WO2021045092A1 - 物体検出装置、物体検出システム、移動体及び物体検出方法 - Google Patents

物体検出装置、物体検出システム、移動体及び物体検出方法 Download PDF

Info

Publication number
WO2021045092A1
WO2021045092A1 PCT/JP2020/033241 JP2020033241W WO2021045092A1 WO 2021045092 A1 WO2021045092 A1 WO 2021045092A1 JP 2020033241 W JP2020033241 W JP 2020033241W WO 2021045092 A1 WO2021045092 A1 WO 2021045092A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallax
road surface
stereo camera
object detection
image
Prior art date
Application number
PCT/JP2020/033241
Other languages
English (en)
French (fr)
Inventor
和幸 太田
和昌 穐本
河野 健治
洵也 岸本
楓子 ▲高▼野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN202080062215.XA priority Critical patent/CN114365182A/zh
Priority to EP20860886.9A priority patent/EP4027315A4/en
Priority to US17/753,512 priority patent/US20220415056A1/en
Publication of WO2021045092A1 publication Critical patent/WO2021045092A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/271Image signal generators wherein the generated image signals comprise depth maps or disparity maps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Definitions

  • the present disclosure relates to an object detection device, an object detection system, a moving body, and an object detection method.
  • an object detection device using a stereo camera has been provided on a moving body such as an automobile, and is used for object detection and distance measurement.
  • a distance distribution (or parallax distribution) is obtained over the entire image from a plurality of images acquired from a plurality of cameras, and an obstacle is discriminated from the information of this distance distribution ().
  • Patent Document 1 For example, see Patent Document 1).
  • the object detection device of the present disclosure includes a processor configured to execute a first process, a second process, and an object detection process.
  • the first process estimates the shape of the road surface in real space based on the first parallax map.
  • the first parallax map is generated based on the output of a stereo camera that captures an image including a road surface.
  • the first parallax map is obtained from the output of the stereo camera at two-dimensional coordinates including a first direction corresponding to the horizontal direction of the image captured by the stereo camera and a second direction intersecting the first direction. Parallax is associated.
  • the second process is a second parallax map in which the parallax whose height from the road surface in the real space corresponds to a predetermined range is removed from the first parallax map based on the estimated shape of the road surface. Generate.
  • the object detection process detects an object based on the second parallax map.
  • the object detection system of the present disclosure includes a stereo camera that captures a plurality of images having parallax with each other, and an object detection device that includes at least one processor.
  • the processor is configured to generate a first parallax map based on the output of the stereo camera that captures an image including the road surface.
  • the first parallax map is obtained from the output of the stereo camera at two-dimensional coordinates including a first direction corresponding to the horizontal direction of the image captured by the stereo camera and a second direction intersecting the first direction. Parallax is associated.
  • the processor further executes a first process, a second process, and an object detection process.
  • the first process estimates the shape of the road surface in the real space based on the first parallax map.
  • the second process is a second parallax map in which the parallax whose height from the road surface in the real space corresponds to a predetermined range is removed from the first parallax map based on the estimated shape of the road surface. Generate.
  • the object detection process detects an object based on the second parallax map.
  • the moving body of the present disclosure includes an object detection system.
  • the object detection system includes a stereo camera that captures a plurality of images having parallax with each other, and an object detection device having at least one processor.
  • the processor is configured to generate a first parallax map based on the output of the stereo camera that captures an image including the road surface.
  • the first parallax map is obtained from the output of the stereo camera at two-dimensional coordinates including a first direction corresponding to the horizontal direction of the image captured by the stereo camera and a second direction intersecting the first direction. Parallax is associated.
  • the processor further executes a first process, a second process, and an object detection process.
  • the first process estimates the shape of the road surface in the real space based on the first parallax map.
  • the second process is a second parallax map in which the parallax whose height from the road surface in the real space corresponds to a predetermined range is removed from the first parallax map based on the estimated shape of the road surface. Generate.
  • the object detection process detects an object based on the second parallax map.
  • the object detection method of the present disclosure includes acquiring or generating a first parallax map.
  • the first parallax map is generated based on the output of a stereo camera that captures an image including a road surface.
  • the first parallax map is obtained from the output of the stereo camera at two-dimensional coordinates including a first direction corresponding to the horizontal direction of the image captured by the stereo camera and a second direction intersecting the first direction.
  • Parallax is associated.
  • the object detection method includes executing a first process, a second process, and an object detection process.
  • the first process includes estimating the shape of the road surface in the real space based on the first parallax map.
  • the second process is based on the estimated shape of the road surface, and removes the disparity whose height from the road surface in the real space corresponds to a predetermined range from the first disparity map. Including to generate.
  • the object detection process includes detecting an object based on the second parallax map.
  • FIG. 1 is a block diagram showing a schematic configuration of an object detection system according to an embodiment of the present disclosure.
  • FIG. 2 is a side view schematically showing a moving body equipped with the object detection system of FIG.
  • FIG. 3 is a front view schematically showing a moving body equipped with the object detection system of FIG.
  • FIG. 4 is a block diagram showing a schematic configuration of an object detection system according to another embodiment of the present disclosure.
  • FIG. 5 is a flowchart showing an example of processing executed by the object detection device of FIG.
  • FIG. 6 is a diagram illustrating an example of a first parallax image acquired or generated by the object detection device.
  • FIG. 7 is a flowchart showing an example of a process of estimating the road surface shape.
  • FIG. 1 is a block diagram showing a schematic configuration of an object detection system according to an embodiment of the present disclosure.
  • FIG. 2 is a side view schematically showing a moving body equipped with the object detection system of FIG.
  • FIG. 3 is a front
  • FIG. 8 is a flowchart showing an example of a process of extracting road surface candidate parallax from the first parallax image.
  • FIG. 9 is a diagram for explaining the positional relationship between the road surface and the stereo camera.
  • FIG. 10 is a diagram illustrating a procedure for extracting road surface candidate parallax.
  • FIG. 11 is a diagram showing a range on the road surface for producing a histogram of parallax.
  • FIG. 12 is a dv correlation diagram showing an example of the relationship between the road surface parallax dr and the coordinates (v coordinates) in the vertical direction.
  • FIG. 13 is a diagram illustrating a method of detecting whether or not an object other than road parallax is included.
  • FIG. 14 is a flowchart of a process for approximating the relationship between the road surface parallax dr and the vertical coordinates (v-coordinates) of the image with a straight line.
  • Figure 15 is a diagram for explaining the approximation of the road surface parallax d r by the first straight line.
  • FIG. 16 is a diagram illustrating a method for determining the second straight line.
  • FIG. 17 is a diagram showing an example of the result of approximating the relationship between the road surface parallax dr and the vertical coordinates (v coordinates) of the image with a straight line.
  • FIG. 18 is a diagram illustrating an example of a second parallax image in which unnecessary parallax is removed.
  • FIG. 19 is a diagram showing an example of a second parallax image.
  • FIG. 20 is a diagram showing one of the regions on the second parallax image for creating a histogram.
  • FIG. 21 is a diagram illustrating a method of discriminating object parallax using a histogram.
  • FIG. 22 is a diagram illustrating a method of acquiring height information of object parallax.
  • FIG. 23 is a diagram illustrating a method of acquiring height information of object parallax.
  • FIG. 24 is a diagram showing an example of the distribution of a point cloud showing object parallax in the ud space.
  • FIG. 25 is a view of the road surface viewed from the height direction (y direction).
  • FIG. 26 is a diagram in which the object parallax is converted into a point cloud on the xx plane in the real space.
  • FIG. 27 is a diagram showing an example of an output method of an object detection result.
  • the object detection device may not be able to obtain high performance due to various factors such as the shape of the road and the structures and objects on the road. It is desirable to be able to improve the performance of the object detection device to detect objects.
  • the figures used in the following description are schematic.
  • the dimensions, ratios, etc. on the drawings do not always match the actual ones.
  • the figures showing the images captured by the camera, the parallax images, and the like include those created for the purpose of explanation. These images are different from the images actually captured or processed.
  • the "subject” is an object to be imaged by the camera.
  • the "subject” includes an object, a road surface, the sky, and the like.
  • An “object” has a specific position and size in space.
  • An “object” is also called a "three-dimensional object".
  • the object detection system 1 includes a stereo camera 10 and an object detection device 20.
  • the stereo camera 10 and the object detection device 20 can communicate with each other by wired or wireless communication.
  • the stereo camera 10 and the object detection device 20 may communicate with each other via a network.
  • the network may include, for example, a wired or wireless LAN (Local Area Network), CAN (Controller Area Network), or the like.
  • the stereo camera 10 and the object detection device 20 may be housed in the same housing and integrally configured.
  • the stereo camera 10 and the object detection device 20 may be located in the moving body 30 described later, and may be configured to be able to communicate with the ECU (Electronic Control Unit) in the moving body 30.
  • ECU Electronic Control Unit
  • a “stereo camera” is a plurality of cameras that have parallax and cooperate with each other.
  • Stereo cameras include at least two or more cameras. With a stereo camera, it is possible to collaborate with a plurality of cameras to capture an object from a plurality of directions.
  • the stereo camera may be a device in which a plurality of cameras are included in one housing.
  • a stereo camera may be a device including two or more cameras that are independent of each other and located apart from each other. Stereo cameras are not limited to multiple cameras that are independent of each other.
  • a camera having an optical mechanism that guides light incident on two distant places to one light receiving element can be adopted as a stereo camera.
  • a plurality of images obtained by capturing the same subject from different viewpoints may be referred to as "stereo images”.
  • the stereo camera 10 includes a first camera 11 and a second camera 12.
  • the first camera 11 and the second camera 12 each include an optical system and an image sensor that define the optical axis OX.
  • the first camera 11 and the second camera 12 each have a different optical axis OX.
  • the optical axis OXs of both the first camera 11 and the second camera 12 are collectively represented by a single reference numeral OX.
  • the image sensor includes a CCD image sensor (Charge-Coupled Device Image Sensor) and a CMOS image sensor (Complementary MOS Image Sensor).
  • the image pickup elements included in the first camera 11 and the second camera 12 may exist in the same plane perpendicular to the optical axis OX of each camera.
  • the first camera 11 and the second camera 12 generate an image signal representing an image formed by the image sensor. Further, the first camera 11 and the second camera 12 may perform arbitrary processing such as distortion correction, brightness adjustment, contrast adjustment, and gamma correction on the captured image.
  • the optical axes OX of the first camera 11 and the second camera 12 are oriented in a direction in which the same subject can be imaged.
  • the optical axis OX and the position of the first camera 11 and the second camera 12 are determined so that the captured image includes at least the same subject.
  • the optical axes OX of the first camera 11 and the second camera 12 are oriented so as to be parallel to each other. This parallelism is not limited to strict parallelism, but allows assembly deviation, mounting deviation, and these deviations over time.
  • the optical axes OX of the first camera 11 and the second camera 12 are not limited to parallel, and may face different directions from each other.
  • a stereo image can be generated by converting the image in the stereo camera 10 or the object detection device 20.
  • the distance between the optical centers of the first camera 11 and the second camera 12 of the stereo camera 10 is called the baseline length.
  • the baseline length corresponds to the distance of the center of the lens between the first camera 11 and the second camera 12.
  • the direction connecting the optical centers of the first camera 11 and the second camera 12 of the stereo camera 10 is called the baseline length direction.
  • the first camera 11 and the second camera 12 are located apart from each other in the direction intersecting the optical axis OX.
  • the first camera 11 and the second camera 12 are located along the left-right direction.
  • the first camera 11 is located on the left side of the second camera 12 when facing forward.
  • the second camera 12 is located on the right side of the first camera 11 when facing forward. Due to the difference in position between the first camera 11 and the second camera 12, the positions of the subjects corresponding to each other in the two images captured by each camera are different.
  • the first image output from the first camera 11 and the second image output from the second camera 12 are stereo images captured from different viewpoints.
  • the first camera 11 and the second camera 12 take an image of a subject at a predetermined frame rate (for example, 30 fps).
  • the object detection system 1 of FIG. 1 is mounted on the moving body 30.
  • the first camera 11 and the second camera 12 are installed so as to image the front of the moving body 30.
  • the first camera 11 and the second camera 12 are installed so as to capture an image including the road surface. That is, the stereo camera 10 is installed so as to capture an image including the road surface.
  • the optical axes OX of each optical system of the first camera 11 and the second camera 12 are arranged so as to be substantially parallel to the front of the moving body 30.
  • the traveling direction of the moving body 30 when traveling straight is called the forward direction or the z direction.
  • the opposite direction to the front is called the back.
  • the left direction and the right direction are defined with reference to the state in which the moving body 30 faces forward.
  • the direction orthogonal to the z direction and from the left to the right is called the x direction.
  • the x direction may coincide with the baseline length direction.
  • the direction perpendicular to the road surface in the vicinity of the moving body 30 and upward is called the height direction or the y direction.
  • the y direction may be orthogonal to the x and z directions.
  • the x direction is also referred to as a horizontal direction.
  • the y direction is also referred to as a vertical direction.
  • the z direction is also referred to as a depth direction.
  • the "moving body" in the present disclosure may include, for example, a vehicle or an aircraft.
  • Vehicles may include, for example, automobiles, industrial vehicles, railroad vehicles, living vehicles, fixed-wing aircraft traveling on runways, and the like.
  • Automobiles may include, for example, passenger cars, trucks, buses, motorcycles, trolley buses and the like.
  • Industrial vehicles may include, for example, industrial vehicles for agriculture and construction.
  • Industrial vehicles may include, for example, forklifts, golf carts, and the like.
  • Industrial vehicles for agriculture may include, for example, tractors, cultivators, transplanters, binders, combines, lawnmowers and the like.
  • Industrial vehicles for construction may include, for example, bulldozers, scrapers, excavators, cranes, dump trucks, road rollers and the like.
  • the vehicle may include a vehicle that travels manually.
  • the classification of vehicles is not limited to the above examples.
  • an automobile may include an industrial vehicle that can travel on the road.
  • the same vehicle may be included in multiple categories.
  • Aircraft may include, for example, fixed-wing aircraft, rotary-wing aircraft, and the like.
  • the moving body 30 of the present disclosure travels on a traveling road including a road, a runway, and the like.
  • the surface of the traveling path on which the moving body 30 travels is called a road surface.
  • the first camera 11 and the second camera 12 can be mounted at various places on the moving body 30.
  • the first camera 11 and the second camera 12 are mounted inside the moving body 30 which is a vehicle, and can image the outside of the moving body 30 through the windshield.
  • the first camera 11 and the second camera 12 are arranged in front of the rearview mirror or on the dashboard.
  • the first camera 11 and the second camera 12 may be fixed to any of the front bumper, fender grille, side fender, light module, and bonnet of the vehicle.
  • the object detection device 20 includes an acquisition unit 21, an image processing unit 22 (processor), a memory 23, and an output unit 24.
  • the object detection device 20 can be arranged at an arbitrary position in the moving body 30.
  • the object detection device 20 can be arranged in the dashboard of the moving body 30.
  • the acquisition unit 21 is an input interface of the object detection device 20 that receives information input from the stereo camera 10 and other devices.
  • a physical connector and a wireless communication device can be used as the acquisition unit 21.
  • the physical connector includes an electric connector corresponding to transmission by an electric signal, an optical connector corresponding to transmission by an optical signal, and an electromagnetic connector corresponding to transmission by an electromagnetic wave.
  • the electrical connectors include IEC60603 compliant connector, USB standard compliant connector, RCA terminal compatible connector, EIAJ CP-1211A S terminal compatible connector, and EIAJ RC-5237 D terminal.
  • the connector includes a connector corresponding to HDMI, a connector conforming to the HDMI (registered trademark) standard, and a connector corresponding to a coaxial cable including BNC.
  • Optical connectors include various connectors that comply with IEC 61754.
  • Wireless communication devices include wireless communication devices that comply with each standard including Bluetooth (registered trademark) and IEEE 802.11.
  • the wireless communication device includes at least one antenna.
  • Image data of images captured by each of the first camera 11 and the second camera 12 can be input to the acquisition unit 21.
  • the acquisition unit 21 delivers the input image data to the image processing unit 22.
  • the acquisition unit 21 may correspond to the transmission method of the image pickup signal of the stereo camera 10.
  • the acquisition unit 21 may be connected to the output interface of the stereo camera 10 via a network.
  • the image processing unit 22 includes one or a plurality of processors.
  • Processors include general-purpose processors that load specific programs and perform specific functions, and dedicated processors that specialize in specific processing.
  • Dedicated processors include application specific integrated circuits (ASICs).
  • the processor includes a programmable logic device (PLD).
  • PLD programmable logic device
  • the PLD includes an FPGA (Field-Programmable Gate Array).
  • the image processing unit 22 may be either a SoC (System-on-a-Chip) in which one or a plurality of processors cooperate, or a SiP (System In a Package).
  • SoC System-on-a-Chip
  • SiP System In a Package
  • the image processing unit 22 includes each functional block of the parallax image generation unit 25, the road surface detection unit 26, the unnecessary parallax removal unit 27, the clustering unit 28, and the grouping unit 29.
  • the parallax image generation unit 25 generates a first parallax image based on the first image and the second image output from the stereo camera 10.
  • the first parallax image is an image in which pixels representing parallax are arranged on a two-dimensional plane composed of a horizontal direction corresponding to the horizontal direction and a vertical direction intersecting the horizontal directions of the image captured by the stereo camera 10.
  • the lateral direction is the first direction.
  • the vertical direction is the second direction.
  • the horizontal direction and the vertical direction may be orthogonal to each other.
  • the lateral direction corresponds to the width direction of the road surface.
  • the horizontal direction is a direction parallel to the horizon when the image captured by the stereo camera 10 includes the horizon.
  • the vertical direction can be a direction corresponding to the direction in which gravity is applied in real space.
  • the road surface detection unit 26, the unnecessary parallax removal unit 27, the clustering unit 28, and the grouping unit 29 execute a series of processes for detecting an object based on the first parallax image.
  • the first parallax image is a first parallax map in which the parallax information obtained from the output of the stereo camera 10 is associated with the two-dimensional coordinates consisting of the horizontal direction and the vertical direction.
  • the first parallax image can be rephrased as the first parallax map.
  • the processing for the first parallax image can be rephrased as the processing for the first parallax map.
  • Each functional block of the image processing unit 22 may be a hardware module or a software module. The processing performed by each functional block may be rephrased as being executed by the image processing unit 22. The image processing unit 22 may execute all the operations of each functional block. The processing performed by the image processing unit 22 by using any of the functional blocks may be executed by the image processing unit 22 itself.
  • the memory 23 stores programs for various processes and information being calculated.
  • the memory 23 includes a volatile memory and a non-volatile memory.
  • the memory 23 includes a memory independent of the processor and a built-in memory of the processor.
  • the output unit 24 is an output interface of the object detection device 20 that can output the processing result of the object detection device 20 to another device in the moving body 30 or a device outside the moving body 30 such as another vehicle and a roadside machine. ..
  • Other devices that can appropriately use the information received from the object detection device 20 include a travel support device such as an auto cruise control and a safety device such as an automatic braking device.
  • the output unit 24, like the acquisition unit 21, includes various interfaces corresponding to wired and wireless communication.
  • the output unit 24 has a CAN interface and communicates with other devices in the mobile body 30.
  • the object detection device 20 may be configured to read and implement a program recorded on a non-temporary computer-readable medium for the processing performed by the image processing unit 22 described below.
  • Non-temporary computer-readable media include, but are not limited to, magnetic storage media, optical storage media, photomagnetic storage media, and semiconductor storage media.
  • Magnetic storage media include magnetic disks, hard disks, and magnetic tapes.
  • Optical storage media include optical discs such as CDs (Compact Discs), DVDs, and Blu-ray discs (Blu-ray (registered trademark) Discs).
  • the semiconductor storage medium includes a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable Read-Only Memory), and a flash memory.
  • the parallax image generation unit 25 may be mounted on hardware separate from the object detection device 20.
  • the same or similar components as those in FIG. 1 are designated by the same reference numerals as those in FIG.
  • the parallax image generation unit 25 of FIG. 4 can be rephrased as a parallax image generation device.
  • the parallax image generation unit 25 of FIG. 4 has a processor.
  • the processor included in the parallax image generation unit 25 of FIG. 4 generates a first parallax image based on the first image and the second image output from the first camera 11 and the second camera 12 of the stereo camera 10, respectively. ..
  • the acquisition unit 21 included in the object detection device 20 of FIG. 4 acquires the first parallax image from the parallax image generation unit 25.
  • the object detection device 20 and the parallax image generation unit 25 in FIG. 4 can be collectively regarded as one object detection device 20.
  • the road surface detection unit 26, the unnecessary parallax removal unit 27, the clustering unit 28, and the grouping unit 29 of the image processing unit 22 are the same as the corresponding functional blocks of FIG. Works for.
  • FIG. 5 is a flowchart illustrating the entire process of the object detection method executed by the object detection device 20.
  • Step S101 is a step of acquiring or generating a first parallax image to be an object detection target in the first stage of the first process described later. Step S101 is performed by the acquisition unit 21 or the parallax image generation unit 25.
