WO2021044786A1 - Workpiece manufacturing method and manufacturing device, and fused-sheet body manufacturing method and manufacturing device - Google Patents

Workpiece manufacturing method and manufacturing device, and fused-sheet body manufacturing method and manufacturing device Download PDF

Info

Publication number
WO2021044786A1
WO2021044786A1 PCT/JP2020/029681 JP2020029681W WO2021044786A1 WO 2021044786 A1 WO2021044786 A1 WO 2021044786A1 JP 2020029681 W JP2020029681 W JP 2020029681W WO 2021044786 A1 WO2021044786 A1 WO 2021044786A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
workpiece
pulse signal
pulse
manufacturing
Prior art date
Application number
PCT/JP2020/029681
Other languages
French (fr)
Japanese (ja)
Inventor
良彦 近藤
伸二 浜本
康至 今井
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN202080059129.3A priority Critical patent/CN114269306B/en
Publication of WO2021044786A1 publication Critical patent/WO2021044786A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method

Definitions

  • the present invention relates to a manufacturing method and a manufacturing apparatus for a workpiece, and a manufacturing method and a manufacturing apparatus for a sheet fused body.
  • a technique of irradiating a work piece with a laser beam from a fixed light source to perform various processing on the work piece For example, in Patent Document 1, a scan head that irradiates a processing position of a work piece with a laser beam to perform predetermined processing, and a machining position are obtained from the type of the work piece identified by the identification means, and a trigger signal generating means.
  • a laser machining system including a scan head controller that corrects a machining position based on a transport speed of a transport means detected via a speed detection means and controls the scan head is disclosed. ..
  • Patent Document 2 discloses a laser processing apparatus that processes a processing pattern by irradiating a processing object being transferred by a transfer means with a laser beam in consideration of a change in the transfer speed.
  • the processing operation is started based on the detection of the processing object by the object detecting means provided on the upstream side in the transport direction from the processing position.
  • This processing apparatus includes a response time setting means for setting the response delay time of the object detecting means, a response time correcting means for correcting the position of the machining pattern according to the movement amount of the machining object, and a transport for detecting the transport speed. It is also disclosed in the same document that the position of the machining pattern can be corrected according to the transport speed of the object to be machined by providing the speed detecting means.
  • the present invention relates to a method for manufacturing a workpiece, which processes the workpiece by irradiating the workpiece transported along the transport surface while scanning a laser beam emitted from a fixed light source. ..
  • a counting time based on a response delay time from the detection of the transport position of the work piece by a sensor located upstream of the machining start position to the start of machining of the work piece is performed in advance. Set it. Then, the number of first pulse signals input within the counting time is counted in a state where the pulse signal corresponding to the transport position of the workpiece is generated. Then, a trigger signal is generated based on the transport position information of the workpiece obtained by the sensor.
  • the number of second pulse signals input after the trigger signal is generated is counted, and the total number of signals of the first pulse signal and the second pulse signal becomes equal to or more than a preset number of signals. At that time, the processing of the work piece is started.
  • the present invention also relates to a manufacturing apparatus for processing a workpiece to be transported along a transport surface by irradiating the workpiece while scanning a laser beam emitted from a fixed light source.
  • the manufacturing apparatus includes a pulse signal generating means for generating a pulse signal according to a transfer position of the workpiece. Further, the manufacturing apparatus is located on the upstream side in the transport direction from the machining start position, and includes a sensor that detects the transport position of the workpiece. Further, the manufacturing apparatus includes a counting time setting means for setting a counting time based on a response delay time from the detection of the transport position of the workpiece by the sensor to the start of machining of the workpiece.
  • the manufacturing apparatus includes a trigger signal generating means for generating a trigger signal based on the transport position information obtained by the sensor. Further, the manufacturing apparatus includes pulse counting means for counting the number of first pulse signals generated within the counting time and the number of second pulse signals generated after the trigger signal is generated. Further, the manufacturing apparatus includes a command means for instructing the start of machining of the workpiece based on the signal from the pulse counting means.
  • the present invention is emitted from a light source fixed to the sheet laminate while transporting a strip-shaped sheet laminate in which a plurality of sheets containing a resin material at least partially are stacked along a transport surface.
  • the present invention relates to a method for producing a sheet fused body having a sealed edge portion fused in a state where the edge portions of a plurality of sheets are overlapped by irradiating the sheet laminated body while scanning a laser beam.
  • the counting time based on the response delay time from the detection of the transport position of the sheet laminate by the sensor located on the upstream side in the transport direction from the machining start position to the start of machining of the sheet laminate is set in advance. Set it.
  • the number of first pulse signals input within the counting time is counted in a state where the pulse signals corresponding to the transport positions of the sheet laminates are generated. Then, a trigger signal is generated based on the transport position information of the sheet laminate obtained by the sensor. Then, the number of second pulse signals input after the trigger signal is generated is counted. Then, when the total number of signals of the counted first pulse signal number and the second pulse signal number becomes equal to or more than a preset number of signals, the processing of the sheet laminate is started.
  • the present invention is emitted from a light source fixed to the sheet laminate while transporting a strip-shaped sheet laminate in which a plurality of sheets containing a resin material at least partially are stacked along a transport surface.
  • the present invention relates to an apparatus for producing a sheet fused body having a sealed edge portion fused in a state where the edge portions of a plurality of sheets are overlapped by irradiating the sheet laminated body while scanning a laser beam.
  • the manufacturing apparatus includes a pulse signal generating means for generating a pulse signal according to a transport position of the sheet laminate. Further, the manufacturing apparatus includes a sensor located upstream of the processing start position in the transport direction and detecting the transport position of the sheet laminate.
  • the manufacturing apparatus includes a counting time setting means for setting a counting time based on a response delay time from the detection of the transport position of the sheet laminated body by the sensor to the start of processing of the sheet laminated body. Further, the manufacturing apparatus includes a trigger signal generating means for generating a trigger signal based on the transport position information obtained by the sensor. Further, the manufacturing apparatus includes pulse counting means for counting the number of first pulse signals generated within the counting time and the number of second pulse signals generated after the trigger signal is generated. Further, the manufacturing apparatus includes a command means for instructing the start of processing of the sheet laminate based on the signal from the pulse counting means.
  • FIG. 1 is a perspective view schematically showing a part of a process of a method for manufacturing a pants-type disposable diaper as an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an embodiment of a manufacturing apparatus preferably used for carrying out the present invention.
  • FIG. 3 is a schematic view of a main part in FIG.
  • FIG. 4 is a schematic view showing a control method of the manufacturing apparatus shown in FIG.
  • FIG. 5 is a schematic diagram showing a time chart in the control method of the manufacturing apparatus shown in FIG.
  • a method and an apparatus for manufacturing a work piece and a method and a method for manufacturing a sheet fusion body, which can process the work piece with high accuracy even when the transfer speeds of the work piece are different.
  • the device Regarding the device.
  • FIG. 1 shows an example in which the method of the present invention is applied to the production of a pants-type disposable diaper, which is an example of a sheet fusion body.
  • an exterior body having a pair of side seal portions is provided as a sheet fusion body, that is, a sheet fusion body having a seal edge portion fused in a state where the edges of a plurality of sheets are overlapped.
  • the present invention will be described by taking a pants-type disposable diaper as an example.
  • a step of manufacturing a diaper continuous body 10A including a strip-shaped sheet laminate 10 and a manufacturing apparatus (laser type processing apparatus) 20 shown in FIG. 2 are used.
  • a pants-type disposable diaper can be manufactured by a manufacturing method including a step of dividing the diaper continuum 10A into individual diapers 1 by fusing.
  • the sheet laminate 10 is formed by stacking a plurality of sheets containing a resin material at least in part.
  • the diaper 1 has a pair of side seal portions 4 and 4.
  • the diaper continuum 10A has a structure in which a plurality of disposable diapers are connected, and more specifically, a precursor of a pants-type disposable diaper in which a side seal portion is not formed is connected in one direction. There is.
  • the strip-shaped outer layer sheet 31 continuously supplied from the raw fabric roll (not shown) and the original fabric roll (not shown) are continuously supplied.
  • a plurality of elastic members 5, 6 and 7 forming waist gathers, waist gathers and leg gathers are arranged between the strip-shaped inner layer sheet 32 in an elongated state extended to a predetermined elongation rate.
  • the elastic member 7 is arranged while forming a predetermined leg circumference pattern via a known swing guide (not shown) that reciprocates in orthogonal to the flow direction of the sheet.
  • the strip-shaped outer layer sheet 31 and the strip-shaped inner layer sheet 32 are hot-heated by an adhesive coating machine (not shown) at a predetermined portion on the facing surface of at least one of the sheets 31 and 32 before they are overlapped. Apply melt adhesive. Hot melt type adhesives may be intermittently applied to each of the elastic members 5 and 6 by an adhesive coating machine (not shown) before being arranged between the sheets 31 and 32.
  • a band-shaped outer layer sheet 31 and a band-shaped inner layer sheet 32 in which the elastic members 5, 6 and 7 are sandwiched between the pair of nip rolls 11 and 11 are fed and pressurized.
  • a strip-shaped exterior body 3 in which a plurality of elastic members 5, 6 and 7 are arranged in an extended state is formed between the strip-shaped sheets 31 and 32.
  • a plurality of joints (not shown) for joining the strip-shaped outer layer sheet 31 and the strip-shaped inner layer sheet 32 between two adjacent elastic members 6 and 6, for example, a convex roll 12 and an anvil roll 13 are provided. It is formed by using the provided joining means.
  • the plurality of elastic members 6 and 7 are pressed and contracted, respectively, in accordance with the position where the absorbent main body 2 described later is arranged. Divide into multiple pieces so that the function is not exhibited.
  • an adhesive such as a hot melt type adhesive is previously applied to the absorbent main body 2 manufactured in another step, and the absorbent main body 2 is coated with an inner layer constituting the strip-shaped exterior body 3. It is intermittently supplied and fixed on the sheet 32. Then, a leg hole LO'is formed inside the annular portion surrounded by the elastic member 7 in an annular shape.
  • This leg hole forming step can be carried out by using a method similar to the method in the conventional method for manufacturing this kind of article such as a rotary cutter and a laser cutter.
  • the strip-shaped exterior body 3 is folded in the width direction (direction orthogonal to the transport direction K of the exterior body 3). More preferably, as shown in FIG. 1, both side portions 3a and 3a of the strip-shaped exterior body 3 along the transport direction K are folded back so as to cover both ends in the longitudinal direction of the absorbent main body 2 to cover the longitudinal length of the absorbent main body 2. After fixing both ends in the direction, the exterior body 3 is folded in half in the width direction together with the absorbent body 2. In this way, the diaper continuum 10A as the sheet laminated body 10 is obtained.
  • the diaper continuum 10A thus obtained is conveyed to the laser processing apparatus 20.
  • the laser processing apparatus 20 has a first surface 21a facing outward and a second surface 21b located on the opposite side thereof and facing inward, and has a strip shape in which a plurality of sheets are stacked.
  • the sheet laminated body 10 is provided with a cylindrical cylindrical roll 21 that conveys the sheet laminated body 10 by rotating the sheet laminated body 10 in one direction while supporting the sheet laminated body 10 on the first surface 21a in the longitudinal direction thereof.
  • the laser processing apparatus 20 includes a laser light irradiation unit 35 capable of scanning the laser light on the second surface 21b side.
  • the laser processing apparatus 20 faces the sheet laminate 10 supported on the first surface 21a with the first surface 21a while moving in the rotation direction K of the cylindrical roll 21 in synchronization with the rotation of the cylindrical roll 21. It is provided with a plurality of pressurizing heads 26 that press from the side to be pressed toward the first surface 21a side.
  • the strip-shaped sheet laminate 10 is supported on the first surface 21a as a diaper continuum 10A in which the absorbent body 2 is intermittently arranged, and is conveyed by the cylindrical roll 21.
  • the diaper continuum 10A is turned around by the introduction roll 28 and introduced onto the first surface 21a. Then, in a state where the diaper continuum 10A is supported on the first surface 21a of the cylindrical roll 21, the diaper continuum 10A is processed by a laser beam 30, and the diaper 1 obtained thereby provides the guide roll 29. Then, it is sent out of the device 20.
  • the diaper continuous body 10A as the sheet laminated body 10 is the workpiece
  • the first surface 21a of the cylindrical roll 21 is the transport surface of the workpiece
  • the transport surface is the peripheral surface of the cylinder. It is formed in the shape of a curved surface.
  • the cylindrical roll 21 has a plurality of pressure portion support members 121 intermittently provided in the circumferential direction of the cylindrical roll 21 on its peripheral surface portion.
  • the pressurizing portion support member 121 forms a part of the peripheral surface portion of the cylindrical roll 21, and is formed of a metal material such as iron, aluminum, stainless steel, or copper, or a heat-resistant material such as ceramics.
  • the pressurizing portion support member 121 has a slit-shaped support member side opening 27 through which the laser beam 30 irradiated from the second surface 21b side can pass.
  • the support member side opening 27 is a slit-shaped opening extending in a direction intersecting the circumferential direction of the cylindrical roll 21, and functions as a laser light transmitting portion.
  • the support member side opening 27 has a rectangular shape in a plan view, and its longitudinal direction coincides with the width direction of the strip-shaped sheet laminate 10 and the diaper continuous body 10A, preferably.
  • the cylindrical roll 21 extends in a direction parallel to the axial length direction of the rotation axis.
  • a plurality of support member side openings 27 are provided at predetermined intervals in the circumferential direction of the cylindrical roll 21.
  • the pressurizing head 26 presses the strip-shaped sheet laminate 10, that is, the diaper continuum 10A, which is the object of fusing, toward the cylindrical roll 21 at a position corresponding to the above-mentioned support member side opening 27. Used.
  • the pressurizing head 26 is arranged at a position on the first surface 21a side of the cylindrical roll 21. Specifically, the pressurizing head 26 presses the diaper continuum 10A supported on the support member side opening 27 of the pressurizing portion support member 121 toward the support member side opening 27 side. It is used, and one pressurizing head 26 is provided for one support member side opening 27.
  • a plurality of pressurizing heads 26 are arranged. Each pressurizing head 26 has a rotating shaft on an extension of the rotating shaft of the cylindrical roll 21, and is arranged on the peripheral surface of the second cylindrical roll 25 arranged adjacent to the cylindrical roll 21. The second cylindrical roll 25 rotates in synchronization with the cylindrical roll 21.
  • each pressurizing head 26 moves in the rotational direction of the cylindrical roll 21 in synchronization with the rotation of the cylindrical roll 21, and the outer periphery of the cylindrical roll 21 is moved. It is possible to orbit along the peripheral surface of the cylindrical roll 21 in the same direction as the rotation direction of the pressurizing portion support member 121 constituting the portion and at the same speed as the angular velocity of the pressurizing portion support member 121. Further, each pressurizing head 26 is supported by a support portion 24, and can be brought into contact with and separated from the first surface 21a.
  • the laser light irradiation unit 35 includes a galvano scanner that freely scans the laser light 30. As shown in FIG. 3, the laser beam irradiation unit 35 supports the first mechanism 35a for advancing and retreating the laser beam 30 in a direction parallel to the rotation axis of the cylindrical roll 21, and the laser beam 30 is supported on the first surface 21a of the cylindrical roll 21.
  • the second mechanism 35b that moves the position (irradiation point) corresponding to the sheet laminated body (not shown) of the continuous diaper body in the circumferential direction of the cylindrical roll 21, and the spot of the laser beam 30 on the peripheral surface of the cylindrical roll 21. It is provided with an adjusting mechanism 35c that keeps the diameter constant.
  • the adjusting mechanism 35c includes a condenser lens.
  • the processing start position of the sheet laminate 10 can be controlled in the manner shown in FIG. 4, for example.
  • arrows indicate the flow of signal transmission / reception.
  • the cylindrical roll 21 is rotated in one direction (conveyance direction K) by the servomotor 40.
  • the servomotor 40 is adapted to generate a pulse-shaped encoder signal Se at predetermined intervals according to the rotation position of the cylindrical roll 21, and the encoder signal Se is received by the gate means 41.
  • the number of pulses of the encoder signal Se counted within a predetermined time increases or decreases according to the rotation speed of the cylindrical roll 21.
  • the rotation speed of the cylindrical roll 21 corresponds to the transport position of the workpiece. That is, the servomotor 40 is an example of a pulse signal generating means that generates a pulse signal according to the transport position of the workpiece.
  • a proximity sensor 42 is installed at a position of the cylindrical roll 21 facing the first surface 21a.
  • the proximity sensor 42 is located upstream of the machining start position, that is, the laser irradiation position on the workpiece in the transport direction K.
  • the proximity sensor 42 can detect that the workpiece being transported has been transported to a predetermined position by detecting a dog (not shown) attached to the cylindrical roll 21.
  • the proximity sensor 42 further includes a trigger signal generating means (not shown).
  • the trigger signal St is generated when the proximity sensor 42 detects the dog, and the generated trigger signal St is received by the logic circuit 45.
  • the logic circuit 45 can receive the correction pulse signal Sa generated based on the counting time Td in addition to receiving the trigger signal St.
  • the logic circuit 45 is an OR circuit, and can generate a measurement start signal Sm by either receiving a trigger signal St or receiving a correction pulse signal Sa.
  • the measurement start signal Sm is received by the gate means 41.
  • the correction pulse signal Sa can be generated, for example, by the correction pulse generation means 45a that converts the counting time Td into the correction pulse signal Sa.
  • the counting time Td starts the machining of the workpiece from the detection of the position of the workpiece being conveyed by the proximity sensor 42 by preliminarily operating the manufacturing apparatus before actually starting the machining of the workpiece.
  • the counting time Td can be set within the range of the response delay time or less, with the response delay time as the upper limit.
  • the gate means 41 By receiving both the measurement start signal Sm and the encoder signal Se, the gate means 41 outputs the encoder signal Se input while the measurement start signal Sm is being received as the measurement pulse signal Pm, and outputs this output.
  • the signal can be received by the pulse counting means 46. That is, the gate means 41 is an AND logic circuit.
