WO2021044718A1 - Vapor deposition mask - Google Patents

Vapor deposition mask Download PDF

Info

Publication number
WO2021044718A1
WO2021044718A1 PCT/JP2020/025998 JP2020025998W WO2021044718A1 WO 2021044718 A1 WO2021044718 A1 WO 2021044718A1 JP 2020025998 W JP2020025998 W JP 2020025998W WO 2021044718 A1 WO2021044718 A1 WO 2021044718A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
vapor deposition
layer
vapor
deposited
Prior art date
Application number
PCT/JP2020/025998
Other languages
French (fr)
Japanese (ja)
Inventor
松本 優子
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to CN202080059113.2A priority Critical patent/CN114269962A/en
Publication of WO2021044718A1 publication Critical patent/WO2021044718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • One embodiment of the present invention relates to a vapor deposition mask.
  • the light emitting display device can display an image by individually controlling the light emitting elements provided for each pixel.
  • an organic EL display device that uses an organic EL element as a light emitting element is known.
  • the organic EL element has a layer containing an organic EL material (hereinafter, referred to as “organic EL layer”) between the anode electrode and the cathode electrode.
  • the organic EL layer includes a functional layer such as a light emitting layer, an electron injection layer, and a hole injection layer.
  • the organic EL element can emit light in various wavelength colors by selecting the organic material constituting the functional layer.
  • the vacuum deposition method is used to form a thin film of an organic EL device made of a low molecular weight compound.
  • a thin film is formed by heating the vaporized material with a heater to sublimate it under vacuum and depositing (depositing) the sublimated vaporized material on the surface of the substrate.
  • a high-definition thin film pattern can be formed by using a mask (deposited mask) having a large number of fine opening patterns.
  • Patent Document 1 discloses a method in which a mask portion having a high-definition opening pattern is formed by electroforming, and the formed mask portion is fixed to the frame body portion by electroforming.
  • the vapor deposition mask described in Patent Document 1 has a problem that the manufacturing cost is high because the structure is complicated and a large number of steps are required for manufacturing. Further, since the structure is such that the frame portion and the mask portion prepared separately are connected, there are variations in the positioning accuracy and the stress generated in the plane. Therefore, the vapor deposition mask described in Patent Document 1 also has a problem that the accuracy of the vapor deposition position in the mask portion (hereinafter referred to as “positional accuracy”) is low. Furthermore, in order to manufacture many organic EL display devices with one thin-film mask, if the width of the frame portion is narrowed or the number of the frame portions is reduced, the strength of the mask portion is lowered and the warp due to stress is increased. There is also a problem.
  • One object of the present invention is to provide a vapor-deposited mask having improved position accuracy of the mask portion.
  • One object of the present invention is to provide a vapor-deposited mask having improved strength of the mask portion.
  • One embodiment of the present invention aims to provide a lightweight vapor deposition mask.
  • One embodiment of the present invention aims to reduce the manufacturing cost of a thin-film deposition mask.
  • the vapor deposition mask in one embodiment of the present invention includes a mask portion having a plurality of openings and having a first film thickness, and a holding portion having a second film thickness thicker than the first film thickness.
  • the vapor-deposited mask according to the embodiment of the present invention includes a mask portion composed of a metal layer having a plurality of openings, a frame portion composed of an n-layer metal layer, and a part of the mask portion (n + 1). ) Includes a retainer composed of a metal layer.
  • an insulating layer is formed on a substrate by forming a mask portion having a plurality of openings, covering the plurality of openings, and exposing a portion corresponding to the outer periphery of the mask portion. This includes forming a frame portion on a portion corresponding to the outer periphery of the mask portion, removing the insulating layer, and peeling the mask portion from the substrate.
  • the plurality of films When a plurality of films are formed by etching or irradiating a certain film with light, the plurality of films may have different functions or roles. In this case, since the plurality of films are films formed by the same process, they have the same layer structure and are composed of the same material. In the present specification, a plurality of films thus formed by the same process are treated as films existing in the same layer.
  • includes A, B or C ",” ⁇ includes any of A, B and C ", and” ⁇ is selected from the group consisting of A, B and C.
  • the expression “including one” does not exclude the case where ⁇ includes a plurality of combinations of A to C. Furthermore, these expressions do not exclude cases where ⁇ contains other elements.
  • the configuration of the vapor deposition apparatus 10 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • the vapor deposition apparatus 10 includes a plurality of chambers having various functions. The example shown below is an example showing one vapor deposition chamber 100 out of a plurality of chambers.
  • FIG. 1 is a top view of the vapor deposition chamber 100 according to the first embodiment of the present invention.
  • FIG. 2 is a side view of the vapor deposition chamber 100 according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the vapor deposition source 112 according to the first embodiment of the present invention.
  • the vapor deposition chamber 100 is partitioned from an adjacent chamber by a load lock door 102.
  • the vapor deposition chamber 100 can maintain the inside of the vapor deposition chamber 100 in a highly vacuum depressurized state or in a state of being filled with an inert gas such as nitrogen or argon. Therefore, a decompression device (not shown), a gas intake / exhaust mechanism, and the like are connected to the vapor deposition chamber 100.
  • the thin-film deposition chamber 100 has a structure capable of accommodating an object on which a thin-film deposition film is formed.
  • a plate-shaped substrate to be vapor-deposited 104 is used as the object will be described.
  • the vapor deposition source 112 is arranged below the substrate to be vapor-deposited 104.
  • the thin-film deposition source 112 has a substantially rectangular shape and is arranged along one side of the substrate to be vapor-deposited 104.
  • Such a vapor deposition source 112 is called a linear source type vapor deposition source.
  • the vapor deposition chamber 100 has a configuration in which the substrate to be deposited 104 moves relative to the thin film deposition source 112.
  • FIG. 1 shows an example in which the vapor deposition source 112 is fixed and the vapor deposition source 104 moves on the vapor deposition source 112, the thin film deposition source 104 may be fixed and the vapor deposition source 112 may move.
  • the vapor deposition source 112 is filled with a material to be vapor-deposited (hereinafter referred to as "deposited material").
  • the thin-film deposition source 112 has a heating unit 122 (see FIG. 3 described later) for heating the vapor-deposited material.
  • the heated vapor-deposited material is vaporized (sublimated) and becomes steam, which goes from the thin-film deposition source 112 to the substrate 104 to be vapor-deposited.
  • the vapor of the vapor-deposited material reaches the surface of the film-deposited substrate 104, the vapor is cooled and solidified, and the vapor-deposited material is deposited on the surface of the film-deposited substrate 104. In this way, a thin film of the vapor-deposited material is formed on the film-deposited substrate 104 (in FIG. 2, on the surface of the film-deposited substrate 104 facing the vapor deposition source 112).
  • the vapor deposition chamber 100 includes a holder 108 for holding the vapor deposition substrate 104 and the vapor deposition mask 300, a moving mechanism 110 for moving the holder 108, and a shutter 114 for shielding the upper surface of the vapor deposition source 112. Further prepare.
  • the holder 108 maintains the positional relationship between the substrate 104 to be vapor-deposited and the thin-film mask 300.
  • the moving mechanism 110 moves the substrate 104 to be vapor-deposited and the thin-film mask 300 on the thin-film deposition source 112.
  • the shutter 114 is rotatably provided above the vapor deposition source 112.
  • the shutter 114 By rotating the shutter 114 on the thin-film deposition source 112, it is possible to control the release of the thin-film deposition material by the thin-film deposition source 112. For example, by moving the shutter 114 to a position where it does not overlap with the thin-film deposition source 112, the vapor of the vapor-deposited material reaches the substrate 104 to be deposited without being shielded by the shutter 114. On the contrary, when the shutter 114 moves to a position where it overlaps with the vapor deposition source 112, the vapor of the vapor deposition material is shielded by the shutter 114 and does not reach the vapor deposition substrate 104.
  • the opening and closing of the shutter 114 can be controlled by a control device (not shown).
  • the linear source type vapor deposition source 112 is shown, but the vapor deposition source 112 is not limited to this example and can have any shape.
  • the shape of the thin-film deposition source 112 may be a so-called point source type in which the material used for vapor deposition is selectively arranged at or near the center of gravity of the substrate 104 to be vapor-deposited.
  • the point source type the relative positions of the vapor deposition substrate 104 and the vapor deposition source 112 are fixed, and a mechanism for rotating the vapor deposition substrate 104 is provided in the vapor deposition chamber 100. Further, in the examples shown in FIGS.
  • a horizontal thin-film deposition apparatus in which the substrate is arranged so that the main surface of the substrate is parallel to the horizontal plane is shown, but the main surface of the substrate is perpendicular to the horizontal plane. It may be a vertical vapor deposition apparatus in which the substrate is arranged as described above.
  • FIG. 3 is a cross-sectional view of the vapor deposition source 112 according to the first embodiment of the present invention.
  • the thin-film deposition source 112 includes a storage container 120, a heating unit 122, a thin-film deposition holder 124, a mesh-shaped metal plate 128, and a pair of guide plates 132.
  • the storage container 120 is a member that holds the vapor-deposited material.
  • a member such as a crucible can be used.
  • the storage container 120 is removably held inside the heating unit 122.
  • the storage container 120 can contain, for example, metals such as tungsten, tantalum, molybdenum, titanium, and nickel, or alloys composed of these metals.
  • the storage container 120 may contain an inorganic insulator such as aluminum oxide, boron nitride, or dilyconium oxide.
  • the heating unit 122 is removably held inside the vapor deposition holder 124.
  • the heating unit 122 heats the storage container 120 by a resistance heating method.
  • the heating unit 122 has a heater 126.
  • the heating unit 122 is heated, and the vaporized material in the storage container 120 is heated and vaporized.
  • the vaporized vaporized material is discharged from the opening 130 of the storage container 120 to the outside of the storage container 120.
  • the mesh-shaped metal plate 128 arranged so as to cover the opening 130 suppresses the suddenly boiled vapor deposition material from being discharged to the outside of the storage container 120.
  • the heating unit 122 and the vapor deposition holder 124 can contain the same materials as the storage container 120.
  • the pair of guide plates 132 are provided above the vapor deposition source 112. At least a part of the guide plate 132 is tilted with respect to the side surface or the vertical direction of the storage container 120.
  • the angle at which the vapor of the vapor-deposited material spreads (hereinafter referred to as "injection angle") is controlled by the inclination of the guide plate 132, and the directivity can be given to the flight direction of the vapor.
  • the injection angle is determined by the angle ⁇ e formed by the two guide plates 132.
  • the angle ⁇ e is appropriately adjusted depending on the size of the film-deposited substrate 104, the distance between the vapor deposition source 112 and the film-deposited substrate 104, and the like.
  • the angle ⁇ e is, for example, 40 ° or more and 80 ° or less (preferably 50 ° or more and 70 ° or less). In this embodiment, the angle ⁇ e is 60 °.
  • the surfaces formed by the inclined surface of the guide plate 132 are called critical surfaces 160a and 160b.
  • the vapor of the material flies in a space sandwiched between the critical surfaces 160a and 160b.
  • the guide plate 132 is provided in a conical shape.
  • the vapor deposition material can be selected from various materials and may be either an organic compound or an inorganic compound.
  • the organic compound for example, a luminescent material or a carrier transporting material can be used.
  • the inorganic compound a metal, an alloy, a metal oxide, or the like can be used.
  • a plurality of materials may be filled in one storage container 120 so that the plurality of materials are mixed when vaporized.
  • a plurality of thin-film deposition sources may be used so that different thin-film deposition materials can be deposited at the same time.
  • FIG. 4 is a top view of the vapor deposition mask according to the first embodiment of the present invention.
  • the thin-film mask 300 has a thin-film mask portion 310 and a frame portion 330 arranged so as to overlap a part of the mask portion 310.
  • a plurality of panel areas 315 are arranged in the mask unit 310.
  • the substrate to be vapor-deposited is arranged so that the display area of the organic EL display device overlaps with each panel area 315.
  • a plurality of openings 311 are provided in each panel area 315 according to the pixel pitch of the organic EL display device.
  • the region of the mask portion 310 other than the opening 311 is referred to as a non-opening 312.
  • the non-opening 312 is an area surrounding each opening 311.
  • the non-opening 312 corresponds to a portion of each panel region 315 that shields the deposited material.
  • the vapor deposition mask 300 and the vapor deposition mask 300 overlap so that the vapor deposition region (the region to be formed of the thin film) and the opening 311 in the substrate to be deposited 104 overlap with each other and the non-deposited region and the non-opening 312 in the substrate to be deposited 104 overlap.
  • the substrate 104 to be vapor-deposited is aligned.
  • the thin-film deposition material passes through the opening 311 and reaches the substrate 104 to be vapor-deposited, the thin-film deposition material is deposited in the thin-film deposition region to form a thin film.
  • the frame body portion 330 is provided so as to be overlapped with a part of the mask portion 310 (a portion corresponding to the outer circumference) so as to surround the plurality of panel areas 315 of the mask portion 310 in a plan view.
  • the frame body portion 330 is composed of a metal layer having a film thickness thicker than that of the mask portion 310. That is, the vapor deposition mask 300 of the present embodiment has a configuration in which the mask portion 310 is held by a portion having a film thickness thicker than that of the mask portion 310 (holding portion 350 described later).
  • FIG. 5 is a cross-sectional view of the vapor deposition mask 300 according to the embodiment of the present invention. Specifically, the cross-sectional view shown in FIG. 5 shows a cross section along the AA'line of FIG. As shown in FIGS. 4 and 5, the frame body portion 330 is provided so as to overlap the portion corresponding to the outer circumference of the thin film-shaped mask portion 310. That is, in the vapor deposition mask 300 shown in FIG. 5, the region (holding portion 350) surrounded by the alternate long and short dash line is composed of a metal layer having a total film thickness of the mask portion 310 and the frame portion 330. Has been done. That is, by providing the frame body portion 330 on a part of the mask portion 310, the holding portion 350 functions as a frame for holding the mask portion 310.
  • the mask portion 310 is composed of a thin-film plating layer.
  • the film thickness d1 of the mask portion 310 is 5 ⁇ m or more and 10 ⁇ m or less.
  • the frame body portion 330 is composed of a plating layer thicker than the mask portion 310.
  • the film thickness d2 of the frame body portion 330 is 100 ⁇ m or more and 500 ⁇ m or less.
  • Both the mask portion 310 and the frame portion 330 are plating layers (metal layers) formed by using a technique called electroforming.
  • invar is used as the metal material constituting the mask portion 310 and the frame body portion 330.
