WO2021044694A1 - Polishing device, polishing method and substrate processing device - Google Patents

Polishing device, polishing method and substrate processing device Download PDF

Info

Publication number
WO2021044694A1
WO2021044694A1 PCT/JP2020/023328 JP2020023328W WO2021044694A1 WO 2021044694 A1 WO2021044694 A1 WO 2021044694A1 JP 2020023328 W JP2020023328 W JP 2020023328W WO 2021044694 A1 WO2021044694 A1 WO 2021044694A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
substrate
device surface
wafer
cleaning
Prior art date
Application number
PCT/JP2020/023328
Other languages
French (fr)
Japanese (ja)
Inventor
正行 中西
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2021044694A1 publication Critical patent/WO2021044694A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/06Dust extraction equipment on grinding or polishing machines
    • B24B55/08Dust extraction equipment on grinding or polishing machines specially designed for belt grinding machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing apparatus and a polishing method for polishing the back surface of a substrate such as a wafer. Furthermore, the present invention relates to a substrate processing apparatus provided with a polishing apparatus.
  • Foreign substances such as fine particles and dust as described above may also adhere to the back surface (non-device surface) of the substrate.
  • the substrate is separated from the stage reference plane of the exposure apparatus, or the surface of the substrate (device surface) is tilted with respect to the stage reference plane, resulting in patterning deviation and focal length. Will occur.
  • it is necessary to remove the foreign matter adhering to the back surface of the substrate.
  • the back surface of the substrate on which the device is not formed or the device is not planned to be formed is defined as the "non-device surface", and the device is formed or the device is planned to be formed.
  • the surface of the substrate is defined as the "device surface”.
  • the entire non-device surface of the substrate is efficiently polished with the non-device surface of the substrate facing downward. Therefore, since it is not necessary to invert the substrate in order to polish the non-device surface of the substrate, it is possible to prevent impurities in the air from adhering to the substrate and reduce the processing time of the entire polishing apparatus. Further, such a polishing device is provided in, for example, a substrate processing device capable of performing a series of steps of polishing, cleaning, and drying the non-device surface of the substrate. In this case, since a reversing machine for reversing the substrate is not required, the configuration of the substrate processing device can be simplified and the cost can be reduced.
  • the polishing apparatus described in Patent Document 1 has a protective liquid supply nozzle that supplies a protective liquid (for example, pure water) to the device surface during polishing of the non-device surface of the substrate.
  • a protective liquid for example, pure water
  • the device surface of the substrate is not contaminated as much as possible during polishing of the non-device surface, that is, foreign matter can be formed on the device surface of the substrate. It is important not to adhere as much as possible. Further, if a large amount of foreign matter adheres to the device surface during polishing of the substrate, it becomes necessary to clean the substrate for a relatively long time in order to remove the foreign matter. For example, the cleaning unit of the substrate processing apparatus needs to clean the device surface of the substrate after polishing for a relatively long time, and as a result, the throughput of the substrate processing apparatus may decrease. Therefore, in order to reduce the burden of the substrate cleaning process performed after the substrate polishing process and improve the throughput of the substrate processing device, as much foreign matter as possible on the device surface during polishing of the non-device surface of the substrate It is important not to adhere.
  • the present invention prevents the device surface of the substrate from being contaminated by foreign matter while holding the substrate with its device surface facing up and polishing the non-device surface of the substrate. It is an object of the present invention to provide a polishing apparatus capable of capable of polishing, and a polishing method. Another object of the present invention is to provide a substrate processing apparatus having such a polishing apparatus.
  • the substrate is held with its device surface facing up, and the substrate holding portion for rotating the substrate is brought into contact with the non-device surface of the substrate to polish the non-device surface of the substrate.
  • a polishing apparatus comprising a polishing tool and a non-contact cleaning mechanism for cleaning the device surface of the substrate while polishing the non-device surface of the substrate with the polishing tool.
  • the non-contact cleaning mechanism comprises a cleaning fluid nozzle that ejects a cleaning fluid toward the device surface of the substrate and a nozzle moving mechanism that moves the cleaning fluid nozzle above the device surface of the substrate.
  • the cleaning fluid nozzle is a two-fluid jet nozzle that ejects a two-fluid jet toward the device surface of the substrate.
  • the non-contact cleaning mechanism further comprises an ozone generator, the cleaning fluid nozzle ejecting ozone water, or ozone microbubble water, toward the device surface of the substrate.
  • the non-contact cleaning mechanism further comprises an electrolyzed water generator, the cleaning fluid nozzle ejecting electrolyzed water toward the device surface of the substrate. In one aspect, the cleaning fluid nozzle ejects megasonic water or chemicals towards the device surface of the substrate. In one aspect, the polishing apparatus further comprises a protective liquid supply nozzle that supplies the protective liquid to the device surface of the substrate.
  • the substrate is held with its device surface facing up, the substrate is rotated, and a polishing tool is pressed against the non-device surface of the rotating substrate to polish the non-device surface.
  • a polishing method is provided, which comprises cleaning the device surface of the substrate with a non-contact cleaning mechanism while polishing the non-device surface of the substrate.
  • cleaning of the device surface of the substrate is performed by injecting cleaning fluid from the cleaning fluid nozzle onto the device surface of the substrate while moving the cleaning fluid nozzle above the device surface of the substrate.
  • the cleaning fluid nozzle ejects a two-fluid jet towards the device surface of the substrate.
  • the cleaning fluid nozzle injects ozone water or ozone microbubble water toward the device surface of the substrate.
  • the cleaning fluid nozzle ejects electrolyzed water toward the device surface of the substrate. In one aspect, the cleaning fluid nozzle ejects megasonic water or chemicals towards the device surface of the substrate. In one aspect, the protective liquid is further supplied to the device surface of the substrate while polishing the non-device surface of the substrate.
  • the substrate processing apparatus includes the polishing apparatus, a cleaning unit for cleaning the substrate polished by the polishing apparatus, and a drying unit for drying the substrate cleaned by the cleaning unit. Is provided. In one aspect, the cleaning unit cleans only the non-device surface of the substrate.
  • the device surface of the substrate is positively cleaned by the non-contact cleaning mechanism while the polishing tool is polishing the non-device surface of the substrate. Therefore, it is possible to effectively prevent the device surface of the substrate from being contaminated by foreign matter, and as a result, the reliability of the device is improved. Further, even after polishing the non-device surface of the substrate, almost no foreign matter adheres to the device surface of the substrate, so that the burden of the substrate cleaning process performed after the substrate polishing process can be reduced. , The time required for the cleaning process can be shortened.
  • FIG. 1 is a schematic view showing an embodiment of a polishing apparatus.
  • FIG. 2 is a schematic view showing details of the substrate holding portion.
  • FIG. 3 is a plan view showing the roller rotation mechanism shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 5 is a schematic view showing an enlarged example of the upper part of the roller.
  • FIG. 6 is a plan view showing an example of the arrangement of the polishing heads.
  • FIG. 7 is a view seen from the direction indicated by the arrow B in FIG.
  • FIG. 8 is a schematic view showing an example of a non-contact cleaning mechanism.
  • FIG. 9 is a schematic view showing how the cleaning fluid nozzle moves above the wafer.
  • FIG. 9 is a schematic view showing how the cleaning fluid nozzle moves above the wafer.
  • FIG. 10A is a graph showing an example of the supply timing of the cleaning fluid.
  • FIG. 10B is a graph showing an example of the supply timing of the cleaning fluid.
  • FIG. 10C is a graph showing an example of the supply timing of the cleaning fluid.
  • FIG. 11 is a plan view schematically showing an embodiment of a substrate processing apparatus provided with a polishing apparatus.
  • FIG. 1 is a schematic view showing an embodiment of a polishing apparatus.
  • the polishing apparatus shown in FIG. 1 holds a wafer W, which is an example of a substrate, and holds a substrate holding portion 10 which rotates around the axis thereof and a polishing tape 31 which is an example of a polishing tool, in the substrate holding portion 10.
  • a polishing head 50 that contacts the first surface 1 of the wafer W to polish the first surface 1 of the wafer W, a polishing tape supply mechanism 41 that supplies the polishing tape 31 to the polishing head 50, and a polishing head 50.
  • It also includes a translational rotation movement mechanism 60 that causes the polishing tape supply mechanism 41 to perform translational rotation movement.
  • the substrate holding portion 10 includes a plurality of rollers 11 capable of contacting the peripheral edge portion of the wafer W.
  • the polishing head 50 is arranged below the wafer W held by the substrate holding portion 10.
  • the translational rotation movement mechanism 60 is arranged below the polishing head 50 and the polishing tape supply mechanism 41, and the polishing head 50 and the polishing tape supply mechanism 41 are connected to the translational rotation movement mechanism 60. In FIG. 1, a part of the substrate holding portion 10 is not shown.
  • the first surface 1 of the wafer W is the back surface of the wafer W on which the device is not formed or the device is not planned to be formed, that is, the non-device surface.
  • the second surface 2 of the wafer W opposite to the first surface 1 is the surface on which the device is formed or is to be formed, that is, the device surface.
  • the first surface 1 of the wafer W will be referred to as a “non-device surface 1”
  • the second surface 2 of the wafer W will be referred to as a “device surface 2”.
  • the wafer W is horizontally held by the substrate holding portion 10 with its non-device surface 1 facing downward.
  • FIG. 2 is a schematic view showing the details of the substrate holding portion 10
  • FIG. 3 is a plan view showing the roller rotation mechanism 12 shown in FIG.
  • the substrate holding portion 10 includes a plurality of rollers 11 that can come into contact with the peripheral edge portion of the wafer W, and a roller rotation mechanism 12 that rotates these rollers 11 around their respective axes.
  • four rollers 11 are provided.
  • Five or more rollers 11 may be provided.
  • the plurality of rollers 11 when in contact with the peripheral edge portion of the wafer W (that is, when holding the wafer W) are at the same distance from the axial center CP of the substrate holding portion 10.
  • the roller rotation mechanism 12 includes a first belt 14A connecting two of the four rollers 11 and a first motor 15A connected to one of the two rollers 11 connected by the first belt 14A.
  • a first motor support 25A that supports the first motor 15A, a first roller base 16A that rotatably supports two rollers 11 connected by a first belt 14A, and the other two of the four rollers 11.
  • a second belt 14B connecting the two, a second motor 15B connected to one of the two rollers 11 connected by the second belt 14B, and a second motor support 25B supporting the second motor 15B.
  • a second roller base 16B that rotatably supports two rollers 11 connected by a second belt 14B via a bearing 24B is provided.
  • the first roller stand 16A includes an upper first roller stand 17A and a lower first roller stand 17B.
  • the first motor 15A and the first belt 14A are arranged below the first roller stand 16A, and the second motor 15B and the second belt 14B are arranged below the second roller stand 16B.
  • the first motor 15A is fixed to the first roller stand 16A via the first motor support 25A.
  • the second motor 15B is fixed to the lower surface of the second roller stand 16B via the second motor support 25B.
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • the first roller base 16A and the lower first roller base 17B that rotatably support the two rollers 11 connected by the first belt 14A via the bearing 24A (see FIG. 2).
  • a pivot shaft 17C fixed to the lower first roller base 17B and an upper first roller base 17A that rotatably supports the pivot shaft 17C via a bearing 24C are provided.
  • the upper first roller stand 17A and the lower first roller stand 17B are connected to each other via a pivot shaft 17C.
  • the pivot shaft 17C is located between the two rollers 11 connected by the first belt 14A.
  • the first motor 15A is fixed to the lower surface of the lower first roller stand 17B via the first motor support 25A. Therefore, the first belt 14A, the two rollers 11 connected by the first belt 14A, the lower first roller base 17B, the first motor 15A, and the first motor support 25A are integrally centered on the pivot shaft 17C. It is rotatable.
  • the roller rotation mechanism 12 is configured to rotate the four rollers 11 in the same direction and at the same speed.
  • the peripheral edge of the wafer W is gripped by the roller 11.
  • the wafer W is held horizontally, and the rotation of the roller 11 causes the wafer W to rotate about its axis.
  • the four rollers 11 rotate around their respective axes, but the positions of the rollers 11 themselves are stationary.
  • Pulleys 22 are fixed to the lower parts of the four rollers 11.
  • the first belt 14A is hung on a pulley 22 fixed to two of the four rollers 11, and the second belt 14B is hung on a pulley 22 fixed to the other two rollers 11.
  • the first motor 15A and the second motor 15B are configured to rotate at the same speed and in the same direction. Therefore, the four rollers 11 can rotate in the same direction at the same speed.
  • the roller rotation mechanism 12 further includes a first actuator 18A connected to the upper first roller stand 17A of the first roller stand 16A and a second actuator 18B connected to the second roller stand 16B.
  • the first actuator 18A moves the two rollers 11 supported by the first roller stand 16A in the horizontal direction as shown by arrows.
  • the second actuator 18B moves the other two rollers 11 supported by the second roller stand 16B in the horizontal direction as indicated by the arrows. That is, the first actuator 18A and the second actuator 18B are configured to move two sets of rollers 11 (each set includes two rollers 11 in this embodiment) in a direction toward and away from each other. ..
  • the first actuator 18A and the second actuator 18B can be composed of an air cylinder, a motor-driven actuator, or the like. In the embodiment shown in FIGS. 2 and 3, the first actuator 18A and the second actuator 18B are composed of an air cylinder. The first actuator 18A and the second actuator 18B are fixed to the lower surface of the base plate 23.
  • the roller 11 penetrates the base plate 23 and extends upward.
  • a first linear motion guide 26A and a second linear motion guide 26B are fixed to the lower surface of the base plate 23.
  • the movable portion of the first linear motion guide 26A is connected to the upper first roller stand 17A, and the movable portion of the second linear motion guide 26B is connected to the second roller stand 16B.
  • the two linear motion guides 26A and 26B limit the movement of the roller 11 to a linear motion in the horizontal direction.
  • the wafer W is held by the four rollers 11. Since two of the four rollers 11 are rotatable around the pivot shaft 17C, the positions of the two rollers 11 are automatically adjusted when the four rollers 11 hold the wafer W. .. When the two sets of rollers 11 move away from each other, the wafer W is released from the four rollers 11.
  • four rollers 11 arranged around the axis CP of the substrate holding portion 10 are provided, but the number of rollers 11 is not limited to four.
  • three rollers 11 may be arranged around the axis CP at equal intervals of 120 degrees, and one actuator may be provided for each roller 11.
  • the three rollers 11 are arranged around the axis CP at equal intervals of 120 degrees, two of the three rollers 11 are connected by the first belt 14A, and the first belt 14A.
  • One actuator may be provided for each of the two rollers 11 that are connected and the roller 11 that is not connected by the first belt 14A.
  • FIG. 5 is an enlarged schematic view showing an example of the upper part of the roller 11.
  • the roller 11 has a cylindrical substrate holding surface 11a that can come into contact with the peripheral edge of the wafer W, and a tapered surface 11b that is connected to the substrate holding surface 11a and is inclined downward from the substrate holding surface 11a.
  • the tapered surface 11b has a truncated cone shape and has a diameter larger than that of the substrate holding surface 11a.
  • the wafer W is first placed on the tapered surface 11b by a transfer device (not shown), and then the peripheral edge portion of the wafer W is held on the substrate holding surface 11a by moving the roller 11 toward the wafer W.
  • a transfer device (not shown) can take out the wafer W on the tapered surface 11b.
  • a rinse liquid supply nozzle 27 that supplies a rinse liquid (for example, pure water or an alkaline chemical liquid) to the non-device surface 1 of the wafer W. Is placed.
  • the rinse liquid supply nozzle 27 is connected to a rinse liquid supply source (not shown).
  • the rinse liquid supply nozzle 27 is arranged so as to face the center O1 of the non-device surface 1 of the wafer W.
  • the rinse liquid is supplied from the rinse liquid supply nozzle 27 to the non-device surface 1 of the wafer W, and the rinse liquid spreads on the non-device surface 1 of the wafer W by centrifugal force.
  • the rinsing liquid flows outward in the radial direction on the non-device surface 1 of the wafer W, whereby polishing debris can be removed from the non-device surface 1 of the wafer W.
  • a protective liquid supply nozzle 28 that supplies a protective liquid (for example, pure water) to the device surface 2 of the wafer W is arranged above the wafer W held by the substrate holding portion 10.
  • the protective liquid supply nozzle 28 is connected to a protective liquid supply source (not shown).
  • the protective liquid supply nozzle 28 is arranged so as to face the center of the device surface 2 of the wafer W.
  • the protective liquid is supplied from the protective liquid supply nozzle 28 to the center of the device surface 2 of the wafer W, and the protective liquid spreads on the device surface 2 of the wafer W by centrifugal force.
  • the protective liquid prevents the rinsing liquid containing polishing debris and foreign matter generated by polishing the wafer W from wrapping around the device surface 2 of the wafer W and adhering to the device surface 2 of the wafer W. As a result, the device surface 2 of the wafer W can be kept clean.
  • the cleaning fluid is injected onto the device surface 2 of the wafer W from the cleaning fluid nozzle 33 of the non-contact cleaning mechanism 30. Therefore, the protective liquid supply nozzle 28 may be omitted depending on the polishing recipe for the non-device surface 1, particularly the rotation speed of the wafer W.
  • the translational rotary motion mechanism 60 includes a motor 62, a crankshaft 70 fixed to the motor 62, a table 69, a base 71, and a plurality of eccentric joints 65.
  • the motor 62 is arranged below the base 71 and is fixed to the lower surface of the base 71.
  • the crankshaft 70 penetrates the base 71 and extends upward.
  • the table 69 is connected to the base 71 via a plurality of eccentric joints 65 and a crankshaft 70.
  • the table 69 is connected to a plurality of eccentric joints 65 via a plurality of bearings 67, and is further connected to a crankshaft 70 via a bearing 68.
  • the base 71 is connected to a plurality of eccentric joints 65 via a plurality of bearings 75.
  • the tip of the crankshaft 70 is eccentric by a distance e from the axis of the motor 62. Therefore, when the motor 62 is operated, the table 69 makes a circular motion with a radius e.
  • circular motion is defined as the motion of an object moving in a circular orbit. Since the table 69 is supported by a plurality of eccentric joints 65, the table 69 itself does not rotate when the table 69 is in a circular motion.
  • the eccentricity of the plurality of eccentric joints 65 is the same as the eccentricity of the table 69.
  • Such a motion of the table 69 is also called a translational rotational motion.
  • the motion of the object moving in a circular orbit without rotating the object itself is defined as a translational rotational motion.
  • the polishing head 50 and the polishing tape supply mechanism 41 are fixed to the table 69. Therefore, when the translational rotation movement mechanism 60 is activated, the polishing head 50 and the polishing tape supply mechanism 41 integrally (synchronously) perform translational rotation movement.
  • a polishing tape 31 having abrasive grains on its surface is used as a polishing tool for polishing the non-device surface 1 of the substrate.
  • An example of the polishing tape 31 is a polishing tape having a base material tape and a polishing layer covering the surface of the base material tape.
  • the polishing layer has, for example, abrasive grains and a binder (resin) for holding the abrasive grains.
  • Another example of the polishing tape 31 is a polishing tape having a base material tape, a polishing layer, and an elastic layer located between them.
  • the elastic layer is composed of, for example, a non-woven fabric made of polypropylene, polyurethane, polyester, or nylon, or an elastic material such as silicone rubber.
  • the polishing head 50 is arranged below the substrate holding surface 11a and is arranged upward.
  • the polishing head 50 includes a polishing blade 55 that presses the polishing tape 31 against the non-device surface 1 of the wafer W, a pressurizing mechanism 52 that pushes up the polishing blade 55 upward, and a support member 79 that supports the pressurizing mechanism 52.
  • the support member 79 is fixed to the table 69 of the translational rotation movement mechanism 60, and the entire polishing head 50 can perform the translational rotation movement integrally with the table 69.
  • the support member 79 has a through hole (not shown), and the polishing tape 31 extends through the through hole.
  • the polishing tape supply mechanism 41 includes a tape unwinding reel 43 for supplying the polishing tape 31 and a tape winding reel 44 for collecting the polishing tape 31.
  • the tape winding reel 43 and the tape winding reel 44 are connected to tension motors 43a and 44a, respectively. These tension motors 43a and 44a are fixed to the reel base 42, and by applying a predetermined torque to the tape winding reel 43 and the tape winding reel 44, a predetermined tension can be applied to the polishing tape 31.
  • the reel base 42 is fixed to the table 69 of the translational rotation movement mechanism 60, and the entire polishing tape supply mechanism 41 can perform the translational rotation movement integrally with the table 69.
  • a tape feeding device 46 for feeding the polishing tape 31 in the longitudinal direction is provided between the tape winding reel 43 and the tape winding reel 44.
  • the tape feed device 46 includes a tape feed roller 48 that feeds the polishing tape 31, a nip roller 49 that presses the polishing tape 31 against the tape feed roller 48, and a tape feed motor 47 that rotates the tape feed roller 48. There is.
  • the polishing tape 31 is sandwiched between the nip roller 49 and the tape feed roller 48.
  • the tape feed motor 47 rotates the tape feed roller 48 in the direction indicated by the arrow in FIG. 1, the polishing tape 31 is fed from the tape unwinding reel 43 to the tape winding reel 44 via the polishing blade 55.
  • the speed at which the polishing tape 31 is fed can be changed by changing the rotation speed of the tape feed motor 47.
  • the direction in which the polishing tape 31 is fed may be opposite to the direction indicated by the arrow in FIG. 1 (the arrangement of the tape unwinding reel 43 and the tape winding reel 44 may be interchanged).
  • the tape feeding device 46 is installed on the tape winding reel 44 side.
  • the polishing tape 31 is supplied to the upper surface of the polishing blade 55 so that the polishing surface 31a of the polishing tape 31 faces the non-device surface 1 of the wafer W.
  • the polishing surface 31a of the polishing tape 31 is defined as a surface located above the polishing blade 55 and pressed against the non-device surface 1 of the wafer W.
  • the polishing device further includes a plurality of guide rollers 53a, 53b, 53c, 53d that support the polishing tape 31.
  • the polishing tape 31 is guided by these guide rollers 53a, 53b, 53c, 53d so as to surround the polishing blade 55 and the pressurizing mechanism 52.
  • the polishing head 50 polishes the non-device surface 1 of the wafer W by pressing the polishing tape 31 from the back side of the polishing tape 31 against the non-device surface 1 of the wafer W by the polishing blade 55.
  • the guide rollers 53b and 53c arranged on the upper part of the polishing head 50 guide the polishing tape 31 so that the polishing tape 31 advances in the direction parallel to the non-device surface 1 of the wafer W.
  • the tape feeding device 46 and the guide rollers 53a, 53b, 53c, 53d are fixed to a holding member (not shown), and the holding member is fixed to the table 69 of the translational rotary motion mechanism 60. Therefore, when the translational rotation movement mechanism 60 operates, the polishing head 50, the polishing tape supply mechanism 41, the tape feeding device 46, and the guide rollers 53a, 53b, 53c, 53d integrally (that is, synchronously) perform translational rotation movement. Do.
  • FIG. 6 is a plan view showing an example of the arrangement of the polishing head 50
  • FIG. 7 is a view seen from the direction indicated by the arrow B in FIG.
  • the polishing head 50 is arranged so that a part of the polishing blade 55 protrudes outward from the peripheral edge portion of the wafer W. That is, the distance d1 from the axial center CP of the substrate holding portion 10 to the outermost end of the polishing blade 55 is from the axial center CP when the roller 11 holds the wafer W to the substrate holding surface 11a of each roller 11. Longer than the distance d2.
  • the polishing blade 55 is longer than the radius of the wafer W, and the upper edge of the polishing blade 55 has a rounded cross-sectional shape. More specifically, one end of the polishing blade 55 protrudes outward from the peripheral edge of the wafer W, and the other end exceeds the center O1 of the non-device surface 1 of the wafer W (that is, the axial CP of the substrate holding portion 10). Is extending. As a result, the polishing blade 55 can bring the polishing tape 31 into contact with the non-device surface 1 of the wafer W from the center O1 to the outermost side.
  • the polishing blade 55 can be made of a resin material such as PEEK (polyetheretherketone). In one embodiment, the polishing blade 55 may be longer than the diameter of the wafer W.
  • the wafer W is rotated by the roller 11. All the rollers 11 rotate around their respective axes, but the positions of these rollers 11 are fixed. Therefore, even if a part of the polishing blade 55 protrudes from the peripheral edge of the wafer W, the roller 11 does not come into contact with the polishing blade 55.
  • the polishing head 50 including the polishing blade 55 is moved in translational rotation by the translational rotation movement mechanism 60.
  • the polishing head 50 makes a relative movement with respect to the wafer W, and the polishing tape 31 and the wafer W at the contact point between the polishing tape 31 and the non-device surface 1 of the wafer W (hereinafter referred to as the polishing point). Secure the relative speed with.
  • the translational rotary motion mechanism 60 can increase the relative speed between the wafer W and the polishing tape 31 at the center of the wafer W.
  • the polishing head 50 is arranged at a position where it does not come into contact with the roller 11 during the translational rotational movement. As a result, the polishing tape 31 can polish the entire non-device surface 1 of the wafer W including the outermost one.