  • the pulse counting means 46 measures the number of pulses of the measured pulse signal Pm. A signal based on the number of pulses of the measured pulse signal Pm measured by the pulse counting means 46 can be received by the counting value determining means 47. When the number of signals of the measurement pulse signal Pm exceeds the preset number of signals, the counting value determining means 47 outputs a signal to the command means 50 for instructing the start of machining of the workpiece. When the command means 50 receives the signal from the count value determination means 47, the command means 50 outputs the machining start signal Sp to the optical scanning means 35g.
  • the optical scanning means 35g is connected to a machining information setting means 35h that sets the thickness, transport speed, machining position, etc.
  • the laser light irradiation unit 35 is driven to irradiate the workpiece with the laser light 30 for a predetermined time while scanning the laser light 30.
  • the servomotor 40 generates an encoder signal Se according to the rotation position of the cylindrical roll 21.
  • This encoder signal Se is a pulse signal in which the signal is repeatedly turned on and off for a certain moving distance according to the rotation of the cylindrical roll, that is, the position of the workpiece being conveyed, and the signal is the gate means. It is continuously received by 41.
  • the number of rotations of the cylindrical roll 21 is high, that is, when the transfer speed of the workpiece is high, the signal on / off interval of the encoder signal Se becomes short.
  • the rotation speed of the cylindrical roll 21 is low, that is, when the transport speed of the workpiece is slowed down, the signal on / off interval in the encoder signal Se becomes long.
  • the program start signal (not shown) is, for example, an upstream sensor (not shown) that is arranged upstream of the proximity sensor 42 in the transport direction and is attached to the cylindrical roll 21 and capable of detecting the dog. It is arranged separately from 42 and generated as a start trigger signal (not shown) from the upstream sensor, or the next trigger is generated from the machining end signal generated when machining of the previous workpiece is completed.
  • the signal St By the time the signal St is input, it can be input to the correction pulse generation means 45a.
  • the correction pulse signal Sa is transmitted from the correction pulse generation means 45a to the logic circuit 45 based on the preset counting time Td.
  • the time during which the correction pulse signal Sa is turned on is equal to the counting time Td.
  • the logic circuit 45 that has received the correction pulse signal Sa outputs the measurement start signal Sm to the gate means 41.
  • the gate means 41 receives both the measurement start signal Sm and the encoder signal Se. Therefore, the encoder signal Se input while the measurement start signal Sm is being received is used as the measurement pulse signal. It is output to the pulse counting means 46 as a first pulse signal Pm1. This output signal is received by the pulse counting means 46, the number of signals (number of pulses) of the first pulse signal Pm1 is counted, and the number of signals is stored.
  • the correction pulse signal Sa is stopped, the output of the measurement start signal Sm is also stopped.
  • the trigger signal St is generated from the trigger signal generation means in the proximity sensor 42 and transmitted to the logic circuit 45.
  • the logic circuit 45 receives the trigger signal St
  • the logic circuit 45 outputs the measurement start signal Sm to the gate means 41.
  • the gate means 41 that has received the measurement start signal Sm and the encoder signal Se outputs the input encoder signal Se to the pulse counting means 46 as the second pulse signal Pm2 that is the measurement pulse signal.
  • This output signal is received by the pulse counting means 46, the number of signals (number of pulses) of the second pulse signal Pm2 is counted, and the number of signals is stored.
  • the on / off of the trigger signal St can be controlled according to the transport speed of the workpiece so that it is turned on, for example, when a dog is detected and turned off before the next dog is detected. ..
  • the total number of signals of the first pulse signal Pm1 and the second pulse signal Pm2 counted by the pulse counting means 46 is compared with the preset threshold signal number.
  • the number of threshold signals can be set in advance by manually inputting the number of signals estimated from the resolution of the product or encoder signal from the outside via, for example, the threshold signal number setting means 47a.
  • the total number of signals is compared with the number of threshold signals, and if the total number of signals does not reach the number of threshold signals, the counting of the second pulse signal Pm2 is continued. Further, the total number of signals is compared with the number of threshold signals, and when the total number of signals is equal to or greater than the number of threshold signals, a signal is transmitted from the pulse counting means 46 to the command means 50.
  • the command means 50 Upon receiving the signal, the command means 50 transmits a machining start signal Sp toward the optical scanning means 35g, thereby driving the laser beam irradiation unit 35 to start machining the workpiece by irradiation with the laser beam. After irradiating the laser beam for a certain period of time, the machining start signal Sp is turned off, and the machining end signal is generated from the command means 50 to the optical scanning means 35 g, and the machining of the workpiece, that is, the irradiation of the laser beam is stopped. Let me. The work piece can be processed through the above steps. After that, the above-mentioned steps are repeated.
  • the time from the output of the trigger signal St to the transmission of the machining start signal Sp is set as the time T1, and after the optical scanning means 35g receives the machining start signal Sp, the laser irradiation is actually performed.
  • the time until the start of machining is set to time T2 and the transport speed of the workpiece is high, the number of signals of the first pulse signal Pm1 measured at the counting time Td increases.
  • the number of signals of the second pulse signal Pm2 measured until the number of preset threshold signals is reached is smaller than that in the case where the transport speed is slow. That is, the time T1 from the output of the trigger signal St to the transmission of the machining start signal Sp is shorter than that in the case where the transfer speed of the workpiece is slow.
  • the transport distance of the workpiece to be transported after a certain period of time elapses becomes longer than when the transport speed is slow, so that during the time T2.
  • the transport distance of the work piece to be transported to is increased.
  • the time from the output of the trigger signal St input from the proximity sensor 42 to the actual start of machining That is, it is represented by the sum of time T1 and time T2.
  • this is also referred to as "time T1 + T2"
  • the total number of pulse signals measured is actually laser processing started from the output of the trigger signal St.
  • the "substantially the same time” is not limited to the case where the counting time Td is set or controlled at the same time as the time T2, and the counting time Td is set or controlled within a predetermined time range based on the time T2.
  • the purpose is to allow that. That is, if the difference between the counting time Td and the time T2 is within a specific time range, the effect of the present invention is sufficiently exhibited.
  • the range of time allowed as “substantially the same time” can be appropriately set or controlled according to the transport speed of the workpiece and the target machining accuracy.
  • the workpiece is 50 m / min or more and 200 m or more.
  • the time T2 is 0.005 sec, and the required accuracy is 0.3 mm
  • the number of signals of the first pulse signal Pm1 measured at the counting time Td decreases, so that the number of signals measured before reaching the preset threshold signal number is reached.
  • the number of signals of the pulse signal Pm2 of 2 is larger than that in the case where the transport speed is high. That is, the time T1 from the output of the trigger signal St to the transmission of the machining start signal Sp is longer than that in the case where the transfer speed of the workpiece is high, so that it is on the downstream side in the transfer direction of the workpiece.
  • the machining start signal Sp will be transmitted at the position.
  • the transport speed of the workpiece is slow, the transport distance of the workpiece to be transported within a certain period of time is shorter than that when the transport speed is high, so that during the time T2.
  • the transport distance of the workpiece to be transported is shortened.
  • the transport speed of the workpiece is slow, by setting or controlling the counting time Td so as to be substantially the same time as the time T2, from the output of the trigger signal St input from the proximity sensor 42. Since the total number of pulse signals measured during the time T1 + T2 until the actual start of machining substantially matches the moving distance of the machining start position in the workpiece that has moved during the time T1 + T2, the transport speed is increased. It can be controlled to be constant even if they are different.
  • the effect of the present invention can be sufficiently achieved if the "substantially the same time" in the present embodiment is set or controlled within the same range as when the counting time Td is high in the transport speed of the workpiece.
  • the counting time Td is set or controlled within the same range as when the counting time Td is high in the transport speed of the workpiece.
  • the total number of pulse signals measured during the time T1 + T2 is the trigger signal St.
  • the irradiation of the laser beam to the workpiece can be started from a specific position regardless of the increase or decrease in the rotation speed of the cylindrical roll 21, that is, regardless of the transport speed of the workpiece. Since it can be controlled, even if the transfer speed of the workpiece is different, the machining start position can be kept constant and the workpiece can be machined with high accuracy. Further, according to the above-mentioned control, since it is not necessary to perform coordinate conversion of the position information based on the encoder signal in order to make the machining start position constant, the control load on the machining apparatus itself can be reduced, and the workpiece can be processed. Can be processed at high speed.
  • the machining start position of the workpiece is the transport speed. This may change depending on the type of processing, or the load on the control system of the processing equipment may increase, which may be one of the factors that hinder high-speed and high-precision processing.
  • the transport surface of the work piece is not limited to a curved surface such as a cylindrical surface, and may be a flat surface.
  • the effect of the present invention becomes more remarkable.
  • the transport surface of the workpiece is a curved surface
  • more arithmetic processing had to be performed, and the load on the control system of the processing apparatus was significantly large.
  • the transport surface is a curved surface
  • laser light irradiation is performed while reducing the control load on the processing apparatus itself. Since the machining start position can be controlled to be constant, high-precision machining of the workpiece can be efficiently and continuously performed.
  • the sheet laminate 10 which is a precursor of a pants-type disposable diaper
  • the work piece to which the present invention is applied Is not limited to this, and any article that can be processed by irradiation with a laser beam can be applied to the present invention.
  • the present invention has been described above based on its preferred embodiment, the present invention is not limited to the above-described embodiment.
  • the position information of the sheet laminate 10 which is the work piece is acquired from the encoder signal from the servomotor 40, but instead of this, it is installed on the peripheral surface of the cylindrical roll 21.
  • the position information of the sheet laminated body 10 may be acquired based on the encoder signal from the linear encoder (not shown). It is advantageous to use a linear encoder installed on the peripheral surface of the cylindrical roll 21 because the accuracy of position detection of the sheet laminate 10 is further improved.
  • the present invention further discloses the following manufacturing method and manufacturing apparatus for the workpiece, and manufacturing method and manufacturing apparatus for the sheet fused body.
  • a method for manufacturing a work piece which comprises irradiating a work piece transported along a transport surface with a laser beam emitted from a fixed light source while scanning the work piece to process the work piece.
  • a counting time based on the response delay time from the detection of the transport position of the workpiece by the sensor located upstream of the machining start position to the start of machining of the workpiece is set in advance.
  • the number of first pulse signals input within the counting time is counted in a state where the pulse signal corresponding to the transport position of the workpiece is generated.
  • a trigger signal is generated based on the transport position information of the workpiece obtained by the sensor.
  • the number of second pulse signals input after the trigger signal is generated is counted, and the number of second pulse signals is counted.
  • a method for manufacturing a work piece which starts machining the work piece when the total number of signals of the first pulse signal number and the second pulse signal number becomes equal to or more than a preset number of signals.
  • a manufacturing apparatus for processing a work piece by irradiating the work piece transported along the transport surface while scanning a laser beam emitted from a fixed light source.
  • a pulse signal generating means for generating a pulse signal according to the transport position of the workpiece, and a pulse signal generating means.
  • a sensor located upstream of the machining start position in the transport direction and detecting the transport position of the workpiece,
  • a counting time setting means for setting a counting time based on a response delay time from the detection of the transport position of the workpiece by the sensor to the start of machining of the workpiece.
  • a trigger signal generating means for generating a trigger signal based on the transport position information obtained by the sensor, and a trigger signal generating means.
  • a pulse counting means for counting the number of first pulse signals generated within the counting time and the number of second pulse signals generated after the trigger signal is generated, respectively.
  • An apparatus for manufacturing a workpiece comprising a command means for instructing the start of machining of the workpiece based on a signal from the pulse counting means.
  • a correction pulse generating means for converting the counting time into a correction pulse signal and a logic circuit which is a means for receiving the trigger signal or the correction pulse signal are further provided.
  • the logic circuit is an OR circuit, and is a means capable of generating a measurement start signal for starting measurement of the first pulse signal number or the second pulse signal number by receiving the correction pulse signal or the trigger signal.
  • ⁇ 6> The description in any one of ⁇ 2> to ⁇ 5>, further comprising a threshold signal number setting means for setting a threshold signal number to be compared with the total signal number of the first pulse signal number and the second pulse signal number.
  • a threshold signal number setting means for setting a threshold signal number to be compared with the total signal number of the first pulse signal number and the second pulse signal number.
  • Work piece manufacturing equipment ⁇ 7>
  • a count value determining means for outputting a signal to the command means when the total number of signals of the first pulse signal number and the second pulse signal number becomes equal to or more than a preset number of signals is further provided.
  • the apparatus for manufacturing a workpiece according to any one of ⁇ 2> to ⁇ 6>.
  • ⁇ 8> While transporting a strip-shaped sheet laminate in which a plurality of sheets containing at least a resin material are stacked along a transport surface, the laser beam emitted from a fixed light source is scanned by the sheet laminate. It is a method of producing a sheet fusion body having a sealing edge portion fused in a state where the edges of a plurality of sheets are overlapped by irradiating while irradiating the sheet laminate.
  • a counting time based on the response delay time from the detection of the transport position of the sheet laminate by the sensor located upstream of the machining start position to the start of machining of the sheet laminate is set in advance. With the pulse signal generated according to the transport position of the sheet laminate, the number of first pulse signals input within the counting time is counted.
  • a trigger signal is generated based on the transport position information of the sheet laminate obtained by the sensor.
  • the number of second pulse signals input after the trigger signal is generated is counted and the total number of signals of the first pulse signal and the second pulse signal becomes equal to or more than a preset number of signals.
  • a method for manufacturing a sheet fused body which starts processing of the sheet laminated body.
  • ⁇ 9> While transporting a strip-shaped sheet laminate in which a plurality of sheets containing at least a resin material are stacked along a transport surface, the laser beam emitted from a fixed light source is scanned by the sheet laminate. It is an apparatus for producing a sheet fused body having a seal edge portion fused in a state where the edge portions of a plurality of sheets are overlapped by irradiating while irradiating the sheet laminated body.
  • a sensor located upstream of the machining start position in the transport direction and detecting the transport position of the sheet laminate, A counting time setting means for setting a counting time based on a response delay time from the detection of the transport position of the sheet laminated body by the sensor to the start of processing of the sheet laminated body.
  • a trigger signal generating means for generating a trigger signal based on the transport position information obtained by the sensor, and a trigger signal generating means.
  • a pulse counting means for counting the number of first pulse signals generated within the counting time and the number of second pulse signals generated after the trigger signal is generated, respectively.
  • a sheet fused body manufacturing apparatus including a command means for instructing the start of processing of a sheet laminated body based on a signal from the pulse counting means.
  • the counting time is set to be the time from the output of the machining start signal output when the total number of signals becomes equal to or greater than the preset number of signals to the start of machining of the workpiece.
  • the method for manufacturing a work piece ⁇ 11> The workpiece is configured to be machined based on the machining start signal output from the command means.
  • Work piece manufacturing equipment is set to be the time from the output of the machining start signal output when the total number of signals becomes equal to or greater than the preset number of signals to the start of machining of the workpiece.
  • the counting time is set to be the time from the output of the machining start signal output when the total number of signals becomes equal to or greater than the preset number of signals to the start of machining of the sheet laminate.
  • the method for producing a sheet fusion body ⁇ 13>
  • the sheet laminate is configured to be machined based on the machining start signal output from the command means.
  • the sheet fused body manufacturing apparatus according to ⁇ 9>, wherein in the counting time setting means, the time from the output of the machining start signal to the start of machining of the sheet laminate is set as the counting time.
  • ⁇ 14> Using an OR logic circuit that receives the correction pulse signal generated based on the counting time or the trigger signal, When the logic circuit receives the correction pulse signal or the trigger signal, the measurement start signal for starting the measurement of the first pulse signal number or the second pulse signal number is generated, and the first pulse signal number or the first pulse signal number or The method for producing a sheet fused body according to ⁇ 8> or ⁇ 12>, wherein the measurement of the number of second pulse signals is started. ⁇ 15> The method for manufacturing a sheet fused body according to ⁇ 14>, wherein when both the measurement start signal and the pulse signal are received, the first pulse signal or the second pulse signal is output as the measurement pulse signal.
  • ⁇ 16> Any of the above ⁇ 8>, ⁇ 12>, ⁇ 14>, or ⁇ 15> in which the number of threshold signals for comparison with the total number of signals of the first pulse signal and the second pulse signal is set.
  • the method for producing a sheet fused body according to Kaichi. ⁇ 17> The processing of the sheet laminate is started based on the processing start signal output when the total number of signals becomes equal to or more than the preset number of signals. 16> The method for producing a sheet fused body according to any one of.
  • the time from the output of the machining start signal output when the total number of signals becomes equal to or greater than the preset number of signals to the start of machining of the sheet laminate is set as the counting time, and in that state, the said The method for producing a sheet fused body according to any one of ⁇ 8>, ⁇ 12>, and ⁇ 14> to ⁇ 17>, wherein the processing of the sheet laminate is started based on the processing start signal.
  • the sheet fusion body in the manufacturing method according to any one of ⁇ 8>, ⁇ 12>, ⁇ 14> to ⁇ 18> is a pants-type disposable diaper. Pants-type disposable diapers manufactured by the above manufacturing method.
  • the workpiece can be machined with high accuracy even when the transport speeds of the workpieces are different.