  • Step S102 is a step of estimating the shape of the road surface.
  • the process performed in step S102 is also called the first process.
  • Step S102 is performed by the road surface detection unit 26.
  • the road surface detection unit 26 By estimating the road surface shape, the parallax representing the road surface with respect to the coordinates in the vertical direction can be known on the first parallax image.
  • the road surface shape is necessary for removing unnecessary parallax in the following processing and / or for knowing the height position of the road surface in real space.
  • Step S103 is a step of generating a second parallax image from which unnecessary parallax is removed.
  • the process performed in step S103 is also called a second process.
  • the second process is performed by the unnecessary parallax removing unit 27.
  • the unnecessary parallax is the parallax represented by the pixels corresponding to the subject whose height from the road surface in the real space is included in a predetermined range.
  • the unnecessary parallax includes the parallax of the road surface included in the first parallax image, the parallax of the structure included in the aerial portion, and the like.
  • the second parallax image undergoes various operations as a second parallax map in which unnecessary parallax information is removed from the parallax information included in the first parallax map.
  • the second parallax image can be rephrased as a second parallax map.
  • the processing for the second parallax image can be rephrased as the processing for the second parallax map.
  • Step S104 is a step of determining the object parallax for each coordinate in the lateral direction with respect to the second parallax image. Step S104 is executed by the clustering unit 28.
  • the object parallax is a parallax determined to be the parallax of a region that can be regarded as an object in the real space based on a predetermined condition.
  • Step S105 is a step of calculating the height information associated with the object parallax based on the distribution of the object parallax on the second parallax image and the shape of the road surface estimated in step S102.
  • Step S105 is executed by the clustering unit 28.
  • the process performed in steps S104 and S105 is also called a third process. If height information is not required, step S105 may be omitted.
  • Step S106 is a step of detecting an object by converting the object parallax information onto the coordinates in the real space and extracting a group of object parallax.
  • the process performed in step S106 is also called a fourth process.
  • the fourth process is performed by the grouping unit 29.
  • Step S107 is a step of outputting the detected object information from the output unit 24. From the result of step S106, information on the position of the detected object and the width as seen from the stereo camera 10 side can be obtained. The information obtained in step S105 includes information on the height of the detected object. This information may be provided to other devices within the mobile body 30.
  • the image processing unit 22 acquires or generates a first parallax image (step S101).
  • the image processing unit 22 generates a first parallax image based on the first image and the second image acquired by the acquisition unit 21.
  • the parallax image generation unit 25 generates the first parallax image.
  • the image processing unit 22 acquires the first parallax image generated by the parallax image generation unit 25 via the acquisition unit 21.
  • the image processing unit 22 may store the first parallax image in the memory 23 for the subsequent processing.
  • the parallax image generation unit 25 calculates the distribution of the parallax of the first image acquired from the first camera 11 and the second image acquired from the second camera 12, and generates the first parallax image. Since the method of generating the first parallax image is known, it will be described only briefly below.
  • the parallax image generation unit 25 divides one image (for example, the first image) of the first image and the second image into a large number of small areas.
  • the small area can be a rectangular area in which a plurality of pixels are arranged in the vertical and horizontal directions.
  • the small area may be composed of 3 pixels in the vertical direction and 3 pixels in the horizontal direction.
  • the number of pixels included in the vertical and horizontal directions of the small area is not limited to three.
  • the number of pixels included in the vertical direction and the horizontal direction of the small area may be different.
  • the parallax image generation unit 25 matches each image of the plurality of divided small regions with the other image (for example, the second image) while shifting them in the horizontal direction.
  • a method using a SAD (Sum of Absolute Difference) function is known for image matching. This represents the sum of the absolute values of the differences in the brightness values in the small area. When the SAD function is minimized, both images are determined to be the most similar.
  • the matching of stereo images is not limited to the method using the SAD function, and other methods may be adopted.
  • the parallax image generation unit 25 calculates the parallax for each small region based on the difference in the position of the pixels in the lateral direction of the two regions matched between the first image and the second image.
  • the magnitude of parallax can be expressed in units of the width of the pixel in the horizontal direction. By performing the interpolation processing, the magnitude of the parallax can be calculated with an accuracy smaller than one pixel.
  • the magnitude of the parallax corresponds to the distance between the subject captured by the stereo camera 10 and the stereo camera 10 in the real space. If the parallax is large, it means that the distance is short, and if the parallax is small, it means that the distance is long.
  • the parallax image generation unit 25 generates a first parallax image showing the calculated parallax distribution.
  • the pixels representing the parallax constituting the first parallax image are referred to as parallax pixels.
  • the parallax image generation unit 25 can generate a parallax image with the same definition as the pixels of the original first image and the second image.
  • FIG. 6 is a diagram for explaining the first parallax image.
  • another vehicle 42 is running on the road surface 41 in front of the moving body 30.
  • pixels representing parallax are formed on a two-dimensional plane composed of a horizontal direction (first direction) of the stereo camera 10 and a vertical direction (second direction) orthogonal to the horizontal direction. Is located.
  • the coordinates indicating the position in the horizontal direction are called u coordinates.
  • the coordinates indicating the vertical position are called v-coordinates.
  • the u-coordinate and v-coordinate are called image coordinates.
  • the u coordinate is a coordinate from left to right.
  • the v coordinate is a coordinate from top to bottom.
  • the origin of the uv coordinate space can be the upper left corner of the first parallax image.
  • the u-coordinate and the v-coordinate can be expressed in units of pixels.
  • the parallax image generation unit 25 can replace the difference in parallax with the difference in brightness or color of pixels and display it.
  • the parallax is represented by different shading for the sake of explanation. In FIG. 6, the darker the shading, the smaller the parallax, and the lighter the shading, the larger the parallax. In FIG. 6, the equal shaded areas represent that they are located within a predetermined parallax range. In the actual first parallax image, there are a portion in the uv coordinate space where the parallax is easily acquired and a portion where the parallax is difficult to acquire.
  • parallax in a spatially uniform subject portion such as a vehicle window or a portion where overexposure occurs due to reflection of sunlight.
  • a spatially uniform subject portion such as a vehicle window or a portion where overexposure occurs due to reflection of sunlight.
  • the first parallax image if there are objects and structures, they are displayed with a different brightness or color than the parallax of the background located farther away.
  • the parallax image generation unit 25 does not have to display the first parallax image as an image after calculating the parallax.
  • the parallax image generation unit 25 may generate and hold the information of the first parallax image as the first parallax map inside the image processing unit 22, and perform necessary processing.
  • the image processing unit 22 performs the first process of estimating the shape of the road surface 41 from the first parallax image (step S102).
  • the first process is performed by the road surface detection unit 26.
  • the road surface shape estimation process performed by the road surface detection unit 26 will be described with reference to the flowcharts of FIGS. 7, 8 and 14.
  • the road detecting unit 26 extracts the road candidate disparity d c from the first parallax image (step S201).
  • Road candidate disparity d c is likely to correspond to the road surface parallax d r collected from the first parallax image is a high disparity.
  • Road disparity d r denotes the parallax of the road 41 regions.
  • Road disparity d r does not include a parallax of an object on the road surface 41.
  • Road disparity d r represents the distance to the corresponding point on the road surface.
  • the road parallax dr is collected as having similar values at positions having the same v-coordinate.
  • a road surface detection unit 26 based on the installation position of the stereo camera 10, it calculates the road surface candidate disparity initial value d 0 is the initial value of the parallax for calculating road candidate disparity (step S301).
  • Road candidate disparity initial value d 0 is the initial value of the road surface candidate disparity in the extraction position of the nearest road candidate disparity from the stereo camera 10.
  • the extraction position of the road surface candidate parallax closest to the stereo camera 10 can be set, for example, from the range of 1 m to 10 m from the stereo camera 10.
  • the road surface height Y is the height in the vertical direction of the stereo camera 10 from the road surface 41 to be imaged. Further, the road surface height Y 0 is the height from the road surface 41 at the installation position of the stereo camera 10. Due to the undulations of the road, the road surface height Y may change depending on the distance from the stereo camera 10. Therefore, the road surface height Y at a position away from the stereo camera 10 does not match the road surface height Y 0 at the installation position of the stereo camera 10. In one of the plurality of embodiments, it is assumed that the first camera 11 and the second camera 12 of the stereo camera 10 are installed with their optical axes OX facing forward in parallel with each other. In FIG.
  • Z indicates a horizontal distance to a specific road surface position.
  • B the baseline length of the stereo camera 10
  • TOTALv the image size in the vertical direction.
  • the relationship between the road surface parallax d s of the road surface 41 and the road surface height Y imaged at a certain vertical coordinate (v coordinate) is given by the following mathematical formula regardless of the horizontal distance Z.
  • d s B / Y ⁇ ( v-TOTALv / 2)
  • Road disparity d s calculated by Equation (1) is also referred to as "geometric estimated road parallax".
  • the geometrical estimated road surface parallax may be represented by the reference numeral d s.
  • the coordinate v 0 is an initial value of the v coordinate for extracting the road surface candidate parallax. Coordinate v 0 is located between the TOTALv / 2 and TOTALv.
  • the coordinate v 0 is located on the lowermost side (the side with the larger v coordinate) within the range of the image coordinates where the parallax can be calculated.
  • the coordinate v 0 may be the TOTAL v corresponding to the bottom row of the first parallax image.
  • the initial value d 0 of the road surface candidate parallax can be determined by substituting v 0 for v in the mathematical formula (1) and substituting Y 0 for Y.
  • the road surface detection unit 26 calculates the parallax collection threshold value of the first row in which the v-coordinate in the vertical direction is v 0 based on the initial value d 0 of the road surface candidate parallax (step S302).
  • a row means an array of horizontally aligned pixels having the same v-coordinate on the first parallax image.
  • the parallax collection threshold includes an upper threshold that is an upper threshold for collecting parallax and a lower threshold that is a lower threshold for collecting parallax.
  • Parallax acquisition threshold is set based on a predetermined rule and below the road surface candidate disparity initial value d 0 to include road candidate disparity initial value d 0.
  • the road surface parallax when the road surface height Y changes up and down by a predetermined road surface height change amount ⁇ Y from the state in which the initial value d 0 of the road surface candidate parallax is calculated is the upper limit threshold value of the parallax collection threshold value and the parallax collection threshold value. It is defined as the lower limit threshold. That is, the lower limit threshold of the parallax acquisition threshold is obtained from the road candidate disparity initial value d 0 by subtracting the road surface height variation ⁇ Y amount parallax. Upper threshold parallax acquisition threshold is obtained from the road candidate disparity initial value d 0 by the addition of a road surface height variation ⁇ Y amount parallax.
  • the specific lower limit threshold value and upper limit threshold value of the parallax collection threshold value can be obtained by changing the value of Y in the mathematical formula (1).
  • the road surface detection unit 26 repeats the process between step S303 and step S307. First, the road surface detection unit 26 performs processing on the row whose v coordinate located at the lowermost side of the first parallax image is v 0 (step S303).
  • the road surface detection unit 26 collects parallax using the parallax collection threshold value (step S304).
  • the road surface detection unit 26 obtains parallax pixels having a parallax between the lower limit and the upper limit of the parallax collection threshold for each parallax pixel whose v coordinates included in the first parallax image are located side by side in the lateral direction of v 0. Collect as road surface candidate parallax d c. That is, the road surface detection unit 26 represents the correct parallax of the road surface 41 with parallax pixels having a parallax within a predetermined margin range based on the initial value d 0 of the road surface candidate parallax calculated by using the mathematical formula (1).
  • the road surface detection unit 26 uses the parallax of the parallax pixel determined to be a candidate for the parallax pixel representing the correct parallax of the road surface 41 as the road surface candidate parallax d c . By doing so, the road surface detection unit 26 can reduce the possibility of erroneously determining the parallax of an object or structure on the road surface 41 other than the road surface 41 as the parallax of the road surface 41. As a result, the accuracy of detecting the road surface 41 is improved.
  • step S304 the v coordinates are determined for all the parallax pixels v 0 completed, the road surface detection unit 26, the collected road candidate disparity d c are averaged is an average value of the road surface candidate disparity d c average road candidate
  • the parallax dav is calculated (step S305).
  • the road surface detection unit 26 may store in the memory 23 the respective road surface candidate parallax d c, its uv coordinates, and the average road surface candidate parallax d av when the v coordinate is v 0.
  • a parallax collection threshold is calculated for each parallax pixel (step S306).
  • the road surface detection unit 26 changes the road surface height Y so that the mathematical formula (1) holds for the average road surface candidate parallax dav when the v coordinate calculated in step S304 is v 0.
  • Road detecting unit 26 in place of the v 0 equation was changed road height Y (1), v 0 -1 by substituting, v coordinate v 0 -1 geometric estimated road parallax d s when the Is calculated.
  • the parallax from the geometric estimated road parallax d s minus the disparity of a predetermined road surface height variation ⁇ Y component may be a lower threshold of parallax acquisition threshold.
  • Road detecting unit 26 can be a geometric estimated road parallax d s to the disparity obtained by adding a predetermined road surface height variation ⁇ Y amount disparity between the upper limit threshold value of the parallax acquisition threshold.
  • step S306 the road surface detection unit 26 determines whether or not the geometric estimation road surface parallax d s calculated by the mathematical formula (1) is larger than a predetermined value.
  • the predetermined value is, for example, one pixel.
  • the road surface detection unit 26 returns to the process of step S303 when the geometric estimation road surface parallax d s is larger than 1. (Step S307).
  • step S303 the road surface detection unit 26, a target of extraction of road candidate disparity d c, it is moved to the line on one pixel.
  • the road surface detection unit 26 changes the v coordinate of the row to be the target of road surface detection to v 0-1.
  • the object of the calculation of the road candidate disparity d c is, when was the n-th row, the road detecting unit 26, the subject line of the road surface detection is changed to n + 1 th row ..
  • the width of each row in the vertical direction is widened for the sake of explanation.
  • Each actual row is one pixel high.
  • the v-coordinate of the n + 1th row is 1 smaller than the v-coordinate of the nth row.
  • step S304 the road surface detection unit 26 collects the road surface candidate parallax d c using the parallax collection threshold value calculated in step S306 for the nth row.
  • step S305 the road surface detection unit 26 averages the collected road surface candidate parallax d c to calculate the average road surface candidate parallax dav.
  • step S306 the road surface detection unit 26 changes the road surface height Y of the mathematical formula (1) by using the average road surface candidate parallax dav.
  • the road surface detection unit 26 calculates the geometric estimation road surface parallax d s by using the mathematical formula (1) in which the road surface height Y is changed. Further, the road surface detection unit 26 calculates the parallax collection threshold value in consideration of the road surface height change amount ⁇ Y in the geometric estimation road surface parallax d s in order to extract the road surface candidate parallax d c in the n + 2nd row.
  • Road detecting unit 26 the extraction target road candidate disparity d c, a row corresponding to the extracted position of the nearest road candidate disparity d c from the stereo camera 10 are shifted sequentially upward (v negative direction of the coordinates) However, the road surface candidate parallax d c corresponding to the v coordinate is extracted.
  • the road surface detection unit 26 may store the extracted road surface candidate parallax d c in the memory 23 together with the corresponding u-coordinate and v-coordinate and the average road surface candidate parallax d- av corresponding to the v-coordinate.
  • the road surface detection unit 26 ends the extraction process of the road surface candidate parallax d c , and the figure shows the figure.
  • the predetermined value can be, for example, one pixel.
  • the initial value of the v coordinate for extracting the road surface candidate parallax d c is set to v 0 corresponding to the position on the short distance side when viewed from the stereo camera 10, and the road surface on the long distance side is sequentially set.
  • Candidate parallax d c is extracted.
  • the stereo camera 10 generally has higher parallax detection accuracy on the short-distance side than on the long-distance side. Therefore, the accuracy of the detected road surface candidate parallax d c can be improved by sequentially extracting the road surface candidate parallax d c from the short distance side to the long distance side.
  • the road surface detection unit 26 proceeds to step S202 of the flowchart of FIG.
  • Road detecting unit 26 when estimating sequentially road disparity d r from the near side to the far side, is applied sequentially Kalman filter road disparity d r. Therefore, first, the road surface detection unit 26 initializes the Kalman filter (step S202). As an initial value for the Kalman filter, is calculated in step S305, the value of the average road candidate disparity d av lowest row of the rows to estimate the road surface parallax d r to (the value of v coordinate v 0 line) corresponding to It can be used.
  • the road surface detection unit 26 sequentially executes the following processes of steps S203 to S210 while changing the target line from the short-distance side to the long-distance side of the road surface 41 (step S203).
  • the histogram road detector 26 which represents the line of interest in the first parallax image, from the road candidate disparity d c located within a certain range in the real space, the frequency of each value of the road surface parallax d r Is generated (step S204).
  • the range of a certain width in the real space is a range considering the width of the driving lane of the road.
  • the constant width can be set to a value such as 2.5 m or 3.5 m.
  • the range for acquiring parallax is initially set to, for example, the range surrounded by the solid frame line 45 in FIG.
  • the constant width is stored in advance in the memory 23 or the like of the object detection device 20.
  • the range for acquiring parallax By limiting the range for acquiring parallax to this range, the possibility that the road surface detection unit 26 extracts an object other than the road surface 41 or a structure such as a soundproof wall as the road surface 41 is reduced. Thereby, the accuracy of road surface detection can be improved. As will be described later, the range for acquiring the parallax shown by the solid line in FIG. 11 can be sequentially changed from the frame line 45 initially set according to the situation on the road ahead.
  • Road detecting unit 26 based on the predicted value of the road surface parallax d r by the Kalman filter, sets the acquired range of the road surface parallax d r the row of interest.
  • Acquisition range of the road surface parallax d r is the Kalman filter in a range that is determined based on the reliability of calculating in predicting road disparity d r of the next line.
  • Reliability, (the sigma standard deviation of the road surface parallax d r) variance sigma 2 of the Gaussian distribution is represented by.
  • Road detecting section 26 can determine the acquisition range of the road surface parallax d r by the prediction value ⁇ 2 [sigma] and the like.
  • Road detecting section 26 uses the extracted road surface parallax dr as an observed value of the road surface parallax dr of the target row (step S205).
  • the road surface detector 26, road disparity d r determined in step S205 is, free of objects disparity etc., to ensure that the correct road disparity d r (step S206).
  • Road detector 26, for all road disparity d r detected in each line until the line currently being processed d-v that maps the road parallax d r and v coordinates on the d-v coordinate space whose coordinate axes Generate a correlation diagram.
  • the dv correlation diagram shows that as the value of the v coordinate decreases as shown by the broken line in FIG. 12, the road surface parallax dr also decreases linearly.
  • the dv correlation diagram is the parallax portion representing the object, regardless of the change in the vertical coordinates (v coordinates).
  • the parallax d becomes substantially constant.
  • the object since the object includes a portion perpendicular to the road surface 41, it is displayed on the first parallax image so as to include a large amount of parallax at equal distances.
  • the parallax d decreases as the value of the v coordinate changes.
  • the first portion R 1 is a portion that correctly detects the road surface 41.
  • the second portion R 2 is, v disparity d even coordinate changes is constant.
  • the second portion R 2 is considered to be a portion where an object is erroneously detected.
  • the road surface detection unit 26 can determine that the object is erroneously recognized when a predetermined number of rows having substantially the same parallax d continue.
  • Step S206 When the parallax at step S206 is determined not to be the correct road disparity d r (Step S206: No), the road surface detection unit 26 from the row it is determined that the object has been erroneously detected, re-searches a road disparity d r (Step S207). In step S207, the road surface detection unit 26 re-searches the road surface parallax histogram in the region of the row where the parallax d does not change even if the value of the v coordinate changes.
  • the road detecting unit 26 determines the parallax between an observed value of the correct road disparity d r be able to.
  • step S206 When the road surface parallax d r is determined to be correct in step S206 (step S206: Yes), and, in step S207, when the re-search of the road disparity d r is completed, the road surface detection unit 26 proceeds to step S208.
  • step S208 the road surface detection unit 26 determines the lateral range of the road surface 41 on the first parallax image to be generated to generate the histogram of the next row shifted by one pixel in the vertical direction. For example, as shown in FIG. 11, if there is another vehicle 42 on road surface 41, the road detecting unit 26 can not obtain the correct road disparity d r of the portion of the road surface 41 that overlaps with the other vehicles.
  • the road surface detection unit 26 When the range of the road surface 41 can acquire road parallax d r becomes smaller, the road detecting unit 26, it becomes difficult to obtain an accurate road disparity d r. Therefore, the road surface detection unit 26, is changed to sequentially transversely range to get the road candidate disparity d c as shown by a broken line in FIG. 11. Specifically, road surface detecting unit 26, when determining that contains the object in step S206, detects whether the road surface candidate disparity d c representing the correct road disparity d r on either side of the lateral object is large To do. In the next row, sequentially shifted (11 right) side contained road candidate disparity d c representing more correct road disparity d r of the lateral ranges to obtain the parallax.
  • road surface detecting unit 26 uses the road disparity d r of the current line determined in step S205 or S207, to update the Kalman filter (step S209).