  • the polishing blade 55 extends obliquely with respect to the traveling direction (indicated by the arrow C) of the polishing tape 31.
  • the traveling direction C of the polishing tape 31 coincides with the longitudinal direction of the polishing tape 31.
  • the polishing blade 55 extends over the entire width of the polishing tape 31 as long as it does not protrude from the polishing tape 31.
  • the polishing blade 55 is provided on the surface of the holding pad 56 and projects upward.
  • the holding pad 56 is fixed to the surface of the back plate 57.
  • the pressurizing mechanism 52 is arranged below the back plate 57 and is connected to the lower surface of the back plate 57.
  • the pressurizing mechanism 52 is configured to be able to integrally raise and lower the polishing blade 55, the holding pad 56, and the back plate 57.
  • the pressurizing mechanism 52 pushes up the polishing blade 55, the holding pad 56, and the back plate 57, and presses the polishing tape 31 against the non-device surface 1 of the wafer W at the upper edge of the polishing blade 55. Can be polished.
  • the polishing blade 55 has a cross-sectional shape with a rounded upper edge, the contact resistance between the polishing tape 31 and the polishing blade 55 can be reduced.
  • the pressurizing mechanism 52 lowers the polishing blade 55, the holding pad 56, and the back plate 57 to separate the polishing tape 31 from the non-device surface 1 of the wafer W.
  • the pressurizing mechanism 52 is composed of an air cylinder.
  • the pressurizing mechanism 52 composed of an air cylinder includes a piston rod 52a connected to the back plate 57, a first pressure chamber 52b that pushes down the piston rod 52a by supplying gas, and a piston rod by supplying gas. It is provided with a second pressure chamber 52c that pushes up 52a.
  • the pressure of the gas supplied to the first pressure chamber 52b and the second pressure chamber 52c is controlled by a pressure regulator (not shown).
  • An example of a pressure regulator is an electropneumatic regulator. A constant pressing force on the polishing tape 31 can be obtained by the pressure regulator.
  • the polishing tool may be fixed abrasive grains such as a grindstone instead of the polishing tape 31.
  • the fixed abrasive grains may be fixed to the surface of the back plate 57 or may be fixed to the surface of the polishing blade 55.
  • the polishing head 50 can polish the non-device surface 1 of the wafer W by bringing the fixed abrasive grains into contact with the non-device surface 1 of the wafer W.
  • the fixed abrasive grains may be annularly fixed to the surface of the back plate 57.
  • the polishing head 50 includes a rotation mechanism (not shown), the rotation mechanism is connected to the back plate 57, and the fixed abrasive grains and the back plate 57 are configured to be rotatable by the rotation mechanism.
  • the polishing head 50 can polish the non-device surface 1 of the wafer W by bringing the fixed abrasive grains into contact with the non-device surface 1 of the wafer W while rotating them.
  • the configuration of the polishing head 50 is also arbitrary and is not limited to the above-described embodiment.
  • the pressurizing mechanism 52 of the polishing head 50 may be an airbag capable of moving the polishing blade 55 up and down.
  • gas for example, air
  • the airbag expands and the polishing blade 55 can be pressed against the non-device surface 1 of the wafer W.
  • the polishing blade 55 separates from the non-device surface 1.
  • the polishing head 50 may have a plurality of polishing blades and a plurality of pressurizing mechanisms for pressing a polishing tool (for example, a polishing tape) against the non-device surface 1 of the wafer W via each polishing blade.
  • the plurality of polishing blades may be arranged side by side in a straight line, or may be arranged apart from each other in the circumferential direction of the wafer W.
  • one end of the polishing blades arranged on the peripheral edge of the wafer W protrudes outward from the peripheral edge of the wafer W, and a part of the polishing blades arranged in the center of the wafer W is the wafer W. Is arranged so as to overlap the center O1 of the first surface 1 of the wafer W during one rotation.
  • the configuration of the substrate holding portion 10 is also arbitrary.
  • the substrate holding portion 10 may be composed of a combination of a first holding portion that holds the peripheral portion of the substrate and a second holding portion that holds the central portion of the substrate.
  • the polishing of the wafer W is carried out by a first polishing step of polishing the central portion of the wafer W whose peripheral portion is held by the first holding portion with a first polishing tool and a first polishing step in which the central portion is held by the second holding portion. It is performed by combining the two polishing steps of the second polishing step of polishing the peripheral edge portion of the wafer W with the second polishing tool.
  • the second polishing tool may be the same polishing tool as the first polishing tool, or may be a different polishing tool. Further, the second polishing step may be performed after the first polishing step, or the first polishing step may be performed after the second polishing step.
  • the polishing apparatus shown in FIG. 1 includes a non-contact cleaning mechanism 30 that cleans the device surface 2 during polishing of the non-device surface 1 of the wafer (substrate) W.
  • the non-contact cleaning mechanism 30 is a cleaning mechanism that does not have a cleaning member (for example, a cleaning brush or a cleaning sponge) that directly contacts the device surface 2 of the wafer W.
  • FIG. 8 is a schematic view showing an example of a non-contact cleaning mechanism.
  • the non-contact cleaning mechanism 30 moves the cleaning fluid nozzle 33 for injecting the cleaning fluid onto the device surface 2 of the wafer W and the cleaning fluid nozzle 33 above the wafer W.
  • a nozzle moving mechanism 32 is provided.
  • the nozzle moving mechanism 32 includes a nozzle arm 34 that supports the cleaning fluid nozzle 33, a nozzle swivel shaft 35 that swivels the nozzle arm 34, and a motor (drive source) 36 that swivels the nozzle swivel shaft 35.
  • the motor 36 is electrically connected to the motion control unit 180, and rotates the nozzle swivel shaft 35 around the axis thereof based on a command from the motion control unit 180.
  • the cleaning fluid nozzle 33 is connected to one end of the nozzle arm 34 and has a tip pointed downward.
  • the non-contact cleaning mechanism 30 has a cleaning fluid supply device 40, and the cleaning fluid is supplied to the cleaning fluid nozzle 33 via a cleaning fluid line 37 extending from the cleaning fluid supply device 40.
  • the cleaning fluid nozzle 33 is configured to inject a cleaning fluid from the tip thereof onto the device surface 2 of the wafer W to clean the device surface 2.
  • a nozzle swivel shaft 35 is connected to the other end of the nozzle arm 34, and when the nozzle swivel shaft 35 is rotated by the operation of the motor 36, the cleaning fluid nozzle 33 moves above the device surface 2 of the wafer W. Move horizontally.
  • FIG. 9 is a schematic view showing how the cleaning fluid nozzle 33 moves above the wafer W.
  • the cleaning fluid nozzle 33 is horizontally moved above the wafer W from the substantially central portion to the peripheral portion of the device surface 2 by the nozzle moving mechanism 32.
  • the cleaning fluid nozzle 33 is located at the center of the device surface 2 of the wafer W, the cleaning fluid ejected from the cleaning fluid nozzle 33 collides with a region including at least the center O2 of the device surface 2.
  • the cleaning fluid nozzle 33 that injects the cleaning fluid may be reciprocated once or more between the substantially central portion and the peripheral portion of the device surface 2.
  • the nozzle moving mechanism 32 may be configured by an air cylinder mechanism that moves the cleaning fluid nozzle 33 forward and backward in the radial direction of the wafer W.
  • the nozzle moving mechanism 32 may be configured by a ball screw mechanism that moves the cleaning fluid nozzle 33 forward and backward in the radial direction of the wafer W.
  • the cleaning fluid supply device 40 is a device for supplying a predetermined cleaning fluid to the device 2 of the wafer W at a predetermined timing.
  • the cleaning fluid supply device 40 may be arranged inside the polishing device or may be arranged outside the polishing device.
  • the cleaning fluid supply device 40 is electrically connected to the operation control unit 180, and the operation of the cleaning fluid supply device 40 is controlled by the operation control unit 180.
  • the operation control unit 180 controls a flow rate regulator (not shown) such as a mass flow controller built in the cleaning fluid supply device 40 to supply the cleaning fluid from the cleaning fluid supply device 40 to the cleaning fluid nozzle 33. Controls the flow rate and supply timing of.
  • a flow rate regulator 38 such as a mass flow controller may be arranged on the cleaning fluid line 37.
  • FIGS. 10A to 10C are graphs showing an example of the supply timing of the cleaning fluid, respectively.
  • the vertical axis represents the operating state of the polishing head and the operating state of the non-contact cleaning mechanism 30, and the horizontal axis represents time.
  • the polishing tape (polishing tool) 31 is pressed against the non-device surface 1 of the wafer (substrate) W, and polishing of the non-device surface 1 is started.
  • the polishing tape 31 is separated from the non-device surface 1 of the wafer W, and polishing of the non-device surface 1 is stopped.
  • the cleaning fluid is ejected from the cleaning fluid nozzle 33 onto the device surface 2 of the wafer W, and cleaning of the device surface 2 is started.
  • the operating state of the non-contact cleaning mechanism 30 is turned off, the injection of the cleaning fluid from the cleaning fluid nozzle 33 is stopped, and the cleaning of the device surface 2 is stopped.
  • the time point Tc at which the cleaning of the device surface 2 is started is before the time point Ta at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is started. That is, the cleaning of the device surface 2 by the non-contact cleaning mechanism 30 is started before the polishing of the non-device surface 1 of the wafer W by the polishing tape 31.
  • the time point Td at which the cleaning of the device surface 2 is completed is later than the time point Tb at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is completed. That is, the cleaning of the device surface 2 by the non-contact cleaning mechanism 30 is completed after the polishing of the non-device surface 1 of the wafer W by the polishing tape 31 is completed.
  • the time point Tc at which the cleaning of the device surface 2 is started is the same as the time point Ta at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is started. That is, the cleaning of the device surface 2 by the non-contact cleaning mechanism 30 is started at the same time as the polishing of the non-device surface 1 of the wafer W by the polishing tape 31.
  • the time point Td at which the cleaning of the device surface 2 is completed is the same as the time point Tb at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is completed. That is, the cleaning of the device surface 2 by the non-contact cleaning mechanism 30 is completed at the same time as the polishing of the non-device surface 1 of the wafer W by the polishing tape 31 is completed.
  • the time point Tc at which the cleaning of the device surface 2 is started is started after a predetermined time Int has elapsed from the start of polishing the non-device surface 1 of the wafer W by the polishing tape 31.
  • the cleaning of the device surface 2 by the non-contact cleaning mechanism 30 is started after the non-device surface 1 of the wafer W is polished by the polishing tape 31.
  • the running cost of the polishing apparatus can be reduced. Further, in the example shown in FIG.
  • the time point Td at which the cleaning of the device surface 2 is completed is later than the time point Tb at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is completed.
  • the time point Td at which the cleaning of the device surface 2 is completed may be set to be the same as the time point Tb at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is completed. As described above, it is preferable to clean the device surface 2 at least until the time point Tb at which the polishing of the non-device surface 1 of the wafer W by the polishing tape 31 is completed.
  • the cleaning fluid nozzle 33 is a two-fluid jet nozzle that injects a two-fluid jet toward the device surface 2.
  • the two-fluid jet nozzle is a nozzle configured to be able to inject a mixed fluid of gas and liquid supplied from the cleaning fluid supply device 40 at high speed.
  • the cleaning fluid nozzle 33 which is a two-fluid jet nozzle, causes, for example, a minute droplet (mist) placed on a high-speed gas to collide with the device surface 2 of the wafer W, and the shock wave generated by this collision is used to make the device surface 2 The upper foreign matter is removed, that is, the device surface 2 is cleaned.
  • the cleaning fluid injected from the cleaning fluid nozzle 33 onto the device surface 2 of the wafer W is not limited to the two-fluid jet.
  • the cleaning fluid may be ozone water in which ozone gas is dissolved in pure water (or ultrapure water), or ozone in which minute bubbles of ozone gas are contained in pure water (or ultrapure water). It may be micro bubble water (or ozone nano bubble water).
  • the cleaning fluid supply device 40 of the non-contact cleaning mechanism 30 includes an ozone generator 85 that produces ozone gas.
  • the cleaning fluid is ozone water
  • the organic substances and metals adhering to the device surface 2 of the wafer W are dissolved in ozone water by the strong oxidizing action of ozone and removed from the device surface 2.
  • the cleaning fluid is ozone microbubble water (or ozone nanobubble water)
  • foreign substances are decomposed and removed by using a large amount of OH radicals generated when the ozone microbubbles disappear.
  • the cleaning fluid may be electrolyzed water.
  • the cleaning fluid supply device 40 of the non-contact cleaning mechanism 30 has an electrolyzed water generator 86.
  • the electrolyzed water generated by the electrolyzed water generator 86 is supplied to the cleaning fluid nozzle 33, and is injected from the cleaning fluid nozzle 33 onto the device surface 2.
  • the cleaning fluid injected from the cleaning fluid nozzle 33 onto the device surface 2 of the wafer W may be megasonic water excited by ultrasonic vibration or a chemical solution capable of dissolving foreign matter.
  • the cleaning fluid injected from the cleaning fluid nozzle 33 onto the device surface 2 of the wafer W is a cleaning gas capable of reacting with foreign matter on the device surface 2 and removing the foreign matter from the device surface. May be good.
  • the operation of the polishing apparatus described below is controlled by the operation control unit 180 shown in FIG.
  • the operation control unit 180 is electrically connected to a substrate holding unit 10, a non-contact cleaning mechanism 30, a polishing head 50, a polishing tape supply mechanism 41, a tape feeding device 46, a translational rotary motion mechanism 60, and the like. Controls the behavior of components.
  • the operation control unit 180 includes a substrate holding unit 10, a rinse liquid supply nozzle 27, a protective liquid supply nozzle 28, a motor 36, a flow rate regulator 38, a cleaning fluid supply device 40, a polishing head 50, a polishing tape supply mechanism 41, and a tape. It controls the operation of the feeder 46, the translational rotary motion mechanism 60, and the ozone generator 85 (or the electrolyzed water generator 86).
  • the operation control unit 180 is composed of a dedicated computer or a general-purpose computer.
  • the wafer W to be polished is held by the roller 11 of the substrate holding portion 10 with the non-device surface 1 facing downward (that is, the device surface 2 facing upward), and is further rotated about the axis of the wafer W.
  • the plurality of rollers 11 are brought into contact with the peripheral edge portion of the wafer W while the non-device surface 1 of the wafer W is facing downward, and the plurality of rollers 11 are centered on their respective axes.
  • the wafer W is rotated.
  • the rinse liquid is supplied from the rinse liquid supply nozzle 27 to the non-device surface 1 of the wafer W
  • the protective liquid is supplied from the protective liquid supply nozzle 28 to the device surface 2 of the wafer W.
  • the rinsing liquid flows outward in the radial direction on the non-device surface 1 of the wafer W, and the protective liquid spreads over the entire device surface 2 of the wafer W by centrifugal force.
  • cleaning of the device surface 2 of the wafer W by the non-contact cleaning mechanism 30 is started before the polishing of the non-device surface 1 of the wafer W is started. More specifically, the cleaning fluid is supplied to the cleaning fluid nozzle 33 from the cleaning fluid supply device 40 of the non-contact cleaning mechanism 30, and the cleaning fluid is injected from the cleaning fluid nozzle 33 onto the device surface 2 of the wafer W. At the same time, the nozzle moving mechanism 32 of the non-contact cleaning mechanism 30 moves the cleaning fluid nozzle 33 horizontally above the wafer W.
  • cleaning of the device surface 2 of the wafer W by the non-contact cleaning mechanism 30 may be performed at the same time as the start of polishing of the non-device surface 1 of the wafer W.
  • cleaning of the device surface 2 of the wafer W by the non-contact cleaning mechanism 30 starts after a predetermined time Int has elapsed from the start of polishing the non-device surface 1 of the wafer W. You may.
  • an appropriate cleaning fluid is selected according to the foreign matter that may adhere to the device surface 2.
  • the cleaning fluid can be, for example, a two-fluid jet, ozone water, ozone microbubble water, electrolyzed water, megasonic water, and a chemical solution.
  • the cleaning fluid may be a cleaning gas.
  • the operation control unit 180 drives the polishing tape supply mechanism 41 and the tape feeding device 46, and advances the polishing tape 31 in the longitudinal direction at a predetermined speed while applying a predetermined tension.
  • the translational rotation movement mechanism 60 moves the polishing head 50, the polishing tape supply mechanism 41, the guide rollers 53a, 53b, 53c, 53d, and the tape feeding device 46 in translational rotation movement, while the polishing head 50 wafers the polishing tape 31.
  • the non-device surface 1 of the wafer W is polished in the presence of the rinsing liquid by contacting the non-device surface 1 of the W.
  • the pressurizing mechanism 52 pushes up the polishing blade 55 upward, and the polishing blade 55 presses the polishing surface 31a of the polishing tape 31 against the non-device surface 1 of the wafer W, whereby the non-device surface 1 of the wafer W is pressed. Polish the whole of.
  • the polishing apparatus constantly supplies the rinse liquid and the protective liquid to the wafer W during the polishing of the wafer W. Further, the polishing apparatus preferably continues to supply the cleaning fluid to the wafer W during the polishing of the wafer W.
  • the protective liquid is supplied from the protective liquid supply nozzle 28 to the central portion of the device surface 2 of the wafer W. Therefore, even if the cleaning liquid supply nozzle 33 is moved to the vicinity of the peripheral edge portion of the wafer W, the central portion of the wafer W remains covered with the protective liquid. In particular, even if the rotation speed of the wafer W is set high, at least the entire device surface 2 including the central portion of the wafer W can be covered with the protective liquid. As a result, foreign matter is effectively prevented from adhering to the device surface 2 of the wafer W.
  • one end of the polishing blade 55 protrudes outward from the peripheral edge of the wafer W, and the other end extends beyond the center O1 of the non-device surface 1 of the wafer W, so that the polishing blade 55 is polished.
  • the tape 31 can be brought into contact with the non-device surface 1 of the wafer W from the center O1 to the outermost side. Since the position of the roller 11 is stationary during the polishing of the wafer W, the roller 11 does not come into contact with the polishing blade 55. Further, since the polishing head 50 including the polishing blade 55 moves in translational rotation, the relative speed between the polishing tape 31 and the wafer W can be increased even in the central portion of the wafer W. As a result, the polishing tape 31 can polish the entire non-device surface 1 of the wafer W including the outermost surface at a high polishing rate.
  • the pressurizing mechanism 52 lowers the polishing blade 55 and separates the polishing tape 31 from the non-device surface 1 of the wafer W.
  • the operation control unit 180 stops the operation of the components such as the substrate holding unit 10, the non-contact cleaning mechanism 30, the polishing head 50, the polishing tape supply mechanism 41, the tape feeding device 46, and the translational rotary motion mechanism 60. , Finish the polishing process of the wafer W.
  • the motion control unit 180 is after the polishing of the non-device surface 1 of the wafer W is completed (that is, after the polishing tape 31 is separated from the non-device surface 1).
  • the non-contact cleaning mechanism 30 may be stopped, or the non-contact cleaning mechanism 30 may be stopped at the same time as the polishing of the non-device surface 1 of the wafer W is completed.
  • the polishing tape 31 which is an example of a polishing tool for polishing the non-device surface 1 of the wafer (substrate) W
  • the device is polished by the non-contact cleaning mechanism 30.
  • Surface 2 is actively cleaned.
  • the protective liquid supplied from the protective liquid supply nozzle 28 covers the device surface 2 to prevent foreign matter from reaching the device surface 2. Therefore, it is possible to effectively prevent the device surface 2 of the wafer W from being contaminated by foreign matter such as polishing debris, and as a result, the reliability of the device formed on the device surface 2 is improved.
  • a contact-type cleaning method for example, a scrub cleaning method
  • a cleaning member such as a cleaning brush or a cleaning sponge
  • This contact-type cleaning method has an advantage that relatively large foreign matters adhering to the surface of the substrate can be efficiently removed.
  • the contact-type cleaning method requires ancillary equipment such as a pressing mechanism that presses the cleaning member against the device surface 2 with a predetermined force, the configuration of the polishing apparatus becomes complicated as compared with the non-contact-type cleaning method. .. Further, in the contact type cleaning method, there is a possibility that foreign matter removed from the surface of the substrate accumulates on the cleaning member, and the foreign matter accumulated on the cleaning member reattaches to the device surface 2 so-called back pollution problem. Therefore, it is necessary to regularly maintain or replace the cleaning member.
  • the device surface 2 is cleaned by a non-contact cleaning method using a cleaning fluid selected from two-fluid jet, ozone water, ozone microbubble water, megasonic water, chemical solution, cleaning gas, and the like. Therefore, the problem of back pollution does not occur. Therefore, the non-contact cleaning method can reduce the maintenance frequency and the running cost as compared with the contact cleaning method.
  • the present embodiment since almost no foreign matter adheres to the device surface 2 of the wafer W after polishing the non-device surface 1 of the wafer W, cleaning of the wafer W performed after the polishing process of the wafer W is performed.
  • the processing time can be shortened.
  • the throughput of the substrate processing apparatus in which the polishing apparatus is arranged can also be improved.
  • FIG. 11 is a plan view schematically showing an embodiment of the substrate processing apparatus provided with the above-mentioned polishing apparatus.
  • the substrate processing apparatus has a load / unload portion 121 having a plurality of load ports 122 on which a wafer cassette (board cassette) accommodating a large number of wafers W is placed.
  • the load port 122 can be equipped with an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod).
  • SMIF and FOUP are airtight containers that can maintain an environment independent of the external space by storing the wafer cassette inside and covering it with a partition wall.
  • the load / unload section 121 is provided with a first transfer robot (loader) 123 that can move along the arrangement direction of the load ports 122.
  • the first transfer robot 123 can access the wafer cassette mounted on the load port 122 and take out the wafer W from the wafer cassette.
  • the substrate processing apparatus includes a second transfer robot 126 that can move in the horizontal direction, a first temporary placement table 140 and a second temporary placement table 141 on which the wafer W is temporarily placed, a polishing unit 127, and a substrate processing device. It further includes a system controller 133 that controls the overall operation, a cleaning unit 172 that cleans the polished wafer W, and a drying unit 173 that dries the cleaned wafer W.
  • a third transfer robot 150 for transporting the wafer W is arranged between the second temporary stand 141 and the cleaning unit 172, and the wafer W is located between the cleaning unit 172 and the drying unit 173.
  • a fourth transfer robot 151 for transporting the wafer is arranged.
  • the polishing unit 127 is the above-mentioned polishing device.
  • the above-mentioned operation control unit 180 may be used as the system controller 133, or may be built in the system controller 133.
  • a plurality of (for example, 25) wafers W are housed in the wafer cassette (board cassette) of the load port 122 with the device surface 2 facing upward.
  • the first transfer robot 123 takes out one wafer W from the wafer cassette and places the wafer W on the first temporary storage table 140.
  • the second transfer robot 126 takes out the wafer W from the first temporary stand 140 and transfers the wafer W to the polishing unit 127 with the non-device surface 1 of the wafer W facing downward.
  • the non-device surface 1 of the wafer W is polished by the polishing unit 127.
  • the second transfer robot 126 takes out the polished wafer W from the polishing unit 127 and places it on the second temporary storage table 141.
  • the third transfer robot 150 takes out the wafer W from the second temporary storage table 141 and transfers it to the cleaning unit 172.
  • the wafer W is cleaned by the cleaning unit 172 with its polished non-device surface 1 facing downward.
  • the cleaning unit 172 includes an upper cleaning tool (for example, an upper roll sponge) and a lower cleaning tool (for example, a lower roll sponge) arranged so as to sandwich the wafer W, and the cleaning liquid is transferred to the wafer. Both sides of the wafer are cleaned with these cleaning tools while supplying both sides of W.
  • the cleaning unit 172 may clean only the non-device surface 1 of the wafer W with the lower cleaning tool. In this case, since the upper cleaning tool can be omitted, the configuration of the cleaning unit 172 can be simplified, and the running cost of the cleaning unit 172 can be further reduced.
  • the fourth transfer robot 151 takes out the cleaned wafer W from the cleaning unit 172 and transfers it to the drying unit 173.
  • the wafer W is dried by the drying unit 173 with its washed non-device surface 1 facing downward.
  • the drying unit 173 is configured to spin-dry the wafer W by rotating the wafer W around its axis at high speed.
  • the drying unit 173, while moving the water nozzle and IPA nozzle in the radial direction of the wafer W, (a mixture of isopropyl alcohol and N 2 gas) from the pure water nozzle and IPA nozzle pure water and the IPA vapor May be an IPA type that dries the wafer W by supplying the above surface to the upper surface of the wafer W.
  • the dried wafer W is returned to the wafer cassette of the load port 122 by the first transfer robot 123 with its non-device surface 1 facing downward.
  • the substrate processing apparatus can perform a series of steps of polishing, cleaning, drying, and transferring the wafer W to the load / unload portion while the non-device surface 1 of the wafer W is facing downward. ..
  • the substrate processing apparatus may further include another polishing unit 127.
  • the substrate processing apparatus includes a plurality of polishing units 127, the number of processed sheets can be doubled and the throughput of the substrate processing apparatus can be improved.
  • the present invention can be used in a polishing device and a polishing method for polishing the back surface of a substrate such as a wafer. Furthermore, the present invention can be applied to a substrate processing apparatus provided with a polishing apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