Abstract

In a method according to the present invention, laser light emitted from a light source is projected and scanned onto a workpiece that is being conveyed along a conveyance surface, and as a result thereof, the workpiece is processed. First, a counting time period is set in advance on the basis of a response delay time period which is from the detection of a conveyance position of the workpiece by a sensor until the start of workpiece processing. Next, with pulse signals corresponding to the conveyance positions of the workpiece being generated, the number of first pulse signals inputted within the counting time period is counted. Furthermore, a trigger signal is generated on the basis of information about the conveyance position of the workpiece, said information being obtained by the sensor. Then the number of second pulse signals inputted after the generation of the trigger signal is counted. Finally, workpiece processing is started when the total signal count, which combines the numbers of first and second pulse signals, reaches or surpasses a preset signal count. The workpiece is preferably a sheet laminate.

Description

被加工物の製造方法及び製造装置、並びにシート融着体の製造方法及び製造装置Manufacturing method and manufacturing equipment for workpieces, and manufacturing method and manufacturing equipment for sheet fusion products
 本発明は、被加工物の製造方法及び製造装置、並びにシート融着体の製造方法及び製造装置に関する。 The present invention relates to a manufacturing method and a manufacturing apparatus for a workpiece, and a manufacturing method and a manufacturing apparatus for a sheet fused body.
 固定された光源から被加工物にレーザ光を照射して、該被加工物に種々の加工を施す技術が知られている。例えば特許文献1には、被加工物の加工位置にレーザビームを照射して所定の加工を行うスキャンヘッドと、識別手段により識別された被加工物の種別から加工位置を求め、トリガ信号発生手段からのトリガ信号により、加工位置を速度検出手段を介して検出された搬送手段の搬送速度に基づいて補正し、前記スキャンヘッドの制御を行うスキャンヘッドコントローラとを備えるレーザ加工システムが開示されている。 There is known a technique of irradiating a work piece with a laser beam from a fixed light source to perform various processing on the work piece. For example, in Patent Document 1, a scan head that irradiates a processing position of a work piece with a laser beam to perform predetermined processing, and a machining position are obtained from the type of the work piece identified by the identification means, and a trigger signal generating means. A laser machining system including a scan head controller that corrects a machining position based on a transport speed of a transport means detected via a speed detection means and controls the scan head is disclosed. ..
 また特許文献2には、搬送手段による搬送移動中の加工対象物にその搬送速度変化分を加味してレーザ光を照射して加工パターンを加工するレーザ加工装置が開示されている。この加工装置においては、加工位置よりも搬送方向上流側に設けられる対象物検出手段による前記加工対象物の検出に基づいて加工動作を開始するようになっている。この加工装置は、対象物検出手段の応答遅れ時間を設定する応答時間設定手段と、加工対象物の移動量に応じて加工パターンの位置を補正する応答時間補正手段と、搬送速度を検出する搬送速度検出手段とを備え、加工対象物の搬送速度に応じて加工パターンの位置を補正することができることも同文献には開示されている。 Further, Patent Document 2 discloses a laser processing apparatus that processes a processing pattern by irradiating a processing object being transferred by a transfer means with a laser beam in consideration of a change in the transfer speed. In this processing apparatus, the processing operation is started based on the detection of the processing object by the object detecting means provided on the upstream side in the transport direction from the processing position. This processing apparatus includes a response time setting means for setting the response delay time of the object detecting means, a response time correcting means for correcting the position of the machining pattern according to the movement amount of the machining object, and a transport for detecting the transport speed. It is also disclosed in the same document that the position of the machining pattern can be corrected according to the transport speed of the object to be machined by providing the speed detecting means.
特開平11-28588号公報Japanese Unexamined Patent Publication No. 11-28588 特開2009-6394号公報Japanese Unexamined Patent Publication No. 2009-6394
 本発明は、搬送面に沿って搬送される被加工物に、固定された光源から発せられたレーザ光を走査しながら照射して、該被加工物を加工する、被加工物の製造方法に関する。
 前記製造方法は、加工開始位置よりも搬送方向上流側に位置するセンサによる前記被加工物の搬送位置の検出から、前記被加工物の加工を開始するまでの応答遅れ時間に基づく計数時間を予め設定しておく。
 そして、前記被加工物の搬送位置に応じたパルス信号を発生させた状態で、前記計数時間内に入力される第1のパルス信号数を計数する。
 そして、前記センサによって得られた前記被加工物の搬送位置情報に基づいてトリガ信号を発生させる。
 そして、前記トリガ信号が発生した後に入力される第2のパルス信号数を計数し、第1のパルス信号数と第2のパルス信号数との合計信号数が、予め設定した信号数以上となったときに、該被加工物の加工を開始する。
The present invention relates to a method for manufacturing a workpiece, which processes the workpiece by irradiating the workpiece transported along the transport surface while scanning a laser beam emitted from a fixed light source. ..
In the manufacturing method, a counting time based on a response delay time from the detection of the transport position of the work piece by a sensor located upstream of the machining start position to the start of machining of the work piece is performed in advance. Set it.
Then, the number of first pulse signals input within the counting time is counted in a state where the pulse signal corresponding to the transport position of the workpiece is generated.
Then, a trigger signal is generated based on the transport position information of the workpiece obtained by the sensor.
Then, the number of second pulse signals input after the trigger signal is generated is counted, and the total number of signals of the first pulse signal and the second pulse signal becomes equal to or more than a preset number of signals. At that time, the processing of the work piece is started.
 また本発明は、搬送面に沿って搬送される被加工物に、固定された光源から発せられたレーザ光を走査しながら照射して、該被加工物を加工する製造装置に関する。
 前記製造装置は、前記被加工物の搬送位置に応じたパルス信号を発生するパルス信号発生手段を備える。
 また前記製造装置は、加工開始位置よりも搬送方向上流側に位置し、前記被加工物の搬送位置を検出するセンサを備える。
 また前記製造装置は、前記センサによる前記被加工物の搬送位置の検出から、前記被加工物の加工を開始するまでの応答遅れ時間に基づく計数時間を設定する計数時間設定手段を備える。
 また前記製造装置は、前記センサによって得られた搬送位置情報に基づいてトリガ信号を発生させるトリガ信号発生手段を備える。
 また前記製造装置は、前記計数時間内に発生した第1のパルス信号数と、前記トリガ信号が発生した後に発生した第2のパルス信号数とをそれぞれ計数するパルス計数手段を備える。
 また前記製造装置は、前記パルス計数手段からの信号に基づいて、被加工物の加工開始を指令する指令手段を備える。
The present invention also relates to a manufacturing apparatus for processing a workpiece to be transported along a transport surface by irradiating the workpiece while scanning a laser beam emitted from a fixed light source.
The manufacturing apparatus includes a pulse signal generating means for generating a pulse signal according to a transfer position of the workpiece.
Further, the manufacturing apparatus is located on the upstream side in the transport direction from the machining start position, and includes a sensor that detects the transport position of the workpiece.
Further, the manufacturing apparatus includes a counting time setting means for setting a counting time based on a response delay time from the detection of the transport position of the workpiece by the sensor to the start of machining of the workpiece.
Further, the manufacturing apparatus includes a trigger signal generating means for generating a trigger signal based on the transport position information obtained by the sensor.
Further, the manufacturing apparatus includes pulse counting means for counting the number of first pulse signals generated within the counting time and the number of second pulse signals generated after the trigger signal is generated.
Further, the manufacturing apparatus includes a command means for instructing the start of machining of the workpiece based on the signal from the pulse counting means.
 更に本発明は、少なくとも一部に樹脂材を含む複数枚のシートが重ねられた帯状のシート積層体を搬送面に沿って搬送しつつ、該シート積層体に、固定された光源から発せられたレーザ光を走査しながら照射して、該シート積層体を加工することで、複数枚のシートの縁部が重なった状態で融着したシール縁部を有するシート融着体を製造する方法に関する。
 本製造方法は、加工開始位置よりも搬送方向上流側に位置するセンサによる前記シート積層体の搬送位置の検出から、前記シート積層体の加工を開始するまでの応答遅れ時間に基づく計数時間を予め設定しておく。
 そして、前記シート積層体の搬送位置に応じたパルス信号を発生させた状態で、前記計数時間内に入力される第1のパルス信号数を計数する。
 そして、前記センサによって得られた前記シート積層体の搬送位置情報に基づいてトリガ信号を発生させる。
 そして、前記トリガ信号が発生した後に入力される第2のパルス信号数を計数する。
 そして、計数された第1のパルス信号数と第2のパルス信号数との合計信号数が、予め設定した信号数以上となったときに、前記シート積層体の加工を開始する。
Further, the present invention is emitted from a light source fixed to the sheet laminate while transporting a strip-shaped sheet laminate in which a plurality of sheets containing a resin material at least partially are stacked along a transport surface. The present invention relates to a method for producing a sheet fused body having a sealed edge portion fused in a state where the edge portions of a plurality of sheets are overlapped by irradiating the sheet laminated body while scanning a laser beam.
In this manufacturing method, the counting time based on the response delay time from the detection of the transport position of the sheet laminate by the sensor located on the upstream side in the transport direction from the machining start position to the start of machining of the sheet laminate is set in advance. Set it.
Then, the number of first pulse signals input within the counting time is counted in a state where the pulse signals corresponding to the transport positions of the sheet laminates are generated.
Then, a trigger signal is generated based on the transport position information of the sheet laminate obtained by the sensor.
Then, the number of second pulse signals input after the trigger signal is generated is counted.
Then, when the total number of signals of the counted first pulse signal number and the second pulse signal number becomes equal to or more than a preset number of signals, the processing of the sheet laminate is started.
 更に本発明は、少なくとも一部に樹脂材を含む複数枚のシートが重ねられた帯状のシート積層体を搬送面に沿って搬送しつつ、該シート積層体に、固定された光源から発せられたレーザ光を走査しながら照射して、該シート積層体を加工することで、複数枚のシートの縁部が重なった状態で融着したシール縁部を有するシート融着体を製造する装置に関する。
 本製造装置は、前記シート積層体の搬送位置に応じたパルス信号を発生するパルス信号発生手段を備える。
 また本製造装置は、加工開始位置よりも搬送方向上流側に位置し、前記シート積層体の搬送位置を検出するセンサを備える。
 また本製造装置は、前記センサによる前記シート積層体の搬送位置の検出から、前記シート積層体の加工を開始するまでの応答遅れ時間に基づく計数時間を設定する計数時間設定手段を備える。
 また本製造装置は、前記センサによって得られた搬送位置情報に基づいてトリガ信号を発生させるトリガ信号発生手段を備える。
 また本製造装置は、前記計数時間内に発生した第1のパルス信号数と、前記トリガ信号が発生した後に発生した第2のパルス信号数とをそれぞれ計数するパルス計数手段を備える。
 また本製造装置は、前記パルス計数手段からの信号に基づいて、シート積層体の加工開始を指令する指令手段を備える。
Further, the present invention is emitted from a light source fixed to the sheet laminate while transporting a strip-shaped sheet laminate in which a plurality of sheets containing a resin material at least partially are stacked along a transport surface. The present invention relates to an apparatus for producing a sheet fused body having a sealed edge portion fused in a state where the edge portions of a plurality of sheets are overlapped by irradiating the sheet laminated body while scanning a laser beam.
The manufacturing apparatus includes a pulse signal generating means for generating a pulse signal according to a transport position of the sheet laminate.
Further, the manufacturing apparatus includes a sensor located upstream of the processing start position in the transport direction and detecting the transport position of the sheet laminate.
Further, the manufacturing apparatus includes a counting time setting means for setting a counting time based on a response delay time from the detection of the transport position of the sheet laminated body by the sensor to the start of processing of the sheet laminated body.
Further, the manufacturing apparatus includes a trigger signal generating means for generating a trigger signal based on the transport position information obtained by the sensor.
Further, the manufacturing apparatus includes pulse counting means for counting the number of first pulse signals generated within the counting time and the number of second pulse signals generated after the trigger signal is generated.
Further, the manufacturing apparatus includes a command means for instructing the start of processing of the sheet laminate based on the signal from the pulse counting means.
図1は、本発明の一実施形態としてのパンツ型使い捨ておむつの製造方法の工程の一部を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a part of a process of a method for manufacturing a pants-type disposable diaper as an embodiment of the present invention. 図2は、本発明を実施するために好適に用いられる製造装置の一実施形態を示す斜視図である。FIG. 2 is a perspective view showing an embodiment of a manufacturing apparatus preferably used for carrying out the present invention. 図3は、図2における要部の概略図である。FIG. 3 is a schematic view of a main part in FIG. 図4は、図2に示す製造装置の制御方法を示す模式図である。FIG. 4 is a schematic view showing a control method of the manufacturing apparatus shown in FIG. 図5は、図2に示す製造装置の制御方法におけるタイムチャートを示す模式図である。FIG. 5 is a schematic diagram showing a time chart in the control method of the manufacturing apparatus shown in FIG.
発明の詳細な説明Detailed description of the invention
 特許文献1及び2に記載の技術はいずれも、被加工物の搬送速度に追従して、被加工物をレーザ加工するためのものであり、レーザ加工の開始位置を制御するものではない。被加工物の搬送速度に応じて加工開始時間を制御できない場合、被加工物の搬送速度が異なる場合に加工開始位置が変化してしまうので、被加工物を高精度に加工することが容易でなかった。 All of the techniques described in Patent Documents 1 and 2 are for laser machining the workpiece by following the transport speed of the workpiece, and do not control the start position of the laser machining. If the machining start time cannot be controlled according to the transfer speed of the workpiece, the machining start position will change if the transfer speed of the workpiece is different, so it is easy to process the workpiece with high accuracy. There wasn't.
 本発明は、被加工物の搬送速度が異なる場合であっても、被加工物を高精度に加工することができる被加工物の製造方法及び製造装置、並びにシート融着体の製造方法及び製造装置に関する。 According to the present invention, a method and an apparatus for manufacturing a work piece, and a method and a method for manufacturing a sheet fusion body, which can process the work piece with high accuracy even when the transfer speeds of the work piece are different. Regarding the device.
