WO2021044636A1 - 端末 - Google Patents

端末 Download PDF

Info

Publication number
WO2021044636A1
WO2021044636A1 PCT/JP2019/035283 JP2019035283W WO2021044636A1 WO 2021044636 A1 WO2021044636 A1 WO 2021044636A1 JP 2019035283 W JP2019035283 W JP 2019035283W WO 2021044636 A1 WO2021044636 A1 WO 2021044636A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmission power
reduction
gnb
uplink
Prior art date
Application number
PCT/JP2019/035283
Other languages
English (en)
French (fr)
Inventor
徹 内野
佑一 柿島
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/035283 priority Critical patent/WO2021044636A1/ja
Publication of WO2021044636A1 publication Critical patent/WO2021044636A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to a terminal that executes wireless communication, particularly a terminal that avoids overheating.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5G New Radio
  • Non-Patent Document 1 In order to avoid overheating of the terminal, it is stipulated that the terminal performs an operation that may lead to a decrease in transmission power when the internal temperature rises (see Non-Patent Document 1).
  • the terminal sets a low terminal capability (for example, the number of component carriers supported by the terminal, bandwidth, etc.) that determines the uplink transmission rate, and transfers the terminal capability to the network or other terminals.
  • a low terminal capability for example, the number of component carriers supported by the terminal, bandwidth, etc.
  • the amount of decrease in transmission power due to the decrease in uplink transmission rate is not always constant.
  • the transmission power changes according to the distance between the terminal and the wireless base station. ..
  • the transmission power may not decrease to the extent that overheating of the terminal can be avoided.
  • the network traffic may increase with the notification.
  • the present invention has been made in view of such a situation, and while maintaining communication between the terminal and the network, it surely avoids overheating of the terminal and suppresses an increase in network traffic.
  • the purpose is to provide a terminal to obtain.
  • the terminal (200) has a control unit (240) that changes the uplink transmission power when the temperature-related state of the terminal (200) changes, and the changed transmission power.
  • a transmission unit (210) for notifying information on the transmission power via an uplink when the indicated value satisfies a predetermined condition is provided.
  • the terminal (200) is from a control unit (240) that changes the uplink transmission power when the temperature-related state of the terminal (200) changes, and from the network (gNB100).
  • a transmission unit (210) that notifies information on the transmission power by an uplink based on a command is provided.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of the terminal 200.
  • FIG. 3 is a diagram illustrating an example of an operation of reducing transmission power.
  • FIG. 4 is a diagram illustrating an example of a value indicating a reduced transmission power.
  • FIG. 5 is a diagram showing an operation flow of the terminal 200 in the procedure for reducing the transmission power.
  • FIG. 6 is a diagram showing an operation flow (operation example 1) of the terminal 200 at the notification timing.
  • FIG. 7 is a diagram showing an operation flow (operation example 2) of the terminal 200 at the notification timing.
  • FIG. 8 is a diagram showing an operation flow (operation example 3) of the terminal 200 at the notification timing.
  • FIG. 9 is a diagram showing an operation flow of the terminal 200 in notification suppression.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of the terminal 200.
  • FIG. 3 is a diagram illustrating an example of
  • FIG. 10 is a diagram showing a notification sequence by the gNB 100 and the terminal 200 in the notification method.
  • FIG. 11 is a diagram showing an operation flow of the terminal 200 in a modified example of the transmission power reduction procedure.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the terminal 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to New Radio (NR), and includes a Next Generation-Radio Access Network 20 (NG-RAN20) and a terminal 200.
  • the terminal is also referred to as User Equipment (UE).
  • NR New Radio
  • NG-RAN20 Next Generation-Radio Access Network 20
  • UE User Equipment
  • NG-RAN20 includes a radio base station 100 (hereinafter, gNB100).
  • gNB100 radio base station 100
  • the specific configuration of the wireless communication system 10 including the number of gNBs and terminals is not limited to the example shown in FIG.
  • NG-RAN20 actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to NR.
  • NG-RAN20 and 5GC may be simply expressed as a network.
  • the gNB100 is a wireless base station that complies with NR, and executes wireless communication with the terminal 200 according to NR.
  • the gNB 100 and the terminal 200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from a plurality of antenna elements, and carrier aggregation (CA) that bundles and uses a plurality of component carriers (CC).
  • CA carrier aggregation
  • DC dual connectivity
  • CC is also called a carrier.
  • the terminal 200 has an uplink transmission power set between the gNB 100 and the terminal 200 when the internal temperature of the terminal 200 exceeds a predetermined value in order to avoid overheating of the terminal 200. To reduce. In addition, overheating is also referred to as an overheated state.
  • the wireless communication system 10 may include an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) instead of the NG-RAN20.
  • E-UTRAN includes a plurality of E-UTRAN Nodes, specifically, an eNB (or en-gNB), and is connected to an LTE-compliant core network (EPC).
  • EPC LTE-compliant core network
  • FIG. 2 is a functional block configuration diagram of the terminal 200. As shown in FIG. 2, the terminal 200 includes a transmission unit 210, a reception unit 220, a heat generation state detection unit 230, and a control unit 240.
  • the transmission unit 210 transmits an uplink signal (UL signal) according to NR.
  • the receiving unit 220 receives the downlink signal (DL signal) according to the NR.
  • the transmitting unit 210 and the receiving unit 220 include a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical downlink shared channel (PDSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Wireless communication between the gNB 100 and the terminal 200 is performed via a random access channel (RACH) or the like.
  • RACH random access channel
  • the transmission unit 210 transmits a radio resource control (RRC) message.
  • RRC radio resource control
  • the transmission unit 210 transmits signals for, for example, Assistant information, measurement report, History information, and Minimization Drive Test (MDT).
  • MDT Minimization Drive Test
  • the transmission unit 210 transmits a media access control (MAC) control element (CE).
  • Transmitter 210 transmits, for example, a new MAC CE and Power Headroom Report (PHR).
  • MAC media access control
  • PHR Power Headroom Report
  • the transmitter 210 transmits the buffer status report (BSR), sounding reference signal (SRS), channel state information (CSI), layer 1 reference signal received power (L1-RSRP), and uplink control information (UCI). ..
  • BSR buffer status report
  • SRS sounding reference signal
  • CSI channel state information
  • L1-RSRP layer 1 reference signal received power
  • UCI uplink control information
  • the transmission unit 210 When the transmission unit 210 changes the transmission power of the uplink, the transmission unit 210 notifies the information regarding the transmission power on the uplink. For example, when reducing the uplink transmission power, the transmission unit 210 notifies the gNB 100 of the reduction in the transmission power, as will be described later.
  • the transmission unit 210 uses an RRC message, MAC CE, PHR, RACH, etc. to notify information on transmission power via an uplink.
  • the transmission unit 210 When the transmission power of the uplink is changed, the transmission unit 210 notifies the information regarding the transmission power on the uplink when the value indicating the changed transmission power satisfies a predetermined condition. For example, as will be described later, when the uplink transmission power is reduced, the transmission unit 210 notifies the gNB 100 of the reduction of the transmission power when the value indicating the reduced transmission power satisfies a predetermined condition.
  • the transmission unit 210 when the absolute value of the reduced transmission power is used as the value indicating the reduced transmission power, when the absolute value of the reduced transmission power becomes smaller than the threshold value, the transmission unit 210 will be described later. As described above, the gNB100 is notified that the transmission power has been reduced or the absolute value of the transmitted power after the reduction has been reduced.
  • the transmission unit 210 transmits as will be described later. Notify gNB100 that the power has been reduced or the relative value of the transmitted power after the reduction.
  • the transmission unit 210 determines the transmission power as described later. Notify gNB100 of the reduction or the amount of change in transmission power.
  • the transmission unit 210 may notify the information regarding the transmission power on the uplink when the value indicating the changed transmission power becomes smaller than the threshold value for a predetermined number of times or for a predetermined period. For example, as will be described later, when the transmission power of the uplink is reduced, the transmission unit 210 reduces the transmission power when the value indicating the reduced transmission power satisfies a predetermined period, a predetermined number of times, and a predetermined condition. May be notified to. The determination of the predetermined condition may be made based on the case where the predetermined condition is continuously satisfied, or when the predetermined condition is determined in each of one or a plurality of separated periods and the predetermined condition is satisfied in total. You may judge.
  • the transmission unit 210 may notify information on transmission power via an uplink based on a command from gNB100. For example, the transmission unit 210 may notify the gNB 100 of the reduction in transmission power based on a command from the gNB 100, as will be described later.
  • the receiving unit 220 receives the broadcast information, the RRC message, and the transmission power control (TPC) command.
  • TPC transmission power control
  • the heat generation state detection unit 230 detects the heat generation state inside the terminal.
  • the heat generation state detection unit 230 detects the internal temperature of the terminal 200 as the heat generation state inside the terminal.
  • the heat generation state detection unit 230 may directly detect the amount of heat generated inside the terminal.
  • the control unit 240 controls each functional block constituting the terminal 200.
  • the control unit 240 changes the uplink transmission power when the temperature-related state of the terminal 200 changes.
  • the "change” in the present embodiment mainly means, but is not limited to, "reduction of transmission power”.
  • control unit 240 determines whether or not the terminal 200 is overheated based on the heat generation state inside the terminal detected by the heat generation state detection unit 230. As will be described later, the control unit 240 reduces the uplink transmission power set between the gNB 100 and the terminal 200 when the terminal 200 overheats.
  • the control unit 240 determines whether or not to notify the information regarding the transmission power on the uplink based on the value indicating the changed transmission power. Based on the determination, the transmission unit 210 notifies the information regarding the transmission power by an uplink.
  • the control unit 240 determines whether or not to notify the gNB 100 of the reduction in transmission power based on the value indicating the reduced transmission power.
  • the transmission unit 210 notifies the gNB 100 of the reduction in transmission power based on the determination.
  • the control unit 240 activates the random access procedure when the state related to the temperature of the terminal changes. For example, the control unit 240 executes a random access procedure using RACH between the gNB 100 and the terminal 200, as will be described later.
  • the transmission unit 210 notifies the gNB 100 of the reduction in transmission power in the random access procedure.
  • the control unit 240 gives the notification when the notification suppression period set from the time when the transmission unit 210 notifies the information about the transmission power by the uplink has ended or has ended.
  • control unit 240 may suppress the notification from the time when the transmission unit 210 notifies the gNB 100 of the reduction in transmission power until the notification suppression period elapses. Specifically, the control unit 240 activates the timer from the time when the transmission unit 210 notifies the gNB 100 of the reduction in transmission power, and suppresses the notification until the timer expires.
  • FIG. 3 is a diagram illustrating an example of an operation for reducing transmission power.
  • the terminal 200 detects the heat generation state inside the terminal at a fixed time interval T IN.
  • the terminal 200 detects the internal temperature of the terminal 200 as a heat generating state inside the terminal.
  • Celsius, Fahrenheit, Kelvin, etc. are used as the temperature unit.
  • the terminal 200 may directly detect the amount of heat generated inside the terminal as the heat generation state inside the terminal.
  • the terminal 200 determines that the terminal 200 has not overheated and maintains the transmission power P1 (period D1 in FIG. 3).
  • the transmission power is determined by the following formula 1.
  • P PUSCH is the transmission power of PUSCH.
  • P CMAX is the maximum transmission power of PUSCH that the terminal 200 can transmit.
  • P O_PUSCH is a parameter value specified by the network.
  • is a parameter value of the subcarrier interval used for PUSCH transmission.
  • M RB is the number of physical resource blocks allocated for PUSCH transmission.
  • is a parameter value specified by the network.
  • PL is the uplink propagation loss (path loss) value.
  • ⁇ TF is the offset value of the modulation coding scheme (MCS) used for PUSCH transmission.
  • f is the cumulative value of TPC commands specified by the network.
  • the power represented by the above formula 2 is referred to as "transmission power specified by the network", “transmission power based on the parameters notified from the network”, or “transmission power based on the value notified from the network”. To. Therefore, the transmission power of PUSCH is represented by the smaller of the maximum transmission power that can be transmitted by the terminal 200 and the transmission power specified by the network.
  • the transmission power is determined by the same formula.
  • the terminal 200 When the terminal 200 detects that the internal temperature of the terminal 200 exceeds the predetermined value T1 at time t1 (C1 in FIG. 3), it determines that the terminal 200 overheats and communicates between the gNB 100 and the terminal 200.
  • the transmission power P1 is reduced within the range to be maintained, and the transmission power P2 (P2 ⁇ P1) is maintained (period D2 in FIG. 3).
  • the terminal 200 when reducing the transmission power in PUSCH, the terminal 200 reduces the maximum transmission power that the terminal 200 can transmit, or the transmission power specified by the network.
  • the terminal 200 uses at least one of the setting values of the transmission power control parameters (PO_PUSCH , M RB , PL, ⁇ TF, f) in the above equation 2. May be reduced.
  • overheat occurs include “the temperature state inside the terminal has changed”, “the temperature state inside the terminal is likely to change”, “there is an actual overheat”, and “overheat occurs”. It can include meanings such as “promising”.
  • overheating occurs means “actually overheating occurs”
  • overheating means a state in which the internal temperature of the terminal 200 exceeds a predetermined value T1.
  • overheating means “there is a possibility that overheating will occur”
  • overheating represents a state in which the internal temperature of the terminal 200 exceeds a predetermined value T1.
  • the terminal 200 When the terminal 200 detects that the internal temperature of the terminal 200 falls below the predetermined value T1 at time t2 (C2 in FIG. 3), it determines that the overheating of the terminal 200 is resolved, increases the transmission power P2, and transmits. Maintain power P1 (period D3 in FIG. 3).
  • the predetermined value used to determine the elimination of overheating may be different from the predetermined value T1. For example, when the predetermined value used for determining the elimination of overheating is set lower than the predetermined value T1, it is possible to avoid frequent reduction of the transmission power.
  • overheat is eliminated means "the temperature state inside the terminal has changed”, “the temperature state inside the terminal is likely to change”, “the overheat is actually eliminated", and “the overheat is eliminated”. It can include meanings such as “probable to do”.
  • the reduction of transmission power is not limited to PUSCH, but can also be applied to PUCCH, SRS, etc.
