로 표시됨)은 밝다. 이와 같이 어두운 영역이 심장 영상들에서 일관되지 못하면 아티팩트일 확률이 높다. 즉 찾고자 하는 진정한 병변(true lesion; 병변)일 확률이 낮다.
이와 같이 multiphase 심장 영상들에서 평균 밝기보다 밝기가 작은, 즉 어두운 영역(관심 영역)의 일관성을 추적하면 아티팩트와 병변을 기존의 방법들 보다 더 정확도 높게 구분할 수 있다. 획득된 심장 영상들 중에서 일부는 상태가 좋지 못하여 버려질 수 있다. 판정의 대상이 된 나머지 심장 영상들에서 어떤 관심 영역이 일관되게 나타나면 그 관심 영역은 병변일 확률이 높다. 이와 다르게 어떤 phase의 심장 영상에서 나타난 관심 영역이 다른 phase의 심장 영상에서 나타나지 않는다면 그 관심 영역은 아티팩트로 볼 수 있다.
이러한, multiphase 심장 영상들을 시각적으로 판단하는 것에 더하여 더 객관적이고 정량적으로 판별하기 위해 심장 영상들이 정합(registration)되거나 2차원 이미지인 Bull's eye map을 생성할 수 있다. 이에 대해서는 후술된다.
도 7은 심장 영상이 단축정렬되는 일 예를 설명하는 도면이다.
심장 영상이 심근의 단축(short axis) 방향으로 정렬(alignment)된다.
도 7에는 CT의 스캔 축 방향에 따른 심장 영상(좌측 상단)과 단축정렬된(Short axis alignment) 심장 영상(상단 중앙)이 나타나 있다. 좌심실과 우심실의 심근의 모델이 도 7의 우측에 나타나 있다. 심근은 도 7에 보이는 것과 같이 장축(Long axis) 및 단축을 가진다. CT의 스캔 방향은 심근의 장축 및 장축과 교차하는 단축(short axis)과 나란하지 않다. 따라서 3차원 데이터인 심장 영상을 일정한 관찰 방향을 정해서 평가하기 위해 심장 영상이 단축 또는 장축 방향으로 정렬되는 것이 바람직하다.
한편, 후술될 정합(registration)의 과정을 고려하면, 심장 영상들 중 하나가 정합의 기준(reference)이 될 수 있다.
도 8 및 도 9는 혈관 기반 심근 영역 나누기의 일 예를 설명하는 도면이다.
심장 영상은 심근의 관류(perfusion) 영상이다. 따라서 심장 혈관, 심근 및 관류가 해부학적으로 관련되도록 하는 것이 허혈 영역과 관련 있는 혈관을 찾는 등의 문제 해결을 위해 바람직하다. 이러한 해부학적 관계를 찾기 위해 3D 심장 영상들 각각에 대해 심근 및 심혈관을 분할(segmentation)하고, 심근을 심혈관의 구조에 따라 심혈관에 의해 먹여 살려지는 심근 영역들로 나눌(divide) 수 있다(S21).
본 예와 다르게 3D 심장 영상들 간에 정합을 먼저 하는 경우, 정합의 기준이 되는 심장 영상만 심근 영역들로 나누는 과정을 수행하고 나머지 심장 영상들은 정합 정보를 기초로 심근 영역들로 나누어질 수도 있다.
본 예에서, 상기와 같이 단축정렬된 심장 영상을 기초로 심근 및 심혈관이 분할(segmentation)되고, 심근이 심혈관의 구조에 따라 심혈관에 의해 먹여 살려지는 심근 영역들로 나누어(divided)진다.
예를 들어, 심장 영상을 기초로 Adaptive Dilation 기반 심혈관 분할 방법에 의해 심혈관이 분할된다. 또한, Template 기반 심혈관 라벨링 및 수정 과정이 수행된다. 이후, 심혈관 Diameter-Dilation 기반 심근 영역 나누기 및 수정 과정이 이루어진다. 심혈관 Diameter-Dilation 기반 심근 영역 나누기 및 수정 과정은 심근 영역들의 사이즈가 심혈관의 직경에 비례하도록 디스턴스맵(distance map)을 생성하는 과정을 포함한다. 예를 들어, 관상동맥 RCA(Right Coronary Artery), LAD(Left Anterior Descending branch) 및 LCX(Circumflex branch)은 그 직경이 위치에 따라 다르고, 직경이 클수록 먹어 살리는 심근 영역의 사이즈가 더 크다고 볼 수 있다. 따라서 RCA, LAD 및 LCX의 해부학적 구조에 따라 심근 영역을 나누는 것이 심근 관류(myocardial perfusion)를 더 실재에 가깝게 평가하는 데에 유리하다.