 以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1には、本発明の方法を、シート融着体の一例であるパンツ型使い捨ておむつの製造に適用した例が示されている。以下の実施形態では、シート融着体、すなわち複数枚のシートの縁部が重なった状態で融着したシール縁部を有するシート融着体として、一対のサイドシール部を有する外装体を具備するパンツ型使い捨ておむつを例にとり本発明を説明する。 Hereinafter, the present invention will be described based on the preferred embodiment with reference to the drawings. FIG. 1 shows an example in which the method of the present invention is applied to the production of a pants-type disposable diaper, which is an example of a sheet fusion body. In the following embodiment, an exterior body having a pair of side seal portions is provided as a sheet fusion body, that is, a sheet fusion body having a seal edge portion fused in a state where the edges of a plurality of sheets are overlapped. The present invention will be described by taking a pants-type disposable diaper as an example.
 本実施形態では、図1に示すように、帯状のシート積層体10を含んで構成されるおむつ連続体10Aを製造する工程と、図2に示す製造装置(レーザ式加工装置)20を用いて、溶断によりおむつ連続体10Aを個々のおむつ1に分断する工程とを有する製造方法によって、パンツ型使い捨ておむつを製造することができる。シート積層体10は、少なくとも一部に樹脂材を含む複数枚のシートが重ねられてなるものである。おむつ1は、一対のサイドシール部4,4を有している。おむつ連続体10Aは、複数の使い捨ておむつが連なった構成を有しており、より具体的には、サイドシール部が形成されていないパンツ型使い捨ておむつの前駆体が一方向に連なって構成されている。 In the present embodiment, as shown in FIG. 1, a step of manufacturing a diaper continuous body 10A including a strip-shaped sheet laminate 10 and a manufacturing apparatus (laser type processing apparatus) 20 shown in FIG. 2 are used. A pants-type disposable diaper can be manufactured by a manufacturing method including a step of dividing the diaper continuum 10A into individual diapers 1 by fusing. The sheet laminate 10 is formed by stacking a plurality of sheets containing a resin material at least in part. The diaper 1 has a pair of side seal portions 4 and 4. The diaper continuum 10A has a structure in which a plurality of disposable diapers are connected, and more specifically, a precursor of a pants-type disposable diaper in which a side seal portion is not formed is connected in one direction. There is.
 本実施形態の方法においては、図1に示すとおり、原反ロール(図示せず)から連続的に供給される帯状の外層シート31と、原反ロール(図示せず)から連続的に供給される帯状の内層シート32との間に、ウエストギャザー、胴回りギャザー、及びレッグギャザーを形成する各弾性部材5,6,7を、所定の伸長率に伸長させた伸長状態で各々複数本配する。弾性部材7は、シートの流れ方向と直交して往復運動する公知の揺動ガイド(図示せず)を介して、所定の脚周りパターンを形成しながら配される。また、帯状の外層シート31及び帯状の内層シート32には、それらを重ね合わせる前に、少なくとも一方のシート31,32の対向面における所定部位に、接着剤塗工機(図示せず)によりホットメルト型接着剤を塗工する。各弾性部材5,6には、両シート31,32間に配される前に、接着剤塗工機(図示せず)によりホットメルト型接着剤を間欠的に塗工してもよい。 In the method of the present embodiment, as shown in FIG. 1, the strip-shaped outer layer sheet 31 continuously supplied from the raw fabric roll (not shown) and the original fabric roll (not shown) are continuously supplied. A plurality of elastic members 5, 6 and 7 forming waist gathers, waist gathers and leg gathers are arranged between the strip-shaped inner layer sheet 32 in an elongated state extended to a predetermined elongation rate. The elastic member 7 is arranged while forming a predetermined leg circumference pattern via a known swing guide (not shown) that reciprocates in orthogonal to the flow direction of the sheet. Further, the strip-shaped outer layer sheet 31 and the strip-shaped inner layer sheet 32 are hot-heated by an adhesive coating machine (not shown) at a predetermined portion on the facing surface of at least one of the sheets 31 and 32 before they are overlapped. Apply melt adhesive. Hot melt type adhesives may be intermittently applied to each of the elastic members 5 and 6 by an adhesive coating machine (not shown) before being arranged between the sheets 31 and 32.
 そして、図1に示すとおり、一対のニップロール11,11の間に、各弾性部材5,6,7を伸長状態で挟み込んだ帯状の外層シート31及び帯状の内層シート32を送り込んで加圧することにより、帯状シート31,32間に複数本の弾性部材5,6,7が伸長状態で配された帯状の外装体3を形成する。また、隣り合う2本の弾性部材6,6間において帯状の外層シート31と帯状の内層シート32とを接合する複数の接合部(図示せず)を、例えば凸ロール12とアンビルロール13とを備える接合手段を用いて形成する。 Then, as shown in FIG. 1, a band-shaped outer layer sheet 31 and a band-shaped inner layer sheet 32 in which the elastic members 5, 6 and 7 are sandwiched between the pair of nip rolls 11 and 11 are fed and pressurized. , A strip-shaped exterior body 3 in which a plurality of elastic members 5, 6 and 7 are arranged in an extended state is formed between the strip-shaped sheets 31 and 32. Further, a plurality of joints (not shown) for joining the strip-shaped outer layer sheet 31 and the strip-shaped inner layer sheet 32 between two adjacent elastic members 6 and 6, for example, a convex roll 12 and an anvil roll 13 are provided. It is formed by using the provided joining means.
 その後、必要に応じて、弾性部材プレカット手段(図示せず)を用いて、後述する吸収性本体2を配する位置に対応させて、複数本の弾性部材6,7をそれぞれ押圧して、収縮機能が発現されないように個々複数個に分断する。 After that, if necessary, using an elastic member precut means (not shown), the plurality of elastic members 6 and 7 are pressed and contracted, respectively, in accordance with the position where the absorbent main body 2 described later is arranged. Divide into multiple pieces so that the function is not exhibited.
 次いで、図1に示すとおり、別工程で製造された吸収性本体2に予めホットメルト型接着剤等の接着剤を塗工し、該吸収性本体2を、帯状の外装体3を構成する内層シート32上に間欠的に供給して固定する。そして、弾性部材7で環状に囲まれた環状部の内側にレッグホールLO’を形成する。このレッグホール形成工程は、ロータリーカッター、レーザカッター等の従来この種の物品の製造方法における手法と同様の手法を用いて実施することができる。 Next, as shown in FIG. 1, an adhesive such as a hot melt type adhesive is previously applied to the absorbent main body 2 manufactured in another step, and the absorbent main body 2 is coated with an inner layer constituting the strip-shaped exterior body 3. It is intermittently supplied and fixed on the sheet 32. Then, a leg hole LO'is formed inside the annular portion surrounded by the elastic member 7 in an annular shape. This leg hole forming step can be carried out by using a method similar to the method in the conventional method for manufacturing this kind of article such as a rotary cutter and a laser cutter.
 続いて、帯状の外装体3をその幅方向(外装体3の搬送方向Kと直交する方向)に折り畳む。より好適には、図1に示すとおり、帯状の外装体3の搬送方向Kに沿う両側部3a,3aを、吸収性本体2の長手方向両端部を覆うように折り返して吸収性本体2の長手方向両端部を固定した後、外装体3を吸収性本体2とともにその幅方向に二つ折りする。このようにして、シート積層体10としてのおむつ連続体10Aが得られる。 Subsequently, the strip-shaped exterior body 3 is folded in the width direction (direction orthogonal to the transport direction K of the exterior body 3). More preferably, as shown in FIG. 1, both side portions 3a and 3a of the strip-shaped exterior body 3 along the transport direction K are folded back so as to cover both ends in the longitudinal direction of the absorbent main body 2 to cover the longitudinal length of the absorbent main body 2. After fixing both ends in the direction, the exterior body 3 is folded in half in the width direction together with the absorbent body 2. In this way, the diaper continuum 10A as the sheet laminated body 10 is obtained.
 このようにして得られたおむつ連続体10Aを、レーザ式加工装置20に搬送する。レーザ式加工装置20は、図2に示すとおり、外方を向く第1面21a及びそれと反対側に位置し且つ内方を向く第2面21bを有し、複数枚のシートが重ねられた帯状のシート積層体10をその長手方向にわたって第1面21a上に支持しながら一方向に回転することでシート積層体10を搬送する円筒状の円筒ロール21を備えている。またレーザ式加工装置20は、第2面21b側にレーザ光を走査可能なレーザ光照射部35を備えている。更にレーザ式加工装置20は、円筒ロール21の回転に同期して円筒ロール21の回転方向Kに移動しながら、第1面21a上に支持されたシート積層体10を、第1面21aと対向する側から該第1面21a側に向かって押圧する複数の加圧ヘッド26を備えている。 The diaper continuum 10A thus obtained is conveyed to the laser processing apparatus 20. As shown in FIG. 2, the laser processing apparatus 20 has a first surface 21a facing outward and a second surface 21b located on the opposite side thereof and facing inward, and has a strip shape in which a plurality of sheets are stacked. The sheet laminated body 10 is provided with a cylindrical cylindrical roll 21 that conveys the sheet laminated body 10 by rotating the sheet laminated body 10 in one direction while supporting the sheet laminated body 10 on the first surface 21a in the longitudinal direction thereof. Further, the laser processing apparatus 20 includes a laser light irradiation unit 35 capable of scanning the laser light on the second surface 21b side. Further, the laser processing apparatus 20 faces the sheet laminate 10 supported on the first surface 21a with the first surface 21a while moving in the rotation direction K of the cylindrical roll 21 in synchronization with the rotation of the cylindrical roll 21. It is provided with a plurality of pressurizing heads 26 that press from the side to be pressed toward the first surface 21a side.
 本実施形態においては、帯状のシート積層体10は、吸収性本体2が間欠配置されたおむつ連続体10Aとして、第1面21a上に支持されるとともに、円筒ロール21によって搬送される。おむつ連続体10Aは、導入ロール28によって方向転換されて第1面21a上に導入される。そしておむつ連続体10Aが、円筒ロール21の第1面21a上に支持された状態で、該おむつ連続体10Aにレーザ光30による加工が施され、それによって得られたおむつ1がガイドロール29を経て装置20外に送出される。つまり、本実施形態においては、シート積層体10としてのおむつ連続体10Aが被加工物であり、円筒ロール21の第1面21aが被加工物の搬送面であり、該搬送面は円筒周面の曲面状に形成されている。 In the present embodiment, the strip-shaped sheet laminate 10 is supported on the first surface 21a as a diaper continuum 10A in which the absorbent body 2 is intermittently arranged, and is conveyed by the cylindrical roll 21. The diaper continuum 10A is turned around by the introduction roll 28 and introduced onto the first surface 21a. Then, in a state where the diaper continuum 10A is supported on the first surface 21a of the cylindrical roll 21, the diaper continuum 10A is processed by a laser beam 30, and the diaper 1 obtained thereby provides the guide roll 29. Then, it is sent out of the device 20. That is, in the present embodiment, the diaper continuous body 10A as the sheet laminated body 10 is the workpiece, the first surface 21a of the cylindrical roll 21 is the transport surface of the workpiece, and the transport surface is the peripheral surface of the cylinder. It is formed in the shape of a curved surface.
 円筒ロール21は、図2に示すとおり、その周面部に、円筒ロール21の周方向に間欠的に設けられた複数の加圧部支持部材121を有している。加圧部支持部材121は円筒ロール21の周面部の一部を形成しており、鉄、アルミニウム、ステンレス鋼、銅等の金属材料又はセラミックス等の耐熱性を有する材料から形成されている。 As shown in FIG. 2, the cylindrical roll 21 has a plurality of pressure portion support members 121 intermittently provided in the circumferential direction of the cylindrical roll 21 on its peripheral surface portion. The pressurizing portion support member 121 forms a part of the peripheral surface portion of the cylindrical roll 21, and is formed of a metal material such as iron, aluminum, stainless steel, or copper, or a heat-resistant material such as ceramics.
 加圧部支持部材121は、第2面21b側から照射されたレーザ光30が通過可能なスリット状の支持部材側開口部27を有している。支持部材側開口部27は、円筒ロール21の周方向と交差する方向に延びるスリット状の開口部であり、レーザ光透過部として機能する。具体的には、支持部材側開口部27は、平面視して矩形形状を有し、その長手方向を、帯状のシート積層体10及びおむつ連続体10Aの幅方向と一致する方向、好適には、円筒ロール21の回転軸の軸長方向と平行な方向に一致させて延びている。支持部材側開口部27は、円筒ロール21の周方向に所定間隔を置いて複数設けられている。 The pressurizing portion support member 121 has a slit-shaped support member side opening 27 through which the laser beam 30 irradiated from the second surface 21b side can pass. The support member side opening 27 is a slit-shaped opening extending in a direction intersecting the circumferential direction of the cylindrical roll 21, and functions as a laser light transmitting portion. Specifically, the support member side opening 27 has a rectangular shape in a plan view, and its longitudinal direction coincides with the width direction of the strip-shaped sheet laminate 10 and the diaper continuous body 10A, preferably. , The cylindrical roll 21 extends in a direction parallel to the axial length direction of the rotation axis. A plurality of support member side openings 27 are provided at predetermined intervals in the circumferential direction of the cylindrical roll 21.
 加圧ヘッド26は、上述した支持部材側開口部27に対応する位置で、溶断の対象物である帯状のシート積層体10、すなわちおむつ連続体10Aを、円筒ロール21に向けて加圧するために用いられる。加圧ヘッド26は、円筒ロール21の第1面21a側の位置に配置されている。詳細には、加圧ヘッド26は、上述した加圧部支持部材121の支持部材側開口部27上に支持された、おむつ連続体10Aを支持部材側開口部27側に向かって押圧するために用いられ、1つの支持部材側開口部27に対して1つの加圧ヘッド26が設けられている。図2に示す製造装置20においては、加圧ヘッド26は複数個配置されている。各加圧ヘッド26は、円筒ロール21の回転軸の延長線上に回転軸を持ち、円筒ロール21に隣接して配置された第2円筒ロール25の周面に配置されている。第2円筒ロール25は、円筒ロール21と同期して回転する。 The pressurizing head 26 presses the strip-shaped sheet laminate 10, that is, the diaper continuum 10A, which is the object of fusing, toward the cylindrical roll 21 at a position corresponding to the above-mentioned support member side opening 27. Used. The pressurizing head 26 is arranged at a position on the first surface 21a side of the cylindrical roll 21. Specifically, the pressurizing head 26 presses the diaper continuum 10A supported on the support member side opening 27 of the pressurizing portion support member 121 toward the support member side opening 27 side. It is used, and one pressurizing head 26 is provided for one support member side opening 27. In the manufacturing apparatus 20 shown in FIG. 2, a plurality of pressurizing heads 26 are arranged. Each pressurizing head 26 has a rotating shaft on an extension of the rotating shaft of the cylindrical roll 21, and is arranged on the peripheral surface of the second cylindrical roll 25 arranged adjacent to the cylindrical roll 21. The second cylindrical roll 25 rotates in synchronization with the cylindrical roll 21.
 第2円筒ロール25が円筒ロール21と同期して回転することで、各加圧ヘッド26は、円筒ロール21の回転に同期して該円筒ロール21の回転方向に移動し、円筒ロール21の外周部を構成する加圧部支持部材121の回転方向と同方向に、且つ加圧部支持部材121の角速度と同速で、円筒ロール21の周面に沿って周回可能になっている。また各加圧ヘッド26は支持部24によって支持されており、第1面21aに対して接離動作が可能になっている。 When the second cylindrical roll 25 rotates in synchronization with the cylindrical roll 21, each pressurizing head 26 moves in the rotational direction of the cylindrical roll 21 in synchronization with the rotation of the cylindrical roll 21, and the outer periphery of the cylindrical roll 21 is moved. It is possible to orbit along the peripheral surface of the cylindrical roll 21 in the same direction as the rotation direction of the pressurizing portion support member 121 constituting the portion and at the same speed as the angular velocity of the pressurizing portion support member 121. Further, each pressurizing head 26 is supported by a support portion 24, and can be brought into contact with and separated from the first surface 21a.
