WO2021044939A1 - Protective element - Google Patents

Protective element Download PDF

Info

Publication number
WO2021044939A1
WO2021044939A1 PCT/JP2020/032363 JP2020032363W WO2021044939A1 WO 2021044939 A1 WO2021044939 A1 WO 2021044939A1 JP 2020032363 W JP2020032363 W JP 2020032363W WO 2021044939 A1 WO2021044939 A1 WO 2021044939A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heating element
surface electrode
insulating member
insulating substrate
Prior art date
Application number
PCT/JP2020/032363
Other languages
French (fr)
Japanese (ja)
Inventor
幸市 向
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020227006525A priority Critical patent/KR20220035499A/en
Priority to CN202080060906.6A priority patent/CN114303219B/en
Publication of WO2021044939A1 publication Critical patent/WO2021044939A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits

Definitions

  • the present invention relates to a protective element.
  • the present application claims priority based on Japanese Patent Application No. 2019-161178 filed in Japan on September 4, 2019, the contents of which are incorporated herein by reference.
  • the circuit board is generally equipped with a protective element.
  • the protective element cuts off the current path in the event of an abnormality such as when an overcurrent exceeding the rating occurs in the current path.
  • the protective element include an insulating substrate, a first electrode and a second electrode provided on one surface of the insulating substrate so as to face each other, and a heating element provided on one surface of the insulating substrate.
  • the third electrode connected to one end of the heating element and the heating element extraction electrode connected to the end opposite to the end connected to the third electrode of the heating element, while facing each other.
  • the protective element having this configuration, there is a space between the first electrode and the heating element extraction electrode and between the second electrode and the heating element extraction electrode. Therefore, by melting the fuse element by heat, the fuse element is blown on the space between the first electrode and the heating element extraction electrode or on the space between the second electrode and the heating element extraction electrode.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a protective element having a structure that can be easily reduced in resistance and miniaturization and that is less likely to cause an internal short circuit.
  • the present invention provides the following means for solving the above problems.
  • the protective element includes an insulating substrate, a first electrode and a second electrode provided on one surface of the insulating substrate so as to face each other, and one of the insulating substrates.
  • a heating element provided on the surface of the heating element, a third electrode connected to one end of the heating element, and a heating element extraction electrode connected to an end of the heating element opposite to the one end. And one end facing each other is connected to the first electrode, the other end is connected to the second electrode, and the central portion between the one end and the other end is said.
  • a fuse element in contact with a heating element extraction electrode is provided, and the first electrode is provided with a side surface facing the second electrode and at least a part of an upper surface connected to the side surface covered with a first insulating member.
  • the two electrodes have a side surface facing the first electrode and at least a part of an upper surface connected to the side surface covered with a second insulating member.
  • the heating element extraction electrode may be extended to the upper surfaces of the first insulating member and the second insulating member.
  • a protective element having a structure that can be easily reduced in resistance and miniaturization and that is less likely to cause an internal short circuit.
  • FIG. 1 is a cross-sectional view taken along the line III-III'of FIG.
  • FIG. 1 is a vertical cross-sectional view taken along the line IV-IV'of FIG.
  • FIG. 1 is a cross-sectional view which shows the state which the protection element of 1st Embodiment operates and the fuse element is melted.
  • It is sectional drawing of the protection element which concerns on 2nd Embodiment of this invention. It is a vertical sectional view of the protection element which concerns on 2nd Embodiment of this invention.
  • FIG. 9 is a cross-sectional view taken along the line XX'of FIG. 9 is a vertical cross-sectional view taken along the line XI-XI'in FIG. It is a cross-sectional view of the protection element produced in Comparative Example 1.
  • FIG. 1 is a top view (plan view) of the protective element.
  • FIG. 2 is a bottom view (bottom view) of the protective element.
  • FIG. 3 is a cross-sectional view taken along the line III-III'of FIG.
  • FIG. 4 is a vertical cross-sectional view taken along the line IV-IV'of FIG.
  • the protective element 1 includes an insulating substrate 10, a first electrode 11 (first upper surface electrode 11a) and a second electrode 12 provided on the upper surface 10a of the insulating substrate 10 so as to face each other. (Second upper surface electrode 12a), a heating element 20 provided on the lower surface 10b of the insulating substrate 10, a third electrode 13 connected to one end of the heating element 20, and one end of the heating element 20.
  • a heating element extraction electrode 14 connected to an end portion on the opposite side to the portion, and a fuse element 30 connected to the first electrode 11, the second electrode 12, and the heating element extraction electrode 14 are provided.
  • a first electrode 11 is connected to one end 30a of the fuse element 30 facing each other via a first terminal 18a.
  • a second electrode 12 is connected to the other end portion 30b via a second terminal 18b.
  • a heating element extraction electrode 14 is connected to the central portion 30c between the end portions 30a and the end portion 30b of the fuse element 30 via a conductive member 15.
  • the first terminal 18a and the fuse element 30, the second terminal 18b and the fuse element 30, and the conductive member 15 and the fuse element 30 are adhered to each other by the solder paste 32.
  • the insulating substrate 10 is not particularly limited as long as it is made of a material having insulating properties.
  • a substrate used for a printed wiring board such as a ceramics substrate or a glass epoxy substrate, a glass substrate, a resin substrate, and an insulating treatment.
  • a metal substrate or the like can be used.
  • a ceramic substrate which is an insulating substrate having excellent heat resistance and thermal conductivity, is preferable.
  • the first electrode 11 includes a first upper surface electrode 11a, a first lower surface electrode 11b, and a first conductive portion 11c.
  • the first upper surface electrode 11a is formed on the upper surface 10a of the insulating substrate 10.
  • the first upper surface electrode 11a has a side surface facing the second upper surface electrode 12a and at least a part of the upper surface connected to the side surface is covered with the first insulating member 17a.
  • the portion of the first upper surface electrode 11a that is not covered with the first insulating member 17a is covered with the first terminal 18a.
  • the first lower surface electrode 11b is formed on the lower surface 10b of the insulating substrate 10.
  • the first lower surface electrode 11b is connected to the wiring of the circuit board.
  • the first conductive portion 11c penetrates the insulating substrate 10 and electrically connects the first upper surface electrode 11a and the first lower surface electrode 11b.
  • the second electrode 12 includes a second upper surface electrode 12a, a second lower surface electrode 12b, and a second conductive portion 12c.
  • the second upper surface electrode 12a is formed on the upper surface 10a of the insulating substrate 10.
  • the side surface of the second upper surface electrode 12a facing the first upper surface electrode 11a and at least a part of the upper surface connected to the side surface are covered with the second insulating member 17b.
  • the portion of the second upper surface electrode 12a that is not covered with the second insulating member 17b is covered with the second terminal 18b.
  • the second lower surface electrode 12b is formed on the lower surface 10b of the insulating substrate 10.
  • the second bottom electrode 12b is connected to the wiring of the circuit board.
  • the second conductive portion 12c penetrates the insulating substrate 10 and electrically connects the second upper surface electrode 12a and the second lower surface electrode 12b.
  • the third electrode 13 is connected to one end of the heating element 20.
  • the third electrode 13 is partially covered with a heat insulating member 21.
  • the portion of the third electrode 13 that is not covered with the heat insulating member 21 is connected to the switching element of the circuit board.
  • the switching element operates when an abnormality other than an overcurrent occurs in the circuit board to supply a current to the third electrode 13.
  • first electrode 11, the second electrode 12, and the third electrode 13 metal materials such as Ag and Cu can be used.
  • the surfaces of the first electrode 11, the second electrode 12, and the third electrode 13 may be coated with a metal or alloy such as Ag, Ag-Pt, Ag-Pd, Au, or Ni-Au.
  • the heating element 20 has a relatively high resistance as compared with the third electrode 13.
  • the heating element 20 is formed of a high resistance conductive material that easily generates heat when energized.
  • ruthenium oxide or carbon black can be used as a material constituting the heating element 20.
  • the heating element 20 is covered with a heat insulating member 21.
  • a heat insulating member 21 As the material of the heat insulating member 21, for example, an insulating material such as ceramics or glass can be used.
  • the heating element extraction electrode 14 includes a heating element extraction upper surface electrode 14a, a heating element extraction lower surface electrode 14b, and a heating element extraction electrode conduction portion 14c.
  • the heating element extraction upper surface electrode 14a is formed on the upper surface 10a of the insulating substrate 10.
  • a conductive member 15 is laminated on the upper surface of the heating element extraction upper surface electrode 14a.
  • the heating element extraction lower surface electrode 14b is formed on the lower surface 10b of the insulating substrate 10 and is connected to the heating element 20.
  • the heating element extraction electrode conduction portion 14c penetrates the insulating substrate 10 and electrically connects the heating element extraction upper surface electrode 14a and the heating element extraction lower surface electrode 14b.
  • the heating element extraction electrode 14 and the conductive member 15 have high thermal conductivity and conductivity.
  • a metal material such as Ag or Cu can be used.
  • the surface of the heating element extraction electrode 14 and the conductive member 15 may be coated with a metal or alloy such as Ag, Ag-Pt, Ag-Pd, Au, or Ni-Au.
  • a space 19a is formed between the heating element drawer upper surface electrode 14a and the first terminal 18a. Further, a space 19b is formed between the heating element extraction upper surface electrode 14a and the second terminal 18b.
  • the first upper surface electrode 11a below the space 19a is covered with the first insulating member 17a.
  • the second upper surface electrode 12a below the space 19b is covered with a second insulating member 17b. Therefore, the heating element extraction upper surface electrode 14a is extended to the upper surface of the first insulating member 17a, particularly to a position where the heating element extraction upper surface electrode 14a and the first upper surface electrode 11a overlap with each other via the first insulating member 17a. However, internal short circuits are unlikely to occur.
  • the heating element extraction upper surface electrode 14a is extended to the upper surface of the second insulating member 17b, particularly to a position where the heating element extraction upper surface electrode 14a and the first upper surface electrode 11a overlap via the second insulating member 17b. Even if it is, internal short circuit is unlikely to occur. Therefore, the widths of the space 19a and the space 19b can be narrowed.
  • the width Wa of the space 19a and the width Wb of the space 19b are preferably in the range of 0.02 mm or more and 1.0 mm or less, respectively.
  • the fuse element 30 may be a single metal.
  • the fuse element 30 may be a laminated body having a high melting point metal layer having a relatively high melting point on the outside and a low melting point metal layer having a relatively low melting point on the inside.
  • the fuse element 30 is a simple substance of metal, an alloy containing In, Pb, Ag, Cu or any of these as a main component can be used as the material thereof.
  • the melting point of the low melting point metal layer may be in the range of 280 ° C. or lower at the heating temperature (usually about 220 ° C.) or more at the time of reflow performed when the protective element 1 is mounted. preferable.
  • the material of the low melting point metal layer is preferably tin or a tin alloy containing tin as a main component.
  • the tin content of the tin alloy is preferably 40% by mass or more, more preferably 60% by mass or more.
  • Examples of tin alloys include Sn—Bi alloys, In—Sn alloys, and Sn—Ag—Cu alloys.
  • the high melting point metal layer is a layer made of a metal material that is dissolved in a melt of the low melting point metal layer.
  • the material of the low melting point metal layer is tin or a tin alloy
  • the material of the high melting point metal layer is preferably silver or an alloy containing silver as a main component.
  • the silver content of the silver alloy is preferably 40% by mass or more, more preferably 60% by mass or more.
  • Examples of silver alloys include Ag—Pd alloys.
  • FIG. 5 is a cross-sectional view showing a state in which the protection element of the first embodiment is activated and the fuse element is melted.
  • the cross-sectional view of FIG. 5 is a cross-sectional view at the same position as the cross-sectional view of the line III-III'of FIG.
  • the heating element 20 when an abnormality other than an overcurrent occurs in the circuit board, the heating element 20 generates heat due to the current flowing through the third electrode 13. The heat is transferred to the fuse element 30 via the heating element extraction electrode 14, and the fuse element 30 melts and blows, thereby interrupting the current path of the circuit board. The fused solidified fuse element 31 after melting is held on the solder paste 32.
  • the protective element 1 can be manufactured, for example, as follows.
  • the insulating substrate 10 is prepared.
  • the first conductive portion 11c of the first electrode 11, the second conductive portion 12c of the second electrode 12, and the heating element lead-out electrode conductive portion 14c are formed on the prepared insulating substrate 10.
  • the first upper surface electrode 11a is formed around the first conductive portion 11c of the upper surface 10a of the insulating substrate 10, and the second upper surface electrode 12a is formed around the second conductive portion 12c. Further, a heating element extraction upper surface electrode 14a is formed between the first upper surface electrode 11a and the second upper surface electrode 12a. Further, a first lower surface electrode 11b is formed around the first conductive portion 11c of the lower surface 10b of the insulating substrate 10, and a second lower surface electrode 12b is formed around the second conductive portion 12c. Further, a heating element extraction lower surface electrode 14b is formed around the heating element extraction electrode conduction portion 14c on the lower surface 10b of the insulating substrate 10. The third electrode 13 is formed at a position facing the lower electrode 14b of the heating element drawer.
  • Electrodes can be formed by a known method used as an electrode forming method, such as a printing method, a plating method, a vapor deposition method, or a sputtering method.
  • the printing method is a method in which a metal or alloy paste for forming an electrode is printed in a desired pattern and fired if necessary.