The present invention relates to a polishing device and a polishing method for polishing the back side of a substrate such as a wafer. The present invention further relates to a substrate processing device provided with the polishing device. This polishing device is provided with a substrate holding unit (10) which holds a substrate (W) in a state with the device surface (2) thereof facing upwards and which rotates the substrate (W); a polishing tool (31) which contacts a non-device surface (1) of the substrate (W) and polishes the non-device surface (1) of said substrate (W); and a contactless washing mechanism (30) which washes the device surface (2) of the substrate (W) while the non-device surface (1) of the substrate (W) is processed with the polishing tool (31).

Description

研磨装置、研磨方法、および基板処理装置Polishing equipment, polishing method, and substrate processing equipment
 本発明は、ウェーハなどの基板の裏面を研磨する研磨装置および研磨方法に関する。さらに、本発明は、研磨装置を備えた基板処理装置に関する。 The present invention relates to a polishing apparatus and a polishing method for polishing the back surface of a substrate such as a wafer. Furthermore, the present invention relates to a substrate processing apparatus provided with a polishing apparatus.
 近年、メモリー回路、ロジック回路、イメージセンサ(例えばCMOSセンサー)などのデバイスは、より高集積化されつつある。これらのデバイスを形成する工程においては、微粒子や塵埃などの異物がデバイスに付着することがある。デバイスに付着した異物は、配線間の短絡や回路の不具合を引き起こしてしまう。したがって、デバイスの信頼性を向上させるために、デバイスが形成された基板(例えば、ウェーハ)を洗浄して、基板上の異物を除去することが必要とされる。 In recent years, devices such as memory circuits, logic circuits, and image sensors (for example, CMOS sensors) are becoming more integrated. In the process of forming these devices, foreign matter such as fine particles and dust may adhere to the device. Foreign matter adhering to the device causes short circuits between wires and circuit malfunctions. Therefore, in order to improve the reliability of the device, it is necessary to clean the substrate (for example, the wafer) on which the device is formed to remove foreign matter on the substrate.
 基板の裏面(非デバイス面)にも、上述したような微粒子や粉塵などの異物が付着することがある。このような異物が基板の裏面に付着すると、基板が露光装置のステージ基準面から離間したり、基板の表面(デバイス面)がステージ基準面に対して傾き、結果として、パターニングのずれや焦点距離のずれが生じることとなる。このような問題を防止するために、基板の裏面に付着した異物を除去することが必要とされる。 Foreign substances such as fine particles and dust as described above may also adhere to the back surface (non-device surface) of the substrate. When such foreign matter adheres to the back surface of the substrate, the substrate is separated from the stage reference plane of the exposure apparatus, or the surface of the substrate (device surface) is tilted with respect to the stage reference plane, resulting in patterning deviation and focal length. Will occur. In order to prevent such a problem, it is necessary to remove the foreign matter adhering to the back surface of the substrate.
 そこで、基板の裏面を研磨して、該裏面に付着した異物を除去する研磨装置が従来から用いられている(例えば、特許文献1参照)。なお、本明細書では、デバイスが形成されていない、またはデバイスが形成される予定がない基板の裏面を「非デバイス面」と定義し、デバイスが形成されている、またはデバイスが形成される予定である基板の表面を「デバイス面」と定義する。 Therefore, a polishing device that polishes the back surface of the substrate to remove foreign substances adhering to the back surface has been conventionally used (see, for example, Patent Document 1). In this specification, the back surface of the substrate on which the device is not formed or the device is not planned to be formed is defined as the "non-device surface", and the device is formed or the device is planned to be formed. The surface of the substrate is defined as the "device surface".
 特許文献1に記載の研磨装置では、基板の非デバイス面が下を向いた状態で、基板の非デバイス面全体が効率的に研磨される。したがって、基板の非デバイス面を研磨するために、該基板を反転させる必要がないので、基板への空気中の不純物の付着を防止し、かつ研磨装置全体の処理時間を減らすことができる。さらに、このような研磨装置は、例えば、基板の非デバイス面を研磨し、洗浄し、乾燥させる一連の工程を行うことができる基板処理装置に設けられる。この場合、基板を反転させる反転機が不要となるため、基板処理装置の構成を単純化し、費用を削減することができる。 In the polishing apparatus described in Patent Document 1, the entire non-device surface of the substrate is efficiently polished with the non-device surface of the substrate facing downward. Therefore, since it is not necessary to invert the substrate in order to polish the non-device surface of the substrate, it is possible to prevent impurities in the air from adhering to the substrate and reduce the processing time of the entire polishing apparatus. Further, such a polishing device is provided in, for example, a substrate processing device capable of performing a series of steps of polishing, cleaning, and drying the non-device surface of the substrate. In this case, since a reversing machine for reversing the substrate is not required, the configuration of the substrate processing device can be simplified and the cost can be reduced.
特開2019-077003号公報Japanese Unexamined Patent Publication No. 2019-077003
 基板の非デバイス面が下を向いた状態で、該非デバイス面を研磨する研磨装置であっても、基板の研磨中に発生した研磨屑および/または該研磨屑を含むリンス液などの異物が基板のデバイス面に回り込んで、該基板のデバイス面を汚染してしまうおそれがある。そのため、特許文献1に記載の研磨装置は、基板の非デバイス面の研磨中に、デバイス面に保護液(例えば純水)を供給する保護液供給ノズルを有している。保護液でデバイス面を覆うことにより、非デバイス面の研磨中に発生した異物によって基板のデバイス面が汚染されることを防止している。 Even in a polishing device that polishes the non-device surface with the non-device surface of the substrate facing downward, foreign matter such as polishing debris generated during polishing of the substrate and / or a rinsing liquid containing the polishing debris is present on the substrate. There is a risk of wrapping around the device surface of the substrate and contaminating the device surface of the substrate. Therefore, the polishing apparatus described in Patent Document 1 has a protective liquid supply nozzle that supplies a protective liquid (for example, pure water) to the device surface during polishing of the non-device surface of the substrate. By covering the device surface with a protective liquid, it is possible to prevent the device surface of the substrate from being contaminated by foreign matter generated during polishing of the non-device surface.
 しかしながら、基板のデバイス面に形成されたデバイスの信頼性の向上をさらに図るためには、非デバイス面の研磨中にできる限り基板のデバイス面を汚染させない、すなわち、基板のデバイス面に異物をできる限り付着させないことが重要である。さらに、基板の研磨時にデバイス面に多量の異物が付着してしまうと、該異物を除去するために基板を比較的長時間洗浄する必要が生じる。例えば、基板処理装置の洗浄ユニットで、研磨後の基板のデバイス面を比較的長時間洗浄する必要が生じ、その結果、基板処理装置のスループットが低下してしまうおそれもある。したがって、基板の研磨処理の後に行われる該基板の洗浄処理の負担を軽減し、基板処理装置のスループットの向上を図るためにも、基板の非デバイス面の研磨中に、デバイス面にできる限り異物を付着させないことが重要である。 However, in order to further improve the reliability of the device formed on the device surface of the substrate, the device surface of the substrate is not contaminated as much as possible during polishing of the non-device surface, that is, foreign matter can be formed on the device surface of the substrate. It is important not to adhere as much as possible. Further, if a large amount of foreign matter adheres to the device surface during polishing of the substrate, it becomes necessary to clean the substrate for a relatively long time in order to remove the foreign matter. For example, the cleaning unit of the substrate processing apparatus needs to clean the device surface of the substrate after polishing for a relatively long time, and as a result, the throughput of the substrate processing apparatus may decrease. Therefore, in order to reduce the burden of the substrate cleaning process performed after the substrate polishing process and improve the throughput of the substrate processing device, as much foreign matter as possible on the device surface during polishing of the non-device surface of the substrate It is important not to adhere.
 そこで、本発明は、基板をそのデバイス面が上を向いた状態で保持して、該基板の非デバイス面を研磨している間に、基板のデバイス面が異物によって汚染されることを防止することが可能な研磨装置、および研磨方法を提供することを目的とする。また、本発明は、このような研磨装置を有する基板処理装置を提供することを目的とする。 Therefore, the present invention prevents the device surface of the substrate from being contaminated by foreign matter while holding the substrate with its device surface facing up and polishing the non-device surface of the substrate. It is an object of the present invention to provide a polishing apparatus capable of capable of polishing, and a polishing method. Another object of the present invention is to provide a substrate processing apparatus having such a polishing apparatus.
 一態様では、基板をそのデバイス面が上を向いた状態で保持して、該基板を回転させる基板保持部と、前記基板の非デバイス面に接触して、該基板の非デバイス面を研磨する研磨具と、前記研磨具で前記基板の非デバイス面を研磨している間に、前記基板のデバイス面を洗浄する非接触式洗浄機構と、を備えたことを特徴とする研磨装置が提供される。 In one aspect, the substrate is held with its device surface facing up, and the substrate holding portion for rotating the substrate is brought into contact with the non-device surface of the substrate to polish the non-device surface of the substrate. Provided is a polishing apparatus comprising a polishing tool and a non-contact cleaning mechanism for cleaning the device surface of the substrate while polishing the non-device surface of the substrate with the polishing tool. To.
 一態様では、前記非接触式洗浄機構は、洗浄流体を前記基板のデバイス面に向けて噴射する洗浄流体ノズルと、前記洗浄流体ノズルを、前記基板のデバイス面の上方で移動させるノズル移動機構と、を有する。
 一態様では、前記洗浄流体ノズルは、2流体ジェットを前記基板のデバイス面に向けて噴射させる2流体ジェットノズルである。
 一態様では、前記非接触式洗浄機構は、オゾン発生器をさらに含み、前記洗浄流体ノズルは、オゾン水、またはオゾンマイクロバブル水を前記基板のデバイス面に向けて噴射する。
In one aspect, the non-contact cleaning mechanism comprises a cleaning fluid nozzle that ejects a cleaning fluid toward the device surface of the substrate and a nozzle moving mechanism that moves the cleaning fluid nozzle above the device surface of the substrate. Has.
In one aspect, the cleaning fluid nozzle is a two-fluid jet nozzle that ejects a two-fluid jet toward the device surface of the substrate.
In one aspect, the non-contact cleaning mechanism further comprises an ozone generator, the cleaning fluid nozzle ejecting ozone water, or ozone microbubble water, toward the device surface of the substrate.
 一態様では、前記非接触式洗浄機構は、電解水生成機をさらに含み、前記洗浄流体ノズルは、電解水を前記基板のデバイス面に向けて噴射する。
 一態様では、前記洗浄流体ノズルは、メガソニック水または薬液を前記基板のデバイス面に向けて噴射する。
 一態様では、前記研磨装置は、前記基板のデバイス面に保護液を供給する保護液供給ノズルをさらに備える。
In one aspect, the non-contact cleaning mechanism further comprises an electrolyzed water generator, the cleaning fluid nozzle ejecting electrolyzed water toward the device surface of the substrate.
In one aspect, the cleaning fluid nozzle ejects megasonic water or chemicals towards the device surface of the substrate.
In one aspect, the polishing apparatus further comprises a protective liquid supply nozzle that supplies the protective liquid to the device surface of the substrate.
 一態様では、基板を、そのデバイス面が上を向いた状態で保持して、該基板を回転させ、前記回転している基板の非デバイス面に研磨具を押し付けて、該非デバイス面を研磨し、前記基板の非デバイス面を研磨している間に、前記基板のデバイス面を非接触式洗浄機構で洗浄することを特徴とする研磨方法が提供される。 In one aspect, the substrate is held with its device surface facing up, the substrate is rotated, and a polishing tool is pressed against the non-device surface of the rotating substrate to polish the non-device surface. A polishing method is provided, which comprises cleaning the device surface of the substrate with a non-contact cleaning mechanism while polishing the non-device surface of the substrate.
 一態様では、前記基板のデバイス面の洗浄は、洗浄流体ノズルを前記基板のデバイス面の上方で移動させながら、該洗浄流体ノズルから洗浄流体を前記基板のデバイス面に噴射することにより行われる。
 一態様では、前記洗浄流体ノズルは、2流体ジェットを前記基板のデバイス面に向けて噴射する。
 一態様では、前記洗浄流体ノズルは、オゾン水、またはオゾンマイクロバブル水を前記基板のデバイス面に向けて噴射する。
In one aspect, cleaning of the device surface of the substrate is performed by injecting cleaning fluid from the cleaning fluid nozzle onto the device surface of the substrate while moving the cleaning fluid nozzle above the device surface of the substrate.
In one aspect, the cleaning fluid nozzle ejects a two-fluid jet towards the device surface of the substrate.
In one aspect, the cleaning fluid nozzle injects ozone water or ozone microbubble water toward the device surface of the substrate.
 一態様では、前記洗浄流体ノズルは、電解水を前記基板のデバイス面に向けて噴射する。
 一態様では、前記洗浄流体ノズルは、メガソニック水または薬液を前記基板のデバイス面に向けて噴射する。
 一態様では、前記基板の非デバイス面を研磨している間、前記基板のデバイス面にさらに保護液が供給される。
In one aspect, the cleaning fluid nozzle ejects electrolyzed water toward the device surface of the substrate.
In one aspect, the cleaning fluid nozzle ejects megasonic water or chemicals towards the device surface of the substrate.
In one aspect, the protective liquid is further supplied to the device surface of the substrate while polishing the non-device surface of the substrate.
 一態様では、上記研磨装置と、前記研磨装置によって研磨された基板を洗浄する洗浄ユニットと、前記洗浄ユニットで洗浄された基板を乾燥させる乾燥ユニットと、を備えたことを特徴とする基板処理装置が提供される。
 一態様では、前記洗浄ユニットは、前記基板の非デバイス面のみを洗浄する。
In one aspect, the substrate processing apparatus includes the polishing apparatus, a cleaning unit for cleaning the substrate polished by the polishing apparatus, and a drying unit for drying the substrate cleaned by the cleaning unit. Is provided.
In one aspect, the cleaning unit cleans only the non-device surface of the substrate.
 本発明によれば、研磨具が基板の非デバイス面を研磨している間に、非接触式洗浄機構によって基板のデバイス面が積極的に洗浄される。したがって、異物によって基板のデバイス面が汚染されることを効果的に防止することができ、その結果、デバイスの信頼性が向上する。さらに、基板の非デバイス面を研磨した後であっても、基板のデバイス面にはほとんど異物が付着していないので、基板の研磨処理の後に行われる該基板の洗浄処理の負担を軽減するとともに、洗浄処理にかかる時間の短縮を図ることができる。 According to the present invention, the device surface of the substrate is positively cleaned by the non-contact cleaning mechanism while the polishing tool is polishing the non-device surface of the substrate. Therefore, it is possible to effectively prevent the device surface of the substrate from being contaminated by foreign matter, and as a result, the reliability of the device is improved. Further, even after polishing the non-device surface of the substrate, almost no foreign matter adheres to the device surface of the substrate, so that the burden of the substrate cleaning process performed after the substrate polishing process can be reduced. , The time required for the cleaning process can be shortened.
図1は、研磨装置の一実施形態を示す模式図である。FIG. 1 is a schematic view showing an embodiment of a polishing apparatus. 図2は、基板保持部の詳細を示す模式図である。FIG. 2 is a schematic view showing details of the substrate holding portion. 図3は、図2に示すローラー回転機構を示す平面図である。FIG. 3 is a plan view showing the roller rotation mechanism shown in FIG. 図4は、図3のA-A線断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 図5は、ローラーの上部の一例を拡大して示す模式図である。FIG. 5 is a schematic view showing an enlarged example of the upper part of the roller. 図6は、研磨ヘッドの配置の一例を示す平面図である。FIG. 6 is a plan view showing an example of the arrangement of the polishing heads. 図7は、図6の矢印Bで示す方向から見た図である。FIG. 7 is a view seen from the direction indicated by the arrow B in FIG. 図8は、非接触式洗浄機構の一例を示す模式図である。FIG. 8 is a schematic view showing an example of a non-contact cleaning mechanism. 図9は、洗浄流体ノズルがウェーハの上方を移動する様子を示す模式図である。FIG. 9 is a schematic view showing how the cleaning fluid nozzle moves above the wafer. 図10Aは、洗浄流体の供給タイミングの例を示すグラフである。FIG. 10A is a graph showing an example of the supply timing of the cleaning fluid. 図10Bは、洗浄流体の供給タイミングの例を示すグラフである。FIG. 10B is a graph showing an example of the supply timing of the cleaning fluid. 図10Cは、洗浄流体の供給タイミングの例を示すグラフである。FIG. 10C is a graph showing an example of the supply timing of the cleaning fluid. 図11は、研磨装置を備えた基板処理装置の一実施形態を模式的に示す平面図である。FIG. 11 is a plan view schematically showing an embodiment of a substrate processing apparatus provided with a polishing apparatus.
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、研磨装置の一実施形態を示す模式図である。図1に示す研磨装置は、基板の一例であるウェーハWを保持し、その軸心を中心として回転させる基板保持部10と、研磨具の一例である研磨テープ31をこの基板保持部10に保持されたウェーハWの第1の面1に接触させてウェーハWの第1の面1を研磨する研磨ヘッド50と、研磨テープ31を研磨ヘッド50に供給する研磨テープ供給機構41と、研磨ヘッド50および研磨テープ供給機構41を並進回転運動させる並進回転運動機構60とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of a polishing apparatus. The polishing apparatus shown in FIG. 1 holds a wafer W, which is an example of a substrate, and holds a substrate holding portion 10 which rotates around the axis thereof and a polishing tape 31 which is an example of a polishing tool, in the substrate holding portion 10. A polishing head 50 that contacts the first surface 1 of the wafer W to polish the first surface 1 of the wafer W, a polishing tape supply mechanism 41 that supplies the polishing tape 31 to the polishing head 50, and a polishing head 50. It also includes a translational rotation movement mechanism 60 that causes the polishing tape supply mechanism 41 to perform translational rotation movement.
 基板保持部10は、ウェーハWの周縁部に接触可能な複数のローラー11を備えている。研磨ヘッド50は、基板保持部10に保持されているウェーハWの下側に配置されている。並進回転運動機構60は、研磨ヘッド50および研磨テープ供給機構41の下方に配置されており、研磨ヘッド50および研磨テープ供給機構41は並進回転運動機構60に連結されている。図1では、基板保持部10の一部の図示は省略されている。 The substrate holding portion 10 includes a plurality of rollers 11 capable of contacting the peripheral edge portion of the wafer W. The polishing head 50 is arranged below the wafer W held by the substrate holding portion 10. The translational rotation movement mechanism 60 is arranged below the polishing head 50 and the polishing tape supply mechanism 41, and the polishing head 50 and the polishing tape supply mechanism 41 are connected to the translational rotation movement mechanism 60. In FIG. 1, a part of the substrate holding portion 10 is not shown.
 本実施形態では、ウェーハWの第1の面1は、デバイスが形成されていない、またはデバイスが形成される予定がないウェーハWの裏面、すなわち非デバイス面である。第1の面1とは反対側のウェーハWの第2の面2は、デバイスが形成されている、またはデバイスが形成される予定である面、すなわちデバイス面である。以下では、ウェーハWの第1の面1を「非デバイス面1」と称し、ウェーハWの第2の面2を「デバイス面2」と称する。本実施形態では、ウェーハWは、その非デバイス面1が下向きの状態で、基板保持部10に水平に保持される。 In the present embodiment, the first surface 1 of the wafer W is the back surface of the wafer W on which the device is not formed or the device is not planned to be formed, that is, the non-device surface. The second surface 2 of the wafer W opposite to the first surface 1 is the surface on which the device is formed or is to be formed, that is, the device surface. Hereinafter, the first surface 1 of the wafer W will be referred to as a “non-device surface 1”, and the second surface 2 of the wafer W will be referred to as a “device surface 2”. In the present embodiment, the wafer W is horizontally held by the substrate holding portion 10 with its non-device surface 1 facing downward.
 図2は、基板保持部10の詳細を示す模式図であり、図3は、図2に示すローラー回転機構12を示す平面図である。基板保持部10は、ウェーハWの周縁部に接触可能な複数のローラー11と、これらローラー11をそれぞれの軸心を中心に回転させるローラー回転機構12とを備えている。本実施形態では、4つのローラー11が設けられている。5つ以上のローラー11を設けてもよい。ウェーハWの周縁部に接触しているときの(すなわちウェーハWを保持しているときの)上記複数のローラー11は、基板保持部10の軸心CPから同じ距離にある。 FIG. 2 is a schematic view showing the details of the substrate holding portion 10, and FIG. 3 is a plan view showing the roller rotation mechanism 12 shown in FIG. The substrate holding portion 10 includes a plurality of rollers 11 that can come into contact with the peripheral edge portion of the wafer W, and a roller rotation mechanism 12 that rotates these rollers 11 around their respective axes. In this embodiment, four rollers 11 are provided. Five or more rollers 11 may be provided. The plurality of rollers 11 when in contact with the peripheral edge portion of the wafer W (that is, when holding the wafer W) are at the same distance from the axial center CP of the substrate holding portion 10.
 ローラー回転機構12は、4つのローラー11のうちの2つを連結する第1ベルト14Aと、第1ベルト14Aで連結された2つのローラー11のうちの一方に連結された第1モータ15Aと、第1モータ15Aを支持する第1モータ支持体25Aと、第1ベルト14Aで連結された2つのローラー11を回転可能に支持する第1ローラー台16Aと、4つのローラー11のうちの他の2つを連結する第2ベルト14Bと、第2ベルト14Bで連結された2つのローラー11のうちの一方に連結された第2モータ15Bと、第2モータ15Bを支持する第2モータ支持体25Bと、第2ベルト14Bで連結された2つのローラー11を軸受24Bを介して回転可能に支持する第2ローラー台16Bとを備える。第1ローラー台16Aは、上側第1ローラー台17Aと、下側第1ローラー台17Bとを備えている。第1モータ15Aおよび第1ベルト14Aは第1ローラー台16Aの下方に配置され、第2モータ15Bおよび第2ベルト14Bは第2ローラー台16Bの下方に配置されている。第1モータ15Aは、第1モータ支持体25Aを介して第1ローラー台16Aに固定されている。第2モータ15Bは、第2モータ支持体25Bを介して第2ローラー台16Bの下面に固定されている。 The roller rotation mechanism 12 includes a first belt 14A connecting two of the four rollers 11 and a first motor 15A connected to one of the two rollers 11 connected by the first belt 14A. A first motor support 25A that supports the first motor 15A, a first roller base 16A that rotatably supports two rollers 11 connected by a first belt 14A, and the other two of the four rollers 11. A second belt 14B connecting the two, a second motor 15B connected to one of the two rollers 11 connected by the second belt 14B, and a second motor support 25B supporting the second motor 15B. A second roller base 16B that rotatably supports two rollers 11 connected by a second belt 14B via a bearing 24B is provided. The first roller stand 16A includes an upper first roller stand 17A and a lower first roller stand 17B. The first motor 15A and the first belt 14A are arranged below the first roller stand 16A, and the second motor 15B and the second belt 14B are arranged below the second roller stand 16B. The first motor 15A is fixed to the first roller stand 16A via the first motor support 25A. The second motor 15B is fixed to the lower surface of the second roller stand 16B via the second motor support 25B.
 図4は、図3のA-A線断面図である。図4に示すように、第1ローラー台16Aは、第1ベルト14Aで連結された2つのローラー11を軸受24A(図2参照)を介して回転可能に支持する下側第1ローラー台17Bと、下側第1ローラー台17Bに固定されたピボット軸17Cと、ピボット軸17Cを軸受24Cを介して回転可能に支持する上側第1ローラー台17Aとを備えている。上側第1ローラー台17Aと下側第1ローラー台17Bは、ピボット軸17Cを介して互いに連結されている。図3に示すように、ピボット軸17Cは、第1ベルト14Aで連結された2つのローラー11の間に位置している。図2に示すように、第1モータ15Aは、第1モータ支持体25Aを介して下側第1ローラー台17Bの下面に固定されている。したがって、第1ベルト14A、第1ベルト14Aで連結された2つのローラー11、下側第1ローラー台17B、第1モータ15A、および第1モータ支持体25Aは一体に、ピボット軸17Cを中心に回転可能である。 FIG. 4 is a cross-sectional view taken along the line AA of FIG. As shown in FIG. 4, the first roller base 16A and the lower first roller base 17B that rotatably support the two rollers 11 connected by the first belt 14A via the bearing 24A (see FIG. 2). A pivot shaft 17C fixed to the lower first roller base 17B and an upper first roller base 17A that rotatably supports the pivot shaft 17C via a bearing 24C are provided. The upper first roller stand 17A and the lower first roller stand 17B are connected to each other via a pivot shaft 17C. As shown in FIG. 3, the pivot shaft 17C is located between the two rollers 11 connected by the first belt 14A. As shown in FIG. 2, the first motor 15A is fixed to the lower surface of the lower first roller stand 17B via the first motor support 25A. Therefore, the first belt 14A, the two rollers 11 connected by the first belt 14A, the lower first roller base 17B, the first motor 15A, and the first motor support 25A are integrally centered on the pivot shaft 17C. It is rotatable.
 ローラー回転機構12は、4つのローラー11を同じ方向に同じ速度で回転させるように構成されている。ウェーハWの非デバイス面1の研磨中、ウェーハWの周縁部は、ローラー11によって把持される。ウェーハWは水平に保持され、ローラー11の回転によってウェーハWはその軸心を中心に回転される。ウェーハWの非デバイス面1の研磨中、4つのローラー11はそれぞれの軸心を中心に回転するが、ローラー11自体の位置は静止している。 The roller rotation mechanism 12 is configured to rotate the four rollers 11 in the same direction and at the same speed. During polishing of the non-device surface 1 of the wafer W, the peripheral edge of the wafer W is gripped by the roller 11. The wafer W is held horizontally, and the rotation of the roller 11 causes the wafer W to rotate about its axis. During polishing of the non-device surface 1 of the wafer W, the four rollers 11 rotate around their respective axes, but the positions of the rollers 11 themselves are stationary.
 4つのローラー11の下部にはプーリー22がそれぞれ固定されている。第1ベルト14Aは、4つのローラー11のうちの2つに固定されたプーリー22に掛けられ、第2ベルト14Bは他の2つのローラー11に固定されたプーリー22に掛けられている。第1モータ15Aおよび第2モータ15Bは同じ速度で同じ方向に回転するように構成されている。したがって、4つのローラー11は、同じ速度で同じ方向に回転することができる。 Pulleys 22 are fixed to the lower parts of the four rollers 11. The first belt 14A is hung on a pulley 22 fixed to two of the four rollers 11, and the second belt 14B is hung on a pulley 22 fixed to the other two rollers 11. The first motor 15A and the second motor 15B are configured to rotate at the same speed and in the same direction. Therefore, the four rollers 11 can rotate in the same direction at the same speed.