상기와 같이 심근 영역으로 영역 나누기가 되는 과정에서 도 8(a)에 도시된 것과 같이 템플릿 기반 변형 모델(Template-based deformable models)이 이용될 수 있다. 템플릿은 thick-section 이미지를 이용하여 미리 정의된 영역 모델이며, 변형 모델(M. Kaus et al., 2004)이 참조될 수 있다.
템플릿 기반 변형 모델을 이용한 영역 나누기에서 다음 수학식(1)을 만족하는 곡면 상의 점을 매칭한다.
v: contour vertex
N(j): neighbors of vertex j
s: scaling
R: rotation matrix
전술된 혈관 및 심근의 분할과, 심근 영역들로 영역 나누기를 하는 과정은 자동알고리즘에 의해 수행될 수 있다. 한편, 자동알고리즘이 항상 성공하는 것은 아니므로, 전술된 영역 나누기의 결과가 영상의학, 임상의학 또는 동물실험과 비교되는 과정을 거칠 수 있다. 또한, 도 8(b)에 도시된 것과 같이, Volume fitting 및 Manual Editing 모듈에 의해 수정되는 과정을 거칠 수 있다.
Volume fitting은 혈관 구조에 따라 나누어진 심근 영역들을 사용자가 손쉽게 수정할 수 있는 방법을 제공한다. 예를 들어, 한정된 숫자의 제어점(Control points)을 이용하여 심근 영역을 수정하며, Free-form deformable model이 적용될 수 있다(도 8(b) 참조).
Volume fitting에서 Free-form deformable model은 하기 수학식(2)로 정의된다.
fitting은 제어점(Control points)을 찾는 문제로서 하기와 같이 표현된다.
Manual Editing은 제어점 이동을 통한 영역 수정에 의해 수행될 수 있다.
상기와 같은 과정을 거쳐서 분할된 심혈관과 심근(도 9에는 left ventricle이 도시됨)은 도 9에 도시된 3차원 이미지에서 단축 방향 반경, 단축으로부터 회전각도 및 장축 방향 높이로 구성된 3차원 좌표값을 가진다. 여기서 장축 방향으로 투사되어 apex 측에 단축과 평행한 2차원 영상이 형성된다. 즉, 상기 높이를 제외하면 상기 3차원 좌표는 2차원 영상에 대응된다.
도 10은 상호보완정보 기반 강체정합의 알고리즘 프레임워크의 일 예를 보여주는 도면이다.
심근 관류를 보여주는 multiphase 심장 영상들은 심장의 R-R 구간 운동을 보여 주므로 따라서 multiphase 심장 영상들을 비교하기 위해서는 정합(registration)의 과정이 필요하다(S31).
본 예에서 정합 과정은 심근 영역들로 나눈 후에 수행되지만, 본 예와 다르게 정합 과정은 multiphase 심장 영상들을 얻은 후, 심근 영역들로 나누기 전에 이루어질 수도 있다.
한편, Bull's Eye Map 자체가 일종의 표준화이어서 정합의 효과를 가지기 때문에 본 예에 따른 의료 영상에서 아티팩트와 병변을 구분하는 방법이 반드시 3D 심장 영상들 간의 정합의 과정을 포함해야만 하는 것은 아니다. 다만, 이러한 정합의 과정을 거치면 후술될 Bull's Eye Map들에서 추출된 관심 영역들 간의 중첩 정도의 정확도가 더 향상될 수도 있다.
multiphase 심장 영상들을 정합하기 위해서는 강체정합(rigid registration) 및 비강체정합(non-rigid registration)의 방법이 함께 사용될 수 있다.
예를 들어, 상호보완정보 기반 강체정합(Mutual information based rigid registration)에 의해 어느 하나의 심장 영상을 기준으로 나머지 심장 영상들이 정합된다.
상호보완정보 기반 강체정합에서는 한 이미지에서 비슷한 음영을 가지는 비슷한 조직 영역은 다른 이미지의 비슷한 음영으로 이루어진 영역에 대응될 것이라고 가정된다. 만약 두 이미지가 잘 정렬되면 bivariate histogram은 일정 영역에 모이는 경향을 보여주므로 불확실성(uncertainty)이 떨어진다. 이 사실을 이용하여 정합이 될 수 있다.