  • the heating element 20 is formed on the lower surface 10b of the insulating substrate 10.
  • the heating element 20 is formed so that one end is connected to the third electrode 13 and the other end is connected to the heating element drawer lower surface electrode 14b.
  • the heating element 20 is covered with the heat insulating member 21.
  • the heating element 20 can be formed, for example, by applying a high resistance conductive paste containing a high resistance conductive material and a binder and firing it if necessary.
  • a binder an inorganic binder such as water glass or an organic binder such as a thermosetting resin can be used.
  • the heating element 20 can be formed by a known method used as a method for forming a conductive film such as a plating method, a vapor deposition method, and a sputtering method. Further, as a method for forming the heating element 20, a method of attaching or laminating a high resistance conductive film obtained by the above method may be used.
  • the heat insulating member 21 can be formed by a known method used as an electrode forming method, such as a printing method, a plating method, a vapor deposition method, or a sputtering method.
  • the printing method is a method in which the paste of the heat insulating member is printed in a desired pattern and fired if necessary.
  • the first insulating member 17a is formed on the side surface of the first upper surface electrode 11a facing the second upper surface electrode 12a and a part of the upper surface connected to the side surface.
  • the first terminal 18a is formed in a portion of the first upper surface electrode 11a where the first insulating member 17a is not formed.
  • the second insulating member 17b is formed on the side surface of the second upper surface electrode 12a facing the first upper surface electrode 11a and a part of the upper surface connected to the side surface.
  • the second terminal 18b is formed in the portion of the second upper surface electrode 12a where the second insulating member 17b is not formed.
  • the order of forming the first insulating member 17a and the first terminal 18a and the second insulating member 17b and the second terminal 18b is not particularly limited.
  • the first terminal 18a and the second terminal 18b may be formed before the first insulating member 17a and the second insulating member 17b.
  • the first insulating member 17a and the second insulating member 17b can be formed by, for example, a printing method.
  • the printing method is a method in which a paste of an insulating material is printed in a desired pattern and fired if necessary.
  • the first terminal 18a and the second terminal 18b can be formed by a known method used as an electrode forming method such as a printing method, a plating method, a vapor deposition method, or a sputtering method.
  • the printing method is a method in which a metal or alloy paste for forming terminals is printed in a desired pattern and fired if necessary.
  • the conductive member 15 is formed on the upper surface of the heating element drawer upper surface electrode 14a.
  • the conductive member 15 can be formed by a known method used as an electrode forming method, such as a printing method, a plating method, a vapor deposition method, or a sputtering method.
  • the fuse element 30 is laminated on the upper surfaces of the first terminal 18a, the conductive member 15, and the second terminal 18b.
  • the fuse element 30 can be laminated by applying the solder paste 32 on the upper surfaces of the first terminal 18a, the conductive member 15 and the second terminal 18b, and then arranging the fuse element 30 on the solder paste 32.
  • the protection element 1 of the present embodiment since the first upper surface electrode 11a and the second upper surface electrode 12a are covered with the first insulating member 17a and the second insulating member 17b, respectively, there is a space. Even if the width Wa of 19a and the width Wb of the space 19b are narrowed, an internal short circuit is unlikely to occur. Therefore, the protective element 1 of the present embodiment can be easily miniaturized. Further, by narrowing the width Wa of the space 19a and the width Wb of the space 19b, the width of the fuse element 30 can be shortened, so that the resistance between the first electrode 11 and the second electrode 12 of the protection element 1 can be lowered. .. Therefore, the protection element 1 of the present embodiment can be easily reduced in resistance and size, and an internal short circuit is unlikely to occur.
  • FIGS. 6 to 7 The configuration of the protective element according to the second embodiment of the present invention is shown in FIGS. 6 to 7.
  • FIG. 6 is a cross-sectional view of the protective element according to the second embodiment of the present invention
  • FIG. 7 is a vertical cross-sectional view of the protective element.
  • the cross-sectional view of FIG. 6 corresponds to the cross-sectional view of line III-III'of FIG. 3
  • the vertical cross-sectional view of FIG. 7 corresponds to the vertical cross-sectional view of line IV-IV of FIG.
  • the heating element extraction upper surface electrode 14d has a shape in which the heating element extraction upper surface electrode 14a and the conductive member 15 of the protection element 1 according to the first embodiment are integrated. It is connected to the fuse element 30 without passing through the conductive member 15.
  • the protective element 2 according to the second embodiment is different from the protective element 1 according to the first embodiment.
  • the parts common to the protective element 2 according to the second embodiment and the protective element 1 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the protective element 2 can be manufactured in the same manner as the protective element 1 according to the first embodiment, except for the following points. Do not form the heating element drawer upper surface electrode 14a on the upper surface 10a of the insulating substrate 10. Instead of forming the conductive member 15, the heating element extraction upper surface electrode 14d is formed on the upper surface 10a of the insulating substrate 10.
  • the heating element extraction upper surface electrode 14d can be formed by a known method used as an electrode forming method such as a printing method, a plating method, a vapor deposition method, or a sputtering method.
  • the first upper surface electrode 11a and the second upper surface electrode 12a are covered with the first insulating member 17a and the second insulating member 17b, respectively. Similar to the protection element 1 according to the first embodiment, it is easy to reduce the resistance and size, and it is difficult for an internal short circuit to occur. Further, in the protection element 2, since the heating element extraction upper surface electrode 14d is connected to the fuse element 30 without passing through the conductive member 15, the heat generated by the heating element 20 can be transferred to the fuse element 30 more efficiently. Can be done. Therefore, according to the protection element 2, the fusing speed when a current flows through the third electrode 13 can be further increased.
  • FIGS. 8 to 11 The configuration of the protective element according to the third embodiment of the present invention is shown in FIGS. 8 to 11.
  • FIG. 8 is a top view (plan view) of the protective element
  • FIG. 9 is a bottom view (bottom view) of the protective element.
  • 10 is a cross-sectional view taken along the line XX'of FIG. 8
  • FIG. 11 is a vertical cross-sectional view taken along the line XI-XI'of FIG.
  • the parts common to the protective element 3 according to the third embodiment and the protective element 1 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the heating element 20 is provided on the upper surface 10a of the insulating substrate 10.
  • the heating element 20 is covered with a heat insulating member 21.
  • the heat insulating member 21 includes a side surface of the first upper surface electrode 11a facing the second upper surface electrode 12a and a part of the upper surface connected to the side surface, and a side surface of the second upper surface electrode 12a facing the first upper surface electrode 11a and its side surface. It covers a part of the upper surface connected to. That is, the heat insulating member 21 also functions as an insulating member that insulates the first upper surface electrode 11a and the second upper surface electrode 12a.
  • the third electrode 13 includes a third upper surface electrode 13a, a third lower surface electrode 13b, and a third conductive portion 13c.
  • the third upper surface electrode 13a is formed on the upper surface 10a of the insulating substrate 10.
  • the third upper surface electrode 13a is connected to one end of the heating element 20.
  • the third lower surface electrode 13b is formed on the lower surface 10b of the insulating substrate 10.
  • the third bottom electrode 13b is connected to the switching element of the circuit board.
  • the third conductive portion 13c penetrates the insulating substrate 10 and electrically connects the third upper surface electrode 13a and the third lower surface electrode 13b.
  • the end of the heating element 20 opposite to the third lower surface electrode 13b side is connected to the heating element extraction electrode 14.
  • the heating element extraction electrode 14 is routed to the upper surface of the heat insulating member 21.
  • the heating element extraction electrode 14 is connected to the fuse element 30 by a solder paste 32.
  • the protective element 3 can be manufactured, for example, as follows.
  • the insulating substrate 10 is prepared.
  • the first conductive portion 11c of the first electrode 11, the second conductive portion 12c of the second electrode 12, and the third conductive portion 13c are formed on the prepared insulating substrate 10.
  • the first upper surface electrode 11a is formed around the first conductive portion 11c of the upper surface 10a of the insulating substrate 10, and the second upper surface electrode 12a is formed around the second conductive portion 12c. Further, a third upper surface electrode 13a is formed around the third conductive portion 13c of the upper surface 10a of the insulating substrate 10, and a third lower surface electrode 13b is formed around the third conductive portion 13c of the lower surface 10b.
  • a heat insulating member layer having the same width as or wider than the heating element 20 is formed between the first upper surface electrode 11a and the second upper surface electrode 12a of the upper surface 10a of the insulating substrate 10.
  • the heating element 20 is formed on the heat insulating member layer. The heating element 20 is formed so that one end is connected to the third upper surface electrode 13a.
  • the first terminal 18a is formed on the side surface of the first upper surface electrode 11a that does not face the second upper surface electrode 12a and a part of the upper surface connected to the side surface.
  • the second terminal 18b is formed on a side surface of the second upper surface electrode 12a that does not face the first upper surface electrode 11a and a part of the upper surface connected to the side surface.
  • the heat insulating member 21 is formed between the first upper surface electrode 11a and the second upper surface electrode 12a.
  • the heating element extraction electrode 14 is formed on the upper surface of the heat insulating member 21.
  • the heating element extraction electrode 14 is formed so that one end thereof is connected to the heating element 20.
  • the fuse element 30 is laminated on the upper surfaces of the first terminal 18a, the heating element extraction electrode 14 and the second terminal 18b using the solder paste 32.
  • the protective element 3 having the above configuration, since the first upper surface electrode 11a and the second upper surface electrode 12a are each covered with the heat insulating member 21, the same as the protective element 1 according to the first embodiment. Although the structure is easy to reduce resistance and miniaturization, internal short circuit is unlikely to occur. Further, since the heating element 20 is arranged on the upper surface 10a side of the insulating substrate 10, the heat generated by the heating element 20 can be more efficiently transferred to the fuse element 30. Therefore, the fusing speed when a current flows through the third electrode 13 can be further increased.
  • Example 1 The protective element 1 according to the first embodiment was manufactured.
  • the constituent materials of each member are as follows.
  • Insulated substrate 10 Alumina substrate, length: 2 mm, width: 4 mm, thickness: 0.2 mm
  • First electrode 11 Ag whose surface is coated with Ni-Au plating
  • Second electrode 12 Ag whose surface is coated with Ni-Au plating
  • Third electrode 13 Ag whose surface is coated with Ni-Au plating
  • Heating element extraction electrode 14 Ag whose surface is coated with Ni-Au plating.
  • Conductive member 15 Ag whose surface is coated with Ni-Au plating 1st insulating member 17a, 2nd insulating member 17b: glass 1st terminal 18a, 2nd terminal 18b: silver Total width of space 19a and space 19b (Wa + Wb): 0.5 mm
  • Heating element 20 Luthenium oxide fuse element 30: Laminated body using Ag as the high melting point metal layer on the outside and Sn alloy as the low melting point metal layer on the inside, length: 1.6 mm, width: 2.0 mm, thickness : 0.6mm
  • Solder paste 32 Sn alloy
  • Example 2 The protective element 2 according to the second embodiment was produced in the same manner as in the first embodiment except that the heating element drawer upper surface electrode 14d was formed instead of forming the heating element drawer upper surface electrode 14a and the conductive member 15. The obtained protective element 2 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 The protective element 3 according to the third embodiment was manufactured using the same material as in Example 1. The obtained protective element 3 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • FIG. 12 shows a cross-sectional view of the protective element produced in Comparative Example 1.
  • the protective element 4 produced in Comparative Example 1 is different from the protective element 1 produced in Example 1 in the following points. Without forming the first insulating member 17a on the upper surface of the first upper surface electrode 11a and forming the second insulating member 17b on the upper surface of the second upper surface electrode 12a, the conductive member 15 surrounds the heating element extraction upper surface electrode 14a. Covered. The width of the conductive member 15 was the same as that of the protective element 1 of the first embodiment.
  • the position of the first upper surface electrode 11a was shifted outward by 0.5 mm so that the width Wa of the space 19a between the conductive member 15 and the first upper surface electrode 11a was 0.25 mm.
  • the position of the second upper surface electrode 12a was shifted outward by 0.5 mm so that the width Wa of the space 19b between the conductive member 15 and the second upper surface electrode 12a was 0.25 mm.
  • the total width (Wa + Wb) of the space 19a and the space 19b is 0.5 mm, which is the same as that of the protective element 1, but the width of the fuse element 30 is 3 mm, which is 1 mm wider than that of the protective element 1.
  • the obtained protective element 4 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the protective elements 1 to 3 of Examples 1 to 3 had a smaller resistance value between the first electrode 11 and the second electrode 12 than the protective element 4 of Comparative Example 1. It is considered that this is because the width of the fuse element 30 is narrow and the distance between the first electrode 11 and the second electrode 12 is shortened.
  • the protection element 2 of Example 2 in which the heating element extraction upper surface electrode 14d is formed is when a current is passed through the third electrode 13.
  • the fusing time was shorter than that of the protective element 1 of Example 1, and the fusing speed was higher.
  • the protective element 3 of the third embodiment in which the heating element 20 is arranged on the upper surface 10a side of the insulating substrate 10 has a shorter fusing time when a current is passed through the third electrode 13 as compared with the protective element 2 of the second embodiment. , The fusing speed has become even faster.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fuses (AREA)