  • the coefficient of thermal expansion of Invar is lower than that of nickel and the like, and is close to the coefficient of thermal expansion of glass. Therefore, by using Invar as the constituent material of the thin-film deposition mask 300, the deviation due to thermal expansion between the thin-film deposition mask and the substrate to be vapor-deposited (usually a glass substrate is used) during vapor deposition is reduced, and the position accuracy of the vapor deposition is improved. It has the advantage of improving.
  • the present invention is not limited to this example, and any metal material that can form a thin film by electroforming may be used.
  • the mask portion 310 and the frame body portion 330 are not limited to the example of being made of the same metal material, and may be made of different metal materials.
  • the vapor deposition mask 300 of the present embodiment constitutes a holding portion by superimposing the frame body portion 330 on a part of the mask portion 310 (for example, the region corresponding to the outer circumference). Therefore, the mask portion 310 exists from each panel region 315 to the lower part of the frame body portion 330, and does not have a step below the frame body portion 330. Therefore, when the thin-film deposition mask 300 is brought into close contact with the thin-film deposition substrate 104 by a magnet or the like, the thin-film deposition mask 300 and the thin-film deposition substrate 104 can be stably adhered to each other, and the position accuracy of the thin-film deposition is improved.
  • the vapor deposition mask 300 is less likely to be deformed, and the durability of the vapor deposition mask 300 is improved. Further, since the strength of the holding portion is stronger than that of the conventional thin-film deposition mask, the strength of the mask portion 310 is also improved. Further, since the film thickness of the frame body portion 330 can be made smaller than that of the conventional thin-film deposition mask, the weight of the entire vapor deposition mask 300 can be reduced.
  • FIGS. 6 to 13 are cross-sectional views showing a method of manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a step of forming the conductive release layer 430 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
  • the release layer 430 is formed on substantially the entire surface of the substrate 410.
  • the substrate 410 a substrate having high flatness is preferable, and a glass substrate is particularly preferable.
  • the thickness of the substrate 410 may be 0.5 mm or more and 1 mm or less.
  • the material of the release layer 430 includes metal oxide materials such as ITO (indium tin oxide) and IZO (indium zinc oxide), or Al (aluminum), Mo (molybdenum), Ti (titanium), and Cu (copper).
  • the thickness of the release layer 430 is preferably a thickness capable of imparting sufficient conductivity so that the plating layer can be grown.
  • the thickness of the release layer 430 is preferably 50 nm or more and 500 nm or less.
  • FIG. 7 is a cross-sectional view showing a step of forming the first insulating layer 450 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
  • the photosensitive resin material is patterned by photolithography and etching.
  • the first insulating layer (resist layer) 450 for forming the mask portion 310 is formed on the release layer 430.
  • the region forming the first insulating layer 450 corresponds to the region in which the plurality of openings 311 of the mask portion 310 shown in FIGS. 4 and 5 are arranged.
  • FIG. 8 is a cross-sectional view showing a step of forming the mask portion 310 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
  • a plating layer metal layer
  • inver is precipitated in a region where the first insulating layer 450 is not formed (above the exposed peeling layer 430) by an electrolytic plating method in which the peeling layer 430 is energized.
  • the mask portion 310 is formed.
  • the film thickness of the mask portion 310 is preferably in the range of 5 ⁇ m or more and 10 ⁇ m or less.
  • Invar it is also possible to use other metal materials such as nickel or nickel alloy.
  • the present invention is not limited to this example, and the mask portion 310 is not limited to this example, for example, by the electroless plating method without forming the release layer 430. It is also possible to form. Specifically, first, plating composed of Invar on the region where the first insulating layer 450 is formed (in this case, the region where the glass substrate 410 is exposed) and the first insulating layer 450 by an electroless plating method. Form a layer. Then, by removing the first insulating layer 450, the plating layer on the first insulating layer 450 is removed. By such a process called "lift-off", the mask portion 310 having a plurality of openings can be formed.
  • FIG. 9 is a cross-sectional view showing a step of forming the second insulating layer 470 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
  • the photosensitive resin material is patterned by photolithography and etching.
  • a second insulating layer (resist layer) 470 for forming the frame body portion 330 is formed on the mask portion 310.
  • the region forming the second insulating layer 470 corresponds to the region inside the frame body portion 330 shown in FIGS. 4 and 5.
  • FIG. 10 is a cross-sectional view showing a step of forming the frame body portion 330 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
  • a plating layer metal layer
  • the second insulating layer 470 is not formed by an electrolytic plating method in which the release layer 430 and the mask portion 310 are energized.
  • the film thickness of the frame portion 330 is preferably in the range of 100 ⁇ m or more and 500 ⁇ m or less.
  • the frame body portion 330 is formed by Invar is shown here, it is also possible to use other metal materials such as nickel or nickel alloy. Further, in FIG. 10, the frame body portion 330 grows upward beyond the film thickness of the second insulating layer 470, but the growth of the frame body portion 330 proceeds so as to cover the second insulating layer 470. That is not desirable. Therefore, the film thickness of the second insulating layer 470 may be sufficiently thickened so that the frame body portion 330 grows along the side wall of the second insulating layer 470 to a desired film thickness.
  • FIG. 11 is a cross-sectional view showing a step of removing the first insulating layer 450 and the second insulating layer 470 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
  • a part of the mask portion 310 is exposed inside the frame portion 330.
  • a plurality of openings 311 are formed in each panel area 315 of the mask portion 310.
  • the release layer 430 is exposed inside the plurality of openings 311.
  • FIG. 12 is a cross-sectional view showing a step of cutting the mask portion 310 and the frame portion 330 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
  • the outer edges of the mask portion 310 and the frame portion 330 are cut by irradiation with laser light or the like.
  • the release layer 430 may be cut together with the mask portion 310 and the frame body portion 330.
  • the laser a carbon dioxide gas laser, a solid-state laser, an excimer laser or the like can be used.
  • FIG. 13 is a cross-sectional view showing a step of peeling the substrate 410 from the mask portion 310 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
  • the release layer 430 is removed using a solution.
  • ITO is used as the release layer 430
  • oxalic acid can be used as the solution.
  • the side surface of the release layer 430 and the portion exposed by the plurality of openings 311 of the mask portion 310 are preferentially dissolved, and the entire portion is gradually eroded by the solution and removed.
  • the mask portion 310 can be peeled from the substrate 410 by melting and disappearing the peeling layer 430.
  • the first insulating layer 450 and the second insulating layer 470 may be formed in the outer edge region of the substrate 410 in the steps shown in FIGS. 8 and 9.
  • the release layer 430 is exposed in the removed traces.
  • the release layer 430 exposed in the outer edge region of the substrate 410 is preferentially dissolved. Therefore, the dissolution liquid easily enters between the substrate 410 and the mask portion 310, and the release layer 430 can be efficiently dissolved.
  • the mask portion 310 can be peeled from the substrate 410 while suppressing an unnecessary load. Further, by removing the peeling layer 430 so that the peeling layer 430 does not remain on the back surface of the mask portion 310 after peeling, it is possible to prevent the mask from being deformed due to the stress of the remaining film. Preventing such mask deformation contributes to improving the position accuracy of vapor deposition.
  • the present invention is not limited to this example, and for example, when the substrate 410 is a glass substrate, the substrate 410 may be dissolved using a solution such as hydrofluoric acid while protecting the mask portion 310 with a protective layer.
  • the frame portion 330 is formed by a plating layer thicker than the mask portion 310 in a part thereof.
  • the vapor deposition mask 300 can be manufactured with a smaller number of steps than the conventional structure, so that the manufacturing cost of the vapor deposition mask 300 can be reduced.
  • the frame body portion 330 is a plating layer having a thick film thickness, the structure is simple. Therefore, there is an advantage that the area that effectively functions as the mask portion 310 can be increased, and the number of display panels that can be processed at one time by the vapor deposition mask 300 can be increased. As a result, the manufacturing cost of each organic EL display device can be reduced.
  • FIG. 14 is a plan view of the vapor deposition mask 300A according to the second embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of the vapor deposition mask 300A according to the second embodiment of the present invention.
  • the configuration of the frame portion 330A is the same as that of the vapor deposition mask 300 of the first embodiment, detailed description thereof will be omitted using the same reference numerals as those of the first embodiment.
  • the frame body portion 330A is provided on the mask portion 310 in a grid pattern. That is, the holding portions 350 provided in a grid pattern hold the mask portion 310.
  • a plurality of panel areas 315 are arranged in the mask portion 310. Each panel area 315 is provided with a plurality of openings 311 and non-openings 312.
  • the frame body portion 330A is provided not only in the portion corresponding to the outer circumference of the mask portion 310 but also in other portions.
  • the frame body portion 330A may be provided in a stripe shape in the vertical direction or the horizontal direction. .. That is, the frame body portion 330A may be provided so as to cross between the plurality of openings 311 from the first side of the mask portion 310 to the second side facing the first side.
  • the same effect as that of the thin-film deposition mask 300 of the first embodiment can be obtained, and the strength of the thin-film deposition mask 300A can be further improved.
  • FIG. 16 is a cross-sectional view showing a method of manufacturing the vapor deposition mask 300 according to the third embodiment of the present invention.
  • the present embodiment is the same as the method for manufacturing the vapor deposition mask 300 in the first embodiment except that the resin layer 420 is formed between the substrate 410 and the release layer 430, and therefore has the same reference numerals as those in the first embodiment. A detailed description will be omitted with reference to.
  • FIG. 16 is a cross-sectional view showing a step of peeling the mask portion 310 from the substrate 410 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
  • the resin layer 420 is formed before the release layer 430 is formed on the substrate 410.
  • a resin material such as a polyimide resin, an acrylic resin, an epoxy resin, a silicone resin, a fluororesin, or a siloxane resin can be used.
  • the film thickness of the resin layer 420 is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the resin layer 420 is irradiated with laser light from the back surface side of the substrate 410 (the side opposite to the surface on which the resin layer 420 is formed).
  • the region of the resin layer 420 close to the substrate 410 absorbs the laser beam and deteriorates. Since the resin layer 420 altered in this way can be easily removed with the solution, the substrate 410 can be peeled off from the resin layer 420 by lift-off. After the substrate 410 is peeled off, the remaining resin layer 420 is etched and removed.
  • the vapor deposition mask 300 can be obtained by removing the exposed release layer 430 using a solution after removing the resin layer 420.
  • the release layer 430 can be removed after the substrate 410 is peeled off, so that the release layer 430 can be dissolved more efficiently.
  • FIG. 17 is a cross-sectional view showing a vapor deposition mask 300B according to a fourth embodiment of the present invention.
  • the frame body portion 330B is the same as the vapor deposition mask 300 in the first embodiment except that the frame body portion 330B has a structure in which a plurality of metal layers are laminated. The explanation will be omitted.
  • the frame body portion 330B of the present embodiment is provided with metal layers 330Ba to 330Be in order from the side closer to the mask portion 310.
  • the metal layers 330Ba to 330Be are all composed of Invar, but the present invention is not limited to this example, and other metal materials such as nickel may be used. Further, the number of laminated metal layers is not limited to this example, and can be any number.
  • the stress generated in the frame body portion 330B is controlled by forming the frame body portion 330B using a plurality of metal layers 330Ba to 330Be. Specifically, the overall stress of the frame body portion 330B is controlled by laminating metal layers having different stresses, and the warp of the vapor deposition mask 300B due to the stress of the frame body portion 330B is reduced. ..
  • the stress of the metal layers 330Ba to 330Be can be controlled by various methods.
  • the film thickness of each of the metal layers 330Ba to 330Be may be changed to make the stress different, or the composition may be changed to make the stress different.
  • it is possible to change the composition of the metal layer for example, by changing the electroplating conditions (for example, the composition of the electrolytic solution, the amount of current when energized, etc.).
  • the plating conditions of Invar constituting the metal layer 330Ba, the metal layer 330Bc and the metal layer 330Be are different from the plating conditions of the Invar constituting the metal layer 330Bb and the metal layer 330Bd.
  • the frame body portion 330B of the present embodiment has a structure in which metal layers having different compositions are alternately laminated.
  • the frame body portion 330B may be formed by combining metal layers having various film thicknesses or compositions with the film thickness and the plating conditions as parameters.
  • the frame body portion 330B is formed by laminating a plurality of metal layers 330Ba to 330Be, and the holding portion 350 is formed by superimposing the frame body portion 330B on the mask portion 310. Therefore, when the frame body portion 330B is composed of the n-layer metal layer, the holding portion 350 adds one metal layer (mask portion 310) to the n-layer metal layer to form the (n + 1) layer metal layer. Consists of.
  • the frame body portion 330B is composed of a plurality of metal layers 330Ba to 330Be in the present embodiment
  • the mask portion 310 may be composed of a plurality of metal layers.
  • both the mask portion 310 and the frame body portion 330B may be composed of a plurality of metal layers, or only one of them may be composed of a plurality of metal layers.
  • the holding portion 350 is formed by superimposing the frame body portion 330B on the mask portion 310. Therefore, when the frame body portion 330B is composed of the n-layer metal layer and the mask portion 310 is composed of the m-layer metal layer, the holding portion 350 is composed of the (n + m) layer metal layer.
  • 10 ... thin film deposition device, 100 ... thin film deposition chamber, 102 ... load lock door, 104 ... vapor deposition substrate, 108 ... holder, 110 ... moving mechanism, 112 ... thin film deposition source, 114 ... shutter, 120 ... storage container, 122 ... heating unit, 124 ... thin film holder, 126 ... heater, 128 ... metal plate, 130 ... opening, 132 ... guide plate, 160a, 160b ... critical plane, 300, 300A, 300B ... vapor deposition mask, 310 ... mask part, 310B ... frame body part 3,11 ... Opening, 312 ... Non-opening, 315 ... Panel area, 330, 330A, 330B ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A vapor deposition mask that includes a mask part that has a plurality of openings and a first film thickness and a holding part that has a second film thickness that is greater than the first film thickness. The holding part may be formed from a portion of the mask part and a frame part that is provided so as to overlap said portion of the mask part. Said portion of the mask part may include a section that corresponds to the outer circumference of the mask part or may include a section that crosses between the plurality of openings from a first edge of the mask part to a second edge that is opposite the first edge.