 図3に示すように、ローラー回転機構12は、第1ローラー台16Aの上側第1ローラー台17Aに連結された第1アクチュエータ18Aと、第2ローラー台16Bに連結された第2アクチュエータ18Bをさらに備えている。第1アクチュエータ18Aは、第1ローラー台16Aに支持されている2つのローラー11を矢印で示すように水平方向に移動させる。同様に、第2アクチュエータ18Bは、第2ローラー台16Bに支持されている他の2つのローラー11を矢印で示すように水平方向に移動させる。すなわち、第1アクチュエータ18Aおよび第2アクチュエータ18Bは、2組のローラー11(本実施形態では各組は2つのローラー11からなる)を互いに近づく方向および離間する方向に移動させるように構成されている。第1アクチュエータ18Aおよび第2アクチュエータ18Bは、エアシリンダまたはモータ駆動型アクチュエータなどから構成することができる。図2および図3に示す実施形態では、第1アクチュエータ18Aおよび第2アクチュエータ18Bはエアシリンダから構成されている。第1アクチュエータ18Aおよび第2アクチュエータ18Bは、ベースプレート23の下面に固定されている。 As shown in FIG. 3, the roller rotation mechanism 12 further includes a first actuator 18A connected to the upper first roller stand 17A of the first roller stand 16A and a second actuator 18B connected to the second roller stand 16B. I have. The first actuator 18A moves the two rollers 11 supported by the first roller stand 16A in the horizontal direction as shown by arrows. Similarly, the second actuator 18B moves the other two rollers 11 supported by the second roller stand 16B in the horizontal direction as indicated by the arrows. That is, the first actuator 18A and the second actuator 18B are configured to move two sets of rollers 11 (each set includes two rollers 11 in this embodiment) in a direction toward and away from each other. .. The first actuator 18A and the second actuator 18B can be composed of an air cylinder, a motor-driven actuator, or the like. In the embodiment shown in FIGS. 2 and 3, the first actuator 18A and the second actuator 18B are composed of an air cylinder. The first actuator 18A and the second actuator 18B are fixed to the lower surface of the base plate 23.
 ローラー11は、ベースプレート23を貫通して上方に延びている。ベースプレート23の下面には第1直動ガイド26Aおよび第2直動ガイド26Bが固定されている。第1直動ガイド26Aの可動部は上側第1ローラー台17Aに連結されており、第2直動ガイド26Bの可動部は第2ローラー台16Bに連結されている。2つの直動ガイド26A,26Bは、ローラー11の動きを水平方向への直線運動に制限する。 The roller 11 penetrates the base plate 23 and extends upward. A first linear motion guide 26A and a second linear motion guide 26B are fixed to the lower surface of the base plate 23. The movable portion of the first linear motion guide 26A is connected to the upper first roller stand 17A, and the movable portion of the second linear motion guide 26B is connected to the second roller stand 16B. The two linear motion guides 26A and 26B limit the movement of the roller 11 to a linear motion in the horizontal direction.
 2組のローラー11が互いに近づく方向に移動すると、ウェーハWは4つのローラー11によって保持される。4つのローラー11のうちの2つはピボット軸17Cの周りを回転可能であるので、4つのローラー11がウェーハWを保持しているとき、上記2つのローラー11の位置が自動的に調整される。2組のローラー11が互いに離れる方向に移動すると、ウェーハWは4つのローラー11から解放される。本実施形態では、基板保持部10の軸心CPの周りに配列された4つのローラー11が設けられているが、ローラー11の数は4つに限定されない。例えば、3つのローラー11を120度の角度で等間隔で軸心CPの周りに配列し、それぞれのローラー11に対して、アクチュエータを1つずつ設けるようにしてもよい。一実施形態では、3つのローラー11を120度の角度で等間隔で軸心CPの周りに配列し、3つのローラー11のうちの2つを第1ベルト14Aで連結し、第1ベルト14Aで連結された2つのローラー11と、第1ベルト14Aで連結されていないローラー11に対して、アクチュエータを1つずつ設けてもよい。 When the two sets of rollers 11 move in the direction of approaching each other, the wafer W is held by the four rollers 11. Since two of the four rollers 11 are rotatable around the pivot shaft 17C, the positions of the two rollers 11 are automatically adjusted when the four rollers 11 hold the wafer W. .. When the two sets of rollers 11 move away from each other, the wafer W is released from the four rollers 11. In the present embodiment, four rollers 11 arranged around the axis CP of the substrate holding portion 10 are provided, but the number of rollers 11 is not limited to four. For example, three rollers 11 may be arranged around the axis CP at equal intervals of 120 degrees, and one actuator may be provided for each roller 11. In one embodiment, the three rollers 11 are arranged around the axis CP at equal intervals of 120 degrees, two of the three rollers 11 are connected by the first belt 14A, and the first belt 14A. One actuator may be provided for each of the two rollers 11 that are connected and the roller 11 that is not connected by the first belt 14A.
 図5は、ローラー11の上部の一例を拡大して示す模式図である。ローラー11は、ウェーハWの周縁部に接触可能な円筒状の基板保持面11aと、基板保持面11aに接続され、かつ基板保持面11aから下方に傾斜するテーパー面11bとを有している。テーパー面11bは円錐台形状を有しており、基板保持面11aよりも大きな直径を有している。ウェーハWは、まず、図示しない搬送装置によりテーパー面11b上に載置され、その後ローラー11がウェーハWに向かって移動することによりウェーハWの周縁部が基板保持面11aに保持される。ローラー11がウェーハWを解放するときは、ローラー11がウェーハWから離れる方向に移動することにより、ウェーハWの周縁部が基板保持面11aから離れ、テーパー面11bに支持される(図5の点線参照)。図示しない搬送装置は、テーパー面11b上のウェーハWを取り出すことができる。 FIG. 5 is an enlarged schematic view showing an example of the upper part of the roller 11. The roller 11 has a cylindrical substrate holding surface 11a that can come into contact with the peripheral edge of the wafer W, and a tapered surface 11b that is connected to the substrate holding surface 11a and is inclined downward from the substrate holding surface 11a. The tapered surface 11b has a truncated cone shape and has a diameter larger than that of the substrate holding surface 11a. The wafer W is first placed on the tapered surface 11b by a transfer device (not shown), and then the peripheral edge portion of the wafer W is held on the substrate holding surface 11a by moving the roller 11 toward the wafer W. When the roller 11 releases the wafer W, the roller 11 moves away from the wafer W, so that the peripheral edge portion of the wafer W is separated from the substrate holding surface 11a and supported by the tapered surface 11b (dotted line in FIG. 5). reference). A transfer device (not shown) can take out the wafer W on the tapered surface 11b.
 図1に示すように、基板保持部10に保持されたウェーハWの下方には、ウェーハWの非デバイス面1にリンス液(例えば純水、またはアルカリ性の薬液)を供給するリンス液供給ノズル27が配置されている。このリンス液供給ノズル27は、図示しないリンス液供給源に接続されている。リンス液供給ノズル27は、ウェーハWの非デバイス面1の中心O1を向いて配置されている。リンス液は、リンス液供給ノズル27からウェーハWの非デバイス面1に供給され、遠心力によりリンス液はウェーハWの非デバイス面1上を広がる。リンス液は、ウェーハWの非デバイス面1上を半径方向外側に流れ、これにより研磨屑をウェーハWの非デバイス面1から除去することができる。 As shown in FIG. 1, below the wafer W held by the substrate holding portion 10, a rinse liquid supply nozzle 27 that supplies a rinse liquid (for example, pure water or an alkaline chemical liquid) to the non-device surface 1 of the wafer W. Is placed. The rinse liquid supply nozzle 27 is connected to a rinse liquid supply source (not shown). The rinse liquid supply nozzle 27 is arranged so as to face the center O1 of the non-device surface 1 of the wafer W. The rinse liquid is supplied from the rinse liquid supply nozzle 27 to the non-device surface 1 of the wafer W, and the rinse liquid spreads on the non-device surface 1 of the wafer W by centrifugal force. The rinsing liquid flows outward in the radial direction on the non-device surface 1 of the wafer W, whereby polishing debris can be removed from the non-device surface 1 of the wafer W.
 本実施形態では、基板保持部10に保持されたウェーハWの上方には、ウェーハWのデバイス面2に保護液(例えば純水)を供給する保護液供給ノズル28が配置されている。保護液供給ノズル28は、図示しない保護液供給源に接続されている。保護液供給ノズル28はウェーハWのデバイス面2の中心を向いて配置されている。保護液は、保護液供給ノズル28からウェーハWのデバイス面2の中心に供給され、遠心力により保護液はウェーハWのデバイス面2上を広がる。保護液は、ウェーハWの研磨で生じた研磨屑や異物を含むリンス液がウェーハWのデバイス面2に回り込んでウェーハWのデバイス面2に付着することを防止する。その結果、ウェーハWのデバイス面2を清浄に保つことができる。 In the present embodiment, a protective liquid supply nozzle 28 that supplies a protective liquid (for example, pure water) to the device surface 2 of the wafer W is arranged above the wafer W held by the substrate holding portion 10. The protective liquid supply nozzle 28 is connected to a protective liquid supply source (not shown). The protective liquid supply nozzle 28 is arranged so as to face the center of the device surface 2 of the wafer W. The protective liquid is supplied from the protective liquid supply nozzle 28 to the center of the device surface 2 of the wafer W, and the protective liquid spreads on the device surface 2 of the wafer W by centrifugal force. The protective liquid prevents the rinsing liquid containing polishing debris and foreign matter generated by polishing the wafer W from wrapping around the device surface 2 of the wafer W and adhering to the device surface 2 of the wafer W. As a result, the device surface 2 of the wafer W can be kept clean.
 後述するように、ウェーハWの非デバイス面1の研磨中、ウェーハWのデバイス面2には、非接触式洗浄機構30の洗浄流体ノズル33から洗浄流体が噴射される。そのため、非デバイス面1の研磨レシピ、特に、ウェーハWの回転速度次第では、保護液供給ノズル28を省略してもよい。 As will be described later, during polishing of the non-device surface 1 of the wafer W, the cleaning fluid is injected onto the device surface 2 of the wafer W from the cleaning fluid nozzle 33 of the non-contact cleaning mechanism 30. Therefore, the protective liquid supply nozzle 28 may be omitted depending on the polishing recipe for the non-device surface 1, particularly the rotation speed of the wafer W.
 図1に示すように、並進回転運動機構60は、モータ62と、モータ62に固定されたクランクシャフト70と、テーブル69と、基台71と、複数の偏心継手65とを備えている。モータ62は、基台71の下側に配置され、基台71の下面に固定されている。クランクシャフト70は、基台71を貫通して上方に延びている。テーブル69は、複数の偏心継手65およびクランクシャフト70を介して基台71に連結されている。テーブル69は、複数の軸受67を介して複数の偏心継手65に連結されており、さらに軸受68を介してクランクシャフト70に連結されている。基台71は、複数の軸受75を介して複数の偏心継手65に接続されている。図1では2つの偏心継手65のみが描かれているが、並進回転運動機構60は、少なくとも2つの偏心継手65を備えている。 As shown in FIG. 1, the translational rotary motion mechanism 60 includes a motor 62, a crankshaft 70 fixed to the motor 62, a table 69, a base 71, and a plurality of eccentric joints 65. The motor 62 is arranged below the base 71 and is fixed to the lower surface of the base 71. The crankshaft 70 penetrates the base 71 and extends upward. The table 69 is connected to the base 71 via a plurality of eccentric joints 65 and a crankshaft 70. The table 69 is connected to a plurality of eccentric joints 65 via a plurality of bearings 67, and is further connected to a crankshaft 70 via a bearing 68. The base 71 is connected to a plurality of eccentric joints 65 via a plurality of bearings 75. Although only two eccentric joints 65 are drawn in FIG. 1, the translational rotary motion mechanism 60 includes at least two eccentric joints 65.
 クランクシャフト70の先端は、モータ62の軸心から距離eだけ偏心している。よって、モータ62が作動すると、テーブル69は半径eの円運動を行う。本明細書において、円運動は、対象物が円軌道上を移動する運動と定義される。テーブル69は、複数の偏心継手65によって支持されているので、テーブル69が円運動を行っているとき、テーブル69自体は回転しない。複数の偏心継手65の偏心量は、テーブル69の偏心量と同じである。このようなテーブル69の運動は、並進回転運動とも呼ばれる。本明細書において、対象物自体は回転せずに、対象物が円軌道上を移動する運動は、並進回転運動と定義される。研磨ヘッド50および研磨テープ供給機構41は、テーブル69に固定されている。よって、並進回転運動機構60が作動すると、研磨ヘッド50および研磨テープ供給機構41は、一体に(同期して)並進回転運動を行う。 The tip of the crankshaft 70 is eccentric by a distance e from the axis of the motor 62. Therefore, when the motor 62 is operated, the table 69 makes a circular motion with a radius e. In the present specification, circular motion is defined as the motion of an object moving in a circular orbit. Since the table 69 is supported by a plurality of eccentric joints 65, the table 69 itself does not rotate when the table 69 is in a circular motion. The eccentricity of the plurality of eccentric joints 65 is the same as the eccentricity of the table 69. Such a motion of the table 69 is also called a translational rotational motion. In the present specification, the motion of the object moving in a circular orbit without rotating the object itself is defined as a translational rotational motion. The polishing head 50 and the polishing tape supply mechanism 41 are fixed to the table 69. Therefore, when the translational rotation movement mechanism 60 is activated, the polishing head 50 and the polishing tape supply mechanism 41 integrally (synchronously) perform translational rotation movement.
 本実施形態では、基板の非デバイス面1を研磨するための研磨具として、砥粒を表面に有する研磨テープ31が使用されている。研磨テープ31の一例としては、基材テープと、該基材テープの表面を覆う研磨層とを有する研磨テープがあげられる。研磨層は、例えば、砥粒と、砥粒を保持するバインダ(樹脂)とを有する。研磨テープ31の他の例としては、基材テープと、研磨層と、これらの間に位置する弾性層とを有する研磨テープがあげられる。弾性層は、例えば、ポリプロピレン、ポリウレタン、ポリエステル、またはナイロンからなる不織布、もしくはシリコーンゴムなどの弾性材料から構成される。 In this embodiment, a polishing tape 31 having abrasive grains on its surface is used as a polishing tool for polishing the non-device surface 1 of the substrate. An example of the polishing tape 31 is a polishing tape having a base material tape and a polishing layer covering the surface of the base material tape. The polishing layer has, for example, abrasive grains and a binder (resin) for holding the abrasive grains. Another example of the polishing tape 31 is a polishing tape having a base material tape, a polishing layer, and an elastic layer located between them. The elastic layer is composed of, for example, a non-woven fabric made of polypropylene, polyurethane, polyester, or nylon, or an elastic material such as silicone rubber.
 図1に示すように、研磨ヘッド50は、基板保持面11aよりも下方に配置され、かつ上向きに配置されている。研磨ヘッド50は、研磨テープ31をウェーハWの非デバイス面1に対して押し付ける研磨ブレード55と、研磨ブレード55を上方に押し上げる加圧機構52と、加圧機構52を支持する支持部材79を備えている。支持部材79は並進回転運動機構60のテーブル69に固定されており、研磨ヘッド50の全体はテーブル69と一体に並進回転運動を行うことが可能となっている。支持部材79は図示しない通孔を有しており、研磨テープ31はこの通孔を通って延びている。 As shown in FIG. 1, the polishing head 50 is arranged below the substrate holding surface 11a and is arranged upward. The polishing head 50 includes a polishing blade 55 that presses the polishing tape 31 against the non-device surface 1 of the wafer W, a pressurizing mechanism 52 that pushes up the polishing blade 55 upward, and a support member 79 that supports the pressurizing mechanism 52. ing. The support member 79 is fixed to the table 69 of the translational rotation movement mechanism 60, and the entire polishing head 50 can perform the translational rotation movement integrally with the table 69. The support member 79 has a through hole (not shown), and the polishing tape 31 extends through the through hole.
 研磨テープ供給機構41は、研磨テープ31を供給するテープ巻き出しリール43と、研磨テープ31を回収するテープ巻き取りリール44とを備えている。テープ巻き出しリール43およびテープ巻き取りリール44は、それぞれテンションモータ43a,44aに連結されている。これらテンションモータ43a,44aは、リールベース42に固定されており、所定のトルクをテープ巻き出しリール43およびテープ巻き取りリール44に与えることにより、研磨テープ31に所定のテンションをかけることができる。リールベース42は、並進回転運動機構60のテーブル69に固定されており、研磨テープ供給機構41の全体はテーブル69と一体に並進回転運動を行うことが可能となっている。 The polishing tape supply mechanism 41 includes a tape unwinding reel 43 for supplying the polishing tape 31 and a tape winding reel 44 for collecting the polishing tape 31. The tape winding reel 43 and the tape winding reel 44 are connected to tension motors 43a and 44a, respectively. These tension motors 43a and 44a are fixed to the reel base 42, and by applying a predetermined torque to the tape winding reel 43 and the tape winding reel 44, a predetermined tension can be applied to the polishing tape 31. The reel base 42 is fixed to the table 69 of the translational rotation movement mechanism 60, and the entire polishing tape supply mechanism 41 can perform the translational rotation movement integrally with the table 69.
 テープ巻き出しリール43とテープ巻き取りリール44との間には、研磨テープ31をその長手方向に送るテープ送り装置46が設けられている。このテープ送り装置46は、研磨テープ31を送るテープ送りローラー48と、研磨テープ31をテープ送りローラー48に対して押し付けるニップローラー49と、テープ送りローラー48を回転させるテープ送りモータ47とを備えている。研磨テープ31はニップローラー49とテープ送りローラー48との間に挟まれている。テープ送りモータ47がテープ送りローラー48を図1の矢印で示す方向に回転させると、研磨テープ31はテープ巻き出しリール43から研磨ブレード55を経由してテープ巻き取りリール44に送られる。研磨テープ31を送る速度は、テープ送りモータ47の回転速度を変化させることによって変更できる。一実施形態では、研磨テープ31を送る方向は、図1の矢印で示す方向の逆方向としてもよい(テープ巻き出しリール43とテープ巻き取りリール44の配置を入れ替えてもよい)。この場合も、テープ送り装置46はテープ巻き取りリール44側に設置される。 A tape feeding device 46 for feeding the polishing tape 31 in the longitudinal direction is provided between the tape winding reel 43 and the tape winding reel 44. The tape feed device 46 includes a tape feed roller 48 that feeds the polishing tape 31, a nip roller 49 that presses the polishing tape 31 against the tape feed roller 48, and a tape feed motor 47 that rotates the tape feed roller 48. There is. The polishing tape 31 is sandwiched between the nip roller 49 and the tape feed roller 48. When the tape feed motor 47 rotates the tape feed roller 48 in the direction indicated by the arrow in FIG. 1, the polishing tape 31 is fed from the tape unwinding reel 43 to the tape winding reel 44 via the polishing blade 55. The speed at which the polishing tape 31 is fed can be changed by changing the rotation speed of the tape feed motor 47. In one embodiment, the direction in which the polishing tape 31 is fed may be opposite to the direction indicated by the arrow in FIG. 1 (the arrangement of the tape unwinding reel 43 and the tape winding reel 44 may be interchanged). In this case as well, the tape feeding device 46 is installed on the tape winding reel 44 side.
 研磨テープ31は、研磨テープ31の研磨面31aがウェーハWの非デバイス面1を向くように研磨ブレード55の上面に供給される。本明細書では、研磨テープ31の研磨面31aは、研磨ブレード55の上側に位置し、ウェーハWの非デバイス面1に押し付けられる面と定義される。 The polishing tape 31 is supplied to the upper surface of the polishing blade 55 so that the polishing surface 31a of the polishing tape 31 faces the non-device surface 1 of the wafer W. In the present specification, the polishing surface 31a of the polishing tape 31 is defined as a surface located above the polishing blade 55 and pressed against the non-device surface 1 of the wafer W.
 研磨装置は、研磨テープ31を支持する複数のガイドローラー53a,53b,53c,53dをさらに備えている。研磨テープ31はこれらガイドローラー53a,53b,53c,53dにより、研磨ブレード55および加圧機構52を囲むように案内される。研磨ヘッド50は、研磨ブレード55によって研磨テープ31をその裏側からウェーハWの非デバイス面1に押し付けることでウェーハWの非デバイス面1を研磨する。研磨ヘッド50の上部に配置されたガイドローラー53b,53cは、ウェーハWの非デバイス面1と平行な方向に研磨テープ31が進行するように研磨テープ31をガイドする。 The polishing device further includes a plurality of guide rollers 53a, 53b, 53c, 53d that support the polishing tape 31. The polishing tape 31 is guided by these guide rollers 53a, 53b, 53c, 53d so as to surround the polishing blade 55 and the pressurizing mechanism 52. The polishing head 50 polishes the non-device surface 1 of the wafer W by pressing the polishing tape 31 from the back side of the polishing tape 31 against the non-device surface 1 of the wafer W by the polishing blade 55. The guide rollers 53b and 53c arranged on the upper part of the polishing head 50 guide the polishing tape 31 so that the polishing tape 31 advances in the direction parallel to the non-device surface 1 of the wafer W.
 テープ送り装置46およびガイドローラー53a,53b,53c,53dは、図示しない保持部材に固定されており、この保持部材は並進回転運動機構60のテーブル69に固定されている。したがって、並進回転運動機構60が動作すると、研磨ヘッド50、研磨テープ供給機構41、テープ送り装置46、およびガイドローラー53a,53b,53c,53dは、一体に(すなわち同期して)並進回転運動を行う。 The tape feeding device 46 and the guide rollers 53a, 53b, 53c, 53d are fixed to a holding member (not shown), and the holding member is fixed to the table 69 of the translational rotary motion mechanism 60. Therefore, when the translational rotation movement mechanism 60 operates, the polishing head 50, the polishing tape supply mechanism 41, the tape feeding device 46, and the guide rollers 53a, 53b, 53c, 53d integrally (that is, synchronously) perform translational rotation movement. Do.
 図6は、研磨ヘッド50の配置の一例を示す平面図であり、図7は、図6の矢印Bで示す方向から見た図である。図6に示すように、研磨ヘッド50は、研磨ブレード55の一部がウェーハWの周縁部から外側にはみ出すように配置されている。すなわち、基板保持部10の軸心CPから研磨ブレード55の最外端までの距離d1は、ローラー11がウェーハWを保持しているときの軸心CPから各ローラー11の基板保持面11aまでの距離d2よりも長い。本実施形態では、研磨ブレード55はウェーハWの半径よりも長く、研磨ブレード55の上縁は丸みを帯びた断面形状を有している。より具体的には、研磨ブレード55の一端はウェーハWの周縁部から外側にはみ出ており、他端はウェーハWの非デバイス面1の中心O1(すなわち基板保持部10の軸心CP)を越えて延びている。これにより、研磨ブレード55は、研磨テープ31をウェーハWの非デバイス面1の中心O1から最外部まで接触させることができる。研磨ブレード55は、PEEK(ポリエーテルエーテルケトン)等の樹脂材料から構成することができる。一実施形態では、研磨ブレード55はウェーハWの直径よりも長くてもよい。 FIG. 6 is a plan view showing an example of the arrangement of the polishing head 50, and FIG. 7 is a view seen from the direction indicated by the arrow B in FIG. As shown in FIG. 6, the polishing head 50 is arranged so that a part of the polishing blade 55 protrudes outward from the peripheral edge portion of the wafer W. That is, the distance d1 from the axial center CP of the substrate holding portion 10 to the outermost end of the polishing blade 55 is from the axial center CP when the roller 11 holds the wafer W to the substrate holding surface 11a of each roller 11. Longer than the distance d2. In the present embodiment, the polishing blade 55 is longer than the radius of the wafer W, and the upper edge of the polishing blade 55 has a rounded cross-sectional shape. More specifically, one end of the polishing blade 55 protrudes outward from the peripheral edge of the wafer W, and the other end exceeds the center O1 of the non-device surface 1 of the wafer W (that is, the axial CP of the substrate holding portion 10). Is extending. As a result, the polishing blade 55 can bring the polishing tape 31 into contact with the non-device surface 1 of the wafer W from the center O1 to the outermost side. The polishing blade 55 can be made of a resin material such as PEEK (polyetheretherketone). In one embodiment, the polishing blade 55 may be longer than the diameter of the wafer W.
 ウェーハWの研磨中、ウェーハWはローラー11によって回転される。全てのローラー11は各軸心を中心に回転するが、これらローラー11の位置は固定されている。したがって、研磨ブレード55の一部がウェーハWの周縁部からはみ出ていても、ローラー11は研磨ブレード55に接触しない。ウェーハWの研磨中、研磨ブレード55を含む研磨ヘッド50は、並進回転運動機構60によって並進回転運動される。この並進回転運動によって、研磨ヘッド50は、ウェーハWに対して相対運動を行い、研磨テープ31とウェーハWの非デバイス面1との接触点(以下、研磨点という)における研磨テープ31とウェーハWとの相対速度を確保する。特に、並進回転運動機構60は、ウェーハWの中心部において、ウェーハWと研磨テープ31との相対速度を大きくすることができる。研磨ヘッド50は、並進回転運動したときに、ローラー11に接触しない位置に配置されている。結果として、研磨テープ31は、最外部を含むウェーハWの非デバイス面1の全体を研磨することが可能となる。 During polishing of the wafer W, the wafer W is rotated by the roller 11. All the rollers 11 rotate around their respective axes, but the positions of these rollers 11 are fixed. Therefore, even if a part of the polishing blade 55 protrudes from the peripheral edge of the wafer W, the roller 11 does not come into contact with the polishing blade 55. During polishing of the wafer W, the polishing head 50 including the polishing blade 55 is moved in translational rotation by the translational rotation movement mechanism 60. By this translational rotational movement, the polishing head 50 makes a relative movement with respect to the wafer W, and the polishing tape 31 and the wafer W at the contact point between the polishing tape 31 and the non-device surface 1 of the wafer W (hereinafter referred to as the polishing point). Secure the relative speed with. In particular, the translational rotary motion mechanism 60 can increase the relative speed between the wafer W and the polishing tape 31 at the center of the wafer W. The polishing head 50 is arranged at a position where it does not come into contact with the roller 11 during the translational rotational movement. As a result, the polishing tape 31 can polish the entire non-device surface 1 of the wafer W including the outermost one.
 図6に示すように、研磨ブレード55は、研磨テープ31の進行方向(矢印Cで示す)に対して斜めに延びている。本実施形態では、研磨テープ31の進行方向Cは、研磨テープ31の長手方向に一致する。さらに、研磨ブレード55は、研磨テープ31からはみ出さない限りにおいて、研磨テープ31の全幅に亘って延びている。研磨ブレード55を研磨テープ31の進行方向C(研磨テープ31の長手方向)に対して斜めに傾けることによって、研磨テープ31の進行方向の下流側(本実施形態の場合、ウェーハWの外周側)でも未使用の研磨テープ31をウェーハWに接触させることができる。結果として、研磨によって劣化した研磨テープ31が使用されることに起因する研磨レートの低下を防ぐことができる。 As shown in FIG. 6, the polishing blade 55 extends obliquely with respect to the traveling direction (indicated by the arrow C) of the polishing tape 31. In the present embodiment, the traveling direction C of the polishing tape 31 coincides with the longitudinal direction of the polishing tape 31. Further, the polishing blade 55 extends over the entire width of the polishing tape 31 as long as it does not protrude from the polishing tape 31. By tilting the polishing blade 55 diagonally with respect to the traveling direction C (longitudinal direction of the polishing tape 31) of the polishing tape 31, the downstream side of the traveling direction of the polishing tape 31 (in the case of this embodiment, the outer peripheral side of the wafer W). However, the unused polishing tape 31 can be brought into contact with the wafer W. As a result, it is possible to prevent a decrease in the polishing rate due to the use of the polishing tape 31 deteriorated by polishing.
 図7に示すように、研磨ブレード55は、保持パッド56の表面に設けられ、上方に突起している。保持パッド56は、バックプレート57の表面に固定されている。加圧機構52は、バックプレート57の下方に配置されており、バックプレート57の下面に連結されている。加圧機構52は、研磨ブレード55、保持パッド56、およびバックプレート57を一体に上昇および下降させることが可能に構成されている。ウェーハWの研磨中は、加圧機構52は、研磨ブレード55、保持パッド56、およびバックプレート57を上方に押し上げ、研磨ブレード55の上縁で研磨テープ31をウェーハWの非デバイス面1に押し付けて研磨することが可能となる。研磨ブレード55は、その上縁が丸みを帯びた断面形状を有するため、研磨テープ31と研磨ブレード55との接触抵抗を減らすことができる。研磨待機状態(研磨をしていない状態)では、加圧機構52は、研磨ブレード55、保持パッド56、およびバックプレート57を下降させ、研磨テープ31をウェーハWの非デバイス面1から離す。 As shown in FIG. 7, the polishing blade 55 is provided on the surface of the holding pad 56 and projects upward. The holding pad 56 is fixed to the surface of the back plate 57. The pressurizing mechanism 52 is arranged below the back plate 57 and is connected to the lower surface of the back plate 57. The pressurizing mechanism 52 is configured to be able to integrally raise and lower the polishing blade 55, the holding pad 56, and the back plate 57. During polishing of the wafer W, the pressurizing mechanism 52 pushes up the polishing blade 55, the holding pad 56, and the back plate 57, and presses the polishing tape 31 against the non-device surface 1 of the wafer W at the upper edge of the polishing blade 55. Can be polished. Since the polishing blade 55 has a cross-sectional shape with a rounded upper edge, the contact resistance between the polishing tape 31 and the polishing blade 55 can be reduced. In the polishing standby state (non-polishing state), the pressurizing mechanism 52 lowers the polishing blade 55, the holding pad 56, and the back plate 57 to separate the polishing tape 31 from the non-device surface 1 of the wafer W.