Abstract

A protective element provided with an insulating substrate, a first electrode and a second electrode disposed face-to-face on one surface of the insulating substrate, a heat-generating body disposed on the one surface of the insulating substrate, a third electrode connected to one end of the heat-generating body, a heat-generating body lead-out electrode connected to the opposite end of the heat-generating body from the one end, and a fuse element, one of the facing ends of which is connected to the first electrode, the other end of which is connected to the second electrode, and a middle part of which between the one end and the other end is in contact with the heat-generating body lead-out electrode, wherein a side surface of the first electrode facing the second electrode and at least a portion of a top surface connecting to said side surface are covered with a first insulating member, and a side surface of the second electrode facing the first electrode and at least a portion of a top surface connecting to said side surface are covered with a second insulating member.

Description

保護素子Protective element
 本発明は、保護素子に関する。
 本願は、2019年9月4日に、日本に出願された特願2019-161178号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a protective element.
The present application claims priority based on Japanese Patent Application No. 2019-161178 filed in Japan on September 4, 2019, the contents of which are incorporated herein by reference.
 回路基板には、一般に保護素子が備えられている。保護素子は、電流経路に定格を超える過電流が発生したときなどの異常時に、電流経路を遮断する。保護素子としては、例えば、絶縁基板と、絶縁基板の一方の表面上に、互いに対向するように設けられた第1電極および第2電極と、絶縁基板の一方の表面上に設けられた発熱体と、発熱体の一方の端部に接続する第3電極と、発熱体の第3電極と接続している端部とは反対側の端部に接続する発熱体引出電極と、互いに対向する一方の端部が第1電極と接続し、他方の端部が第2電極と接続し、その端部間の中央部が発熱体引出電極に接続するヒューズエレメントとを備える構成のものが知られている(特許文献1を参照)。この構成の保護素子では、第1電極と発熱体引出電極との間および第2電極と発熱体引出電極との間は空間とされている。このため、ヒューズエレメントを熱によって溶融させることにより、ヒューズエレメントは、第1電極と発熱体引出電極との空間の上もしくは第2電極と発熱体引出電極との空間の上で溶断する。 The circuit board is generally equipped with a protective element. The protective element cuts off the current path in the event of an abnormality such as when an overcurrent exceeding the rating occurs in the current path. Examples of the protective element include an insulating substrate, a first electrode and a second electrode provided on one surface of the insulating substrate so as to face each other, and a heating element provided on one surface of the insulating substrate. And the third electrode connected to one end of the heating element and the heating element extraction electrode connected to the end opposite to the end connected to the third electrode of the heating element, while facing each other. Is known to have a fuse element in which one end of the is connected to the first electrode, the other end is connected to the second electrode, and the central portion between the ends is connected to the heating element extraction electrode. (See Patent Document 1). In the protective element having this configuration, there is a space between the first electrode and the heating element extraction electrode and between the second electrode and the heating element extraction electrode. Therefore, by melting the fuse element by heat, the fuse element is blown on the space between the first electrode and the heating element extraction electrode or on the space between the second electrode and the heating element extraction electrode.
 上記の保護素子は、第1電極と第2電極との間に過電流が流れると、ヒューズエレメントにてジュール熱が発生する。この熱によってヒューズエレメントが溶融して溶断することにより、回路基板の電流経路が遮断される。また、回路基板に過電流以外の異常が発生したときには、第3電極に電流が流れることにより、発熱体が発熱する。その熱が、発熱体引出電極を介してヒューズエレメントに伝わって、ヒューズエレメントが溶融して溶断する。このことによって、回路基板の電流経路が遮断される。 In the above protection element, when an overcurrent flows between the first electrode and the second electrode, Joule heat is generated in the fuse element. This heat melts and blows the fuse element, interrupting the current path of the circuit board. Further, when an abnormality other than an overcurrent occurs in the circuit board, a current flows through the third electrode, causing the heating element to generate heat. The heat is transferred to the fuse element via the heating element extraction electrode, and the fuse element melts and blows. This cuts off the current path of the circuit board.
特開2017-174592号公報JP-A-2017-174592
 近年の電子機器の高電力化や小型化に伴って、保護素子についてはさらなる低抵抗化と小型化が望まれている。保護素子の低抵抗化のために、ヒューズエレメントの断面積を大きくすることが考えられる。しかしながら、この場合、溶融したヒューズエレメントを保持するためのスペースを確保する必要が生じるため、保護素子を小型化するのが難しい。
 また、保護素子の低抵抗化と小型化のために、第1電極と発熱体引出電極との間および第2電極と発熱体引出電極との間を狭くして、ヒューズエレメントの幅を短くすることが考えられる。しかしながら、この場合、第1電極と発熱体引出電極の間もしくは第2電極と発熱体引出電極の間で内部短絡が起こりやすくなる。
With the recent increase in power consumption and miniaturization of electronic devices, further reduction in resistance and miniaturization of protective elements are desired. In order to reduce the resistance of the protective element, it is conceivable to increase the cross-sectional area of the fuse element. However, in this case, it is difficult to miniaturize the protective element because it is necessary to secure a space for holding the molten fuse element.
Further, in order to reduce the resistance and size of the protective element, the width between the first electrode and the heating element extraction electrode and the space between the second electrode and the heating element extraction electrode are narrowed to shorten the width of the fuse element. Is possible. However, in this case, an internal short circuit is likely to occur between the first electrode and the heating element extraction electrode or between the second electrode and the heating element extraction electrode.
 本発明は、上記の事情に鑑みてなされたものであり、その目的は、低抵抗化と小型化が容易な構造で、かつ内部短絡が起こりにくい保護素子を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a protective element having a structure that can be easily reduced in resistance and miniaturization and that is less likely to cause an internal short circuit.
 本発明は、上記課題を解決するため、以下の手段を提供する。 The present invention provides the following means for solving the above problems.
(1)本発明の一態様に係る保護素子は、絶縁基板と、前記絶縁基板の一方の表面上に、互いに対向するように設けられた第1電極および第2電極と、前記絶縁基板の一方の表面上に設けられた発熱体と、前記発熱体の一方の端部に接続する第3電極と、前記発熱体の前記一方の端部とは反対側の端部に接続する発熱体引出電極と、互いに対向する一方の端部が前記第1電極と接続し、他方の端部が前記第2電極と接続し、前記一方の端部と前記他方の端部との間の中央部が前記発熱体引出電極に接するヒューズエレメントと、を備え、前記第1電極は、前記第2電極に対向する側面と、その側面に接続する上面の少なくとも一部が第1絶縁部材で被覆され、前記第2電極は、前記第1電極に対向する側面と、その側面に接続する上面の少なくとも一部が第2絶縁部材で被覆されている。 (1) The protective element according to one aspect of the present invention includes an insulating substrate, a first electrode and a second electrode provided on one surface of the insulating substrate so as to face each other, and one of the insulating substrates. A heating element provided on the surface of the heating element, a third electrode connected to one end of the heating element, and a heating element extraction electrode connected to an end of the heating element opposite to the one end. And one end facing each other is connected to the first electrode, the other end is connected to the second electrode, and the central portion between the one end and the other end is said. A fuse element in contact with a heating element extraction electrode is provided, and the first electrode is provided with a side surface facing the second electrode and at least a part of an upper surface connected to the side surface covered with a first insulating member. The two electrodes have a side surface facing the first electrode and at least a part of an upper surface connected to the side surface covered with a second insulating member.
(2)上記(1)に記載の態様において、前記発熱体引出電極が、第1絶縁部材および第2絶縁部材の上面にまで延長されている構成としてもよい。 (2) In the embodiment described in (1) above, the heating element extraction electrode may be extended to the upper surfaces of the first insulating member and the second insulating member.
 本発明によれば、低抵抗化と小型化が容易な構造で、かつ内部短絡が起こりにくい保護素子を提供することが可能となる。 According to the present invention, it is possible to provide a protective element having a structure that can be easily reduced in resistance and miniaturization and that is less likely to cause an internal short circuit.
本発明の第1実施形態に係る保護素子の上面図である。It is a top view of the protection element which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る保護素子の下面図である。It is a bottom view of the protection element which concerns on 1st Embodiment of this invention. 図1のIII-III’線横断面図である。FIG. 1 is a cross-sectional view taken along the line III-III'of FIG. 図1のIV-IV’線縦断面図である。FIG. 1 is a vertical cross-sectional view taken along the line IV-IV'of FIG. 第1実施形態の保護素子が作動して、ヒューズエレメントが溶融した状態を示す横断面図である。It is a cross-sectional view which shows the state which the protection element of 1st Embodiment operates and the fuse element is melted. 本発明の第2実施形態に係る保護素子の横断面図である。It is sectional drawing of the protection element which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る保護素子の縦断面図である。It is a vertical sectional view of the protection element which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る保護素子の上面図である。It is a top view of the protection element which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る保護素子の下面図である。It is a bottom view of the protection element which concerns on 3rd Embodiment of this invention. 図9のX-X’線横断面図である。9 is a cross-sectional view taken along the line XX'of FIG. 図9のXI-XI’線縦断面図である。9 is a vertical cross-sectional view taken along the line XI-XI'in FIG. 比較例1で作製した保護素子の横断面図である。It is a cross-sectional view of the protection element produced in Comparative Example 1.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合がある。図面の各構成要素の寸法比率などは、実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings used in the following description, the feature portion may be enlarged for convenience in order to make the feature easy to understand. The dimensional ratio of each component in the drawing may differ from the actual one. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and can be appropriately modified and carried out within the range in which the effects of the present invention are exhibited.
[第1実施形態]
 本発明の第1実施形態に係る保護素子の構成を図1~図4に示す。図1は、保護素子の上面図(平面図)である。図2は保護素子の下面図(底面図)である。図3は図1のIII-III’線横断面図である。図4は図1のIV-IV’線縦断面図である。
[First Embodiment]
The configuration of the protective element according to the first embodiment of the present invention is shown in FIGS. 1 to 4. FIG. 1 is a top view (plan view) of the protective element. FIG. 2 is a bottom view (bottom view) of the protective element. FIG. 3 is a cross-sectional view taken along the line III-III'of FIG. FIG. 4 is a vertical cross-sectional view taken along the line IV-IV'of FIG.
 第1実施形態に係る保護素子1は、絶縁基板10と、絶縁基板10の上面10aの上に、互いに対向するように設けられた第1電極11(第1上面電極11a)および第2電極12(第2上面電極12a)と、絶縁基板10の下面10bの上に設けられた発熱体20と、発熱体20の一方の端部に接続する第3電極13と、発熱体20の一方の端部とは反対側の端部に接続する発熱体引出電極14と、第1電極11、第2電極12および発熱体引出電極14と接続するヒューズエレメント30と、を備える。ヒューズエレメント30の互いに対向する一方の端部30aには第1電極11が第1端子18aを介して接続している。他方の端部30bには第2電極12が第2端子18bを介して接続している。そして、ヒューズエレメント30の端部30aと端部30bとの間の中央部30cには、発熱体引出電極14が導電部材15を介して接続している。第1端子18aとヒューズエレメント30、第2端子18bとヒューズエレメント30、そして導電部材15とヒューズエレメント30は、それぞれはんだペースト32により接着している。 The protective element 1 according to the first embodiment includes an insulating substrate 10, a first electrode 11 (first upper surface electrode 11a) and a second electrode 12 provided on the upper surface 10a of the insulating substrate 10 so as to face each other. (Second upper surface electrode 12a), a heating element 20 provided on the lower surface 10b of the insulating substrate 10, a third electrode 13 connected to one end of the heating element 20, and one end of the heating element 20. A heating element extraction electrode 14 connected to an end portion on the opposite side to the portion, and a fuse element 30 connected to the first electrode 11, the second electrode 12, and the heating element extraction electrode 14 are provided. A first electrode 11 is connected to one end 30a of the fuse element 30 facing each other via a first terminal 18a. A second electrode 12 is connected to the other end portion 30b via a second terminal 18b. A heating element extraction electrode 14 is connected to the central portion 30c between the end portions 30a and the end portion 30b of the fuse element 30 via a conductive member 15. The first terminal 18a and the fuse element 30, the second terminal 18b and the fuse element 30, and the conductive member 15 and the fuse element 30 are adhered to each other by the solder paste 32.
 絶縁基板10としては、絶縁性を有する材質のものであれば特に制限されず、例えば、セラミックス基板やガラスエポキシ基板のようなプリント配線基板に用いられる基板の他、ガラス基板、樹脂基板、絶縁処理金属基板等を用いることができる。なお、これらの中では、耐熱性と熱伝導性とに優れた絶縁基板であるセラミックス基板が好適である。 The insulating substrate 10 is not particularly limited as long as it is made of a material having insulating properties. For example, in addition to a substrate used for a printed wiring board such as a ceramics substrate or a glass epoxy substrate, a glass substrate, a resin substrate, and an insulating treatment. A metal substrate or the like can be used. Among these, a ceramic substrate, which is an insulating substrate having excellent heat resistance and thermal conductivity, is preferable.