Description

蒸着マスクVapor deposition mask
 本発明の一実施形態は、蒸着マスクに関する。 One embodiment of the present invention relates to a vapor deposition mask.
 発光表示装置は、各画素に設けられた発光素子を個別に制御することにより画像を表示することができる。例えば、発光素子として有機EL素子を用いる有機EL表示装置が知られている。有機EL素子は、アノード電極とカソード電極との間に有機EL材料を含む層(以下、「有機EL層」という)を有する。有機EL層は、発光層、電子注入層、正孔注入層といった機能層を含む。有機EL素子は、機能層を構成する有機材料の選択により、様々な波長の色で発光させることが可能である。 The light emitting display device can display an image by individually controlling the light emitting elements provided for each pixel. For example, an organic EL display device that uses an organic EL element as a light emitting element is known. The organic EL element has a layer containing an organic EL material (hereinafter, referred to as “organic EL layer”) between the anode electrode and the cathode electrode. The organic EL layer includes a functional layer such as a light emitting layer, an electron injection layer, and a hole injection layer. The organic EL element can emit light in various wavelength colors by selecting the organic material constituting the functional layer.
 低分子化合物を材料とする有機EL素子の薄膜の形成には、真空蒸着法が用いられる。真空蒸着法においては、真空下において、蒸着材料をヒータによって加熱することにより昇華させ、基板の表面に昇華させた蒸着材料を堆積(蒸着)させることにより薄膜を形成する。このとき、多数の微細な開口パターンを備えたマスク(蒸着マスク)を用いることにより、高精細な薄膜パターンを形成することができる。 The vacuum deposition method is used to form a thin film of an organic EL device made of a low molecular weight compound. In the vacuum vapor deposition method, a thin film is formed by heating the vaporized material with a heater to sublimate it under vacuum and depositing (depositing) the sublimated vaporized material on the surface of the substrate. At this time, a high-definition thin film pattern can be formed by using a mask (deposited mask) having a large number of fine opening patterns.
 蒸着マスクは、エッチングを用いて開口パターンを形成するファインメタルマスク(FMM)と、電鋳と呼ばれる技術を用いて開口パターンを形成するエレクトロファインフォーミングマスク(EFM)とに分けられる。例えば、特許文献1には、高精細な開口パターンを有するマスク部分を電鋳により形成し、形成されたマスク部を電鋳により枠体部に固定する方法が開示されている。 The vapor deposition mask is divided into a fine metal mask (FMM) that forms an opening pattern by etching and an electrofine forming mask (EFM) that forms an opening pattern using a technique called electroforming. For example, Patent Document 1 discloses a method in which a mask portion having a high-definition opening pattern is formed by electroforming, and the formed mask portion is fixed to the frame body portion by electroforming.
特開2017-210633号公報JP-A-2017-210633
 特許文献1に記載された蒸着マスクは、構造が複雑であり、製造には多くの工程数を必要とするため、製造コストが高いという問題がある。また、別々に用意された枠体部とマスク部とを結合する構造となっているため、位置合わせ精度及び面内で発生する応力にばらつきがある。そのため、特許文献1に記載された蒸着マスクは、マスク部における蒸着位置の精度(以下「位置精度」という。)が低いという問題もある。さらに、1枚の蒸着マスクで多くの有機EL表示装置を製造するために、枠体部の幅を狭くしたり本数を減らしたりすると、マスク部分の強度の低下及び応力による反りの増大を招くという問題もある。 The vapor deposition mask described in Patent Document 1 has a problem that the manufacturing cost is high because the structure is complicated and a large number of steps are required for manufacturing. Further, since the structure is such that the frame portion and the mask portion prepared separately are connected, there are variations in the positioning accuracy and the stress generated in the plane. Therefore, the vapor deposition mask described in Patent Document 1 also has a problem that the accuracy of the vapor deposition position in the mask portion (hereinafter referred to as “positional accuracy”) is low. Furthermore, in order to manufacture many organic EL display devices with one thin-film mask, if the width of the frame portion is narrowed or the number of the frame portions is reduced, the strength of the mask portion is lowered and the warp due to stress is increased. There is also a problem.
 本発明の一実施形態は、マスク部の位置精度を向上した蒸着マスクを提供することを目的の一つとする。 One object of the present invention is to provide a vapor-deposited mask having improved position accuracy of the mask portion.
 本発明の一実施形態は、マスク部の強度を向上した蒸着マスクを提供することを目的の一つとする。 One object of the present invention is to provide a vapor-deposited mask having improved strength of the mask portion.
 本発明の一実施形態は、軽量化した蒸着マスクを提供することを目的の一つとする。 One embodiment of the present invention aims to provide a lightweight vapor deposition mask.
 本発明の一実施形態は、蒸着マスクの製造コストを低減することを目的の一つとする。 One embodiment of the present invention aims to reduce the manufacturing cost of a thin-film deposition mask.
 本発明の一実施形態における蒸着マスクは、複数の開口を有し、第1膜厚を有するマスク部と、前記第1膜厚よりも厚い第2膜厚を有する保持部と、を含む。 The vapor deposition mask in one embodiment of the present invention includes a mask portion having a plurality of openings and having a first film thickness, and a holding portion having a second film thickness thicker than the first film thickness.
 本発明の一実施形態における蒸着マスクは、複数の開口を有する金属層で構成されるマスク部と、n層の金属層で構成される枠体部及び前記マスク部の一部を含む、(n+1)層の金属層で構成される保持部と、を含む。 The vapor-deposited mask according to the embodiment of the present invention includes a mask portion composed of a metal layer having a plurality of openings, a frame portion composed of an n-layer metal layer, and a part of the mask portion (n + 1). ) Includes a retainer composed of a metal layer.
 本発明の一実施形態における蒸着マスクの製造方法は、基板上に、複数の開口を有するマスク部を形成し、前記複数の開口を覆い、前記マスク部の外周に相当する部分を露出する絶縁層を形成し、前記マスク部の外周に相当する部分に枠体部を形成し、前記絶縁層を除去し、前記基板から前記マスク部を剥離することを含む。 In the method for manufacturing a vapor-deposited mask according to an embodiment of the present invention, an insulating layer is formed on a substrate by forming a mask portion having a plurality of openings, covering the plurality of openings, and exposing a portion corresponding to the outer periphery of the mask portion. This includes forming a frame portion on a portion corresponding to the outer periphery of the mask portion, removing the insulating layer, and peeling the mask portion from the substrate.
本発明の第1実施形態における蒸着チャンバの上面図である。It is a top view of the vapor deposition chamber in the 1st Embodiment of this invention. 本発明の第1実施形態における蒸着チャンバの側面図である。It is a side view of the vapor deposition chamber in 1st Embodiment of this invention. 本発明の第1実施形態における蒸着源の断面図である。It is sectional drawing of the vapor deposition source in 1st Embodiment of this invention. 本発明の第1実施形態における蒸着マスクの上面図である。It is a top view of the vapor deposition mask in the 1st Embodiment of this invention. 本発明の第1実施形態における蒸着マスクの断面図である。It is sectional drawing of the vapor deposition mask in 1st Embodiment of this invention. 本発明の第1実施形態における蒸着マスクの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the vapor deposition mask in 1st Embodiment of this invention. 本発明の第1実施形態における蒸着マスクの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the vapor deposition mask in 1st Embodiment of this invention. 本発明の第1実施形態における蒸着マスクの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the vapor deposition mask in 1st Embodiment of this invention. 本発明の第1実施形態における蒸着マスクの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the vapor deposition mask in 1st Embodiment of this invention. 本発明の第1実施形態における蒸着マスクの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the vapor deposition mask in 1st Embodiment of this invention. 本発明の第1実施形態における蒸着マスクの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the vapor deposition mask in 1st Embodiment of this invention. 本発明の第1実施形態における蒸着マスクの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the vapor deposition mask in 1st Embodiment of this invention. 本発明の第1実施形態における蒸着マスクの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the vapor deposition mask in 1st Embodiment of this invention. 本発明の第2実施形態における蒸着マスクの上面図である。It is a top view of the vapor deposition mask in the 2nd Embodiment of this invention. 本発明の第2実施形態における蒸着マスクの断面図である。It is sectional drawing of the vapor deposition mask in 2nd Embodiment of this invention. 本発明の第3実施形態における蒸着マスクの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the vapor deposition mask in 3rd Embodiment of this invention. 本発明の第4実施形態における蒸着マスクの断面図である。It is sectional drawing of the vapor deposition mask in 4th Embodiment of this invention.
 以下、本発明の実施形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図面において、既出の図面に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。 Hereinafter, embodiments of the present invention will be described with reference to drawings and the like. However, the present invention can be implemented in various aspects without departing from the gist thereof, and is not construed as being limited to the description contents of the embodiments illustrated below. The drawings may schematically represent the width, thickness, shape, etc. of each part as compared with the actual embodiment in order to clarify the explanation, but this is merely an example and the interpretation of the present invention is limited. It's not something to do. In this specification and each drawing, elements having the same functions as those described with respect to the existing drawings may be designated by the same reference numerals and duplicate description may be omitted.
 ある一つの膜に対してエッチングや光照射を行うことにより複数の膜を形成した場合に、複数の膜がそれぞれ異なる機能又は役割を果たす場合がある。この場合において、複数の膜は、同一のプロセスにより形成された膜であるから、同一の層構造を有し、かつ、同一の材料で構成される。本明細書中において、このように同一のプロセスにより形成された複数の膜は、それぞれ同一層に存在する膜として扱う。 When a plurality of films are formed by etching or irradiating a certain film with light, the plurality of films may have different functions or roles. In this case, since the plurality of films are films formed by the same process, they have the same layer structure and are composed of the same material. In the present specification, a plurality of films thus formed by the same process are treated as films existing in the same layer.
 本明細書および特許請求の範囲において、ある構造体の上に他の構造体が配置された態様を表現する際に、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、その構造体の直上に他の構造体が配置される場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体が配置される場合と、の両方を含むものと定義される。 In the present specification and claims, when expressing an embodiment in which another structure is arranged on one structure, when the term "above" is simply used, the structure is specified unless otherwise specified. When another structure is placed directly above the structure so as to be in contact with the body, and when another structure is placed above one structure via another structure. Defined to include both.
 「また、本明細書において「αはA、B又はCを含む」、「αはA、B及びCのいずれかを含む」、「αはA、B及びCからなる群から選択される一つを含む」といった表現は、特に明示が無い限り、αはA~Cの複数の組み合わせを含む場合を排除しない。さらに、これらの表現は、αが他の要素を含む場合も排除しない。 "Also, in the present specification," α includes A, B or C "," α includes any of A, B and C ", and" α is selected from the group consisting of A, B and C. Unless otherwise specified, the expression "including one" does not exclude the case where α includes a plurality of combinations of A to C. Furthermore, these expressions do not exclude cases where α contains other elements.
〈第1実施形態〉
[蒸着装置10の構成]
 図1から図3を用いて、本発明の一実施形態における蒸着装置10の構成について説明する。蒸着装置10は、多様な機能を有する複数のチャンバを備えている。以下に示す例は、複数のチャンバのうち1つの蒸着チャンバ100を示す例である。
<First Embodiment>
[Structure of thin-film deposition apparatus 10]
The configuration of the vapor deposition apparatus 10 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 3. The vapor deposition apparatus 10 includes a plurality of chambers having various functions. The example shown below is an example showing one vapor deposition chamber 100 out of a plurality of chambers.
 図1は、本発明の第1実施形態における蒸着チャンバ100の上面図である。図2は、本発明の第1実施形態における蒸着チャンバ100の側面図である。図3は、本発明の第1実施形態における蒸着源112の断面図である。 FIG. 1 is a top view of the vapor deposition chamber 100 according to the first embodiment of the present invention. FIG. 2 is a side view of the vapor deposition chamber 100 according to the first embodiment of the present invention. FIG. 3 is a cross-sectional view of the vapor deposition source 112 according to the first embodiment of the present invention.
 図1に示すように、蒸着チャンバ100は、隣接するチャンバとロードロック扉102で仕切られている。蒸着チャンバ100は、蒸着チャンバ100の内部を高真空の減圧状態、又は、窒素もしくはアルゴンなどの不活性ガスで満たされた状態に維持することができる。したがって、図示しない減圧装置及びガス吸排気機構などが蒸着チャンバ100に接続される。 As shown in FIG. 1, the vapor deposition chamber 100 is partitioned from an adjacent chamber by a load lock door 102. The vapor deposition chamber 100 can maintain the inside of the vapor deposition chamber 100 in a highly vacuum depressurized state or in a state of being filled with an inert gas such as nitrogen or argon. Therefore, a decompression device (not shown), a gas intake / exhaust mechanism, and the like are connected to the vapor deposition chamber 100.
 蒸着チャンバ100は、蒸着膜が形成される対象物を収納可能な構成を有する。以下、この対象物として板状の被蒸着基板104が用いられる例について説明する。図1及び図2に示すように、被蒸着基板104の下方に蒸着源112が配置される。蒸着源112は、概ね長方形の形状を有し、被蒸着基板104の一つの辺に沿って配置されている。このような蒸着源112をリニアソース型蒸着源という。リニアソース型の蒸着源112が用いられる場合、蒸着チャンバ100は、蒸着源112に対して被蒸着基板104が相対的に移動する構成を有する。なお、図1では、蒸着源112が固定され、その上を被蒸着基板104が移動する例が示されているが、被蒸着基板104が固定され、蒸着源112が移動してもよい。 The thin-film deposition chamber 100 has a structure capable of accommodating an object on which a thin-film deposition film is formed. Hereinafter, an example in which a plate-shaped substrate to be vapor-deposited 104 is used as the object will be described. As shown in FIGS. 1 and 2, the vapor deposition source 112 is arranged below the substrate to be vapor-deposited 104. The thin-film deposition source 112 has a substantially rectangular shape and is arranged along one side of the substrate to be vapor-deposited 104. Such a vapor deposition source 112 is called a linear source type vapor deposition source. When a linear source type vapor deposition source 112 is used, the vapor deposition chamber 100 has a configuration in which the substrate to be deposited 104 moves relative to the thin film deposition source 112. Although FIG. 1 shows an example in which the vapor deposition source 112 is fixed and the vapor deposition source 104 moves on the vapor deposition source 112, the thin film deposition source 104 may be fixed and the vapor deposition source 112 may move.
 蒸着源112には、蒸着される材料(以下「蒸着材料」という。)が充填される。蒸着源112は、蒸着材料を加熱する加熱部122(後述する図3参照)を有する。蒸着源112の加熱部122によって蒸着材料が加熱されると、加熱された蒸着材料は気化(昇華)し、蒸気となって蒸着源112から被蒸着基板104に向かう。蒸着材料の蒸気が被蒸着基板104の表面へ到達すると、蒸気は冷却されて固化し、被蒸着基板104の表面に蒸着材料が堆積する。このようにして被蒸着基板104の上(図2では被蒸着基板104における蒸着源112と対向する面の上)に蒸着材料の薄膜が形成される。 The vapor deposition source 112 is filled with a material to be vapor-deposited (hereinafter referred to as "deposited material"). The thin-film deposition source 112 has a heating unit 122 (see FIG. 3 described later) for heating the vapor-deposited material. When the vapor-deposited material is heated by the heating unit 122 of the thin-film deposition source 112, the heated vapor-deposited material is vaporized (sublimated) and becomes steam, which goes from the thin-film deposition source 112 to the substrate 104 to be vapor-deposited. When the vapor of the vapor-deposited material reaches the surface of the film-deposited substrate 104, the vapor is cooled and solidified, and the vapor-deposited material is deposited on the surface of the film-deposited substrate 104. In this way, a thin film of the vapor-deposited material is formed on the film-deposited substrate 104 (in FIG. 2, on the surface of the film-deposited substrate 104 facing the vapor deposition source 112).