 本実施形態では、加圧機構52はエアシリンダから構成される。エアシリンダからなる加圧機構52は、バックプレート57に連結されるピストンロッド52aと、気体が供給されることによってピストンロッド52aを押し下げる第1圧力室52bと、気体が供給されることによってピストンロッド52aを押し上げる第2圧力室52cとを備えている。第1圧力室52bおよび第2圧力室52cに供給される気体の圧力は、図示しない圧力レギュレータによって制御される。圧力レギュレータの一例として、電空レギュレータが挙げられる。圧力レギュレータにより、研磨テープ31に対する一定の押圧力を得ることができる。 In this embodiment, the pressurizing mechanism 52 is composed of an air cylinder. The pressurizing mechanism 52 composed of an air cylinder includes a piston rod 52a connected to the back plate 57, a first pressure chamber 52b that pushes down the piston rod 52a by supplying gas, and a piston rod by supplying gas. It is provided with a second pressure chamber 52c that pushes up 52a. The pressure of the gas supplied to the first pressure chamber 52b and the second pressure chamber 52c is controlled by a pressure regulator (not shown). An example of a pressure regulator is an electropneumatic regulator. A constant pressing force on the polishing tape 31 can be obtained by the pressure regulator.
 一実施形態では、研磨具は、研磨テープ31に代えて、砥石などの固定砥粒であってもよい。この場合、固定砥粒はバックプレート57の表面に固定されてもよく、研磨ブレード55の表面に固定されてもよい。研磨ヘッド50は、固定砥粒をウェーハWの非デバイス面1に接触させてウェーハWの非デバイス面1を研磨することができる。 In one embodiment, the polishing tool may be fixed abrasive grains such as a grindstone instead of the polishing tape 31. In this case, the fixed abrasive grains may be fixed to the surface of the back plate 57 or may be fixed to the surface of the polishing blade 55. The polishing head 50 can polish the non-device surface 1 of the wafer W by bringing the fixed abrasive grains into contact with the non-device surface 1 of the wafer W.
 さらに一実施形態では、固定砥粒は、バックプレート57の表面に環状に固定されてもよい。この場合、研磨ヘッド50は図示しない回転機構を備え、回転機構は、バックプレート57に連結され、固定砥粒およびバックプレート57は、回転機構によって回転可能に構成される。研磨ヘッド50は、固定砥粒を回転させながらウェーハWの非デバイス面1に接触させてウェーハWの非デバイス面1を研磨することができる。 Further, in one embodiment, the fixed abrasive grains may be annularly fixed to the surface of the back plate 57. In this case, the polishing head 50 includes a rotation mechanism (not shown), the rotation mechanism is connected to the back plate 57, and the fixed abrasive grains and the back plate 57 are configured to be rotatable by the rotation mechanism. The polishing head 50 can polish the non-device surface 1 of the wafer W by bringing the fixed abrasive grains into contact with the non-device surface 1 of the wafer W while rotating them.
 ウェーハWの非デバイス面1を研磨可能である限り、研磨ヘッド50の構成も任意であり、上述した実施形態に限定されない。例えば、研磨ヘッド50の加圧機構52は、研磨ブレード55を上下動可能なエアバックであってもよい。この場合、エアバックに気体(例えば、空気)を供給するとエアバックが膨張して、研磨ブレード55をウェーハWの非デバイス面1に押し付けることができる。エアバックから気体を抜くと、研磨ブレード55が非デバイス面1から離れる。 As long as the non-device surface 1 of the wafer W can be polished, the configuration of the polishing head 50 is also arbitrary and is not limited to the above-described embodiment. For example, the pressurizing mechanism 52 of the polishing head 50 may be an airbag capable of moving the polishing blade 55 up and down. In this case, when gas (for example, air) is supplied to the airbag, the airbag expands and the polishing blade 55 can be pressed against the non-device surface 1 of the wafer W. When the gas is removed from the airbag, the polishing blade 55 separates from the non-device surface 1.
 あるいは、研磨ヘッド50は、複数の研磨ブレードと、各研磨ブレードを介して研磨具(例えば、研磨テープ)をウェーハWの非デバイス面1に押し付ける複数の加圧機構と、を有していてもよい。この場合、複数の研磨ブレードは、直線状に並んで配置されていてもよいし、ウェーハWの周方向で互いに離れて配置されていてもよい。複数の研磨ブレードのうち、ウェーハWの周縁部に配置された研磨ブレードの一端は、ウェーハWの周縁部から外側にはみ出し、ウェーハWの中心部に配置された研磨ブレードの一部は、ウェーハWが1回転する間にウェーハWの第1の面1の中心O1と重なるように配置される。 Alternatively, the polishing head 50 may have a plurality of polishing blades and a plurality of pressurizing mechanisms for pressing a polishing tool (for example, a polishing tape) against the non-device surface 1 of the wafer W via each polishing blade. Good. In this case, the plurality of polishing blades may be arranged side by side in a straight line, or may be arranged apart from each other in the circumferential direction of the wafer W. Of the plurality of polishing blades, one end of the polishing blades arranged on the peripheral edge of the wafer W protrudes outward from the peripheral edge of the wafer W, and a part of the polishing blades arranged in the center of the wafer W is the wafer W. Is arranged so as to overlap the center O1 of the first surface 1 of the wafer W during one rotation.
 さらに、ウェーハWの非デバイス面1を研磨可能である限り、基板保持部10の構成も任意である。図示はしないが、基板保持部10は、基板の周縁部を保持する第1保持部と、基板の中央部を保持する第2保持部との組み合わせによって構成されてもよい。この場合、ウェーハWの研磨は、第1保持部にその周縁部が保持されたウェーハWの中央部を第1研磨具で研磨する第1研磨工程と、第2保持部にその中央部が保持されたウェーハWの周縁部を第2研磨具で研磨する第2研磨工程の2つの研磨工程を組み合わせて行われる。第2研磨具は第1研磨具と同一の研磨具であってもよいし、異なる研磨具であってもよい。さらに、第1研磨工程の後で、第2研磨工程を行ってもよいし、第2研磨工程の後で、第1研磨工程をおこなってもよい。 Further, as long as the non-device surface 1 of the wafer W can be polished, the configuration of the substrate holding portion 10 is also arbitrary. Although not shown, the substrate holding portion 10 may be composed of a combination of a first holding portion that holds the peripheral portion of the substrate and a second holding portion that holds the central portion of the substrate. In this case, the polishing of the wafer W is carried out by a first polishing step of polishing the central portion of the wafer W whose peripheral portion is held by the first holding portion with a first polishing tool and a first polishing step in which the central portion is held by the second holding portion. It is performed by combining the two polishing steps of the second polishing step of polishing the peripheral edge portion of the wafer W with the second polishing tool. The second polishing tool may be the same polishing tool as the first polishing tool, or may be a different polishing tool. Further, the second polishing step may be performed after the first polishing step, or the first polishing step may be performed after the second polishing step.
 研磨具(図1に示す研磨装置では、研磨テープ31)をウェーハWの非デバイス面1に押し付けて、該非デバイス面1を研磨すると、ウェーハWの研磨屑、および該研磨屑を含んだリンス液などの異物がウェーハWのデバイス面2に回り込んで、該デバイス面2を汚染するおそれがある。そのため、図1に示す研磨装置は、ウェーハ(基板)Wの非デバイス面1の研磨中に、デバイス面2を洗浄する非接触式洗浄機構30を備えている。非接触式洗浄機構30は、ウェーハWのデバイス面2に直接接触する洗浄部材(例えば、洗浄ブラシまたは洗浄スポンジ)を有さない洗浄機構である。 When a polishing tool (polishing tape 31 in the polishing apparatus shown in FIG. 1) is pressed against the non-device surface 1 of the wafer W to polish the non-device surface 1, the polishing debris of the wafer W and the rinsing liquid containing the polishing debris are obtained. Foreign matter such as foreign matter may wrap around the device surface 2 of the wafer W and contaminate the device surface 2. Therefore, the polishing apparatus shown in FIG. 1 includes a non-contact cleaning mechanism 30 that cleans the device surface 2 during polishing of the non-device surface 1 of the wafer (substrate) W. The non-contact cleaning mechanism 30 is a cleaning mechanism that does not have a cleaning member (for example, a cleaning brush or a cleaning sponge) that directly contacts the device surface 2 of the wafer W.
 図8は、非接触式洗浄機構の一例を示す模式図である。図8に示すように、本実施形態に係る非接触式洗浄機構30は、洗浄流体をウェーハWのデバイス面2に噴射する洗浄流体ノズル33と、洗浄流体ノズル33をウェーハWの上方で移動させるノズル移動機構32とを備える。ノズル移動機構32は、洗浄流体ノズル33を支持するノズルアーム34と、ノズルアーム34を旋回させるノズル旋回軸35と、ノズル旋回軸35を回転させるモータ(駆動源)36とを備える。モータ36は、動作制御部180に電気的に接続されており、動作制御部180からの指令に基づいてノズル旋回軸35をその軸心まわりに回転させる。 FIG. 8 is a schematic view showing an example of a non-contact cleaning mechanism. As shown in FIG. 8, the non-contact cleaning mechanism 30 according to the present embodiment moves the cleaning fluid nozzle 33 for injecting the cleaning fluid onto the device surface 2 of the wafer W and the cleaning fluid nozzle 33 above the wafer W. A nozzle moving mechanism 32 is provided. The nozzle moving mechanism 32 includes a nozzle arm 34 that supports the cleaning fluid nozzle 33, a nozzle swivel shaft 35 that swivels the nozzle arm 34, and a motor (drive source) 36 that swivels the nozzle swivel shaft 35. The motor 36 is electrically connected to the motion control unit 180, and rotates the nozzle swivel shaft 35 around the axis thereof based on a command from the motion control unit 180.
 洗浄流体ノズル33は、ノズルアーム34の一端に連結されており、下方に向けられた先端を有している。本実施形態では、非接触式洗浄機構30は、洗浄流体供給装置40を有しており、洗浄流体は、洗浄流体供給装置40から延びる洗浄流体ライン37を介して該洗浄流体ノズル33に供給される。洗浄流体ノズル33は、その先端から洗浄流体をウェーハWのデバイス面2に噴射して、該デバイス面2を洗浄するように構成されている。ノズルアーム34の他端には、ノズル旋回軸35が連結されており、モータ36の動作によって、ノズル旋回軸35が回転されると、洗浄流体ノズル33は、ウェーハWのデバイス面2の上方を水平方向に移動する。 The cleaning fluid nozzle 33 is connected to one end of the nozzle arm 34 and has a tip pointed downward. In the present embodiment, the non-contact cleaning mechanism 30 has a cleaning fluid supply device 40, and the cleaning fluid is supplied to the cleaning fluid nozzle 33 via a cleaning fluid line 37 extending from the cleaning fluid supply device 40. To. The cleaning fluid nozzle 33 is configured to inject a cleaning fluid from the tip thereof onto the device surface 2 of the wafer W to clean the device surface 2. A nozzle swivel shaft 35 is connected to the other end of the nozzle arm 34, and when the nozzle swivel shaft 35 is rotated by the operation of the motor 36, the cleaning fluid nozzle 33 moves above the device surface 2 of the wafer W. Move horizontally.
 図9は、洗浄流体ノズル33がウェーハWの上方を移動する様子を示す模式図である。図9に示すように、洗浄流体ノズル33は、ノズル移動機構32によって、ウェーハWの上方でデバイス面2の略中央部から周縁部まで水平方向に移動する。洗浄流体ノズル33がウェーハWのデバイス面2の中央部にあるとき、該洗浄流体ノズル33から噴射された洗浄流体は、デバイス面2の中心O2を少なくとも含む領域に衝突する。洗浄流体ノズル33をデバイス面2の略中央部から周縁部まで移動させることにより、デバイス面2の全体に洗浄流体が衝突し、該洗浄流体によって、デバイス面2の全体が洗浄される。洗浄流体を噴射している洗浄流体ノズル33を、デバイス面2の略中央部と周縁部との間を1回以上往復させてもよい。 FIG. 9 is a schematic view showing how the cleaning fluid nozzle 33 moves above the wafer W. As shown in FIG. 9, the cleaning fluid nozzle 33 is horizontally moved above the wafer W from the substantially central portion to the peripheral portion of the device surface 2 by the nozzle moving mechanism 32. When the cleaning fluid nozzle 33 is located at the center of the device surface 2 of the wafer W, the cleaning fluid ejected from the cleaning fluid nozzle 33 collides with a region including at least the center O2 of the device surface 2. By moving the cleaning fluid nozzle 33 from the substantially central portion to the peripheral portion of the device surface 2, the cleaning fluid collides with the entire device surface 2, and the entire device surface 2 is cleaned by the cleaning fluid. The cleaning fluid nozzle 33 that injects the cleaning fluid may be reciprocated once or more between the substantially central portion and the peripheral portion of the device surface 2.
 図示はしないが、ノズル移動機構32を、洗浄流体ノズル33をウェーハWの半径方向に進退させるエアシリンダ機構によって構成してもよい。あるいは、ノズル移動機構32を、洗浄流体ノズル33をウェーハWの半径方向に進退させるボールねじ機構によって構成してもよい。 Although not shown, the nozzle moving mechanism 32 may be configured by an air cylinder mechanism that moves the cleaning fluid nozzle 33 forward and backward in the radial direction of the wafer W. Alternatively, the nozzle moving mechanism 32 may be configured by a ball screw mechanism that moves the cleaning fluid nozzle 33 forward and backward in the radial direction of the wafer W.
 洗浄流体供給装置40は、所定の洗浄流体を所定のタイミングでウェーハWのデバイス2に供給するための装置である。洗浄流体供給装置40は、研磨装置の内部に配置されていてもよいし、研磨装置の外部に配置されていてもよい。洗浄流体供給装置40は、動作制御部180に電気的に接続されており、動作制御部180によって、洗浄流体供給装置40の動作が制御される。例えば、動作制御部180は、洗浄流体供給装置40に内蔵されたマスフローコントローラなどの流量調整器(図示せず)を制御して、洗浄流体供給装置40から洗浄流体ノズル33に供給される洗浄流体の流量と供給タイミングとを制御する。図8に示すように、洗浄流体ライン37に、マスフローコントローラなどの流量調整器38を配置してもよい。動作制御部180が流量調整器38の動作を制御することによって、洗浄流体供給装置40から供給される洗浄流体の流量、および供給タイミングが調整される。 The cleaning fluid supply device 40 is a device for supplying a predetermined cleaning fluid to the device 2 of the wafer W at a predetermined timing. The cleaning fluid supply device 40 may be arranged inside the polishing device or may be arranged outside the polishing device. The cleaning fluid supply device 40 is electrically connected to the operation control unit 180, and the operation of the cleaning fluid supply device 40 is controlled by the operation control unit 180. For example, the operation control unit 180 controls a flow rate regulator (not shown) such as a mass flow controller built in the cleaning fluid supply device 40 to supply the cleaning fluid from the cleaning fluid supply device 40 to the cleaning fluid nozzle 33. Controls the flow rate and supply timing of. As shown in FIG. 8, a flow rate regulator 38 such as a mass flow controller may be arranged on the cleaning fluid line 37. By controlling the operation of the flow rate regulator 38 by the operation control unit 180, the flow rate of the cleaning fluid supplied from the cleaning fluid supply device 40 and the supply timing are adjusted.
 図10A乃至図10Cは、それぞれ、洗浄流体の供給タイミングの例を示すグラフである。図10A乃至図10Cにおいて、縦軸は研磨ヘッドの動作状態と、非接触式洗浄機構30の動作状態とを表し、横軸は時間を表す。図10A乃至図10Cにおいて、研磨ヘッド50の動作状態がon状態になると、研磨テープ(研磨具)31がウェーハ(基板)Wの非デバイス面1に押し付けられ、該非デバイス面1の研磨が開始される。研磨ヘッド50の動作状態がoff状態になると、研磨テープ31がウェーハWの非デバイス面1から離れて、非デバイス面1の研磨が停止される。非接触式洗浄機構30の動作状態がon状態になると、洗浄流体ノズル33から洗浄流体がウェーハWのデバイス面2に噴射され、該デバイス面2の洗浄が開始される。非接触式洗浄機構30の動作状態がoff状態になると、洗浄流体ノズル33からの洗浄流体の噴射が停止され、デバイス面2の洗浄が停止する。 10A to 10C are graphs showing an example of the supply timing of the cleaning fluid, respectively. In FIGS. 10A to 10C, the vertical axis represents the operating state of the polishing head and the operating state of the non-contact cleaning mechanism 30, and the horizontal axis represents time. In FIGS. 10A to 10C, when the operating state of the polishing head 50 is turned on, the polishing tape (polishing tool) 31 is pressed against the non-device surface 1 of the wafer (substrate) W, and polishing of the non-device surface 1 is started. To. When the operating state of the polishing head 50 is turned off, the polishing tape 31 is separated from the non-device surface 1 of the wafer W, and polishing of the non-device surface 1 is stopped. When the operating state of the non-contact cleaning mechanism 30 is turned on, the cleaning fluid is ejected from the cleaning fluid nozzle 33 onto the device surface 2 of the wafer W, and cleaning of the device surface 2 is started. When the operating state of the non-contact cleaning mechanism 30 is turned off, the injection of the cleaning fluid from the cleaning fluid nozzle 33 is stopped, and the cleaning of the device surface 2 is stopped.
 図10Aに示す例では、デバイス面2の洗浄が開始される時点Tcは、研磨テープ31によるウェーハWの非デバイス面1の研磨が開始される時点Taよりも前である。すなわち、非接触式洗浄機構30によるデバイス面2の洗浄は、研磨テープ31によるウェーハWの非デバイス面1の研磨よりも前に開始される。さらに、図10Aに示す例では、デバイス面2の洗浄が終了される時点Tdは、研磨テープ31によるウェーハWの非デバイス面1の研磨が終了される時点Tbよりも後である。すなわち、非接触式洗浄機構30によるデバイス面2の洗浄は、研磨テープ31によるウェーハWの非デバイス面1の研磨が終了した後に終了される。 In the example shown in FIG. 10A, the time point Tc at which the cleaning of the device surface 2 is started is before the time point Ta at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is started. That is, the cleaning of the device surface 2 by the non-contact cleaning mechanism 30 is started before the polishing of the non-device surface 1 of the wafer W by the polishing tape 31. Further, in the example shown in FIG. 10A, the time point Td at which the cleaning of the device surface 2 is completed is later than the time point Tb at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is completed. That is, the cleaning of the device surface 2 by the non-contact cleaning mechanism 30 is completed after the polishing of the non-device surface 1 of the wafer W by the polishing tape 31 is completed.
 図10Bに示す例では、デバイス面2の洗浄が開始される時点Tcは、研磨テープ31によるウェーハWの非デバイス面1の研磨が開始される時点Taと同一である。すなわち、非接触式洗浄機構30によるデバイス面2の洗浄は、研磨テープ31によるウェーハWの非デバイス面1の研磨と同時に開始される。さらに、図10Bに示す例では、デバイス面2の洗浄が終了される時点Tdは、研磨テープ31によるウェーハWの非デバイス面1の研磨が終了される時点Tbと同一である。すなわち、非接触式洗浄機構30によるデバイス面2の洗浄は、研磨テープ31によるウェーハWの非デバイス面1の研磨が終了するのと同時に終了される。 In the example shown in FIG. 10B, the time point Tc at which the cleaning of the device surface 2 is started is the same as the time point Ta at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is started. That is, the cleaning of the device surface 2 by the non-contact cleaning mechanism 30 is started at the same time as the polishing of the non-device surface 1 of the wafer W by the polishing tape 31. Further, in the example shown in FIG. 10B, the time point Td at which the cleaning of the device surface 2 is completed is the same as the time point Tb at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is completed. That is, the cleaning of the device surface 2 by the non-contact cleaning mechanism 30 is completed at the same time as the polishing of the non-device surface 1 of the wafer W by the polishing tape 31 is completed.
 図10Aおよび図10Bに示すように、少なくとも研磨テープ31によるウェーハWの非デバイス面1の研磨を行っている間中、デバイス面2の洗浄を行うことにより、異物によるデバイス面2の汚染を最大限に防止することができる。 As shown in FIGS. 10A and 10B, by cleaning the device surface 2 at least while polishing the non-device surface 1 of the wafer W with the polishing tape 31, the contamination of the device surface 2 by foreign matter is maximized. It can be prevented to the limit.
 一方で、図10Cに示す例では、デバイス面2の洗浄が開始される時点Tcは、研磨テープ31によるウェーハWの非デバイス面1の研磨が開始されてから所定時間Intが経過した後に開始される。すなわち、非接触式洗浄機構30によるデバイス面2の洗浄は、研磨テープ31によるウェーハWの非デバイス面1の研磨の後に開始される。この場合、洗浄流体の消費量が低減されるので、研磨装置のランニングコストを低減することができる。さらに、図10Cに示す例では、デバイス面2の洗浄が終了される時点Tdは、研磨テープ31によるウェーハWの非デバイス面1の研磨が終了される時点Tbよりも後である。一実施形態では、デバイス面2の洗浄が終了される時点Tdを、研磨テープ31によるウェーハWの非デバイス面1の研磨が終了される時点Tbと同一に設定してもよい。このように、少なくとも研磨テープ31によるウェーハWの非デバイス面1の研磨が終了する時点Tbまでは、デバイス面2の洗浄を行うことが好ましい。 On the other hand, in the example shown in FIG. 10C, the time point Tc at which the cleaning of the device surface 2 is started is started after a predetermined time Int has elapsed from the start of polishing the non-device surface 1 of the wafer W by the polishing tape 31. To. That is, the cleaning of the device surface 2 by the non-contact cleaning mechanism 30 is started after the non-device surface 1 of the wafer W is polished by the polishing tape 31. In this case, since the consumption of the cleaning fluid is reduced, the running cost of the polishing apparatus can be reduced. Further, in the example shown in FIG. 10C, the time point Td at which the cleaning of the device surface 2 is completed is later than the time point Tb at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is completed. In one embodiment, the time point Td at which the cleaning of the device surface 2 is completed may be set to be the same as the time point Tb at which the polishing of the non-device surface 1 of the wafer W with the polishing tape 31 is completed. As described above, it is preferable to clean the device surface 2 at least until the time point Tb at which the polishing of the non-device surface 1 of the wafer W by the polishing tape 31 is completed.
 本実施形態では、洗浄流体ノズル33は、2流体ジェットをデバイス面2に向けて噴射する2流体ジェットノズルである。2流体ジェットノズルは、洗浄流体供給装置40から供給された気体と液体の混合流体を高速で噴射可能に構成されたノズルである。2流体ジェットノズルである洗浄流体ノズル33は、例えば、高速の気体に乗せた微小液滴(ミスト)をウェーハWのデバイス面2に衝突させ、この衝突で発生した衝撃波を利用してデバイス面2上の異物を除去、すなわち、デバイス面2を洗浄する。 In the present embodiment, the cleaning fluid nozzle 33 is a two-fluid jet nozzle that injects a two-fluid jet toward the device surface 2. The two-fluid jet nozzle is a nozzle configured to be able to inject a mixed fluid of gas and liquid supplied from the cleaning fluid supply device 40 at high speed. The cleaning fluid nozzle 33, which is a two-fluid jet nozzle, causes, for example, a minute droplet (mist) placed on a high-speed gas to collide with the device surface 2 of the wafer W, and the shock wave generated by this collision is used to make the device surface 2 The upper foreign matter is removed, that is, the device surface 2 is cleaned.
 洗浄流体ノズル33からウェーハWのデバイス面2に噴射される洗浄流体は、2流体ジェットに限定されない。例えば、洗浄流体は、純水(または、超純水)にオゾンガスを溶解させたオゾン水であってもよいし、オゾンガスの微少な気泡を純水(または、超純水)に含ませたオゾンマイクロバブル水(または、オゾンナノバブル水)であってもよい。これらの場合、非接触式洗浄機構30の洗浄流体供給装置40は、オゾンガスを製造するオゾン発生器85を備える。 The cleaning fluid injected from the cleaning fluid nozzle 33 onto the device surface 2 of the wafer W is not limited to the two-fluid jet. For example, the cleaning fluid may be ozone water in which ozone gas is dissolved in pure water (or ultrapure water), or ozone in which minute bubbles of ozone gas are contained in pure water (or ultrapure water). It may be micro bubble water (or ozone nano bubble water). In these cases, the cleaning fluid supply device 40 of the non-contact cleaning mechanism 30 includes an ozone generator 85 that produces ozone gas.
 洗浄流体がオゾン水の場合は、ウェーハWのデバイス面2に付着した有機物および金属をオゾンが有する強力な酸化作用によってオゾン水に溶解させ、デバイス面2から除去する。洗浄流体がオゾンマイクロバブル水(または、オゾンナノバブル水)の場合は、オゾンマイクロバブルが消滅するときに発生する多量のOHラジカルを利用して、異物を分解・除去する。 When the cleaning fluid is ozone water, the organic substances and metals adhering to the device surface 2 of the wafer W are dissolved in ozone water by the strong oxidizing action of ozone and removed from the device surface 2. When the cleaning fluid is ozone microbubble water (or ozone nanobubble water), foreign substances are decomposed and removed by using a large amount of OH radicals generated when the ozone microbubbles disappear.
 一実施形態では、洗浄流体は、電解水であってもよい。この場合、非接触式洗浄機構30の洗浄流体供給装置40は、電解水生成機86を有する。電解水生成機86によって生成された電解水が洗浄流体ノズル33に供給され、該洗浄流体ノズル33からデバイス面2に噴射される。さらに、洗浄流体ノズル33からウェーハWのデバイス面2に噴射される洗浄流体は、超音波振動により励起されたメガソニック水であってもよいし、異物を溶解可能な薬液であってもよい。さらに、一実施形態では、洗浄流体ノズル33からウェーハWのデバイス面2に噴射される洗浄流体は、デバイス面2上の異物と反応し、該異物をデバイス面から除去可能な洗浄ガスであってもよい。 In one embodiment, the cleaning fluid may be electrolyzed water. In this case, the cleaning fluid supply device 40 of the non-contact cleaning mechanism 30 has an electrolyzed water generator 86. The electrolyzed water generated by the electrolyzed water generator 86 is supplied to the cleaning fluid nozzle 33, and is injected from the cleaning fluid nozzle 33 onto the device surface 2. Further, the cleaning fluid injected from the cleaning fluid nozzle 33 onto the device surface 2 of the wafer W may be megasonic water excited by ultrasonic vibration or a chemical solution capable of dissolving foreign matter. Further, in one embodiment, the cleaning fluid injected from the cleaning fluid nozzle 33 onto the device surface 2 of the wafer W is a cleaning gas capable of reacting with foreign matter on the device surface 2 and removing the foreign matter from the device surface. May be good.
 次に、本実施形態に係る研磨装置の動作について説明する。以下に説明する研磨装置の動作、すなわち、ウェーハWの研磨処理は、図1に示す動作制御部180によって制御される。動作制御部180は、基板保持部10、非接触式洗浄機構30、研磨ヘッド50、研磨テープ供給機構41、テープ送り装置46、および並進回転運動機構60などに電気的に接続されており、これら構成要素の動作を制御する。例えば、動作制御部180は、基板保持部10、リンス液供給ノズル27、保護液供給ノズル28、モータ36、流量調整器38、洗浄流体供給装置40、研磨ヘッド50、研磨テープ供給機構41、テープ送り装置46、並進回転運動機構60、オゾン発生器85(または、電解水生成機86)の動作を制御する。動作制御部180は、専用のコンピュータまたは汎用のコンピュータから構成される。 Next, the operation of the polishing apparatus according to this embodiment will be described. The operation of the polishing apparatus described below, that is, the polishing process of the wafer W, is controlled by the operation control unit 180 shown in FIG. The operation control unit 180 is electrically connected to a substrate holding unit 10, a non-contact cleaning mechanism 30, a polishing head 50, a polishing tape supply mechanism 41, a tape feeding device 46, a translational rotary motion mechanism 60, and the like. Controls the behavior of components. For example, the operation control unit 180 includes a substrate holding unit 10, a rinse liquid supply nozzle 27, a protective liquid supply nozzle 28, a motor 36, a flow rate regulator 38, a cleaning fluid supply device 40, a polishing head 50, a polishing tape supply mechanism 41, and a tape. It controls the operation of the feeder 46, the translational rotary motion mechanism 60, and the ozone generator 85 (or the electrolyzed water generator 86). The operation control unit 180 is composed of a dedicated computer or a general-purpose computer.