 第1電極11は、第1上面電極11aと、第1下面電極11bと、第1導通部11cとからなる。第1上面電極11aは、絶縁基板10の上面10aの上に形成されている。第1上面電極11aは、第2上面電極12aに対向する側面と、その側面に接続する上面の少なくとも一部が第1絶縁部材17aで被覆されている。第1上面電極11aの第1絶縁部材17aで被覆されていない部分は、第1端子18aで被覆されている。第1下面電極11bは、絶縁基板10の下面10bの上に形成されている。第1下面電極11bは、回路基板の配線に接続される。第1導通部11cは、絶縁基板10を貫通して、第1上面電極11aと第1下面電極11bとを電気的に接続している。 The first electrode 11 includes a first upper surface electrode 11a, a first lower surface electrode 11b, and a first conductive portion 11c. The first upper surface electrode 11a is formed on the upper surface 10a of the insulating substrate 10. The first upper surface electrode 11a has a side surface facing the second upper surface electrode 12a and at least a part of the upper surface connected to the side surface is covered with the first insulating member 17a. The portion of the first upper surface electrode 11a that is not covered with the first insulating member 17a is covered with the first terminal 18a. The first lower surface electrode 11b is formed on the lower surface 10b of the insulating substrate 10. The first lower surface electrode 11b is connected to the wiring of the circuit board. The first conductive portion 11c penetrates the insulating substrate 10 and electrically connects the first upper surface electrode 11a and the first lower surface electrode 11b.
 第2電極12は、第2上面電極12aと、第2下面電極12bと、第2導通部12cとからなる。第2上面電極12aは、絶縁基板10の上面10aの上に形成されている。第2上面電極12aは、第1上面電極11aに対向する側面と、その側面に接続する上面の少なくとも一部が第2絶縁部材17bで被覆されている。第2上面電極12aの第2絶縁部材17bで被覆されていない部分は、第2端子18bで被覆されている。第2下面電極12bは、絶縁基板10の下面10bの上に形成されている。第2下面電極12bは、回路基板の配線に接続される。第2導通部12cは、絶縁基板10を貫通して、第2上面電極12aと第2下面電極12bとを電気的に接続している。 The second electrode 12 includes a second upper surface electrode 12a, a second lower surface electrode 12b, and a second conductive portion 12c. The second upper surface electrode 12a is formed on the upper surface 10a of the insulating substrate 10. The side surface of the second upper surface electrode 12a facing the first upper surface electrode 11a and at least a part of the upper surface connected to the side surface are covered with the second insulating member 17b. The portion of the second upper surface electrode 12a that is not covered with the second insulating member 17b is covered with the second terminal 18b. The second lower surface electrode 12b is formed on the lower surface 10b of the insulating substrate 10. The second bottom electrode 12b is connected to the wiring of the circuit board. The second conductive portion 12c penetrates the insulating substrate 10 and electrically connects the second upper surface electrode 12a and the second lower surface electrode 12b.
 第3電極13は、発熱体20の一方の端部に接続している。第3電極13は、一部が断熱部材21で被覆されている。第3電極13の断熱部材21で被覆されていない部分は、回路基板のスイッチング素子に接続される。スイッチング素子は、回路基板に過電流以外の異常が発生したときに作動して、第3電極13に電流を供給する。 The third electrode 13 is connected to one end of the heating element 20. The third electrode 13 is partially covered with a heat insulating member 21. The portion of the third electrode 13 that is not covered with the heat insulating member 21 is connected to the switching element of the circuit board. The switching element operates when an abnormality other than an overcurrent occurs in the circuit board to supply a current to the third electrode 13.
 第1電極11、第2電極12および第3電極13を構成する材料としては、Ag、Cu等の金属材料を用いることができる。第1電極11、第2電極12および第3電極13は、表面がAg、Ag-Pt、Ag-Pd、Au、Ni-Au等の金属あるいは合金で被覆されていてもよい。 As a material constituting the first electrode 11, the second electrode 12, and the third electrode 13, metal materials such as Ag and Cu can be used. The surfaces of the first electrode 11, the second electrode 12, and the third electrode 13 may be coated with a metal or alloy such as Ag, Ag-Pt, Ag-Pd, Au, or Ni-Au.
 発熱体20は、第3電極13と比較して相対的に抵抗が高い。発熱体20は、通電により発熱し易い高抵抗導電性材料から形成されている。発熱体20を構成する材料としては、酸化ルテニウムやカーボンブラックを用いることができる。 The heating element 20 has a relatively high resistance as compared with the third electrode 13. The heating element 20 is formed of a high resistance conductive material that easily generates heat when energized. As a material constituting the heating element 20, ruthenium oxide or carbon black can be used.
 発熱体20は、断熱部材21で被覆されている。断熱部材21の材料としては、例えば、セラミックス、ガラスなどの絶縁材料を用いることができる。 The heating element 20 is covered with a heat insulating member 21. As the material of the heat insulating member 21, for example, an insulating material such as ceramics or glass can be used.
 発熱体引出電極14は、発熱体引出上面電極14aと、発熱体引出下面電極14bと、発熱体引出電極導通部14cとからなる。発熱体引出上面電極14aは、絶縁基板10の上面10aの上に形成されている。発熱体引出上面電極14aの上面の上には、導電部材15が積層されている。発熱体引出下面電極14bは、絶縁基板10の下面10bの上に形成され、発熱体20と接続している。発熱体引出電極導通部14cは、絶縁基板10を貫通して、発熱体引出上面電極14aと発熱体引出下面電極14bとを電気的に接続している。 The heating element extraction electrode 14 includes a heating element extraction upper surface electrode 14a, a heating element extraction lower surface electrode 14b, and a heating element extraction electrode conduction portion 14c. The heating element extraction upper surface electrode 14a is formed on the upper surface 10a of the insulating substrate 10. A conductive member 15 is laminated on the upper surface of the heating element extraction upper surface electrode 14a. The heating element extraction lower surface electrode 14b is formed on the lower surface 10b of the insulating substrate 10 and is connected to the heating element 20. The heating element extraction electrode conduction portion 14c penetrates the insulating substrate 10 and electrically connects the heating element extraction upper surface electrode 14a and the heating element extraction lower surface electrode 14b.
 発熱体引出電極14および導電部材15は、熱伝導性と導電性が高いことが好ましい。発熱体引出電極14および導電部材15を構成する材料としてはAg、Cu等の金属材料を用いることができる。発熱体引出電極14および導電部材15は、表面がAg、Ag-Pt、Ag-Pd、Au、Ni-Au等の金属あるいは合金で被覆されていてもよい。 It is preferable that the heating element extraction electrode 14 and the conductive member 15 have high thermal conductivity and conductivity. As a material constituting the heating element extraction electrode 14 and the conductive member 15, a metal material such as Ag or Cu can be used. The surface of the heating element extraction electrode 14 and the conductive member 15 may be coated with a metal or alloy such as Ag, Ag-Pt, Ag-Pd, Au, or Ni-Au.
 発熱体引出上面電極14aと第1端子18aとの間には空間19aが形成されている。また、発熱体引出上面電極14aと第2端子18bとの間には空間19bが形成されている。空間19aの下方の第1上面電極11aは第1絶縁部材17aで被覆されている。空間19bの下方の第2上面電極12aは第2絶縁部材17bで被覆されている。このため、発熱体引出上面電極14aを、第1絶縁部材17aの上面にまで、特に第1絶縁部材17aを介して発熱体引出上面電極14aと第1上面電極11aと重なる位置にまで延長していても内部短絡が起こりにくい。同様に、発熱体引出上面電極14aを、第2絶縁部材17bの上面にまで、特に第2絶縁部材17bを介して発熱体引出上面電極14aと第1上面電極11aとが重なる位置にまで延長していても内部短絡が起こりにくい。よって、空間19aおよび空間19bの幅を狭くすることができる。空間19aの幅Waと空間19bの幅Wbは、それぞれ0.02mm以上1.0mm以下の範囲内にあることが好ましい。 A space 19a is formed between the heating element drawer upper surface electrode 14a and the first terminal 18a. Further, a space 19b is formed between the heating element extraction upper surface electrode 14a and the second terminal 18b. The first upper surface electrode 11a below the space 19a is covered with the first insulating member 17a. The second upper surface electrode 12a below the space 19b is covered with a second insulating member 17b. Therefore, the heating element extraction upper surface electrode 14a is extended to the upper surface of the first insulating member 17a, particularly to a position where the heating element extraction upper surface electrode 14a and the first upper surface electrode 11a overlap with each other via the first insulating member 17a. However, internal short circuits are unlikely to occur. Similarly, the heating element extraction upper surface electrode 14a is extended to the upper surface of the second insulating member 17b, particularly to a position where the heating element extraction upper surface electrode 14a and the first upper surface electrode 11a overlap via the second insulating member 17b. Even if it is, internal short circuit is unlikely to occur. Therefore, the widths of the space 19a and the space 19b can be narrowed. The width Wa of the space 19a and the width Wb of the space 19b are preferably in the range of 0.02 mm or more and 1.0 mm or less, respectively.
 ヒューズエレメント30は熱によって溶断可能であれば、構成や材料は特に制限はない。ヒューズエレメント30は、金属単体であってもよい。ヒューズエレメント30は、外側を相対的に融点が高い高融点金属層とし、内側を相対的に融点が低い低融点金属層とした積層体であってもよい。
 ヒューズエレメント30が金属単体である場合、その材料としてはIn、Pb、Ag、Cu又はこれらのうちのいずれかを主成分とする合金を用いることができる。積層体の場合、低融点金属層は、融点が、保護素子1を実装する際に行なわれるリフロー時の加熱温度(通常は、約220℃)以上で、280℃以下の範囲内にあることが好ましい。低融点金属層の材料は、錫もしくは錫を主成分とする錫合金であることが好ましい。錫合金の錫の含有量は40質量%以上であることが好ましく、60質量%以上であることがより好ましい。錫合金の例としては、Sn-Bi合金、In-Sn合金、Sn-Ag-Cu合金を挙げることができる。高融点金属層は、低融点金属層の溶融物に溶解される金属材料からなる層である。低融点金属層の材料が錫もしくは錫合金である場合、高融点金属層の材料は、銀もしくは銀を主成分とする合金であることが好ましい。銀合金の銀の含有量は40質量%以上であることが好ましく、60質量%以上であることがより好ましい。銀合金の例としては、Ag-Pd合金を挙げることができる。
As long as the fuse element 30 can be blown by heat, the structure and material are not particularly limited. The fuse element 30 may be a single metal. The fuse element 30 may be a laminated body having a high melting point metal layer having a relatively high melting point on the outside and a low melting point metal layer having a relatively low melting point on the inside.
When the fuse element 30 is a simple substance of metal, an alloy containing In, Pb, Ag, Cu or any of these as a main component can be used as the material thereof. In the case of the laminated body, the melting point of the low melting point metal layer may be in the range of 280 ° C. or lower at the heating temperature (usually about 220 ° C.) or more at the time of reflow performed when the protective element 1 is mounted. preferable. The material of the low melting point metal layer is preferably tin or a tin alloy containing tin as a main component. The tin content of the tin alloy is preferably 40% by mass or more, more preferably 60% by mass or more. Examples of tin alloys include Sn—Bi alloys, In—Sn alloys, and Sn—Ag—Cu alloys. The high melting point metal layer is a layer made of a metal material that is dissolved in a melt of the low melting point metal layer. When the material of the low melting point metal layer is tin or a tin alloy, the material of the high melting point metal layer is preferably silver or an alloy containing silver as a main component. The silver content of the silver alloy is preferably 40% by mass or more, more preferably 60% by mass or more. Examples of silver alloys include Ag—Pd alloys.
 図5は、第1実施形態の保護素子が作動して、ヒューズエレメントが溶融した状態を示す横断面図である。図5の横断面図は、図3のIII-III’線横断面図と同位置の横断面図である。
 回路基板の配線に過電流が流れると、保護素子1の第1電極11と第1端子18aおよび第2電極12と第2端子18bを介してヒューズエレメント30に過電流が流れる。ヒューズエレメント30に過電流が流れると、ヒューズエレメント30にてジュール熱が発生する。この熱によってヒューズエレメント30が溶融して溶断することにより、回路基板の電流経路が遮断される。また、回路基板に過電流以外の異常が発生したときには、第3電極13に電流が流れることによって、発熱体20が発熱する。その熱が、発熱体引出電極14を介してヒューズエレメント30に伝わって、ヒューズエレメント30が溶融して溶断することにより、回路基板の電流経路が遮断される。溶融した後のヒューズエレメント溶融固化物31は、はんだペースト32の上に保持される。
FIG. 5 is a cross-sectional view showing a state in which the protection element of the first embodiment is activated and the fuse element is melted. The cross-sectional view of FIG. 5 is a cross-sectional view at the same position as the cross-sectional view of the line III-III'of FIG.
When an overcurrent flows through the wiring of the circuit board, an overcurrent flows through the fuse element 30 via the first electrode 11 and the first terminal 18a of the protection element 1 and the second electrode 12 and the second terminal 18b. When an overcurrent flows through the fuse element 30, Joule heat is generated at the fuse element 30. The heat causes the fuse element 30 to melt and blow, thereby interrupting the current path of the circuit board. Further, when an abnormality other than an overcurrent occurs in the circuit board, the heating element 20 generates heat due to the current flowing through the third electrode 13. The heat is transferred to the fuse element 30 via the heating element extraction electrode 14, and the fuse element 30 melts and blows, thereby interrupting the current path of the circuit board. The fused solidified fuse element 31 after melting is held on the solder paste 32.
 次に、保護素子1の製造方法を説明する。
 保護素子1は、例えば、次のようにして製造することができる。
Next, a method of manufacturing the protective element 1 will be described.
The protective element 1 can be manufactured, for example, as follows.
 先ず、始めに、絶縁基板10を用意する。
 用意した絶縁基板10に、第1電極11の第1導通部11cと、第2電極12の第2導通部12cと、発熱体引出電極導通部14cを形成する。
First, the insulating substrate 10 is prepared.
The first conductive portion 11c of the first electrode 11, the second conductive portion 12c of the second electrode 12, and the heating element lead-out electrode conductive portion 14c are formed on the prepared insulating substrate 10.