상호보완정보(Mutual information )는 하기 방정식에 의해 정의된다.
u, v : input image
H: Joint distribution을 위한 Shannon 엔트로피
p: bivariate histogram의 확률밀도함수
Normalized Mutual Information은 하기 식으로 정의된다.
상기와 같은 상호보완정보의 정의에 의하면, 정합은 NMI를 최대화하는 변환행렬 T를 구하는 문제가 된다.
한편, 전술된 것과 같이 강체정합을 수행하더라도 심장 영상들이 사실상 완전히 일치하지는 않는다. 따라서 단순하게 강체정합만으로는, 즉 하나의 contour로는 심장 영상들에서 동일한 영역을 분할할 수 없다. 이와 같이 강체정합의 문제점을 보완하기 위해 비강체정합이 수행될 수 있다.
정합의 결과 심장 영상들의 복셀(voxel)들 간의 관계가 구해진다.
다음으로, 3D 데이터인 multiphase 심장 영상들 각각에 대해 상기한 Bull's Eye Map을 구하는 과정을 수행한다(S41).
예를 들어, 다시 도 9를 참조하면, 전술된 것과 같이 심근 영역들로 나누어지고 서로 정합된 심장 영상들에 있어서, 심근이 장축 방향으로 투사되어 심근 영역들 및 심혈관(RCA, LAD, LCX)이 2차원 영상(Bull's Eye Map)으로 획득된다.
예를 들어, 분할된 심혈관과 심근은 도 9에 도시된 3차원 이미지에서 단축 방향 반경, 단축으로부터 회전각도 및 장축 방향 높이로 구성된 3차원 좌표값을 가진다. 여기서 장축 방향으로 투사되어 apex 측에 단축과 평행한 2차원 영상이 형성된다. 즉, 상기 높이를 제외하면 상기 3차원 좌표는 2차원 영상(Bull's Eye Map)에 대응된다.
도 9에는 관상동맥 RCA, LAD 및 LCX와 심근 영역들이 나타나 있다. Bull's Eye Map으로 표시된 심근 영역들이 관상동맥 RCA, LAD 및 LCX의 구조에 따라 나누어져 있다. 전술된 것과 같이, 각 심근 영역의 사이즈는 관상동맥 RCA, LAD 및 LCX의 직경에 각각 비례하도록 형성되는 것이 바람직하다.
이렇게 획득된 Bull's Eye Map들에서 심혈관의 구조에 따라 나누어진 심근 영역들에 기초하여 심근 영역 기반 CT Perfusion 결과 Overlay, 심근 영역 기반 Perfusion Analysis 및 Anatomy Function Mismatch/Match Analysis가 이루어질 수 있다.
도 11은 Bull's Eye Map들에서 병변의 일 예를 설명하는 도면이다.
이후, 허혈 영역(ischemia region)으로 의심되는 영역(관심 영역)을 찾도록 각 Bull's Eye Map을 쓰레쉬홀딩(thresholding)하여 관심 영역을 추출한다(S51).
예를 들어, 관심 영역은 평균 밝기보다 낮은 영역을 찾도록 쓰레쉬홀딩값(예: HU 값)을 부여하는 등의 방법으로 관심 영역을 구분한다. 밝기의 정도를 구분하도록 쓰레쉬홀딩한 결과 Bull's Eye Map에서 각 점들이 색을 달리하여(도 11에는 색이 나타나지 않고 색이 명암으로 나타나 있다) 나타난다. 붉은색과 연두색(흑백 명암이 나타난 도 11에서 대략 밝은 영역)은 심근에 피의 공급이 원활하여 신호(density)가 높은 영역으로서 정상 영역이다. 파란색과 보라색(흑백 명암이 나타난 도 11에서 대략 어두운 영역)은 심근에 필요한 피의 양보다 적은 양의 피가 공급되는 또는 피가 공급되지 않는 관심 영역이다.
도 11에서 관심 영역이 phase 20%-90%까지 비교적 일관된 영역에 나타나는 것을 의사나 전문가는 시각적으로 판별할 수 있다. 그러나 본 개시에 따른 의료 영상에서 아티팩트와 병변(진정한 허혈 영역)을 구분하는 방법은 multiphase 심장 영상들에서 허혈 영역의 일관성에 관한 객관적 정략적 정보를 제공하며, 시각적 판단의 검증 근거를 제고할 수 있고, 진정한 허혈 영역을 구분하는 정확도를 향상한다. 이에 대해서는 더 후술된다.
도 12는 Bull's Eye Map들에서 아티팩트의 일 예를 설명하는 도면이다.