 レーザ光照射部35は、レーザ光30を自在に走査するガルバノスキャナを備えている。レーザ光照射部35は、図3に示すとおり、レーザ光30を円筒ロール21の回転軸と平行な方向に進退させる第1機構35a、レーザ光30が円筒ロール21の第1面21a上に支持された、おむつ連続体のシート積層体(図示せず)に当たる位置(照射点)を円筒ロール21の周方向に移動させる第2機構35b、及び円筒ロール21の周面上でレーザ光30のスポット径を一定にする調整機構35cを備えている。調整機構35cは集光レンズを備えている。レーザ光照射部は、このような構成を有することによって、レーザ光30の照射点を、円筒ロール21の周方向及び該周方向と直交する方向へ任意に移動させることができる。 The laser light irradiation unit 35 includes a galvano scanner that freely scans the laser light 30. As shown in FIG. 3, the laser beam irradiation unit 35 supports the first mechanism 35a for advancing and retreating the laser beam 30 in a direction parallel to the rotation axis of the cylindrical roll 21, and the laser beam 30 is supported on the first surface 21a of the cylindrical roll 21. The second mechanism 35b that moves the position (irradiation point) corresponding to the sheet laminated body (not shown) of the continuous diaper body in the circumferential direction of the cylindrical roll 21, and the spot of the laser beam 30 on the peripheral surface of the cylindrical roll 21. It is provided with an adjusting mechanism 35c that keeps the diameter constant. The adjusting mechanism 35c includes a condenser lens. By having such a configuration, the laser light irradiation unit can arbitrarily move the irradiation point of the laser light 30 in the circumferential direction of the cylindrical roll 21 and in the direction orthogonal to the circumferential direction.
 シート積層体10における加工開始位置の制御は、例えば図4に示す様式で行うことができる。図4中、矢印は信号の送受信の流れを示す。 The processing start position of the sheet laminate 10 can be controlled in the manner shown in FIG. 4, for example. In FIG. 4, arrows indicate the flow of signal transmission / reception.
 図4に示すとおり、円筒ロール21は、サーボモータ40によって一方向(搬送方向K)に回転するようになっている。サーボモータ40は、円筒ロール21の回転位置に応じて所定間隔でパルス状のエンコーダ信号Seが発生するようになっており、該エンコーダ信号Seはゲート手段41で受信されるようになっている。所定時間内にカウントされるエンコーダ信号Seのパルス数は、円筒ロール21の回転速度に応じて増減する。円筒ロール21の回転速度は、被加工物の搬送位置と対応している。つまり、サーボモータ40は、被加工物の搬送位置に応じたパルス信号を発生するパルス信号発生手段の一例である。 As shown in FIG. 4, the cylindrical roll 21 is rotated in one direction (conveyance direction K) by the servomotor 40. The servomotor 40 is adapted to generate a pulse-shaped encoder signal Se at predetermined intervals according to the rotation position of the cylindrical roll 21, and the encoder signal Se is received by the gate means 41. The number of pulses of the encoder signal Se counted within a predetermined time increases or decreases according to the rotation speed of the cylindrical roll 21. The rotation speed of the cylindrical roll 21 corresponds to the transport position of the workpiece. That is, the servomotor 40 is an example of a pulse signal generating means that generates a pulse signal according to the transport position of the workpiece.
 同図に示すように、円筒ロール21における第1面21aに臨む位置には近接センサ42が設置されている。近接センサ42は、加工開始位置、すなわち被加工物におけるレーザ照射位置よりも搬送方向Kの上流側に位置している。近接センサ42は、円筒ロール21に取り付けられているドグ(図示せず)を検知することで、搬送中の被加工物が所定の位置まで搬送されてきたことを検出することができる。また、近接センサ42は、トリガ信号発生手段(図示せず)を更に備えている。トリガ信号Stは、近接センサ42がドグを検知することで発生するようになっており、発生したトリガ信号Stは、論理回路45で受信されるようになっている。 As shown in the figure, a proximity sensor 42 is installed at a position of the cylindrical roll 21 facing the first surface 21a. The proximity sensor 42 is located upstream of the machining start position, that is, the laser irradiation position on the workpiece in the transport direction K. The proximity sensor 42 can detect that the workpiece being transported has been transported to a predetermined position by detecting a dog (not shown) attached to the cylindrical roll 21. Further, the proximity sensor 42 further includes a trigger signal generating means (not shown). The trigger signal St is generated when the proximity sensor 42 detects the dog, and the generated trigger signal St is received by the logic circuit 45.
 論理回路45は、トリガ信号Stの受信に加えて、計数時間Tdに基づいて発生した補正パルス信号Saを受信できるようになっている。論理回路45は、OR回路となっており、トリガ信号Stの受信又は補正パルス信号Saの受信のいずれかによって、計測開始信号Smを発生できるようになっている。計測開始信号Smは、ゲート手段41で受信されるようになっている。補正パルス信号Saの生成は、例えば、計数時間Tdを補正パルス信号Saへ変換する補正パルス生成手段45aによって行うことができる。計数時間Tdは、被加工物に対して実際に加工を開始する前に製造装置を予備運転させて、近接センサ42による搬送中の被加工物の位置の検出から、被加工物の加工を開始するまでの応答遅れ時間を測定し、この応答遅れ時間に基づいて、計数時間設定手段45bによって、人手あるいは自動で予め設定しておくことが好ましい。計数時間Tdは、前記応答遅れ時間を上限として、該応答遅れ時間以下の範囲で設定することができる。 The logic circuit 45 can receive the correction pulse signal Sa generated based on the counting time Td in addition to receiving the trigger signal St. The logic circuit 45 is an OR circuit, and can generate a measurement start signal Sm by either receiving a trigger signal St or receiving a correction pulse signal Sa. The measurement start signal Sm is received by the gate means 41. The correction pulse signal Sa can be generated, for example, by the correction pulse generation means 45a that converts the counting time Td into the correction pulse signal Sa. The counting time Td starts the machining of the workpiece from the detection of the position of the workpiece being conveyed by the proximity sensor 42 by preliminarily operating the manufacturing apparatus before actually starting the machining of the workpiece. It is preferable to measure the response delay time until the response is performed, and based on this response delay time, manually or automatically set the response delay time in advance by the counting time setting means 45b. The counting time Td can be set within the range of the response delay time or less, with the response delay time as the upper limit.
 ゲート手段41は、計測開始信号Smと、エンコーダ信号Seとをともに受信することによって、計測開始信号Smが受信されている間に入力されたエンコーダ信号Seを計測パルス信号Pmとして出力し、この出力信号をパルス計数手段46で受信できるようになっている。すなわち、ゲート手段41は、AND論理回路になっている。 By receiving both the measurement start signal Sm and the encoder signal Se, the gate means 41 outputs the encoder signal Se input while the measurement start signal Sm is being received as the measurement pulse signal Pm, and outputs this output. The signal can be received by the pulse counting means 46. That is, the gate means 41 is an AND logic circuit.
 パルス計数手段46は、計測パルス信号Pmのパルス数を計測する。パルス計数手段46によって計測された計測パルス信号Pmのパルス数に基づく信号は、計数値判定手段47で受信できるようになっている。計数値判定手段47は、計測パルス信号Pmの信号数が予め設定された信号数以上となった場合には、被加工物の加工開始を指令する指令手段50に対して信号を出力する。指令手段50が計数値判定手段47からの信号を受信すると、指令手段50は、加工開始信号Spを光走査手段35gへ出力する。光走査手段35gは、被加工物の厚みや搬送速度、並びに加工位置等を設定する加工情報設定手段35hに接続され、被加工物の位置情報を座標データに変換した信号を出力する座標データ出力手段35iから入力された情報に基づき、レーザ光照射部35を駆動させ、被加工物に対してレーザ光30を走査しながら所定の時間照射する。 The pulse counting means 46 measures the number of pulses of the measured pulse signal Pm. A signal based on the number of pulses of the measured pulse signal Pm measured by the pulse counting means 46 can be received by the counting value determining means 47. When the number of signals of the measurement pulse signal Pm exceeds the preset number of signals, the counting value determining means 47 outputs a signal to the command means 50 for instructing the start of machining of the workpiece. When the command means 50 receives the signal from the count value determination means 47, the command means 50 outputs the machining start signal Sp to the optical scanning means 35g. The optical scanning means 35g is connected to a machining information setting means 35h that sets the thickness, transport speed, machining position, etc. of the work piece, and outputs a signal obtained by converting the position information of the work piece into coordinate data. Based on the information input from the means 35i, the laser light irradiation unit 35 is driven to irradiate the workpiece with the laser light 30 for a predetermined time while scanning the laser light 30.
 上述した加工開始位置の制御について、図5に示すタイムチャートに基づいて説明する。まず、サーボモータ40から、円筒ロール21の回転位置に応じたエンコーダ信号Seを発生させる。このエンコーダ信号Seは、円筒ロールの回転、すなわち搬送中の被加工物の位置に応じて、一定の移動距離の間で信号のオンとオフとが繰り返されるパルス信号であり、該信号はゲート手段41に連続的に受信される。エンコーダ信号Seは、円筒ロール21の回転数が多い場合、すなわち被加工物の搬送速度が速くなった場合、信号のオン/オフの間隔が短くなる。一方、円筒ロール21の回転数が少ない場合、すなわち被加工物の搬送速度が遅くなった場合、エンコーダ信号Seにおける信号のオン/オフの間隔が長くなる。 The control of the machining start position described above will be described based on the time chart shown in FIG. First, the servomotor 40 generates an encoder signal Se according to the rotation position of the cylindrical roll 21. This encoder signal Se is a pulse signal in which the signal is repeatedly turned on and off for a certain moving distance according to the rotation of the cylindrical roll, that is, the position of the workpiece being conveyed, and the signal is the gate means. It is continuously received by 41. When the number of rotations of the cylindrical roll 21 is high, that is, when the transfer speed of the workpiece is high, the signal on / off interval of the encoder signal Se becomes short. On the other hand, when the rotation speed of the cylindrical roll 21 is low, that is, when the transport speed of the workpiece is slowed down, the signal on / off interval in the encoder signal Se becomes long.
 次いで、加工の制御プログラムを開始するプログラム開始信号を入力する。プログラム開始信号(図示せず)は、例えば、近接センサ42よりも搬送方向上流側に配置され、円筒ロール21に取り付けられている前記ドグを検知可能な上流側センサ(図示せず)を近接センサ42とは別に配置し、該上流側センサから開始トリガ信号(図示せず)として発生させるか、又は、1つ前の被加工物における加工が終了した際に発生させる加工終了信号から次のトリガ信号Stが入力されるまでの間に、補正パルス生成手段45aへ入力させることができる。プログラム開始信号が入力されたあと、予め設定した計数時間Tdに基づいて、補正パルス生成手段45aから補正パルス信号Saを論理回路45に向けて送信する。補正パルス信号Saがオンとなる時間は、計数時間Tdと等しくなっている。補正パルス信号Saを受信した論理回路45は、計測開始信号Smをゲート手段41に対して出力する。これによって、ゲート手段41は、計測開始信号Smと、エンコーダ信号Seとをともに受信することになるので、計測開始信号Smが受信されている間に入力されたエンコーダ信号Seを、計測パルス信号である第1のパルス信号Pm1としてパルス計数手段46に出力する。この出力信号をパルス計数手段46で受信し、第1のパルス信号Pm1の信号数(パルス数)を計数して、その信号数を記憶する。補正パルス信号Saの停止に伴って、計測開始信号Smの出力も停止する。 Next, input the program start signal to start the machining control program. The program start signal (not shown) is, for example, an upstream sensor (not shown) that is arranged upstream of the proximity sensor 42 in the transport direction and is attached to the cylindrical roll 21 and capable of detecting the dog. It is arranged separately from 42 and generated as a start trigger signal (not shown) from the upstream sensor, or the next trigger is generated from the machining end signal generated when machining of the previous workpiece is completed. By the time the signal St is input, it can be input to the correction pulse generation means 45a. After the program start signal is input, the correction pulse signal Sa is transmitted from the correction pulse generation means 45a to the logic circuit 45 based on the preset counting time Td. The time during which the correction pulse signal Sa is turned on is equal to the counting time Td. The logic circuit 45 that has received the correction pulse signal Sa outputs the measurement start signal Sm to the gate means 41. As a result, the gate means 41 receives both the measurement start signal Sm and the encoder signal Se. Therefore, the encoder signal Se input while the measurement start signal Sm is being received is used as the measurement pulse signal. It is output to the pulse counting means 46 as a first pulse signal Pm1. This output signal is received by the pulse counting means 46, the number of signals (number of pulses) of the first pulse signal Pm1 is counted, and the number of signals is stored. When the correction pulse signal Sa is stopped, the output of the measurement start signal Sm is also stopped.
 次いで、近接センサ42による被加工物の搬送位置の検出に基づいて、近接センサ42におけるトリガ信号発生手段からトリガ信号Stが発生し、論理回路45に送信される。論理回路45がトリガ信号Stを受信すると、論理回路45は、計測開始信号Smをゲート手段41に対して出力する。これによって、計測開始信号Sm及びエンコーダ信号Seを受信したゲート手段41は、入力されたエンコーダ信号Seを、計測パルス信号である第2のパルス信号Pm2としてパルス計数手段46に出力する。この出力信号をパルス計数手段46で受信し、第2のパルス信号Pm2の信号数(パルス数)を計数して、その信号数を記憶する。トリガ信号Stのオン/オフは、例えばドグを検出したときにオンとし、次のドグが検出されるよりも前にオフとなるように、被加工物の搬送速度に応じて制御することができる。 Next, based on the detection of the transport position of the workpiece by the proximity sensor 42, the trigger signal St is generated from the trigger signal generation means in the proximity sensor 42 and transmitted to the logic circuit 45. When the logic circuit 45 receives the trigger signal St, the logic circuit 45 outputs the measurement start signal Sm to the gate means 41. As a result, the gate means 41 that has received the measurement start signal Sm and the encoder signal Se outputs the input encoder signal Se to the pulse counting means 46 as the second pulse signal Pm2 that is the measurement pulse signal. This output signal is received by the pulse counting means 46, the number of signals (number of pulses) of the second pulse signal Pm2 is counted, and the number of signals is stored. The on / off of the trigger signal St can be controlled according to the transport speed of the workpiece so that it is turned on, for example, when a dog is detected and turned off before the next dog is detected. ..
 最後に、パルス計数手段46によって計数された第1のパルス信号Pm1及び第2のパルス信号Pm2の合計信号数と、予め設定しておいた閾値信号数とを比較する。閾値信号数は、例えば閾値信号数設定手段47aを介して、製品あるいはエンコーダ信号の分解能から想定される信号数を人手で外部から入力して、予め設定することができる。合計信号数と閾値信号数とを比較して、合計信号数が閾値信号数に達していない場合には、第2のパルス信号Pm2の計数を継続する。また、合計信号数と閾値信号数とを比較して、合計信号数が閾値信号数以上となった場合には、パルス計数手段46から指令手段50へ信号を送信する。信号を受信した指令手段50は、光走査手段35gに向けて加工開始信号Spを送信し、これによってレーザ光照射部35を駆動させて、レーザ光の照射による被加工物の加工を開始する。レーザ光の照射を一定時間行った後、加工開始信号Spがオフになり、且つ加工終了信号が指令手段50から光走査手段35gに発生し、被加工物の加工、すなわちレーザ光の照射を停止させる。以上の工程を経て、被加工物を加工することができる。以後、上述した工程が繰り返されて行われる。 Finally, the total number of signals of the first pulse signal Pm1 and the second pulse signal Pm2 counted by the pulse counting means 46 is compared with the preset threshold signal number. The number of threshold signals can be set in advance by manually inputting the number of signals estimated from the resolution of the product or encoder signal from the outside via, for example, the threshold signal number setting means 47a. The total number of signals is compared with the number of threshold signals, and if the total number of signals does not reach the number of threshold signals, the counting of the second pulse signal Pm2 is continued. Further, the total number of signals is compared with the number of threshold signals, and when the total number of signals is equal to or greater than the number of threshold signals, a signal is transmitted from the pulse counting means 46 to the command means 50. Upon receiving the signal, the command means 50 transmits a machining start signal Sp toward the optical scanning means 35g, thereby driving the laser beam irradiation unit 35 to start machining the workpiece by irradiation with the laser beam. After irradiating the laser beam for a certain period of time, the machining start signal Sp is turned off, and the machining end signal is generated from the command means 50 to the optical scanning means 35 g, and the machining of the workpiece, that is, the irradiation of the laser beam is stopped. Let me. The work piece can be processed through the above steps. After that, the above-mentioned steps are repeated.