 次に、絶縁基板10の上面10aの第1導通部11cの周囲に第1上面電極11aを、第2導通部12cの周囲に第2上面電極12aをそれぞれ形成する。さらに、第1上面電極11aと第2上面電極12aとの間に発熱体引出上面電極14aを形成する。また、絶縁基板10の下面10bの第1導通部11cの周囲に第1下面電極11bを、第2導通部12cの周囲に第2下面電極12bをそれぞれ形成する。さらに、絶縁基板10の下面10bの発熱体引出電極導通部14cの周囲に発熱体引出下面電極14bを形成する。発熱体引出下面電極14bとは対向する位置に第3電極13を形成する。 Next, the first upper surface electrode 11a is formed around the first conductive portion 11c of the upper surface 10a of the insulating substrate 10, and the second upper surface electrode 12a is formed around the second conductive portion 12c. Further, a heating element extraction upper surface electrode 14a is formed between the first upper surface electrode 11a and the second upper surface electrode 12a. Further, a first lower surface electrode 11b is formed around the first conductive portion 11c of the lower surface 10b of the insulating substrate 10, and a second lower surface electrode 12b is formed around the second conductive portion 12c. Further, a heating element extraction lower surface electrode 14b is formed around the heating element extraction electrode conduction portion 14c on the lower surface 10b of the insulating substrate 10. The third electrode 13 is formed at a position facing the lower electrode 14b of the heating element drawer.
 これらの電極は、例えば、印刷法、めっき法、蒸着法、スパッタ法など電極の形成方法として利用されている公知の方法によって形成できる。印刷法は、電極形成用の金属あるいは合金のペーストを所望のパターンで印刷し、必要に応じて焼成する方法である。 These electrodes can be formed by a known method used as an electrode forming method, such as a printing method, a plating method, a vapor deposition method, or a sputtering method. The printing method is a method in which a metal or alloy paste for forming an electrode is printed in a desired pattern and fired if necessary.
 次に、絶縁基板10の下面10bの上に発熱体20を形成する。発熱体20は、一方の端部が第3電極13に接続し、他方の端部が発熱体引出下面電極14bと接続するように形成する。次いで、発熱体20を断熱部材21で被覆する。 Next, the heating element 20 is formed on the lower surface 10b of the insulating substrate 10. The heating element 20 is formed so that one end is connected to the third electrode 13 and the other end is connected to the heating element drawer lower surface electrode 14b. Next, the heating element 20 is covered with the heat insulating member 21.
 発熱体20は、例えば、高抵抗導電材料とバインダとを含む高抵抗導電性ペーストを塗布し、必要に応じて焼成することによって形成できる。バインダとしては、水ガラス等の無機系バインダや熱硬化性樹脂等の有機系バインダを用いることができる。また、発熱体20は、めっき法、蒸着法、スパッタ法などの導電膜の形成方法として利用されている公知の方法によって形成できる。さらに、発熱体20の形成方法として、上記の方法によって得られた高抵抗導電膜を貼付や積層する方法を用いてもよい。 The heating element 20 can be formed, for example, by applying a high resistance conductive paste containing a high resistance conductive material and a binder and firing it if necessary. As the binder, an inorganic binder such as water glass or an organic binder such as a thermosetting resin can be used. Further, the heating element 20 can be formed by a known method used as a method for forming a conductive film such as a plating method, a vapor deposition method, and a sputtering method. Further, as a method for forming the heating element 20, a method of attaching or laminating a high resistance conductive film obtained by the above method may be used.
 断熱部材21は、例えば、印刷法、めっき法、蒸着法、スパッタ法など電極の形成方法として利用されている公知の方法によって形成できる。印刷法は、断熱部材のペーストを所望のパターンで印刷し、必要に応じて焼成する方法である。 The heat insulating member 21 can be formed by a known method used as an electrode forming method, such as a printing method, a plating method, a vapor deposition method, or a sputtering method. The printing method is a method in which the paste of the heat insulating member is printed in a desired pattern and fired if necessary.
 次に、第1上面電極11aの第2上面電極12aに対向する側面と、その側面に接続する上面の一部に第1絶縁部材17aを形成する。第1上面電極11aの第1絶縁部材17aが形成されていない部分に第1端子18aを形成する。同様に、第2上面電極12aの第1上面電極11aに対向する側面と、その側面に接続する上面の一部に第2絶縁部材17bを形成する。第2上面電極12aの第2絶縁部材17bが形成されていない部分に第2端子18bを形成する。なお、第1絶縁部材17aと第1端子18aおよび第2絶縁部材17bと第2端子18bの形成順序は、特に制限はない。第1端子18aと第2端子18bを、第1絶縁部材17aと第2絶縁部材17bよりも先に形成してもよい。 Next, the first insulating member 17a is formed on the side surface of the first upper surface electrode 11a facing the second upper surface electrode 12a and a part of the upper surface connected to the side surface. The first terminal 18a is formed in a portion of the first upper surface electrode 11a where the first insulating member 17a is not formed. Similarly, the second insulating member 17b is formed on the side surface of the second upper surface electrode 12a facing the first upper surface electrode 11a and a part of the upper surface connected to the side surface. The second terminal 18b is formed in the portion of the second upper surface electrode 12a where the second insulating member 17b is not formed. The order of forming the first insulating member 17a and the first terminal 18a and the second insulating member 17b and the second terminal 18b is not particularly limited. The first terminal 18a and the second terminal 18b may be formed before the first insulating member 17a and the second insulating member 17b.
 第1絶縁部材17aおよび第2絶縁部材17bは、例えば、印刷法によって形成できる。印刷法は、絶縁材料のペーストを所望のパターンで印刷し、必要に応じて焼成する方法である。 The first insulating member 17a and the second insulating member 17b can be formed by, for example, a printing method. The printing method is a method in which a paste of an insulating material is printed in a desired pattern and fired if necessary.
 第1端子18aおよび第2端子18bは、例えば、印刷法、めっき法、蒸着法、スパッタ法など電極の形成方法として利用されている公知の方法によって形成できる。印刷法は、端子形成用の金属あるいは合金のペーストを所望のパターンで印刷し、必要に応じて焼成する方法である。 The first terminal 18a and the second terminal 18b can be formed by a known method used as an electrode forming method such as a printing method, a plating method, a vapor deposition method, or a sputtering method. The printing method is a method in which a metal or alloy paste for forming terminals is printed in a desired pattern and fired if necessary.
 次に、発熱体引出上面電極14aの上面に、導電部材15を形成する。導電部材15は、例えば、印刷法、めっき法、蒸着法、スパッタ法など電極の形成方法として利用されている公知の方法によって形成できる。 Next, the conductive member 15 is formed on the upper surface of the heating element drawer upper surface electrode 14a. The conductive member 15 can be formed by a known method used as an electrode forming method, such as a printing method, a plating method, a vapor deposition method, or a sputtering method.
 そして、第1端子18a、導電部材15および第2端子18bの上面に、ヒューズエレメント30を積層する。ヒューズエレメント30は、第1端子18a、導電部材15および第2端子18bの上面に、はんだペースト32を塗布し、次いで、はんだペースト32の上にヒューズエレメント30を配置することによって、積層できる。 Then, the fuse element 30 is laminated on the upper surfaces of the first terminal 18a, the conductive member 15, and the second terminal 18b. The fuse element 30 can be laminated by applying the solder paste 32 on the upper surfaces of the first terminal 18a, the conductive member 15 and the second terminal 18b, and then arranging the fuse element 30 on the solder paste 32.
 以上のような構成された本実施形態の保護素子1によれば、第1上面電極11aと第2上面電極12aがそれぞれ第1絶縁部材17aと第2絶縁部材17bで被覆されているので、空間19aの幅Wa並びに空間19bの幅Wbを狭くしても内部短絡が起こりにくい。このため、本実施形態の保護素子1は、小型化が容易になる。また、空間19aの幅Wa並びに空間19bの幅Wbを狭くすることによって、ヒューズエレメント30の幅を短くできるので、保護素子1の第1電極11と第2電極12との間の抵抗を低くできる。よって、本実施形態の保護素子1は、低抵抗化と小型化が容易で、かつ内部短絡が起こりにくい。 According to the protection element 1 of the present embodiment configured as described above, since the first upper surface electrode 11a and the second upper surface electrode 12a are covered with the first insulating member 17a and the second insulating member 17b, respectively, there is a space. Even if the width Wa of 19a and the width Wb of the space 19b are narrowed, an internal short circuit is unlikely to occur. Therefore, the protective element 1 of the present embodiment can be easily miniaturized. Further, by narrowing the width Wa of the space 19a and the width Wb of the space 19b, the width of the fuse element 30 can be shortened, so that the resistance between the first electrode 11 and the second electrode 12 of the protection element 1 can be lowered. .. Therefore, the protection element 1 of the present embodiment can be easily reduced in resistance and size, and an internal short circuit is unlikely to occur.
[第2実施形態]
 本発明の第2実施形態に係る保護素子の構成を図6~図7に示す。図6は、本発明の第2実施形態に係る保護素子の横断面図であり、図7は、保護素子の縦断面図である。図6の横断面図は、図3のIII-III’線横断面図に相当し、図7の縦断面図は、図4のIV-IV線縦断面図に相当する。
[Second Embodiment]
The configuration of the protective element according to the second embodiment of the present invention is shown in FIGS. 6 to 7. FIG. 6 is a cross-sectional view of the protective element according to the second embodiment of the present invention, and FIG. 7 is a vertical cross-sectional view of the protective element. The cross-sectional view of FIG. 6 corresponds to the cross-sectional view of line III-III'of FIG. 3, and the vertical cross-sectional view of FIG. 7 corresponds to the vertical cross-sectional view of line IV-IV of FIG.
 第2実施形態に係る保護素子2は、発熱体引出上面電極14dが、第1実施形態に係る保護素子1の発熱体引出上面電極14aと導電部材15とを一体とした形状とされていて、導電部材15を介さずにヒューズエレメント30と接続している。この点において、第2実施形態に係る保護素子2は、第1実施形態に係る保護素子1と相違する。なお、第2実施形態に係る保護素子2と第1実施形態に係る保護素子1とで共通する部分は、同一の符号を付して説明を省略する。 In the protection element 2 according to the second embodiment, the heating element extraction upper surface electrode 14d has a shape in which the heating element extraction upper surface electrode 14a and the conductive member 15 of the protection element 1 according to the first embodiment are integrated. It is connected to the fuse element 30 without passing through the conductive member 15. In this respect, the protective element 2 according to the second embodiment is different from the protective element 1 according to the first embodiment. The parts common to the protective element 2 according to the second embodiment and the protective element 1 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 保護素子2は、例えば、下記の点以外は、第1実施形態に係る保護素子1と同様にして製造できる。
 絶縁基板10の上面10aに発熱体引出上面電極14aを形成しないこと。
 導電部材15を形成する代わりに、絶縁基板10の上面10aに発熱体引出上面電極14dを形成すること。発熱体引出上面電極14dは、例えば、印刷法、めっき法、蒸着法、スパッタ法など電極の形成方法として利用されている公知の方法によって形成できる。
The protective element 2 can be manufactured in the same manner as the protective element 1 according to the first embodiment, except for the following points.
Do not form the heating element drawer upper surface electrode 14a on the upper surface 10a of the insulating substrate 10.
Instead of forming the conductive member 15, the heating element extraction upper surface electrode 14d is formed on the upper surface 10a of the insulating substrate 10. The heating element extraction upper surface electrode 14d can be formed by a known method used as an electrode forming method such as a printing method, a plating method, a vapor deposition method, or a sputtering method.
 以上のような構成された本実施形態の保護素子2によれば、第1上面電極11aと第2上面電極12aがそれぞれ第1絶縁部材17aと第2絶縁部材17bで被覆されているので、第1実施形態に係る保護素子1と同様に、低抵抗化と小型化が容易で、かつ内部短絡が起こりにくい。また、保護素子2は、発熱体引出上面電極14dが導電部材15を介さずにヒューズエレメント30と接続しているので、発熱体20で発熱した熱をより効率よくヒューズエレメント30に伝熱させることができる。このため、保護素子2によれば、第3電極13に電流が流れたときの溶断速度をより速くすることができる。 According to the protective element 2 of the present embodiment configured as described above, the first upper surface electrode 11a and the second upper surface electrode 12a are covered with the first insulating member 17a and the second insulating member 17b, respectively. Similar to the protection element 1 according to the first embodiment, it is easy to reduce the resistance and size, and it is difficult for an internal short circuit to occur. Further, in the protection element 2, since the heating element extraction upper surface electrode 14d is connected to the fuse element 30 without passing through the conductive member 15, the heat generated by the heating element 20 can be transferred to the fuse element 30 more efficiently. Can be done. Therefore, according to the protection element 2, the fusing speed when a current flows through the third electrode 13 can be further increased.
[第3実施形態]
 本発明の第3実施形態に係る保護素子の構成を図8~図11に示す。図8は、保護素子の上面図(平面図)であり、図9は保護素子の下面図(底面図)である。図10は図8のX-X’線横断面図であり、図11は図8のXI-XI’線縦断面図である。なお、第3実施形態に係る保護素子3と第1実施形態に係る保護素子1とで共通する部分は、同一の符号を付して説明を省略する。
[Third Embodiment]
The configuration of the protective element according to the third embodiment of the present invention is shown in FIGS. 8 to 11. FIG. 8 is a top view (plan view) of the protective element, and FIG. 9 is a bottom view (bottom view) of the protective element. 10 is a cross-sectional view taken along the line XX'of FIG. 8, and FIG. 11 is a vertical cross-sectional view taken along the line XI-XI'of FIG. The parts common to the protective element 3 according to the third embodiment and the protective element 1 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 第3実施形態に係る保護素子3では、発熱体20は、絶縁基板10の上面10aの上に備えられている。発熱体20は、断熱部材21で被覆されている。断熱部材21は、第1上面電極11aの第2上面電極12aに対向する側面およびその側面に接続する上面の一部と、第2上面電極12aの第1上面電極11aに対向する側面およびその側面に接続する上面の一部とを被覆している。すなわち、断熱部材21は、第1上面電極11aと第2上面電極12aとを絶縁する絶縁部材としても機能している。 In the protective element 3 according to the third embodiment, the heating element 20 is provided on the upper surface 10a of the insulating substrate 10. The heating element 20 is covered with a heat insulating member 21. The heat insulating member 21 includes a side surface of the first upper surface electrode 11a facing the second upper surface electrode 12a and a part of the upper surface connected to the side surface, and a side surface of the second upper surface electrode 12a facing the first upper surface electrode 11a and its side surface. It covers a part of the upper surface connected to. That is, the heat insulating member 21 also functions as an insulating member that insulates the first upper surface electrode 11a and the second upper surface electrode 12a.