 図2に示すように、蒸着チャンバ100は、被蒸着基板104及び蒸着マスク300を保持するためのホルダ108、ホルダ108を移動させるための移動機構110、及び蒸着源112の上面を遮蔽するシャッタ114をさらに備える。ホルダ108によって被蒸着基板104及び蒸着マスク300の互いの位置関係が維持される。移動機構110によって被蒸着基板104及び蒸着マスク300が蒸着源112の上を移動する。シャッタ114は、蒸着源112の上方に回動可能に設けられている。シャッタ114が蒸着源112の上で回動することにより、蒸着源112による蒸着材料の放出を制御することができる。例えば、シャッタ114が蒸着源112と重畳しない位置に移動することで、蒸着材料の蒸気は、シャッタ114によって遮蔽されることなく被蒸着基板104に到達する。逆に、シャッタ114が蒸着源112と重畳する位置に移動すると、蒸着材料の蒸気は、シャッタ114によって遮蔽され、被蒸着基板104には到達しない。シャッタ114の開閉は、図示しない制御装置によって制御することができる。 As shown in FIG. 2, the vapor deposition chamber 100 includes a holder 108 for holding the vapor deposition substrate 104 and the vapor deposition mask 300, a moving mechanism 110 for moving the holder 108, and a shutter 114 for shielding the upper surface of the vapor deposition source 112. Further prepare. The holder 108 maintains the positional relationship between the substrate 104 to be vapor-deposited and the thin-film mask 300. The moving mechanism 110 moves the substrate 104 to be vapor-deposited and the thin-film mask 300 on the thin-film deposition source 112. The shutter 114 is rotatably provided above the vapor deposition source 112. By rotating the shutter 114 on the thin-film deposition source 112, it is possible to control the release of the thin-film deposition material by the thin-film deposition source 112. For example, by moving the shutter 114 to a position where it does not overlap with the thin-film deposition source 112, the vapor of the vapor-deposited material reaches the substrate 104 to be deposited without being shielded by the shutter 114. On the contrary, when the shutter 114 moves to a position where it overlaps with the vapor deposition source 112, the vapor of the vapor deposition material is shielded by the shutter 114 and does not reach the vapor deposition substrate 104. The opening and closing of the shutter 114 can be controlled by a control device (not shown).
 図1および図2に示す例では、リニアソース型の蒸着源112を示したが、この例に限らず、蒸着源112は任意の形状を有することができる。例えば、蒸着源112の形状は、蒸着に用いられる材料が被蒸着基板104の重心及びその付近に選択的に配置された、いわゆるポイントソース型と呼ばれる形状であってもよい。ポイントソース型の場合には、被蒸着基板104と蒸着源112との相対的な位置は固定され、被蒸着基板104を回転するための機構が蒸着チャンバ100に設けられる。また、図1及び図2に示す例では、基板の主面が水平面に対して平行になるように基板を配置する横型蒸着装置を示したが、基板の主面が水平面に対して垂直になるように基板を配置する縦型蒸着装置であってもよい。 In the examples shown in FIGS. 1 and 2, the linear source type vapor deposition source 112 is shown, but the vapor deposition source 112 is not limited to this example and can have any shape. For example, the shape of the thin-film deposition source 112 may be a so-called point source type in which the material used for vapor deposition is selectively arranged at or near the center of gravity of the substrate 104 to be vapor-deposited. In the case of the point source type, the relative positions of the vapor deposition substrate 104 and the vapor deposition source 112 are fixed, and a mechanism for rotating the vapor deposition substrate 104 is provided in the vapor deposition chamber 100. Further, in the examples shown in FIGS. 1 and 2, a horizontal thin-film deposition apparatus in which the substrate is arranged so that the main surface of the substrate is parallel to the horizontal plane is shown, but the main surface of the substrate is perpendicular to the horizontal plane. It may be a vertical vapor deposition apparatus in which the substrate is arranged as described above.
 図3は、本発明の第1実施形態における蒸着源112の断面図である。蒸着源112は、収納容器120、加熱部122、蒸着ホルダ124、メッシュ状の金属板128、及び一対のガイド板132を有する。 FIG. 3 is a cross-sectional view of the vapor deposition source 112 according to the first embodiment of the present invention. The thin-film deposition source 112 includes a storage container 120, a heating unit 122, a thin-film deposition holder 124, a mesh-shaped metal plate 128, and a pair of guide plates 132.
 収納容器120は、蒸着材料を保持する部材である。収納容器120として、例えば坩堝などの部材を用いることができる。収納容器120は、加熱部122の内部において、取り外し可能に保持されている。収納容器120は、例えばタングステン、タンタル、モリブデン、チタン、ニッケルなどの金属、又は、それらの金属で構成される合金を含むことができる。収納容器120は、酸化アルミニウム、窒化ホウ素、酸化ジリコニウムなどの無機絶縁物を含んでもよい。 The storage container 120 is a member that holds the vapor-deposited material. As the storage container 120, a member such as a crucible can be used. The storage container 120 is removably held inside the heating unit 122. The storage container 120 can contain, for example, metals such as tungsten, tantalum, molybdenum, titanium, and nickel, or alloys composed of these metals. The storage container 120 may contain an inorganic insulator such as aluminum oxide, boron nitride, or dilyconium oxide.
 加熱部122は、蒸着ホルダ124の内部において、取り外し可能に保持されている。加熱部122は、抵抗加熱方式で収納容器120を加熱する。具体的には、加熱部122は、ヒータ126を有する。ヒータ126に通電することで、加熱部122が加熱され、収納容器120内の蒸着材料が加熱されて気化する。気化した蒸着材料は、収納容器120の開口部130から収納容器120の外に放出される。開口部130を覆うように配置されたメッシュ状の金属板128は、突沸した蒸着材料が収納容器120の外に放出されることを抑制する。加熱部122及び蒸着ホルダ124は、収納容器120と同様の材料を含むことができる。 The heating unit 122 is removably held inside the vapor deposition holder 124. The heating unit 122 heats the storage container 120 by a resistance heating method. Specifically, the heating unit 122 has a heater 126. By energizing the heater 126, the heating unit 122 is heated, and the vaporized material in the storage container 120 is heated and vaporized. The vaporized vaporized material is discharged from the opening 130 of the storage container 120 to the outside of the storage container 120. The mesh-shaped metal plate 128 arranged so as to cover the opening 130 suppresses the suddenly boiled vapor deposition material from being discharged to the outside of the storage container 120. The heating unit 122 and the vapor deposition holder 124 can contain the same materials as the storage container 120.
 一対のガイド板132は、蒸着源112の上部に設けられる。ガイド板132の少なくとも一部は、収納容器120の側面又は鉛直方向に対して傾いている。ガイド板132の傾きによって、蒸着材料の蒸気の広がる角度(以下、「射出角度」という。)が制御され、蒸気の飛翔方向に指向性を持たせることができる。射出角度は二つのガイド板132のなす角度θeによって決まる。角度θeは被蒸着基板104の大きさ及び蒸着源112と被蒸着基板104との間の距離などによって適宜調整される。角度θeは、例えば40°以上80°以下(好ましくは、50°以上70°以下)である。本実施形態では、角度θeは60°である。ガイド板132の傾いた表面によって形成される面は、臨界面160a、160bと呼ばれる。材料の蒸気は、ほぼ臨界面160a、160bに挟まれる空間を飛翔する。図示は省略するが、蒸着源112がポイントソース型の場合、ガイド板132は円錐状に設けられる。 The pair of guide plates 132 are provided above the vapor deposition source 112. At least a part of the guide plate 132 is tilted with respect to the side surface or the vertical direction of the storage container 120. The angle at which the vapor of the vapor-deposited material spreads (hereinafter referred to as "injection angle") is controlled by the inclination of the guide plate 132, and the directivity can be given to the flight direction of the vapor. The injection angle is determined by the angle θe formed by the two guide plates 132. The angle θe is appropriately adjusted depending on the size of the film-deposited substrate 104, the distance between the vapor deposition source 112 and the film-deposited substrate 104, and the like. The angle θe is, for example, 40 ° or more and 80 ° or less (preferably 50 ° or more and 70 ° or less). In this embodiment, the angle θe is 60 °. The surfaces formed by the inclined surface of the guide plate 132 are called critical surfaces 160a and 160b. The vapor of the material flies in a space sandwiched between the critical surfaces 160a and 160b. Although not shown, when the vapor deposition source 112 is a point source type, the guide plate 132 is provided in a conical shape.
 蒸着材料は、さまざまな材料から選択することができ、有機化合物又は無機化合物のいずれであってもよい。有機化合物としては、例えば発光性の材料又はキャリア輸送性の材料を用いることができる。無機化合物としては、金属、合金、又は金属酸化物などを用いることができる。一つの収納容器120に複数の材料を充填し、気化したときに複数の材料が混合するようにしてもよい。図示は省略するが、複数の蒸着源を用い、異なる蒸着材料を同時に蒸着できるようにしてもよい。 The vapor deposition material can be selected from various materials and may be either an organic compound or an inorganic compound. As the organic compound, for example, a luminescent material or a carrier transporting material can be used. As the inorganic compound, a metal, an alloy, a metal oxide, or the like can be used. A plurality of materials may be filled in one storage container 120 so that the plurality of materials are mixed when vaporized. Although not shown, a plurality of thin-film deposition sources may be used so that different thin-film deposition materials can be deposited at the same time.
[蒸着マスク300の構成]
 図4は、本発明の第1実施形態における蒸着マスクの上面図である。蒸着マスク300は、薄膜状のマスク部310と、マスク部310の一部に重ねて配置された枠体部330を有する。
[Structure of thin-film mask 300]
FIG. 4 is a top view of the vapor deposition mask according to the first embodiment of the present invention. The thin-film mask 300 has a thin-film mask portion 310 and a frame portion 330 arranged so as to overlap a part of the mask portion 310.
 マスク部310には、複数のパネル領域315が配置される。有機EL材料を蒸着する際には、各パネル領域315に対して有機EL表示装置の表示領域が重なるように被蒸着基板が配置される。各パネル領域315には、複数の開口311が、有機EL表示装置の画素ピッチに合わせて設けられている。マスク部310の開口311以外の領域を非開口部312という。非開口部312は、各開口311を囲む領域である。非開口部312は、各パネル領域315において、蒸着材料を遮蔽する部分に相当する。 A plurality of panel areas 315 are arranged in the mask unit 310. When the organic EL material is vapor-deposited, the substrate to be vapor-deposited is arranged so that the display area of the organic EL display device overlaps with each panel area 315. A plurality of openings 311 are provided in each panel area 315 according to the pixel pitch of the organic EL display device. The region of the mask portion 310 other than the opening 311 is referred to as a non-opening 312. The non-opening 312 is an area surrounding each opening 311. The non-opening 312 corresponds to a portion of each panel region 315 that shields the deposited material.
 蒸着時には、被蒸着基板104における蒸着領域(薄膜を形成する対象となる領域)と開口311とが重なり、被蒸着基板104における非蒸着領域と非開口部312とが重なるように、蒸着マスク300と被蒸着基板104の位置合わせが行われる。蒸着材料の蒸気が開口311を通過して被蒸着基板104に到達することにより、蒸着領域に蒸着材料が堆積して薄膜が形成される。 At the time of vapor deposition, the vapor deposition mask 300 and the vapor deposition mask 300 overlap so that the vapor deposition region (the region to be formed of the thin film) and the opening 311 in the substrate to be deposited 104 overlap with each other and the non-deposited region and the non-opening 312 in the substrate to be deposited 104 overlap. The substrate 104 to be vapor-deposited is aligned. When the vapor of the thin-film deposition material passes through the opening 311 and reaches the substrate 104 to be vapor-deposited, the thin-film deposition material is deposited in the thin-film deposition region to form a thin film.
 枠体部330は、平面視において、マスク部310の複数のパネル領域315を囲むように、マスク部310の一部(外周に相当する部分)に重ねて設けられる。枠体部330は、マスク部310の膜厚よりも厚い膜厚の金属層で構成される。すなわち、本実施形態の蒸着マスク300は、マスク部310の膜厚よりも厚い膜厚を有する部分(後述する保持部350)によりマスク部310を保持する構成となっている。 The frame body portion 330 is provided so as to be overlapped with a part of the mask portion 310 (a portion corresponding to the outer circumference) so as to surround the plurality of panel areas 315 of the mask portion 310 in a plan view. The frame body portion 330 is composed of a metal layer having a film thickness thicker than that of the mask portion 310. That is, the vapor deposition mask 300 of the present embodiment has a configuration in which the mask portion 310 is held by a portion having a film thickness thicker than that of the mask portion 310 (holding portion 350 described later).
 図5は、本発明の一実施形態における蒸着マスク300の断面図である。具体的には、図5に示す断面図は、図4のA-A’線に沿った断面を示している。図4及び図5に示すように、薄膜状のマスク部310の外周に相当する部分に、枠体部330が重ねて設けられている。すなわち、図5に示す蒸着マスク300において、一点鎖線で囲まれた領域(保持部350)は、マスク部310の膜厚と枠体部330の膜厚とを合計した膜厚の金属層で構成されている。つまり、マスク部310の一部に枠体部330を重ねて設けることにより、保持部350が、マスク部310を保持する枠として機能する。 FIG. 5 is a cross-sectional view of the vapor deposition mask 300 according to the embodiment of the present invention. Specifically, the cross-sectional view shown in FIG. 5 shows a cross section along the AA'line of FIG. As shown in FIGS. 4 and 5, the frame body portion 330 is provided so as to overlap the portion corresponding to the outer circumference of the thin film-shaped mask portion 310. That is, in the vapor deposition mask 300 shown in FIG. 5, the region (holding portion 350) surrounded by the alternate long and short dash line is composed of a metal layer having a total film thickness of the mask portion 310 and the frame portion 330. Has been done. That is, by providing the frame body portion 330 on a part of the mask portion 310, the holding portion 350 functions as a frame for holding the mask portion 310.
 上記の構成において、マスク部310は、薄膜状のめっき層で構成されている。マスク部310の膜厚d1は、5μm以上10μm以下である。枠体部330は、マスク部310よりも厚いめっき層で構成されている。枠体部330の膜厚d2は、100μm以上500μm以下である。マスク部310及び枠体部330は、いずれも電鋳と呼ばれる技術を用いて形成されためっき層(金属層)である。 In the above configuration, the mask portion 310 is composed of a thin-film plating layer. The film thickness d1 of the mask portion 310 is 5 μm or more and 10 μm or less. The frame body portion 330 is composed of a plating layer thicker than the mask portion 310. The film thickness d2 of the frame body portion 330 is 100 μm or more and 500 μm or less. Both the mask portion 310 and the frame portion 330 are plating layers (metal layers) formed by using a technique called electroforming.
 本実施形態では、マスク部310及び枠体部330を構成する金属材料として、いずれもインバー(invar)を用いる。インバーの熱膨張係数は、ニッケル等に比べて低く、ガラスの熱膨張係数に近い。そのため、蒸着マスク300の構成材料をインバーとすることにより、蒸着時において、蒸着マスクと被蒸着基板(通常、ガラス基板を用いる)との間の熱膨張によるずれが小さくなり、蒸着の位置精度が向上するという利点がある。ただし、この例に限らず、電鋳を用いて薄膜を形成することができる金属材料であれば、如何なる材料を用いてもよい。また、マスク部310と枠体部330とを同じ金属材料で構成する例に限らず、異なる金属材料で構成することも可能である。 In the present embodiment, invar is used as the metal material constituting the mask portion 310 and the frame body portion 330. The coefficient of thermal expansion of Invar is lower than that of nickel and the like, and is close to the coefficient of thermal expansion of glass. Therefore, by using Invar as the constituent material of the thin-film deposition mask 300, the deviation due to thermal expansion between the thin-film deposition mask and the substrate to be vapor-deposited (usually a glass substrate is used) during vapor deposition is reduced, and the position accuracy of the vapor deposition is improved. It has the advantage of improving. However, the present invention is not limited to this example, and any metal material that can form a thin film by electroforming may be used. Further, the mask portion 310 and the frame body portion 330 are not limited to the example of being made of the same metal material, and may be made of different metal materials.