  • the Kalman filter is based on the observed value of the road surface parallax d r of the current line, and calculates the estimated value of the road surface parallax d r.
  • the estimated value of the current row are calculated, the road surface detection unit 26, in addition to the estimated value of the road surface parallax d r of the current line as part of the historical data, the estimated value of the road surface parallax d r of the next line Is used in the process of calculating.
  • the estimation using a Kalman filter of the present embodiment it is estimated that the road surface parallax d r of the next line in the vicinity of the road surface parallax d r of the current line is present.
  • the range of parallax road detecting unit 26 generates a histogram of the next line in the vicinity of the road surface parallax d r of the current line, reducing the possibility of erroneous detection of an object other than the road surface 41 Will be done.
  • the amount of calculation performed by the road surface detection unit 26 can be reduced to speed up the processing.
  • step S209 If the road surface parallax d r estimated by the Kalman filter is greater than a predetermined value in step S209, the road surface detecting unit 26 returns to step S203, and repeats the processing of steps S203 ⁇ S209. If the road surface parallax d r estimated by the Kalman filter is less than a predetermined value (step S210), the road surface detection unit 26 proceeds to the next process (step S211).
  • the predetermined value can be, for example, one pixel.
  • step S211 the road surface detection unit 26 approximates the relationship between the vertical image coordinates v and the estimated road surface parallax dr with two straight lines on the dv correlation diagram.
  • the road surface parallax dr is related to the distance Z from the stereo camera 10.
  • the value of the v coordinate is related to the distance Z from the stereo camera 10 and the road surface height Y. Therefore, to approximate v the relationship between the coordinates and the road surface parallax d r by two straight lines, a relationship between the height of the distance and the road surface 41 from the stereo camera 10, may be referred to those approximated by two straight lines it can.
  • the process of step S211 will be described in detail in the flowchart of FIG.
  • v correlation between the coordinate and the road surface parallax d r is represented by d-v coordinate space as shown by the broken line in the graph 51 of FIG 15.
  • the graph 51 becomes a straight line.
  • the slope of the actual road surface 41 may change due to changes in undulations such as ups and downs.
  • the graph 51 in the dv coordinate space cannot be represented by a straight line. If an attempt is made to approximate the change in the inclination of the road surface 41 with three or more straight lines or curves, the processing load of the object detection device 20 becomes large. Therefore, in the present application, the graph 51 is approximated by two straight lines.
  • the road detecting unit 26 the lower side of the d-v coordinate space the estimated road surface parallax d r of (near side) is approximated by the least squares method by the first straight line 52 (step S401 ).
  • Approximation by the first straight line 52 may be in the range of within the distance range object detection device 20 is subjected to object detection, until the road disparity d r corresponding to a predetermined distance.
  • the predetermined distance can be half the distance of the distance range that the object detection device 20 targets for object detection.
  • the first straight line 52 is in the range from the closest distance that the stereo camera 10 can measure to 50 m away, by the least squares method. It may be determined to be closest to the graph 51.
  • the road surface detection unit 26 determines whether or not the inclination of the road surface 41 represented by the first straight line 52 approximated in step S401 is a possible inclination as the road surface 41 (step S402).
  • the inclination angle of the first straight line 52 becomes a plane when converted into real space.
  • the inclination of the first straight line 52 corresponds to the inclination angle of the road surface 41 in the yz plane, which is determined according to conditions such as the road surface height Y 0 and the baseline length B at the installation position of the stereo camera 10.
  • the road surface detection unit 26 can determine that the inclination of the road surface 41 in the real space corresponding to the first straight line 52 is a possible inclination when the inclination is within a predetermined angle range with respect to the horizontal plane in the real space. ..
  • the road surface detection unit 26 determines that the inclination of the road surface 41 in the real space corresponding to the first straight line 52 is an impossible inclination when it is outside the range of a predetermined angle with respect to the horizontal plane in the real space. it can.
  • the predetermined angle can be appropriately set in consideration of the traveling environment of the moving body 30.
  • step S402 when it is determined that the inclination of the first straight line 52 is an impossible inclination as the road surface 41 (step S402: No), the road surface detection unit 26 sets the theoretical road surface on the assumption that the road surface 41 is flat. Based on this, the first straight line 52 is determined (step S403).
  • the theoretical road surface can be calculated based on the installation conditions such as the road surface height Y 0 at the installation position of the stereo camera 10, the installation angle, and the baseline length B.
  • Road detecting unit 26 when the road surface parallax d r calculated from the image can not be trusted, to adopt a road surface parallax theory road.
  • road surface detecting unit 26 when accidentally parallax of an object or structure other than a road surface 41 is extracted as the road surface parallax d r, it is determined that having a road surface 41 unrealistic inclined, to be able to eliminate the errors There is. Accordingly, the parallax of an object or structure other than the road surface 41 can be reduced the possibility of erroneous determination that the road disparity d r.
  • step S402 when the road surface detection unit 26 determines that the inclination of the first straight line 52 is a possible inclination as the road surface 41 (step S402: Yes), and after step 403, the road surface detection unit 26 moves the road surface detection unit 26 to step S404. Proceed to the process of.
  • step S404 the road surface detection unit 26 determines an approximation start point 53 for starting the approximation of the second straight line 55.
  • the road surface detection unit 26 calculates an approximation error with the graph 51 from the smallest side (long distance side) to the larger side (short distance side) of the v coordinate of the first straight line 52, and the approximation error is continuously set to a predetermined value.
  • the smaller coordinates on the first straight line 52 can be set as the approximation start point 53.
  • the approximation start point 53 calculates an approximation error with the graph 51 from the largest side (short distance image side) to the smallest side (long distance side) of the v coordinate of the first straight line 52, and the approximation error is a predetermined value. It may be determined as the coordinates on the first straight line 52 when it becomes larger.
  • the v-coordinate of the approximation start point 53 is not fixed to a specific value.
  • the approximation start point 53 is set at a v-coordinate position corresponding to a position closer to the stereo camera 10 side than a distance of half of the distance range targeted by the object detection device 20 on the first straight line 52.
  • the approximation start point 53 is set at the v-coordinate position corresponding to 40 m before 50 m. You can.
  • the road surface detection unit 26 After step S404, the road surface detection unit 26 repeatedly executes steps S405 to S407. As shown in FIG. 16, the road surface detection unit 26 is a candidate for the second straight line 55 starting from the approximation start point 53, with the angle difference from the first straight line 52 as an angle selected from a predetermined angle range.
  • the straight line 54 is sequentially selected (step S405).
  • the predetermined angle range is set as an angle at which the slope of the road can change within the distance range to be measured.
  • the predetermined angle range can be, for example, ⁇ 3 degrees.
  • the road surface detection unit 26 starts the angle of the candidate straight line 54 from the angle -3 degrees of the first straight line 52, and sequentially adds 0.001 degrees to the angle of the first straight line 52 + 3 degrees. Can be changed.
  • the road surface detection unit 26 calculates an error from the portion above (long distance side) of the approximate start point 53 of the graph 51 in the dv coordinate space (step S406).
  • the error can be calculated by the mean square error of the parallax d with respect to the v coordinate.
  • the road surface detection unit 26 may store the error calculated for each candidate straight line 54 in the memory 23.
  • the road surface detection unit 26 searches for the minimum error from the errors stored in the memory 23. As shown in FIG. 17, the road surface detection unit 26 selects the candidate straight line 54 having the minimum error as the second straight line 55 (step S408).
  • the road surface detection unit 26 determines whether or not the error of the second straight line 55 from the graph 51 is within a predetermined value (step S409).
  • the predetermined value is appropriately set in order to obtain the desired accuracy of road surface estimation.
  • step S409 If the error is within a predetermined value in step S409 (step S409: Yes), the road surface parallax dr is approximated using the first straight line 52 and the second straight line 55.
  • step S409 When the error exceeds a predetermined value in step S409 (step S409: No), the road surface detection unit 26 extends the first straight line 52 upward (long distance side) and overwrites the approximation result (step S410). As described above, the road surface parallax dr is approximated by the two straight lines.
  • v road disparity d r for coordinates by being approximated by two straight lines, the road shape is approximated by two straight lines.
  • the load related to the subsequent calculations is reduced and the object detection process is speeded up as compared with the case where the road surface shape is approximated by a curved line or three or more straight lines.
  • the error from the actual road surface is smaller than that in the case where the road surface is approximated by one straight line.
  • the accuracy of approximation with the actual road surface is improved as compared with the case where the coordinates of the approximation start point 53 are fixed in advance. can do.
  • step S409 the case where the error is within a predetermined value: After (step S409 Yes), and step S410, processing for linear approximation of the road surface parallax d r ends, and returns to step S212 of FIG.
  • step S212 the threshold value of road surface parallax d r to be removed from the first parallax image is determined (step S212). Threshold road disparity d r to be removed from the first parallax image corresponds to a first height, which will be described later. The first height can be calculated so that the road surface parallax dr is removed in the process of the next step S103.
  • v from the approximate expression representing the relationship between the coordinates and the road surface parallax d r in d-v coordinate space, the relationship between the front of the distance Z and the road surface height Y of the stereo camera 10 in the real space can be obtained.
  • the unnecessary parallax removing unit 27 executes (second process) based on the approximate expression (step S103).
  • the parallax pixels corresponding to the subject whose height from the road surface 41 is equal to or less than the first height in the real space and the parallax pixels corresponding to the subject whose height from the road surface 41 is equal to or higher than the second height are obtained.
  • the unnecessary parallax removing unit 27 generates a second parallax image as shown in FIG. 18 from the first parallax image shown in FIG.
  • FIG. 18 is a diagram drawn for illustration purposes.
  • the actual second parallax image based on the image acquired from the stereo camera 10 is as shown in FIG. 19, for example. In FIG. 19, the magnitude of parallax is expressed by the shade of black and white.
  • the first height can be set to a value larger than 15 cm and smaller than 50 cm, for example.
  • the unnecessary parallax removing unit 27 can easily detect a subject other than an object on the road due to unevenness on the road surface 41 and / or an error in the approximate expression. .. As a result, detection error or reduction in detection speed may occur. Further, if the first height is made larger than 50 cm, the unnecessary parallax removing unit 27 may fail to detect children and / or large obstacles on the road surface 41.
  • the second height can be set based on the upper limit of the height of the vehicle that can travel on the road.
  • the height of vehicles that can travel on the road is regulated by traffic regulations. For example, under the Japanese Road Traffic Law, the height of trucks is 3.8 m or less in principle.
  • the second height can be, for example, 4 m. When the second height is 4 m or more, an object that does not need to be detected, such as an aerial structure including a traffic light and an information display board, may be detected.
  • the unnecessary parallax removing unit 27 preliminarily determines the parallax of the subject other than the road surface 41 and the object on the road. Can be removed. This increases the accuracy of detecting the object. Further, since unnecessary parallax is removed, the amount of calculation related to parallax not related to the object on the road can be reduced, so that the processing speed can be increased. Therefore, the object detection device 20 of the present disclosure can improve the performance of the processing for detecting an object.
  • the unnecessary parallax removing unit 27 delivers the second parallax image to the clustering unit 28.
  • the clustering unit 28 determines the object parallax related to the object for each u-coordinate or u-coordinate range in the lateral direction based on the second parallax image and the approximate expression of the shape of the road surface 41 calculated by the road surface detection unit 26. (Third process) is performed (step S104). Specifically, the clustering unit 28 generates a histogram representing the number of pixels for each parallax for each range of u-coordinates in the lateral direction of the second parallax image.
  • the range of u-coordinates is a range including one or more pixels in the horizontal direction.
  • the clustering unit 28 extracts a vertically long region having a width ⁇ u of one or a plurality of horizontal pixels from the second parallax image.
  • the vertically long region is used to determine whether or not there is object parallax related to the object in the region, and to acquire the distance information corresponding to the object parallax. Therefore, if the width ⁇ u in the horizontal direction of the vertically long region is made finer, the resolution for detecting the object in the horizontal direction is increased.
  • the width of ⁇ u is shown wide for the sake of explanation, but ⁇ u can be a width of one pixel to several pixels.
  • FIG. 21 is a diagram showing an example of a histogram.
  • the horizontal axis of FIG. 21 is the parallax d expressed in units of pixels.
  • the parallax d is large on the left side of the horizontal axis and decreases toward the right side.
  • the minimum value of the parallax d may be, for example, one pixel or a value smaller than one pixel.
  • the vertical axis of the histogram in FIG. 21 represents the number of occurrences of parallax pixels having a parallax d on the horizontal axis.
  • FIG. 21 further shows a threshold curve representing a threshold value for determining whether or not each parallax d is an object parallax.
  • the parallax d can be a representative value of a parallax section having a width.
  • the threshold curve can be set to the number of appearances (number of pixels) corresponding to a predetermined height in the y direction in the real space for each parallax d.
  • the predetermined height can be 50 cm.
  • the object displayed on the image is displayed smaller than the object displayed at a short distance. Therefore, the value of the number of appearances on the vertical axis of the threshold curve becomes smaller as the parallax d becomes smaller.
  • Clustering section 28 if the number of occurrences exceeds a predetermined threshold value corresponding to the parallax d, determines the disparity d corresponding to the pixel as an object parallax d e.
  • step S105 the clustering unit 28, a distribution of an object disparity d e on the second parallax image, based on the shape of the road surface 41 estimated in step S102, and calculates height information associated with the object disparity d e (step S105).
  • the process of step S105 may be included in the third process.
  • the image acquired by the first camera 11 or the second camera 12 includes a portion as shown in FIG. 22.
  • the portion of the second parallax image corresponding to the portion surrounded by the frame line 61 of the other vehicle 42 is enlarged and shown in FIG.
  • Clustering unit 28 the u coordinates object exists disparity d e, and distance information included in the object parallax d e, on the basis of the road surface shape that was estimated in step S102, corresponds to the distance of the object represented by the object disparity d e Calculate the estimated position of the road surface. If there is an object on the road surface 41, the upper side of the road surface estimated position on the second parallax image, lined parallax pixels having object parallax d e.
  • Clustering unit 28 a parallax pixels of the second parallax images from the road surface position of u coordinates scans upward, detecting the distribution in the vertical direction (v coordinate direction) parallax pixels having object parallax d e.
  • Clustering unit 28 based on the number or distribution parallax pixels of the same object disparity d e are arranged to determine the height information on the second parallax images.
  • Clustering unit 28 may parallax pixels of the object disparity d e is partially interrupted in the longitudinal direction, it is possible to determine the height information in accordance with predetermined criteria.
  • Clustering unit 28 for each range of lateral coordinates comprising one or more coordinates (u coordinates), in association with the object disparity d e and height information can be stored in the memory 23.
  • Clustering unit 28 as exemplified in FIG. 24, a plurality of objects disparity d e stored in the memory 23, two-dimensional space (u-d coordinates and u coordinates and a disparity d, respectively horizontal and vertical axes It can be expressed as the distribution of point clouds on space).
  • Clustering unit 28 the information of the object disparity d e for each u coordinates, delivered to the grouping unit 29.
  • Grouping unit 29 converts the information of the object disparity d e of u-d coordinate space to the coordinate system of the real space of x-z coordinate, by extracting the collection of objects disparity d e (group) object (Fourth process) is executed (step S106). An example of the process executed by the grouping unit 29 will be described with reference to FIGS. 25 and 26.
  • FIG. 25 includes a moving body 30 equipped with an object detection system 1 traveling on a road surface 41 of a road, and another vehicle 42.
  • the moving body 30 is a vehicle.
  • each point representing the object disparity d e of u-d coordinate space is displayed as a point of x-z coordinate space.
  • the grouping unit 29 extracts a group of point clouds based on the distribution of the point cloud.
  • the grouping unit 29 collects a plurality of adjacent points according to a predetermined condition and extracts them as a group of points. Collection of point cloud, collection of objects disparity d e represents the (group).
  • the point cloud is arranged in the x direction on the xz coordinate space.
  • the grouping unit 29 can recognize this as an object.
  • the point cloud group 71 corresponds to the rear surface of the vehicle body of the other vehicle 42.
  • the grouping unit 29 can recognize this as a roadside structure such as a guardrail or a side surface of another vehicle 42. it can.
  • the group 72 of points arranged in the z direction on the xx coordinate space corresponds to an object arranged parallel to the traveling direction of the moving body 30 or a plane parallel to the traveling direction of the moving body 30 of the object.
  • the grouping unit 29 can exclude a group of points 72 arranged in the z direction from the object detection process.
  • the grouping unit 29 can detect the width of the object from the width of the group 71 of the point cloud recognized as the object arranged in the x direction.
  • Grouping unit 29 may be the clustering unit 28 based on the height information associated with the object disparity d e obtained in step S105, determines the height of the object. Therefore, the grouping unit 29 can recognize the position, width, and height of the recognized object in the xx coordinate space.
  • the image processing unit 22 can output information on the position, width, and height of the object recognized by the grouping unit 29 to another device in the moving body 30 via the output unit 24 (step S107).
  • the image processing unit 22 can output such information to the display device in the moving body 30.
  • the display device in the moving body 30 has a frame surrounding the image of the other vehicle 42 based on the information acquired from the object detection device 20 in the image of the first camera 11 or the second camera 12. You may display a line.
  • the border indicates the position of the detected object and the range occupied in the image.
  • the object detection device 20 of the present disclosure enables high processing speed and high accuracy object detection. That is, the object detection device 20 of the present disclosure can improve the performance of detecting an object. Further, the object detection device 20 does not limit the object to be detected to a specific type of object. The object detection device 20 can detect any object existing on the road surface.
  • the image processing unit 22 of the object detection device 20 executes the first processing, the second processing, the third processing, and the fourth processing without using the information of the image captured by the stereo camera 10 other than the first parallax image. can do. Therefore, the object detection device 20 does not have to perform a process of separately recognizing an object from the captured image in addition to the processing of the first parallax image and the second parallax image.
  • the object detection device 20 of the present disclosure can reduce the processing load of the image processing unit 22 related to object recognition. This does not preclude that the object detection device 20 of the present disclosure is combined with image processing on an image obtained directly from the first camera 11 or the second camera 12.
  • the object detection device 20 can also be combined with an image processing technique such as template matching.
  • the descriptions such as “first” and “second” are identifiers for distinguishing the configuration.
  • the configurations distinguished by the descriptions such as “first” and “second” in the present disclosure can exchange numbers in the configurations.
  • the first lens can exchange the identifiers “first” and “second” with the second lens.
  • the exchange of identifiers takes place at the same time.
  • the configuration is distinguished.
  • the identifier may be deleted.
  • the configuration with the identifier removed is distinguished by a code. Based solely on the description of identifiers such as “first” and “second” in the present disclosure, it shall not be used as a basis for interpreting the order of the configurations and for the existence of identifiers with smaller numbers.
  • the x-direction, the y-direction, and the z-direction are provided for convenience of explanation and may be interchanged with each other.
  • the configuration according to the present disclosure has been described using a Cartesian coordinate system in which the x-direction, the y-direction, and the z-direction are the axial directions.
  • the positional relationship of each configuration according to the present disclosure is not limited to being orthogonal.
  • the u-coordinates and v-coordinates indicating the coordinates of the image are provided for convenience of explanation and may be interchanged with each other.
  • the origins and directions of the u and v coordinates are not limited to those disclosed in the present disclosure.
  • the first camera 11 and the second camera 12 of the stereo camera 10 are They were located side by side in the x direction.
  • the arrangement of the first camera 11 and the second camera 12 is not limited to this.
  • the first camera 11 and the second camera 12 may be positioned side by side in a direction perpendicular to the road surface (y direction) or in a direction inclined with respect to the road surface 41.
  • the number of cameras constituting the stereo camera 10 is not limited to two.
  • the stereo camera 10 may include three or more cameras. For example, it is possible to obtain more accurate distance information by using a total of four cameras, two cameras arranged horizontally on the road surface and two cameras arranged vertically.
  • the stereo camera 10 and the object detection device 20 are mounted on the moving body 30.
  • the stereo camera 10 and the object detection device 20 are not limited to those mounted on the moving body 30.
  • the stereo camera 10 and the object detection device 20 may be mounted on a roadside machine installed at an intersection or the like and arranged so as to capture an image including a road surface.
  • the roadside aircraft detects an approaching first vehicle from one of the roads intersecting at an intersection, and informs a second vehicle traveling on the other road of the approaching second vehicle that the first vehicle is approaching. Can be offered.
  • Object detection system 10 Stereo camera 11 1st camera 12 2nd camera 20 Object detection device 21 Acquisition unit 22 Image processing unit (processor) 23 Memory 24 Output unit 25 Parallax image generation unit 26 Road surface detection unit 27 Unnecessary parallax removal unit 28 Clustering unit 29 Grouping unit 30 Mobile 41 Road surface 42 Other vehicle (object) 45 Border 51 Graph 52 1st straight line 53 Approximation start point 54 Candidate straight line 55 2nd straight line 61 Border 71, 72 Point cloud group R1 1st part R2 2nd part