 発熱体20の一方の端部は第3電極13に接続している。第3電極13は、第3上面電極13aと、第3下面電極13bと、第3導通部13cとからなる。第3上面電極13aは、絶縁基板10の上面10aの上に形成されている。第3上面電極13aは、発熱体20の一方の端部に接続している。第3下面電極13bは、絶縁基板10の下面10bの上に形成されている。第3下面電極13bは、回路基板のスイッチング素子に接続される。第3導通部13cは、絶縁基板10を貫通して、第3上面電極13aと第3下面電極13bとを電気的に接続している。 One end of the heating element 20 is connected to the third electrode 13. The third electrode 13 includes a third upper surface electrode 13a, a third lower surface electrode 13b, and a third conductive portion 13c. The third upper surface electrode 13a is formed on the upper surface 10a of the insulating substrate 10. The third upper surface electrode 13a is connected to one end of the heating element 20. The third lower surface electrode 13b is formed on the lower surface 10b of the insulating substrate 10. The third bottom electrode 13b is connected to the switching element of the circuit board. The third conductive portion 13c penetrates the insulating substrate 10 and electrically connects the third upper surface electrode 13a and the third lower surface electrode 13b.
 発熱体20の第3下面電極13b側とは反対側の端部は、発熱体引出電極14に接続している。発熱体引出電極14は、断熱部材21の上面に引き回されている。発熱体引出電極14は、ヒューズエレメント30とはんだペースト32により接続している。 The end of the heating element 20 opposite to the third lower surface electrode 13b side is connected to the heating element extraction electrode 14. The heating element extraction electrode 14 is routed to the upper surface of the heat insulating member 21. The heating element extraction electrode 14 is connected to the fuse element 30 by a solder paste 32.
 次に、保護素子3の製造方法を説明する。
 保護素子3は、例えば、次のようにして製造することができる。
Next, a method of manufacturing the protective element 3 will be described.
The protective element 3 can be manufactured, for example, as follows.
 先ず、始めに、絶縁基板10を用意する。
 用意した絶縁基板10に、第1電極11の第1導通部11cと、第2電極12の第2導通部12cと、第3導通部13cを形成する。
First, the insulating substrate 10 is prepared.
The first conductive portion 11c of the first electrode 11, the second conductive portion 12c of the second electrode 12, and the third conductive portion 13c are formed on the prepared insulating substrate 10.
 次に、絶縁基板10の上面10aの第1導通部11cの周囲に第1上面電極11aを、第2導通部12cの周囲に第2上面電極12aをそれぞれ形成する。さらに、絶縁基板10の上面10aの第3導通部13cの周囲に第3上面電極13aを、下面10bの第3導通部13cの周囲に第3下面電極13bを形成する。 Next, the first upper surface electrode 11a is formed around the first conductive portion 11c of the upper surface 10a of the insulating substrate 10, and the second upper surface electrode 12a is formed around the second conductive portion 12c. Further, a third upper surface electrode 13a is formed around the third conductive portion 13c of the upper surface 10a of the insulating substrate 10, and a third lower surface electrode 13b is formed around the third conductive portion 13c of the lower surface 10b.
 次に、絶縁基板10の上面10aの第1上面電極11aと第2上面電極12aとの間に、発熱体20と幅が同じもしくはそれより広い断熱部材層を形成する。次いで、断熱部材層の上に発熱体20を形成する。発熱体20は、一方の端部が第3上面電極13aに接続するように形成する。 Next, a heat insulating member layer having the same width as or wider than the heating element 20 is formed between the first upper surface electrode 11a and the second upper surface electrode 12a of the upper surface 10a of the insulating substrate 10. Next, the heating element 20 is formed on the heat insulating member layer. The heating element 20 is formed so that one end is connected to the third upper surface electrode 13a.
 次に、第1上面電極11aの第2上面電極12aに対向しない側面と、その側面に接続する上面の一部に第1端子18aを形成する。第2上面電極12aの第1上面電極11aに対向しない側面と、その側面に接続する上面の一部に第2端子18bを形成する。次いで、第1上面電極11aと第2上面電極12aとの間に、断熱部材21を形成する。 Next, the first terminal 18a is formed on the side surface of the first upper surface electrode 11a that does not face the second upper surface electrode 12a and a part of the upper surface connected to the side surface. The second terminal 18b is formed on a side surface of the second upper surface electrode 12a that does not face the first upper surface electrode 11a and a part of the upper surface connected to the side surface. Next, the heat insulating member 21 is formed between the first upper surface electrode 11a and the second upper surface electrode 12a.
 次に、断熱部材21の上面に発熱体引出電極14を形成する。発熱体引出電極14は、一方の端部が発熱体20に接続するように形成する。 Next, the heating element extraction electrode 14 is formed on the upper surface of the heat insulating member 21. The heating element extraction electrode 14 is formed so that one end thereof is connected to the heating element 20.
 そして、第1端子18a、発熱体引出電極14および第2端子18bの上面に、ヒューズエレメント30を、はんだペースト32を用いて積層する。 Then, the fuse element 30 is laminated on the upper surfaces of the first terminal 18a, the heating element extraction electrode 14 and the second terminal 18b using the solder paste 32.
 以上のような構成とされた保護素子3によれば、第1上面電極11aと第2上面電極12aがそれぞれ断熱部材21で被覆されているので、第1実施形態に係る保護素子1と同様に、低抵抗化と小型化が容易な構造でありながらも、内部短絡が起こりにくい。また、発熱体20が絶縁基板10の上面10a側に配置されているので、発熱体20で発熱した熱をさらに効率よくヒューズエレメント30に伝熱させることができる。このため、第3電極13に電流が流れたときの溶断速度をさらに速くすることができる。 According to the protective element 3 having the above configuration, since the first upper surface electrode 11a and the second upper surface electrode 12a are each covered with the heat insulating member 21, the same as the protective element 1 according to the first embodiment. Although the structure is easy to reduce resistance and miniaturization, internal short circuit is unlikely to occur. Further, since the heating element 20 is arranged on the upper surface 10a side of the insulating substrate 10, the heat generated by the heating element 20 can be more efficiently transferred to the fuse element 30. Therefore, the fusing speed when a current flows through the third electrode 13 can be further increased.
 次に、本発明を実施例により説明する。 Next, the present invention will be described by way of examples.
[実施例1]
 第1実施形態に係る保護素子1を作製した。各部材の構成材料は以下のとおりである。
 絶縁基板10:アルミナ基板、縦:2mm、幅:4mm、厚さ:0.2mm
 第1電極11:表面がNi-Auめっきで被覆されたAg
 第2電極12:表面がNi-Auめっきで被覆されたAg
 第3電極13:表面がNi-Auめっきで被覆されたAg
 発熱体引出電極14:表面がNi-Auめっきで被覆されたAg
 導電部材15:表面がNi-Auめっきで被覆されたAg
 第1絶縁部材17a、第2絶縁部材17b:ガラス
 第1端子18a、第2端子18b:銀
 空間19aと空間19bの合計幅(Wa+Wb):0.5mm
 発熱体20:酸化ルテニウム
 ヒューズエレメント30:外側を高融点金属層としてAgを用い、内側を低融点金属層としてSn合金を用いた積層体、縦:1.6mm、幅:2.0mm、厚さ:0.6mm
 はんだペースト32:Sn合金
[Example 1]
The protective element 1 according to the first embodiment was manufactured. The constituent materials of each member are as follows.
Insulated substrate 10: Alumina substrate, length: 2 mm, width: 4 mm, thickness: 0.2 mm
First electrode 11: Ag whose surface is coated with Ni-Au plating
Second electrode 12: Ag whose surface is coated with Ni-Au plating
Third electrode 13: Ag whose surface is coated with Ni-Au plating
Heating element extraction electrode 14: Ag whose surface is coated with Ni-Au plating.
Conductive member 15: Ag whose surface is coated with Ni-Au plating
1st insulating member 17a, 2nd insulating member 17b: glass 1st terminal 18a, 2nd terminal 18b: silver Total width of space 19a and space 19b (Wa + Wb): 0.5 mm
Heating element 20: Luthenium oxide fuse element 30: Laminated body using Ag as the high melting point metal layer on the outside and Sn alloy as the low melting point metal layer on the inside, length: 1.6 mm, width: 2.0 mm, thickness : 0.6mm
Solder paste 32: Sn alloy
(評価)
 保護素子1のヒューズエレメント30の第1電極11と第2電極12と間の抵抗値を測定した。また、第3電極13に11Wの電力と、12Wの電力を供給してから、ヒューズエレメント30が溶断するまでの時間を計測した。これらの結果を、ヒューズエレメント30の縦と横のサイズおよび空間19aと空間19bの合計幅と共に表1に示す。
(Evaluation)
The resistance value between the first electrode 11 and the second electrode 12 of the fuse element 30 of the protection element 1 was measured. Further, the time from when the electric power of 11 W and the electric power of 12 W was supplied to the third electrode 13 until the fuse element 30 was blown was measured. These results are shown in Table 1 along with the vertical and horizontal sizes of the fuse element 30 and the total width of the spaces 19a and 19b.
[実施例2]
 発熱体引出上面電極14aと導電部材15とを形成する代わりに、発熱体引出上面電極14dを形成したこと以外は、実施例1と同様にして第2実施形態に係る保護素子2を作製した。得られた保護素子2について、実施例1と同様に評価した。その結果を、表1に示す。
[Example 2]
The protective element 2 according to the second embodiment was produced in the same manner as in the first embodiment except that the heating element drawer upper surface electrode 14d was formed instead of forming the heating element drawer upper surface electrode 14a and the conductive member 15. The obtained protective element 2 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例3]
 実施例1と同じ材料を用いて第3実施形態に係る保護素子3を作製した。得られた保護素子3について、実施例1と同様に評価した。その結果を、表1に示す。
[Example 3]
The protective element 3 according to the third embodiment was manufactured using the same material as in Example 1. The obtained protective element 3 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[比較例1]
 図12に、比較例1で作製した保護素子の横断面図を示す。比較例1で作製した保護素子4は、以下の点が、実施例1で作製した保護素子1と異なる。
 第1上面電極11aの上面に第1絶縁部材17aを形成せず、第2上面電極12aの上面に第2絶縁部材17bを形成せずに、発熱体引出上面電極14aの周囲を導電部材15で被覆した。導電部材15の幅は実施例1の保護素子1と同じとした。また、導電部材15と第1上面電極11aとの空間19aの幅Waが0.25mmとなるように第1上面電極11aの位置を外側に0.5mmずらした。導電部材15と第2上面電極12aとの空間19bの幅Waが0.25mmとなるように第2上面電極12aの位置を外側に0.5mmずらした。これによって、空間19aと空間19bの合計幅(Wa+Wb)は、0.5mmで保護素子1と同じであるが、ヒューズエレメント30の幅は、3mmで、保護素子1よりも1mm広くなった。得られた保護素子4について、実施例1と同様に評価した。その結果を、表1に示す。
[Comparative Example 1]
FIG. 12 shows a cross-sectional view of the protective element produced in Comparative Example 1. The protective element 4 produced in Comparative Example 1 is different from the protective element 1 produced in Example 1 in the following points.
Without forming the first insulating member 17a on the upper surface of the first upper surface electrode 11a and forming the second insulating member 17b on the upper surface of the second upper surface electrode 12a, the conductive member 15 surrounds the heating element extraction upper surface electrode 14a. Covered. The width of the conductive member 15 was the same as that of the protective element 1 of the first embodiment. Further, the position of the first upper surface electrode 11a was shifted outward by 0.5 mm so that the width Wa of the space 19a between the conductive member 15 and the first upper surface electrode 11a was 0.25 mm. The position of the second upper surface electrode 12a was shifted outward by 0.5 mm so that the width Wa of the space 19b between the conductive member 15 and the second upper surface electrode 12a was 0.25 mm. As a result, the total width (Wa + Wb) of the space 19a and the space 19b is 0.5 mm, which is the same as that of the protective element 1, but the width of the fuse element 30 is 3 mm, which is 1 mm wider than that of the protective element 1. The obtained protective element 4 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~3の保護素子1~3は、比較例1の保護素子4と比較して第1電極11と第2電極12と間の抵抗値が小さくなった。これは、ヒューズエレメント30の幅が狭く、第1電極11と第2電極12と間の距離が短くなったためであると考えられる。 As shown in Table 1, the protective elements 1 to 3 of Examples 1 to 3 had a smaller resistance value between the first electrode 11 and the second electrode 12 than the protective element 4 of Comparative Example 1. It is considered that this is because the width of the fuse element 30 is narrow and the distance between the first electrode 11 and the second electrode 12 is shortened.
 また、発熱体引出上面電極14aと導電部材15とを分けて形成する代わりに、発熱体引出上面電極14dを形成した実施例2の保護素子2は、第3電極13に電流を流したときの溶断時間が実施例1の保護素子1と比較して短くなり、溶断速度がより速くなった。
 発熱体20を絶縁基板10の上面10a側に配置した実施例3の保護素子3は、第3電極13に電流を流したときの溶断時間が実施例2の保護素子2と比較して短くなり、溶断速度がさらに速くなった。
Further, instead of forming the heating element extraction upper surface electrode 14a and the conductive member 15 separately, the protection element 2 of Example 2 in which the heating element extraction upper surface electrode 14d is formed is when a current is passed through the third electrode 13. The fusing time was shorter than that of the protective element 1 of Example 1, and the fusing speed was higher.
The protective element 3 of the third embodiment in which the heating element 20 is arranged on the upper surface 10a side of the insulating substrate 10 has a shorter fusing time when a current is passed through the third electrode 13 as compared with the protective element 2 of the second embodiment. , The fusing speed has become even faster.
 1、2、3 保護素子
 10 絶縁基板
 10a 上面
 10b 下面
 11 第1電極
 11a 第1上面電極
 11b 第1下面電極
 11c 第1導通部
 12 第2電極
 12a 第2上面電極
 12b 第2下面電極
 12c 第2導通部
 13 第3電極
 13b 第3下面電極
 13c 第3導通部
 14 発熱体引出電極
 14a、14d 発熱体引出上面電極
 14b 発熱体引出下面電極
 14c 発熱体引出電極導通部
 15 導電部材
 17a 第1絶縁部材
 17b 第2絶縁部材
 18a 第1端子
 18b 第2端子
 19a、19b 空間
 20 発熱体
 21 断熱部材
 30 ヒューズエレメント
 30a、30b 端部
 30c 中央部
 31 ヒューズエレメント溶融固化物
 32 はんだペースト
1, 2, 3 Protective elements 10 Insulated substrate 10a Upper surface 10b Lower surface 11 First electrode 11a First upper surface electrode 11b First lower surface electrode 11c First conductive part 12 Second electrode 12a Second upper surface electrode 12b Second lower surface electrode 12c Second Conductive part 13 3rd electrode 13b 3rd lower surface electrode 13c 3rd conductive part 14 Heat generating element drawer electrode 14a, 14d Heat generating body drawer upper surface electrode 14b Heat generating body drawer lower surface electrode 14c Heat generating body drawer electrode Conductive part 15 Conductive member 17a 1st insulating member 17b 2nd Insulation Member 18a 1st Terminal 18b 2nd Terminal 19a, 19b Space 20 Heat Heater 21 Insulation Member 30 Fuse Element 30a, 30b End 30c Central 31 Fuse Element Molten Solidified 32 Solder Paste