 研磨されるウェーハWは、非デバイス面1が下向きの状態(すなわち、デバイス面2が上向きの状態)で、基板保持部10のローラー11により保持され、さらにウェーハWの軸心を中心に回転される。具体的には、基板保持部10は、ウェーハWの非デバイス面1が下向きの状態で複数のローラー11をウェーハWの周縁部に接触させながら、複数のローラー11をそれぞれの軸心を中心に回転させることで、ウェーハWを回転させる。次に、リンス液供給ノズル27からウェーハWの非デバイス面1にリンス液が供給され、保護液供給ノズル28からウェーハWのデバイス面2に保護液が供給される。リンス液は、ウェーハWの非デバイス面1上を半径方向外側に流れ、保護液は、遠心力によりウェーハWのデバイス面2の全体に広がる。 The wafer W to be polished is held by the roller 11 of the substrate holding portion 10 with the non-device surface 1 facing downward (that is, the device surface 2 facing upward), and is further rotated about the axis of the wafer W. To. Specifically, in the substrate holding portion 10, the plurality of rollers 11 are brought into contact with the peripheral edge portion of the wafer W while the non-device surface 1 of the wafer W is facing downward, and the plurality of rollers 11 are centered on their respective axes. By rotating, the wafer W is rotated. Next, the rinse liquid is supplied from the rinse liquid supply nozzle 27 to the non-device surface 1 of the wafer W, and the protective liquid is supplied from the protective liquid supply nozzle 28 to the device surface 2 of the wafer W. The rinsing liquid flows outward in the radial direction on the non-device surface 1 of the wafer W, and the protective liquid spreads over the entire device surface 2 of the wafer W by centrifugal force.
 さらに、図10A参照して説明したように、ウェーハWの非デバイス面1の研磨が開始される前から、非接触式洗浄機構30によるウェーハWのデバイス面2の洗浄が開始される。より具体的には、非接触式洗浄機構30の洗浄流体供給装置40から洗浄流体ノズル33に洗浄流体が供給され、該洗浄流体ノズル33から洗浄流体がウェーハWのデバイス面2に噴射される。同時に、非接触式洗浄機構30のノズル移動機構32によって、洗浄流体ノズル33をウェーハWの上方で水平方向に移動させる。 Further, as described with reference to FIG. 10A, cleaning of the device surface 2 of the wafer W by the non-contact cleaning mechanism 30 is started before the polishing of the non-device surface 1 of the wafer W is started. More specifically, the cleaning fluid is supplied to the cleaning fluid nozzle 33 from the cleaning fluid supply device 40 of the non-contact cleaning mechanism 30, and the cleaning fluid is injected from the cleaning fluid nozzle 33 onto the device surface 2 of the wafer W. At the same time, the nozzle moving mechanism 32 of the non-contact cleaning mechanism 30 moves the cleaning fluid nozzle 33 horizontally above the wafer W.
 図10Bを参照して説明したように、非接触式洗浄機構30によるウェーハWのデバイス面2の洗浄は、ウェーハWの非デバイス面1の研磨の開始と同時でもよい。あるいは、図10Cを参照して説明したように、非接触式洗浄機構30によるウェーハWのデバイス面2の洗浄は、ウェーハWの非デバイス面1の研磨の開始から所定時間Intが経過した後に開始してもよい。 As described with reference to FIG. 10B, cleaning of the device surface 2 of the wafer W by the non-contact cleaning mechanism 30 may be performed at the same time as the start of polishing of the non-device surface 1 of the wafer W. Alternatively, as described with reference to FIG. 10C, cleaning of the device surface 2 of the wafer W by the non-contact cleaning mechanism 30 starts after a predetermined time Int has elapsed from the start of polishing the non-device surface 1 of the wafer W. You may.
 洗浄流体ノズル33から噴射される洗浄流体としては、デバイス面2に付着するおそれがある異物に応じて、適切な洗浄流体が選択される。洗浄流体は、例えば、2流体ジェット、オゾン水、オゾンマイクロバブル水、電解水、メガソニック水、および薬液のいずれかでありえる。一実施形態では、洗浄流体は洗浄ガスであってもよい。 As the cleaning fluid ejected from the cleaning fluid nozzle 33, an appropriate cleaning fluid is selected according to the foreign matter that may adhere to the device surface 2. The cleaning fluid can be, for example, a two-fluid jet, ozone water, ozone microbubble water, electrolyzed water, megasonic water, and a chemical solution. In one embodiment, the cleaning fluid may be a cleaning gas.
 次に、動作制御部180は、研磨テープ供給機構41およびテープ送り装置46を駆動し、所定のテンションを掛けながら研磨テープ31をその長手方向に所定の速度で進行させる。そして、並進回転運動機構60は、研磨ヘッド50、研磨テープ供給機構41、ガイドローラー53a,53b,53c,53d、およびテープ送り装置46を並進回転運動させながら、研磨ヘッド50は研磨テープ31をウェーハWの非デバイス面1に接触させ、リンス液の存在下でウェーハWの非デバイス面1を研磨する。具体的には、加圧機構52は、研磨ブレード55を上方に押し上げ、研磨ブレード55は研磨テープ31の研磨面31aをウェーハWの非デバイス面1に押し付けることによって、ウェーハWの非デバイス面1の全体を研磨する。研磨装置は、ウェーハWの研磨中、リンス液および保護液を常にウェーハWに供給し続ける。さらに、研磨装置は、ウェーハWの研磨中、洗浄流体をウェーハWに供給し続けるのが好ましい。 Next, the operation control unit 180 drives the polishing tape supply mechanism 41 and the tape feeding device 46, and advances the polishing tape 31 in the longitudinal direction at a predetermined speed while applying a predetermined tension. Then, the translational rotation movement mechanism 60 moves the polishing head 50, the polishing tape supply mechanism 41, the guide rollers 53a, 53b, 53c, 53d, and the tape feeding device 46 in translational rotation movement, while the polishing head 50 wafers the polishing tape 31. The non-device surface 1 of the wafer W is polished in the presence of the rinsing liquid by contacting the non-device surface 1 of the W. Specifically, the pressurizing mechanism 52 pushes up the polishing blade 55 upward, and the polishing blade 55 presses the polishing surface 31a of the polishing tape 31 against the non-device surface 1 of the wafer W, whereby the non-device surface 1 of the wafer W is pressed. Polish the whole of. The polishing apparatus constantly supplies the rinse liquid and the protective liquid to the wafer W during the polishing of the wafer W. Further, the polishing apparatus preferably continues to supply the cleaning fluid to the wafer W during the polishing of the wafer W.
 本実施形態では、ウェーハWの研磨中、保護液供給ノズル28から保護液がウェーハWのデバイス面2の中心部に供給される。したがって、洗浄液供給ノズル33がウェーハWの周縁部付近に移動されても、ウェーハWの中心部は保護液により覆われたままである。特に、ウェーハWの回転速度が高く設定されていても、ウェーハWの中心部を含むデバイス面2の全体を少なくとも保護液によって覆うことができる。その結果、ウェーハWのデバイス面2に異物が付着することが効果的に防止される。 In the present embodiment, during polishing of the wafer W, the protective liquid is supplied from the protective liquid supply nozzle 28 to the central portion of the device surface 2 of the wafer W. Therefore, even if the cleaning liquid supply nozzle 33 is moved to the vicinity of the peripheral edge portion of the wafer W, the central portion of the wafer W remains covered with the protective liquid. In particular, even if the rotation speed of the wafer W is set high, at least the entire device surface 2 including the central portion of the wafer W can be covered with the protective liquid. As a result, foreign matter is effectively prevented from adhering to the device surface 2 of the wafer W.
 上述のように、研磨ブレード55の一端はウェーハWの周縁部から外側にはみ出ており、他端はウェーハWの非デバイス面1の中心O1を越えて延びているため、研磨ブレード55は、研磨テープ31をウェーハWの非デバイス面1の中心O1から最外部まで接触させることができる。ウェーハWの研磨中、ローラー11の位置は静止しているので、ローラー11は研磨ブレード55に接触しない。さらに、研磨ブレード55を含む研磨ヘッド50は並進回転運動するため、ウェーハWの中心部においても研磨テープ31とウェーハWとの相対速度を大きくすることができる。結果として、研磨テープ31は、最外部を含むウェーハWの非デバイス面1の全体を高い研磨レートで研磨することが可能となる。 As described above, one end of the polishing blade 55 protrudes outward from the peripheral edge of the wafer W, and the other end extends beyond the center O1 of the non-device surface 1 of the wafer W, so that the polishing blade 55 is polished. The tape 31 can be brought into contact with the non-device surface 1 of the wafer W from the center O1 to the outermost side. Since the position of the roller 11 is stationary during the polishing of the wafer W, the roller 11 does not come into contact with the polishing blade 55. Further, since the polishing head 50 including the polishing blade 55 moves in translational rotation, the relative speed between the polishing tape 31 and the wafer W can be increased even in the central portion of the wafer W. As a result, the polishing tape 31 can polish the entire non-device surface 1 of the wafer W including the outermost surface at a high polishing rate.
 予め設定された時間が経過した後、加圧機構52は、研磨ブレード55を下降させ、研磨テープ31をウェーハWの非デバイス面1から離す。その後、動作制御部180は、基板保持部10、非接触式洗浄機構30、研磨ヘッド50、研磨テープ供給機構41、テープ送り装置46、および並進回転運動機構60などの構成要素の動作を停止させ、ウェーハWの研磨処理を終了する。図10A乃至図10Cを参照して説明したように、動作制御部180は、ウェーハWの非デバイス面1の研磨が終了した後(すなわち、研磨テープ31が非デバイス面1から離れた後)で、非接触式洗浄機構30を停止してもよいし、ウェーハWの非デバイス面1の研磨の終了と同時に、非接触式洗浄機構30を停止してもよい。 After the preset time has elapsed, the pressurizing mechanism 52 lowers the polishing blade 55 and separates the polishing tape 31 from the non-device surface 1 of the wafer W. After that, the operation control unit 180 stops the operation of the components such as the substrate holding unit 10, the non-contact cleaning mechanism 30, the polishing head 50, the polishing tape supply mechanism 41, the tape feeding device 46, and the translational rotary motion mechanism 60. , Finish the polishing process of the wafer W. As described with reference to FIGS. 10A to 10C, the motion control unit 180 is after the polishing of the non-device surface 1 of the wafer W is completed (that is, after the polishing tape 31 is separated from the non-device surface 1). The non-contact cleaning mechanism 30 may be stopped, or the non-contact cleaning mechanism 30 may be stopped at the same time as the polishing of the non-device surface 1 of the wafer W is completed.
 本実施形態によれば、ウェーハ(基板)Wの非デバイス面1を研磨する研磨具の一例である研磨テープ31が非デバイス面1を研磨している間に、非接触式洗浄機構30によってデバイス面2が積極的に洗浄される。さらに、保護液供給ノズル28から供給された保護液がデバイス面2を覆い、異物がデバイス面2に到達することを防止する。したがって、研磨屑などの異物によってウェーハWのデバイス面2が汚染されることを効果的に防止することができ、その結果、デバイス面2に形成されたデバイスの信頼性が向上する。 According to the present embodiment, while the polishing tape 31, which is an example of a polishing tool for polishing the non-device surface 1 of the wafer (substrate) W, is polishing the non-device surface 1, the device is polished by the non-contact cleaning mechanism 30. Surface 2 is actively cleaned. Further, the protective liquid supplied from the protective liquid supply nozzle 28 covers the device surface 2 to prevent foreign matter from reaching the device surface 2. Therefore, it is possible to effectively prevent the device surface 2 of the wafer W from being contaminated by foreign matter such as polishing debris, and as a result, the reliability of the device formed on the device surface 2 is improved.
 ここで、基板の表面(例えば、デバイス面2)を洗浄する方法として、洗浄ブラシまたは洗浄スポンジなどの洗浄部材を基板の表面に直接摺接させる接触式洗浄方法(例えば、スクラブ洗浄方法)が従来から知られている。この接触式洗浄方法は、基板の表面に付着した比較的大きな異物を効率よく除去可能であるというメリットを有している。 Here, as a method of cleaning the surface of the substrate (for example, the device surface 2), a contact-type cleaning method (for example, a scrub cleaning method) in which a cleaning member such as a cleaning brush or a cleaning sponge is brought into direct sliding contact with the surface of the substrate is conventionally used. Known from. This contact-type cleaning method has an advantage that relatively large foreign matters adhering to the surface of the substrate can be efficiently removed.
 しかしながら、接触式洗浄方法では、洗浄部材をデバイス面2に所定の力で押し付ける押圧機構などの付帯設備が必要となるため、非接触式洗浄方法と比較して、研磨装置の構成が複雑となる。さらに、接触式洗浄方法では、基板の表面から除去された異物が洗浄部材に蓄積し、洗浄部材に蓄積された異物がデバイス面2に再付着する所謂逆汚染の問題が生じるおそれがある。そのため、洗浄部材を定期的にメンテナンスまたは交換する必要がある。本実施形態では、デバイス面2の洗浄は、2流体ジェット、オゾン水、オゾンマイクロバブル水、メガソニック水、薬液、および洗浄ガスなどから選択された洗浄流体を用いた非接触式洗浄方法で行われるため、逆汚染の問題が生じない。そのため、非接触式洗浄方法は、接触式洗浄方法と比較して、メンテナンス頻度およびランニングコストを低減することができる。 However, since the contact-type cleaning method requires ancillary equipment such as a pressing mechanism that presses the cleaning member against the device surface 2 with a predetermined force, the configuration of the polishing apparatus becomes complicated as compared with the non-contact-type cleaning method. .. Further, in the contact type cleaning method, there is a possibility that foreign matter removed from the surface of the substrate accumulates on the cleaning member, and the foreign matter accumulated on the cleaning member reattaches to the device surface 2 so-called back pollution problem. Therefore, it is necessary to regularly maintain or replace the cleaning member. In the present embodiment, the device surface 2 is cleaned by a non-contact cleaning method using a cleaning fluid selected from two-fluid jet, ozone water, ozone microbubble water, megasonic water, chemical solution, cleaning gas, and the like. Therefore, the problem of back pollution does not occur. Therefore, the non-contact cleaning method can reduce the maintenance frequency and the running cost as compared with the contact cleaning method.
 さらに、本実施形態によれば、ウェーハWの非デバイス面1の研磨後にウェーハWのデバイス面2にはほとんど異物が付着していないので、ウェーハWの研磨処理の後に行われる該ウェーハWの洗浄処理の時間短縮を図ることができる。その結果、後述するように、研磨装置が配置される基板処理装置のスループットも向上させることができる。 Further, according to the present embodiment, since almost no foreign matter adheres to the device surface 2 of the wafer W after polishing the non-device surface 1 of the wafer W, cleaning of the wafer W performed after the polishing process of the wafer W is performed. The processing time can be shortened. As a result, as will be described later, the throughput of the substrate processing apparatus in which the polishing apparatus is arranged can also be improved.
 図11は、上述した研磨装置を備えた基板処理装置の一実施形態を模式的に示す平面図である。本実施形態では、基板処理装置は、多数のウェーハWが収容されたウェーハカセット(基板カセット)が載置される複数のロードポート122を備えたロードアンロード部121を有している。ロードポート122には、オープンカセット、SMIF(Standard Manufacturing Interface)ポッド、またはFOUP(Front Opening Unified Pod)を搭載することができるようになっている。SMIF、FOUPは、内部にウェーハカセットを収納し、隔壁で覆うことにより、外部空間とは独立した環境を保つことができる密閉容器である。 FIG. 11 is a plan view schematically showing an embodiment of the substrate processing apparatus provided with the above-mentioned polishing apparatus. In the present embodiment, the substrate processing apparatus has a load / unload portion 121 having a plurality of load ports 122 on which a wafer cassette (board cassette) accommodating a large number of wafers W is placed. The load port 122 can be equipped with an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod). SMIF and FOUP are airtight containers that can maintain an environment independent of the external space by storing the wafer cassette inside and covering it with a partition wall.
 ロードアンロード部121には、ロードポート122の配列方向に沿って移動可能な第1の搬送ロボット(ローダー)123が設置されている。第1の搬送ロボット123はロードポート122に搭載されたウェーハカセットにアクセスして、ウェーハWをウェーハカセットから取り出すことができるようになっている。 The load / unload section 121 is provided with a first transfer robot (loader) 123 that can move along the arrangement direction of the load ports 122. The first transfer robot 123 can access the wafer cassette mounted on the load port 122 and take out the wafer W from the wafer cassette.
 基板処理装置は、水平方向に移動可能な第2の搬送ロボット126と、ウェーハWが一時的に置かれる第1仮置き台140および第2仮置き台141と、研磨ユニット127と、基板処理装置全体の動作を制御するシステムコントローラ133と、研磨されたウェーハWを洗浄する洗浄ユニット172と、洗浄されたウェーハWを乾燥させる乾燥ユニット173とをさらに備えている。第2仮置き台141と洗浄ユニット172との間には、ウェーハWを搬送するための第3の搬送ロボット150が配置されており、洗浄ユニット172と乾燥ユニット173との間には、ウェーハWを搬送するための第4の搬送ロボット151が配置されている。研磨ユニット127は、上述した研磨装置である。上述の動作制御部180を、システムコントローラ133として用いてもよいし、システムコントローラ133に内蔵してもよい。 The substrate processing apparatus includes a second transfer robot 126 that can move in the horizontal direction, a first temporary placement table 140 and a second temporary placement table 141 on which the wafer W is temporarily placed, a polishing unit 127, and a substrate processing device. It further includes a system controller 133 that controls the overall operation, a cleaning unit 172 that cleans the polished wafer W, and a drying unit 173 that dries the cleaned wafer W. A third transfer robot 150 for transporting the wafer W is arranged between the second temporary stand 141 and the cleaning unit 172, and the wafer W is located between the cleaning unit 172 and the drying unit 173. A fourth transfer robot 151 for transporting the wafer is arranged. The polishing unit 127 is the above-mentioned polishing device. The above-mentioned operation control unit 180 may be used as the system controller 133, or may be built in the system controller 133.
 次に、研磨ユニット127を用いてウェーハWを研磨するときのウェーハWの搬送ルートについて説明する。複数(例えば25枚)のウェーハWは、そのデバイス面2が上を向いた状態で、ロードポート122のウェーハカセット(基板カセット)内に収容されている。第1の搬送ロボット123は、ウェーハカセットから1枚のウェーハWを取り出し、ウェーハWを第1仮置き台140に載置する。第2の搬送ロボット126は、ウェーハWを第1仮置き台140から取り出し、ウェーハWの非デバイス面1が下向きの状態でウェーハWを研磨ユニット127に搬送する。上述のように、ウェーハWの非デバイス面1は研磨ユニット127によって研磨される。第2の搬送ロボット126は、研磨されたウェーハWを研磨ユニット127から取り出し、第2仮置き台141に載置する。第3の搬送ロボット150は、ウェーハWを第2仮置き台141から取り出し、洗浄ユニット172に搬送する。 Next, the transfer route of the wafer W when polishing the wafer W using the polishing unit 127 will be described. A plurality of (for example, 25) wafers W are housed in the wafer cassette (board cassette) of the load port 122 with the device surface 2 facing upward. The first transfer robot 123 takes out one wafer W from the wafer cassette and places the wafer W on the first temporary storage table 140. The second transfer robot 126 takes out the wafer W from the first temporary stand 140 and transfers the wafer W to the polishing unit 127 with the non-device surface 1 of the wafer W facing downward. As described above, the non-device surface 1 of the wafer W is polished by the polishing unit 127. The second transfer robot 126 takes out the polished wafer W from the polishing unit 127 and places it on the second temporary storage table 141. The third transfer robot 150 takes out the wafer W from the second temporary storage table 141 and transfers it to the cleaning unit 172.
 ウェーハWは、その研磨された非デバイス面1が下向きの状態で、洗浄ユニット172によって洗浄される。一実施形態では、洗浄ユニット172は、ウェーハWを挟むように配置された上側洗浄具(例えば、上側ロールスポンジ)および下側洗浄具(例えば、下側ロールスポンジ)を備えており、洗浄液をウェーハWの両面に供給しながらこれら洗浄具でウェーハの両面を洗浄する。 The wafer W is cleaned by the cleaning unit 172 with its polished non-device surface 1 facing downward. In one embodiment, the cleaning unit 172 includes an upper cleaning tool (for example, an upper roll sponge) and a lower cleaning tool (for example, a lower roll sponge) arranged so as to sandwich the wafer W, and the cleaning liquid is transferred to the wafer. Both sides of the wafer are cleaned with these cleaning tools while supplying both sides of W.
 上述したように、研磨ユニット127で研磨されたウェーハWのデバイス面2は、非接触式洗浄機構30によって既に洗浄されている。そのため、洗浄ユニット172でのウェーハWの洗浄処理の負担が軽減されるとともに、比較的短時間で洗浄処理を完了することができる。例えば、上側洗浄具によるデバイス面2の洗浄時間を短くすることが可能であり、さらには、上側洗浄具および下側洗浄具によるウェーハWの両面の洗浄時間の短縮も期待できる。その結果、基板処理装置のスループットを向上させることができ、さらに、洗浄ユニット172でのランニングコストを低減することができる。一実施形態では、洗浄ユニット172で、下側洗浄具によってウェーハWの非デバイス面1のみを洗浄してもよい。この場合、上側洗浄具を省略できるので、洗浄ユニット172の構成を単純化することができ、さらに、洗浄ユニット172のランニングコストをさらに低減することができる。 As described above, the device surface 2 of the wafer W polished by the polishing unit 127 has already been cleaned by the non-contact cleaning mechanism 30. Therefore, the burden of the cleaning process of the wafer W in the cleaning unit 172 is reduced, and the cleaning process can be completed in a relatively short time. For example, it is possible to shorten the cleaning time of the device surface 2 by the upper cleaning tool, and further, it is expected that the cleaning time of both sides of the wafer W by the upper cleaning tool and the lower cleaning tool can be shortened. As a result, the throughput of the substrate processing apparatus can be improved, and the running cost in the cleaning unit 172 can be reduced. In one embodiment, the cleaning unit 172 may clean only the non-device surface 1 of the wafer W with the lower cleaning tool. In this case, since the upper cleaning tool can be omitted, the configuration of the cleaning unit 172 can be simplified, and the running cost of the cleaning unit 172 can be further reduced.
 第4の搬送ロボット151は、洗浄されたウェーハWを洗浄ユニット172から取り出し、乾燥ユニット173に搬送する。ウェーハWは、その洗浄された非デバイス面1が下向きの状態で、乾燥ユニット173によって乾燥される。本実施形態では、乾燥ユニット173は、ウェーハWをその軸心まわりに高速で回転させることによってウェーハWをスピン乾燥させるように構成されている。一実施形態では、乾燥ユニット173は、純水ノズルおよびIPAノズルをウェーハWの半径方向に移動させながら、純水ノズルおよびIPAノズルから純水とIPA蒸気(イソプロピルアルコールとNガスとの混合物)をウェーハWの上面に供給することでウェーハWを乾燥させるIPAタイプであってもよい。 The fourth transfer robot 151 takes out the cleaned wafer W from the cleaning unit 172 and transfers it to the drying unit 173. The wafer W is dried by the drying unit 173 with its washed non-device surface 1 facing downward. In the present embodiment, the drying unit 173 is configured to spin-dry the wafer W by rotating the wafer W around its axis at high speed. In one embodiment, the drying unit 173, while moving the water nozzle and IPA nozzle in the radial direction of the wafer W, (a mixture of isopropyl alcohol and N 2 gas) from the pure water nozzle and IPA nozzle pure water and the IPA vapor May be an IPA type that dries the wafer W by supplying the above surface to the upper surface of the wafer W.
 乾燥されたウェーハWは、その非デバイス面1が下向きの状態で第1の搬送ロボット123によりロードポート122のウェーハカセットに戻される。このようにして、基板処理装置は、ウェーハWの非デバイス面1が下向きの状態のまま、ウェーハWの研磨、洗浄、乾燥、およびロードアンロード部への搬送の一連の工程を行うことができる。 The dried wafer W is returned to the wafer cassette of the load port 122 by the first transfer robot 123 with its non-device surface 1 facing downward. In this way, the substrate processing apparatus can perform a series of steps of polishing, cleaning, drying, and transferring the wafer W to the load / unload portion while the non-device surface 1 of the wafer W is facing downward. ..
 この基板処理装置によれば、ウェーハWの非デバイス面1が下向きの状態で、効率的にウェーハWの非デバイス面1の全体を研磨することができる。結果として、ウェーハWを反転させる必要がなくなるため、ウェーハWへの空気中の不純物の付着を防止し、かつ全体の処理時間を減らすことができる。さらに、ウェーハWを反転させる反転機が不要であり、基板処理装置の構成を単純化し、費用を削減することができる。一実施形態では、基板処理装置は、別の研磨ユニット127をさらに備えてもよい。基板処理装置が複数の研磨ユニット127を備えることによって、処理枚数が倍増し、基板処理装置のスループットを向上させることができる。 According to this substrate processing apparatus, the entire non-device surface 1 of the wafer W can be efficiently polished while the non-device surface 1 of the wafer W is facing downward. As a result, it is not necessary to invert the wafer W, so that it is possible to prevent impurities in the air from adhering to the wafer W and reduce the overall processing time. Further, a reversing machine for reversing the wafer W is not required, the configuration of the substrate processing apparatus can be simplified, and the cost can be reduced. In one embodiment, the substrate processing apparatus may further include another polishing unit 127. When the substrate processing apparatus includes a plurality of polishing units 127, the number of processed sheets can be doubled and the throughput of the substrate processing apparatus can be improved.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The above-described embodiment is described for the purpose of enabling a person having ordinary knowledge in the technical field to which the present invention belongs to carry out the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Therefore, the present invention is not limited to the described embodiments, but is construed in the broadest range according to the technical idea defined by the claims.
 本発明は、ウェーハなどの基板の裏面を研磨する研磨装置および研磨方法に利用可能である。さらに、本発明は、研磨装置を備えた基板処理装置に利用可能である。 The present invention can be used in a polishing device and a polishing method for polishing the back surface of a substrate such as a wafer. Furthermore, the present invention can be applied to a substrate processing apparatus provided with a polishing apparatus.
10   基板保持部
11   ローラー
12   ローラー回転機構
27   リンス液供給ノズル
28   保護液供給ノズル
30   非接触式洗浄機構
31   研磨テープ
32   ノズル移動機構
33   洗浄流体ノズル
34   ノズルアーム
35   ノズル旋回軸
36   モータ(駆動機)
37   洗浄流体ライン
38   流量調整器
40   洗浄流体供給装置
41   研磨テープ供給機構
46   テープ送り装置
50   研磨ヘッド
52   加圧機構
53a,53b,53c,53d,53e,53f,53g  ガイドローラー
55   研磨ブレード
56   研磨パッド
57   バックプレート
60   並進回転運動機構
85   オゾン発生器
86   電解水生成機
127  研磨ユニット(研磨装置)
133  システムコントローラ
140  第1仮置き台
141  第2仮置き台
150  第3の搬送ロボット
151  第4の搬送ロボット
172  洗浄ユニット
173  乾燥ユニット
180  動作制御部
10 Board holding part 11 Roller 12 Roller rotation mechanism 27 Rinse liquid supply nozzle 28 Protective liquid supply nozzle 30 Non-contact cleaning mechanism 31 Polishing tape 32 Nozzle moving mechanism 33 Cleaning fluid nozzle 34 Nozzle arm 35 Nozzle swivel shaft 36 Motor (driving machine)
37 Cleaning fluid line 38 Flow regulator 40 Cleaning fluid supply device 41 Polishing tape supply mechanism 46 Tape feeding device 50 Polishing head 52 Pressurizing mechanism 53a, 53b, 53c, 53d, 53e, 53f, 53g Guide roller 55 Polishing blade 56 Polishing pad 57 Back plate 60 Translational rotary motion mechanism 85 Ozone generator 86 Electrolyzed water generator 127 Polishing unit (polishing device)
133 System controller 140 1st temporary stand 141 2nd temporary stand 150 3rd transfer robot 151 4th transfer robot 172 Cleaning unit 173 Drying unit 180 Operation control unit