 以上のように、本実施形態の蒸着マスク300は、マスク部310の一部(例えば、外周に相当する領域)に枠体部330を重畳して配置することにより保持部を構成する。したがって、マスク部310は、各パネル領域315から枠体部330の下方に至るまで存在し、枠体部330の下方に段差を有していない。このため、マグネット等により蒸着マスク300を被蒸着基板104に密着させる際、蒸着マスク300と被蒸着基板104とを安定して密着させることができ、蒸着の位置精度が向上する。また、蒸着マスク300から被蒸着基板104を剥がすときに、蒸着マスク300の変形が起こりにくく、蒸着マスク300の耐久性が向上する。また、従来の蒸着マスクより保持部の強度が強くなるため、マスク部310の強度も向上する。さらに、従来の蒸着マスクよりも枠体部330の膜厚を小さくできるため、蒸着マスク300全体の軽量化を図ることができる。 As described above, the vapor deposition mask 300 of the present embodiment constitutes a holding portion by superimposing the frame body portion 330 on a part of the mask portion 310 (for example, the region corresponding to the outer circumference). Therefore, the mask portion 310 exists from each panel region 315 to the lower part of the frame body portion 330, and does not have a step below the frame body portion 330. Therefore, when the thin-film deposition mask 300 is brought into close contact with the thin-film deposition substrate 104 by a magnet or the like, the thin-film deposition mask 300 and the thin-film deposition substrate 104 can be stably adhered to each other, and the position accuracy of the thin-film deposition is improved. Further, when the substrate 104 to be deposited is peeled off from the vapor deposition mask 300, the vapor deposition mask 300 is less likely to be deformed, and the durability of the vapor deposition mask 300 is improved. Further, since the strength of the holding portion is stronger than that of the conventional thin-film deposition mask, the strength of the mask portion 310 is also improved. Further, since the film thickness of the frame body portion 330 can be made smaller than that of the conventional thin-film deposition mask, the weight of the entire vapor deposition mask 300 can be reduced.
[蒸着マスク300の製造方法]
 図6から図13を用いて、本発明の一実施形態における蒸着マスク300の製造方法について説明する。図6から図13は、本発明の一実施形態における蒸着マスク300の製造方法を示す断面図である。
[Manufacturing method of thin-film mask 300]
A method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention will be described with reference to FIGS. 6 to 13. 6 to 13 are cross-sectional views showing a method of manufacturing the vapor deposition mask 300 according to the embodiment of the present invention.
 図6は、本発明の一実施形態における蒸着マスク300の製造方法において、導電性の剥離層430を形成する工程を示す断面図である。図6に示すように、基板410上の略全面に剥離層430を形成する。基板410としては、平坦性が高い基板が好ましく、特にガラス基板が好ましい。この場合、基板410の厚さは0.5mm以上1mm以下であってもよい。剥離層430の材料としては、ITO(酸化インジウム・スズ)、IZO(酸化インジウム・亜鉛)などの金属酸化物材料、又は、Al(アルミニウム)、Mo(モリブデン)、Ti(チタン)、Cu(銅)、Cr(クロム)等の金属を含む導電性材料が好ましい。剥離層430の厚さは、マスク部310を電解めっきで形成する場合には、めっき層を成長させられるように十分な導電性を付与できる厚みが好ましい。例えば、剥離層430の厚さは、ITOの場合、50nm以上500nm以下であることが好ましい。 FIG. 6 is a cross-sectional view showing a step of forming the conductive release layer 430 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention. As shown in FIG. 6, the release layer 430 is formed on substantially the entire surface of the substrate 410. As the substrate 410, a substrate having high flatness is preferable, and a glass substrate is particularly preferable. In this case, the thickness of the substrate 410 may be 0.5 mm or more and 1 mm or less. The material of the release layer 430 includes metal oxide materials such as ITO (indium tin oxide) and IZO (indium zinc oxide), or Al (aluminum), Mo (molybdenum), Ti (titanium), and Cu (copper). ), Cr (chromium) and other conductive materials containing metals are preferred. When the mask portion 310 is formed by electrolytic plating, the thickness of the release layer 430 is preferably a thickness capable of imparting sufficient conductivity so that the plating layer can be grown. For example, in the case of ITO, the thickness of the release layer 430 is preferably 50 nm or more and 500 nm or less.
 図7は、本発明の一実施形態における蒸着マスク300の製造方法において、第1絶縁層450を形成する工程を示す断面図である。基板410上の略全面に感光性樹脂材料を塗布した後、フォトリソグラフィおよびエッチングによって感光性樹脂材料のパターニングを行う。これにより、剥離層430上に、マスク部310を形成するための第1絶縁層(レジスト層)450を形成する。第1絶縁層450を形成する領域は、図4及び図5に示したマスク部310の複数の開口311を配置する領域に対応する。 FIG. 7 is a cross-sectional view showing a step of forming the first insulating layer 450 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention. After applying the photosensitive resin material to substantially the entire surface of the substrate 410, the photosensitive resin material is patterned by photolithography and etching. As a result, the first insulating layer (resist layer) 450 for forming the mask portion 310 is formed on the release layer 430. The region forming the first insulating layer 450 corresponds to the region in which the plurality of openings 311 of the mask portion 310 shown in FIGS. 4 and 5 are arranged.
 図8は、本発明の一実施形態における蒸着マスク300の製造方法において、マスク部310を形成する工程を示す断面図である。図8では、剥離層430に通電する電解めっき法によって、第1絶縁層450が形成されていない領域(露出した剥離層430の上)にインバーで構成されるめっき層(金属層)を析出させ、マスク部310を形成する。マスク部310の膜厚は、5μm以上10μm以下の範囲であることが好ましい。なお、ここではマスク部310をインバーで形成する例を示したが、ニッケル又はニッケル合金などの他の金属材料を用いることも可能である。 FIG. 8 is a cross-sectional view showing a step of forming the mask portion 310 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention. In FIG. 8, a plating layer (metal layer) composed of inver is precipitated in a region where the first insulating layer 450 is not formed (above the exposed peeling layer 430) by an electrolytic plating method in which the peeling layer 430 is energized. , The mask portion 310 is formed. The film thickness of the mask portion 310 is preferably in the range of 5 μm or more and 10 μm or less. Although the example in which the mask portion 310 is formed by Invar is shown here, it is also possible to use other metal materials such as nickel or nickel alloy.
 また、本実施形態では、導電性を有する剥離層430を用いて電解めっきを行う例を示したが、この例に限らず、例えば剥離層430を形成せずに無電解めっき法によりマスク部310を形成することも可能である。具体的には、まず、第1絶縁層450が形成された領域(この場合、ガラス基板410が露出された領域)及び第1絶縁層450の上に無電解めっき法によりインバーで構成されるめっき層を形成する。その後、第1絶縁層450を除去することにより、第1絶縁層450の上のめっき層が除去される。このような「リフトオフ」と呼ばれるプロセスにより、複数の開口を有するマスク部310を形成することができる。 Further, in the present embodiment, an example in which electrolytic plating is performed using the conductive release layer 430 is shown, but the present invention is not limited to this example, and the mask portion 310 is not limited to this example, for example, by the electroless plating method without forming the release layer 430. It is also possible to form. Specifically, first, plating composed of Invar on the region where the first insulating layer 450 is formed (in this case, the region where the glass substrate 410 is exposed) and the first insulating layer 450 by an electroless plating method. Form a layer. Then, by removing the first insulating layer 450, the plating layer on the first insulating layer 450 is removed. By such a process called "lift-off", the mask portion 310 having a plurality of openings can be formed.
 図9は、本発明の一実施形態における蒸着マスク300の製造方法において、第2絶縁層470を形成する工程を示す断面図である。基板410上の略全面に感光性樹脂材料を塗布した後、フォトリソグラフィおよびエッチングによって感光性樹脂材料のパターニングを行う。これにより、マスク部310の上に、枠体部330を形成するための第2絶縁層(レジスト層)470を形成する。第2絶縁層470を形成する領域は、図4及び図5に示した枠体部330の内側の領域に対応する。 FIG. 9 is a cross-sectional view showing a step of forming the second insulating layer 470 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention. After applying the photosensitive resin material to substantially the entire surface of the substrate 410, the photosensitive resin material is patterned by photolithography and etching. As a result, a second insulating layer (resist layer) 470 for forming the frame body portion 330 is formed on the mask portion 310. The region forming the second insulating layer 470 corresponds to the region inside the frame body portion 330 shown in FIGS. 4 and 5.
 図10は、本発明の一実施形態における蒸着マスク300の製造方法において、枠体部330を形成する工程を示す断面図である。図10では、剥離層430及びマスク部310に通電する電解めっき法によって、第2絶縁層470が形成されていない領域(露出したマスク部310の上)にインバーで構成されるめっき層(金属層)を析出させ、枠体部330を形成する。枠体部330の膜厚は、100μm以上500μm以下の範囲であることが好ましい。なお、ここでは枠体部330をインバーで形成する例を示したが、ニッケル又はニッケル合金などの他の金属材料を用いることも可能である。また、図10においては、枠体部330は、第2絶縁層470の膜厚を越えて上方に成長しているが、枠体部330の成長が第2絶縁層470に覆い被さるように進むことは好ましくない。したがって、枠体部330が所望の膜厚まで第2絶縁層470の側壁に沿って成長するように、第2絶縁層470の膜厚を十分に厚くしてもよい。 FIG. 10 is a cross-sectional view showing a step of forming the frame body portion 330 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention. In FIG. 10, a plating layer (metal layer) composed of an inver is formed in a region (above the exposed mask portion 310) where the second insulating layer 470 is not formed by an electrolytic plating method in which the release layer 430 and the mask portion 310 are energized. ) Is precipitated to form the frame body portion 330. The film thickness of the frame portion 330 is preferably in the range of 100 μm or more and 500 μm or less. Although the example in which the frame body portion 330 is formed by Invar is shown here, it is also possible to use other metal materials such as nickel or nickel alloy. Further, in FIG. 10, the frame body portion 330 grows upward beyond the film thickness of the second insulating layer 470, but the growth of the frame body portion 330 proceeds so as to cover the second insulating layer 470. That is not desirable. Therefore, the film thickness of the second insulating layer 470 may be sufficiently thickened so that the frame body portion 330 grows along the side wall of the second insulating layer 470 to a desired film thickness.
 図11は、本発明の一実施形態における蒸着マスク300の製造方法において、第1絶縁層450および第2絶縁層470を除去する工程を示す断面図である。第1絶縁層450および第2絶縁層470を除去することで、枠体部330の内側において、マスク部310の一部が露出される。また、マスク部310の各パネル領域315には、複数の開口311が形成される。複数の開口311の内部には、剥離層430が露出される。 FIG. 11 is a cross-sectional view showing a step of removing the first insulating layer 450 and the second insulating layer 470 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention. By removing the first insulating layer 450 and the second insulating layer 470, a part of the mask portion 310 is exposed inside the frame portion 330. Further, a plurality of openings 311 are formed in each panel area 315 of the mask portion 310. The release layer 430 is exposed inside the plurality of openings 311.
 図12は、本発明の一実施形態における蒸着マスク300の製造方法において、マスク部310及び枠体部330を切断する工程を示す断面図である。本実施形態においては、まず、マスク部310及び枠体部330の外縁をレーザー光の照射などにより切断する。本実施形態では、レーザー光の出力を調整してマスク部310及び枠体部330を選択的に切断する例を示すが、マスク部310及び枠体部330とともに剥離層430を切断してもよい。レーザーとしては、炭酸ガスレーザー、固体レーザー、エキシマレーザー等を用いることができる。 FIG. 12 is a cross-sectional view showing a step of cutting the mask portion 310 and the frame portion 330 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention. In the present embodiment, first, the outer edges of the mask portion 310 and the frame portion 330 are cut by irradiation with laser light or the like. In the present embodiment, an example in which the mask portion 310 and the frame body portion 330 are selectively cut by adjusting the output of the laser beam is shown, but the release layer 430 may be cut together with the mask portion 310 and the frame body portion 330. .. As the laser, a carbon dioxide gas laser, a solid-state laser, an excimer laser or the like can be used.
 図13は、本発明の一実施形態における蒸着マスク300の製造方法において、マスク部310から基板410を剥離する工程を示す断面図である。図13では、溶解液を用いて、剥離層430を除去する。剥離層430として、例えばITOを用いた場合、溶解液としては、例えばシュウ酸を用いることができる。剥離層430は、剥離層430の側面およびマスク部310の複数の開口311によって露出した部分が優先的に溶解し、徐々に全体が溶解液に侵食されて除去される。図13に示すように、剥離層430が溶解されて消失することにより、マスク部310を基板410から剥離することができる。 FIG. 13 is a cross-sectional view showing a step of peeling the substrate 410 from the mask portion 310 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention. In FIG. 13, the release layer 430 is removed using a solution. When, for example, ITO is used as the release layer 430, for example, oxalic acid can be used as the solution. In the release layer 430, the side surface of the release layer 430 and the portion exposed by the plurality of openings 311 of the mask portion 310 are preferentially dissolved, and the entire portion is gradually eroded by the solution and removed. As shown in FIG. 13, the mask portion 310 can be peeled from the substrate 410 by melting and disappearing the peeling layer 430.
 なお、基板410の外縁の領域に図8及び図9に示す工程において第1絶縁層450及び第2絶縁層470を形成しておいてもよい。この場合、第1絶縁層450を除去した際に、除去した跡に剥離層430が露出される。このような構成としておくと、剥離層430を溶解液に接触させた際、基板410の外縁の領域に露出した剥離層430が優先的に溶解する。したがって、基板410とマスク部310との間に溶解液が入り込みやすくなり、効率よく剥離層430を溶解することができる。 The first insulating layer 450 and the second insulating layer 470 may be formed in the outer edge region of the substrate 410 in the steps shown in FIGS. 8 and 9. In this case, when the first insulating layer 450 is removed, the release layer 430 is exposed in the removed traces. With such a configuration, when the release layer 430 is brought into contact with the solution, the release layer 430 exposed in the outer edge region of the substrate 410 is preferentially dissolved. Therefore, the dissolution liquid easily enters between the substrate 410 and the mask portion 310, and the release layer 430 can be efficiently dissolved.
 溶解液を用いて剥離層430を除去することにより、余計な負荷を抑制しつつマスク部310を基板410から剥離することができる。また、剥離後にマスク部310の裏面に剥離層430が残らないように剥離層430を除去することにより、残った膜の応力に起因するマスク変形を防ぐことができる。このようなマスク変形を防ぐことは、蒸着の位置精度の向上に寄与する。しかしながら、この例に限らず、例えば基板410がガラス基板である場合に、マスク部310を保護層で保護しつつ、フッ酸等の溶解液を用いて基板410を溶解してもよい。 By removing the peeling layer 430 using the dissolution liquid, the mask portion 310 can be peeled from the substrate 410 while suppressing an unnecessary load. Further, by removing the peeling layer 430 so that the peeling layer 430 does not remain on the back surface of the mask portion 310 after peeling, it is possible to prevent the mask from being deformed due to the stress of the remaining film. Preventing such mask deformation contributes to improving the position accuracy of vapor deposition. However, the present invention is not limited to this example, and for example, when the substrate 410 is a glass substrate, the substrate 410 may be dissolved using a solution such as hydrofluoric acid while protecting the mask portion 310 with a protective layer.