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Geometry (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

物体検出装置は、第1処理と、第2処理と、物体検出処理(第3、第4処理)とを実行するように構成される。第1処理は、第1視差マップに基づき、実空間における路面の形状を推定する。第1視差マップは、路面を含む画像を撮像するステレオカメラの出力に基づき生成され、前記ステレオカメラの撮像画像の水平方向に対応する第1方向と、第1方向に交差する第2方向とから成る2次元座標に前記ステレオカメラの出力から得られる視差が対応付けられる。第2処理は、推定された路面の形状に基づき、実空間における路面からの高さが所定の範囲に対応する視差を、第1視差マップから除去した第2視差マップを生成する。物体検出処理(第3、第4処理)は、第2視差マップに基づいて物体を検出する。

Description

物体検出装置、物体検出システム、移動体及び物体検出方法 関連出願の相互参照
 本出願は、2019年9月5日に出願された日本国特許出願2019-162349号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本開示は、物体検出装置、物体検出システム、移動体及び物体検出方法に関する。
 近年、自動車等の移動体にステレオカメラを用いた物体検出装置が設けられ、物体の検出及び距離測定等に用いられている。このような物体検出装置では、複数のカメラから取得した複数の画像から、画像全体に渡って距離分布(又は、視差分布)を求め、この距離分布の情報から、障害物を判別している(例えば、特許文献1参照)。
特開平5-265547号公報
 本開示の物体検出装置は、第1処理と、第2処理と、物体検出処理とを実行するように構成されたプロセッサを備える。前記第1処理は、第1視差マップに基づき、実空間における路面の形状を推定する。前記第1視差マップは、路面を含む画像を撮像するステレオカメラの出力に基づき生成される。前記第1視差マップは、前記ステレオカメラの撮像画像の水平方向に対応する第1方向と、前記第1方向に交差する第2方向とから成る2次元座標に、前記ステレオカメラの出力から得られる視差が対応付けられる。前記第2処理は、推定された前記路面の前記形状に基づき、実空間における前記路面からの高さが所定の範囲に対応する前記視差を、前記第1視差マップから除去した第2視差マップを生成する。前記物体検出処理は、前記第2視差マップに基づいて物体を検出する。
 本開示の物体検出システムは、互いに視差を有する複数の画像を撮像するステレオカメラと、少なくとも1つのプロセッサを含む物体検出装置とを備える。前記プロセッサは、路面を含む画像を撮像する前記ステレオカメラの出力に基づき、第1視差マップを生成するように構成される。前記第1視差マップは、前記ステレオカメラの撮像画像の水平方向に対応する第1方向と、前記第1方向に交差する第2方向とから成る2次元座標に、前記ステレオカメラの出力から得られる視差が対応付けられる。前記プロセッサは、さらに、第1処理と、第2処理と、物体検出処理とを実行する。前記第1処理は、前記第1視差マップに基づき、実空間における路面の形状を推定する。前記第2処理は、推定された前記路面の前記形状に基づき、実空間における前記路面からの高さが所定の範囲に対応する前記視差を、前記第1視差マップから除去した第2視差マップを生成する。前記物体検出処理は、前記第2視差マップに基づいて物体を検出する。
 本開示の移動体は、物体検出システムを備える。前記物体検出システムは、互いに視差を有する複数の画像を撮像するステレオカメラ、及び、少なくとも1つのプロセッサを有する物体検出装置を含む。前記プロセッサは、路面を含む画像を撮像する前記ステレオカメラの出力に基づき、第1視差マップを生成するように構成される。前記第1視差マップは、前記ステレオカメラの撮像画像の水平方向に対応する第1方向と、前記第1方向に交差する第2方向とから成る2次元座標に、前記ステレオカメラの出力から得られる視差が対応付けられる。前記プロセッサは、さらに、第1処理と、第2処理と、物体検出処理とを実行する。前記第1処理は、前記第1視差マップに基づき、実空間における路面の形状を推定する。前記第2処理は、推定された前記路面の前記形状に基づき、実空間における前記路面からの高さが所定の範囲に対応する前記視差を、前記第1視差マップから除去した第2視差マップを生成する。前記物体検出処理は、前記第2視差マップに基づいて物体を検出する。
 本開示の物体検出方法は、第1視差マップを取得又は生成することを含む。前記第1視差マップは、路面を含む画像を撮像するステレオカメラの出力に基づき生成される。前記第1視差マップは、前記ステレオカメラの撮像画像の水平方向に対応する第1方向と、前記第1方向に交差する第2方向とから成る2次元座標に、前記ステレオカメラの出力から得られる視差が対応付けられる。前記物体検出方法は、第1処理、第2処理及び物体検出処理を実行することを含む。第1処理は、前記第1視差マップに基づき、実空間における路面の形状を推定することを含む。前記第2処理は、推定された前記路面の前記形状に基づき、実空間における前記路面からの高さが所定の範囲に対応する前記視差を、前記第1視差マップから除去した第2視差マップを生成することを含む。前記物体検出処理は、前記第2視差マップに基づいて物体を検出することを含む。
図1は、本開示の一実施形態に係る物体検出システムの概略構成を示すブロック図である。 図2は、図1の物体検出システムを搭載する移動体を模式的に示す側面図である。 図3は、図1の物体検出システムを搭載する移動体を模式的に示す正面図である。 図4は、本開示の他の一実施形態に係る物体検出システムの概略構成を示すブロック図である。 図5は、図1の物体検出装置が実行する処理の一例を示すフローチャートである。 図6は、物体検出装置が取得又は生成する第1視差画像の一例を説明する図である。 図7は、路面形状の推定を行う処理の一例を示すフローチャートである。 図8は、第1視差画像から路面候補視差を抽出する処理の一例を示すフローチャートである。 図9は、路面とステレオカメラとの位置関係を説明する図である。 図10は、路面候補視差の抽出手順を説明する図である。 図11は、視差をヒストグラム化する路面上の範囲を示す図である。 図12は、路面視差dと縦方向の座標(v座標)との関係の一例を示すd-v相関図である。 図13は、路面視差ではない物体が含まれるか否かを検知する方法を説明する図である。 図14は、路面視差dと画像の縦方向の座標(v座標)との関係を直線で近似する処理のフローチャートである。 図15は、第1直線による路面視差dの近似を説明する図である。 図16は、第2直線の決定方法を説明する図である。 図17は、路面視差dと画像の縦方向の座標(v座標)との関係を直線で近似した結果の一例を示す図である。 図18は、不要な視差を除去した第2視差画像の一例を説明する図である。 図19は、第2視差画像の一例を示す図である。 図20は、ヒストグラムを作成する第2視差画像上の領域の一つを示す図である。 図21は、ヒストグラムによる物体視差の判別方法を説明する図である。 図22は、物体視差の高さ情報を取得する方法を説明する図である。 図23は、物体視差の高さ情報を取得する方法を説明する図である。 図24は、物体視差を示す点群のu-d空間における分布の一例を示す図である。 図25は、路面を高さ方向(y方向)から見た図である。 図26は、物体視差を実空間のx-z平面上の点群に変換した図である。 図27は、物体の検出結果の出力方法の一例を示す図である。
 物体検出装置は、道路の形状並びに道路上の構造物及び物体等の種々の要因によって、高い性能が得られないことがある。物体検出装置の物体を検出する性能を向上できることが望ましい。
 以下、本開示の実施の形態について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものである。図面上の寸法、比率等は現実のものとは必ずしも一致していない。カメラによる撮像画像及び視差画像等を表す図は、説明のために作成されたものを含む。これらの画像は、実際に撮像され又は処理された画像とは異なる。また、以下の説明において、「被写体」はカメラに撮像される対象である。「被写体」は、物体、路面、空等を含む。「物体」は、空間内で具体的な位置及び大きさを有するものである。「物体」は、「立体物」ともいう。
 図1に示すように、物体検出システム1は、ステレオカメラ10と物体検出装置20とを含む。ステレオカメラ10と物体検出装置20とは、有線又は無線通信により通信可能である。ステレオカメラ10と物体検出装置20とは、ネットワークを介して通信してよい。ネットワークは、例えば、有線又は無線のLAN(Local Area Network)、又はCAN(Controller Area Network)等を含んでよい。ステレオカメラ10と物体検出装置20とは、同一の筺体内に収納され一体的に構成されてよい。ステレオカメラ10及び物体検出装置20は、後述する移動体30内に位置し、移動体30内のECU(Electronic Control Unit)と通信可能に構成されてよい。
 「ステレオカメラ」とは、互いに視差を有し、互いに協働する複数のカメラである。ステレオカメラは、少なくとも2つ以上のカメラを含む。ステレオカメラでは、複数のカメラを協働させて、複数の方向から対象を撮像することが可能である。ステレオカメラは、1つの筐体に複数のカメラが含まれる機器であってよい。ステレオカメラは互いに独立し、且つ互いに離れて位置する2台以上のカメラを含む機器であってよい。ステレオカメラは、互いに独立した複数のカメラに限られない。本開示では、例えば、離れた2箇所に入射される光を1つの受光素子に導く光学機構を有するカメラをステレオカメラとして採用できる。本開示では、同じ被写体を異なる視点から撮像した複数の画像を「ステレオ画像」と呼ぶことがある。
 ステレオカメラ10は、第1カメラ11と第2カメラ12とを備える。第1カメラ11及び第2カメラ12は、それぞれ光軸OXを規定する光学系と撮像素子とを備える。第1カメラ11及び第2カメラ12はそれぞれ異なる光軸OXを有する。本明細書の説明では単一の符号OXのみで、第1カメラ11及び第2カメラ12双方の光軸OXをまとめて表す。撮像素子は、CCDイメージセンサ(Charge-Coupled Device Image Sensor)、及びCMOSイメージセンサ(Complementary MOS Image Sensor)を含む。第1カメラ11及び第2カメラ12がそれぞれ備える撮像素子は、それぞれのカメラの光軸OXに垂直な同一面内に存在してよい。第1カメラ11及び第2カメラ12は、撮像素子で結像された画像を表す画像信号を生成する。また、第1カメラ11及び第2カメラ12は、撮像した画像について、歪み補正、明度調整、コントラスト調整、ガンマ補正等の任意の処理を行ってよい。
 第1カメラ11及び第2カメラ12の光軸OXは、互いに同じ被写体を撮像可能な方向を向いている。第1カメラ11及び第2カメラ12は、撮像した画像に少なくとも同じ被写体が含まれるように、光軸OX及び位置が定められる。複数の実施形態の一つにおいて、第1カメラ11及び第2カメラ12の光軸OXは、互いに平行になるように向けられる。この平行は、厳密な平行に限られず、組み立てのずれ、取付けのずれ、及びこれらの経時によるずれを許容する。複数の実施形態の他の一つにおいて、第1カメラ11及び第2カメラ12の光軸OXは、平行に限られず、互いに異なる方向を向いてよい。第1カメラ11及び第2カメラ12の光軸OX互いに平行でない場合でも、ステレオカメラ10又は物体検出装置20内で、画像を変換することによりステレオ画像が生成されうる。ステレオカメラ10の第1カメラ11と第2カメラ12の光学中心の距離を基線長とよぶ。基線長は、第1カメラ11と第2カメラ12との間のレンズの中心の距離に相当する。ステレオカメラ10の第1カメラ11と第2カメラ12の光学中心を結ぶ方向を基線長方向とよぶ。
 第1カメラ11及び第2カメラ12は、光軸OXに交わる方向において離れて位置している。複数の実施形態のうちの1つにおいて、第1カメラ11及び第2カメラ12は、左右方向に沿って位置している。第1カメラ11は、前方を向いたときに第2カメラ12の左側に位置する。第2カメラ12は、前方を向いたときに第1カメラ11の右側に位置する。第1カメラ11と第2カメラ12との位置の違いにより、各カメラで撮像した2つの画像において、互いに対応する被写体の位置は、異なる。第1カメラ11から出力される第1画像と、第2カメラ12から出力される第2画像とは、異なる視点から撮像したステレオ画像となる。第1カメラ11及び第2カメラ12は、所定のフレームレート(例えば30fps)で被写体を撮像する。
 図2及び図3に示すように、図1の物体検出システム1は、移動体30に搭載される。図2の側面図に示すように、第1カメラ11及び第2カメラ12は、移動体30の前方を撮像するように設置される。第1カメラ11及び第2カメラ12は、路面を含む画像を撮像するように設置される。すなわち、ステレオカメラ10は、路面を含む画像を撮像するように設置される。複数の実施形態の一つにおいて、第1カメラ11及び第2カメラ12の各光学系の光軸OXが移動体30の前方と略平行となるように配置される。
 本願において、移動体30の直進時の進行方向は、前方又はz方向とよばれる。前方の反対方向は後方とよばれる。移動体30の前方を向いた状態を基準として、左方向及び右方向が定義される。z方向に直交し、且つ、左方向から右方向へ向かう方向は、x方向とよばれる。x方向は、基線長方向に一致してよい。移動体30の近傍の路面に垂直で上向きの方向は、高さ方向又はy方向とよばれる。y方向は、x方向及びz方向に対して直交してよい。x方向は、水平方向とも称する。y方向は、鉛直方向とも称する。z方向は、奥行き方向とも称する。
 本開示における「移動体」は、例えば車両、航空機を含んでよい。車両は、例えば自動車、産業車両、鉄道車両、生活車両、及び滑走路を走行する固定翼機等を含んでよい。自動車は、例えば乗用車、トラック、バス、二輪車、及びトロリーバス等を含んでよい。産業車両は、例えば農業及び建設向けの産業車両等を含んでよい。産業車両は、例えばフォークリフト及びゴルフカート等を含んでよい。農業向けの産業車両は、例えばトラクター、耕耘機、移植機、バインダー、コンバイン、及び芝刈り機等を含んでよい。建設向けの産業車両は、例えばブルドーザー、スクレーバー、ショベルカー、クレーン車、ダンプカー、及びロードローラ等を含んでよい。車両は、人力で走行するものを含んでよい。車両の分類は、上述した例に限られない。例えば、自動車は、道路を走行可能な産業車両を含んでよい。複数の分類に同じ車両が含まれてよい。航空機は、例えば固定翼機及び回転翼機等を含んでよい。
 本開示の移動体30は、道路又は滑走路等を含む走行路の上を走行する。移動体30が走行する走行路の表面を路面とよぶ。
 第1カメラ11及び第2カメラ12は、移動体30の種々の場所に搭載しうる。複数の実施形態のうちの1つにおいて、第1カメラ11及び第2カメラ12は、車両である移動体30の内部に搭載され、ウインドシールドを介して移動体30の外部を撮像できる。例えば、第1カメラ11及び第2カメラ12は、ルームミラーの前方、又はダッシュボード上に配置される。複数の実施形態の1つにおいて、第1カメラ11及び第2カメラ12は、車両のフロントバンパー、フェンダーグリル、サイドフェンダー、ライトモジュール、及びボンネットのいずれかに固定されていてよい。
 物体検出装置20は、取得部21と、画像処理部22(プロセッサ)と、メモリ23と、出力部24とを備える。物体検出装置20は、移動体30内において任意の位置に配置できる。例えば、物体検出装置20は、移動体30のダッシュボード内に配置できる。