 図5に示すように、トリガ信号Stが出力されてから加工開始信号Spが送信されるまでの時間を時間T1とし、光走査手段35gが加工開始信号Spを受信してから、実際にレーザ照射による加工が開始されるまでの時間を時間T2としたときに、被加工物の搬送速度が速い場合には、計数時間Tdにおいて計測される第1のパルス信号Pm1の信号数が多くなるので、予め設定した閾値信号数に到達するまでに計測される第2のパルス信号Pm2の信号数は搬送速度が遅い場合と比較して少なくなる。すなわち、トリガ信号Stが出力されてから加工開始信号Spが送信されるまでの時間T1は、被加工物の搬送速度が遅い場合と比較して短くなる。 As shown in FIG. 5, the time from the output of the trigger signal St to the transmission of the machining start signal Sp is set as the time T1, and after the optical scanning means 35g receives the machining start signal Sp, the laser irradiation is actually performed. When the time until the start of machining is set to time T2 and the transport speed of the workpiece is high, the number of signals of the first pulse signal Pm1 measured at the counting time Td increases. The number of signals of the second pulse signal Pm2 measured until the number of preset threshold signals is reached is smaller than that in the case where the transport speed is slow. That is, the time T1 from the output of the trigger signal St to the transmission of the machining start signal Sp is shorter than that in the case where the transfer speed of the workpiece is slow.
 また、被加工物の搬送速度が速い場合には、一定時間経過する間に搬送される被加工物の搬送距離が、搬送速度が遅い場合と比較して長くなってしまうので、時間T2の間に搬送される被加工物の搬送距離が長くなる。このとき、計数時間Tdを時間T2と略同一の時間となるように設定又は制御することによって、近接センサ42から入力される、トリガ信号Stの出力から実際に加工が開始されるまでの時間(すなわち時間T1と時間T2との和で表される。以下、これを「時間T1+T2」ともいう。)に計測される合計パルス信号数が、トリガ信号Stの出力から実際にレーザ加工が開始されるまでの時間T1+T2の間に移動した、被加工物における加工開始位置の移動距離に略一致するので、搬送速度が異なった場合でも一定となるように制御することができる。「略同一の時間」とは、計数時間Tdが時間T2と同一の時間に設定又は制御されることに限られず、時間T2を基準とした所定時間の範囲内に計数時間Tdが設定又は制御されることを許容する趣旨である。つまり、計数時間Tdと時間T2との差が特定の時間の範囲内であれば、本発明の効果は十分に奏される。「略同一の時間」として許容される時間の範囲は、被加工物の搬送速度及び目的とする加工精度に応じて適宜設定又は制御可能であるが、例えば、被加工物が50m/min以上200m/min以下の一定の搬送速度で搬送されており、時間T2が0.005sec、必要精度が0.3mmであった場合、計数時間Tdとして、「時間T2±時間T2×0.024」の範囲内の時間を設定することができる。尤も、計数時間Tdを時間T2と同一の時間(すなわち、計数時間Td=時間T2)に設定することによって、時間T1+T2の間に計測される合計パルス信号数は、時間T1+T2の間に移動した、被加工物における加工開始位置の移動距離に一致するので、加工開始位置を更に高い精度で一定となるように制御することができる点で特に好ましい。 Further, when the transport speed of the workpiece is high, the transport distance of the workpiece to be transported after a certain period of time elapses becomes longer than when the transport speed is slow, so that during the time T2. The transport distance of the work piece to be transported to is increased. At this time, by setting or controlling the counting time Td so as to be substantially the same as the time T2, the time from the output of the trigger signal St input from the proximity sensor 42 to the actual start of machining ( That is, it is represented by the sum of time T1 and time T2. Hereinafter, this is also referred to as "time T1 + T2"), and the total number of pulse signals measured is actually laser processing started from the output of the trigger signal St. Since it substantially matches the moving distance of the machining start position in the workpiece that has moved between T1 and T2, it can be controlled to be constant even if the transport speed is different. The "substantially the same time" is not limited to the case where the counting time Td is set or controlled at the same time as the time T2, and the counting time Td is set or controlled within a predetermined time range based on the time T2. The purpose is to allow that. That is, if the difference between the counting time Td and the time T2 is within a specific time range, the effect of the present invention is sufficiently exhibited. The range of time allowed as "substantially the same time" can be appropriately set or controlled according to the transport speed of the workpiece and the target machining accuracy. For example, the workpiece is 50 m / min or more and 200 m or more. When the product is transported at a constant transport speed of / min or less, the time T2 is 0.005 sec, and the required accuracy is 0.3 mm, the counting time Td is in the range of "time T2 ± time T2 x 0.024". You can set the time within. However, by setting the counting time Td to the same time as the time T2 (ie, counting time Td = time T2), the total number of pulse signals measured during time T1 + T2 moved during time T1 + T2. Since it matches the moving distance of the machining start position in the workpiece, it is particularly preferable in that the machining start position can be controlled to be constant with higher accuracy.
 一方、被加工物の搬送速度が遅い場合には、計数時間Tdにおいて計測される第1のパルス信号Pm1の信号数が少なくなるので、予め設定した閾値信号数に到達するまでに計測される第2のパルス信号Pm2の信号数は搬送速度が速い場合と比較して多くなる。すなわち、トリガ信号Stが出力されてから加工開始信号Spが送信されるまでの時間T1は、被加工物の搬送速度が速い場合と比較して長くなるので、被加工物の搬送方向下流側の位置で加工開始信号Spが送信されることになる。 On the other hand, when the transport speed of the workpiece is slow, the number of signals of the first pulse signal Pm1 measured at the counting time Td decreases, so that the number of signals measured before reaching the preset threshold signal number is reached. The number of signals of the pulse signal Pm2 of 2 is larger than that in the case where the transport speed is high. That is, the time T1 from the output of the trigger signal St to the transmission of the machining start signal Sp is longer than that in the case where the transfer speed of the workpiece is high, so that it is on the downstream side in the transfer direction of the workpiece. The machining start signal Sp will be transmitted at the position.
 また、被加工物の搬送速度が遅い場合には、一定時間経過する間に搬送される被加工物の搬送距離が搬送速度が速い場合と比較して短くなってしまうので、時間T2の間に搬送される被加工物の搬送距離が短くなる。被加工物の搬送速度が遅い場合においても同様に、計数時間Tdを時間T2と略同一の時間となるように設定又は制御することによって、近接センサ42から入力される、トリガ信号Stの出力から実際に加工が開始されるまでの時間T1+T2の間に計測される合計パルス信号数が、時間T1+T2の間に移動した、被加工物における加工開始位置の移動距離に略一致するので、搬送速度が異なった場合でも一定となるように制御することができる。本実施形態における「略同一の時間」は、計数時間Tdを被加工物の搬送速度が速い場合と同様の範囲に設定又は制御すれば、本発明の効果は十分に奏される。尤も、本実施形態においても、計数時間Tdを時間T2と同一の時間(計数時間Td=時間T2)に設定することによって、時間T1+T2の間に計測される合計パルス信号数は、トリガ信号Stの出力から実際にレーザ加工が開始されるまでの時間T1+T2の間に移動した、被加工物における加工開始位置の移動距離に一致するので、加工開始位置を更に高い精度で一定となるように制御することができる点で特に好ましい。 Further, when the transport speed of the workpiece is slow, the transport distance of the workpiece to be transported within a certain period of time is shorter than that when the transport speed is high, so that during the time T2. The transport distance of the workpiece to be transported is shortened. Similarly, even when the transport speed of the workpiece is slow, by setting or controlling the counting time Td so as to be substantially the same time as the time T2, from the output of the trigger signal St input from the proximity sensor 42. Since the total number of pulse signals measured during the time T1 + T2 until the actual start of machining substantially matches the moving distance of the machining start position in the workpiece that has moved during the time T1 + T2, the transport speed is increased. It can be controlled to be constant even if they are different. The effect of the present invention can be sufficiently achieved if the "substantially the same time" in the present embodiment is set or controlled within the same range as when the counting time Td is high in the transport speed of the workpiece. However, also in this embodiment, by setting the counting time Td to the same time as the time T2 (counting time Td = time T2), the total number of pulse signals measured during the time T1 + T2 is the trigger signal St. The time from the output to the actual start of laser machining Since it matches the moving distance of the machining start position on the workpiece that moved between T1 + T2, the machining start position is controlled to be constant with higher accuracy. It is particularly preferable in that it can be performed.
 以上のとおりの制御によれば、円筒ロール21の回転速度の増減によらず、すなわち被加工物の搬送速度によらず、被加工物へのレーザ光の照射を特定の位置から開始できるように制御することができるので、被加工物の搬送速度が異なる場合であっても、加工開始位置を一定にして、被加工物を高精度に加工することができる。また上述の制御によれば、加工開始位置を一定にするために、エンコーダ信号に基づく位置情報を座標変換する必要がないので、加工装置自体への制御負荷を少なくすることができ、被加工物の高速での加工を行うことができる。これに対して、従来の方法では、エンコーダ信号に基づく位置情報を二次元座標又は三次元座標に都度変換してからレーザ光を走査する必要があるので、被加工物の加工開始位置が搬送速度によって変化したり、あるいは加工装置の制御系への負荷が大きくなるので、それが高速化や高精度の加工を妨げる一因となってしまうことがある。 According to the control as described above, the irradiation of the laser beam to the workpiece can be started from a specific position regardless of the increase or decrease in the rotation speed of the cylindrical roll 21, that is, regardless of the transport speed of the workpiece. Since it can be controlled, even if the transfer speed of the workpiece is different, the machining start position can be kept constant and the workpiece can be machined with high accuracy. Further, according to the above-mentioned control, since it is not necessary to perform coordinate conversion of the position information based on the encoder signal in order to make the machining start position constant, the control load on the machining apparatus itself can be reduced, and the workpiece can be processed. Can be processed at high speed. On the other hand, in the conventional method, since it is necessary to convert the position information based on the encoder signal into two-dimensional coordinates or three-dimensional coordinates each time and then scan the laser beam, the machining start position of the workpiece is the transport speed. This may change depending on the type of processing, or the load on the control system of the processing equipment may increase, which may be one of the factors that hinder high-speed and high-precision processing.
 本発明において、被加工物の搬送面は、円筒表面等の曲面の態様に限られず、平面であってもよい。もっとも、上述したように、搬送面が曲面である場合には、本発明の効果が一層顕著なものとなる。詳細には、被加工物の搬送面が曲面である場合には、従来の方法では、エンコーダ信号に基づく位置情報を三次元座標に変換する必要があったので、搬送面が平面である場合と比較して、より多くの演算処理を行わなければならず、加工装置の制御系への負荷が著しく大きなものとなっていた。この点に関して、本発明の製造装置によれば、座標変換等の演算処理を行う必要がないので、搬送面が曲面である場合でも、加工装置自体への制御負荷を少なくしつつ、レーザ光照射による加工開始位置を一定に制御することができるので、被加工物の高精度の加工を効率良く連続的に行うことができる。 In the present invention, the transport surface of the work piece is not limited to a curved surface such as a cylindrical surface, and may be a flat surface. However, as described above, when the transport surface is a curved surface, the effect of the present invention becomes more remarkable. Specifically, when the transport surface of the workpiece is a curved surface, in the conventional method, it is necessary to convert the position information based on the encoder signal into three-dimensional coordinates, so that the transport surface is a flat surface. In comparison, more arithmetic processing had to be performed, and the load on the control system of the processing apparatus was significantly large. In this regard, according to the manufacturing apparatus of the present invention, it is not necessary to perform arithmetic processing such as coordinate conversion. Therefore, even when the transport surface is a curved surface, laser light irradiation is performed while reducing the control load on the processing apparatus itself. Since the machining start position can be controlled to be constant, high-precision machining of the workpiece can be efficiently and continuously performed.
 上述した実施形態では、本発明の適用の対象となる被加工物として、パンツ型使い捨ておむつの前駆体であるシート積層体10を例に挙げたが、本発明の適用の対象となる被加工物はこれに限られず、レーザ光の照射による加工が可能な物品であれば本発明に適用可能である。 In the above-described embodiment, as the work piece to which the present invention is applied, the sheet laminate 10, which is a precursor of a pants-type disposable diaper, has been mentioned as an example, but the work piece to which the present invention is applied. Is not limited to this, and any article that can be processed by irradiation with a laser beam can be applied to the present invention.
 更に、上述の説明から明らかなとおり、本発明によれば、被加工物の製造方法だけでなく、被加工物の製造装置、シート融着体の製造方法及びシート融着体の製造装置も提供される。 Further, as is clear from the above description, according to the present invention, not only a method for manufacturing a work piece, but also an apparatus for manufacturing a work piece, a method for producing a sheet fused body, and an apparatus for manufacturing a sheet fused body are provided. Will be done.
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記の実施形態に制限されない。例えば前記の実施形態においては、被加工物であるシート積層体10の位置情報を、サーボモータ40からのエンコーダ信号から取得していたが、これに代えて、円筒ロール21の周面に設置されたリニアエンコーダ(図示せず)からのエンコーダ信号に基づきシート積層体10の位置情報を取得してもよい。円筒ロール21の周面に設置されたリニアエンコーダを用いることで、シート積層体10の位置検出の精度が一層高くなるので有利である。 Although the present invention has been described above based on its preferred embodiment, the present invention is not limited to the above-described embodiment. For example, in the above embodiment, the position information of the sheet laminate 10 which is the work piece is acquired from the encoder signal from the servomotor 40, but instead of this, it is installed on the peripheral surface of the cylindrical roll 21. The position information of the sheet laminated body 10 may be acquired based on the encoder signal from the linear encoder (not shown). It is advantageous to use a linear encoder installed on the peripheral surface of the cylindrical roll 21 because the accuracy of position detection of the sheet laminate 10 is further improved.
 上述した実施形態に関し、本発明は更に以下の被加工物の製造方法及び製造装置、並びにシート融着体の製造方法及び製造装置を開示する。 Regarding the above-described embodiment, the present invention further discloses the following manufacturing method and manufacturing apparatus for the workpiece, and manufacturing method and manufacturing apparatus for the sheet fused body.
<1>
 搬送面に沿って搬送される被加工物に、固定された光源から発せられたレーザ光を走査しながら照射して、該被加工物を加工する、被加工物の製造方法であって、
 加工開始位置よりも搬送方向上流側に位置するセンサによる前記被加工物の搬送位置の検出から、前記被加工物の加工を開始するまでの応答遅れ時間に基づく計数時間を予め設定しておき、
 前記被加工物の搬送位置に応じたパルス信号を発生させた状態で、前記計数時間内に入力される第1のパルス信号数を計数し、
 前記センサによって得られた前記被加工物の搬送位置情報に基づいてトリガ信号を発生させ、
 前記トリガ信号が発生した後に入力される第2のパルス信号数を計数し、