도 12에서 20%, 30%, 40% phase Bull's Eye Map에서 관심 영역이 나타나는 위치가 현저히 다르고, 특히 40% phase Bull's Eye Map에서는 어두운 부분이 매우 작거나 약한 것을 확인할 수 있다. 또한, 나머지 phase Bull's Eye Map에서도 관심 영역이 나타나는 위치가 일관되지 못한 것을 알 수 있다. beam-hardening artifact 및 Transient motion artifact와 같은 아티팩트는 모든 phase에서 나타나는 것이 아니라 일시적으로 나타났다가 사라지는 특성이 있다. 이와 반대로 진정한 허혈 영역은 사용 가능한 모든 phase에서 일관되게 어둡게 나타난다. 따라서, 도 12에 나타난 관심 영역들(어두운 영역들)은 진정한 허혈 영역이 아니라고 판단된다.
도 13은 병변을 추출하는 방법의 일 예를 설명하는 도면이다.
전술한 것과 같이, 각 Bull's Eye Map을 쓰레쉬홀딩하여 관심 영역이 추출된다. 도 13에는 설명의 편의상 기준이 Bull's Eye Map 내의 관심 영역(110)과 다른 Bull's Eye Map들에서 추출된 관심 영역들(120, 130) 2개가 중첩되도록 도시되어 있다.
병변을 찾는 지표로서 관심 영역들이 중첩되는 개수를 사용할 수 있다(S61). 관심 영역들(110, 120, 130)을 이루는 각 점에서, 또는 기준이 Bull's Eye Map 내의 각 점에서 관심 영역이 중첩되는 개수를 소프트웨어에 의해 자동으로 계산할 수 있다. 중첩되는 관심 영역의 개수가 많은 영역(예: 101)수록 병변(진정한 허혈 영역)일 확률이 높다.
병변을 찾는 다른 지표로서 관심 영역들의 합집합의 면적에 대한 중첩 개수가 N 이상인 점들로 이루어진 중첩 영역의 면적의 비율을 구할 수 있다(S71).
상기 2가지 지표를 결합하여, 중첩 개수 및 면적의 비율 중 적어도 하나가 기준 이상(예: 중첩 개수 6, 사이즈 비율 0.5 이상)인 영역을 ture lesion(병변)으로 판정하고, 기준 미만인 영역은 아티팩트에 의한 것으로 판정할 수 있다.
또는 더 폭넓은 관점에서, 중첩 개수와 면적 비율에 각각 가중치를 부여하여 중첩 개수가 N 이상이고 면적 비율을 K 이상으로 만드는 점(픽셀)들의 집합이 진정한 허혈 영역일 확률을 구하는 병변 확률 함수를 구할 수도 있다.
중첩 개수 및 면적 비율 이외에도 병변을 찾는 또 다른 지표들이 개발될 수 있다.
도 14는 병변을 추출하는 방법의 다른 예를 설명하는 도면이다.
본 개시에 따른 의료 영상에서 아티팩트와 병변을 구분하는 방법은 Bull's Eye Map을 생성하는 과정을 반드시 포함해야 하는 것은 아니다. 3D 심장 영상들을 3D 정합하고, 정합된 3D 심장 영상들을 각각 쓰레쉬홀딩하면 복셀(voxel)들의 클러스터(cluster)로서 관심영역들(예: 210, 220, 230)이 추출될 수 있다. 이러한 관심 영역들(210, 220, 230)의 각 복셀들에 대해 관심 영역의 중첩의 개수를 구할 수 있다. 중첩 개수가 기준(예: 6개) 이상이면 병변으로 판정하고 미만이면, 아티팩트로 판정할 수 있다.
또한, 다른 방법으로 3D 관심 영역들(210, 220, 230)의 합집합의 볼륨1을 구한다. 또한, 중첩 개수가 N 이상인 점들로 이루어진 중첩 영역의 볼륨2를 구한다. 볼륨 비율(볼륨2/볼륨1)이 기준(예: 0.5) 이상이면 병변(예: 201)으로 판정하고 미만이면 아티팩트로 판정할 수 있다.
또한, 도 13에서 설명한 것과 유사하게 중첩 개수 및 볼륨 비율을 함께 고려한 경험식을 구할 수도 있다.