 取得部21は、ステレオカメラ10及び他の装置から情報の入力を受ける、物体検出装置20の入力インタフェースである。取得部21は、物理コネクタ、及び無線通信機が採用できる。物理コネクタは、電気信号による伝送に対応した電気コネクタ、光信号による伝送に対応した光コネクタ、及び電磁波による伝送に対応した電磁コネクタが含まれる。電気コネクタには、IEC60603に準拠するコネクタ、USB規格に準拠するコネクタ、RCA端子に対応するコネクタ、EIAJ CP-1211Aに規定されるS端子に対応するコネクタ、EIAJ RC-5237に規定されるD端子に対応するコネクタ、HDMI(登録商標)規格に準拠するコネクタ、及びBNCを含む同軸ケーブルに対応するコネクタを含む。光コネクタは、IEC 61754に準拠する種々のコネクタを含む。無線通信機は、Bluetooth(登録商標)、及びIEEE802.11を含む各規格に準拠する無線通信機を含む。無線通信機は、少なくとも1つのアンテナを含む。
 取得部21には、第1カメラ11及び第2カメラ12の各々が撮像した画像の画像データが入力されうる。取得部21は入力された画像データを画像処理部22に引き渡す。取得部21は、ステレオカメラ10の撮像信号の伝送方式に対応してよい。取得部21は、ネットワークを介してステレオカメラ10の出力インタフェースに接続されてよい。
 画像処理部22は、一つ又は複数のプロセッサを含む。プロセッサには、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、及び、特定の処理に特化した専用のプロセッサが含まれる。専用のプロセッサには、特定用途向けIC(ASIC;Application Specific Integrated Circuit)が含まれる。プロセッサには、プログラマブルロジックデバイス(PLD;Programmable Logic Device)が含まれる。PLDには、FPGA(Field-Programmable Gate Array)が含まれる。画像処理部22は、一つ又は複数のプロセッサが協働するSoC(System-on-a-Chip)、及びSiP(System In a Package)のいずれかであってよい。画像処理部22の実行する処理は、プロセッサが実行する処理と言い換えることができる。
 画像処理部22は、視差画像生成部25、路面検出部26、不要視差除去部27、クラスタリング部28、及び、グルーピング部29の各機能ブロックを含む。視差画像生成部25は、ステレオカメラ10から出力された第1画像及び第2画像に基づいて、第1視差画像を生成する。第1視差画像は、ステレオカメラ10の撮像画像の水平方向に対応する横方向と、横方向に交差する縦方向とから成る2次元平面上に視差を表す画素が配置された画像である。横方向は、第1方向である。縦方向は第2方向である。横方向と縦方向とは互いに直交してよい。横方向は、路面の幅方向に対応する。横方向は、ステレオカメラ10の撮像する画像が水平線を含むとき、水平線に平行な方向である。縦方向は、実空間における重力の加わる方向に対応する方向としうる。路面検出部26、不要視差除去部27、クラスタリング部28、及び、グルーピング部29は、第1視差画像に基づいて物体を検出する一連の処理を実行する。
 画像処理部22内の情報処理において、第1視差画像は、横方向と縦方向とから成る2次元座標に、ステレオカメラ10の出力から得られる視差の情報が対応付けられた第1視差マップとして、種々の操作を受ける。種々の操作は、演算処理及びメモリ23への書き込み、読み出し等を含む。第1視差画像は、第1視差マップと言い換えることができる。以下の説明において、第1視差画像に対する処理は、第1視差マップに対する処理と言い換えることができる。
 画像処理部22の各機能ブロックは、ハードウエアモジュールであってよく、ソフトウエアモジュールであってよい。各機能ブロックが行う処理は、画像処理部22により実行されるものと言い換えてよい。画像処理部22は、各機能ブロックの全ての動作を実行してよい。画像処理部22が各機能ブロックのいずれかを使役して行う処理は、画像処理部22が自ら実行するものとしてよい。
 メモリ23は、種々の処理のためのプログラム及び演算中の情報を記憶する。メモリ23は、揮発性メモリ及び不揮発性メモリが含まれる。メモリ23は、プロセッサと独立しているメモリ、及びプロセッサの内蔵メモリが含まれる。
 出力部24は、物体検出装置20の処理結果を、移動体30内の他の装置又は他車両及び路側機等の移動体30外の装置に出力しうる、物体検出装置20の出力インタフェースである。物体検出装置20から受信した情報を適宜使用しうる他の装置は、オートクルーズコントロール等の走行支援装置、及び、自動ブレーキ装置等の安全装置を含む。出力部24は、取得部21と同様に、有線及び無線の通信に対応した種々のインタフェースを含む。例えば、出力部24は、CANのインタフェースを有し、移動体30内の他の装置と通信を行う。
 物体検出装置20は、以下に説明する画像処理部22が行う処理を、非一時的なコンピュータ可読媒体に記録されたプログラムを読み込んで実装するように構成されてよい。非一時的なコンピュータ可読媒体は、磁気記憶媒体、光学記憶媒体、光磁気記憶媒体、半導体記憶媒体を含むがこれらに限られない。磁気記憶媒体は、磁気ディスク、ハードディスク、磁気テープを含む。光学記憶媒体は、CD(Compact Disc)、DVD、ブルーレイディスク(Blu-ray(登録商標) Disc)等の光ディスクを含む。半導体記憶媒体は、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、フラッシュメモリを含む。
 図4に示すように、本開示の他の実施形態に係る物体検出システム1Aにおいて、視差画像生成部25は、物体検出装置20とは別体のハードウェア上に搭載されてよい。図4では図1と同一又は類似の構成要素に、図1と同一の符号を付している。図4の視差画像生成部25は、視差画像生成装置と言い換えることができる。図4の視差画像生成部25は、プロセッサを有する。図4の視差画像生成部25に含まれるプロセッサは、ステレオカメラ10の第1カメラ11及び第2カメラ12からそれぞれ出力された第1画像及び第2画像に基づいて、第1視差画像を生成する。図4の物体検出装置20に含まれる取得部21は、視差画像生成部25から、第1視差画像を取得する。図4の物体検出装置20と視差画像生成部25とは、纏めて1つの物体検出装置20とみなされうる。図4のように構成される物体検出装置20において、画像処理部22の路面検出部26、不要視差除去部27、クラスタリング部28、及び、グルーピング部29は、図1の対応する機能ブロックと同じに機能する。
 以下に、図5のフローチャートを参照して、画像処理部22の各機能ブロックが実行する処理をさらに説明する。図5は、物体検出装置20が実行する物体検出方法の処理の全体を説明するフローチャートである。
 まず、図5のフローチャートの各ステップで行う処理の詳細な説明に先立ち、各ステップの処理の概要と目的が簡単に説明される。
 ステップS101は、後述する第1処理の前段において、物体検出の対象となる第1視差画像を取得又は生成するステップである。ステップS101は、取得部21又は視差画像生成部25が行う。
 ステップS102は、路面の形状を推定するステップである。ステップS102で行う処理は、第1処理ともよばれる。ステップS102は路面検出部26が行う。路面形状を推定することにより、第1視差画像上で、縦方向の座標に対する路面を表す視差が分かる。路面形状は、以下の処理において不要視差を除去し、及び/又は、実空間上での路面の高さ位置を知るために必要となる。
 ステップS103は、不要な視差を除去した第2視差画像を生成するステップである。ステップS103で行う処理は、第2処理ともよばれる。第2処理は、不要視差除去部27が行う。不要視差は、実空間における路面からの高さが所定の範囲に含まれる被写体に対応する画素が表す視差である。例えば、不要視差は、第1視差画像に含まれる路面の視差及び空中部分に含まれる構造物の視差等を含む。第1視差画像から不要視差を除くことによって、路面の白線及び道路上空に存在する構造物等を路面上の物体であると誤検出する可能性が低減される。これにより、物体検出の精度が向上する。
 画像処理部22内での情報処理において、第2視差画像は、第1視差マップに含まれる視差の情報から、不要な視差の情報を除去した第2視差マップとして、種々の操作を受ける。第2視差画像は、第2視差マップと言い換えることができる。以下の説明において、第2視差画像に対する処理は、第2視差マップに対する処理と言い換えることができる。
 ステップS104は、第2視差画像に対して横方向の各座標について物体視差を決定するステップである。ステップS104は、クラスタリング部28が実行する。物体視差とは、所定の条件に基づいて、実空間の物体とみなせる領域の視差であると判定される視差である。
 ステップS105は、第2視差画像上の物体視差の分布と、ステップS102で推定した路面の形状とに基づいて、物体視差に関連付けられる高さ情報を算出するステップである。ステップS105はクラスタリング部28が実行する。ステップS104とS105とで行う処理は、第3処理ともよばれる。高さ情報を必要としない場合、ステップS105は省略しうる。
 ステップS106は、物体視差の情報を実空間の座標上に変換して、物体視差の纏まり(グループ)を抽出することにより、物体を検出するステップである。ステップS106で行う処理は、第4処理ともよばれる。第4処理は、グルーピング部29が行う。
 ステップS107は、検出された物体の情報を出力部24から出力するステップである。ステップS106の結果から、検出された物体の位置、及び、ステレオカメラ10側からみた幅の情報が得られる。ステップS105により得られた情報は、検出された物体の高さの情報を含む。これらの情報は、移動体30内の他の装置に提供されうる。
 次に、各ステップの詳細について説明する。
 まず、画像処理部22は第1視差画像を取得又は生成する(ステップS101)。図1に示した物体検出システム1では、画像処理部22は、取得部21で取得した第1画像及び第2画像に基づいて、第1視差画像を生成する。第1視差画像の生成は、視差画像生成部25が行う。図4に示した物体検出システム1Aでは、画像処理部22は、視差画像生成部25により生成された第1視差画像を、取得部21を介して取得する。画像処理部22は、以降の処理のため、第1視差画像をメモリ23に格納してよい。
 視差画像生成部25は、第1カメラ11から取得した第1画像及び第2カメラ12から取得した第2画像の視差の分布を算出し、第1視差画像を生成する。第1視差画像の生成方法は、公知であるから、以下に簡単にのみ説明する。
 視差画像生成部25は、第1画像及び第2画像の一方の画像(例えば、第1画像)を多数の小領域に分割する。小領域は、縦横方向に複数の画素が配列された矩形の領域としうる。例えば、小領域は、縦方向3画素、横方向3画素で構成されうる。小領域の縦横方向に含まれる画素の数は、3に限られない。小領域の縦方向と横方向とに含まれる画素の数は、異なってよい。視差画像生成部25は、分割した複数の小領域の各々の画像と他方の画像(例えば、第2画像)とを、水平方向にずらしながらマッチングさせる。画像のマッチングには、SAD(Sum of Absolute Difference)関数を用いる方法が知られている。これは、小領域内の輝度値の差の絶対値の総和を表すものである。SAD関数が最小となるとき、両画像は最も類似すると判断される。ステレオ画像のマッチングは、SAD関数を用いる方法に限られず、他の方法を採用しうる。
 視差画像生成部25は、第1画像と第2画像とでマッチングした2つの領域の横方向における画素の位置の違いに基づいて、当該小領域ごとの視差を算出する。視差の大きさは、画素の横方向の幅を単位として表すことができる。補間処理をすることにより、視差の大きさは、1画素より小さい精度で算出することができる。視差の大きさはステレオカメラ10により撮像された被写体の、実空間におけるステレオカメラ10との間の距離に対応する。視差が大きければ距離が近く、視差が小さければ距離が遠いことを意味する。視差画像生成部25は、算出した視差の分布を示す第1視差画像を生成する。以下において、第1視差画像を構成する視差を表す画素を視差画素とよぶ。視差画像生成部25は、元の第1画像及び第2画像の画素と同じ精細度で視差画像を生成することができる。
 図6は、第1視差画像を説明する図である。図6において、移動体30の前方の路面41上には、他車両42が走行している。
 図6に示すように、第1視差画像には、ステレオカメラ10の横方向(第1方向)と横方向に直交する縦方向(第2方向)から成る2次元平面上に、視差を表す画素が位置している。横方向の位置を示す座標をu座標とよぶ。縦方向の位置を示す座標をv座標とよぶ。u座標及びv座標を画像座標とよぶ。本開示の画像を表す各図において、u座標は左から右に向かう座標とする。v座標は、上から下に向かう座標とする。u-v座標空間の原点は、第1視差画像の左上端とすることができる。u座標及びv座標は、画素を単位として表記することができる。
 視差画像生成部25は、視差の違いを画素の輝度又は色等の違いに置き換えて表示することができる。図6では、説明のため、視差を異なる網掛けにより表現している。図6では、網掛けが濃いほど視差が小さく、網掛けが薄いほど視差が大きい。図6において等しい網掛けの領域は、それぞれ所定の視差の範囲内に位置することを表す。実際の第1視差画像では、u-v座標空間上で視差が取得し易い部分と取得し難い部分がある。例えば、車両の窓等の空間的に均一な被写体の部分、太陽光の反射による白とびが発生している部分は、視差が取得し難い。第1視差画像では、物体及び構造物がある場合、それらはより遠くに位置する背景の視差と異なる輝度又は色で表示される。
 視差画像生成部25は、視差を算出した後に第1視差画像を画像として表示しなくてよい。視差画像生成部25は、第1視差画像の情報を画像処理部22の内部で第1視差マップとして生成して保持し、必要な処理を行えばよい。
 ステップS101の後、画像処理部22は、第1視差画像から路面41の形状を推定する第1処理を行う(ステップS102)。第1処理は、路面検出部26により行われる。以下において、路面検出部26が行う路面形状の推定処理を、図7、図8及び図14のフローチャートを用いて説明する。まず、路面検出部26は、第1視差画像から路面候補視差dを抽出する(ステップS201)。路面候補視差dは、第1視差画像から収集される路面視差dに該当する可能性が高い視差である。路面視差dは、路面41領域の視差を意味する。路面視差dは、路面41上の物体の視差を含まない。路面視差dは、路面上の対応する箇所迄の距離を表す。路面視差dは、同じv座標を有する位置で近い値を有するものとして収集される。
 路面候補視差dの抽出処理の詳細は、図8のフローチャートに示される。図8に示すように、路面検出部26は、ステレオカメラ10の設置位置に基づいて、路面候補視差算出用の視差の初期値である路面候補視差初期値dを計算する(ステップS301)。路面候補視差初期値dは、ステレオカメラ10から最も近い路面候補視差の抽出位置での路面候補視差の初期値である。ステレオカメラ10から最も近い路面候補視差の抽出位置は、例えば、ステレオカメラ10から、1mから10mの範囲から設定することができる。
 図9に示すように、ステレオカメラ10において、路面高さYは、撮像される路面41からのステレオカメラ10の鉛直方向の高さである。また、路面高さYは、ステレオカメラ10の設置位置における路面41からの高さである。道路の起伏により、路面高さYはステレオカメラ10からの距離により変化することがある。したがって、ステレオカメラ10から離れた位置での路面高さYは、ステレオカメラ10の設置位置での路面高さYに一致しない。複数の実施形態の一つにおいて、ステレオカメラ10の第1カメラ11及び第2カメラ12は、光軸OXを互いに平行に前方に向けて設置されていると仮定される。図9においてZは特定の路面位置までの水平方向の距離を示す。ステレオカメラ10の基線長をB、縦方向の画像サイズをTOTALvとする。この場合、ある縦方向の座標(v座標)において撮像された路面41の路面視差dと路面高さYとの関係は、水平方向の距離Zに依らず、次の数式で与えられる。
 