Claims (2)

  1.  絶縁基板と、
     前記絶縁基板の一方の表面上に、互いに対向するように設けられた第1電極および第2電極と、
     前記絶縁基板の一方の表面上に設けられた発熱体と、
     前記発熱体の一方の端部に接続する第3電極と、
     前記発熱体の前記一方の端部とは反対側の端部に接続する発熱体引出電極と、
     互いに対向する一方の端部が前記第1電極と接続し、他方の端部が前記第2電極と接続し、前記一方の端部と前記他方の端部との間の中央部が前記発熱体引出電極に接するヒューズエレメントと、を備え、
     前記第1電極は、前記第2電極に対向する側面と、その側面に接続する上面の少なくとも一部が第1絶縁部材で被覆され、
     前記第2電極は、前記第1電極に対向する側面と、その側面に接続する上面の少なくとも一部が第2絶縁部材で被覆されている保護素子。
    Insulated substrate and
    A first electrode and a second electrode provided on one surface of the insulating substrate so as to face each other,
    A heating element provided on one surface of the insulating substrate and
    A third electrode connected to one end of the heating element and
    A heating element extraction electrode connected to an end of the heating element opposite to the one end,
    One end facing each other is connected to the first electrode, the other end is connected to the second electrode, and the central portion between the one end and the other end is the heating element. Equipped with a fuse element in contact with the extraction electrode,
    At least a part of the side surface of the first electrode facing the second electrode and the upper surface connected to the side surface is covered with the first insulating member.
    The second electrode is a protective element in which at least a part of a side surface facing the first electrode and an upper surface connected to the side surface is covered with a second insulating member.
  2.  前記発熱体引出電極が、第1絶縁部材および第2絶縁部材の上面にまで延長されている請求項1に記載の保護素子。 The protective element according to claim 1, wherein the heating element extraction electrode is extended to the upper surfaces of the first insulating member and the second insulating member.
PCT/JP2020/032363 2019-09-04 2020-08-27 Protective element WO2021044939A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227006525A KR20220035499A (en) 2019-09-04 2020-08-27 protection element
CN202080060906.6A CN114303219B (en) 2019-09-04 2020-08-27 Protection element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019161178A JP7393898B2 (en) 2019-09-04 2019-09-04 protection element
JP2019-161178 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021044939A1 true WO2021044939A1 (en) 2021-03-11