  • FIG. 4 is a diagram illustrating an example of a value indicating a reduced transmission power. As shown in FIG. 4, there are the following three values indicating the reduced transmission power.
  • the value indicating the reduced transmission power may be expressed in units of decibel (dB) and decibel milliwatt (dBm). Further, the value indicating the reduced transmission power may be expressed by indexing these units. Further, the value indicating the reduced transmission power may have a predetermined range.
  • the absolute value AV of the reduced transmission power is represented by the value of the transmission power P2.
  • the relative value RV of the reduced transmission power is represented by the value of P rf -P2, which is the difference between the reference transmission power P rf and the transmission power P2.
  • the reference transmission power P rf is set to a value larger than the transmission power P1, but the present invention is not limited to this.
  • the change amount CV of the transmission power is represented by the value of the difference P1-P2 between the transmission power P1 and the transmission power P2.
  • the amount of change in transmission power CV is also called the amount of reduction in transmission power.
  • the terminal 200 may set a plurality of transmission powers within the range of maintaining communication between the gNB 100 and the terminal 200 according to the heat generation state inside the terminal.
  • the terminal 200 when the internal temperature of the terminal 200 exceeds the predetermined value T1 to a large extent, the terminal 200 relatively increases the reduction amount of the transmission power P1.
  • the absolute value AV (transmission power P2) of the reduced transmission power takes a relatively small value.
  • the relative value RV (difference P rf -P2) of the reduced transmission power and the amount of change CV (difference P1-P2) of the transmission power take relatively large values.
  • the terminal 200 when the degree to which the internal temperature of the terminal 200 exceeds the predetermined value T1 is small, the terminal 200 relatively reduces the reduction amount of the transmission power P1.
  • the absolute value AV (transmission power P2) of the reduced transmission power takes a relatively large value.
  • the relative value RV (difference P rf -P2) of the reduced transmission power and the amount of change CV (difference P1-P2) of the transmission power take relatively small values.
  • FIG. 5 is a diagram showing an operation flow of the terminal 200 in reducing the transmission power. As shown in FIG. 5, the terminal 200 detects the heat generation state inside the terminal (S11). The terminal 200 determines whether or not the terminal 200 overheats based on the heat generation state inside the terminal (S13).
  • the terminal 200 When it is determined that overheating occurs, the terminal 200 reduces the transmission power (S15). On the other hand, when it is determined that overheating does not occur, the terminal 200 detects the heat generation state inside the terminal again after a certain time interval T IN elapses.
  • the terminal 200 When the transmission power is reduced, the terminal 200 notifies the gNB 100 of the reduction in the transmission power at a predetermined timing (S17). When the terminal 200 notifies the gNB 100 of the reduction in transmission power, it detects the heat generation state inside the terminal (S19). The terminal 200 determines whether or not the overheating of the terminal 200 is resolved based on the heat generation state inside the terminal (S21).
  • the terminal 200 When it is determined that the overheat is resolved, the terminal 200 increases the transmission power and returns it to the transmission power before the reduction (S23). On the other hand, when it is determined that the overheat is not resolved, the terminal 200 detects the heat generation state inside the terminal again after a certain time interval T IN elapses.
  • the terminal 200 When the transmission power is increased, the terminal 200 notifies the gNB 100 of the cancellation of the reduction of the transmission power at a predetermined timing (S25).
  • the terminal 200 may decide to reduce the transmission power instead of reducing the transmission power. In this case, when the terminal 200 notifies the gNB 100 of the reduction of the transmission power in S17 and then receives an acknowledgment to the notification from the gNB 100, the terminal 200 actually reduces the transmission power.
  • the terminal 200 may decide to increase the transmission power instead of increasing the transmission power.
  • the terminal 200 when the terminal 200 notifies the gNB100 of the cancellation of the reduction of the transmission power in S25 and then receives an acknowledgment to the notification from the gNB100, the terminal 200 actually increases the transmission power and the transmission power before the reduction.
  • the terminal 200 may notify the gNB 100 of the internal temperature of the terminal 200 at the time when the transmission power is reduced.
  • a plurality of wireless resources for notifying the reduction of the transmission power may be set in advance between the gNB 100 and the terminal 200 according to the degree of reduction of the transmission power.
  • the terminal 200 notifies the reduction of the transmission power by using the radio resource associated with the reduced transmission power.
  • the gNB 100 can estimate the reduced transmission power on the terminal 200 side based on the radio resource used for the notification.
  • the power class of the terminal 200 is set low. You may also notify gNB100 of Power Class.
  • the terminal 200 may notify the gNB 100 of the cause of the overheat, such as the location where the overheat occurs inside the terminal.
  • the terminal 200 may notify the gNB100 of measurement result information such as Measurement report, CSI, L1-RSRP, PHR, and BSR.
  • the terminal 200 may notify the gNB 100 of each content by using an individual message.
  • the terminal 200 may notify the gNB 100 of a plurality of contents by using one message instead of the individual messages.
  • FIG. 6 is a diagram showing an operation flow (operation example 1) of the terminal 200 at the notification timing. As shown in FIG. 6, the terminal 200 determines whether or not the value indicating the reduced transmission power satisfies a predetermined condition (S31).
  • the terminal 200 when the absolute value AV of the reduced transmission power (see FIG. 4) is used as the value indicating the reduced transmission power, the terminal 200 has the absolute value AV of the reduced transmission power larger than the threshold value. When it becomes smaller, it notifies gNB100 of the reduction of transmission power.
  • the terminal 200 may notify the gNB 100 of the reduction in transmission power when it is expected that the absolute value AV of the transmission power after reduction will be smaller than the threshold value.
  • the operation of "expecting that the absolute value AV of the transmitted power after reduction becomes smaller than the threshold value" is also expressed as "the absolute value AV of the transmitted power after reduction is expected to be smaller than the threshold value”. ..
  • the terminal 200 determines the transmission power when the relative value RV of the reduced transmission power becomes larger than the threshold value. Notify gNB100 of the reduction of.
  • the terminal 200 may notify the gNB 100 of the reduction in transmission power when it is expected that the relative value RV of the reduced transmission power will be larger than the threshold value.
  • the operation of "expecting that the relative value RV of the reduced transmission power becomes larger than the threshold value" is also expressed as "the relative value RV of the reduced transmission power is expected to be larger than the threshold value”. ..
  • the terminal 200 When the change amount CV of the transmission power (see FIG. 4) is used as a value indicating the reduced transmission power, the terminal 200 notifies the gNB 100 of the reduction of the transmission power when the change amount CV of the transmission power becomes larger than the threshold value. To do.
  • the terminal 200 may notify the gNB 100 of the reduction in the transmission power when it is expected that the change amount CV of the transmission power will be larger than the threshold value.
  • the operation of "expecting the change amount CV of the transmission power to be larger than the threshold value" is also expressed as "the change amount CV of the transmission power is expected to be larger than the threshold value”.
  • the terminal 200 When the value indicating the reduced transmission power satisfies a predetermined condition, the terminal 200 notifies the gNB 100 of the reduction in the transmission power (S33). On the other hand, if the value indicating the reduced transmission power does not satisfy the predetermined condition, the terminal 200 does not notify the gNB 100 of the reduction in the transmission power.
  • the terminal 200 may notify the gNB 100 of the reduction in the transmission power.
  • FIG. 7 is a diagram showing an operation flow (operation example 2) of the terminal 200 at the notification timing. As shown in FIG. 7, the terminal 200 determines whether or not the value indicating the internal temperature of the terminal 200 satisfies a predetermined condition (S51).
  • the terminal 200 reduces the transmission power to gNB100 when the internal temperature value becomes larger than the threshold value. Notice.
  • the terminal 200 may notify the gNB 100 of the reduction in transmission power when it is expected that the value of the internal temperature will be larger than the threshold value.
  • the operation of "expecting the value of the internal temperature to be larger than the threshold value" is also expressed as "the value of the internal temperature is expected to be larger than the threshold value”.
  • the terminal 200 When the difference (relative value) between the reference temperature and the internal temperature is used as the value indicating the internal temperature of the terminal 200, the terminal 200 notifies the gNB 100 of the reduction of the transmission power when the difference becomes smaller than the threshold value. ..
  • the terminal 200 may notify the gNB 100 of the reduction in transmission power when it is expected that the difference will be smaller than the threshold value.
  • the operation of "expecting the difference to be smaller than the threshold value" is also expressed as "the difference is expected to be smaller than the threshold value”.
  • the terminal 200 When the amount of change in the internal temperature per predetermined time is used as the value indicating the internal temperature of the terminal 200, the terminal 200 notifies the gNB 100 of the reduction in the transmission power when the amount of change in the internal temperature becomes larger than the threshold value.
  • the terminal 200 may notify the gNB 100 of the reduction in transmission power when it is expected that the amount of change in the internal temperature will be larger than the threshold value.
  • the operation of "expecting the amount of change in internal temperature to be larger than the threshold value" is also expressed as "the amount of change in internal temperature is expected to be larger than the threshold value”.
  • the terminal 200 When the value indicating the internal temperature of the terminal 200 satisfies a predetermined condition, the terminal 200 notifies the gNB 100 of the reduction of the transmission power (S53). On the other hand, if the value indicating the internal temperature of the terminal 200 does not satisfy the predetermined condition, the terminal 200 does not notify the gNB 100 of the reduction of the transmission power.
  • the terminal 200 may notify the gNB 100 of the reduction of the transmission power.
  • FIG. 8 is a diagram showing an operation flow (operation example 3) of the terminal 200 at the notification timing. As shown in FIG. 8, the terminal 200 determines whether or not it has received a command instructing the network to notify the reduction of the transmission power (S71).
  • the terminal 200 receives the command from the network using the signal used in the RRC layer, the MAC layer, or the physical layer.
  • the terminal 200 When receiving the command, the terminal 200 notifies the gNB 100 of the reduction in transmission power (S73). On the other hand, if the command is not received, the terminal 200 does not notify the gNB 100 of the reduction in transmission power.
  • the terminal 200 may notify the gNB 100 of the reduction in transmission power.
  • FIG. 9 is a diagram showing an operation flow of the terminal 200 in notification suppression.
  • the terminal 200 when the terminal 200 notifies the gNB 100 of the reduction in transmission power (S91), the terminal 200 starts notification suppression (S93). Specifically, when the terminal 200 notifies the gNB 100 of the reduction in transmission power, the terminal 200 activates a timer used to suppress the notification.
  • the terminal 200 determines whether or not the notification suppression period has passed (S95). Specifically, the terminal 200 determines whether or not the timer has expired. When the notification suppression period has elapsed, that is, when the timer has expired, the terminal 200 cancels the notification suppression (S97). On the other hand, if the timer has not expired, the terminal 200 suppresses the notification until the timer expires.
  • the terminal 200 does not notify the reduction of the transmission power and does not notify the reduction of the transmission power during the notification suppression period. Elapses, that is, when the timer expires, the transmission power is notified.
  • the terminal 200 when the amount of change in the transmission power suddenly increases, or when the internal temperature of the terminal 200 suddenly rises, even during the notification suppression period, that is, while the timer is operating. May notify the gNB 100 of the reduction in transmit power.
  • the terminal 200 may notify the gNB 100 of the preference regarding the frequency of notifying the reduction of the transmission power.
  • the gNB 100 may instruct the terminal 200 to use the timer used for notification suppression based on the notified preference.
  • the gNB 100 notifies the terminal 200 of the use or non-use of the timer by using a flag.
  • the terminal 200 determines whether or not the value indicating the increased transmission power satisfies a predetermined condition.
  • the terminal 200 when the absolute value of the increased transmission power is used as the value indicating the increased transmission power, the terminal 200 has the absolute value of the increased transmission power larger than the threshold value or is increased. When it is expected that the absolute value of the transmission power will be larger than the threshold value later, the gNB100 is notified of the cancellation of the reduction of the transmission power.
  • the terminal 200 When the relative value of the increased transmission power is used as the value indicating the increased transmission power, the terminal 200 has the relative value of the increased transmission power smaller than the threshold value, or the increased transmission power of the terminal 200. When the relative value is expected to be smaller than the threshold value, the gNB100 is notified that the reduction of the transmission power is released.
  • the terminal 200 When the amount of change in transmission power is used as a value indicating the increased transmission power, the terminal 200 expects that the amount of change in transmission power will be larger than the threshold value, or the amount of change in transmission power will be larger than the threshold value. Then, the gNB100 is notified of the cancellation of the reduction of the transmission power.
  • the terminal 200 may notify the gNB 100 of the cancellation of the reduction of the transmission power when the value indicating the increased transmission power satisfies the above-mentioned conditions for a predetermined period or a predetermined number of times.
  • the terminal 200 determines whether or not the value indicating the internal temperature of the terminal 200 satisfies a predetermined condition.
  • the value of the internal temperature (absolute value) is used as the value indicating the internal temperature of the terminal 200
  • the value of the internal temperature of the terminal 200 is smaller than the threshold value or the value of the internal temperature. If it is expected that will be smaller than the threshold value, the gNB100 will be notified of the cancellation of the transmission power reduction.
  • the terminal 200 When the difference (relative value) between the reference temperature and the internal temperature is used as the value indicating the internal temperature of the terminal 200, the terminal 200 has the difference larger than the threshold value or the difference is larger than the threshold value. When it is expected to increase, the gNB100 will be notified of the cancellation of the transmission power reduction.
  • the amount of change in the internal temperature per predetermined time is used as the value indicating the internal temperature of the terminal 200
  • the amount of change in the transmission power of the terminal 200 becomes larger than the threshold value, or the amount of change in the transmission power is the threshold value. If it is expected to be larger than, the gNB100 will be notified of the cancellation of the transmission power reduction.