더욱 일반적으로 중첩의 개수, Bull's Eye Map 또는 3D 심장 영상에서 점(픽셀 또는 복셀)의 위치, 관심 영역들의 사이즈(면적, 볼륨), 관심 영역들의 위치, phase 값, 환자의 나이나 성 등의 요소들을 입력으로 하여 로지스트 리그레션 분석(logistic regression analysis)이나 베이시안 분석법(bayesian analysis)에 의해 각 픽셀 또는 복셀이 허혈 영역일 확률분포함수를 구할 수도 있다. 그 결과 병변이 확률적으로 구해질 수도 있다.
도 3 내지 도 14에서 설명된 의료 영상에서 아티팩트와 병변을 구분하는 방법은 하나 이상의 소프트웨어에 의해 자동으로 또는, 사용자 인터페이스와 결합하여 수행될 수 있다. 예를 들어, 도 3에 도시된 각 단계를 수행하는 소프트웨어들을 구성할 수 있다.
본 개시에 따른 의료 영상에서 아티팩트와 병변을 구분하는 방법에 의하면 아티팩트와 허혈 영역의 구분에 있어서 정확도(accuracy)가 향상된다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) 의료 영상에서 아티팩트(artifact)와 병변(diseased area)을 구분하는 방법에 있어서, 운동하는 장기(organ)에 대해 복수의 시기(multiphase)에서 장기의 의료 영상들을 획득하는 단계; 의료 영상들 각각에서 관심 영역을 구분하는 단계; 그리고 관심 영역들 간의 중첩 정도를 평가하여 아티팩트와 병변을 구분하는 단계;를 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
(2) 장기의 의료 영상을 획득하는 단계는: 의료 영상 촬영 장치를 이용하여 심장의 1박동 주기에서 복수의 시기에 심장을 촬영한 3D 심장 관류(perfusion) 영상들을 획득하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
본 개시에서 multiphase 심장 영상들이 반드시 심장의 1박동 주기에서 획득되는 것으로 제한되는 것은 아니다. 다른 심장 박동 주기에서 다른 phase의 심장 영상들이 획득될 수도 있다.
(3) 병변을 추출하는 단계는: 관심 영역들 중 의료 영상들에서 일관되지 않는 영역을 아티팩트로 구분하는 과정; 그리고 관심 영역들 중 의료 영상들에서 일관된(consistent) 영역을 병변(diseased area)으로 구분하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
(4) 병변을 추출하는 단계는: 관심 영역들을 구성하는 각 점에 대해 관심 영역의 중첩 개수를 구하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
(5) 병변을 추출하는 단계는: 관심 영역들의 합집합의 사이즈에 대한 관심 영역들 간의 중첩 영역의 사이즈의 비율을 구하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
(6) 병변을 추출하는 단계는: 관심 영역들을 구성하는 각 점에 대해 관심 영역의 중첩 개수를 구하는 과정; 관심 영역들의 합집합의 사이즈에 대한 중첩 개수가 N 이상인 점들로 이루어진 중첩 영역의 사이즈의 비율을 구하는 과정; 그리고 중첩 개수 및 사이즈의 비율 중 적어도 하나가 기준 이상인 병변을 판정하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
(7) 관심 영역들을 구분하는 단계는: 3D 심장 영상들을 각각의 Bull's Eye Map을 생성하는 과정; 그리고 허혈 영역(ischemia region)을 찾도록 Bull's Eye Map들을 쓰레쉬홀딩(thresholding)하여 허혈 영역으로 의심되는 영역으로서 관심 영역들을 추출하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
(8) 관심 영역들을 구분하는 단계는: 획득된 3D 심장 영상들을 정합(registration)하는 과정; 정합된 3D 심장 영상들을 각각의 Bull's Eye Map을 생성하는 과정; 그리고 허혈 영역(ischemia region)을 찾도록 Bull's Eye Map들을 쓰레쉬홀딩(thresholding)하여 허혈 영역으로 의심되는 영역으로서 관심 영역들을 추출하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
(9) 관심 영역들을 구분하는 단계는: 획득된 3D 심장 영상들을 정합(registration)하는 과정; 그리고 정합된 3D 심장 영상들을 허혈 영역(ischemia region)을 찾도록 쓰레쉬홀딩(thresholding)하여 허혈 영역으로 의심되는 영역으로서 3D 관심 영역들을 추출하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
(10) 관심 영역들을 구분하는 단계 전에 획득된 3D 심장 영상들 각각에 대해 심근 및 심혈관이 분할(segmentation)되고, 심근이 심혈관의 구조에 따라 심혈관에 의해 먹여 살려지는 심근 영역들로 나누는(divide) 단계;를 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
(11) 장기의 의료 영상을 획득하는 단계는: CTP(CT perfusion)에 의해 심장 박동의 R-R 주기에서 일정한 간격의 복수의 시기(phase)에 심장을 촬영한 3D 심장 영상들을 획득하는 과정;을 포함하며, 관심 영역들을 구분하는 단계는: 획득된 3D 심장 영상들을 정합(registration)하는 과정; 정합된 3D 심장 영상들을 각각의 Bull's Eye Map을 생성하는 과정; 그리고 허혈 영역(ischemia region)을 찾도록 Bull's Eye Map들을 쓰레쉬홀딩(thresholding)하여 관심 영역들을 추출하는 과정;을 포함하며, 병변을 추출하는 단계는: 관심 영역들을 구성하는 각 점에 대해 관심 영역의 중첩 개수를 구하는 과정; 관심 영역들의 합집합의 사이즈에 대한 중첩 개수가 N인 점들로 이루어진 중첩 영역의 사이즈의 비율을 구하는 과정; 그리고 중첩 개수 및 비율 중 적어도 하나가 기준 이상인 병변을 판정하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