Claims (16)

  1.  基板をそのデバイス面が上を向いた状態で保持して、該基板を回転させる基板保持部と、
     前記基板の非デバイス面に接触して、該基板の非デバイス面を研磨する研磨具と、
     前記研磨具で前記基板の非デバイス面を研磨している間に、前記基板のデバイス面を洗浄する非接触式洗浄機構と、を備えたことを特徴とする研磨装置。
    A substrate holding portion that holds the substrate with its device surface facing up and rotates the substrate,
    A polishing tool that comes into contact with the non-device surface of the substrate and polishes the non-device surface of the substrate.
    A polishing apparatus including a non-contact cleaning mechanism for cleaning the device surface of the substrate while polishing the non-device surface of the substrate with the polishing tool.
  2.  前記非接触式洗浄機構は、
      洗浄流体を前記基板のデバイス面に向けて噴射する洗浄流体ノズルと、
      前記洗浄流体ノズルを、前記基板のデバイス面の上方で移動させるノズル移動機構と、を有することを特徴とする請求項1に記載の研磨装置。
    The non-contact cleaning mechanism
    A cleaning fluid nozzle that injects cleaning fluid toward the device surface of the substrate, and
    The polishing apparatus according to claim 1, further comprising a nozzle moving mechanism for moving the cleaning fluid nozzle above the device surface of the substrate.
  3.  前記洗浄流体ノズルは、2流体ジェットを前記基板のデバイス面に向けて噴射させる2流体ジェットノズルであることを特徴とする請求項2に記載の研磨装置。 The polishing apparatus according to claim 2, wherein the cleaning fluid nozzle is a two-fluid jet nozzle that injects a two-fluid jet toward a device surface of the substrate.
  4.  前記非接触式洗浄機構は、オゾン発生器をさらに含み、
     前記洗浄流体ノズルは、オゾン水、またはオゾンマイクロバブル水を前記基板のデバイス面に向けて噴射することを特徴とする請求項2に記載の研磨装置。
    The non-contact cleaning mechanism further includes an ozone generator.
    The polishing apparatus according to claim 2, wherein the cleaning fluid nozzle injects ozone water or ozone microbubble water toward the device surface of the substrate.
  5.  前記非接触式洗浄機構は、電解水生成機をさらに含み、
     前記洗浄流体ノズルは、電解水を前記基板のデバイス面に向けて噴射することを特徴とする請求項2に記載の研磨装置。
    The non-contact cleaning mechanism further includes an electrolyzed water generator.
    The polishing apparatus according to claim 2, wherein the cleaning fluid nozzle injects electrolyzed water toward the device surface of the substrate.
  6.  前記洗浄流体ノズルは、メガソニック水または薬液を前記基板のデバイス面に向けて噴射することを特徴とする請求項2に記載の研磨装置。 The polishing apparatus according to claim 2, wherein the cleaning fluid nozzle ejects megasonic water or a chemical solution toward the device surface of the substrate.
  7.  前記基板のデバイス面に保護液を供給する保護液供給ノズルをさらに備えたことを特徴とする請求項1乃至6のいずれか一項に記載の研磨装置。 The polishing apparatus according to any one of claims 1 to 6, further comprising a protective liquid supply nozzle for supplying a protective liquid to the device surface of the substrate.
  8.  基板を、そのデバイス面が上を向いた状態で保持して、該基板を回転させ、
     前記回転している基板の非デバイス面に研磨具を押し付けて、該非デバイス面を研磨し、
     前記基板の非デバイス面を研磨している間に、前記基板のデバイス面を非接触式洗浄機構で洗浄することを特徴とする研磨方法。
    Hold the board with its device side facing up and rotate the board.
    A polishing tool is pressed against the non-device surface of the rotating substrate to polish the non-device surface.
    A polishing method comprising cleaning the device surface of the substrate with a non-contact cleaning mechanism while polishing the non-device surface of the substrate.
  9.  前記基板のデバイス面の洗浄は、洗浄流体ノズルを前記基板のデバイス面の上方で移動させながら、該洗浄流体ノズルから洗浄流体を前記基板のデバイス面に噴射することにより行われることを特徴とする請求項8に記載の研磨方法。 The device surface of the substrate is cleaned by injecting a cleaning fluid from the cleaning fluid nozzle onto the device surface of the substrate while moving the cleaning fluid nozzle above the device surface of the substrate. The polishing method according to claim 8.
  10.  前記洗浄流体ノズルは、2流体ジェットを前記基板のデバイス面に向けて噴射することを特徴とする請求項9に記載の研磨方法。 The polishing method according to claim 9, wherein the cleaning fluid nozzle injects a two-fluid jet toward the device surface of the substrate.
  11.  前記洗浄流体ノズルは、オゾン水、またはオゾンマイクロバブル水を前記基板のデバイス面に向けて噴射することを特徴とする請求項9に記載の研磨方法。 The polishing method according to claim 9, wherein the cleaning fluid nozzle injects ozone water or ozone microbubble water toward the device surface of the substrate.
  12.  前記洗浄流体ノズルは、電解水を前記基板のデバイス面に向けて噴射することを特徴とする請求項9に記載の研磨方法。 The polishing method according to claim 9, wherein the cleaning fluid nozzle injects electrolyzed water toward the device surface of the substrate.
  13.  前記洗浄流体ノズルは、メガソニック水または薬液を前記基板のデバイス面に向けて噴射することを特徴とする請求項9に記載の研磨方法。 The polishing method according to claim 9, wherein the cleaning fluid nozzle sprays megasonic water or a chemical solution toward the device surface of the substrate.
  14.  前記基板の非デバイス面を研磨している間、前記基板のデバイス面にさらに保護液が供給されることを特徴とする請求項8乃至13のいずれか一項に記載の研磨方法。 The polishing method according to any one of claims 8 to 13, wherein a protective liquid is further supplied to the device surface of the substrate while the non-device surface of the substrate is being polished.
  15.  請求項1乃至7のいずれか一項に記載の研磨装置と、
     前記研磨装置によって研磨された基板を洗浄する洗浄ユニットと、
     前記洗浄ユニットで洗浄された基板を乾燥させる乾燥ユニットと、を備えたことを特徴とする基板処理装置。
    The polishing apparatus according to any one of claims 1 to 7.
    A cleaning unit that cleans the substrate polished by the polishing device, and
    A substrate processing apparatus including a drying unit for drying a substrate cleaned by the cleaning unit.
  16.  前記洗浄ユニットは、前記基板の非デバイス面のみを洗浄することを特徴とする請求項15に記載の基板処理装置。 The substrate processing apparatus according to claim 15, wherein the cleaning unit cleans only the non-device surface of the substrate.
PCT/JP2020/023328 2019-09-03 2020-06-15 Polishing device, polishing method and substrate processing device WO2021044694A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019160218A JP7406943B2 (en) 2019-09-03 2019-09-03 Polishing equipment, polishing method, and substrate processing equipment
JP2019-160218 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021044694A1 true WO2021044694A1 (en) 2021-03-11