   d=B/Y×(v-TOTALv/2)      (1)
 
数式(1)により算出された路面視差dは、「幾何推定路面視差」ともよばれる。以下において、幾何推定路面視差を符号dで表記することがある。
 路面候補視差初期値dは、路面41が、ステレオカメラ10とステレオカメラ10の位置から最も近い路面候補視差dの抽出位置との間で、第1カメラ11及び第2カメラ12の光軸OXに平行且つ平坦であるものと仮定して算出される。その場合、ステレオカメラ10の位置から最も近い路面候補視差の抽出位置の、第1視差画像上のv座標が特定の座標vに定まる。座標vは、路面候補視差を抽出するv座標の初期値である。座標vは、TOTALv/2とTOTALvとの間に位置する。座標vは、視差算出が可能な画像座標の範囲内で最も下側(v座標の大きい側)に位置する。座標vは、第1視差画像の最も下の行に対応するTOTALvとしてよい。路面候補視差初期値dは、数式(1)のvにvを代入し、YにYを代入することにより決定することができる。
 路面検出部26は、路面候補視差初期値dに基づいて、縦方向のv座標がvである最初の行の視差収集閾値を計算する(ステップS302)。行は、第1視差画像上で同じv座標を有する横方向に並ぶ画素の配列を意味する。視差収集閾値は、視差を収集する上限の閾値である上限閾値と、視差を収集する下限の閾値である下限閾値とを含む。視差収集閾値は、路面候補視差初期値dを含むように路面候補視差初期値dの上下に所定の規則に基づいて設定される。具体的には、路面候補視差初期値dを算出した状態から、予め定めた路面高さ変化量ΔYだけ路面高さYが上下に変化した場合の路面視差が、視差収集閾値の上限閾値及び下限閾値として定められる。すなわち、視差収集閾値の下限閾値は、路面候補視差初期値dから路面高さ変化量ΔY分の視差を引いて得られる。視差収集閾値の上限閾値は、路面候補視差初期値dから路面高さ変化量ΔY分の視差を加えて得られる。具体的な視差収集閾値の下限閾値及び上限閾値は、数式(1)のYの値を変更することにより求められる。
 以下において、路面検出部26は、ステップS303とステップS307との間の処理を繰り返す。まず、路面検出部26は、第1視差画像の最も下側に位置するv座標がvである行についての処理を行う(ステップS303)。
 路面検出部26は、視差収集閾値を用いて視差を収集する(ステップS304)。路面検出部26は、第1視差画像に含まれるv座標がvの横方向に並んで位置する各視差画素について、視差収集閾値の下限閾値と上限閾値との間の視差を有する視差画素を路面候補視差dとして収集する。すなわち、路面検出部26は、数式(1)を用いて算出された路面候補視差初期値dを基準とする所定のマージンの範囲に入る視差を有する視差画素を、路面41の正しい視差を表す視差画素の候補であると判定する。路面検出部26は、路面41の正しい視差を表す視差画素の候補であると判定された視差画素の視差を路面候補視差dとする。このようにすることによって、路面検出部26は、路面41上の物体及び構造物等の路面41以外の視差を路面41の視差として誤判定する可能性を低減できる。これにより、路面41検出の精度が向上する。
 ステップS304で、v座標がvの全ての視差画素の判定が終了すると、路面検出部26は、収集した路面候補視差dを平均化して路面候補視差dの平均値である平均路面候補視差davを算出する(ステップS305)。路面検出部26は、それぞれの路面候補視差d及びそのu-v座標、並びに、v座標がvにおける平均路面候補視差davを、メモリ23に記憶してよい。
 ステップS305の後、路面検出部26は、ステップS305で算出したv座標がvの平均路面候補視差davから、1行上の行、すなわち、v座標がv=v-1の行の各視差画素について、視差収集閾値を算出する(ステップS306)。路面検出部26は、ステップS304で算出したv座標がvのときの平均路面候補視差davに対して、数式(1)が成立するように路面高さYを変更する。路面検出部26は、路面高さYを変更した数式(1)のvに代えて、v-1を代入することにより、v座標がv-1のときの幾何推定路面視差dを算出する。路面検出部26は、ステップS302と類似に、幾何推定路面視差dから所定の路面高さ変化量ΔY分の視差を引いた視差を視差収集閾値の下限閾値とすることができる。路面検出部26は、幾何推定路面視差dに所定の路面高さ変化量ΔY分の視差を加えた視差を視差収集閾値の上限閾値とすることができる。
 ステップS306の後、路面検出部26は、数式(1)により算出された幾何推定路面視差dが所定値より大きいか否かを判定する。所定値は、例えば、1画素である。路面検出部26は、幾何推定路面視差dが1よりも大きいとき、ステップS303の処理に戻る(ステップS307)。ステップS303において、路面検出部26は、路面候補視差dの抽出の対象を、1画素上の行に移動させる。すなわち、路面候補視差dの抽出の対象が、v座標がvの行であったとき、路面検出部26は、路面検出の対象の行のv座標を、v-1に変更する。また、図10に示すように、路面候補視差dの算出の対象が、n番目の行であったとき、路面検出部26は、路面検出の対象の行を、n+1番目の行に変更する。図10は、説明のため各行の縦方向の幅を広くしている。実際の各行は、1画素の高さである。この場合、n+1番目の行v座標は、n番目の行のv座標よりも1小さい。
 それぞれ、n+1番目の行を対象とするステップS304~S306の処理は、v座標がvの行の処理と同様に行われる。ステップS304において、路面検出部26は、n番目の行に対するステップS306において算出した視差収集閾値を用いて、路面候補視差dを収集する。ステップS305において、路面検出部26は、収集した路面候補視差dを平均化して平均路面候補視差davを算出する。ステップS306において、路面検出部26は、平均路面候補視差davを用いて、数式(1)の路面高さYを変更する。路面検出部26は、路面高さYを変更した数式(1)を用いて、幾何推定路面視差dを算出する。さらに路面検出部26は、n+2番目の行の路面候補視差dの抽出のために、幾何推定路面視差dに路面高さ変化量ΔYを考慮して、視差収集閾値を算出する。
 路面検出部26は、路面候補視差dの抽出対象を、ステレオカメラ10から最も近い路面候補視差dの抽出位置に対応する行から、順次上方向(v座標の負の方向)にシフトさせながら、当該v座標に対応する路面候補視差dを抽出する。路面検出部26は、抽出した路面候補視差dを、対応するu座標及びv座標及びv座標に対応する平均路面候補視差davと共にメモリ23に格納してよい。
 路面検出部26は、ステップS307において、数式(1)により算出された幾何推定路面視差dが上述の所定の値以下となったとき、路面候補視差dの抽出処理を終了して、図7のフローチャートのステップS201に戻る。所定の値は、例えば、1画素とすることができる。
 このように、図8のフローチャートでは、路面候補視差dを抽出するv座標の初期値をステレオカメラ10から見て近距離側の位置に対応するvに設定し、順次遠距離側の路面候補視差dを抽出する。ステレオカメラ10は、一般的に遠距離側よりも近距離側の方が、視差の検出精度が高い。このため、近距離側から遠距離側に順次路面候補視差dを抽出することにより、検出される路面候補視差dの精度を高めることができる。
 上記路面候補視差dを抽出する図8のフローチャートでは、縦方向の1つの座標ごとに路面候補視差dを算出した。言い換えると、上記路面候補視差dを抽出するフローチャートでは、縦方向に1画素の行ごとに路面候補視差dを算出した。路面候補視差の算出の単位は、これに限られない。縦方向に複数の座標を纏めて路面候補視差dを算出することも可能である。
 ステップS301~S307の路面候補視差dの抽出処理に続いて、路面検出部26は、図7のフローチャートのステップS202に進む。路面検出部26は、近距離側から遠距離側へ順次路面視差dを推定する際に、路面視差dに順次カルマンフィルタを適用する。そのため、始めに、路面検出部26は、カルマンフィルタの初期化を行う(ステップS202)。カルマンフィルタの初期値として、ステップS305で算出した、路面視差dの推定を行う行のうち最も下の行(v座標の値がvの行)に対応する平均路面候補視差davの値を利用することができる。
 路面検出部26は、以下のステップS203~S210の処理を、路面41の近距離側から遠距離側へ対象とする行を変えながら順次実行する(ステップS203)。
 まず、路面検出部26は、第1視差画像内の対象とする行について、実空間における一定幅の範囲内に位置する路面候補視差dから、路面視差dの値ごとの頻度を表すヒストグラムを生成する(ステップS204)。実空間における一定幅の範囲とは、道路の走行車線の幅を考慮した範囲である。一定幅は、例えば、2.5m又は3.5m等の値に設定できる。視差を取得する範囲は、例えば、図11において実線の枠線45により囲まれた範囲に初期設定される。一定幅は、予め物体検出装置20のメモリ23等に記憶される。視差を取得する範囲を、この範囲に限定することにより、路面検出部26が路面41以外の物体又は防音壁等の構造物を路面41と誤認して抽出する可能性が低減される。これにより、路面検出の精度を向上することができる。図11に実線で示した視差を取得する範囲は、後述するように、前方の道路上の状況に応じて初期設定された枠線45から順次変更されうる。
 路面検出部26は、カルマンフィルタによる路面視差dの予測値に基づいて、対象とする行について路面視差dの取得範囲を設定する。路面視差dの取得範囲は、カルマンフィルタが次の行の路面視差dを予測する際に算出する信頼度に基づいて決定される範囲である。信頼度は、ガウス分布の分散σ(σは路面視差dの標準偏差)で表現される。路面検出部26は、予測値±2σ等により路面視差dの取得範囲を求めることができる。路面検出部26は、ステップS204で生成した路面候補視差dのヒストグラムから、カルマンフィルタに基づいて設定された路面視差dの取得範囲内で、頻度が最大となる路面視差dを抽出する。路面検出部26は、抽出した路面視差dを、対象とする行の路面視差dの観測値とする(ステップS205)。
 次に、路面検出部26は、ステップS205で決定した路面視差dが、物体の視差等を含まず、正しい路面視差dであることを確認する(ステップS206)。路面検出部26は、現在処理中の行までの各行で検出された全ての路面視差dについて、路面視差dとv座標とを座標軸とするd-v座標空間上にマップしたd-v相関図を生成する。正しく路面41が検出されている場合、d-v相関図は、図12に破線で示すようにv座標の値が小さくなるにつれて、路面視差dも直線的に小さくなる。
 一方、物体の視差を路面41として誤認識している場合、図13に示すように、d-v相関図は、物体を表す視差の部分で、縦方向の座標(v座標)の変化に関わらず視差dが略一定となる。一般に、物体は、路面41に対して垂直な部分を含むので、第1視差画像上では等距離の視差を多く含むように表示される。図13において、第1部分Rは、v座標の値の変化とともに視差dが減少している。第1部分Rは、路面41を正しく検出している部分である。第2部分Rは、v座標が変化しても視差dは一定である。第2部分Rは、物体を誤検出した部分と考えられる。路面検出部26は、視差dが略等しい値の行が所定数続いたとき、物体を誤認識していると判断することができる。
 ステップS206で視差が正しい路面視差dではないと判断されると(ステップS206:No)、路面検出部26は、物体が誤検出されたと判断される行から、路面視差dを再探索する(ステップS207)。ステップS207において、路面検出部26は、v座標の値が変化しても視差dが変化しない行の領域で、路面視差ヒストグラムを再探索する。この領域で、ステップS205で決定された視差dよりも小さい視差の部分に、頻度が高い視差がある場合、路面検出部26は、この視差を正しい路面視差dの観測値であると判断することができる。
 ステップS206において路面視差dが正しいと判断されたとき(ステップS206:Yes)、及び、ステップS207において、路面視差dの再探索が終了したとき、路面検出部26は、ステップS208に進む。ステップS208において、路面検出部26は、縦方向に1画素ずらした次の行のヒストグラムを生成する対象となる第1視差画像上の路面41の横方向の範囲を決定する。例えば、図11に示すように、路面41上に他車両42がある場合、路面検出部26は、他車両と重複する部分の路面41の正しい路面視差dを取得できない。路面視差dを取得できる路面41の範囲が狭くなると、路面検出部26は、正確な路面視差dを取得し難くなる。このため、路面検出部26は、図11に破線で示したように路面候補視差dを取得する範囲を順次横方向に変化させる。具体的には、路面検出部26は、ステップS206で物体が含まれていると判断した場合、物体の横方向の何れの側に正しい路面視差dを表す路面候補視差dが多いか検出する。次の行において、横方向のより多くの正しい路面視差dを表す路面候補視差d含まれる側(図11において右側)に視差を取得する範囲を順次ずらす。
 次に、路面検出部26は、ステップS205又はS207で決定した現在の行の路面視差dを用いて、カルマンフィルタを更新する(ステップS209)。すなわち、カルマンフィルタは、現在の行の路面視差dの観測値に基づいて、路面視差dの推定値を算出する。現在の行の推定値が算出されると、路面検出部26は、現在の行の路面視差dの推定値を過去のデータの一部として加え、次の行の路面視差dの推定値を算出する処理に用いる。路面41の高さは、ステレオカメラ10からの水平方向の距離Zに対して、急に上下に変化しないと考えられる。このため、本実施形態のカルマンフィルタを用いる推定では、現在の行の路面視差dの近くに次の行の路面視差dが存在すると推定される。このように、路面検出部26が現在の行の路面視差dの近くに次の行のヒストグラムを生成する視差の範囲を限定することにより、路面41以外の物体を誤検出する可能性が低減される。また、路面検出部26が実行する演算の量を減らして、処理を高速化することができる 。
 ステップS209でカルマンフィルタにより推定された路面視差dが所定値より大きい場合、路面検出部26は、ステップS203に戻り、ステップS203~S209の処理を繰り返す。カルマンフィルタにより推定された路面視差dが所定値以下の場合(ステップS210)、路面検出部26は、次の処理(ステップS211)に進む。所定値は、例えば、1画素とすることができる。
 ステップS211において、路面検出部26は、d-v相関図上で、縦方向の画像座標vと推定された路面視差dとの関係を、2本の直線で近似する。路面視差dは、ステレオカメラ10からの距離Zに関係する。v座標の値は、ステレオカメラ10からの距離Z及び路面高さYに関連する。したがって、v座標と路面視差dとの関係を2本の直線で近似することは、ステレオカメラ10からの距離と路面41の高さとの関係を、2本の直線で近似したものということができる。ステップS211の処理は、図14のフローチャートに詳しく説明される。
 まず、図7のステップS210までの処理により、路面視差dとv座標との相関関係が得られる。例えば、v座標と路面視差dとの相関関係は、図15の破線のグラフ51のようにd-v座標空間で示される。実空間において、路面41が平坦で傾斜変化が無い場合、グラフ51は直線になる。しかしながら、現実の路面41は上り下り等の起伏の変化により、路面41の傾斜が変化しうる。路面41の傾斜が変化する場合、d-v座標空間のグラフ51は、直線で表現できない。路面41の傾斜の変化を3本以上の直線又は曲線で近似しようとすると、物体検出装置20の処理負荷が大きくなる。そこで、本願では2本の直線によりグラフ51を近似する。
 図15に示すように、路面検出部26は、d-v座標空間における下側(近距離側)の推定された路面視差dを、第1直線52により最小二乗法により近似する(ステップS401)。第1直線52による近似は、物体検出装置20が物体検出の対象とする距離範囲の中で、所定の距離に対応する路面視差dまでの範囲で行うことができる。所定の距離は、物体検出装置20が物体検出の対象とする距離範囲の半分の距離とすることができる。例えば、物体検出装置20が、100m先までの物体を検出するように設計される場合、第1直線52はステレオカメラ10が測定可能な最も近い距離から50m先までの範囲で、最小二乗法によりグラフ51に最も近づくように決定されてよい。
 次に、路面検出部26は、ステップS401で近似した第1直線52の表す路面41の傾斜が、路面41としてあり得る傾斜か否かを判定する(ステップS402)。第1直線52の傾斜角度は、実空間に変換すると平面になる。第1直線52の傾斜は、ステレオカメラ10の設置位置の路面高さY及び基線長B等の条件に応じて定まる路面41のyz平面内の傾斜角度に対応する。路面検出部26は、第1直線52に対応する実空間の路面41の傾斜が、実空間における水平面を基準とする所定角度の範囲内にあるとき、あり得る傾斜であると判定することができる。路面検出部26は、第1直線52に対応する実空間の路面41の傾斜が、実空間における水平面を基準とする所定角度の範囲外にあるとき、あり得ない傾斜であると判定することができる。所定角度は、移動体30の走行環境を考慮して適宜設定することができる。
 ステップS402において、第1直線52の傾斜が路面41としてあり得ない傾斜であると判定した場合(ステップS402:No)、路面検出部26は、路面41が平坦であることを仮定した理論路面に基づき第1直線52を決定する(ステップS403)。理論路面は、ステレオカメラ10の設置位置の路面高さY、設置角度、及び基線長B等の設置条件に基づいて算出することができる。路面検出部26は、画像から算出した路面視差dが信用できないとき、理論路面の路面視差を採用する。例えば、路面検出部26は、路面41以外の物体又は構造物の視差を誤って路面視差dとして抽出した場合、路面41を非現実的な傾斜を有するものと判断して、誤りを排除できることがある。これにより、路面41以外の物体又は構造物の視差を路面視差dであると誤判定する可能性を低減することができる。