본 개시에 따른 하나의 의료 영상에서 아티팩트와 병변을 구분하는 방법에 의하면, 관상동맥 질환(coronary artery disease)을 가진 것으로 의심되는 환자의 CTP에서 아티팩트와 진정한 허혈 영역 구분의 정확도가 향상된다.
본 개시에 따른 다른 하나의 의료 영상에서 아티팩트와 병변을 구분하는 방법에 의하면 multiphase 심장 영상들에서 아티팩트와 허혈 영역을 구분하는 객관적 및 정략적 정보를 제공한다.
본 개시에 따른 다른 하나의 의료 영상에서 아티팩트와 병변을 구분하는 방법에 의하면 multiphase 심장 영상들에 대한 시각적 판단의 검증 근거를 제공한다.
Claims (11)
- 의료 영상에서 아티팩트(artifact)와 병변(diseased area)을 구분하는 방법에 있어서,운동하는 장기(organ)에 대해 복수의 시기(multiphase)에서 장기의 의료 영상들을 획득하는 단계;의료 영상들 각각에서 관심 영역을 구분하는 단계; 그리고관심 영역들 간의 중첩 정도를 평가하여 아티팩트와 병변을 구분하는 단계;를 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
- 청구항 1에 있어서,장기의 의료 영상을 획득하는 단계는:의료 영상 촬영 장치를 이용하여 심장의 1박동 주기에서 복수의 시기에 심장을 촬영한 3D 심장 관류(perfusion) 영상들을 획득하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
- 청구항 1에 있어서,병변을 추출하는 단계는:관심 영역들 중 의료 영상들에서 일관되지 않는 영역을 아티팩트로 구분하는 과정; 그리고관심 영역들 중 의료 영상들에서 일관된(consistent) 영역을 병변(diseased area)으로 구분하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
- 청구항 1에 있어서,병변을 추출하는 단계는:관심 영역들을 구성하는 각 점에 대해 관심 영역의 중첩 개수를 구하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
- 청구항 1에 있어서,병변을 추출하는 단계는:관심 영역들의 합집합의 사이즈에 대한 관심 영역들 간의 중첩 영역의 사이즈의 비율을 구하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
- 청구항 1에 있어서,병변을 추출하는 단계는:관심 영역들을 구성하는 각 점에 대해 관심 영역의 중첩 개수를 구하는 과정;관심 영역들의 합집합의 사이즈에 대한 중첩 개수가 N 이상인 점들로 이루어진 중첩 영역의 사이즈의 비율을 구하는 과정; 그리고중첩 개수 및 사이즈의 비율 중 적어도 하나가 기준 이상인 병변을 판정하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
- 청구항 2에 있어서,관심 영역들을 구분하는 단계는:3D 심장 영상들을 각각의 Bull's Eye Map을 생성하는 과정; 그리고허혈 영역(ischemia region)을 찾도록 Bull's Eye Map들을 쓰레쉬홀딩(thresholding)하여 허혈 영역으로 의심되는 영역으로서 관심 영역들을 추출하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
- 청구항 2에 있어서,관심 영역들을 구분하는 단계는:획득된 3D 심장 영상들을 정합(registration)하는 과정;정합된 3D 심장 영상들을 각각의 Bull's Eye Map을 생성하는 과정; 그리고허혈 영역(ischemia region)을 찾도록 Bull's Eye Map들을 쓰레쉬홀딩(thresholding)하여 허혈 영역으로 의심되는 영역으로서 관심 영역들을 추출하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
- 청구항 2에 있어서,관심 영역들을 구분하는 단계는:획득된 3D 심장 영상들을 정합(registration)하는 과정; 그리고정합된 3D 심장 영상들을 허혈 영역(ischemia region)을 찾도록 쓰레쉬홀딩(thresholding)하여 허혈 영역으로 의심되는 영역으로서 3D 관심 영역들을 추출하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
- 청구항 7에 있어서,관심 영역들을 구분하는 단계 전에획득된 3D 심장 영상들 각각에 대해 심근 및 심혈관이 분할(segmentation)되고, 심근이 심혈관의 구조에 따라 심혈관에 의해 먹여 살려지는 심근 영역들로 나누는(divide) 단계;를 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