Family

ID=74847361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023328 WO2021044694A1 (en) 2019-09-03 2020-06-15 Polishing device, polishing method and substrate processing device

Country Status (3)

Country Link
JP (1) JP7406943B2 (en)
TW (1) TW202112496A (en)
WO (1) WO2021044694A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117260515A (en) * 2023-11-22 2023-12-22 北京特思迪半导体设备有限公司 Dynamic linkage control method of polishing machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273961A (en) * 2003-03-12 2004-09-30 Ebara Corp Cleaning device of metal wiring forming substrate
JP2006303143A (en) * 2005-04-20 2006-11-02 Seiko Epson Corp Apparatus and method for cleaning substrate
JP2015119161A (en) * 2013-11-13 2015-06-25 東京エレクトロン株式会社 Polishing/cleaning mechanism, substrate processing apparatus, and substrate processing method
JP2017108113A (en) * 2015-11-27 2017-06-15 株式会社荏原製作所 Substrate processing apparatus, substrate processing method, and control program of substrate processing apparatus
JP2019091886A (en) * 2017-11-14 2019-06-13 株式会社荏原製作所 Substrate processing apparatus and substrate processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273961A (en) * 2003-03-12 2004-09-30 Ebara Corp Cleaning device of metal wiring forming substrate
JP2006303143A (en) * 2005-04-20 2006-11-02 Seiko Epson Corp Apparatus and method for cleaning substrate
JP2015119161A (en) * 2013-11-13 2015-06-25 東京エレクトロン株式会社 Polishing/cleaning mechanism, substrate processing apparatus, and substrate processing method
JP2017108113A (en) * 2015-11-27 2017-06-15 株式会社荏原製作所 Substrate processing apparatus, substrate processing method, and control program of substrate processing apparatus
JP2019091886A (en) * 2017-11-14 2019-06-13 株式会社荏原製作所 Substrate processing apparatus and substrate processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117260515A (en) * 2023-11-22 2023-12-22 北京特思迪半导体设备有限公司 Dynamic linkage control method of polishing machine
CN117260515B (en) * 2023-11-22 2024-02-13 北京特思迪半导体设备有限公司 Dynamic linkage control method of polishing machine

Also Published As

Publication number Publication date
JP2021040022A (en) 2021-03-11
TW202112496A (en) 2021-04-01
JP7406943B2 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
US20020007840A1 (en) Substrate cleaning apparatus, substrate cleaning method and substrate processing apparatus
KR102322525B1 (en) Apparatus and method for processing a surface of a substrate
TWI774776B (en) Method and apparatus for polishing a substrate, and method for processing a substrate
EP3476536B1 (en) Polishing apparatus
JP2014167996A (en) Polishing device and polishing method
JP2001007069A (en) Substrate cleaner
JP2007194367A (en) Washing apparatus, and dicing equipment provided therewith
WO2021044694A1 (en) Polishing device, polishing method and substrate processing device
JP2019091886A (en) Substrate processing apparatus and substrate processing method
JP6445298B2 (en) Polishing apparatus and processing method
JP6159282B2 (en) Substrate processing apparatus and piping cleaning method for substrate processing apparatus
JP2020184581A (en) Substrate processing apparatus and substrate processing method
JP6625461B2 (en) Polishing equipment
KR102628175B1 (en) Substrate processing apparatus and substrate processing method
EP3396707B1 (en) Apparatus and method for cleaning a back surface of a substrate
WO2024135111A1 (en) Substrate processing apparatus and substrate processing method
JP2023097533A (en) Polishing device and polishing method
JP6346541B2 (en) Buff processing apparatus and substrate processing apparatus
JP2015044251A (en) Polishing method
US10651057B2 (en) Apparatus and method for cleaning a back surface of a substrate
JP2022039487A (en) Workpiece support device and workpiece support method
JP2019042923A (en) Polishing device and processing method
TW201842983A (en) Apparatus and method for cleaning back surface of substrate capable of removing particles from a back surface of a substrate with a higher removal rate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860796

Country of ref document: EP

Kind code of ref document: A1