 以上のように、本実施形態の蒸着マスク300の製造方法は、めっき層でマスク部310を形成した後、その一部にマスク部310よりも厚いめっき層で枠体部330を形成する。このように、本実施形態によれば、従来構造よりも少ない工程数で蒸着マスク300を製造することができるため、蒸着マスク300の製造コストを低減することができる。また、枠体部330は、膜厚の厚いめっき層であるため、構造がシンプルである。そのため、マスク部310として実効的に機能する面積を増やすことができ、蒸着マスク300によって一度に処理できる表示パネルの数を増やすことができるという利点がある。これにより、個々の有機EL表示装置の製造コストを低減することができる。 As described above, in the method for manufacturing the vapor deposition mask 300 of the present embodiment, after the mask portion 310 is formed by the plating layer, the frame portion 330 is formed by a plating layer thicker than the mask portion 310 in a part thereof. As described above, according to the present embodiment, the vapor deposition mask 300 can be manufactured with a smaller number of steps than the conventional structure, so that the manufacturing cost of the vapor deposition mask 300 can be reduced. Further, since the frame body portion 330 is a plating layer having a thick film thickness, the structure is simple. Therefore, there is an advantage that the area that effectively functions as the mask portion 310 can be increased, and the number of display panels that can be processed at one time by the vapor deposition mask 300 can be increased. As a result, the manufacturing cost of each organic EL display device can be reduced.
〈第2実施形態〉
 図14を用いて、本発明の一実施形態における蒸着マスク300Aについて説明する。図14は、本発明の第2実施形態における蒸着マスク300Aの平面図である。図15は、本発明の第2実施形態における蒸着マスク300Aの断面図である。本実施形態において、枠体部330Aの構成以外は、第1実施形態の蒸着マスク300と同様であるため、第1実施形態と同じ符号を用いて詳細な説明は省略する。
<Second Embodiment>
The vapor deposition mask 300A according to the embodiment of the present invention will be described with reference to FIG. FIG. 14 is a plan view of the vapor deposition mask 300A according to the second embodiment of the present invention. FIG. 15 is a cross-sectional view of the vapor deposition mask 300A according to the second embodiment of the present invention. In this embodiment, since the configuration of the frame portion 330A is the same as that of the vapor deposition mask 300 of the first embodiment, detailed description thereof will be omitted using the same reference numerals as those of the first embodiment.
 図14及び図15に示すように、蒸着マスク300Aは、枠体部330Aが、マスク部310の上に格子状に設けられている。すなわち、格子状に設けられた保持部350が、マスク部310を保持する。マスク部310には、複数のパネル領域315が配置される。各パネル領域315には、複数の開口311及び非開口部312が設けられている。 As shown in FIGS. 14 and 15, in the vapor deposition mask 300A, the frame body portion 330A is provided on the mask portion 310 in a grid pattern. That is, the holding portions 350 provided in a grid pattern hold the mask portion 310. A plurality of panel areas 315 are arranged in the mask portion 310. Each panel area 315 is provided with a plurality of openings 311 and non-openings 312.
 以上のように、本実施形態の蒸着マスク300Aは、枠体部330Aが、マスク部310の外周に相当する部分だけでなく、他の部分にも設けられている。例えば、本実施形態では、枠体部330Aが格子状に設けられた例を示したが、この例に限らず、枠体部330Aが縦方向または横方向にストライプ状に設けられていてもよい。すなわち、枠体部330Aは、マスク部310の第1辺から該第1辺に向かい合う第2辺にかけて複数の開口311の間を横切るように設けられていてもよい。 As described above, in the vapor deposition mask 300A of the present embodiment, the frame body portion 330A is provided not only in the portion corresponding to the outer circumference of the mask portion 310 but also in other portions. For example, in the present embodiment, an example in which the frame body portion 330A is provided in a grid pattern is shown, but the present invention is not limited to this example, and the frame body portion 330A may be provided in a stripe shape in the vertical direction or the horizontal direction. .. That is, the frame body portion 330A may be provided so as to cross between the plurality of openings 311 from the first side of the mask portion 310 to the second side facing the first side.
 本実施形態によれば、第1実施形態の蒸着マスク300と同様の効果を奏するとともに、さらに蒸着マスク300Aの強度を向上させることができる。 According to the present embodiment, the same effect as that of the thin-film deposition mask 300 of the first embodiment can be obtained, and the strength of the thin-film deposition mask 300A can be further improved.
〈第3実施形態〉
 図16を用いて、本発明の一実施形態における蒸着マスク300の製造方法について説明する。図16は、本発明の第3実施形態における蒸着マスク300の製造方法を示す断面図である。本実施形態においては、基板410と剥離層430の間に樹脂層420を成膜すること以外は、第1実施形態における蒸着マスク300の製造方法と同様であるため、第1実施形態と同じ符号を用いて詳細な説明は省略する。
<Third Embodiment>
A method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention will be described with reference to FIG. FIG. 16 is a cross-sectional view showing a method of manufacturing the vapor deposition mask 300 according to the third embodiment of the present invention. The present embodiment is the same as the method for manufacturing the vapor deposition mask 300 in the first embodiment except that the resin layer 420 is formed between the substrate 410 and the release layer 430, and therefore has the same reference numerals as those in the first embodiment. A detailed description will be omitted with reference to.
 図16は、本発明の一実施形態における蒸着マスク300の製造方法において、マスク部310を基板410から剥離する工程を示す断面図である。本実施形態では、基板410の上に剥離層430を形成する前に、樹脂層420を形成する。樹脂層420の材料としては、例えば、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂、又はシロキサン樹脂などの樹脂材料を用いることができる。樹脂層420の膜厚は、0.5μm以上2μm以下であることが好ましい。 FIG. 16 is a cross-sectional view showing a step of peeling the mask portion 310 from the substrate 410 in the method for manufacturing the vapor deposition mask 300 according to the embodiment of the present invention. In the present embodiment, the resin layer 420 is formed before the release layer 430 is formed on the substrate 410. As the material of the resin layer 420, for example, a resin material such as a polyimide resin, an acrylic resin, an epoxy resin, a silicone resin, a fluororesin, or a siloxane resin can be used. The film thickness of the resin layer 420 is preferably 0.5 μm or more and 2 μm or less.
 図16に示すように、本実施形態では、基板410の裏面側(樹脂層420が形成された面とは反対側)から樹脂層420に対してレーザー光を照射する。樹脂層420における基板410に近接した領域は、レーザー光を吸収して変質する。このように変質した樹脂層420は、溶解液で容易に除去することができるため、リフトオフにより樹脂層420から基板410を剥離することができる。基板410を剥離した後、残存した樹脂層420をエッチングして除去する。樹脂層420を除去した後、溶解液を用いて、露出した剥離層430を除去することにより、蒸着マスク300を得ることができる。 As shown in FIG. 16, in the present embodiment, the resin layer 420 is irradiated with laser light from the back surface side of the substrate 410 (the side opposite to the surface on which the resin layer 420 is formed). The region of the resin layer 420 close to the substrate 410 absorbs the laser beam and deteriorates. Since the resin layer 420 altered in this way can be easily removed with the solution, the substrate 410 can be peeled off from the resin layer 420 by lift-off. After the substrate 410 is peeled off, the remaining resin layer 420 is etched and removed. The vapor deposition mask 300 can be obtained by removing the exposed release layer 430 using a solution after removing the resin layer 420.
 以上のように、本実施形態によれば、基板410を剥離した後に剥離層430の除去を行うことができるため、より効率よく剥離層430を溶解することができる。 As described above, according to the present embodiment, the release layer 430 can be removed after the substrate 410 is peeled off, so that the release layer 430 can be dissolved more efficiently.
〈第4実施形態〉
 図17を用いて、本発明の一実施形態における蒸着マスク300Bについて説明する。図17は、本発明の第4実施形態における蒸着マスク300Bを示す断面図である。本実施形態においては、枠体部330Bが、複数の金属層を積層した構造である以外は、第1実施形態における蒸着マスク300と同様であるため、第1実施形態と同じ符号を用いて詳細な説明は省略する。
<Fourth Embodiment>
The vapor deposition mask 300B according to the embodiment of the present invention will be described with reference to FIG. FIG. 17 is a cross-sectional view showing a vapor deposition mask 300B according to a fourth embodiment of the present invention. In the present embodiment, the frame body portion 330B is the same as the vapor deposition mask 300 in the first embodiment except that the frame body portion 330B has a structure in which a plurality of metal layers are laminated. The explanation will be omitted.
 本実施形態の枠体部330Bは、マスク部310に近い側から順に、金属層330Ba~330Beが設けられている。本実施形態では、金属層330Ba~330Beは、いずれもインバーで構成されているが、この例に限らず、ニッケル等の他の金属材料を用いてもよい。また、金属層の積層数は、この例に限らず、任意の数とすることができる。 The frame body portion 330B of the present embodiment is provided with metal layers 330Ba to 330Be in order from the side closer to the mask portion 310. In the present embodiment, the metal layers 330Ba to 330Be are all composed of Invar, but the present invention is not limited to this example, and other metal materials such as nickel may be used. Further, the number of laminated metal layers is not limited to this example, and can be any number.
 本実施形態では、枠体部330Bを複数の金属層330Ba~330Beを用いて構成することにより、枠体部330Bに生じる応力を制御している。具体的には、異なる応力を有する金属層を積層することにより枠体部330Bの全体の応力を制御し、枠体部330Bの応力に起因する蒸着マスク300Bの反りを低減する構成となっている。 In the present embodiment, the stress generated in the frame body portion 330B is controlled by forming the frame body portion 330B using a plurality of metal layers 330Ba to 330Be. Specifically, the overall stress of the frame body portion 330B is controlled by laminating metal layers having different stresses, and the warp of the vapor deposition mask 300B due to the stress of the frame body portion 330B is reduced. ..
 金属層330Ba~330Beの応力は、様々な方法で制御することができる。例えば、金属層330Ba~330Beそれぞれの膜厚を変えて応力を異ならせてもよいし、組成を変えて応力を異ならせてもよい。組成を変える場合、例えば電解めっきの条件(例えば、電解液の組成、通電時の電流量など)を変えることにより、金属層の組成を変えることが可能である。本実施形態では、金属層330Ba、金属層330Bc及び金属層330Beを構成するインバーのめっき条件と、金属層330Bb及び金属層330Bdを構成するインバーのめっき条件を異なるものとしている。すなわち、本実施形態の枠体部330Bは、組成の異なる金属層が交互に積層された構成となっている。しかしながら、この例に限らず、各金属層330Ba~330Beをどのようなめっき条件で形成するかについては適宜決定することができる。 The stress of the metal layers 330Ba to 330Be can be controlled by various methods. For example, the film thickness of each of the metal layers 330Ba to 330Be may be changed to make the stress different, or the composition may be changed to make the stress different. When changing the composition, it is possible to change the composition of the metal layer, for example, by changing the electroplating conditions (for example, the composition of the electrolytic solution, the amount of current when energized, etc.). In the present embodiment, the plating conditions of Invar constituting the metal layer 330Ba, the metal layer 330Bc and the metal layer 330Be are different from the plating conditions of the Invar constituting the metal layer 330Bb and the metal layer 330Bd. That is, the frame body portion 330B of the present embodiment has a structure in which metal layers having different compositions are alternately laminated. However, not limited to this example, it is possible to appropriately determine under what plating conditions each metal layer 330Ba to 330Be is formed.
 また、本実施形態では、金属層330Ba~330Beの膜厚を同一とした例を示すが、異なる膜厚の金属層を組み合わせてもよい。さらに、膜厚とめっき条件とをパラメータとして、様々な膜厚又は組成の金属層を組み合わせて枠体部330Bを構成してもよい。このように、本実施形態では、枠体部330Bが複数の金属層330Ba~330Beの積層で構成され、保持部350は、マスク部310に枠体部330Bを重ねて形成される。したがって、枠体部330Bがn層の金属層で構成される場合、保持部350は、n層の金属層に1層の金属層(マスク部310)を加えて、(n+1)層の金属層で構成される。 Further, in the present embodiment, an example in which the film thicknesses of the metal layers 330Ba to 330Be are the same is shown, but metal layers having different film thicknesses may be combined. Further, the frame body portion 330B may be formed by combining metal layers having various film thicknesses or compositions with the film thickness and the plating conditions as parameters. As described above, in the present embodiment, the frame body portion 330B is formed by laminating a plurality of metal layers 330Ba to 330Be, and the holding portion 350 is formed by superimposing the frame body portion 330B on the mask portion 310. Therefore, when the frame body portion 330B is composed of the n-layer metal layer, the holding portion 350 adds one metal layer (mask portion 310) to the n-layer metal layer to form the (n + 1) layer metal layer. Consists of.
 なお、本実施形態では、枠体部330Bが複数の金属層330Ba~330Beで構成される例を示したが、マスク部310が複数の金属層で構成されていてもよい。例えば、マスク部310及び枠体部330Bの両方が複数の金属層で構成されていてもよいし、いずれか一方のみが複数の金属層で構成されてもよい。いずれにしても、保持部350は、マスク部310に枠体部330Bを重ねて形成される。したがって、枠体部330Bがn層の金属層で構成され、マスク部310がm層の金属層で構成される場合、保持部350は、(n+m)層の金属層で構成される。 Although the frame body portion 330B is composed of a plurality of metal layers 330Ba to 330Be in the present embodiment, the mask portion 310 may be composed of a plurality of metal layers. For example, both the mask portion 310 and the frame body portion 330B may be composed of a plurality of metal layers, or only one of them may be composed of a plurality of metal layers. In any case, the holding portion 350 is formed by superimposing the frame body portion 330B on the mask portion 310. Therefore, when the frame body portion 330B is composed of the n-layer metal layer and the mask portion 310 is composed of the m-layer metal layer, the holding portion 350 is composed of the (n + m) layer metal layer.
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。各実施形態の蒸着マスクを基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 Each of the above-described embodiments of the present invention can be appropriately combined and implemented as long as they do not contradict each other. Based on the vapor deposition mask of each embodiment, those skilled in the art have appropriately added, deleted, or changed the design of components, or added, omitted, or changed the conditions of the process. As long as it is provided, it is included in the scope of the present invention.
 また、上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。 Further, even if other effects different from the effects brought about by the above-described embodiments of the above-described embodiments, those that are clear from the description of the present specification or those that can be easily predicted by those skilled in the art are referred to. Naturally, it is understood that it is brought about by the present invention.
10…蒸着装置、100…蒸着チャンバ、102…ロードロック扉、104…被蒸着基板、108…ホルダ、110…移動機構、112…蒸着源、114…シャッタ、120…収納容器、122…加熱部、124…蒸着ホルダ、126…ヒータ、128…金属板、130…開口部、132…ガイド板、160a、160b…臨界面、300、300A、300B…蒸着マスク、310…マスク部、310B…枠体部、311…開口、312…非開口部、315…パネル領域、330、330A、330B…枠体部、330Ba~330Be…金属層、350…保持部、410…基板、420…樹脂層、430…剥離層、450…第1絶縁層(レジスト層)、470…第2絶縁層(レジスト層) 10 ... thin film deposition device, 100 ... thin film deposition chamber, 102 ... load lock door, 104 ... vapor deposition substrate, 108 ... holder, 110 ... moving mechanism, 112 ... thin film deposition source, 114 ... shutter, 120 ... storage container, 122 ... heating unit, 124 ... thin film holder, 126 ... heater, 128 ... metal plate, 130 ... opening, 132 ... guide plate, 160a, 160b ... critical plane, 300, 300A, 300B ... vapor deposition mask, 310 ... mask part, 310B ... frame body part 3,11 ... Opening, 312 ... Non-opening, 315 ... Panel area, 330, 330A, 330B ... Frame part, 330Ba to 330Be ... Metal layer, 350 ... Holding part, 410 ... Substrate, 420 ... Resin layer, 430 ... Peeling Layers, 450 ... 1st insulating layer (resist layer), 470 ... 2nd insulating layer (resist layer)