- 청구항 1에 있어서,장기의 의료 영상을 획득하는 단계는:CTP(CT perfusion)에 의해 심장 박동의 R-R 주기에서 일정한 간격의 복수의 시기(phase)에 심장을 촬영한 3D 심장 영상들을 획득하는 과정;을 포함하며,관심 영역들을 구분하는 단계는:획득된 3D 심장 영상들을 정합(registration)하는 과정;정합된 3D 심장 영상들을 각각의 Bull's Eye Map을 생성하는 과정; 그리고허혈 영역(ischemia region)을 찾도록 Bull's Eye Map들을 쓰레쉬홀딩(thresholding)하여 관심 영역들을 추출하는 과정;을 포함하며,병변을 추출하는 단계는:관심 영역들을 구성하는 각 점에 대해 관심 영역의 중첩 개수를 구하는 과정;관심 영역들의 합집합의 사이즈에 대한 중첩 개수가 N인 점들로 이루어진 중첩 영역의 사이즈의 비율을 구하는 과정; 그리고중첩 개수 및 비율 중 적어도 하나가 기준 이상인 병변을 판정하는 과정;을 포함하는 것을 특징으로 하는 의료 영상에서 아티팩트와 병변을 구분하는 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0036688 | 2014-03-28 | ||
KR1020140036688A KR101611488B1 (ko) | 2014-03-28 | 2014-03-28 | 의료 영상에서 아티팩트와 병변을 구분하는 방법 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/792,062 Continuation US10259482B2 (en) | 2016-03-25 | 2017-10-24 | Braking device for portable cart |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015147595A1 true WO2015147595A1 (ko) | 2015-10-01 |
Family
ID=54196006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/003049 WO2015147595A1 (ko) | 2014-03-28 | 2015-03-27 | 의료 영상에서 아티팩트와 병변을 구분하는 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101611488B1 (ko) |
WO (1) | WO2015147595A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115082409A (zh) * | 2022-06-30 | 2022-09-20 | 心禾互联网医院(成都)有限公司 | 一种自动化识别核素影像诊断心肌缺血的系统 |
CN118037731A (zh) * | 2024-04-12 | 2024-05-14 | 泉州医学高等专科学校 | 一种医学图像管理系统 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102069774B1 (ko) * | 2018-03-27 | 2020-02-11 | 울산대학교 산학협력단 | 영상 처리 장치 및 방법 |
WO2020141847A1 (ko) * | 2019-01-02 | 2020-07-09 | 울산대학교 산학협력단 | 피브린과침착증 진단 장치 및 방법 |
KR102102255B1 (ko) | 2019-05-14 | 2020-04-20 | 주식회사 뷰노 | 의료 영상에서 병변의 시각화를 보조하는 방법 및 이를 이용한 장치 |
KR102225043B1 (ko) * | 2019-07-08 | 2021-03-09 | 한국과학기술원 | 3차원 산업용 컴퓨터 단층 영상 기법에서 금속으로 인한 인공음영 제거 방법 및 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009082227A (ja) * | 2007-09-27 | 2009-04-23 | Fujifilm Corp | 医用レポートシステム、医用レポート作成装置、及び医用レポート作成方法 |
JP2009535139A (ja) * | 2006-05-04 | 2009-10-01 | シーメンス アクチエンゲゼルシヤフト | ターゲットボリュームに関する少なくとも1つの情報を求めて表示する方法 |
JP4429677B2 (ja) * | 2002-09-30 | 2010-03-10 | シーメンス アクチエンゲゼルシヤフト | 周期的に運動する器官のct画像形成方法 |
WO2010134512A1 (ja) * | 2009-05-20 | 2010-11-25 | 株式会社 日立メディコ | 医用画像診断装置とその関心領域設定方法 |
US20110268338A1 (en) * | 2005-11-23 | 2011-11-03 | The Medipattern Corporation | Method and System of Computer-Aided Quantitative and Qualitative Analysis of Medical Images |
-
2014
- 2014-03-28 KR KR1020140036688A patent/KR101611488B1/ko active IP Right Grant
-
2015
- 2015-03-27 WO PCT/KR2015/003049 patent/WO2015147595A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4429677B2 (ja) * | 2002-09-30 | 2010-03-10 | シーメンス アクチエンゲゼルシヤフト | 周期的に運動する器官のct画像形成方法 |
US20110268338A1 (en) * | 2005-11-23 | 2011-11-03 | The Medipattern Corporation | Method and System of Computer-Aided Quantitative and Qualitative Analysis of Medical Images |
JP2009535139A (ja) * | 2006-05-04 | 2009-10-01 | シーメンス アクチエンゲゼルシヤフト | ターゲットボリュームに関する少なくとも1つの情報を求めて表示する方法 |
JP2009082227A (ja) * | 2007-09-27 | 2009-04-23 | Fujifilm Corp | 医用レポートシステム、医用レポート作成装置、及び医用レポート作成方法 |