 ステップS402において、路面検出部26が、第1直線52の傾斜が路面41としてあり得る傾斜であると判定した場合(ステップS402:Yes)、及び、ステップ403の後、路面検出部26はステップS404の処理に進む。ステップS404において、路面検出部26は、第2直線55の近似を開始する近似開始点53を決定する。路面検出部26は、第1直線52のv座標の最も小さい側(遠距離側)から大きい側(近距離側)へ、グラフ51との近似誤差を算出し、近似誤差が連続して所定値より小さくなる第1直線52上の座標を、近似開始点53とすることができる。あるいは、近似開始点53は、第1直線52のv座標の最も大きい側(近距離画側)から小さい側(遠距離側)へ、グラフ51との近似誤差を算出し、近似誤差が所定値より大きくなったときの第1直線52上の座標として決定してよい。近似開始点53のv座標は特定の値に固定されない。近似開始点53は、第1直線52上で物体検出装置20が物体検出の対象とする距離範囲の半分の距離よりも、ステレオカメラ10側に近い位置に相当するv座標の位置に設定されてよい。例えば、第1直線52が、測定可能な最も近い距離から50m先までの範囲で路面41を近似した場合、近似開始点53は、50mよりも手前の40mに相当するv座標の位置に設定されてよい。
 ステップS404の後、路面検出部26は、ステップS405~S407を繰り返し実行する。図16に示すように、路面検出部26は、第1直線52との角度差を所定の角度範囲から選択された角度として、近似開始点53を起点とする第2直線55の候補である候補直線54を順次選択する(ステップS405)。所定の角度範囲は、測定対象の距離範囲内で道路の勾配が変化しうる角度として設定される。所定の角度範囲は、例えば±3度とすることができる。例えば、路面検出部26は、候補直線54の角度を、第1直線52の角度-3度から開始して、第1直線52の角度+3度まで、順次、0.001度ずつ加えた角度に変えることができる。
 選択した候補直線54について、路面検出部26は、d-v座標空間においてグラフ51の近似開始点53よりも上側(遠距離側)の部分との誤差を計算する(ステップS406)。誤差の計算は、v座標に対する視差dの平均二乗誤差により計算できる。路面検出部26は、候補直線54ごとに計算した誤差を、メモリ23に格納してよい。
 路面検出部26は、角度範囲の全ての候補直線54について誤差の計算が終了すると(ステップS407)、メモリ23に格納された誤差の中から最小の誤差を探索する。図17に示すように、路面検出部26は、最小の誤差を有する候補直線54を第2直線55として選択する(ステップS408)。
 ステップS408で第2直線55が決定されると、路面検出部26は、第2直線55のグラフ51との誤差が所定値以内か否かを判定する(ステップS409)。所定値は、所望の路面推定の精度を得るために、適宜設定される。
 ステップS409で、誤差が所定値以内の場合(ステップS409:Yes)、路面視差dは、第1直線52及び第2直線55を用いて近似される。
 ステップS409で、誤差が所定値を超える場合(ステップS409:No)、路面検出部26は、第1直線52を上側(遠距離側)に延長して、近似結果を上書きする(ステップS410)。以上のようにして、路面視差dが2本の直線により近似される。
 v座標に対する路面視差dが、2本の直線で近似されることにより、路面形状が、2本の直線で近似される。これによって、路面形状を曲線又は3本以上の直線で近似する場合に比べて、以降の計算に係る負荷が低減され、且つ、物体検出の処理が高速化される。また、路面を1本の直線で近似する場合に比べて、実際の路面との誤差が小さい。さらに、第2直線55の近似開始点53のv座標を所定の座標に固定しないことにより、近似開始点53の座標を予め固定した場合と比較して、実際の路面との近似の精度を向上することができる。
 ステップS409で、誤差が所定値以内の場合(ステップS409:Yes)及びステップS410の後、路面視差dを直線近似する処理は終了し、図7のステップS212に戻る。
 ステップS212において、第1視差画像から除去する路面視差dの閾値が決定される(ステップS212)。第1視差画像から除去する路面視差dの閾値は、後述する第1高さに相当する。第1高さは、次のステップS103の処理で路面視差dが除去されるように算出されうる。
 次に、画像処理部22の処理は、図5のフローチャートに戻る。画像処理部22の不要視差除去部27は、路面検出部26から、d-v座標空間におけるv座標と路面視差dとの関係を2本の直線で近似した近似式を取得する。d-v座標空間におけるv座標と路面視差dとの関係を表す近似式から、実空間におけるステレオカメラ10の前方の距離Zと路面高さYとの関係が得られる。不要視差除去部27は、近似式に基づいて、(第2処理)を実行する(ステップS103)。第2処理は、実空間における路面41からの高さが第1高さ以下の被写体に対応する視差画素と、路面41からの高さが第2高さ以上の被写体に対応する視差画素とを第1視差画像から除去する処理である。これにより、不要視差除去部27は、図6に示した第1視差画像から、図18に示すような第2視差画像を生成する。図18は説明のために作図された図である。ステレオカメラ10から取得した画像に基づく実際の第2視差画像は、例えば、図19のようになる。図19では、黒白の濃淡により視差の大きさを表現している。
 第1高さは、例えば15cmより大きく50cmよりも小さい値に設定しうる。第1高さを、15cmより小さい値に設定すると、不要視差除去部27は、路面41上の凹凸及び/又は近似式の誤差等に起因する、道路上の物体以外の被写体を検出し易くなる。その結果、検出誤り又は検出速度の低下が生じうる。また、第1高さを50cmよりも大きくすると、不要視差除去部27は、路面41上の子供及び/又は大きな障害物等を検出し損なう虞がある。
 第2高さは、道路上を走行可能な車両の高さの上限値に基づいて設定されうる。道路上を走行可能な車両の高さは、交通法規等により規定される。例えば、日本の道路交通法では、トラックの高さは原則3.8m以下である。第2高さは、例えば、4mとしうる。第2高さを4m以上とすると、信号機及び情報表示板等を含む空中の構造物等の検出不要な物体を検出することがある。
 不要視差を除去することにより、以下の物体を検出する物体検出処理(第3処理及び第4処理)に先立ち、不要視差除去部27は、路面41及び道路上の物体以外の被写体の視差を予め除去できる。これによって、物体を検出する精度が高くなる。また、不要な視差が除去されるので、道路上の物体に関連しない視差に関する演算量を低減できるので、処理速度を高速化することができる。したがって、本開示の物体検出装置20は、物体を検出する処理の性能を向上させることができる。
 不要視差除去部27は、第2視差画像をクラスタリング部28に引き渡す。クラスタリング部28は、第2視差画像及び路面検出部26により算出された路面41の形状の近似式に基づいて、横方向の各u座標又はu座標の範囲について、物体に関連する物体視差を決定する処理(第3処理)を行う(ステップS104)。具体的には、クラスタリング部28は、第2視差画像の横方向のu座標の範囲ごとに、それぞれの視差に対する画素の数を表すヒストグラムを生成する。u座標の範囲は、横方向の画素の1つ又は複数を含む範囲である。
 図20に示すように、クラスタリング部28は、第2視差画像から1つ又は複数の横方向の画素の幅Δuを有する縦長の領域を抽出する。縦長の領域は、その領域に物体に関連する物体視差が存在するか否かを判定し、且つ、物体視差に対応する距離情報を取得するために使用される。したがって、縦長の領域の横方向の幅Δuを細かくすれば、横方向の物体を検出する分解能が高くなる。図20では、説明のためにΔuの幅を広く表示しているが、Δuは1画素から数画素の幅とすることができる。縦長の領域を、第2視差画像の横方向の一方の端から他方の端に向けて順次取得して、以下で述べる処理を行うことにより、第2視差画像の横方向全体に渡り、物体視差の検出が行われる。
 図21は、ヒストグラムの一例を示す図である。図21の横軸は、画素を単位として表される視差dである。視差dは、横軸の左側が大きく、右側に行くに従い小さくなる。視差dの最小値は、例えば1画素、又は、1画素より小さい値であってよい。視差が大きいほど、距離の分解能が細かく、視差が小さいほど距離の分解能が粗くなる。このため、図21のヒストグラムの横軸は、視差が大きい側で、より多くの視差dを纏めている。図21のヒストグラムの縦軸は、横軸の視差dを有する視差画素の出現数を表している。
 図21には、さらに、各視差dが物体視差であるか否かを判定するための閾値を表す閾値曲線が示されている。視差dは、幅を有する視差の区間の代表値とすることができる。各視差dの画素の出現数が、閾値曲線を上回る場合、幅Δuの縦長の領域内に、同じ距離を表す視差画素が閾値曲線で規定される所定数以上含まれていることを意味する。図21において、斜線が付されたビン(柱状部)は、閾値曲線を上回っている。閾値曲線は、各視差dに対して、実空間におけるy方向の所定の高さに相当する出現数(画素数)に設定することができる。例えば、所定の高さは、50cmとすることができる。遠距離にあり視差が小さいとき、画像上で表示される物体は近距離にある物体に比べて小さく表示される。このため閾値曲線の縦軸の出現数の値は、視差dが小さいほど小さくなっている。クラスタリング部28は、出現数が視差dに応じた所定の閾値を上回る場合、当該画素に対応する視差dを物体視差dとして決定する。
 次に、クラスタリング部28は、第2視差画像上の物体視差dの分布と、ステップS102で推定した路面41の形状に基づいて、物体視差dに関連付けられる高さ情報を算出する(ステップS105)。ステップS105の処理は、第3処理に含まれてよい。
 具体的には、第1カメラ11又は第2カメラ12で取得される画像が図22のような部分を含む場合を想定する。第2視差画像中の他車両42の枠線61で囲まれた部分に対応する部分が図23に拡大して示される。
 クラスタリング部28は、物体視差dが存在するu座標について、物体視差dの有する距離情報と、ステップS102で推定された路面形状とに基づいて、物体視差dが表す物体の距離に対応する路面推定位置を算出する。路面41上に物体が存在する場合、第2視差画像上でこの路面推定位置の上側に、物体視差dを有する視差画素が並ぶ。クラスタリング部28は、第2視差画像の視差画素をu座標の路面位置から、上方向に走査して、物体視差dを有する視差画素の縦方向(v座標方向)の分布を検出する。クラスタリング部28は、同じ物体視差dの視差画素が並んでいる数又は分布に基づいて、第2視差画像上の高さ情報を決定する。クラスタリング部28は、物体視差dの視差画素が縦方向において部分的に途切れている場合も、所定の判定基準に従い高さ情報を判定することができる。
 クラスタリング部28は、1つ又は複数の座標を含む横方向の座標(u座標)の範囲ごとに、物体視差d及び高さ情報を関連付けて、メモリ23に記憶することができる。クラスタリング部28は、図24に一例を示すように、メモリ23に記憶された複数の物体視差dを、u座標及び視差dをそれぞれ横軸及び縦軸とする2次元空間(u-d座標空間)上の点群の分布として表現しうる。
 クラスタリング部28は、u座標ごとの物体視差dの情報を、グルーピング部29に引き渡す。グルーピング部29は、u-d座標空間の物体視差dの情報をx-z座標から成る実空間の座標系に変換して、物体視差dの纏まり(グループ)を抽出することにより、物体を検出する処理(第4処理)を実行する(ステップS106)。図25及び図26を用いて、グルーピング部29が実行する処理の一例を説明する。
 図25は、道路の路面41上を走行する物体検出システム1を搭載した移動体30と、他車両42とを含む。図25において、移動体30は、車両である。
 移動体30に搭載された物体検出装置20のグルーピング部29は、図24に示すようなu-d座標空間の複数の物体視差dを、図26に示すような実空間(x-z座標空間)の点群に変換する。図26では、u-d座標空間の物体視差dを表す各点は、x-z座標空間の点として表示される。グルーピング部29は、点群の分布に基づいて点群の纏まりを抽出する。グルーピング部29は、所定の条件に従い近接する複数の点を纏めて点群の纏まりとして抽出する。点群の纏まりは、物体視差dの纏まり(グループ)を表す。
 物体がステレオカメラ10の基線長方向に平行な面を有するとき、x-z座標空間上で点群はx方向に並ぶ。グルーピング部29は、x-z座標空間上でx方向に並ぶ点群の纏まり71があるとき、これを物体として認識することができる。図26において、点群の纏まり71は他車両42の車体の後面に対応する。グルーピング部29は、x-z座標空間上でz方向に並ぶ点群の纏まり72があるとき、これを、ガードレール等の道路端の構造物、又は、他車両42の側面等と認識することができる。x-z座標空間上でz方向に並ぶ点群の纏まり72は、移動体30の進行方向と平行に並ぶ物体、又は、物体の移動体30の進行方向に平行な面に対応する。グルーピング部29は、z方向に並ぶ点群の纏まり72を、物体検出処理の対象から除外することができる。
 グルーピング部29は、物体として認識した点群の纏まり71のx方向に並ぶ幅から、物体の幅を検出することができる。グルーピング部29は、クラスタリング部28がステップS105で取得した物体視差dに関連付けられた高さ情報に基づいて、物体の高さを決定することができる。したがって、グルーピング部29は、認識した物体のx-z座標空間上での位置、横幅及び高さを認識することができる。
 画像処理部22は、グルーピング部29で認識した物体の位置、横幅及び高さの情報を、出力部24を介して、移動体30内の他の装置に出力することができる(ステップS107)。例えば、画像処理部22は、移動体30内の表示装置にこれらの情報を出力することができる。移動体30内の表示装置は、図27に示すように、第1カメラ11又は第2カメラ12の画像に、物体検出装置20から取得した情報に基づいて、他の車両42の画像を囲む枠線を表示してよい。図27において、枠線は、検出された物体の位置及び画像内に占める範囲を示す。
 以上のように、本開示の物体検出装置20は、速い処理速度と高い精度の物体検出を可能にする。すなわち、本開示の物体検出装置20は、物体を検出する性能を向上することができる。また、物体検出装置20は、検出する対象の物体を特定の種類の物体に限定しない。物体検出装置20は、路面上に存在するあらゆる物体を検出することができる。物体検出装置20の画像処理部22は、第1処理、第2処理、第3処理及び第4処理を、第1視差画像以外の前記ステレオカメラ10により撮像された画像の情報を用いずに実行することができる。このため、物体検出装置20は、第1視差画像及び第2視差画像の処理に加えて、撮像した画像から別途物体を認識する処理を行わなくてよい。したがって、本開示の物体検出装置20は、物体認識に係る画像処理部22の処理負荷を低減することができる。このことは、本開示の物体検出装置20が、第1カメラ11又は第2カメラ12から直接得られた画像に対する画像処理と組み合わせることを排除しない。物体検出装置20は、テンプレートマッチング等の画像処理技術と組み合わせることも可能である。
 上述の画像処理部22の実行する処理の説明において、本開示の理解を助けるため、種々の画像を用いた判定及び操作等を含む処理が説明された。これらの画像を用いた処理は、実際に画像を描画する処理を含まなくてよい。これらの画像を用いた処理と実質的に同じ内容の処理が、画像処理部22の内部の情報処理で実行される。
 本開示に係る実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部又は各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態について装置を中心に説明してきたが、本開示に係る実施形態は装置の各構成部が実行するステップを含む方法としても実現し得るものである。本開示に係る実施形態は装置が備えるプロセッサにより実行される方法、プログラム、又はプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。
 本開示において「第1」及び「第2」等の記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1レンズは、第2レンズと識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。
 本開示において、x方向、y方向、及び、z方向は、説明の便宜上設けられたものであり、互いに入れ替えられてよい。本開示に係る構成は、x方向、y方向、及び、z方向を各軸方向とする直交座標系を用いて説明されてきた。本開示に係る各構成の位置関係は、直交関係にあると限定されるものではない。画像の座標を示すu座標及びv座標は、説明の便宜上設けられたものであり、互いに入れ替えられてよい。u座標及びv座標の原点及び方向は、本開示のものに限定されない。
 上記実施形態において、ステレオカメラ10の第1カメラ11及び第2カメラ12は、
x方向に並んで位置していた。第1カメラ11及び第2カメラ12の配置はこれに限られない。第1カメラ11及び第2カメラ12は、路面に垂直な方向(y方向)又は路面41に対して傾いた方向に並んで位置してよい。ステレオカメラ10を構成するカメラの数は2つに限られない。ステレオカメラ10は、3つ以上のカメラを含んでよい。例えば、路面に水平方向に並ぶ2台のカメラ及び垂直方向に並ぶ2台のカメラの合計4台のカメラを用いて、より精度の高い距離情報を得ることも可能である。
 上記実施形態において、ステレオカメラ10及び物体検出装置20は、移動体30に搭載されていた。ステレオカメラ10及び物体検出装置20は、移動体30に搭載されるものに限られない。例えば、ステレオカメラ10及び物体検出装置20は、交差点等に設置される路側機に搭載され路面を含む画像を撮像するように配置されてよい。例えば、路側機は、交差点で交差する道路の一方から接近する第1の車両を検出し、他方の道路上を走行して接近する第2の車両に対して第1の車両の接近を知らせる情報提供をすることができる。
 1  物体検出システム
 10  ステレオカメラ
 11  第1カメラ
 12  第2カメラ
 20  物体検出装置
 21  取得部
 22  画像処理部(プロセッサ)
 23  メモリ
 24  出力部
 25  視差画像生成部
 26  路面検出部
 27  不要視差除去部
 28  クラスタリング部
 29  グルーピング部
 30  移動体
 41  路面
 42  他車両(物体)
 45  枠線
 51  グラフ
 52  第1直線
 53  近似開始点
 54  候補直線
 55  第2直線
 61  枠線
 71、72  点群の纏まり
R1  第1部分
R2  第2部分