Family

ID=74849233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032363 WO2021044939A1 (en) 2019-09-04 2020-08-27 Protective element

Country Status (5)

Country Link
JP (1) JP7393898B2 (en)
KR (1) KR20220035499A (en)
CN (1) CN114303219B (en)
TW (1) TW202115979A (en)
WO (1) WO2021044939A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167069A1 (en) * 2022-03-02 2023-09-07 デクセリアルズ株式会社 Protective element
WO2023248787A1 (en) * 2022-06-22 2023-12-28 デクセリアルズ株式会社 Protective element, and protective element manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190707A1 (en) 2021-03-12 2022-09-15 テルモ株式会社 Catheter and balloon catheter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002030A (en) * 2013-06-13 2015-01-05 デクセリアルズ株式会社 Protection element, mounting body mounting protection element
JP2017174592A (en) * 2016-03-23 2017-09-28 デクセリアルズ株式会社 Protection element
JP2018092892A (en) * 2016-11-29 2018-06-14 デクセリアルズ株式会社 Protection element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132395B2 (en) * 1999-04-30 2008-08-13 ソニーケミカル&インフォメーションデバイス株式会社 Protective element
JP6102266B2 (en) * 2013-01-11 2017-03-29 株式会社村田製作所 fuse
JP6171500B2 (en) 2013-04-03 2017-08-02 株式会社村田製作所 fuse
JP2016018683A (en) * 2014-07-08 2016-02-01 デクセリアルズ株式会社 Protection element
JP6343201B2 (en) * 2014-08-04 2018-06-13 デクセリアルズ株式会社 Short circuit element
JP2016134317A (en) * 2015-01-20 2016-07-25 デクセリアルズ株式会社 Fuse element and circuit module
JP6797565B2 (en) * 2015-12-18 2020-12-09 デクセリアルズ株式会社 Fuse element
JP6707428B2 (en) * 2016-09-16 2020-06-10 デクセリアルズ株式会社 Fuse element, fuse element, protection element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002030A (en) * 2013-06-13 2015-01-05 デクセリアルズ株式会社 Protection element, mounting body mounting protection element
JP2017174592A (en) * 2016-03-23 2017-09-28 デクセリアルズ株式会社 Protection element
JP2018092892A (en) * 2016-11-29 2018-06-14 デクセリアルズ株式会社 Protection element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167069A1 (en) * 2022-03-02 2023-09-07 デクセリアルズ株式会社 Protective element
WO2023248787A1 (en) * 2022-06-22 2023-12-28 デクセリアルズ株式会社 Protective element, and protective element manufacturing method

Also Published As

Publication number Publication date
KR20220035499A (en) 2022-03-22
CN114303219B (en) 2024-05-28
TW202115979A (en) 2021-04-16
JP2021039903A (en) 2021-03-11
CN114303219A (en) 2022-04-08
JP7393898B2 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2021044939A1 (en) Protective element
TWI390568B (en) Protection element
KR100478316B1 (en) Protective element
JP6214318B2 (en) Current fuse
JP3640146B2 (en) Protective element
JP2004185960A (en) Circuit protection element and its manufacturing method
CN109074988B (en) Protective element
WO2019138752A1 (en) Fuse element
JP2010165685A (en) Protection element, and battery pack
WO2021039426A1 (en) Fuse element, fuse device, and protection device
TWI731050B (en) Protection element
TWI676202B (en) Protective component
JP5550471B2 (en) Ceramic fuse and ceramic fuse package
JP2014044955A (en) Protection element, and battery pack
JP2012059719A (en) Protection element, and battery pack
JP7433783B2 (en) Fuse elements, fuse elements and protection elements
WO2022039136A1 (en) Fuse element, fuse device and protection device
JP6959964B2 (en) Protective element
KR101843252B1 (en) Chip resistor and chip resistor assembly
TW202301398A (en) Fuse element, fuse device and protective element
JP2013178939A (en) Current fuse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227006525

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860298

Country of ref document: EP

Kind code of ref document: A1