WO2010134512A1 (ja) * | 2009-05-20 | 2010-11-25 | 株式会社 日立メディコ | 医用画像診断装置とその関心領域設定方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115082409A (zh) * | 2022-06-30 | 2022-09-20 | 心禾互联网医院(成都)有限公司 | 一种自动化识别核素影像诊断心肌缺血的系统 |
CN115082409B (zh) * | 2022-06-30 | 2023-07-07 | 心禾互联网医院(成都)有限公司 | 一种自动化识别核素影像诊断心肌缺血的系统 |
CN118037731A (zh) * | 2024-04-12 | 2024-05-14 | 泉州医学高等专科学校 | 一种医学图像管理系统 |
Also Published As
Publication number | Publication date |
---|---|
KR101611488B1 (ko) | 2016-04-12 |
KR20150113393A (ko) | 2015-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015147595A1 (ko) | 의료 영상에서 아티팩트와 병변을 구분하는 방법 | |
US9454813B2 (en) | Image segmentation assignment of a volume by comparing and correlating slice histograms with an anatomic atlas of average histograms | |
Giancardo et al. | Textureless macula swelling detection with multiple retinal fundus images | |
US20060239524A1 (en) | Dedicated display for processing and analyzing multi-modality cardiac data | |
CN103222876B (zh) | 医用图像处理装置、图像诊断装置、计算机系统以及医用图像处理方法 | |
JP6175071B2 (ja) | 胸部画像の処理及び表示 | |
US20100260394A1 (en) | Image analysis of brain image data | |
BRPI0806785A2 (pt) | ferramentas para auxiliar no diagnóstico de doenças neurodegenerativas | |
WO2011106440A1 (en) | Method of analyzing a medical image | |
WO2017051944A1 (ko) | 의료 영상 판독 과정에서 사용자의 시선 정보를 이용한 판독 효율 증대 방법 및 그 장치 | |
Al-Saleh et al. | Three-dimensional assessment of temporomandibular joint using MRI-CBCT image registration | |
WO2020101264A1 (ko) | 관상동맥석회화점수 산정 방법 및 장치 | |
Radutniy et al. | Automated measurement of bone thickness on SCT sections and other images | |
CN113826140B (zh) | 血管造影数据分析 | |
Sun et al. | Automated template-based PET region of interest analyses in the aging brain | |
JP2019536531A (ja) | X線画像内の不透明度を検出する装置 | |
Wu et al. | Cortical bone vessel identification and quantification on contrast-enhanced MR images | |
US8396266B2 (en) | Characterisation of functional medical image scans | |
Grova et al. | A methodology to validate MRI/SPECT registration methods using realistic simulated SPECT data | |
Mol et al. | Application of digital image analysis in dental radiography for the description of periapical bone lesions: a preliminary study | |
Mahdavi et al. | A computer-based analysis for identification and quantification of small airway disease in lung computed tomography images: a comprehensive review for radiologists | |
JP7038370B2 (ja) | 画像処理方法、画像処理装置、およびプログラム | |
Budelmann et al. | Segmentation of lipid droplets in histological images | |
Rybak et al. | Measurement of the upper respiratory tract aerated space volume using the results of computed tomography | |
TWI698887B (zh) | 腦功能影像數據擴增方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15767699 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 15767699 Country of ref document: EP Kind code of ref document: A1 |