Claims (13)

  1.  路面を含む画像を撮像するステレオカメラの出力に基づき生成される第1視差マップであって、前記ステレオカメラの撮像画像の水平方向に対応する第1方向と、前記第1方向に交差する第2方向とから成る2次元座標に、前記ステレオカメラの出力から得られる視差が対応付けられた第1視差マップに基づき、実空間における路面の形状を推定する第1処理と、
     推定された前記路面の前記形状に基づき、実空間における前記路面からの高さが所定の範囲に対応する前記視差を、前記第1視差マップから除去した第2視差マップを生成する第2処理と、
     前記第2視差マップに基づいて物体を検出する物体検出処理と
    を実行するように構成されるプロセッサを備える物体検出装置。
  2.  前記プロセッサは、前記第2処理において、路面からの高さが第1高さ以下の被写体に対応する前記視差を前記第1視差マップから除去するように構成される、請求項1に記載の物体検出装置。
  3.  前記第1高さは、15cmより大きく50cmより小さい請求項2に記載の物体検出装置。
  4.  前記プロセッサは、前記第2処理において、路面からの高さが第2高さ以上の前記被写体に対応する前記視差を前記第1視差マップから除去するように構成される、請求項2又は3の何れか一項に記載の物体検出装置。
  5.  前記第2高さは、道路上を走行可能な車両の高さの上限値に基づいて設定された高さである、請求項4に記載の物体検出装置。
  6.  前記プロセッサは、前記物体検出処理として、
     前記路面の前記形状及び前記第2視差マップに基づいて、前記第2視差マップの前記第1方向の座標範囲ごとに、それぞれの視差の出現数を表すヒストグラムを生成し、前記視差の出現数が前記視差に応じた所定の閾値を上回る場合、前記視差を物体視差として決定する第3処理と、
     前記第1方向の前記座標範囲ごとの前記物体視差の情報を、実空間上の点群に変換し、前記点群の分布に基づいて前記点群の纏まりを抽出することにより、物体を検出する第4処理と
    を実行するように構成される、請求項1から5の何れか一項に記載の物体検出装置。
  7.  前記プロセッサは、前記第3処理において、決定された前記物体視差の前記第2視差マップ上の前記第2方向の分布と、推定された前記路面の形状とに基づいて、高さ情報を算出するように構成される、請求項6に記載の物体検出装置。
  8.  前記プロセッサは、前記第4処理において、前記点群の纏まりの前記第1方向の分布に基づいて、前記物体の幅を検出するように構成される、請求項6又は7に記載の物体検出装置。
  9.  前記プロセッサは、前記第1処理、前記第2処理、前記第3処理及び前記第4処理を、前記第1視差マップ以外の前記ステレオカメラにより撮像された画像の情報を用いずに実行するように構成される、請求項6から8の何れか一項に記載の物体検出装置。
  10.  前記プロセッサは、前記第1処理の前段において、前記ステレオカメラの出力に基づき前記第1視差マップを生成する、請求項1から9の何れか一項に記載の物体検出装置。
  11.  互いに視差を有する複数の画像を撮像するステレオカメラと、
     少なくとも1つのプロセッサを含む物体検出装置と
    を備え、
     前記プロセッサは、路面を含む画像を撮像する前記ステレオカメラの出力に基づき、前記ステレオカメラの撮像画像の水平方向に対応する第1方向と、前記第1方向に交差する第2方向とから成る2次元座標に、前記ステレオカメラの出力から得られる視差が対応付けられた第1視差マップを生成するように構成され、
     前記プロセッサは、さらに、
      前記第1視差マップに基づき、実空間における路面の形状を推定する第1処理と、
      推定された前記路面の前記形状に基づき、実空間における前記路面からの高さが所定の範囲に対応する前記視差を、前記第1視差マップから除去した第2視差マップを生成する第2処理と、
      前記第2視差マップに基づいて物体を検出する物体検出処理と
    を実行するように構成される物体検出システム。
  12.  互いに視差を有する2つの画像を撮像するステレオカメラ、及び、少なくとも1つのプロセッサを有する物体検出装置を含み、前記プロセッサは、路面を含む画像を撮像する前記ステレオカメラの出力に基づき、前記ステレオカメラの撮像画像の水平方向に対応する第1方向と、前記第1方向に交差する第2方向とから成る2次元座標に、前記ステレオカメラの出力から得られる視差が対応付けられた第1視差マップを生成するように構成され、前記プロセッサは、さらに、前記第1視差マップに基づき、実空間における路面の形状を推定する第1処理と、推定された前記路面の前記形状に基づき、実空間における前記路面からの高さが所定の範囲に対応する前記視差を、前記第1視差マップから除去した第2視差マップを生成する第2処理と、前記第2視差マップに基づいて物体を検出する物体検出処理とを実行するように構成された物体検出システムを備えた移動体。
  13.  路面を含む画像を撮像するステレオカメラの出力に基づき生成される第1視差マップであって、前記ステレオカメラの撮像画像の水平方向に対応する第1方向と、前記第1方向に交差する第2方向とから成る2次元座標に、前記ステレオカメラの出力から得られる視差が対応付けられた第1視差マップを取得又は生成し、
     前記第1視差マップに基づき、実空間における路面の形状を推定する第1処理を実行し、
     推定された前記路面の前記形状に基づき、実空間における前記路面からの高さが所定の範囲に対応する前記視差を、前記第1視差マップから除去した第2視差マップを生成する第2処理を実行し、
     前記第2視差マップに基づいて物体を検出する物体検出処理を実行する、
    物体検出方法。
     
PCT/JP2020/033241 2019-09-05 2020-09-02 物体検出装置、物体検出システム、移動体及び物体検出方法 WO2021045092A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080062215.XA CN114365182A (zh) 2019-09-05 2020-09-02 物体检测装置、物体检测系统、移动体和物体检测方法
EP20860886.9A EP4027315A4 (en) 2019-09-05 2020-09-02 OBJECT DETECTION DEVICE, OBJECT DETECTION SYSTEM AND METHOD FOR DETECTING A MOVING BODY AND OBJECT
US17/753,512 US20220415056A1 (en) 2019-09-05 2020-09-02 Object detection device, object detection system, mobile object, and object detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019162349A JP7229129B2 (ja) 2019-09-05 2019-09-05 物体検出装置、物体検出システム、移動体及び物体検出方法
JP2019-162349 2019-09-05

Publications (1)

Publication Number Publication Date
WO2021045092A1 true WO2021045092A1 (ja) 2021-03-11

Family

ID=74847171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033241 WO2021045092A1 (ja) 2019-09-05 2020-09-02 物体検出装置、物体検出システム、移動体及び物体検出方法

Country Status (5)

Country Link
US (1) US20220415056A1 (ja)
EP (1) EP4027315A4 (ja)
JP (1) JP7229129B2 (ja)
CN (1) CN114365182A (ja)
WO (1) WO2021045092A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021247406A1 (en) * 2020-06-04 2021-12-09 Advanced Farm Technologies, Inc. Color stereo camera systems with global shutter synchronization
CN113295697A (zh) * 2021-04-14 2021-08-24 蔚来汽车科技(安徽)有限公司 换电站的电池更换检测方法
CN113240632B (zh) * 2021-04-22 2024-04-16 北京中科慧眼科技有限公司 基于语义分割网络的路面检测方法、系统和智能终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265547A (ja) 1992-03-23 1993-10-15 Fuji Heavy Ind Ltd 車輌用車外監視装置
JP2016206801A (ja) * 2015-04-17 2016-12-08 株式会社リコー 物体検出装置、移動体機器制御システム及び物体検出用プログラム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870273B2 (ja) * 2010-08-03 2016-02-24 パナソニックIpマネジメント株式会社 物体検出装置、物体検出方法及びプログラム
JP2014006882A (ja) * 2012-05-31 2014-01-16 Ricoh Co Ltd 路面傾斜認識装置、路面傾斜認識方法及び路面傾斜認識用プログラム
CN103679127B (zh) * 2012-09-24 2017-08-04 株式会社理光 检测道路路面的可行驶区域的方法和装置
JP6274557B2 (ja) * 2013-02-18 2018-02-07 株式会社リコー 移動面情報検出装置、及びこれを用いた移動体機器制御システム並びに移動面情報検出用プログラム
CN104021368A (zh) * 2013-02-28 2014-09-03 株式会社理光 估计路面高度形状的方法和系统
CN104166834B (zh) * 2013-05-20 2017-10-10 株式会社理光 路面检测方法和装置
CN104217208B (zh) * 2013-06-03 2018-01-16 株式会社理光 目标检测方法和装置
JP6340850B2 (ja) * 2014-03-18 2018-06-13 株式会社リコー 立体物検出装置、立体物検出方法、立体物検出プログラム、及び移動体機器制御システム
JP2016206774A (ja) * 2015-04-17 2016-12-08 トヨタ自動車株式会社 立体物検出装置及び立体物検出方法
JP6358160B2 (ja) * 2015-04-17 2018-07-18 トヨタ自動車株式会社 走行路面検出装置及び走行路面検出方法
EP3382639B1 (en) * 2015-11-27 2024-02-21 Ricoh Company, Ltd. Image processing device, image pickup device, apparatus control system, distribution data generation method, and program
US9720413B1 (en) * 2015-12-21 2017-08-01 Gopro, Inc. Systems and methods for providing flight control for an unmanned aerial vehicle based on opposing fields of view with overlap
WO2017134936A1 (ja) * 2016-02-05 2017-08-10 株式会社リコー 物体検出装置、機器制御システム、撮像装置、物体検出方法、及びプログラム
WO2017145945A1 (ja) * 2016-02-25 2017-08-31 京セラ株式会社 ステレオカメラ装置、車両および視差算出方法
JP6711128B2 (ja) * 2016-05-18 2020-06-17 株式会社リコー 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及びプログラム
JP6794243B2 (ja) * 2016-12-19 2020-12-02 日立オートモティブシステムズ株式会社 物体検出装置
JP6855325B2 (ja) * 2017-05-25 2021-04-07 京セラ株式会社 画像処理装置、ステレオカメラシステム、移動体、路面形状検出方法およびプログラム
CN107909036B (zh) * 2017-11-16 2020-06-23 海信集团有限公司 一种基于视差图的道路检测方法及装置
JP7025912B2 (ja) * 2017-12-13 2022-02-25 日立Astemo株式会社 車載環境認識装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265547A (ja) 1992-03-23 1993-10-15 Fuji Heavy Ind Ltd 車輌用車外監視装置
JP2016206801A (ja) * 2015-04-17 2016-12-08 株式会社リコー 物体検出装置、移動体機器制御システム及び物体検出用プログラム

Also Published As

Publication number Publication date
EP4027315A4 (en) 2023-10-11
US20220415056A1 (en) 2022-12-29
JP2021039692A (ja) 2021-03-11
EP4027315A1 (en) 2022-07-13
CN114365182A (zh) 2022-04-15
JP7229129B2 (ja) 2023-02-27

Similar Documents

Publication Publication Date Title
WO2021045092A1 (ja) 物体検出装置、物体検出システム、移動体及び物体検出方法
EP3358295B1 (en) Image processing device, stereo camera device, vehicle, and image processing method
JP7206583B2 (ja) 情報処理装置、撮像装置、機器制御システム、移動体、情報処理方法およびプログラム
JP6456499B2 (ja) 立体物検出装置、ステレオカメラ装置、車両及び立体物検出方法
WO2021060117A1 (ja) 物体検出装置、物体検出システム、移動体及び物体検出方法
JP6855325B2 (ja) 画像処理装置、ステレオカメラシステム、移動体、路面形状検出方法およびプログラム
EP3367058B1 (en) Parallax calculation device, stereo camera device, vehicle, and parallax calculation method
WO2021049649A1 (ja) 路面検出装置、物体検出装置、物体検出システム、移動体及び物体検出方法
WO2021054341A1 (ja) 物体検出装置、物体検出システム、移動体及び物体検出方法
WO2021054340A1 (ja) 物体検出装置、物体検出システム、移動体及び物体検出方法
WO2021054339A1 (ja) 物体検出装置、物体検出システム、移動体及び物体検出方法
WO2018097269A1 (en) Information processing device, imaging device, equipment control system, mobile object, information processing method, and computer-readable recording medium
EP3327624A1 (en) Information processing apparatus, imaging device, device control system, mobile object, information processing method, and carrier means

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020860886

Country of ref document: EP

Effective date: 20220405