Claims (15)

  1.  複数の開口を有し、第1膜厚を有するマスク部と、
     前記第1膜厚よりも厚い第2膜厚を有する保持部と、
     を含む、蒸着マスク。
    A mask portion having a plurality of openings and having a first film thickness,
    A holding portion having a second film thickness thicker than the first film thickness,
    Including vapor deposition mask.
  2.  前記保持部は、前記マスク部の一部と、当該マスク部の一部に重ねて設けられた枠体部とで構成される、請求項1に記載の蒸着マスク。 The vapor deposition mask according to claim 1, wherein the holding portion is composed of a part of the mask portion and a frame portion provided so as to overlap the part of the mask portion.
  3.  複数の開口を有する金属層で構成されるマスク部と、
     n層の金属層で構成される枠体部及び前記マスク部の一部を含む、(n+1)層の金属層で構成される保持部と、
     を含む、蒸着マスク。
    A mask portion composed of a metal layer having a plurality of openings,
    A holding portion composed of an (n + 1) layer metal layer including a frame portion composed of an n-layer metal layer and a part of the mask portion, and a holding portion composed of an (n + 1) layer metal layer.
    Including vapor deposition mask.
  4.  前記マスク部の一部は、前記マスク部の外周に相当する部分を含む、請求項2又は3に記載の蒸着マスク。 The vapor deposition mask according to claim 2 or 3, wherein a part of the mask portion includes a portion corresponding to the outer periphery of the mask portion.
  5.  前記マスク部の一部は、前記マスク部の第1辺から該第1辺に向かい合う第2辺にかけて前記複数の開口の間を横切る部分を含む、請求項2又は3に記載の蒸着マスク。 The vapor deposition mask according to claim 2 or 3, wherein a part of the mask portion includes a portion that crosses between the plurality of openings from a first side of the mask portion to a second side facing the first side.
  6.  前記枠体部は、複数の金属層を含む積層構造を有する、請求項2又は3に記載の蒸着マスク。 The vapor deposition mask according to claim 2 or 3, wherein the frame portion has a laminated structure including a plurality of metal layers.
  7.  前記複数の金属層は、互いに膜厚が異なる金属層を含む、請求項6に記載の蒸着マスク。 The vapor deposition mask according to claim 6, wherein the plurality of metal layers include metal layers having different film thicknesses from each other.
  8.  前記マスク部及び前記枠体部は、インバーを含む金属層で構成される、請求項2又は3に記載の蒸着マスク。 The vapor deposition mask according to claim 2 or 3, wherein the mask portion and the frame portion are composed of a metal layer including Invar.
  9.  基板の上に、複数の開口を有するマスク部を形成し、
     前記複数の開口を覆い、前記マスク部の外周に相当する部分を露出する絶縁層を形成し、
     前記マスク部の外周に相当する部分に枠体部を形成し、
     前記絶縁層を除去し、
     前記基板から前記マスク部を剥離することを含む、蒸着マスクの製造方法。
    A mask portion having a plurality of openings is formed on the substrate, and the mask portion is formed.
    An insulating layer is formed to cover the plurality of openings and expose a portion corresponding to the outer periphery of the mask portion.
    A frame body portion is formed on a portion corresponding to the outer circumference of the mask portion.
    Remove the insulating layer and
    A method for manufacturing a vapor-deposited mask, which comprises peeling the mask portion from the substrate.
  10.  前記マスク部及び前記枠体部は、電解めっき法により形成される、請求項9に記載の蒸着マスクの製造方法。 The method for manufacturing a vapor-deposited mask according to claim 9, wherein the mask portion and the frame portion are formed by an electrolytic plating method.
  11.  前記マスク部及び前記枠体部は、インバーを含む材料を用いて形成される、請求項9に記載の蒸着マスクの製造方法。 The method for manufacturing a vapor-deposited mask according to claim 9, wherein the mask portion and the frame portion are formed by using a material containing Invar.
  12.  前記マスク部を形成する前に、前記基板上に導電性の剥離層を形成することを含む、請求項9に記載の蒸着マスクの製造方法。 The method for manufacturing a vapor-deposited mask according to claim 9, which comprises forming a conductive release layer on the substrate before forming the mask portion.
  13.  前記導電性の剥離層は、金属酸化物を含む導電性材料で構成される、請求項12に記載の蒸着マスクの製造方法。 The method for manufacturing a vapor deposition mask according to claim 12, wherein the conductive release layer is made of a conductive material containing a metal oxide.
  14.  前記枠体部は、互いに膜厚が異なる金属層を含む、請求項9に記載の蒸着マスクの製造方法。 The method for manufacturing a vapor-deposited mask according to claim 9, wherein the frame portion includes metal layers having different film thicknesses.
  15.  前記枠体部は、互いに異なる条件の電解めっき法により形成された金属層を含む、請求項9に記載の蒸着マスクの製造方法。 The method for manufacturing a vapor-deposited mask according to claim 9, wherein the frame portion includes a metal layer formed by an electrolytic plating method under different conditions.
PCT/JP2020/025998 2019-09-03 2020-07-02 Vapor deposition mask WO2021044718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080059113.2A CN114269962A (en) 2019-09-03 2020-07-02 Vapor deposition mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-160592 2019-09-03
JP2019160592A JP2021038436A (en) 2019-09-03 2019-09-03 Vapor deposition mask