  • the terminal 200 may notify the gNB 100 of the cancellation of the reduction of the transmission power.
  • the terminal 200 When applying the operation example 3, the terminal 200 notifies the gNB 100 of the reduction release of the transmission power in response to a command from the network.
  • the terminal 200 may notify the gNB 100 of the cancellation of the reduction of the transmission power.
  • FIG. 10 is a diagram showing a notification sequence by the gNB 100 and the terminal 200 in the notification method.
  • the terminal 200 notifies the gNB 100 of the reduction in transmission power by using a signal used in the RRC layer, the MAC layer, or the physical layer (S101). Specifically, the terminal 200 notifies the gNB 100 of the reduction in transmission power by using the RRC message, PHR, RACH or a new MAC CE described later.
  • the terminal 200 notifies the gNB 100 of the reduction in transmission power by using an RRC message.
  • the terminal 200 may include the notification content in a specific information element in the RRC message.
  • the RRC message for example, Assistant information, measurement report, History information, a signal for MDT, etc. are used.
  • Operation example 2 the terminal 200 notifies the reduction of the transmission power by using the PHR that reports the surplus transmission power in the uplink.
  • the power headroom (PH) is determined by the following formula 3.
  • PH is represented by the difference between the maximum transmission power that the terminal 200 can transmit and the transmission power specified by the network. Therefore, PH represents the surplus transmission power in the uplink.
  • the transmission power is determined by the same formula.
  • PHR includes a maximum transmit power (P CMAX ) field and a surplus transmit power (PH) field. Therefore, when the maximum transmission power is reduced as the reduction of the transmission power, the terminal 200 can notify the gNB 100 of the reduction of the maximum transmission power by using the PHR.
  • P CMAX maximum transmit power
  • PH surplus transmit power
  • the terminal 200 includes the reduced maximum transmit power in the PHR maximum transmit power (P CMAX ) field, or 0 (or a negative value) in the PHR surplus transmit power (PH) field. , The reduction of maximum transmission power can be notified to gNB100.
  • the terminal 200 may use PHR to notify the gNB 100 of the reduction in the maximum transmission power when the amount of change in the maximum transmission power exceeds a predetermined value.
  • the terminal 200 when the amount of change (reduction amount) of the maximum transmission power exceeds the predetermined value phr-Tx-PowerFactorChangedB, the terminal 200 will display the terminal 200.
  • This change (reduction) can be attributed to the reduction in maximum power allowed by Power Management Maximum Power Reduction (P-MPR) (Specific Absorption Rate (SAR) backoff function).
  • P-MPR Power Management Maximum Power Reduction
  • SAR Specific Absorption Rate
  • the terminal 200 sets 1 in the P field in the PHR as specified in Chapter 6 of 3GPP TS38.321.
  • the terminal 200 may set 0 in the P field in the PHR in order to distinguish between the PHR notification by the P-MPR backoff and the PHR notification by avoiding overheating of the terminal 200.
  • the terminal 200 may distinguish between the PHR notification by the conventional trigger and the PHR notification by avoiding overheating of the terminal 200 as follows.
  • terminal 200 When defining a new field in PHR, terminal 200 sets a valid value (for example, value 1) in the field and performs PHR notification by avoiding overheating of terminal 200.
  • a valid value for example, value 1
  • the V field in PHR is used.
  • the use of the V field is based on the premise that the terminal 200 is performing CA or DC on the uplink.
  • the value 0 indicating Real PH is set in the V field in PHR.
  • the value 1 indicating Virtual PH is set in the V field in PHR.
  • the terminal 200 sets a value of 1 in the V field in PHR even if PH is calculated based on the parameters used for actual transmission. Set.
  • the gNB100 detects that the value 1 is set in the V field in the PHR even though the uplink is assigned, the PHR notification is triggered by avoiding overheating of the terminal 200. Recognize.
  • the terminal 200 sets the value 0 in the V field in the PHR even if the PH is calculated based on the reference format. To do.
  • the gNB100 detects that the value 0 is set in the V field in the PHR even though the uplink is not assigned, the PHR notification is triggered by avoiding overheating of the terminal 200. Recognize.
  • the terminal 200 activates the RACH procedure to notify the reduction of the transmission power. For example, the terminal 200 notifies the gNB 100 of the reduction in transmission power by using the message (Msg3) transmitted in the third step of the RACH procedure.
  • RACH procedures are also referred to as random access procedures.
  • the recognition of the power control parameters can be matched again between the gNB 100 and the terminal 200.
  • the terminal 200 may activate the RACH procedure by a conventional trigger.
  • the terminal 200 may perform the RACH procedure by triggering a beam failure recovery (BFR) or a buffer status report (BSR) depending on the heat generation state inside the terminal.
  • BFR beam failure recovery
  • BSR buffer status report
  • the terminal 200 may activate a conflict-based RACH procedure (contention-based RACH) or a non-competition-based RACH procedure (non-contention-based RACH) to notify the reduction of transmission power.
  • a radio resource for the RACH procedure may be preset between the gNB 100 and the terminal 200.
  • the terminal 200 may use a resource for the RACH procedure triggered by avoiding overheating of the terminal 200.
  • the terminal 200 receives the allocation of the resource from the gNB 100 by the broadcast information or the individual RRC signal.
  • the resources include, for example, a random access preamble (RAP), a random access response (RAR), a control resource set for RAR (CORESET), a random access wireless network temporary identifier (RA-RNTI), and the fourth of the RACH procedures.
  • RAP random access preamble
  • RAR random access response
  • CORESET control resource set for RAR
  • RA-RNTI random access wireless network temporary identifier
  • the control resource set (CORESET) for the message (Msg4) received in the step is assigned to the terminal 200.
  • resources for different RACH procedures may be allocated to the terminal 200 according to the degree of increase in the internal temperature of the terminal 200.
  • resources for different RACH procedures may be allocated to terminal 200 depending on the degree of reduction in transmit power.
  • the terminal 200 may define a new MAC CE and use the MAC CE to notify the reduction of the transmission power.
  • the terminal 200 notifies the gNB 100 of the reduction of the transmission power in the following notification unit.
  • Terminal (UE) unit ⁇ Cell Group unit ⁇ MAC entity unit ⁇ PUCCH group unit ⁇ Cell unit ⁇ Component carrier (CC) unit ⁇ Bandwidth part (BWP) Unit ⁇ Frequency band (Band) unit ⁇ Frequency range (FR) unit
  • UE Terminal
  • MAC entity unit ⁇ Physical Uplink Control Channel
  • CC Component carrier
  • BWP Bandwidth part
  • FR Frequency range
  • the above notification unit may also be applied to the "notification processing for canceling transmission power reduction" executed in S25 of FIG.
  • the terminal 200 may perform the following operations when reducing the transmission power.
  • ⁇ Priority is given to reducing the transmission power in a predetermined cell.
  • ⁇ Priority is given to reducing the transmission power on the specified uplink.
  • link adaptation can be performed appropriately. For example, if different transmission power reduction rates are applied in SRS or PUSCH, link adaptation cannot be performed properly.
  • the terminal 200 When reducing the transmission power in some of all physical channels, for example, the terminal 200 does not have to reduce the transmission power for PUCCH. Further, the terminal 200 may reduce the transmission power of the SRS, PDSCH, UCI, or PDCCH demodulation reference signal (DMRS).
  • the terminal 200 may reduce the transmission power of the SRS, PDSCH, UCI, or PDCCH demodulation reference signal (DMRS).
  • DMRS PDCCH demodulation reference signal
  • the terminal 200 uses a primary / secondary cell (PSCell), a secondary cell (SCell), a cell using a wide bandwidth portion (BWP), or a high frequency.
  • PSCell primary / secondary cell
  • SCell secondary cell
  • BWP wide bandwidth portion
  • the transmission power may be preferentially reduced.
  • the terminal 200 may preferentially reduce the transmission power in the normal uplink (Normal UL) or the auxiliary uplink (SUL). Good.
  • Normal UL normal uplink
  • SUL auxiliary uplink
  • the terminal 200 may notify the gNB 100 of the preference for the above operation.
  • the terminal 200 changes the uplink transmission power when the temperature-related state of the terminal 200 changes, and a value indicating the changed transmission power is a predetermined condition.
  • the condition is satisfied, the information regarding the transmission power is notified by the uplink.
  • the terminal 200 reduces the uplink transmission power set between the gNB 100 and the terminal 200, and the value indicating the reduced transmission power becomes smaller than the threshold value. Notify gNB100 of the reduction in transmission power.
  • the terminal 200 can directly reduce the transmission power to the extent that the overheating of the terminal 200 can be avoided.
  • the amount of decrease in transmission power due to the decrease in the uplink transmission rate is not always constant. Therefore, even if the terminal 200 notifies the gNB 100 of the terminal capability set low, the terminal 200 In some cases, the transmission power could not be reduced to the extent that overheating could be avoided.
  • the gNB 100 can estimate the transmission power of the uplink signal transmitted from the terminal 200 based on the notified reduction of the transmission power. Therefore, it is possible to suppress the difference in recognition of the transmission power between the gNB 100 and the terminal 200.
  • the terminal 200 when the value indicating the reduced transmission power is equal to or more than the threshold value, the terminal 200 does not perform the notification, so that the increase in network traffic can be suppressed.
  • the terminal 200 can reliably avoid overheating of the terminal 200 and suppress an increase in network traffic while maintaining communication between the gNB 100 and the terminal 200.
  • the terminal 200 when the value indicating the changed transmission power becomes smaller than the threshold value for a predetermined number of times or a predetermined period, the terminal 200 notifies the information regarding the transmission power by an uplink. For example, when the value indicated by the reduced transmission power becomes smaller than the threshold value for a predetermined number of times or for a predetermined period, the terminal 200 notifies the network of the reduction of the transmission power.
  • the terminal 200 does not give the notification when the value indicating the reduced transmission power does not become smaller than the threshold value for a predetermined number of times or a predetermined period, so that the increase in network traffic can be further suppressed. ..
  • the terminal 200 gives the notification when the notification suppression period set from the time when the information regarding the transmission power is notified by the uplink has ended or has ended.
  • the terminal 200 gives the notification when the notification suppression period set from the time of notifying the gNB 100 of the reduction of the transmission power has ended or has ended.
  • the terminal 200 does not perform the notification until the notification suppression period elapses, so that the increase in network traffic can be further suppressed.
  • the terminal 200 changes the uplink transmission power when the temperature-related state of the terminal 200 changes, and based on a command from the network, provides information on the transmission power on the uplink. Notice. For example, when the terminal 200 overheats, the terminal 200 reduces the uplink transmission power set between the gNB 100 and the terminal 200, and the reduction of the transmission power is reduced to the gNB 100 based on the command from the gNB 100. Notice.
  • the terminal 200 can directly reduce the transmission power to the extent that the overheating of the terminal 200 can be avoided.
  • the gNB 100 can estimate the transmission power of the uplink signal transmitted from the terminal 200 based on the notified reduction of the transmission power. Therefore, it is possible to suppress the difference in recognition of the transmission power between the gNB 100 and the terminal 200.
  • the terminal 200 when the terminal 200 does not receive the command from the gNB100, the terminal 200 does not give the notification, so that the increase in network traffic can be suppressed.
  • the terminal 200 can reliably avoid overheating of the terminal 200 and suppress an increase in network traffic while maintaining communication between the gNB 100 and the terminal 200.
  • the terminal 200 autonomously reduces the transmission power based on the heat generation state inside the terminal in the transmission power reduction procedure, but the present invention is not limited to this.
  • the terminal 200 may reduce the transmission power by leaving it to the allocation of the resource block by the gNB 100.
  • Notifications regarding the transmission power of the terminal 200 are not limited to the gNB 100. That is, it may be another terminal or a node in the network.
  • FIG. 11 is a diagram showing an operation flow of the terminal 200 in a modified example of the transmission power reduction procedure. As shown in FIG. 11, the terminal 200 detects the heat generation state inside the terminal (S111). The terminal 200 determines whether or not the terminal 200 overheats based on the heat generation state inside the terminal (S113).
  • the terminal 200 transmits a predetermined signal to the gNB 100 (S115). On the other hand, when it is determined that overheating does not occur, the terminal 200 detects the heat generation state inside the terminal again after a certain time interval T IN elapses.
  • the gNB 100 allocates a resource block to the terminal 200 based on the predetermined signal (S117).
  • Terminal 200 determines the transmit power based on the number of allocated resource blocks (S119).
  • Examples of the predetermined signal transmitted by S115 in FIG. 11 include BSR, SRS, PUSCH, DMRS, UCI, and the like.
  • the terminal 200 transmits SRS, PUSCH or DMRS in S115 of FIG. 11, the terminal 200 adjusts the wireless quality of the uplink and reports the deteriorated wireless quality to the gNB100. As a result, the terminal 200 can expect that the number of resource blocks allocated from the gNB 100 is reduced and the transmission power is reduced.
  • the terminal 200 when transmitting SRS, the terminal 200 reduces the transmission power of SRS and reports the deteriorated radio quality to gNB100. In addition, the terminal 200 may transmit the SRS only in a partial band to reduce the frequency scheduling allocation. Further, the terminal 200 may disable SRS multiple-input and multiple-output (MIMO).
  • MIMO multiple-input and multiple-output
  • the terminal When transmitting PUSCH or DMRS, the terminal reduces the transmission power of PUSCH or DMRS and reports the deteriorated radio quality to gNB100.
  • the terminal 200 When transmitting UCI in S115 of FIG. 11, the terminal 200 adjusts the downlink radio quality to the gNB100 on the assumption that the downlink radio quality and the uplink radio quality are the same. On the other hand, the deteriorated radio quality is reported. As a result, the terminal 200 can expect that the number of resource blocks allocated from the gNB 100 is reduced and the transmission power is reduced.
  • the terminal 200 when transmitting UCI, the terminal 200 reports the deteriorated radio quality using the CSI included in UCI. For example, terminal 200 sets a lower channel quality indicator (CQI) to CSI. Further, the terminal 200 may include a negative response (NACK) in the UCI even when it makes an affirmative response to the reception of the downlink data.
  • CQI channel quality indicator
  • NACK negative response
  • the present invention is not limited to this.
  • the above-described embodiment is not limited to avoiding overheating of the terminal 200 as long as the transmission power is reduced, and is applicable.
  • NR has been described as an example, but the reduction in transmission power can also be applied to LTE, and the same operation may be executed in LTE as well.
  • the block configuration diagram (FIG. 2) used in the description of the above-described embodiment shows a block for each functional unit.
  • These functional blocks are realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, deemed, and notification ( Broadcast, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these. ..
  • a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be indexed.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Wireless communication system 100 gNB 200 terminals 210 Transmitter 220 Receiver 230 Heat generation state detector 240 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末(200)は、端末(200)の温度に関する状態が変化した場合に、上りリンクの送信電力を変更する制御部(240)と、変更された送信電力を示す値が所定条件を満たす場合に、送信電力に関する情報を上りリンクで通知する送信部(210)と、を備える。