第1のパルス信号数と第2のパルス信号数との合計信号数が、予め設定した信号数以上となったときに、該被加工物の加工を開始する、被加工物の製造方法。
<1>
A method for manufacturing a work piece, which comprises irradiating a work piece transported along a transport surface with a laser beam emitted from a fixed light source while scanning the work piece to process the work piece.
A counting time based on the response delay time from the detection of the transport position of the workpiece by the sensor located upstream of the machining start position to the start of machining of the workpiece is set in advance.
The number of first pulse signals input within the counting time is counted in a state where the pulse signal corresponding to the transport position of the workpiece is generated.
A trigger signal is generated based on the transport position information of the workpiece obtained by the sensor.
The number of second pulse signals input after the trigger signal is generated is counted, and the number of second pulse signals is counted.
A method for manufacturing a work piece, which starts machining the work piece when the total number of signals of the first pulse signal number and the second pulse signal number becomes equal to or more than a preset number of signals.
<2>
 搬送面に沿って搬送される被加工物に、固定された光源から発せられたレーザ光を走査しながら照射して、該被加工物を加工する製造装置であって、
 前記被加工物の搬送位置に応じたパルス信号を発生するパルス信号発生手段と、
 加工開始位置よりも搬送方向上流側に位置し、前記被加工物の搬送位置を検出するセンサと、
 前記センサによる前記被加工物の搬送位置の検出から、前記被加工物の加工を開始するまでの応答遅れ時間に基づく計数時間を設定する計数時間設定手段と、
 前記センサによって得られた搬送位置情報に基づいてトリガ信号を発生させるトリガ信号発生手段と、
 前記計数時間内に発生した第1のパルス信号数と、前記トリガ信号が発生した後に発生した第2のパルス信号数とをそれぞれ計数するパルス計数手段と、
 前記パルス計数手段からの信号に基づいて、被加工物の加工開始を指令する指令手段とを備える、被加工物の製造装置。
<2>
A manufacturing apparatus for processing a work piece by irradiating the work piece transported along the transport surface while scanning a laser beam emitted from a fixed light source.
A pulse signal generating means for generating a pulse signal according to the transport position of the workpiece, and a pulse signal generating means.
A sensor located upstream of the machining start position in the transport direction and detecting the transport position of the workpiece,
A counting time setting means for setting a counting time based on a response delay time from the detection of the transport position of the workpiece by the sensor to the start of machining of the workpiece.
A trigger signal generating means for generating a trigger signal based on the transport position information obtained by the sensor, and a trigger signal generating means.
A pulse counting means for counting the number of first pulse signals generated within the counting time and the number of second pulse signals generated after the trigger signal is generated, respectively.
An apparatus for manufacturing a workpiece, comprising a command means for instructing the start of machining of the workpiece based on a signal from the pulse counting means.
<3>
 前記パルス信号発生手段は、パルス状のエンコーダ信号を発生可能なサーボモータまたはリニアエンコーダである、前記<2>に記載の被加工物の製造装置。
<4>
 前記計数時間を補正パルス信号へ変換する補正パルス生成手段と、前記トリガ信号又は該補正パルス信号を受信できる手段である論理回路とを更に備え、
 前記論理回路はOR回路であり、前記補正パルス信号又は前記トリガ信号を受信することによって、第1のパルス信号数又は第2のパルス信号数の計測を開始させる計測開始信号を発生できる手段である、前記<2>又は<3>に記載の被加工物の製造装置。
<5>
 前記計測開始信号と、前記パルス信号発生手段から発生するパルス状のエンコーダ信号とをともに受信し、第1のパルス信号又は第2のパルス信号を計測パルス信号として出力するAND論理回路を有する手段であるゲート手段を更に備える、前記<2>~<4>のいずれか一に記載の被加工物の製造装置。
<3>
The device for manufacturing a workpiece according to <2>, wherein the pulse signal generating means is a servomotor or a linear encoder capable of generating a pulsed encoder signal.
<4>
A correction pulse generating means for converting the counting time into a correction pulse signal and a logic circuit which is a means for receiving the trigger signal or the correction pulse signal are further provided.
The logic circuit is an OR circuit, and is a means capable of generating a measurement start signal for starting measurement of the first pulse signal number or the second pulse signal number by receiving the correction pulse signal or the trigger signal. , The apparatus for manufacturing a workpiece according to the above <2> or <3>.
<5>
A means having an AND logic circuit that receives both the measurement start signal and the pulsed encoder signal generated from the pulse signal generating means and outputs the first pulse signal or the second pulse signal as the measurement pulse signal. The apparatus for manufacturing a workpiece according to any one of <2> to <4>, further comprising a certain gate means.
<6>
 第1のパルス信号数と第2のパルス信号数との合計信号数と比較する閾値信号数を設定する閾値信号数設定手段を更に備える、前記<2>~<5>のいずれか一に記載の被加工物の製造装置。
<7>
 第1のパルス信号数と第2のパルス信号数との合計信号数が予め設定された信号数以上となった場合に、前記指令手段に対して信号を出力する計数値判定手段を更に備える、前記<2>~<6>のいずれか一に記載の被加工物の製造装置。
<6>
The description in any one of <2> to <5>, further comprising a threshold signal number setting means for setting a threshold signal number to be compared with the total signal number of the first pulse signal number and the second pulse signal number. Work piece manufacturing equipment.
<7>
A count value determining means for outputting a signal to the command means when the total number of signals of the first pulse signal number and the second pulse signal number becomes equal to or more than a preset number of signals is further provided. The apparatus for manufacturing a workpiece according to any one of <2> to <6>.
<8>
 少なくとも一部に樹脂材を含む複数枚のシートが重ねられた帯状のシート積層体を搬送面に沿って搬送しつつ、該シート積層体に、固定された光源から発せられたレーザ光を走査しながら照射して、該シート積層体を加工することで、複数枚のシートの縁部が重なった状態で融着したシール縁部を有するシート融着体を製造する方法であって、
 加工開始位置よりも搬送方向上流側に位置するセンサによる前記シート積層体の搬送位置の検出から、前記シート積層体の加工を開始するまでの応答遅れ時間に基づく計数時間を予め設定しておき、
 前記シート積層体の搬送位置に応じたパルス信号を発生させた状態で、前記計数時間内に入力される第1のパルス信号数を計数し、
 前記センサによって得られた前記シート積層体の搬送位置情報に基づいてトリガ信号を発生させ、
 前記トリガ信号が発生した後に入力される第2のパルス信号数を計数し、第1のパルス信号数と第2のパルス信号数との合計信号数が、予め設定した信号数以上となったときに、前記シート積層体の加工を開始する、シート融着体の製造方法。
<8>
While transporting a strip-shaped sheet laminate in which a plurality of sheets containing at least a resin material are stacked along a transport surface, the laser beam emitted from a fixed light source is scanned by the sheet laminate. It is a method of producing a sheet fusion body having a sealing edge portion fused in a state where the edges of a plurality of sheets are overlapped by irradiating while irradiating the sheet laminate.
A counting time based on the response delay time from the detection of the transport position of the sheet laminate by the sensor located upstream of the machining start position to the start of machining of the sheet laminate is set in advance.
With the pulse signal generated according to the transport position of the sheet laminate, the number of first pulse signals input within the counting time is counted.
A trigger signal is generated based on the transport position information of the sheet laminate obtained by the sensor.
When the number of second pulse signals input after the trigger signal is generated is counted and the total number of signals of the first pulse signal and the second pulse signal becomes equal to or more than a preset number of signals. In addition, a method for manufacturing a sheet fused body, which starts processing of the sheet laminated body.
<9>
 少なくとも一部に樹脂材を含む複数枚のシートが重ねられた帯状のシート積層体を搬送面に沿って搬送しつつ、該シート積層体に、固定された光源から発せられたレーザ光を走査しながら照射して、該シート積層体を加工することで、複数枚のシートの縁部が重なった状態で融着したシール縁部を有するシート融着体を製造する装置であって、
 前記シート積層体の搬送位置に応じたパルス信号を発生するパルス信号発生手段と、
 加工開始位置よりも搬送方向上流側に位置し、前記シート積層体の搬送位置を検出するセンサと、
 前記センサによる前記シート積層体の搬送位置の検出から、前記シート積層体の加工を開始するまでの応答遅れ時間に基づく計数時間を設定する計数時間設定手段と、
 前記センサによって得られた搬送位置情報に基づいてトリガ信号を発生させるトリガ信号発生手段と、
 前記計数時間内に発生した第1のパルス信号数と、前記トリガ信号が発生した後に発生した第2のパルス信号数とをそれぞれ計数するパルス計数手段と、
 前記パルス計数手段からの信号に基づいて、シート積層体の加工開始を指令する指令手段とを備える、シート融着体の製造装置。
<9>
While transporting a strip-shaped sheet laminate in which a plurality of sheets containing at least a resin material are stacked along a transport surface, the laser beam emitted from a fixed light source is scanned by the sheet laminate. It is an apparatus for producing a sheet fused body having a seal edge portion fused in a state where the edge portions of a plurality of sheets are overlapped by irradiating while irradiating the sheet laminated body.
A pulse signal generating means for generating a pulse signal according to a transport position of the sheet laminate, and a pulse signal generating means.
A sensor located upstream of the machining start position in the transport direction and detecting the transport position of the sheet laminate,
A counting time setting means for setting a counting time based on a response delay time from the detection of the transport position of the sheet laminated body by the sensor to the start of processing of the sheet laminated body.
A trigger signal generating means for generating a trigger signal based on the transport position information obtained by the sensor, and a trigger signal generating means.
A pulse counting means for counting the number of first pulse signals generated within the counting time and the number of second pulse signals generated after the trigger signal is generated, respectively.
A sheet fused body manufacturing apparatus including a command means for instructing the start of processing of a sheet laminated body based on a signal from the pulse counting means.
<10>
 前記計数時間を、前記合計信号数が予め設定した信号数以上となったときに出力される加工開始信号の出力から前記被加工物の加工開始までの時間となるように設定する、前記<1>に記載の被加工物の製造方法。
<11>
 前記指令手段から出力される加工開始信号に基づいて、前記被加工物が加工されるように構成されており、
 前記計数時間設定手段において、前記加工開始信号の出力から前記被加工物の加工開始までの時間が前記計数時間として設定されている、前記<2>~<7>のいずれか一に記載の被加工物の製造装置。
<12>
 前記計数時間を、前記合計信号数が予め設定した信号数以上となったときに出力される加工開始信号の出力から前記シート積層体の加工開始までの時間となるように設定する、前記<8>に記載のシート融着体の製造方法。
<13>
 前記指令手段から出力される加工開始信号に基づいて、前記シート積層体が加工されるように構成されており、
 前記計数時間設定手段において、前記加工開始信号の出力から前記シート積層体の加工開始までの時間が前記計数時間として設定されている、前記<9>に記載のシート融着体の製造装置。
<10>
The counting time is set to be the time from the output of the machining start signal output when the total number of signals becomes equal to or greater than the preset number of signals to the start of machining of the workpiece. > The method for manufacturing a work piece.
<11>
The workpiece is configured to be machined based on the machining start signal output from the command means.
The subject according to any one of <2> to <7>, wherein the time from the output of the machining start signal to the start of machining of the workpiece is set as the counting time in the counting time setting means. Work piece manufacturing equipment.
<12>
The counting time is set to be the time from the output of the machining start signal output when the total number of signals becomes equal to or greater than the preset number of signals to the start of machining of the sheet laminate. > The method for producing a sheet fusion body.
<13>
The sheet laminate is configured to be machined based on the machining start signal output from the command means.
The sheet fused body manufacturing apparatus according to <9>, wherein in the counting time setting means, the time from the output of the machining start signal to the start of machining of the sheet laminate is set as the counting time.
<14>
 前記計数時間に基づいて発生した補正パルス信号又は前記トリガ信号を受信するOR論理回路を用いて、
 前記論理回路が前記補正パルス信号又は前記トリガ信号を受信したときに第1のパルス信号数又は第2のパルス信号数の計測を開始させる計測開始信号を発生させて、第1のパルス信号数又は第2のパルス信号数の計測を開始する、前記<8>又は<12>に記載のシート融着体の製造方法。
<15>
 前記計測開始信号と前記パルス信号とをともに受信したときに、第1のパルス信号又は第2のパルス信号を計測パルス信号として出力する、前記<14>に記載のシート融着体の製造方法。
<16>
 第1のパルス信号数と第2のパルス信号数との合計信号数と比較するための閾値信号数を設定しておく、前記<8>、<12>、<14>又は<15>のいずれか一に記載のシート融着体の製造方法。
<17>
 前記合計信号数が予め設定した信号数以上となったときに出力される加工開始信号に基づいて、前記シート積層体の加工を開始する、前記<8>、<12>、<14>~<16>のいずれか一に記載のシート融着体の製造方法。
<14>
Using an OR logic circuit that receives the correction pulse signal generated based on the counting time or the trigger signal,
When the logic circuit receives the correction pulse signal or the trigger signal, the measurement start signal for starting the measurement of the first pulse signal number or the second pulse signal number is generated, and the first pulse signal number or the first pulse signal number or The method for producing a sheet fused body according to <8> or <12>, wherein the measurement of the number of second pulse signals is started.
<15>
The method for manufacturing a sheet fused body according to <14>, wherein when both the measurement start signal and the pulse signal are received, the first pulse signal or the second pulse signal is output as the measurement pulse signal.
<16>
Any of the above <8>, <12>, <14>, or <15> in which the number of threshold signals for comparison with the total number of signals of the first pulse signal and the second pulse signal is set. The method for producing a sheet fused body according to Kaichi.
<17>
The processing of the sheet laminate is started based on the processing start signal output when the total number of signals becomes equal to or more than the preset number of signals. 16> The method for producing a sheet fused body according to any one of.
<18>
 前記合計信号数が予め設定した信号数以上となったときに出力される加工開始信号の出力から前記シート積層体の加工開始までの時間を前記計数時間として設定しておき、その状態で、前記加工開始信号に基づいて前記シート積層体の加工を開始する、前記<8>、<12>、<14>~<17>のいずれか一に記載のシート融着体の製造方法。
<19>
 前記<8>、<12>、<14>~<18>のいずれか一に記載の製造方法における前記シート融着体がパンツ型使い捨ておむつであり、
 前記製造方法によって製造されたパンツ型使い捨ておむつ。
<18>
The time from the output of the machining start signal output when the total number of signals becomes equal to or greater than the preset number of signals to the start of machining of the sheet laminate is set as the counting time, and in that state, the said The method for producing a sheet fused body according to any one of <8>, <12>, and <14> to <17>, wherein the processing of the sheet laminate is started based on the processing start signal.
<19>
The sheet fusion body in the manufacturing method according to any one of <8>, <12>, <14> to <18> is a pants-type disposable diaper.
Pants-type disposable diapers manufactured by the above manufacturing method.
 本発明によれば、被加工物の搬送速度が異なる場合であっても、被加工物を高精度に加工することができる。
 