Publications (1)

Publication Number Publication Date
WO2021044718A1 true WO2021044718A1 (en) 2021-03-11

Family

ID=74848303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025998 WO2021044718A1 (en) 2019-09-03 2020-07-02 Vapor deposition mask

Country Status (3)

Country Link
JP (1) JP2021038436A (en)
CN (1) CN114269962A (en)
WO (1) WO2021044718A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237071A (en) * 2000-02-24 2001-08-31 Tohoku Pioneer Corp Metal mask and manufacturing method of the same
JP2009301789A (en) * 2008-06-11 2009-12-24 Hitachi Displays Ltd Method of manufacturing organic electroluminescent display device
JP2015151579A (en) * 2014-02-14 2015-08-24 大日本印刷株式会社 Method for manufacturing vapor deposition mask device, vapor deposition mask with substrate, and laminate
JP2018095958A (en) * 2016-12-14 2018-06-21 大日本印刷株式会社 Vapor deposition mask device, and production method for vapor deposition mask device
CN208898975U (en) * 2018-08-22 2019-05-24 鋆洤科技股份有限公司 Fine metal mask
JP2019094528A (en) * 2017-11-21 2019-06-20 株式会社ジャパンディスプレイ Vapor deposition mask, production method of vapor deposition mask, and production method of display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042147A (en) * 2003-07-25 2005-02-17 Dainippon Screen Mfg Co Ltd Method of producing mask for vapor deposition, and mask for vapor deposition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237071A (en) * 2000-02-24 2001-08-31 Tohoku Pioneer Corp Metal mask and manufacturing method of the same
JP2009301789A (en) * 2008-06-11 2009-12-24 Hitachi Displays Ltd Method of manufacturing organic electroluminescent display device
JP2015151579A (en) * 2014-02-14 2015-08-24 大日本印刷株式会社 Method for manufacturing vapor deposition mask device, vapor deposition mask with substrate, and laminate
JP2018095958A (en) * 2016-12-14 2018-06-21 大日本印刷株式会社 Vapor deposition mask device, and production method for vapor deposition mask device
JP2019094528A (en) * 2017-11-21 2019-06-20 株式会社ジャパンディスプレイ Vapor deposition mask, production method of vapor deposition mask, and production method of display device
CN208898975U (en) * 2018-08-22 2019-05-24 鋆洤科技股份有限公司 Fine metal mask

Also Published As

Publication number Publication date
CN114269962A (en) 2022-04-01
JP2021038436A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US11233199B2 (en) Vapor deposition mask manufacturing method, vapor deposition mask, and organic semiconductor element manufacturing method
WO2011068111A1 (en) Donor substrate, patterning method, and method for producing device
KR101880371B1 (en) Method of manufacturing shadow mask, and method of manufacturing display device
JP6671572B1 (en) Evaporation mask, method of manufacturing evaporation mask, and method of manufacturing organic semiconductor element
JP6869253B2 (en) Mask patterns, masks, and mask manufacturing methods
WO2021044718A1 (en) Vapor deposition mask
US20210074919A1 (en) Vapor deposition mask and method for manufacturing vapor deposition mask
TW201739939A (en) A shadow mask with tapered openings formed by double electroforming using positive/negative photoresists
CN113330134B (en) Vapor deposition mask and method for manufacturing vapor deposition mask
WO2021182072A1 (en) Method for creating metal deposition mask unit
CN114381686A (en) Vapor deposition mask unit and method for manufacturing same
JP2020158826A (en) Vapor deposition mask
JPH09209127A (en) Vacuum vapor deposition apparatus and production of organic electroluminescence element by using this vacuum vapor deposition apparatus
WO2012133203A1 (en) Method for forming vapor deposition film pattern, and method for manufacturing organic electroluminescent display device
US20210214834A1 (en) Shadow mask with tapered openings formed by double electroforming with reduced internal stresses
KR20210067887A (en) Deposition mask and method for manufacturing the same
JP7149196B2 (en) Evaporation mask
JP2007100132A (en) Vapor deposition method, and method for manufacturing display device
JP2020109208A (en) Vapor deposition mask, and vapor deposition mask manufacturing method
WO2020158236A1 (en) Deposition mask and method for manufacturing deposition mask
KR20230079696A (en) Fine metal mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860863

Country of ref document: EP

Kind code of ref document: A1