Description

端末
 本発明は、無線通信を実行する端末、特に、オーバヒートを回避する端末に関する。
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)を仕様化している。また、3GPPでは、さらに、5G又はNew Radio(NR)などと呼ばれるLTEの後継システムの仕様が検討されている。
 NRでは、端末のオーバヒートを回避するために、端末は、内部温度が上昇すると、送信電力の低下につながり得る動作を行うことが規定されている(非特許文献1参照)。
 具体的には、端末は、上りリンクの送信レートを決定する端末能力(例えば、端末がサポートするコンポーネントキャリアの数、帯域幅など)を低く設定して、当該端末能力をネットワークや他の端末に通知する。
3GPP TS 38.331 V15.6.0 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC) protocol specification (Release 15), 3GPP, 2019年6月
 しかしながら、通信環境によって、上りリンクの送信レートの低下に伴う、送信電力の低下量は必ずしも一定ではない。
 例えば、同じ送信レートであっても、端末が、無線基地局から離れるほど、上りリンク送信に必要な電力が増えるため、端末と無線基地局との間の距離に応じて、送信電力が変化する。
 このため、端末が上述した動作を行ったとしても、端末のオーバヒートを回避できる程度に送信電力が低下しない場合がある。
 また、端末のオーバヒートを回避するために、端末が、低く設定した端末能力をネットワークに頻繁に通知すると、当該通知に伴って、ネットワークのトラフィックが増大する可能性がある。
 そこで、本発明は、このような状況に鑑みてなされたものであり、端末とネットワークとの間における通信を維持しつつ、端末のオーバヒートを確実に回避し、かつ、ネットワークのトラフィック増大を抑制し得る端末を提供することを目的とする。
 本発明の一態様に係る端末(200)は、前記端末(200)の温度に関する状態が変化した場合に、上りリンクの送信電力を変更する制御部(240)と、変更された前記送信電力を示す値が所定条件を満たす場合に、前記送信電力に関する情報を上りリンクで通知する送信部(210)と、を備える。
 本発明の一態様に係る端末(200)は、前記端末(200)の温度に関する状態が変化した場合に、上りリンクの送信電力を変更する制御部(240)と、前記ネットワーク(gNB100)からのコマンドに基づいて、前記送信電力に関する情報を上りリンクで通知する送信部(210)と、を備える。
図1は、無線通信システム10の全体概略構成図である。 図2は、端末200の機能ブロック構成図である。 図3は、送信電力を低減する動作の一例を説明する図である。 図4は、低減した送信電力を示す値の一例を説明する図である。 図5は、送信電力の低減手順における、端末200の動作フローを示す図である。 図6は、通知タイミングにおける、端末200の動作フロー(動作例1)を示す図である。 図7は、通知タイミングにおける、端末200の動作フロー(動作例2)を示す図である。 図8は、通知タイミングにおける、端末200の動作フロー(動作例3)を示す図である。 図9は、通知抑制における、端末200の動作フローを示す図である。 図10は、通知方法における、gNB100及び端末200による通知シーケンスを示す図である。 図11は、送信電力の低減手順の変形例における、端末200の動作フローを示す図である。 図12は、端末200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(NG-RAN20)及び端末200を含む。なお、端末は、User Equipment(UE)とも呼称される。
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及び端末の数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、NRに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単にネットワークと表現されてもよい。
 gNB100は、NRに従った無線基地局であり、端末200とNRに従った無線通信を実行する。gNB100及び端末200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及び端末と2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。なお、CCはキャリアとも呼称される。
 無線通信システム10では、端末200は、端末200のオーバヒートを回避するために、端末200の内部温度が所定値を超えた場合に、gNB100と端末200との間において設定された上りリンクの送信電力を低減する。なお、オーバヒートは、過熱状態とも呼称される。
 なお、無線通信システム10は、NG-RAN20の代わりに、Evolved Universal Terrestrial Radio Access Network(E-UTRAN)を含んでもよい。この場合、E-UTRANは、複数のE-UTRAN Node、具体的には、eNB(又はen-gNB)を含み、LTEに従ったコアネットワーク(EPC)と接続される。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、端末200の機能ブロック構成について説明する。以下、本実施形態における特徴に関連する部分についてのみ説明する。したがって、端末200は、本実施形態における特徴に直接関係しない他の機能ブロックを備えることは勿論である。
 図2は、端末200の機能ブロック構成図である。図2に示すように、端末200は、送信部210、受信部220、発熱状態検出部230及び制御部240を備える。
 送信部210は、NRに従った上りリンク信号(UL信号)を送信する。受信部220は、NRに従った下りリンク信号(DL信号)を受信する。具体的には、送信部210及び受信部220は、物理上りリンク制御チャネル(PUCCH)、物理上りリンク共有チャネル(PUSCH)、物理下りリンク制御チャネル(PDCCH)、物理下りリンク共有チャネル(PDSCH)、ランダムアクセスチャネル(RACH)などを介して、gNB100と端末200との間における無線通信を実行する。
 送信部210は、無線リソース制御(RRC)メッセージを送信する。送信部210は、例えば、Assistant information、measurement report、History information及びMinimization Drive Test(MDT)向けの信号を送信する。
 送信部210は、メディア・アクセス・コントロール(MAC)制御要素(CE)を送信する。送信部210は、例えば、新規のMAC CE及びパワー・ヘッドルーム・レポート(PHR)を送信する。
 送信部210は、バッファ・ステータス・レポート(BSR)、サウンディング参照信号(SRS)、チャネル状態情報(CSI)、レイヤ1参照信号受信電力(L1-RSRP)及び上りリンク制御情報(UCI)を送信する。
 送信部210は、上りリンクの送信電力を変更する場合、送信電力に関する情報を上りリンクで通知する。例えば、送信部210は、後述するように、上りリンクの送信電力を低減する場合、送信電力の低減をgNB100に通知する。送信部210は、RRCメッセージ、MAC CE、PHR、RACHなどを用いて、送信電力に関する情報を上りリンクで通知する。
 送信部210は、上りリンクの送信電力を変更する場合、変更された送信電力を示す値が所定条件を満たす場合に、送信電力に関する情報を上りリンクで通知する。例えば、送信部210は、後述するように、上りリンクの送信電力を低減する場合、低減した送信電力を示す値が所定条件を満たす場合に、送信電力の低減をgNB100に通知する。
 具体的には、低減した送信電力を示す値として、低減後の送信電力の絶対値を使用する場合には、低減後の送信電力の絶対値が閾値より小さくなると、送信部210は、後述するように、送信電力を低減したこと、又は低減後の送信電力の絶対値をgNB100に通知する。
 低減した送信電力を示す値として、低減後の送信電力の相対値を使用する場合には、低減後の送信電力の相対値が閾値よりも大きくなると、送信部210は、後述するように、送信電力を低減したこと、又は低減後の送信電力の相対値をgNB100に通知する。
 低減した送信電力を示す値として、送信電力の変化量(低減量)を使用する場合には、送信電力の変化量が閾値よりも大きくなると、送信部210は、後述するように、送信電力を低減したこと、又は送信電力の変化量をgNB100に通知する。
 送信部210は、上りリンクの送信電力を変更する場合、変更された送信電力を示す値が、所定回数又は所定期間、閾値より小さくなると、送信電力に関する情報を上りリンクで通知してもよい。例えば、送信部210は、後述するように、上りリンクの送信電力を低減する場合、低減した送信電力を示す値が、所定期間又は所定回数、所定条件を満たす場合に、送信電力の低減をgNB100に通知してもよい。所定条件の判定は、継続して満たす場合を以って判断してもよいし、離断した1または複数の期間のそれぞれで所定条件の判定を行い、それらを総合して所定条件を満たすと判断してもよい。
 送信部210は、gNB100からのコマンドに基づいて、送信電力に関する情報を上りリンクで通知してもよい。例えば、送信部210は、後述するように、gNB100からのコマンドに基づいて、送信電力の低減をgNB100に通知してもよい。
 受信部220は、報知情報、RRCメッセージ、及び送信電力制御(TPC)コマンドを受信する。
 発熱状態検出部230は、端末内部の発熱状態を検出する。本実施形態では、発熱状態検出部230は、端末内部の発熱状態として、端末200の内部温度を検出する。なお、発熱状態検出部230は、端末内部の発熱量を直接検出してもよい。
 制御部240は、端末200を構成する各機能ブロックを制御する。
 制御部240は、端末200の温度に関する状態が変化した場合に、上りリンクの送信電力を変更する。なお、本実施形態における「変更」は、主に、「送信電力の低減」を意味するが、これ限定されない。
 例えば、制御部240は、発熱状態検出部230により検出された端末内部の発熱状態に基づいて、端末200のオーバヒートが生じるか否かを判断する。制御部240は、後述するように、端末200のオーバヒートが生じる場合、gNB100と端末200との間において設定された上りリンクの送信電力を低減する。
 制御部240は、上りリンクの送信電力を変更する場合、変更した送信電力を示す値に基づいて、送信電力に関する情報を上りリンクで通知するか否かを決定する。送信部210は、当該決定に基づいて、送信電力に関する情報を上りリンクで通知する。
 例えば、制御部240は、後述するように、上りリンクの送信電力を低減する場合、低減した送信電力を示す値に基づいて、送信電力の低減をgNB100に通知するか否かを決定する。送信部210は、当該決定に基づいて、送信電力の低減をgNB100に通知する。
 制御部240は、端末の温度に関する状態が変化した場合に、ランダムアクセス手順を起動する。例えば、制御部240は、後述するように、gNB100と端末200との間において、RACHを用いてランダムアクセス手順を実行する。送信部210は、ランダムアクセス手順において、送信電力の低減をgNB100に通知する。
 制御部240は、送信部210が送信電力に関する情報を上りリンクで通知する時点から設定される通知抑止期間が終了した又は終了していた場合に、当該通知を行う。
 例えば、制御部240は、後述するように、送信部210が送信電力の低減をgNB100に通知する時点から、通知抑止期間が経過するまで、当該通知を抑止してもよい。具体的には、制御部240は、送信部210が送信電力の低減をgNB100に通知する時点から、タイマを起動し、タイマが満了するまで、当該通知を抑止する。
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、最初に、送信電力を低減する動作の一例、及び低減した送信電力を示す値の一例を説明した上で、送信電力の低減手順を説明する。続いて、送信電力の低減を通知する処理における、通知内容、通知タイミング、通知方法、及び通知単位について、順に説明する。
 なお、「送信電力の低減」は「送信電力の制限」又は「送信電力の変更」とも呼称される。また、「送信電力の低減を通知する」という動作は、「送信電力の低減を報告する」とも呼称される。
 (3.1)送信電力を低減する動作
 図3は、送信電力を低減する動作の一例を説明する図である。図3に示すように、端末200は、一定の時間間隔TINで、端末内部の発熱状態を検出する。本実施形態では、端末200は、端末内部の発熱状態として、端末200の内部温度を検出する。温度単位には、摂氏、華氏、ケルビンなどが使用される。なお、端末200は、端末内部の発熱状態として、端末内部の発熱量を直接検出してもよい。
 端末200は、端末200の内部温度が所定値T1以下である場合、端末200のオーバヒートが生じていないと判断し、送信電力P1を維持する(図3の期間D1)。
 例えば、PUSCHの場合、送信電力は、次の数式1により決定される。