According to the present invention, the workpiece can be machined with high accuracy even when the transport speeds of the workpieces are different.

Claims (19)

  1.  搬送面に沿って搬送される被加工物に、固定された光源から発せられたレーザ光を走査しながら照射して、該被加工物を加工する、被加工物の製造方法であって、
     加工開始位置よりも搬送方向上流側に位置するセンサによる前記被加工物の搬送位置の検出から、前記被加工物の加工を開始するまでの応答遅れ時間に基づく計数時間を予め設定しておき、
     前記被加工物の搬送位置に応じたパルス信号を発生させた状態で、前記計数時間内に入力される第1のパルス信号数を計数し、
     前記センサによって得られた前記被加工物の搬送位置情報に基づいてトリガ信号を発生させ、
     前記トリガ信号が発生した後に入力される第2のパルス信号数を計数し、第1のパルス信号数と第2のパルス信号数との合計信号数が、予め設定した信号数以上となったときに、該被加工物の加工を開始する、被加工物の製造方法。
    A method for manufacturing a work piece, which comprises irradiating a work piece transported along a transport surface with a laser beam emitted from a fixed light source while scanning the work piece to process the work piece.
    A counting time based on the response delay time from the detection of the transport position of the workpiece by the sensor located upstream of the machining start position to the start of machining of the workpiece is set in advance.
    The number of first pulse signals input within the counting time is counted in a state where the pulse signal corresponding to the transport position of the workpiece is generated.
    A trigger signal is generated based on the transport position information of the workpiece obtained by the sensor.
    When the number of second pulse signals input after the trigger signal is generated is counted and the total number of signals of the first pulse signal and the second pulse signal becomes equal to or more than a preset number of signals. In addition, a method for manufacturing a work piece, which starts processing the work piece.
  2.  前記計数時間を、前記合計信号数が予め設定した信号数以上となったときに出力される加工開始信号の出力から前記被加工物の加工開始までの時間となるように設定する、請求項1に記載の被加工物の製造方法。 Claim 1 is set so that the counting time is the time from the output of the machining start signal output when the total number of signals becomes equal to or more than a preset number of signals to the start of machining of the workpiece. The method for manufacturing a work piece according to.
  3.  搬送面に沿って搬送される被加工物に、固定された光源から発せられたレーザ光を走査しながら照射して、該被加工物を加工する製造装置であって、
     前記被加工物の搬送位置に応じたパルス信号を発生するパルス信号発生手段と、
     加工開始位置よりも搬送方向上流側に位置し、前記被加工物の搬送位置を検出するセンサと、
     前記センサによる前記被加工物の搬送位置の検出から、前記被加工物の加工を開始するまでの応答遅れ時間に基づく計数時間を設定する計数時間設定手段と、
     前記センサによって得られた搬送位置情報に基づいてトリガ信号を発生させるトリガ信号発生手段と、
     前記計数時間内に発生した第1のパルス信号数と、前記トリガ信号が発生した後に発生した第2のパルス信号数とをそれぞれ計数するパルス計数手段と、
     前記パルス計数手段からの信号に基づいて、被加工物の加工開始を指令する指令手段とを備える、被加工物の製造装置。
    A manufacturing apparatus for processing a work piece by irradiating the work piece transported along the transport surface while scanning a laser beam emitted from a fixed light source.
    A pulse signal generating means for generating a pulse signal according to the transport position of the workpiece, and a pulse signal generating means.
    A sensor located upstream of the machining start position in the transport direction and detecting the transport position of the workpiece,
    A counting time setting means for setting a counting time based on a response delay time from the detection of the transport position of the workpiece by the sensor to the start of machining of the workpiece.
    A trigger signal generating means for generating a trigger signal based on the transport position information obtained by the sensor, and a trigger signal generating means.
    A pulse counting means for counting the number of first pulse signals generated within the counting time and the number of second pulse signals generated after the trigger signal is generated, respectively.
    An apparatus for manufacturing a workpiece, comprising a command means for instructing the start of machining of the workpiece based on a signal from the pulse counting means.
  4.  前記パルス信号発生手段は、パルス状のエンコーダ信号を発生可能なサーボモータまたはリニアエンコーダである、請求項3に記載の被加工物の製造装置。 The apparatus for manufacturing a workpiece according to claim 3, wherein the pulse signal generating means is a servomotor or a linear encoder capable of generating a pulsed encoder signal.
  5.  前記計数時間を補正パルス信号へ変換する補正パルス生成手段と、前記トリガ信号又は該補正パルス信号を受信できる手段である論理回路とを更に備え、
     前記論理回路はOR回路であり、前記補正パルス信号又は前記トリガ信号を受信することによって、第1のパルス信号数又は第2のパルス信号数の計測を開始させる計測開始信号を発生できる手段である、請求項3又は4に記載の被加工物の製造装置。
    A correction pulse generating means for converting the counting time into a correction pulse signal and a logic circuit which is a means for receiving the trigger signal or the correction pulse signal are further provided.
    The logic circuit is an OR circuit, and is a means capable of generating a measurement start signal for starting measurement of the first pulse signal number or the second pulse signal number by receiving the correction pulse signal or the trigger signal. , The apparatus for manufacturing a workpiece according to claim 3 or 4.
  6.  前記計測開始信号と、前記パルス信号発生手段から発生するパルス状のエンコーダ信号とをともに受信し、第1のパルス信号又は第2のパルス信号を計測パルス信号として出力するAND論理回路を有する手段であるゲート手段を更に備える、請求項5に記載の被加工物の製造装置。 A means having an AND logic circuit that receives both the measurement start signal and the pulsed encoder signal generated from the pulse signal generating means and outputs the first pulse signal or the second pulse signal as the measurement pulse signal. The apparatus for manufacturing a workpiece according to claim 5, further comprising a certain gate means.
  7.  第1のパルス信号数と第2のパルス信号数との合計信号数と比較する閾値信号数を設定する閾値信号数設定手段を更に備える、請求項3~6のいずれか一項に記載の被加工物の製造装置。 The subject according to any one of claims 3 to 6, further comprising a threshold signal number setting means for setting a threshold signal number to be compared with the total signal number of the first pulse signal number and the second pulse signal number. Work piece manufacturing equipment.
  8.  第1のパルス信号数と第2のパルス信号数との合計信号数が予め設定された信号数以上となった場合に、前記指令手段に対して信号を出力する計数値判定手段を更に備える、請求項3~7のいずれか一項に記載の被加工物の製造装置。 A counting value determining means for outputting a signal to the command means when the total number of signals of the first pulse signal number and the second pulse signal number becomes equal to or more than a preset number of signals is further provided. The apparatus for manufacturing a workpiece according to any one of claims 3 to 7.
  9.  前記指令手段から出力される加工開始信号に基づいて、前記被加工物が加工されるように構成されており、
     前記計数時間設定手段において、前記加工開始信号の出力から前記被加工物の加工開始までの時間が前記計数時間として設定されている、請求項3~8のいずれか一項に記載の被加工物の製造装置。
    The workpiece is configured to be machined based on the machining start signal output from the command means.
    The workpiece according to any one of claims 3 to 8, wherein in the counting time setting means, the time from the output of the machining start signal to the start of machining of the workpiece is set as the counting time. Manufacturing equipment.
  10.  少なくとも一部に樹脂材を含む複数枚のシートが重ねられた帯状のシート積層体を搬送面に沿って搬送しつつ、該シート積層体に、固定された光源から発せられたレーザ光を走査しながら照射して、該シート積層体を加工することで、複数枚のシートの縁部が重なった状態で融着したシール縁部を有するシート融着体を製造する方法であって、
     加工開始位置よりも搬送方向上流側に位置するセンサによる前記シート積層体の搬送位置の検出から、前記シート積層体の加工を開始するまでの応答遅れ時間に基づく計数時間を予め設定しておき、
     前記シート積層体の搬送位置に応じたパルス信号を発生させた状態で、前記計数時間内に入力される第1のパルス信号数を計数し、
     前記センサによって得られた前記シート積層体の搬送位置情報に基づいてトリガ信号を発生させ、
     前記トリガ信号が発生した後に入力される第2のパルス信号数を計数し、第1のパルス信号数と第2のパルス信号数との合計信号数が、予め設定した信号数以上となったときに、前記シート積層体の加工を開始する、シート融着体の製造方法。
    While transporting a strip-shaped sheet laminate in which a plurality of sheets containing at least a resin material are stacked along a transport surface, the laser beam emitted from a fixed light source is scanned by the sheet laminate. It is a method of producing a sheet fusion body having a sealing edge portion fused in a state where the edges of a plurality of sheets are overlapped by irradiating while irradiating the sheet laminate.
    A counting time based on the response delay time from the detection of the transport position of the sheet laminate by the sensor located upstream of the machining start position to the start of machining of the sheet laminate is set in advance.
    With the pulse signal generated according to the transport position of the sheet laminate, the number of first pulse signals input within the counting time is counted.
    A trigger signal is generated based on the transport position information of the sheet laminate obtained by the sensor.
    When the number of second pulse signals input after the trigger signal is generated is counted and the total number of signals of the first pulse signal and the second pulse signal becomes equal to or more than a preset number of signals. In addition, a method for manufacturing a sheet fused body, which starts processing of the sheet laminated body.
  11.  前記計数時間を、前記合計信号数が予め設定した信号数以上となったときに出力される加工開始信号の出力から前記シート積層体の加工開始までの時間となるように設定する、請求項10に記載のシート融着体の製造方法。 10. The counting time is set so as to be the time from the output of the machining start signal output when the total number of signals becomes equal to or more than a preset number of signals to the start of machining of the sheet laminate. The method for manufacturing a sheet fusion product according to the above.
  12.  前記計数時間に基づいて発生した補正パルス信号又は前記トリガ信号を受信するOR論理回路を用いて、
     前記論理回路が前記補正パルス信号又は前記トリガ信号を受信したときに第1のパルス信号数又は第2のパルス信号数の計測を開始させる計測開始信号を発生させて、第1のパルス信号数又は第2のパルス信号数の計測を開始する、請求項10又は11に記載のシート融着体の製造方法。
    Using an OR logic circuit that receives the correction pulse signal generated based on the counting time or the trigger signal,
    When the logic circuit receives the correction pulse signal or the trigger signal, the measurement start signal for starting the measurement of the first pulse signal number or the second pulse signal number is generated, and the first pulse signal number or the first pulse signal number or The method for manufacturing a sheet fused body according to claim 10 or 11, wherein the measurement of the number of second pulse signals is started.
  13.  前記計測開始信号と前記パルス信号とをともに受信したときに、第1のパルス信号又は第2のパルス信号を計測パルス信号として出力する、請求項12に記載のシート融着体の製造方法。 The method for manufacturing a sheet fused body according to claim 12, wherein when both the measurement start signal and the pulse signal are received, the first pulse signal or the second pulse signal is output as the measurement pulse signal.
  14.  第1のパルス信号数と第2のパルス信号数との合計信号数と比較するための閾値信号数を設定しておく、請求項10~13のいずれか一項に記載のシート融着体の製造方法。 The sheet fusion body according to any one of claims 10 to 13, wherein a threshold signal number for comparison with the total number of signals of the first pulse signal number and the second pulse signal number is set. Production method.
  15.  前記合計信号数が予め設定した信号数以上となったときに出力される加工開始信号に基づいて、前記シート積層体の加工を開始する、請求項10~14のいずれか一項に記載のシート融着体の製造方法。 The sheet according to any one of claims 10 to 14, which starts processing of the sheet laminate based on a processing start signal output when the total number of signals becomes equal to or more than a preset number of signals. A method for manufacturing a fused body.
  16.  前記合計信号数が予め設定した信号数以上となったときに出力される加工開始信号の出力から前記シート積層体の加工開始までの時間を前記計数時間として設定しておき、その状態で、前記加工開始信号に基づいて前記シート積層体の加工を開始する、請求項10~15のいずれか一項に記載のシート融着体の製造方法。 The time from the output of the machining start signal output when the total number of signals becomes equal to or greater than the preset number of signals to the start of machining of the sheet laminate is set as the counting time, and in that state, the said The method for producing a sheet fused body according to any one of claims 10 to 15, wherein the processing of the sheet laminate is started based on the processing start signal.
  17.  少なくとも一部に樹脂材を含む複数枚のシートが重ねられた帯状のシート積層体を搬送面に沿って搬送しつつ、該シート積層体に、固定された光源から発せられたレーザ光を走査しながら照射して、該シート積層体を加工することで、複数枚のシートの縁部が重なった状態で融着したシール縁部を有するシート融着体を製造する装置であって、
     前記シート積層体の搬送位置に応じたパルス信号を発生するパルス信号発生手段と、
     加工開始位置よりも搬送方向上流側に位置し、前記シート積層体の搬送位置を検出するセンサと、
     前記センサによる前記シート積層体の搬送位置の検出から、前記シート積層体の加工を開始するまでの応答遅れ時間に基づく計数時間を設定する計数時間設定手段と、
     前記センサによって得られた搬送位置情報に基づいてトリガ信号を発生させるトリガ信号発生手段と、
     前記計数時間内に発生した第1のパルス信号数と、前記トリガ信号が発生した後に発生した第2のパルス信号数とをそれぞれ計数するパルス計数手段と、
     前記パルス計数手段からの信号に基づいて、シート積層体の加工開始を指令する指令手段とを備える、シート融着体の製造装置。
    While transporting a strip-shaped sheet laminate in which a plurality of sheets containing at least a resin material are stacked along a transport surface, the laser beam emitted from a fixed light source is scanned by the sheet laminate. It is an apparatus for producing a sheet fused body having a seal edge portion fused in a state where the edge portions of a plurality of sheets are overlapped by irradiating while irradiating the sheet laminated body.
    A pulse signal generating means for generating a pulse signal according to a transport position of the sheet laminate, and a pulse signal generating means.
    A sensor located upstream of the machining start position in the transport direction and detecting the transport position of the sheet laminate,
    A counting time setting means for setting a counting time based on a response delay time from the detection of the transport position of the sheet laminated body by the sensor to the start of processing of the sheet laminated body.
    A trigger signal generating means for generating a trigger signal based on the transport position information obtained by the sensor, and a trigger signal generating means.
    A pulse counting means for counting the number of first pulse signals generated within the counting time and the number of second pulse signals generated after the trigger signal is generated, respectively.
    A sheet fused body manufacturing apparatus including a command means for instructing the start of processing of a sheet laminated body based on a signal from the pulse counting means.
  18.  前記指令手段から出力される加工開始信号に基づいて、前記シート積層体が加工されるように構成されており、
     前記計数時間設定手段において、前記加工開始信号の出力から前記シート積層体の加工開始までの時間が前記計数時間として設定されている、請求項17に記載のシート融着体の製造装置。
    The sheet laminate is configured to be machined based on the machining start signal output from the command means.
    The sheet fusion product manufacturing apparatus according to claim 17, wherein in the counting time setting means, the time from the output of the processing start signal to the start of processing of the sheet laminate is set as the counting time.
  19.  請求項10~16のいずれか一項に記載の製造方法における前記シート融着体がパンツ型使い捨ておむつであり、
     前記製造方法によって製造されたパンツ型使い捨ておむつ。
    The sheet fusion body in the manufacturing method according to any one of claims 10 to 16 is a pants-type disposable diaper.
    Pants-type disposable diapers manufactured by the above manufacturing method.
PCT/JP2020/029681 2019-09-02 2020-08-03 Workpiece manufacturing method and manufacturing device, and fused-sheet body manufacturing method and manufacturing device WO2021044786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080059129.3A CN114269306B (en) 2019-09-02 2020-08-03 Method and apparatus for manufacturing workpiece, and method and apparatus for manufacturing fused-sheet body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019159938A JP7289244B2 (en) 2019-09-02 2019-09-02 Method and apparatus for processing workpiece, and method and apparatus for manufacturing sheet fused body
JP2019-159938 2019-09-02

Publications (1)

Publication Number Publication Date
WO2021044786A1 true WO2021044786A1 (en) 2021-03-11

Family

ID=74847353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029681 WO2021044786A1 (en) 2019-09-02 2020-08-03 Workpiece manufacturing method and manufacturing device, and fused-sheet body manufacturing method and manufacturing device

Country Status (3)

Country Link
JP (1) JP7289244B2 (en)
CN (1) CN114269306B (en)
WO (1) WO2021044786A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023084716A (en) 2021-12-08 2023-06-20 株式会社リコー Laser irradiation device and laser irradiation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051386A1 (en) * 1998-04-02 1999-10-14 Avery Dennison Corporation Dynamic laser cutting apparatus
JP2013071282A (en) * 2011-09-27 2013-04-22 Kao Corp Sheet joining device
WO2013172343A1 (en) * 2012-05-16 2013-11-21 花王株式会社 Method for manufacturing fused sheets
WO2014208636A1 (en) * 2013-06-28 2014-12-31 花王株式会社 Device for producing fused sheet body, and method for producing fused sheet body
WO2015064303A1 (en) * 2013-11-01 2015-05-07 花王株式会社 Production method for fused sheet and production method for absorbent article
US20170266057A1 (en) * 2016-03-15 2017-09-21 The Procter & Gamble Company Method and Apparatus for Manufacturing an Absorbent Article Including an Ultra Short Pulse Laser Source
US20180250886A1 (en) * 2017-03-02 2018-09-06 Leister Technologies Ag Seam production machine for joining planar flexible components

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB693165A (en) * 1949-09-27 1953-06-24 Standard Telephones Cables Ltd Improvements in or relating to electric signalling systems
JP2574263B2 (en) * 1986-11-21 1997-01-22 ムーア.ビジネス.フォームス.インコーポレーテッド Web processing module and its line
JP2781232B2 (en) * 1989-12-27 1998-07-30 三田工業株式会社 Steady-state reach detection device in motor controller
JPH11221689A (en) * 1998-02-04 1999-08-17 Hitachi Constr Mach Co Ltd Laser beam machine
JP2002225361A (en) * 2001-02-05 2002-08-14 Canon Inc Recorder
JP6500550B2 (en) * 2015-03-27 2019-04-17 日本電気株式会社 Timer correction device, timer correction method and timer correction program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051386A1 (en) * 1998-04-02 1999-10-14 Avery Dennison Corporation Dynamic laser cutting apparatus
JP2013071282A (en) * 2011-09-27 2013-04-22 Kao Corp Sheet joining device
WO2013172343A1 (en) * 2012-05-16 2013-11-21 花王株式会社 Method for manufacturing fused sheets
WO2014208636A1 (en) * 2013-06-28 2014-12-31 花王株式会社 Device for producing fused sheet body, and method for producing fused sheet body
WO2015064303A1 (en) * 2013-11-01 2015-05-07 花王株式会社 Production method for fused sheet and production method for absorbent article
US20170266057A1 (en) * 2016-03-15 2017-09-21 The Procter & Gamble Company Method and Apparatus for Manufacturing an Absorbent Article Including an Ultra Short Pulse Laser Source
US20180250886A1 (en) * 2017-03-02 2018-09-06 Leister Technologies Ag Seam production machine for joining planar flexible components

Also Published As

Publication number Publication date
CN114269306B (en) 2022-11-22
JP2021037685A (en) 2021-03-11
JP7289244B2 (en) 2023-06-09
CN114269306A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
EP1295581B1 (en) Method and Apparatus for manufacturing disposable wearing articles
JP5271745B2 (en) Sheet fused body manufacturing method and laser-type bonding apparatus
US20060026929A1 (en) Filling apparatus
WO2021044786A1 (en) Workpiece manufacturing method and manufacturing device, and fused-sheet body manufacturing method and manufacturing device
JP5264562B2 (en) Absorbent article manufacturing apparatus and manufacturing method
US11173536B2 (en) Method and device for joining workpieces having at least two transport devices which can be controlled independently of each other to configure an offset between head ends and/or rear ends of the workpieces prior to joining
WO2011041371A2 (en) System and method for efficient laser processing of a moving web-based material
JP2007169009A (en) Manufacturing method and manufacturing device of composite sheet and article
JP6480725B2 (en) Laser irradiation apparatus and laser irradiation method
JP2003145485A (en) Method and device for manufacturing article
JP2007260414A (en) Manufacturing method of article
JP6823448B2 (en) Laser light irradiation method, laser light irradiation device, and manufacturing method of sheet fused body
JP6942099B2 (en) Processing method of work piece
US6869386B2 (en) Method for manufacturing discrete articles from a material web using synchronized servo-actuated operational units
JP6556043B2 (en) Manufacturing method and manufacturing apparatus of sheet fusion body
JP2020093283A (en) Machining method by laser beam
WO2017216927A1 (en) Method and device for manufacturing sheet member for absorbent article
JP2021037685A5 (en)
JP2017070464A (en) Manufacturing apparatus and manufacturing method of sheet fused body
JP4712756B2 (en) Manufacturing method of article
JP2019072743A (en) Processing method by laser beam and laser beam irradiation apparatus
US20130269871A1 (en) Laser welding plastic parts with two degrees of freedom
US11813800B2 (en) Method and apparatus for improved ultrasonic bonding
JP7141925B2 (en) Sheet fused body manufacturing equipment
US11772332B2 (en) Web welding system and welding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859719

Country of ref document: EP

Kind code of ref document: A1