Figure JPOXMLDOC01-appb-M000001
 ここで、PPUSCHは、PUSCHの送信電力である。PCMAXは、端末200が送信可能なPUSCHの最大送信電力である。PO_PUSCHは、ネットワークにより指定されるパラメータ値である。μは、PUSCH送信に用いられるサブキャリア間隔のパラメータ値である。MRBは、PUSCH送信に割り当てられる物理リソースブロック数である。αは、ネットワークにより指定されるパラメータ値である。PLは、上りリンクの伝搬損失(パスロス)値である。ΔTFは、PUSCH送信に用いられる変調コーディング・スキーム(MCS)のオフセット値である。fは、ネットワークにより指定されるTPCコマンドの累積値である。
Figure JPOXMLDOC01-appb-M000002
 上記の数式2によって表される電力は、「ネットワークにより指定された送信電力」、「ネットワークから通知されたパラメータに基づく送信電力」、又は「ネットワークから通知された値に基づく送信電力」と呼称される。従って、PUSCHの送信電力は、端末200が送信可能な最大送信電力と、ネットワークにより指定される送信電力とのうち、小さい方の電力によって表される。
 なお、PUCCH及びSRSの場合でも、同様な式により、送信電力が決定される。
 端末200は、時刻t1において、端末200の内部温度が所定値T1を超えることを検出すると(図3のC1)、端末200のオーバヒートが生じると判断し、gNB100と端末200との間における通信を維持する範囲内で送信電力P1を低減して、送信電力P2(P2 < P1)を維持する(図3の期間D2)。
 例えば、PUSCHにおける送信電力を低減する場合、端末200は、端末200が送信可能な最大送信電力、又はネットワークにより指定される送信電力を低減する。ネットワークにより指定される送信電力を低減する場合、端末200は、上記の数式2の送信電力制御パラメータ(PO_PUSCH, MRB, PL, ΔTF, f)の設定値のうち、少なくとも1つの設定値を低減してもよい。
 なお、「オーバヒートが生じる」という表現は、「端末内部の温度状態が変化した」、「端末内部の温度状態が変化する見込みがある」、「実際にオーバヒートが生じている」、「オーバヒートが生じる見込みがある」などの意味を含み得る。「オーバヒートが生じる」という表現が、「実際にオーバヒートが生じている」ことを意味する場合、「オーバヒート」は、端末200の内部温度が所定値T1を超える状態を表す。一方、「オーバヒートが生じる」という表現が、「オーバヒートが生じる見込みがある」ことを意味する場合、「オーバヒート」は、端末200の内部温度が所定値T1より大きい値を超える状態を表す。
 端末200は、時刻t2において、端末200の内部温度が所定値T1以下になることを検出すると(図3のC2)、端末200のオーバヒートが解消すると判断し、送信電力P2を増加して、送信電力P1を維持する(図3の期間D3)。
 オーバヒートの解消を判断するのに用いられる所定値は、所定値T1と異なっていてもよい。例えば、オーバヒートの解消を判断するのに用いられる所定値が、所定値T1よりも低く設定される場合、送信電力の低減が頻繁に生じることを回避し得る。
 なお、「オーバヒートが解消する」という表現は、「端末内部の温度状態が変化した」、「端末内部の温度状態が変化する見込みがある」、「実際にオーバヒートが解消した」、「オーバヒートが解消する見込みがある」などの意味を含み得る。
 送信電力の低減は、PUSCHに限定されず、PUCCH, SRSなどにも適用可能である。
 図4は、低減した送信電力を示す値の一例を説明する図である。図4に示すように、低減した送信電力を示す値には、次の3つがある。なお、低減した送信電力を示す値は、デシベル(dB), デシベルミリワット(dBm)の単位で表されてもよい。また、低減した送信電力を示す値は、これらの単位をインデックス化したもので表されてもよい。さらに、低減した送信電力を示す値は、所定の範囲を有してもよい。
   ・低減後の送信電力の絶対値AV
   ・低減後の送信電力の相対値RV
   ・送信電力の変化量CV
 低減後の送信電力の絶対値AVは、送信電力P2の値で表される。低減後の送信電力の相対値RVは、参照用送信電力Prfと送信電力P2との差分Prf-P2の値で表される。本実施形態では、参照用送信電力Prfは、送信電力P1よりも大きい値に設定しているが、これに限定されない。
 送信電力の変化量CVは、送信電力P1と送信電力P2との差分P1-P2の値で表される。送信電力の変化量CVは、送信電力の低減量とも呼称される。
 端末200は、端末内部の発熱状態に応じて、gNB100と端末200との間における通信を維持する範囲内で、送信電力を複数設定してもよい。
 例えば、端末200は、端末200の内部温度が所定値T1を超える度合いが大きい場合には、送信電力P1の低減量を相対的に大きくする。この場合、低減後の送信電力の絶対値AV(送信電力P2)は相対的に小さい値をとる。一方、低減後の送信電力の相対値RV(差分Prf-P2)及び送信電力の変化量CV(差分P1-P2)は相対的に大きい値をとる。
 また、端末200は、端末200の内部温度が所定値T1を超える度合いが小さい場合には、送信電力P1の低減量を相対的に小さくする。この場合、低減後の送信電力の絶対値AV(送信電力P2)は相対的に大きい値をとる。一方、低減後の送信電力の相対値RV(差分Prf-P2)及び送信電力の変化量CV(差分P1-P2)は相対的に小さい値をとる。
 (3.2)送信電力の低減手順
 次に、送信電力の低減手順について説明する。
 図5は、送信電力の低減における、端末200の動作フローを示す図である。図5に示すように、端末200は、端末内部の発熱状態を検出する(S11)。端末200は、端末内部の発熱状態に基づいて、端末200のオーバヒートが生じるか否かを判断する(S13)。
 オーバヒートが生じると判断する場合、端末200は、送信電力を低減する(S15)。一方、オーバヒートが生じないと判断する場合、一定の時間間隔TINが経過すると、端末200は、端末内部の発熱状態を再度検出する。
 端末200は、送信電力を低減すると、所定のタイミングで、送信電力の低減をgNB100に通知する(S17)。端末200は、送信電力の低減をgNB100に通知すると、端末内部の発熱状態を検出する(S19)。端末200は、端末内部の発熱状態に基づいて、端末200のオーバヒートが解消するか否かを判断する(S21)。
 オーバヒートが解消すると判断する場合、端末200は、送信電力を増加して、低減前の送信電力に戻す(S23)。一方、オーバヒートが解消しないと判断する場合、一定の時間間隔TINが経過すると、端末200は、端末内部の発熱状態を再度検出する。
 端末200は、送信電力を増加すると、所定のタイミングで、送信電力の低減解除をgNB100に通知する(S25)。
 なお、S15において、端末200は、送信電力を低減する代わりに、送信電力を低減することを決定してもよい。この場合、端末200は、S17にて、送信電力の低減をgNB100に通知した後に、gNB100から、当該通知に対する肯定応答を受信すると、実際に、送信電力を低減する。
 同様に、S23において、端末200は、送信電力を増加する代わりに、送信電力を増加することを決定してもよい。この場合、端末200は、S25にて、送信電力の低減解除をgNB100に通知した後に、gNB100から、当該通知に対する肯定応答を受信すると、実際に、送信電力を増加して、低減前の送信電力に戻す。
 (3.3)通知内容
 次に、図5のS17で実行される「送信電力の低減を通知する処理」において、端末200がgNB100に通知する内容を説明する。
 図5のS17において、送信電力の低減として、次の6つの内容のうちの少なくとも1つが通知される。
   ・送信電力を変更したこと
   ・送信電力が変化したこと
   ・端末内部の発熱状態に基づいて送信電力を低減したこと
   ・低減後の送信電力の絶対値
   ・低減後の送信電力の相対値
   ・送信電力の変化量
 端末200は、端末内部の発熱状態に基づいて送信電力を低減したことを通知する場合、送信電力を低減した時点における端末200の内部温度を合わせてgNB100に通知してもよい。
 なお、この場合、gNB100と端末200との間において、送信電力を低減する度合いに応じて、送信電力の低減を通知する無線リソースを事前に複数設定してもよい。
 この事前設定に基づいて、端末200は、低減した送信電力に関連付けられた無線リソースを用いて、送信電力の低減を通知する。これにより、gNB100は、当該通知に用いられた無線リソースに基づいて、端末200側で低減した送信電力を推定することができる。
 端末200は、低減後の送信電力の絶対値、低減後の送信電力の相対値、又は送信電力の変化量を通知する場合、端末200の電力クラス(Power Class)を低く設定して、設定したPower Classを合わせてgNB100に通知してもよい。 
 上記の6つの内容のうちの少なくとも1つに加えて、端末200は、端末内部におけるオーバヒートの発生部位など、オーバヒートが生じる原因をgNB100に通知してもよい。
 上記の6つの内容のうちの少なくとも1つに加えて、端末200は、Measurement report, CSI, L1-RSRP, PHR, BSRなどの測定結果情報をgNB100に通知してもよい。
 端末200は、送信電力の低減として、複数の内容をgNB100に通知する場合、個別のメッセージを用いて、各内容をgNB100に通知してもよい。端末200は、個別のメッセージの代わりに、1つのメッセージを用いて、複数の内容をgNB100に通知してもよい。
 (3.4)通知タイミング
 次に、図5のS17で実行される「送信電力の低減を通知する処理」において、端末200がgNB100に通知するタイミングを説明する。
 (3.4.1)動作例1
 動作例1では、端末200は、低減した送信電力を示す値に応じて、送信電力の低減を通知するか否かを判断する。
 図6は、通知タイミングにおける、端末200の動作フロー(動作例1)を示す図である。図6に示すように、端末200は、低減した送信電力を示す値が、所定の条件を満たすか否かを判断する(S31)。
 具体的には、低減した送信電力を示す値として、低減後の送信電力の絶対値AV(図4参照)を使用する場合、端末200は、低減後の送信電力の絶対値AVが閾値よりも小さくなると、送信電力の低減をgNB100に通知する。
 なお、端末200は、低減後の送信電力の絶対値AVが閾値よりも小さくなることを予想する場合に、送信電力の低減をgNB100に通知してもよい。「低減後の送信電力の絶対値AVが閾値よりも小さくなることを予想する」という動作は、「低減後の送信電力の絶対値AVが閾値よりも小さくなることが見込まれる」とも表現される。
 低減した送信電力を示す値として、低減後の送信電力の相対値RV(図4参照)を使用する場合、端末200は、低減後の送信電力の相対値RVが閾値よりも大きくなると、送信電力の低減をgNB100に通知する。
 なお、端末200は、低減後の送信電力の相対値RVが閾値よりも大きくなることを予想する場合に、送信電力の低減をgNB100に通知してもよい。「低減後の送信電力の相対値RVが閾値よりも大きくなることを予想する」という動作は、「低減後の送信電力の相対値RVが閾値よりも大きくなることが見込まれる」とも表現される。
 低減した送信電力を示す値として、送信電力の変化量CV(図4参照)を使用する場合、端末200は、送信電力の変化量CVが閾値よりも大きくなると、送信電力の低減をgNB100に通知する。
 なお、端末200は、送信電力の変化量CVが閾値よりも大きくなることを予想する場合に、送信電力の低減をgNB100に通知してもよい。「送信電力の変化量CVが閾値よりも大きくなることを予想する」という動作は、「送信電力の変化量CVが閾値よりも大きくなることが見込まれる」とも表現される。
 低減した送信電力を示す値が、所定の条件を満たす場合、端末200は、送信電力の低減をgNB100に通知する(S33)。一方、低減した送信電力を示す値が、所定の条件を満たさない場合、端末200は、送信電力の低減をgNB100に通知しない。
 S33において、低減した送信電力を示す値が、所定期間又は所定回数、上述の条件を満たす場合に、端末200は、送信電力の低減をgNB100に通知してもよい。
 (3.4.2)動作例2
 動作例2では、端末200は、端末200の内部温度を示す値に応じて、送信電力の低減を通知するか否かを判断する。
 図7は、通知タイミングにおける、端末200の動作フロー(動作例2)を示す図である。図7に示すように、端末200は、端末200の内部温度を示す値は、所定の条件を満たすか否かを判断する(S51)。
 具体的には、端末200の内部温度を示す値として、内部温度の値(絶対値)を使用する場合、端末200は、内部温度の値が閾値よりも大きくなると、送信電力の低減をgNB100に通知する。
 なお、端末200は、内部温度の値が閾値よりも大きくなることを予想する場合に、送信電力の低減をgNB100に通知してもよい。「内部温度の値が閾値よりも大きくなることを予想する」という動作は、「内部温度の値が閾値よりも大きくなることが見込まれる」とも表現される。
 端末200の内部温度を示す値として、参照用温度と内部温度との差分(相対値)を使用する場合、端末200は、当該差分が閾値よりも小さくなると、送信電力の低減をgNB100に通知する。
 なお、端末200は、当該差分が閾値よりも小さくなることを予想する場合に、送信電力の低減をgNB100に通知してもよい。「当該差分が閾値よりも小さくなることを予想する」という動作は、「当該差分が閾値よりも小さくなることが見込まれる」とも表現される。
 端末200の内部温度を示す値として、所定時間あたりの内部温度の変化量を使用する場合、端末200は、内部温度の変化量が閾値よりも大きくなると、送信電力の低減をgNB100に通知する。
 なお、端末200は、内部温度の変化量が閾値よりも大きくなることを予想する場合に、送信電力の低減をgNB100に通知してもよい。「内部温度の変化量が閾値よりも大きくなることを予想する」という動作は、「内部温度の変化量が閾値よりも大きくなることが見込まれる」とも表現される。
 端末200の内部温度を示す値が、所定の条件を満たす場合、端末200は、送信電力の低減をgNB100に通知する(S53)。一方、端末200の内部温度を示す値が、所定の条件を満たさない場合、端末200は、送信電力の低減をgNB100に通知しない。
 S53において、端末200の内部温度を示す値が、所定期間又は所定回数、上述の条件を満たす場合に、端末200は、送信電力の低減をgNB100に通知してもよい。
 (3.4.3)動作例3
 動作例3では、端末200は、ネットワークからのコマンドに応じて、送信電力の低減を通知するか否かを判断する。
 図8は、通知タイミングにおける、端末200の動作フロー(動作例3)を示す図である。図8に示すように、端末200は、ネットワークから、送信電力の低減を通知することを指示するコマンドを受信したか否かを判断する(S71)。
 端末200は、RRCレイヤ、MACレイヤ、又は物理レイヤで使用される信号を用いて、ネットワークから当該コマンドを受信する。
 当該コマンドを受信する場合、端末200は、送信電力の低減をgNB100に通知する(S73)。一方、当該コマンドを受信しない場合、端末200は、送信電力の低減をgNB100に通知しない。
 S73において、所定期間又は所定回数、当該コマンドを受信する場合に、端末200は、送信電力の低減をgNB100に通知してもよい。
 (3.4.4)通知抑止
 次に、送信電力の低減をgNB100に通知するタイミングから、通知抑止期間が経過するまで、端末200が、送信電力の低減を通知することを抑止する動作を説明する。
 図9は、通知抑制における、端末200の動作フローを示す図である。図9に示すように、端末200は、送信電力の低減をgNB100に通知すると(S91)、通知抑止を開始する(S93)。具体的には、端末200は、送信電力の低減をgNB100に通知すると、当該通知を抑止するのに用いられるタイマを起動する。
 端末200は、通知抑止期間を経過したか否かを判断する(S95)。具体的には、端末200は、タイマが満了したか否を判断する。通知抑止期間を経過した、すなわち、タイマが満了した場合、端末200は、通知抑止を解除する(S97)。一方、タイマが満了していない場合、端末200は、タイマが満了するまで、当該通知を抑止する。
 なお、通知抑止期間中、すなわち、タイマが動作している間に、送信電力の低減を通知する条件が満たされた場合、端末200は、当該送信電力の低減を通知せずに、通知抑止期間が経過する、すなわち、タイマが満了する時点で、当該送信電力の通知を行う。
 また、端末200は、通知抑止期間中、すなわち、タイマが動作している間であっても、送信電力の変化量が急激に増大する場合、又は端末200の内部温度が急激に上昇する場合には、送信電力の低減をgNB100に通知してもよい。
 (3.4.5)その他
 端末200は、送信電力の低減を通知する頻度に関する選好をgNB100に通知してもよい。この場合、gNB100は、通知された選好に基づいて、通知抑止に用いられるタイマの使用を端末200に指示してもよい。例えば、gNB100は、端末200に対して、フラグを用いて、当該タイマの使用又は不使用を通知する。
 図5のS25で実行される「送信電力の低減解除を通知処理」においても、上記の動作例1~3を適用してもよい。
 動作例1を適用する場合には、端末200は、増加した送信電力を示す値が、所定の条件を満たすか否かを判断する。
 具体的には、増加した送信電力を示す値として、増加後の送信電力の絶対値を使用する場合には、端末200は、増加後の送信電力の絶対値が閾値よりも大きくなる、又は増加後の送信電力の絶対値が閾値よりも大きくなると予想すると、送信電力の低減解除をgNB100に通知する。
 増加した送信電力を示す値として、増加後の送信電力の相対値を使用する場合には、端末200は、増加後の送信電力の相対値が閾値よりも小さくなる、又は増加後の送信電力の相対値が閾値よりも小さくなると予想すると、送信電力の低減解除をgNB100に通知する。
 増加した送信電力を示す値として、送信電力の変化量を使用する場合には、端末200は、送信電力の変化量が閾値よりも大きくなる、又は送信電力の変化量が閾値よりも大きくなると予想すると、送信電力の低減解除をgNB100に通知する。
 なお、増加した送信電力を示す値が、所定期間又は所定回数、上述の条件を満たす場合に、端末200は、送信電力の低減解除をgNB100に通知してもよい。
 動作例2を適用する場合には、端末200は、端末200の内部温度を示す値が、所定の条件を満たすか否かを判断する。
 具体的には、端末200の内部温度を示す値として、内部温度の値(絶対値)を使用する場合には、端末200は、内部温度の値が閾値よりも小さくなる、又は内部温度の値が閾値よりも小さくなると予想すると、送信電力の低減解除をgNB100に通知する。
 端末200の内部温度を示す値として、参照用温度と内部温度との差分(相対値)を使用する場合には、端末200は、当該差分が閾値よりも大きくなる、又は当該差分が閾値よりも大きくなると予想すると、送信電力の低減解除をgNB100に通知する。
 端末200の内部温度を示す値として、所定時間当たりの内部温度の変化量を使用する場合には、端末200は、送信電力の変化量が閾値よりも大きくなる、又は送信電力の変化量が閾値よりも大きくなると予想すると、送信電力の低減解除をgNB100に通知する。
 なお、端末200の内部温度を示す値が、所定期間又は所定回数、上述の条件を満たす場合に、端末200は、送信電力の低減解除をgNB100に通知してもよい。
 動作例3を適用する場合には、端末200は、ネットワークからのコマンドに応じて、送信電力の低減解除をgNB100に通知する。なお、所定期間又は所定回数、当該コマンドを受信する場合に、端末200は、送信電力の低減解除をgNB100に通知してもよい。
 (3.5)通知方法
 次に、図5のS17で実行される「送信電力の低減を通知する処理」において、端末200がgNB100に通知する方法を説明する。
 図10は、通知方法における、gNB100及び端末200による通知シーケンスを示す図である。図10に示すように、端末200は、RRCレイヤ、MACレイヤ、又は物理レイヤで使用される信号を用いて、送信電力の低減をgNB100に通知する(S101)。具体的には、端末200は、後述するRRCメッセージ、PHR、RACH又は新規のMAC CEを用いて、送信電力の低減をgNB100に通知する。
 (3.5.1)動作例1
 動作例1では、端末200は、RRCメッセージを用いて、送信電力の低減をgNB100に通知する。この場合、端末200は、RRCメッセージ内の特定の情報要素に、通知内容を含めてもよい。RRCメッセージとして、例えば、Assistant informationやmeasurement report、History information, MDT向けの信号などが使用される。
 (3.5.2)動作例2
 動作例2では、端末200は、上りリンクにおける余剰送信電力を報告するPHRを用いて、送信電力の低減を通知する。
 例えば、PUSCHの場合、パワー・ヘッドルーム(PH)は、次の数式3により決定される。
Figure JPOXMLDOC01-appb-M000003
 このように、PHは、端末200が送信可能な最大送信電力と、ネットワークにより指定される送信電力との差分によって表される。従って、PHは、上りリンクにおける余剰送信電力を表している。
 なお、PUCCH及びSRSの場合でも、同様な式により、送信電力が決定される。
 3GPP TS38.321の6章において規定されているように、PHRは、最大送信電力(PCMAX)フィールドと余剰送信電力(PH)フィールドとを含む。従って、端末200は、送信電力の低減として、最大送信電力を低減する場合、PHRを用いて、最大送信電力の低減をgNB100に通知することができる。
 具体的には、低減後の最大送信電力が、ネットワークにより指定される送信電力以下になる場合、PHは0又は負の値を有する。従って、端末200は、低減後の最大送信電力を、PHRの最大送信電力(PCMAX)フィールドに含める、又は、0(又は負の値)をPHRの余剰送信電力(PH)フィールドに含めることにより、最大送信電力の低減をgNB100に通知することができる。
 端末200は、最大送信電力の変化量が所定値を超えた場合に、PHRを用いて、最大送信電力の低減をgNB100に通知してもよい。
 具体的には、3GPP TS38.321の5章において規定されているように、最大送信電力の変化量(低減量)が、所定値phr-Tx-PowerFactorChange dBを超えた場合に、端末200は、この変化(低減)を、パワー・マネジメント最大電力低減(P-MPR)により許容された最大電力の低減(比吸収率(SAR)バックオフ機能)によるものであると見なすことができる。これにより、端末200は、P-MPRバックオフによるPHRトリガを実行し、PHRを用いて、最大送信電力の低減をgNB100に通知することができる。
 この場合、端末200は、3GPP TS38.321の6章において規定されているように、PHR内のPフィールドに1を設定する。なお、端末200は、P-MPRバックオフによるPHR通知と、端末200のオーバヒート回避によるPHR通知とを区別するために、PHR内のPフィールドに0を設定してもよい。
 端末200は、次のように、従来のトリガによるPHR通知と、端末200のオーバヒート回避によるPHR通知とを区別してもよい。
   ・PHR内に新規のフィールドを定義する。
   ・PHR内の従来のフィールドを流用する。
 PHR内に新規のフィールドを定義する場合、端末200は、当該フィールド内に有効値(例えば、値1)を設定して、端末200のオーバヒート回避によるPHR通知を行う。
 PHR内の従来のフィールドを流用する場合、例えば、PHR内のVフィールドが使用される。なお、Vフィールドの使用は、端末200が、上りリンクにおいてCA又はDCを行っていることを前提とする。
 通常、実際の送信に用いるパラメータに基づいてPHが算出される場合(例えば、上りリンク割り当てが行われている場合)には、PHR内のVフィールドには、Real PHを示す値0が設定される。一方、参照フォーマットに基づいてPHが算出される場合(例えば、上りリンク割り当てが行われていない場合)、PHR内のVフィールドには、Virtual PHを示す値1が設定される。
 PHR内のVフィールドを用いて、端末200のオーバヒート回避によるPHR通知を行う場合、端末200は、実際の送信に用いるパラメータに基づいてPHを算出しても、PHR内のVフィールドに値1を設定する。
 これにより、gNB100は、上りリンク割り当てを行っているにも関わらず、PHR内のVフィールドに値1が設定されることを検出すると、当該PHR通知は、端末200のオーバヒート回避によりトリガされたことを認識する。
 同様に、PHR内のVフィールドを用いて、端末200のオーバヒート回避によるPHR通知を行う場合、端末200は、参照フォーマットに基づいてPHを算出しても、PHR内のVフィールドに値0を設定する。
 これにより、gNB100は、上りリンク割り当てを行っていないにも関わらず、PHR内のVフィールドに値0が設定されることを検出すると、当該PHR通知は、端末200のオーバヒート回避によりトリガされたことを認識する。
 (3.5.3)動作例3
 動作例3では、端末200は、RACH手順を起動して、送信電力の低減を通知する。例えば、端末200は、RACH手順の第3ステップで送信されるメッセージ(Msg3)を用いて、送信電力の低減をgNB100に通知する。RACH手順は、ランダムアクセス手順とも呼称される。
 端末200は、gNB100とRACH手順を行うことにより、電力制御パラメータがリセットされるため、gNB100と端末200との間において、再度、電力制御パラメータの認識を一致させることができる。
 端末200は、従来のトリガによりRACH手順を起動してもよい。例えば、端末200は、端末内部の発熱状態に応じて、ビーム障害の回復(BFR)、又はバッファ・ステータス・レポート(BSR)をトリガして、RACH手順を行ってもよい。
 端末200は、競合ベースのRACH手順(contention-based RACH)、又は非競合ベースのRACH手順(non-contention-based RACH)を起動して、送信電力の低減を通知してもよい。非競合ベースのRACH手順を行う場合、gNB100と端末200との間において、当該RACH手順用の無線リソースが予め設定されてもよい。
 端末200は、端末200のオーバヒート回避によりトリガされるRACH手順用のリソースを用いてもよい。この場合、端末200は、報知情報又は個別RRC信号によって、当該リソースの割当をgNB100から受信する。
 当該リソースとして、例えば、ランダムアクセス・プリアンブル(RAP)、ランダムアクセス応答(RAR)、RAR用の制御リソース・セット(CORESET)、ランダムアクセス・無線ネットワーク一時識別子(RA-RNTI)、RACH手順の第4ステップで受信されるメッセージ(Msg4)用の制御リソース・セット(CORESET)などが、端末200に割り当てられる。
 また、端末200の内部温度の上昇程度に応じて、異なるRACH手順用のリソースが、端末200に割り当てられてもよい。同様に、送信電力の低減度合いに応じて、異なるRACH手順用のリソースが、端末200に割り当てられてもよい。
 (3.5.4)その他
 端末200は、新規のMAC CEを定義して、当該MAC CEを用いて、送信電力の低減を通知してもよい。
 なお、図5のS25で実行される「送信電力の低減解除を通知処理」においても、上記の動作例1~3を適用してもよい。
 (3.6)通知単位
 次に、図5のS17で実行される「送信電力の低減を通知する処理」において、端末200がgNB100に通知する通知単位を説明する。
 図5のS17において、端末200は、次の通知単位で、送信電力の低減をgNB100に通知する。
   ・端末(UE)単位
   ・セルグループ(Cell Group)単位
   ・MACエンティティ(MAC entity)単位
   ・PUCCHグループ(PUCCH group)単位
   ・セル(Cell)単位
   ・コンポーネントキャリア(CC)単位
   ・帯域幅部分(BWP)単位
   ・周波数帯(Band)単位
   ・周波数レンジ(FR)単位
 例えば、周波数帯単位で、端末内部で発熱が生じる場合には、端末200は、周波数帯単位で、送信電力の低減をgNB100に通知する。このように、通知単位は、端末内部で発熱が生じる単位を意味する。
 図5のS25で実行される「送信電力の低減解除を通知処理」においても、上記の通知単位を適用してもよい。
 (3.7)その他
 送信電力の低減を通知する処理における、上述した通知内容、通知タイミング、通知方法、及び通知単位は、gNB100から設定された場合のみ、端末200は、これらを通知処理に適用してもよい。
 端末200は、送信電力を低減する際に、次の動作を行ってもよい。
   ・全ての物理信号及び物理チャネルにおいて、同一の送信電力の低減量又は低減率を適用する。
   ・全ての物理チャネルのうち、一部のチャネルにおいて、送信電力を低減する。
   ・所定のセルにおいて、優先的に送信電力を低減する。
   ・所定の上りリンクにおいて、優先的に送信電力を低減する。
   ・TPC commandの累積値について、上限値を設ける。
   ・TPC commandの累積値を初期化する。
 全ての物理信号及び物理チャネルにおいて、同一の送信電力の低減率を適用することにより、リンクアダプテーションを適切に行うことができる。例えば、SRS又はPUSCHで異なる送信電力の低減率を適用すると、リンクアダプテーションを適切に行うことができなくなる。
 全ての物理チャネルのうち、一部のチャネルにおいて、送信電力を低減する場合、例えば、端末200は、PUCCHについては、送信電力の低減を行わなくてもよい。また、端末200は、SRS, PDSCH, UCI, 又はPDCCH復調用参照信号(DMRS)については、送信電力の低減を行ってもよい。
 所定のセルにおいて、優先的に送信電力を低減する場合、例えば、端末200は、プライマリ・セカンダリセル(PSCell)、セカンダリセル(SCell)、広い帯域幅部分(BWP)を用いるセル、又は高周波数を用いるセルにおいて、優先的に送信電力の低減を行ってもよい。
 所定の上りリンクにおいて、優先的に送信電力を低減する場合、例えば、端末200は、ノーマル上りリンク(Normal UL)、又は補助上りリンク(SUL)において、優先的に送信電力の低減を行ってもよい。
 端末200は、上記の動作についての選好をgNB100に通知してもよい。
 (4)作用・効果
 上述した実施形態によれば、端末200は、端末200の温度に関する状態が変化した場合に、上りリンクの送信電力を変更し、変更された送信電力を示す値が所定条件を満たす場合に、当該送信電力に関する情報を上りリンクで通知する。例えば、端末200のオーバヒートが生じる場合、端末200は、gNB100と端末200との間において設定された上りリンクの送信電力を低減し、低減した送信電力を示す値が閾値より小さくなる場合に、当該送信電力の低減をgNB100に通知する。
 このような構成により、端末200は、端末200のオーバヒートを回避できる程度に、送信電力を直接低減することができる。一方、従来では、通信環境によって、上りリンクの送信レートの低下に伴う、送信電力の低下量は必ずしも一定ではないため、端末200は、低く設定した端末能力をgNB100に通知したとしても、端末200のオーバヒートを回避できる程度に送信電力を低減することができない場合があった。
 また、このような構成により、gNB100は、通知された当該送信電力の低減に基づいて、端末200から送信される上りリンク信号の送信電力を推定することができる。このため、gNB100と端末200との間において、送信電力に対する認識のずれを抑えられる。
 更に、このような構成により、端末200は、低減した送信電力を示す値が閾値以上である場合には、当該通知を行わないため、ネットワークのトラフィック増大を抑制することができる。
 従って、端末200は、gNB100と端末200との間における通信を維持しつつ、端末200のオーバヒートを確実に回避し、かつ、ネットワークのトラフィック増大を抑制し得る。
 上述した実施形態によれば、端末200は、変更された送信電力を示す値が、所定回数又は所定期間、閾値より小さくなる場合、当該送信電力に関する情報を上りリンクで通知する。例えば、端末200は、低減した送信電力が示す値が、所定回数又は所定期間、閾値より小さくなる場合、当該送信電力の低減をネットワークに通知する。
 このような構成により、端末200は、低減した送信電力を示す値が、所定回数又は所定期間、閾値よりも小さくならない場合、当該通知を行わないため、ネットワークのトラフィック増大をより抑制することができる。
 上述した実施形態によれば、端末200は、送信電力に関する情報を上りリンクで通知する時点から設定された通知抑止期間が終了した又は終了していた場合に、当該通知を行う。例えば、端末200は、送信電力の低減をgNB100に通知する時点から設定された通知抑止期間が終了した又は終了していた場合に、当該通知を行う。
 このような構成により、端末200は、通知抑止期間が経過するまで、当該通知を行わないため、ネットワークのトラフィック増大をより抑制することができる。
 上述した実施形態によれば、端末200は、端末200の温度に関する状態が変化した場合に、上りリンクの送信電力を変更し、ネットワークからのコマンドに基づいて、当該送信電力に関する情報を上りリンクで通知する。例えば、端末200のオーバヒートが生じる場合、端末200は、gNB100と端末200との間において設定された上りリンクの送信電力を低減し、gNB100からのコマンドに基づいて、当該送信電力の低減をgNB100に通知する。
 このような構成により、端末200は、端末200のオーバヒートを回避できる程度に、送信電力を直接低減することができる。
 また、このような構成により、gNB100は、通知された当該送信電力の低減に基づいて、端末200から送信される上りリンク信号の送信電力を推定することができる。このため、gNB100と端末200との間において、送信電力に対する認識のずれを抑えられる。
 更に、このような構成により、端末200は、gNB100からのコマンドを受信しない場合には、当該通知を行わないため、ネットワークのトラフィック増大を抑制することができる。
 従って、端末200は、gNB100と端末200との間における通信を維持しつつ、端末200のオーバヒートを確実に回避し、かつ、ネットワークのトラフィック増大を抑制し得る。
 (5)変形例
 上述した実施形態では、送信電力の低減手順において、端末200が、端末内部の発熱状態に基づいて、自律的に送信電力を低減したが、これに限定されない。端末200は、gNB100によるリソースブロックの割り当てに任せて、送信電力を低減してもよい。端末200の送信電力に関する通知(送信電力の低減など)は、gNB100に限られない。すなわち、他の端末やネットワーク内のノードであってもよい。
 図11は、送信電力の低減手順の変形例における、端末200の動作フローを示す図である。図11に示すように、端末200は、端末内部の発熱状態を検出する(S111)。端末200は、端末内部の発熱状態に基づいて、端末200のオーバヒートが生じるか否かを判断する(S113)。
 オーバヒートが生じると判断する場合、端末200は、所定信号をgNB100に送信する(S115)。一方、オーバヒートが生じないと判断する場合、一定の時間間隔TINが経過すると、端末200は、端末内部の発熱状態を再度検出する。
 端末200は所定信号をgNB100に送信すると、gNB100は、当該所定信号に基づいて、リソースブロックを端末200に割り当てる(S117)。端末200は、割り当てられたリソースブロックの数に基づいて、送信電力を決定する(S119)。
 図11のS115で送信される所定信号として、BSR, SRS, PUSCH, DMRS, UCIなどが挙げられる。
 端末200は、図11のS115にてBSRを送信する場合、gNB100に対して、端末200内に滞留しているデータ量を過少に報告する(例えば、BS = 0)。これにより、端末200は、gNB100から割り当てられるリソースブロックの数が削減されて、送信電力が小さくなることを期待することができる。
 端末200は、図11のS115にてSRS, PUSCH又はDMRSを送信する場合、上りリンクの無線品質を調整して、gNB100に対して、劣化した無線品質を報告する。これにより、端末200は、gNB100から割り当てられるリソースブロックの数が削減されて、送信電力が小さくなることを期待することができる。
 具体的には、SRSを送信する場合、端末200は、SRSの送信電力を低減して、gNB100に対して、劣化した無線品質を報告する。また、端末200は、SRSを部分帯域のみで送信し、周波数スケジューリングの割り当てを削減させてもよい。更に、端末200は、SRSのmultiple-input and multiple-output(MIMO)を無効にしてもよい。
 PUSCH又はDMRSを送信する場合、端末は、PUSCH又はDMRSの送信電力を低減して、gNB100に対して、劣化した無線品質を報告する。
 端末200は、図11のS115にてUCIを送信する場合、下りリンクの無線品質及び上りリンクの無線品質が同等であるという前提のもとで、下りリンクの無線品質を調整して、gNB100に対して、劣化した無線品質を報告する。これにより、端末200は、gNB100から割り当てられるリソースブロックの数が削減されて、送信電力が小さくなることを期待することができる。
 具体的には、UCIを送信する場合、端末200は、UCIに含まれるCSIを用いて、劣化した無線品質を報告する。例えば、端末200は、より低いチャネル品質インディケータ(CQI)をCSIに設定する。また、端末200は、下りリンクデータの受信に対して肯定応答する場合でも、否定応答(NACK)をUCIに含めてもよい。
 なお、上述した実施形態では、端末200が、端末内部の発熱状態に基づいて、送信電力を低減するケースを説明したが、これに限定されない。上述した実施形態は、送信電力を低減するケースであれば、端末200のオーバヒート回避に限定されず、適用可能である。
 (6)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、NRを例として説明したが、送信電力の低減は、LTEにも適用可能であり、LTEにおいても同様の動作が実行されてもよい。
 上述した実施形態の説明に用いたブロック構成図(図2)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述した端末200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、当該装置のハードウェア構成の一例を示す図である。図12に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロックは、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間毎に異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10 無線通信システム
100 gNB
200 端末
210 送信部
220 受信部
230 発熱状態検出部
240 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス

Claims (4)

  1.  端末の温度に関する状態が変化した場合に、上りリンクの送信電力を変更する制御部と、
     変更された前記送信電力を示す値が所定条件を満たす場合に、前記送信電力に関する情報を上りリンクで通知する送信部と、
    を備える端末。
  2.  変更された前記送信電力を示す値が、所定回数又は所定期間、閾値より小さくなる場合、前記送信部は、前記送信電力に関する情報を上りリンクで通知する請求項1に記載の端末。
  3.  前記制御部は、前記送信部が前記送信電力に関する情報を上りリンクで通知する時点から設定される通知抑止期間が終了した又は終了していた場合に、前記通知を行う請求項1に記載の端末。
  4.  端末の温度に関する状態が変化した場合に、上りリンクの送信電力を変更する制御部と、
     前記ネットワークからのコマンドに基づいて、前記送信電力に関する情報を上りリンクで通知する送信部と、
    を備える端末。
     
PCT/JP2019/035283 2019-09-06 2019-09-06 端末 WO2021044636A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/035283 WO2021044636A1 (ja) 2019-09-06 2019-09-06 端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/035283 WO2021044636A1 (ja) 2019-09-06 2019-09-06 端末

Publications (1)

Publication Number Publication Date
WO2021044636A1 true WO2021044636A1 (ja) 2021-03-11

Family

ID=74853113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035283 WO2021044636A1 (ja) 2019-09-06 2019-09-06 端末

Country Status (1)

Country Link
WO (1) WO2021044636A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4443988A1 (en) * 2023-04-05 2024-10-09 Nokia Technologies Oy Devices for transmit power change indication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531023A (ja) * 1998-11-20 2002-09-17 エリクソン インコーポレイテッド ワイアレスデータモデムにおける温度による送信制御
JP2012526478A (ja) * 2009-05-08 2012-10-25 クゥアルコム・インコーポレイテッド 熱入力に基づいて、wwanデバイスにおける送信電力をスロットリングすること
WO2015159874A1 (ja) * 2014-04-18 2015-10-22 株式会社Nttドコモ ユーザ装置、及び上り送信電力情報送信方法
WO2018129853A1 (zh) * 2017-01-13 2018-07-19 华为技术有限公司 一种终端功率调整的方法及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531023A (ja) * 1998-11-20 2002-09-17 エリクソン インコーポレイテッド ワイアレスデータモデムにおける温度による送信制御
JP2012526478A (ja) * 2009-05-08 2012-10-25 クゥアルコム・インコーポレイテッド 熱入力に基づいて、wwanデバイスにおける送信電力をスロットリングすること
WO2015159874A1 (ja) * 2014-04-18 2015-10-22 株式会社Nttドコモ ユーザ装置、及び上り送信電力情報送信方法
WO2018129853A1 (zh) * 2017-01-13 2018-07-19 华为技术有限公司 一种终端功率调整的方法及终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4443988A1 (en) * 2023-04-05 2024-10-09 Nokia Technologies Oy Devices for transmit power change indication

Similar Documents

Publication Publication Date Title
JP7213895B2 (ja) 端末、無線通信システム、及び、通信方法
JP7152587B2 (ja) 端末及び送信方法
JP7209022B2 (ja) 端末、基地局、通信方法、及び通信システム
CN113396630B (zh) 用户装置及控制方法
JP7254104B2 (ja) 端末、無線通信システム、及び、通信方法
WO2021044636A1 (ja) 端末
WO2022097755A1 (ja) 端末及び無線基地局
WO2023013028A1 (ja) 端末及び無線通信方法
JP7305756B2 (ja) 端末、基地局、通信システム及び通信方法
WO2021044637A1 (ja) 端末
JP7273859B2 (ja) ユーザ装置及び基地局装置
JP2020155874A (ja) 基地局及び無線通信制御方法
CN113711675A (zh) 用户装置
JPWO2020049745A1 (ja) 端末、方法、及び、システム
WO2022208817A1 (ja) 無線基地局及び端末
WO2023012910A1 (ja) 端末および通信方法
US20240333364A1 (en) Terminal, base station and communication method
WO2022163153A1 (ja) 端末及び通信方法
WO2022220092A1 (ja) 端末、及びビーム故障検出方法
WO2022239244A1 (ja) 無線基地局、端末及び無線通信方法
WO2021064971A1 (ja) 端末および通信方法
WO2021001947A1 (ja) 端末
WO2021001948A1 (ja) 端末
WO2021029072A1 (ja) 端末
JPWO2020166042A1 (ja) 端末及び無線通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP