WO2021044464A1 - Heat exchanger and cooling device - Google Patents

Heat exchanger and cooling device Download PDF

Info

Publication number
WO2021044464A1
WO2021044464A1 PCT/JP2019/034363 JP2019034363W WO2021044464A1 WO 2021044464 A1 WO2021044464 A1 WO 2021044464A1 JP 2019034363 W JP2019034363 W JP 2019034363W WO 2021044464 A1 WO2021044464 A1 WO 2021044464A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole pipe
hole
flexible member
pipe
tube
Prior art date
Application number
PCT/JP2019/034363
Other languages
French (fr)
Japanese (ja)
Inventor
峻介 関本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2019/034363 priority Critical patent/WO2021044464A1/en
Publication of WO2021044464A1 publication Critical patent/WO2021044464A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present invention relates to a heat exchanger and a cooling device, and more particularly to a heat exchanger and a cooling device including a multi-hole tube having a plurality of holes as a flow path for flowing a refrigerant.
  • a heat exchanger having a multi-hole tube having a plurality of holes as a flow path for flowing a refrigerant is known.
  • Such a heat exchanger is disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-32089.
  • Japanese Patent Application Laid-Open No. 2012-32089 discloses a heat exchanger including a flat multi-hole tube and a joint for connecting a plurality of flow paths of the flat multi-hole tube.
  • the joints are connected to the flat multi-hole tube by brazing.
  • the present invention has been made to solve the above problems, and one object of the present invention is heat that can be easily attached even when the space around the object to be heat exchanged is narrow. It is to provide a exchanger and a cooling device.
  • the heat exchanger in the first aspect of the present invention has a first multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant and a first multi-hole pipe on one end side of the first multi-hole pipe.
  • a first flexible member as a flexible header connected to a hole tube, and a flexible header connected to the first multi-hole tube on the other end side of the first multi-hole tube.
  • the first flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on one end side of the first multi-hole pipe.
  • the second flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on the other end side of the first multi-hole pipe.
  • the cooling device in the second aspect of the present invention has a first multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant, and a first multi-hole pipe on one end side of the first multi-hole pipe.
  • a first flexible member as a flexible header connected to a pipe, and a flexible header connected to a first multi-hole pipe on the other end side of the first multi-hole pipe.
  • the first flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on one end side of the first multi-hole pipe.
  • the second flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on the other end side of the first multi-hole pipe.
  • a first flexible member as a flexible header connected to the first multi-hole tube, and a first.
  • a second flexible member as a flexible header connected to the first multi-hole tube is provided.
  • the cooling device 100 includes a plurality of evaporators 10, a pump 20, a condenser 30, a storage unit 40, and a control unit 50. Further, the cooling device 100 includes a plurality of flow rate control valves 21 and a regulating valve 22.
  • the evaporator 10 is an example of a "heat exchanger” in the claims.
  • the pump 20 is an example of the "liquid feeding unit” in the claims, and the condenser 30 is an example of the "condensation unit” in the claims.
  • the cooling device 100 is configured to cool an object to be cooled such as an electronic device. That is, the evaporator 10 is configured to be in contact with the cooling object (electronic device) as a heat source and to take away the heat of the cooling object (electronic device) by heat conduction.
  • the cooling device 100 is configured to circulate the refrigerant to cool the object to be cooled (electronic device) as a heat source.
  • the refrigerant is, for example, a chlorofluorocarbon-based refrigerant.
  • the refrigerant is, for example, R245fa (boiling point 15.3 ° C. at atmospheric pressure).
  • a refrigerant other than R245fa for example, water or the like may be used as the refrigerant.
  • the flow path (refrigerant flow path) for circulating the refrigerant is formed of a metal material.
  • the refrigerant flow path is formed of, for example, a stainless steel material, an aluminum material, or a copper material.
  • the refrigerant flow path is formed in a pipe shape.
  • the evaporator 10, the pump 20, the condenser 30, and the storage unit 40 are each connected by a refrigerant flow path.
  • the evaporator 10 is configured to evaporate the supplied refrigerant. Specifically, the refrigerant flows through the flow path provided in the evaporator 10, and heat is transferred from the object to be cooled (electronic device), which is a heat source, to the refrigerant via the evaporator 10. The refrigerant evaporates (vaporizes) in the evaporator 10 when heat is applied.
  • the evaporator 10 is configured to take heat from a cooling target (electronic device), which is a heat source, by the latent heat of vaporization (heat of vaporization) of the refrigerant to cool the cooling target (electronic device).
  • the gas-liquid two-phase refrigerant discharged from the outlet of the evaporator 10 is sent to the condenser 30.
  • the pump 20 is configured to send a refrigerant. Further, the pump 20 is operated with an output in a predetermined range. Further, the pump 20 is configured to send a refrigerant in a liquid state. Further, the pump 20 is configured to be able to send the refrigerant to the plurality of evaporators 10. The pump 20 is configured to send the refrigerant from the storage unit 40 to the plurality of evaporators 10.
  • the plurality of flow rate control valves 21 are provided to adjust the flow rate of the refrigerant to the plurality of evaporators 10. Specifically, the flow rate control valve 21 is provided upstream of each of the plurality of evaporators 10. The flow rate control valve 21 is configured to adjust the flow rate of the refrigerant sent to the evaporator 10 downstream by adjusting the opening degree. By increasing (opening) the opening degree of the flow rate control valve 21, the flow rate of the refrigerant sent to the evaporator 10 downstream increases. On the other hand, by reducing (squeezing) the opening degree of the flow rate control valve 21, the flow rate of the refrigerant sent to the downstream evaporator 10 is reduced. The opening degree of each of the flow rate control valves 21 is adjusted by the control unit 50.
  • the adjusting valve 22 is provided in a flow path that bypasses the pump 20.
  • the adjusting valve 22 is provided to adjust the flow rate of the refrigerant sent by the pump 20. Specifically, by increasing (opening) the opening degree of the adjusting valve 22, the flow rate of the bypassed refrigerant increases, and the flow rate of the refrigerant sent to the evaporator 10 decreases. On the other hand, by reducing (squeezing) the opening degree of the adjusting valve 22, the amount of the bypassed refrigerant is reduced, and the flow rate of the refrigerant sent to the evaporator 10 is increased. The opening degree of the adjusting valve 22 is adjusted by the control unit 50.
  • the condenser 30 is configured to condense (liquefy) the evaporated refrigerant. Specifically, the condenser 30 is configured to cool and condense the refrigerant by exchanging heat with the outside air. The liquid refrigerant discharged from the outlet of the condenser 30 is sent to the storage unit 40.
  • the storage unit 40 is configured to store a liquid refrigerant.
  • the refrigerant stored in the storage unit 40 is sent to the pump 20.
  • the control unit 50 is configured to control the flow rate of the refrigerant. Specifically, the control unit 50 controls the total flow rate of the refrigerant supplied to the plurality of evaporators 10 by controlling the regulating valve 22. Further, the control unit 50 controls the flow rate of the refrigerant supplied to each of the plurality of evaporators 10 by controlling the flow rate control valve 21. Further, the control unit 50 acquires temperature and pressure by various sensors such as a temperature sensor, a refrigerant temperature sensor, and a refrigerant pressure sensor (not shown), and sends the temperature and pressure to each of the plurality of evaporators 10 based on the acquired results. It may be configured to control the flow rate of the refrigerant.
  • the evaporator 10 is composed of a flat multi-hole tube 1, a flat multi-hole tube 2, a header 3, a header 4, and a header 5.
  • the header 3 is provided with a connection tube 6 for connecting to the refrigerant flow path upstream of the evaporator 10 (refrigerant flow path on the flow rate control valve 21 side).
  • the header 5 is provided with a connection tube 7 for connecting to the refrigerant flow path downstream of the evaporator 10 (refrigerant flow path on the condenser 30 side).
  • the flat multi-hole pipe 1 is an example of the "first multi-hole pipe” in the claims
  • the flat multi-hole pipe 2 is an example of the "second multi-hole pipe” in the claims.
  • the header 3 is an example of the "first flexible member” in the claims
  • the header 4 is an example of the "second flexible member” in the claims.
  • the header 5 is an example of the "third flexible member” in the claims.
  • the flat multi-hole pipe 1, the flat multi-hole pipe 2 and the header 4 are configured to take away the heat of the object to be cooled by evaporating the refrigerant sent by the pump 20. ing. Specifically, the flat multi-hole pipe 1, the flat multi-hole pipe 2 and the flat multi-hole pipe are formed by flowing the refrigerant through the flow paths formed in the flat multi-hole pipe 1, the flat multi-hole pipe 2 and the header 4 constituting the evaporator 10. Heat is transferred from the cooling object, which is a heat source, to the refrigerant through the 2 and the header 4. The refrigerant evaporates (vaporizes) in the flat multi-hole pipe 1, the flat multi-hole pipe 2, and the header 4 when heat is applied.
  • the evaporator 10 is configured to take away the heat of the object to be cooled, which is a heat source, by the latent heat of vaporization (heat of vaporization) of the refrigerant, and cool the object to be cooled.
  • the gas-liquid two-phase refrigerant discharged from the outlet of the evaporator 10 is sent to the condenser 30.
  • a pump 20 (see FIG. 1) is provided on one end side of the flat multi-hole pipe 1 and is configured to send a refrigerant. Specifically, the pump 20 is configured to send the refrigerant to the flow path of the flat multi-hole pipe 1 via the refrigerant flow path downstream of the pump 20, the connection tube 6, and the header 3.
  • a condenser 30 (see FIG. 1) is provided on one end side of the flat multi-hole pipe 2 so as to condense the refrigerant.
  • the condenser 30 is configured to condense the refrigerant sent from the flow path of the flat multi-hole pipe 2 via the header 5, the connecting tube 7, and the refrigerant flow path upstream of the condenser 30. Has been done.
  • the flat multi-hole tube 1 and the flat multi-hole tube 2 are tubes having a flat shape.
  • the flat multi-hole tube 1 and the flat multi-hole tube 2 are formed of a metal material having high thermal conductivity, such as an aluminum material.
  • the flat multi-hole pipe 1 and the flat multi-hole pipe 2 are configured to have a plurality of holes as a refrigerant flow path for flowing a refrigerant (see FIG. 3).
  • the flat multi-hole pipe 1 and the flat multi-hole pipe 2 are formed with a plurality of holes as flow paths so that the refrigerant is sent to the formed holes by the pump 20. It is configured.
  • the flat multi-hole pipe 1 and the flat multi-hole pipe 2 have a long side and a short side, and a flow path is formed along the long side direction.
  • the length of the flat multi-hole tube 1 and the flat multi-hole tube 2 in the long side direction is, for example, about 10 mm to 20 mm.
  • the evaporator 10 is provided with a heat conductive sheet 8 and a heat conductive sheet 9 (see FIG. 3).
  • the heat conductive sheet 8 and the heat conductive sheet 9 include a material having a high thermal conductivity.
  • the heat conductive sheet 8 and the heat conductive sheet 9 are, for example, silicone resin, acrylic, carbon fiber, and the like.
  • the heat conductive sheet 8 and the heat conductive sheet 9 can be attached to the object to be cooled, the flat multi-hole tube 1 and the flat multi-hole tube 2 by having an adhesive layer (not shown) having adhesive force on both sides. It is configured in.
  • the heat conductive sheet 8 comes into contact with the facing surfaces of the flat multi-hole tube 1 and the flat multi-hole tube 2 to transfer the heat of the flat multi-hole tube 2 to the flat multi-hole tube 1.
  • a heat conductive sheet 8 is provided between the flat multi-hole tube 1 and the flat multi-hole tube 2, and the heat conductive sheet 8 includes the flat multi-hole tube 1 and the flat multi-hole tube 2. While transferring heat between them, the flat multi-hole tube 1 and the flat multi-hole tube 2 are attached.
  • a heat conductive sheet 9 is provided between the flat multi-hole tube 2 and the object to be cooled. The heat conductive sheet 9 transfers heat between the object to be cooled and the flat multi-hole tube 2, and the object to be cooled and the flat multi-hole tube 2 are attached to each other.
  • header structure Next, the configuration of the header (header 3, header 4 and header 5) and the connecting tube (connecting tube 6 and connecting tube 7) will be described.
  • the header 3 and the header 4 are composed of a film formed by laminating a plurality of materials including a material having a high thermal conductivity, and a heat-adhesive sheet 31 (see FIGS. 4 and 6). It is configured to be connected to the flat multi-hole tube 1 by being adhered so as to surround and cover the outer peripheral surface of the flat multi-hole tube 1.
  • the thermal adhesive sheet 31 is an example of the "adhesive layer" in the claims.
  • the header 3, the header 4, and the header 5 are formed by laminating a film formed by laminating a plurality of materials including a material having a high thermal conductivity by a heat adhesive sheet 31.
  • the header 3, the header 4, and the header 5 may be configured by, for example, laminating an aluminum laminated film. Further, the header 4 is adhered by a heat-bonding sheet 31 so as to surround and cover the outer peripheral surface of the flat multi-hole pipe 1 (see FIGS. 3 and 6), and also surrounds and covers the outer peripheral surface of the flat multi-hole pipe 2. They are glued together to cover (see FIGS. 3 and 6). Further, the header 3 is adhered by a heat-bonding sheet 31 so as to surround and cover the outer peripheral surface of the connection tube 6 (see FIGS. 4, 5 and 6), and also surrounds the outer peripheral surface of the flat multi-hole tube 1. It is adhered so as to be covered with (see FIGS. 4, 5 and 6).
  • the header 5 is adhered by the heat-bonding sheet 31 so as to surround and cover the outer peripheral surface of the flat multi-hole tube 2 (see FIGS. 5 and 6), and also surround and cover the outer peripheral surface of the connecting tube 7 (see FIGS. 5 and 6). It is adhered as shown in FIGS. 5 and 6).
  • the header 3 has an outer portion (the portion indicated by hatching) to which the film is adhered by the heat-bonding sheet 31 and a portion not adhered.
  • the header 3 is configured so that the non-bonded portion swells to form a bag-shaped flow path when the refrigerant flows into the non-bonded portion of the header 3 (see FIG. 6).
  • the header 4 and the header 5 also have a portion where the film is adhered and a portion where the film is not adhered, and the header 4 and the header 5 are adhered by flowing the refrigerant into the portion where the film is not adhered.
  • the part that is not bulged is configured to form a bag-shaped flow path (see FIG. 6).
  • As the heat-bonding sheet 31 different types of heat-bonding sheets may be used depending on the place to be bonded and the target.
  • the header 3 is a flexible header connected to the flat multi-hole pipe 1 on one end side of the flat multi-hole pipe 1, and is one end of the flat multi-hole pipe 1. On the portion side, it is configured to connect a plurality of flow paths of the flat multi-hole tube 1. Specifically, the header 3 has flexibility because it is made of the film as described above. Further, the header 3 is configured so that the refrigerant sent by the pump 20 flows into a plurality of flow paths formed in the flat multi-hole pipe 1. Further, the header 3 has a flow path in the connecting tube 6 and a flat multi-hole pipe on the upstream side of the plurality of flow paths of the flat multi-hole pipe 1 (the side opposite to the side where the flat multi-hole pipe 1 connects to the header 4). 1 is connected to a plurality of flow paths.
  • the header 4 is a flexible header connected to the flat multi-hole pipe 1 on the other end side of the flat multi-hole pipe 1, and is the other of the flat multi-hole pipe 1. It is configured to connect a plurality of flow paths of the flat multi-hole pipe 1 on the end side of the pipe. Specifically, the header 4 has flexibility because it is made of the film as described above. Further, the header 4 is connected to the flat multi-hole pipe 1 so that the refrigerant sent by the pump 20 flows from a plurality of flow paths formed in the flat multi-hole pipe 1.
  • the header 4 connects a plurality of flow paths of the flat multi-hole pipe 1 and a plurality of flow paths of the flat multi-hole pipe 2 on the other end side of the flat multi-hole pipe 2. It is configured as follows. Specifically, in the header 4, the refrigerant sent by the pump 20 flows from the plurality of flow paths formed in the flat multi-hole pipe 1 into the plurality of flow paths formed in the flat multi-hole pipe 2. It is configured in. Further, the header 4 is flat with the plurality of flow paths of the flat multi-hole pipe 1 on the downstream side of the plurality of flow paths of the flat multi-hole pipe 1 (the side opposite to the side where the flat multi-hole pipe 1 connects to the header 3). It connects a plurality of flow paths of the multi-hole pipe 2.
  • the header 5 is connected to the flat multi-hole pipe 2 on one end side of the flat multi-hole pipe 2 and is configured to have flexibility. Specifically, the header 5 has flexibility because it is made of the film as described above. Further, the header 5 is connected to the flat multi-hole pipe 2 on the downstream side of the plurality of flow paths of the flat multi-hole pipe 2 (the side opposite to the side where the flat multi-hole pipe 2 is connected to the header 4).
  • the header 5 is configured to connect a plurality of flow paths of the flat multi-hole pipe 2, and the refrigerant that has passed through the plurality of flow paths of the flat multi-hole pipe 2 is a condenser. It is configured to be connected to the flat multi-hole tube 2 so that the liquid is sent to 30. Specifically, the header 5 is connected to the flat multi-hole pipe 2 as described above, and the refrigerant sent by the pump 20 flows from the plurality of flow paths formed in the flat multi-hole pipe 2. It is configured in. Further, the header 5 connects a plurality of flow paths of the flat multi-hole pipe 2 so that the refrigerant sent by the pump 20 is sent to the condenser 30 via the connection tube 7 and the refrigerant flow path. There is.
  • connection tube 6 is configured to connect the refrigerant flow path downstream of the pump 20 and the header 3. Further, the connecting tube 6 is a bendable pipe made of, for example, a stainless steel material, an aluminum material, or a copper material. Further, the refrigerant flow path downstream of the pump 20 and the connection tube 6 may be connected by brazing or the like.
  • connection tube 7 is configured to connect the header 5 and the refrigerant flow path upstream of the condenser 30.
  • the connecting tube 7 is a bendable pipe made of, for example, a stainless steel material, an aluminum material, or a copper material.
  • the refrigerant flow path upstream of the condenser 30 and the connection tube 7 may be connected by brazing or the like.
  • the header 4 has the flat multi-hole pipe 1 and the flat multi-hole pipe 2 when viewed from the direction perpendicular to the surface on which the flat multi-hole pipe 2 of the object to be cooled is arranged. It is configured to be bent so that they overlap. Specifically, by bending the header 4, the flat multi-hole pipe 1 and the flat multi-hole pipe 2 are configured to overlap with each other when viewed from a direction perpendicular to the mounting surface of the object to be cooled.
  • the flat multi-hole pipe 2 is arranged so as to overlap the flat multi-hole pipe 1 and the object to be cooled and the flat multi-hole pipe 2 of the object to be cooled when viewed from a direction perpendicular to the plane on which the flat multi-hole pipe 2 is arranged.
  • it is arranged between the object to be cooled and the flat multi-hole tube 1, and is configured so that the heat taken from the object to be cooled by the flat multi-hole tube 2 is transferred to the flat multi-hole tube 1.
  • the flat multi-hole pipe 2 is arranged so as to overlap the flat multi-hole pipe 1 and the cooling target when viewed from a direction perpendicular to the mounting surface of the cooling target.
  • the flat multi-hole tube 2 is configured to cool the object to be cooled by removing heat from the object to be cooled via the heat conductive sheet 9. Further, the heat taken by the flat multi-hole tube 2 from the object to be cooled is transferred to the flat multi-hole tube 1 arranged in layers via the heat conductive sheet 8. Then, the heat transferred from the flat multi-hole pipe 2 via the heat conductive sheet 8 raises the temperature of the refrigerant in the flat multi-hole pipe 1, so that the refrigerant in the flat multi-hole pipe 1 becomes gas-liquid two. It is configured to be in a phase state (see FIG. 7).
  • the header 3 (first flexible member) and the header 4 (second flexible member) have flexibility.
  • the header 3 (first flexible member) and the header 4 (second flexible member) can be installed even in a narrow space by bending along the object to be cooled.
  • the heat-bonding sheet 31 includes the flat multi-hole pipe 1 (first multi-hole pipe), the header 3 (first flexible member), and the header 4. (Second flexible member) is adhered.
  • the flat multi-hole pipe 1 (first multi-hole pipe), the header 3 (first flexible member), and the header 4 (second flexible member) are attached by the heat-bonding sheet 31 (adhesive layer).
  • Flat multi-hole tube 1 (first multi-hole tube) and header 3 (first flexible) at a lower temperature than brazing, where it is necessary to raise the temperature to the temperature at which the brazing material melts by bonding.
  • the sex member) and the header 4 (second flexible member) can be connected.
  • the flat multi-hole pipe 1 (first multi-hole pipe), the header 3 (first flexible member), and the header 4 (second flexible member) are provided by a simple facility such as a small constant temperature bath. Can be connected.
  • the header 3 (first flexible member) and the header 4 (second flexible member) are laminated with a plurality of materials including a material having high thermal conductivity.
  • the flat multi-hole tube 1 (first multi-hole tube) is formed by the heat-adhesive sheet 31 (adhesive layer) so as to surround and cover the outer peripheral surface of the flat multi-hole tube 1 (first multi-hole tube). It is connected to the pipe 1 (first multi-hole pipe).
  • the thermal conductivity of the header 3 (first flexible member) and the header 4 (second flexible member) can be increased, so that the header 3 (first flexible member) and the header 4 (first flexible member) can be increased. 2
  • the efficiency of heat exchange of the flexible member) can be increased.
  • heat exchange can be performed not only in the header 3 (first flexible member) but also in the header 3 (first flexible member) and the header 4 (second flexible member).
  • the header 3 (first flexible member) and the header 4 (second flexible member) are bonded so as to surround and cover the outer peripheral surface of the flat multi-hole pipe 1 (first multi-hole pipe) with an adhesive layer.
  • a plurality of flow paths of the flat multi-hole pipe 1 (first multi-hole pipe) can be collectively connected.
  • a plurality of flow paths of the flat multi-hole pipe 1 (first multi-hole pipe) can be easily connected.
  • the header 4 is the flat multi-hole pipe 1 on the other end side of the flat multi-hole pipe 2 (second multi-hole pipe).
  • the header 5 (third flexible member) is configured to connect the plurality of flow paths of the (first multi-hole pipe) and the plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe).
  • the header 4 (second flexible member) connects the plurality of flow paths of the flat multi-hole pipe 1 (first multi-hole pipe) and the plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe).
  • the header 4 second flexible member
  • the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 are connected according to the shape of the object to be exchanged with heat.
  • the arrangement of the (second multi-hole tube) can be changed.
  • the flat multi-hole tube 1 (first multi-hole tube) and the flat multi-hole tube 2 (second multi-hole tube) can be easily aligned with the object. Can be placed.
  • the flat multi-hole pipe 1 (first multi-hole pipe), the flat multi-hole pipe 2 (second multi-hole pipe), and the header 4 (second flexible member) are ,
  • the evaporator 10 heat exchanger configured to take away the heat of the object to be cooled by evaporating the refrigerant sent by the pump 20 (liquid feeding section), and the header 3 (first possible).
  • the flexible member is a flat multi-hole pipe so that the refrigerant sent by the pump 20 (liquid feeding unit) is sent to a plurality of flow paths of the flat multi-hole pipe 1 (first multi-hole pipe).
  • the header 4 (second flexible member) is configured to be connected to 1 (first multi-hole pipe), and the header 4 (second flexible member) is flat on the other end side of the flat multi-hole pipe 2 (second multi-hole pipe). It is configured to connect a plurality of flow paths of the hole pipe 1 (first multi-hole pipe) and a plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe), and is configured to connect the header 5 (third flexible pipe).
  • the member) is configured to connect a plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe) and passes through the plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe).
  • the flat multi-hole pipe 2 (second multi-hole pipe) so that the generated refrigerant is sent to the condenser 30 (condensing portion).
  • cooling can be performed using the latent heat of vaporization, so that the cooling efficiency is improved as compared with the case where only the temperature change (sensible heat) of the refrigerant is used without using the latent heat of vaporization, so that the refrigerant circulates.
  • the amount can be reduced.
  • the flat multi-hole tube 1 first multi-hole tube
  • the flat multi-hole tube 2 (second multi-hole tube), and the header 4 (second flexible member), which are the evaporator 10
  • the evaporator 10 can be installed in a narrower space.
  • the output of the pump 20 liquid feeding unit
  • the header 4 (second flexible member) has a flat multi-hole when viewed from a direction perpendicular to the surface on which the flat multi-hole pipe 2 of the object to be cooled is arranged.
  • the flat multi-hole pipe 2 (second multi-hole pipe) is formed by bending so that the pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) overlap each other.
  • the flat multi-hole pipe 2 of the pipe 1 (first multi-hole pipe) and the cooling target and the cooling target are arranged so as to overlap each other when viewed from the direction perpendicular to the plane on which the cooling target and the flat multi-hole pipe 2 are arranged.
  • the heat taken from the object to be cooled by the flat multi-hole pipe 2 (second multi-hole pipe) arranged between the hole pipe 1 (first multi-hole pipe) is the flat multi-hole pipe 1 (first multi-hole pipe).
  • the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) are folded and arranged on the object to be cooled, so that the cooling capacity per installation area is improved. can do.
  • the refrigerant in the flat multi-hole tube 1 (first multi-hole tube) upstream of the flat multi-hole tube 2 (second multi-hole tube) is brought into contact with the object to be cooled by putting it in a gas-liquid two-phase state.
  • the cooling is rapidly shifted to the cooling using the latent heat of vaporization, which has better cooling efficiency than the cooling using only the temperature change (sensible heat) of the refrigerant without using the latent heat of vaporization. be able to. As a result, the cooling efficiency can be improved.
  • the heat conductive sheet 8 contacts the facing surfaces of the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe). Then, the heat of the flat multi-hole pipe 2 (second multi-hole pipe) is transferred to the flat multi-hole pipe 1 (first multi-hole pipe). As a result, the heat conductive sheet 8 can efficiently transfer the heat of the second multi-hole pipe to the first multi-hole pipe.
  • the configuration of the evaporator 11 of the cooling device 100 according to the second embodiment will be described with reference to FIGS. 8 and 9.
  • the flat multi-hole tube 1 and the flat multi-hole tube 2 are attached so as to be folded with respect to the object to be cooled.
  • the flat multi-hole tube 1 and the flat multi-hole tube 2 are respectively subjected to the heat conductive sheet 8 and the heat conductive sheet 9 to be the object to be cooled. It is installed.
  • the flat multi-hole tube 1 and the flat multi-hole tube 2 are such that the other end side of the flat multi-hole tube 1 and the one end side of the flat multi-hole tube 2 face each other. Have been placed. Specifically, the side of the flat multi-hole tube 1 that connects to the header 3 (the side that connects to the header 4) and the side of the flat multi-hole tube 2 that connects to the header 5 (connect to the header 4). The side) and the header 4 are connected by the header 4 so as to face each other.
  • the flat multi-hole tube 1 and the flat multi-hole tube 2 are connected to the header 4 on different sides of the header 4. Specifically, the flat multi-hole tube 1 and the flat multi-hole tube 2 are connected to the header 4 on the opposite sides of the header 4.
  • the evaporator 10 is attached to the object to be cooled so that the header 4 is arranged at the corner of the object to be cooled.
  • the header 4 is attached in a bent state along the corners.
  • the evaporator 10 adheres the heat conductive sheet 8 provided between the flat multi-hole tube 1 and the object to be cooled and the heat conductive sheet 9 provided between the flat multi-hole tube 2 and the object to be cooled. It is attached so that it can be attached to the object to be cooled by force.
  • connecting tube 6 and the connecting tube 7 are connected to the header 3 and the header 5 in a direction intersecting the directions of the plurality of flow paths in the flat multi-hole pipe 1 and the flat multi-hole pipe 2.
  • the header 3 (first flexible member) and the header 4 (second flexible member) are installed even in a narrow space by bending along the object to be cooled. be able to.
  • the evaporator 11 (heat exchanger) and the cooling device 100 that can be easily attached even when the space around the object to be cooled is narrow.
  • the flat multi-hole tube 1 (first multi-hole tube) and the flat multi-hole tube 2 (second multi-hole tube) are the flat multi-hole tube 1 (first multi-hole tube).
  • the side of the pipe) connected to the header 4 (second flexible member) and the side of the flat multi-hole pipe 2 (second multi-hole pipe) connected to the header 4 (second flexible member) face each other.
  • the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) face each other of the header 4 (second flexible member). On the side (different side), it is connected to the header 4 (second flexible member).
  • the header 4 (second flexible member) is arranged at the corner of the object, so that the header is along the corner of the object. 4 (second flexible member) can be bent. As a result, the header 4 (second flexible member) can be brought into close contact with the corners of the object in a state of being in close contact with the corners of the object.
  • FIGS. 10 and 11 The configuration of the evaporator 12 of the cooling device 100 according to the third embodiment will be described with reference to FIGS. 10 and 11.
  • the flat multi-hole tube 1 and the flat multi-hole tube 2 are attached so as to be folded with respect to the object to be cooled.
  • Each of the flat multi-hole tube 1 and the flat multi-hole tube 2 is attached to the object to be cooled by the heat conductive sheet 8 and the heat conductive sheet 9 so as to be attached to the object to be cooled.
  • the flat multi-hole pipe 2 is configured so that the plurality of flow paths of the flat multi-hole pipe 2 are arranged adjacent to each other so as to be along the plurality of flow paths of the flat multi-hole pipe 1.
  • the plurality of flow paths formed in the flat multi-hole tube 1 and the plurality of flow paths formed in the flat multi-hole tube 2 are substantially parallel to each other. (See FIG. 10).
  • the flat multi-hole pipe 2 has a direction intersecting the direction from the upstream to the downstream of a plurality of flow paths formed in the flat multi-hole pipe 1 and the flat multi-hole pipe 2 (flat multi-hole pipe 1 and flat multi-hole pipe 2). It is arranged adjacent to the short side direction of the hole pipe 2.
  • the flat multi-hole tube 1 and the flat multi-hole tube 2 are configured to be connected to the header 4 on the same side of the header 4.
  • the header 4 is connected to the flat multi-hole pipe 1 and the flat multi-hole pipe 2 and the header 5 are connected to each other on the side opposite to the side where the flat multi-hole pipe 1 and the header 3 are connected.
  • the flat multi-hole tube 1 see FIG. 11
  • the side where the flat multi-hole pipe 1 and the header 4 are connected and the side where the flat multi-hole pipe 2 is connected to the header 4 are the same side of the header 4.
  • the header 3 (first flexible member) and the header 4 (second flexible member) are installed even in a narrow space by bending along the object to be cooled. be able to.
  • the evaporator 12 (heat exchanger) and the cooling device 100 that can be easily attached even when the space around the object to be cooled is narrow.
  • the plurality of flow paths of the flat multi-hole pipe 2 are flat multi-hole pipe 1 (first multi-hole pipe).
  • the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) are arranged adjacent to each other along a plurality of flow paths of the (1 multi-hole pipe). It is connected to the header 4 (second flexible member) on the same side of the header 4 (second flexible member).
  • the mounting surface of the object to be cooled has a step or unevenness in the direction in which the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) are adjacent to each other.
  • the header 4 (second flexible member) can be bent according to the step or unevenness.
  • the mounting surface of the object includes steps or irregularities in the direction in which the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) are adjacent to each other, it is easy. Can be attached to.
  • the evaporators 10, 11 and 12 (heat exchangers) of the cooling device 100 are flat multi-hole pipe 1 (first multi-hole pipe) and flat multi-hole pipe 2 (second multi-hole pipe).
  • first multi-hole pipe first multi-hole pipe
  • second multi-hole pipe second multi-hole pipe
  • the connection tube 7 is connected to the second flexible member (header 4) connected to the first multi-hole tube (flat multi-hole tube 1) as in the first modification shown in FIG.
  • the heat exchanger 13 may be configured by one multi-hole tube, or the heat exchanger may be configured by three or more multi-hole tubes.
  • the evaporators 10, 11 and 12 (heat exchangers) of the cooling device 100 are attached to the header 3 (first flexible member) and the header 4 (second flexible member).
  • the header 5 third flexible member
  • the present invention is not limited to this.
  • the heat exchanger may be configured by using four or more flexible members as the header.
  • the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) are connected to the header 4 (second flexible member).
  • the present invention is not limited to this. In the present invention, it may be configured so that three or more multi-hole pipes are connected to the second flexible member.
  • the flat multi-hole tube 1 (first multi-hole tube) and the flat multi-hole tube 2 (second multi-hole tube) are via the heat conductive sheet 8 and the heat conductive sheet 9.
  • the present invention is not limited to this, although an example is shown in which the heat of the object to be cooled is taken away.
  • the first multi-hole pipe and the second multi-hole pipe may be configured to take heat of the cooling target by directly contacting the surface of the cooling target.
  • the heat taken by the flat multi-hole pipe 2 (second multi-hole pipe) from the object to be cooled is transferred to the flat multi-hole pipe 1 (first multi-hole pipe) via the heat conductive sheet 8.
  • the present invention is not limited to this.
  • the heat taken by the second multi-hole pipe from the object to be cooled may be transferred to the first multi-hole pipe by directly contacting the second multi-hole pipe with the first multi-hole pipe. ..
  • the header 3 (first flexible member), the header 4 (second flexible member), and the header 5 (third flexible member) are made of an aluminum laminated film.
  • the first flexible member, the second flexible member, and the third flexible member may be made of a film containing a material having a high thermal conductivity other than aluminum, or may have a high thermal conductivity.
  • the film may be composed of only a material such as polyethylene without containing the material.
  • the cooling device 100 shows an example of a configuration in which a plurality of evaporators 10, 11 and 12 (heat exchangers) are arranged in parallel, but the present invention is limited to this. I can't.
  • the cooling device may be configured by arranging a plurality of heat exchangers in series, or may be configured by one heat exchanger.
  • cooling device 100 for cooling the object to be cooled by the evaporators 10, 11 and 12 have been shown, but the present invention is limited to this. Absent.
  • the present invention may be applied to a device that raises the temperature of an object by using a heat exchanger.
  • the evaporators 10, 11 and 12 (heat exchangers) and the cooling device 100 use the refrigerant in the flat multi-hole pipe 1 (first multi-hole pipe) as a gas-liquid two-phase.
  • the present invention is not limited to this, although an example is shown in which the object to be cooled is cooled by utilizing the latent heat of vaporization.
  • the heat exchanger and the cooling device may make the refrigerant in the flat multi-hole tube 1 in a single-phase state, and cool the object to be cooled by using only sensible heat without utilizing latent heat of vaporization. May be configured to do.
  • the adjusting valve 22 is provided in the flow path bypassing the pump 20, and the flow rate of the refrigerant sent by the pump 20 is adjusted by adjusting the adjusting valve 22.
  • the present invention is not limited to this.
  • the flow rate of the refrigerant sent by the pump may be controlled by controlling the inverter of the pump without using the regulating valve.
  • a first multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant A first flexible member as a flexible header connected to the first multi-hole pipe on one end side of the first multi-hole pipe.
  • a second flexible member On the other end side of the first multi-hole tube, a second flexible member as a flexible header connected to the first multi-hole tube is provided.
  • the first flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on one end side of the first multi-hole pipe.
  • the second flexible member is a heat exchanger configured to connect a plurality of flow paths of the first multi-hole pipe on the other end side of the first multi-hole pipe.
  • the first flexible member and the second flexible member are composed of a film formed by laminating a plurality of materials including a material having a high thermal conductivity, and the first poly member is formed by the adhesive layer.
  • the heat exchanger according to item 2 which is connected to the first multi-hole pipe by being adhered so as to surround and cover the outer peripheral surface of the hole pipe.
  • a second multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant A third flexible member having flexibility connected to the second multi-hole tube is further provided on one end side of the second multi-hole tube.
  • the second flexible member connects a plurality of flow paths of the first multi-hole pipe and a plurality of flow paths of the second multi-hole pipe on the other end side of the second multi-hole pipe.
  • the third flexible member is configured to connect a plurality of flow paths of the second multi-hole pipe on one end side of the second multi-hole pipe, any of items 1 to 3.
  • the heat exchanger according to item 1.
  • the first multi-hole pipe and the second multi-hole pipe are arranged so that the other end side of the first multi-hole pipe and one end side of the second multi-hole pipe face each other. 4.
  • the second multi-hole pipe is arranged adjacent to each other so that the plurality of flow paths of the second multi-hole pipe follow the plurality of flow paths of the first multi-hole pipe.
  • the heat exchanger according to item 4 wherein the first multi-hole tube and the second multi-hole tube are connected to the second flexible member on the same side of the second flexible member.
  • a first multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant A first flexible member as a flexible header connected to the first multi-hole pipe on one end side of the first multi-hole pipe.
  • a second flexible member as a flexible header connected to the first multi-hole tube On the other end side of the first multi-hole tube, a second flexible member as a flexible header connected to the first multi-hole tube is provided.
  • the first flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on one end side of the first multi-hole pipe.
  • the second flexible member is a cooling device configured to connect a plurality of flow paths of the first multi-hole pipe on the other end side of the first multi-hole pipe.
  • a second multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant
  • a third flexible member having flexibility connected to the second multi-hole pipe on one end side of the second multi-hole pipe.
  • a liquid feeding part provided on one end side of the first multi-hole pipe and feeding a refrigerant, and a liquid feeding part. Further provided with a condensing portion provided on one end side of the second multi-hole pipe to condense the refrigerant.
  • the first multi-hole pipe, the second multi-hole pipe, and the second flexible member are configured to take heat of the object to be cooled by evaporating the refrigerant sent by the liquid feeding unit.
  • the first flexible member is connected to the first multi-hole pipe so that the refrigerant sent by the liquid feeding unit is sent to a plurality of flow paths of the first multi-hole pipe.
  • Consists of The second flexible member connects a plurality of flow paths of the first multi-hole pipe and a plurality of flow paths of the second multi-hole pipe on the other end side of the second multi-hole pipe.
  • the third flexible member is configured to connect a plurality of flow paths of the second multi-hole pipe, and the refrigerant that has passed through the plurality of flow paths of the second multi-hole pipe is a condensed portion.
  • Item 7 The cooling device according to item 7, which is configured to be connected to the second multi-hole pipe so as to be fed to the liquid.
  • the second flexible member is such that the first multi-hole pipe and the second multi-hole pipe overlap each other when viewed from a direction perpendicular to the surface of the cooling object on which the second multi-hole pipe is arranged. It is composed by folding The second multi-hole pipe is arranged so as to overlap the first multi-hole pipe and the object to be cooled so as to be viewed from a direction perpendicular to the surface on which the second multi-hole pipe of the object to be cooled is arranged. At the same time, it is arranged between the cooling object and the first multi-hole pipe.
  • the cooling device according to item 8, wherein the heat taken from the cooling object by the second multi-hole pipe is configured to be transferred to the first multi-hole pipe.
  • the item 9 further includes a heat conductive sheet that comes into contact with the facing surfaces of the first multi-hole pipe and the second multi-hole pipe and transfers the heat of the second multi-hole pipe to the first multi-hole pipe.

Abstract

This heat exchanger (10) is provided with: a first multi-hole tube (1) having multiple holes that serve as flow channels for passing a refrigerant therethrough; a first flexible member (3) that is connected to the first multi-hole tube (1) at one end portion side of the first multi-hole tube (1); and a second flexible member (4) that is connected to the first multi-hole tube (1) at the other end portion side of the first multi-hole tube (1), wherein the first flexible member (3) is configured to connect multiple flow channels of the first multi-hole tube (1) at the one end portion side of the first multi-hole tube (1), whereas the second flexible member (4) is configured to connect multiple flow channels of the first multi-hole tube (1) at the other end portion side of the first multi-hole tube (1).

Description

熱交換器および冷却装置Heat exchanger and cooling device
 本発明は、熱交換器および冷却装置に関し、特に、冷媒を流すための流路としての複数の穴を有する多穴管を備える熱交換器および冷却装置に関する。 The present invention relates to a heat exchanger and a cooling device, and more particularly to a heat exchanger and a cooling device including a multi-hole tube having a plurality of holes as a flow path for flowing a refrigerant.
 従来、冷媒を流すための流路としての複数の穴を有する多穴管を備える熱交換器が知られている。このような熱交換器は、たとえば、特開2012-32089号公報に開示されている。 Conventionally, a heat exchanger having a multi-hole tube having a plurality of holes as a flow path for flowing a refrigerant is known. Such a heat exchanger is disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-32089.
 上記特開2012-32089号公報には、扁平多穴管と、扁平多穴管の複数の流路を接続するジョイントとを備える熱交換器が開示されている。上記の熱交換器では、ジョイントは、ろう付けにより、扁平多穴管に接続されている。 The above-mentioned Japanese Patent Application Laid-Open No. 2012-32089 discloses a heat exchanger including a flat multi-hole tube and a joint for connecting a plurality of flow paths of the flat multi-hole tube. In the heat exchanger described above, the joints are connected to the flat multi-hole tube by brazing.
特開2012-32089号公報Japanese Unexamined Patent Publication No. 2012-32089
 しかしながら、上記特許文献1記載の熱交換器では、ジョイントは、ろう付けにより、扁平多穴管に接続されるため、容易に変形しない材料により形成されると考えられる。そのため、熱交換を行う対象物の立体形状および周囲のスペース(取り付けスペース)に合わせて、ジョイントを容易に変形させることができないので、熱交換を行う対象物の周囲のスペースが狭い場合では、熱交換器を容易に取り付けることができないという問題点がある。 However, in the heat exchanger described in Patent Document 1, since the joint is connected to the flat multi-hole tube by brazing, it is considered that the joint is formed of a material that does not easily deform. Therefore, the joint cannot be easily deformed according to the three-dimensional shape of the object to be heat-exchanged and the surrounding space (mounting space). Therefore, when the space around the object to be heat-exchanged is narrow, heat is generated. There is a problem that the exchanger cannot be easily installed.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、熱交換を行う対象物の周囲のスペースが狭い場合でも容易に取り付けることが可能な熱交換器および冷却装置を提供することである。 The present invention has been made to solve the above problems, and one object of the present invention is heat that can be easily attached even when the space around the object to be heat exchanged is narrow. It is to provide a exchanger and a cooling device.
 この発明の第1の局面における熱交換器は、冷媒を流すための流路としての複数の穴を有する第1多穴管と、第1多穴管の一方の端部側において、第1多穴管と接続された可撓性を有するヘッダとしての第1可撓性部材と、第1多穴管の他方の端部側において、第1多穴管と接続された可撓性を有するヘッダとしての第2可撓性部材と、を備え、第1可撓性部材は、第1多穴管の一方の端部側において、第1多穴管の複数の流路を接続するように構成され、第2可撓性部材は、第1多穴管の他方の端部側において、第1多穴管の複数の流路を接続するように構成されている。 The heat exchanger in the first aspect of the present invention has a first multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant and a first multi-hole pipe on one end side of the first multi-hole pipe. A first flexible member as a flexible header connected to a hole tube, and a flexible header connected to the first multi-hole tube on the other end side of the first multi-hole tube. The first flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on one end side of the first multi-hole pipe. The second flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on the other end side of the first multi-hole pipe.
 この発明の第2の局面における冷却装置は、冷媒を流すための流路としての複数の穴を有する第1多穴管と、第1多穴管の一方の端部側において、第1多穴管と接続された可撓性を有するヘッダとしての第1可撓性部材と、第1多穴管の他方の端部側において、第1多穴管と接続された可撓性を有するヘッダとしての第2可撓性部材と、を備え、第1可撓性部材は、第1多穴管の一方の端部側において、第1多穴管の複数の流路を接続するように構成され、第2可撓性部材は、第1多穴管の他方の端部側において、第1多穴管の複数の流路を接続するように構成されている。 The cooling device in the second aspect of the present invention has a first multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant, and a first multi-hole pipe on one end side of the first multi-hole pipe. A first flexible member as a flexible header connected to a pipe, and a flexible header connected to a first multi-hole pipe on the other end side of the first multi-hole pipe. The first flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on one end side of the first multi-hole pipe. The second flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on the other end side of the first multi-hole pipe.
 本発明によれば、上記のように、第1多穴管の一方の端部側において、第1多穴管と接続された可撓性を有するヘッダとしての第1可撓性部材と、第1多穴管の他方の端部側において、第1多穴管と接続された可撓性を有するヘッダとしての第2可撓性部材と、を備える。これにより、第1可撓性部材および第2可撓性部材を、熱交換を行う対象物に沿わせて折り曲げることにより、狭いスペースでも設置することができる。その結果、熱交換を行う対象物(冷却対象物)の周囲のスペースが狭い場合でも容易に取り付けることが可能な熱交換器および冷却装置を提供することができる。 According to the present invention, as described above, on one end side of the first multi-hole tube, a first flexible member as a flexible header connected to the first multi-hole tube, and a first. On the other end side of the one multi-hole tube, a second flexible member as a flexible header connected to the first multi-hole tube is provided. As a result, the first flexible member and the second flexible member can be installed even in a narrow space by bending along the object to be exchanged with heat. As a result, it is possible to provide a heat exchanger and a cooling device that can be easily attached even when the space around the object to be heat exchanged (cooling object) is narrow.
本発明の第1実施形態による冷却装置の全体構成を示したブロック図である。It is a block diagram which showed the whole structure of the cooling apparatus by 1st Embodiment of this invention. 本発明の第1実施形態による冷却装置の蒸発器の一例を示した図である。It is a figure which showed an example of the evaporator of the cooling apparatus by 1st Embodiment of this invention. 図2の200-200線に沿った蒸発器の断面図である。It is sectional drawing of the evaporator along the line 200-200 of FIG. 本発明の第1実施形態の接着層による接着の一例を示した図である。It is a figure which showed an example of adhesion by the adhesive layer of 1st Embodiment of this invention. 本発明の第1実施形態による冷却装置の蒸発器の接続チューブ側から見た側面図である。It is a side view seen from the connection tube side of the evaporator of the cooling device by 1st Embodiment of this invention. 図2の300-300線に沿った蒸発器の断面図である。It is sectional drawing of the evaporator along the line 300-300 of FIG. 本発明の第1実施形態の蒸発器の冷却方法を説明するための図である。It is a figure for demonstrating the cooling method of the evaporator of 1st Embodiment of this invention. 本発明の第2実施形態による冷却装置の蒸発器の一例を示した図である。It is a figure which showed an example of the evaporator of the cooling apparatus by 2nd Embodiment of this invention. 図8の400-400線に沿った断面図である。It is sectional drawing along the line 400-400 of FIG. 本発明の第3実施形態による冷却装置の蒸発器の一例を示した図である。It is a figure which showed an example of the evaporator of the cooling apparatus according to 3rd Embodiment of this invention. 本発明の第3実施形態のヘッダの接続の一例を示した図である。It is a figure which showed an example of the connection of the header of the 3rd Embodiment of this invention. 本発明の第1実施形態の第1変形例による蒸発器の一例を示した斜視図である。It is a perspective view which showed an example of the evaporator by the 1st modification by 1st Embodiment of this invention.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 Hereinafter, embodiments embodying the present invention will be described with reference to the drawings.
 [第1実施形態]
 まず、図1を参照して、第1実施形態による冷却装置100の構成について説明する。
[First Embodiment]
First, the configuration of the cooling device 100 according to the first embodiment will be described with reference to FIG.
 (冷却装置の構成)
 第1実施形態による冷却装置100は、複数の蒸発器10、ポンプ20、凝縮器30、貯留部40および制御部50を備えている。また、冷却装置100は、複数の流量制御弁21および調整弁22を備える。なお、蒸発器10は、請求の範囲の「熱交換器」の一例である。また、ポンプ20は、請求の範囲の「送液部」の一例であり、凝縮器30は、請求の範囲の「凝縮部」の一例である。
(Cooling device configuration)
The cooling device 100 according to the first embodiment includes a plurality of evaporators 10, a pump 20, a condenser 30, a storage unit 40, and a control unit 50. Further, the cooling device 100 includes a plurality of flow rate control valves 21 and a regulating valve 22. The evaporator 10 is an example of a "heat exchanger" in the claims. Further, the pump 20 is an example of the "liquid feeding unit" in the claims, and the condenser 30 is an example of the "condensation unit" in the claims.
 冷却装置100は、電子機器のような冷却対象物を冷却するように構成されている。つまり、蒸発器10は、熱源としての冷却対象物(電子機器)と接するとともに、熱伝導により冷却対象物(電子機器)の熱を奪うように構成されている。 The cooling device 100 is configured to cool an object to be cooled such as an electronic device. That is, the evaporator 10 is configured to be in contact with the cooling object (electronic device) as a heat source and to take away the heat of the cooling object (electronic device) by heat conduction.
 また、冷却装置100は、冷媒を循環させて熱源としての冷却対象物(電子機器)を冷却するように構成されている。冷媒は、たとえば、フロン系の冷媒である。冷媒は、たとえば、R245fa(大気圧における沸点15.3℃)である。また、冷媒は、R245fa以外の冷媒、たとえば、水などを冷媒として用いてもよい。また、冷媒を循環させるための流路(冷媒流路)は、金属材料により形成されている。冷媒流路は、たとえば、ステンレス材、アルミニウム材、または、銅材により形成されている。冷媒流路は、パイプ状に形成されている。蒸発器10、ポンプ20、凝縮器30および貯留部40は、それぞれ冷媒流路により接続されている。 Further, the cooling device 100 is configured to circulate the refrigerant to cool the object to be cooled (electronic device) as a heat source. The refrigerant is, for example, a chlorofluorocarbon-based refrigerant. The refrigerant is, for example, R245fa (boiling point 15.3 ° C. at atmospheric pressure). Further, as the refrigerant, a refrigerant other than R245fa, for example, water or the like may be used as the refrigerant. Further, the flow path (refrigerant flow path) for circulating the refrigerant is formed of a metal material. The refrigerant flow path is formed of, for example, a stainless steel material, an aluminum material, or a copper material. The refrigerant flow path is formed in a pipe shape. The evaporator 10, the pump 20, the condenser 30, and the storage unit 40 are each connected by a refrigerant flow path.
 蒸発器10は、送液された冷媒を蒸発させるように構成されている。具体的には、蒸発器10内に設けられた流路を冷媒が流れ、蒸発器10を介して熱源である冷却対象物(電子機器)から冷媒に熱が伝達する。冷媒は、熱が加えられることにより、蒸発器10内で蒸発(気化)する。蒸発器10は、冷媒の蒸発潜熱(気化熱)により、熱源である冷却対象物(電子機器)の熱を奪って、冷却対象物(電子機器)を冷却するように構成されている。蒸発器10出口から出た気液二相の冷媒は、凝縮器30に送られる。 The evaporator 10 is configured to evaporate the supplied refrigerant. Specifically, the refrigerant flows through the flow path provided in the evaporator 10, and heat is transferred from the object to be cooled (electronic device), which is a heat source, to the refrigerant via the evaporator 10. The refrigerant evaporates (vaporizes) in the evaporator 10 when heat is applied. The evaporator 10 is configured to take heat from a cooling target (electronic device), which is a heat source, by the latent heat of vaporization (heat of vaporization) of the refrigerant to cool the cooling target (electronic device). The gas-liquid two-phase refrigerant discharged from the outlet of the evaporator 10 is sent to the condenser 30.
 ポンプ20は、冷媒を送液するように構成されている。また、ポンプ20は、所定の範囲の出力により運転されている。また、ポンプ20は、液体の状態の冷媒を送るように構成されている。また、ポンプ20は、複数の蒸発器10に対して冷媒を送液可能に構成されている。ポンプ20は、貯留部40から複数の蒸発器10に冷媒を送るように構成されている。 The pump 20 is configured to send a refrigerant. Further, the pump 20 is operated with an output in a predetermined range. Further, the pump 20 is configured to send a refrigerant in a liquid state. Further, the pump 20 is configured to be able to send the refrigerant to the plurality of evaporators 10. The pump 20 is configured to send the refrigerant from the storage unit 40 to the plurality of evaporators 10.
 複数の流量制御弁21は、複数の蒸発器10への冷媒の流量を調整するために設けられている。具体的には、流量制御弁21は、複数の蒸発器10の各々の上流に設けられている。流量制御弁21は、開度を調整することにより、下流の蒸発器10に送られる冷媒の流量を調整するように構成されている。流量制御弁21の開度を大きくする(開く)ことにより、下流の蒸発器10に送られる冷媒の流量が大きくなる。一方、流量制御弁21の開度を小さくする(絞る)ことにより、下流の蒸発器10に送られる冷媒の流量が小さくなる。流量制御弁21は、それぞれ、制御部50により開度が調整される。 The plurality of flow rate control valves 21 are provided to adjust the flow rate of the refrigerant to the plurality of evaporators 10. Specifically, the flow rate control valve 21 is provided upstream of each of the plurality of evaporators 10. The flow rate control valve 21 is configured to adjust the flow rate of the refrigerant sent to the evaporator 10 downstream by adjusting the opening degree. By increasing (opening) the opening degree of the flow rate control valve 21, the flow rate of the refrigerant sent to the evaporator 10 downstream increases. On the other hand, by reducing (squeezing) the opening degree of the flow rate control valve 21, the flow rate of the refrigerant sent to the downstream evaporator 10 is reduced. The opening degree of each of the flow rate control valves 21 is adjusted by the control unit 50.
 調整弁22は、ポンプ20をバイパスする流路に設けられている。調整弁22は、ポンプ20により送られる冷媒の流量を調整するために設けられている。具体的には、調整弁22の開度を大きくする(開く)ことにより、バイパスする冷媒の流量が多くなり、蒸発器10に送られる冷媒の流量が小さくなる。一方、調整弁22の開度を小さくする(絞る)ことにより、バイパスする冷媒の量が少なくなり、蒸発器10に送られる冷媒の流量が大きくなる。調整弁22は、制御部50により開度が調整される。 The adjusting valve 22 is provided in a flow path that bypasses the pump 20. The adjusting valve 22 is provided to adjust the flow rate of the refrigerant sent by the pump 20. Specifically, by increasing (opening) the opening degree of the adjusting valve 22, the flow rate of the bypassed refrigerant increases, and the flow rate of the refrigerant sent to the evaporator 10 decreases. On the other hand, by reducing (squeezing) the opening degree of the adjusting valve 22, the amount of the bypassed refrigerant is reduced, and the flow rate of the refrigerant sent to the evaporator 10 is increased. The opening degree of the adjusting valve 22 is adjusted by the control unit 50.
 凝縮器30は、蒸発した冷媒を凝縮(液化)させるように構成されている。具体的には、凝縮器30は、外部の空気と熱交換することにより、冷媒を冷却して、凝縮させるように構成されている。凝縮器30出口から出た液体の冷媒は、貯留部40に送られる。 The condenser 30 is configured to condense (liquefy) the evaporated refrigerant. Specifically, the condenser 30 is configured to cool and condense the refrigerant by exchanging heat with the outside air. The liquid refrigerant discharged from the outlet of the condenser 30 is sent to the storage unit 40.
 貯留部40は、液体の冷媒を貯留するように構成されている。貯留部40に貯留された冷媒は、ポンプ20に送られる。 The storage unit 40 is configured to store a liquid refrigerant. The refrigerant stored in the storage unit 40 is sent to the pump 20.
 制御部50は、冷媒の流量を制御するように構成されている。具体的には、制御部50は、調整弁22を制御することにより、複数の蒸発器10に供給される冷媒の合計の流量を制御する。また、制御部50は、流量制御弁21を制御することにより、複数の蒸発器10の各々に供給される冷媒の流量を制御する。また、制御部50は、図示しない温度センサ、冷媒温度センサおよび冷媒圧力センサなどの各種センサにより、温度および圧力を取得して、取得した結果に基づいて、複数の蒸発器10の各々に送られる冷媒の流量を制御するように構成してもよい。 The control unit 50 is configured to control the flow rate of the refrigerant. Specifically, the control unit 50 controls the total flow rate of the refrigerant supplied to the plurality of evaporators 10 by controlling the regulating valve 22. Further, the control unit 50 controls the flow rate of the refrigerant supplied to each of the plurality of evaporators 10 by controlling the flow rate control valve 21. Further, the control unit 50 acquires temperature and pressure by various sensors such as a temperature sensor, a refrigerant temperature sensor, and a refrigerant pressure sensor (not shown), and sends the temperature and pressure to each of the plurality of evaporators 10 based on the acquired results. It may be configured to control the flow rate of the refrigerant.
 (蒸発器の構成)
 蒸発器10は、図2に示すように、扁平多穴管1、扁平多穴管2、ヘッダ3、ヘッダ4およびヘッダ5により構成されている。また、ヘッダ3には、蒸発器10の上流の冷媒流路(流量制御弁21側の冷媒流路)と接続するための接続チューブ6が設けられている。また、ヘッダ5には、蒸発器10の下流の冷媒流路(凝縮器30側の冷媒流路)と接続するための接続チューブ7が設けられている。なお、扁平多穴管1は、請求の範囲の「第1多穴管」の一例であり、扁平多穴管2は、請求の範囲の「第2多穴管」の一例である。また、ヘッダ3は、請求の範囲の「第1可撓性部材」の一例であり、ヘッダ4は、請求の範囲の「第2可撓性部材」の一例である。また、ヘッダ5は、請求の範囲の「第3可撓性部材」の一例である。
(Evaporator configuration)
As shown in FIG. 2, the evaporator 10 is composed of a flat multi-hole tube 1, a flat multi-hole tube 2, a header 3, a header 4, and a header 5. Further, the header 3 is provided with a connection tube 6 for connecting to the refrigerant flow path upstream of the evaporator 10 (refrigerant flow path on the flow rate control valve 21 side). Further, the header 5 is provided with a connection tube 7 for connecting to the refrigerant flow path downstream of the evaporator 10 (refrigerant flow path on the condenser 30 side). The flat multi-hole pipe 1 is an example of the "first multi-hole pipe" in the claims, and the flat multi-hole pipe 2 is an example of the "second multi-hole pipe" in the claims. Further, the header 3 is an example of the "first flexible member" in the claims, and the header 4 is an example of the "second flexible member" in the claims. Further, the header 5 is an example of the "third flexible member" in the claims.
 ここで、第1実施形態では、扁平多穴管1、扁平多穴管2およびヘッダ4は、ポンプ20により送液された冷媒を蒸発させることにより、冷却対象物の熱を奪うように構成されている。具体的には、蒸発器10内を構成する扁平多穴管1、扁平多穴管2およびヘッダ4内に形成された流路に冷媒を流すことにより、扁平多穴管1、扁平多穴管2およびヘッダ4を介して熱源である冷却対象物から冷媒に熱が伝達する。冷媒は、熱が加えられることにより、扁平多穴管1、扁平多穴管2およびヘッダ4内で蒸発(気化)する。このように、蒸発器10は、冷媒の蒸発潜熱(気化熱)により、熱源である冷却対象物の熱を奪って、冷却対象物を冷却するように構成されている。蒸発器10出口から出た気液二相の冷媒は、凝縮器30に送られる。 Here, in the first embodiment, the flat multi-hole pipe 1, the flat multi-hole pipe 2 and the header 4 are configured to take away the heat of the object to be cooled by evaporating the refrigerant sent by the pump 20. ing. Specifically, the flat multi-hole pipe 1, the flat multi-hole pipe 2 and the flat multi-hole pipe are formed by flowing the refrigerant through the flow paths formed in the flat multi-hole pipe 1, the flat multi-hole pipe 2 and the header 4 constituting the evaporator 10. Heat is transferred from the cooling object, which is a heat source, to the refrigerant through the 2 and the header 4. The refrigerant evaporates (vaporizes) in the flat multi-hole pipe 1, the flat multi-hole pipe 2, and the header 4 when heat is applied. As described above, the evaporator 10 is configured to take away the heat of the object to be cooled, which is a heat source, by the latent heat of vaporization (heat of vaporization) of the refrigerant, and cool the object to be cooled. The gas-liquid two-phase refrigerant discharged from the outlet of the evaporator 10 is sent to the condenser 30.
 また、第1実施形態では、扁平多穴管1の一方の端部側には、ポンプ20(図1参照)が設けられ、冷媒を送液するように構成されている。具体的には、ポンプ20は、ポンプ20下流の冷媒流路、接続チューブ6およびヘッダ3を介して、扁平多穴管1の流路に冷媒を送液するように構成されている。 Further, in the first embodiment, a pump 20 (see FIG. 1) is provided on one end side of the flat multi-hole pipe 1 and is configured to send a refrigerant. Specifically, the pump 20 is configured to send the refrigerant to the flow path of the flat multi-hole pipe 1 via the refrigerant flow path downstream of the pump 20, the connection tube 6, and the header 3.
 また、第1実施形態では、扁平多穴管2の一方の端部側には、凝縮器30(図1参照)が設けられ、冷媒を凝縮させるように構成されている。具体的には、凝縮器30は、ヘッダ5、接続チューブ7および凝縮器30上流の冷媒流路を介して、扁平多穴管2の流路から送液された冷媒の凝縮を行うように構成されている。 Further, in the first embodiment, a condenser 30 (see FIG. 1) is provided on one end side of the flat multi-hole pipe 2 so as to condense the refrigerant. Specifically, the condenser 30 is configured to condense the refrigerant sent from the flow path of the flat multi-hole pipe 2 via the header 5, the connecting tube 7, and the refrigerant flow path upstream of the condenser 30. Has been done.
 (扁平多穴管の構成)
 扁平多穴管1および扁平多穴管2は、扁平形状を有した管である。扁平多穴管1および扁平多穴管2は、たとえば、アルミニウム材などのような熱伝導率の高い金属材料により形成されている。
(Construction of flat multi-hole tube)
The flat multi-hole tube 1 and the flat multi-hole tube 2 are tubes having a flat shape. The flat multi-hole tube 1 and the flat multi-hole tube 2 are formed of a metal material having high thermal conductivity, such as an aluminum material.
 第1実施形態では、扁平多穴管1および扁平多穴管2は、冷媒を流すための冷媒流路としての複数の穴を有するように構成(図3参照)されている。具体的には、扁平多穴管1および扁平多穴管2には、流路として、複数の穴が形成されており、形成された穴には、冷媒がポンプ20により送液されるように構成されている。扁平多穴管1および扁平多穴管2は、長辺と短辺とを有し、長辺方向に沿うように流路が形成されている。なお、扁平多穴管1および扁平多穴管2の長辺方向の長さは、たとえば、10mmから20mm程度である。 In the first embodiment, the flat multi-hole pipe 1 and the flat multi-hole pipe 2 are configured to have a plurality of holes as a refrigerant flow path for flowing a refrigerant (see FIG. 3). Specifically, the flat multi-hole pipe 1 and the flat multi-hole pipe 2 are formed with a plurality of holes as flow paths so that the refrigerant is sent to the formed holes by the pump 20. It is configured. The flat multi-hole pipe 1 and the flat multi-hole pipe 2 have a long side and a short side, and a flow path is formed along the long side direction. The length of the flat multi-hole tube 1 and the flat multi-hole tube 2 in the long side direction is, for example, about 10 mm to 20 mm.
 また、蒸発器10には、熱伝導シート8および熱伝導シート9(図3参照)が設けられている。熱伝導シート8および熱伝導シート9は、熱伝導率の高い材料を含む。熱伝導シート8および熱伝導シート9は、たとえば、シリコン樹脂、アクリルおよび炭素繊維などである。また、熱伝導シート8および熱伝導シート9は、両面に粘着力を有する粘着層(図示せず)を有することにより、冷却対象物、扁平多穴管1および扁平多穴管2に貼り付け可能に構成されている。 Further, the evaporator 10 is provided with a heat conductive sheet 8 and a heat conductive sheet 9 (see FIG. 3). The heat conductive sheet 8 and the heat conductive sheet 9 include a material having a high thermal conductivity. The heat conductive sheet 8 and the heat conductive sheet 9 are, for example, silicone resin, acrylic, carbon fiber, and the like. Further, the heat conductive sheet 8 and the heat conductive sheet 9 can be attached to the object to be cooled, the flat multi-hole tube 1 and the flat multi-hole tube 2 by having an adhesive layer (not shown) having adhesive force on both sides. It is configured in.
 また、第1実施形態では、熱伝導シート8は、扁平多穴管1および扁平多穴管2の対向する面に接触し、扁平多穴管2の熱を、扁平多穴管1に伝達させるように構成されている。具体的には、扁平多穴管1と扁平多穴管2との間には、熱伝導シート8が設けられており、熱伝導シート8は、扁平多穴管1と扁平多穴管2との間の熱の伝達を行うとともに、扁平多穴管1と扁平多穴管2とを貼り付けている。また、扁平多穴管2と冷却対象物との間には、熱伝導シート9が設けられている。熱伝導シート9は、冷却対象物と扁平多穴管2との間の熱の伝達を行うとともに、冷却対象物と扁平多穴管2とを貼り付けている。 Further, in the first embodiment, the heat conductive sheet 8 comes into contact with the facing surfaces of the flat multi-hole tube 1 and the flat multi-hole tube 2 to transfer the heat of the flat multi-hole tube 2 to the flat multi-hole tube 1. It is configured as follows. Specifically, a heat conductive sheet 8 is provided between the flat multi-hole tube 1 and the flat multi-hole tube 2, and the heat conductive sheet 8 includes the flat multi-hole tube 1 and the flat multi-hole tube 2. While transferring heat between them, the flat multi-hole tube 1 and the flat multi-hole tube 2 are attached. Further, a heat conductive sheet 9 is provided between the flat multi-hole tube 2 and the object to be cooled. The heat conductive sheet 9 transfers heat between the object to be cooled and the flat multi-hole tube 2, and the object to be cooled and the flat multi-hole tube 2 are attached to each other.
 (ヘッダの構成)
 次に、ヘッダ(ヘッダ3、ヘッダ4およびヘッダ5)と接続チューブ(接続チューブ6および接続チューブ7)の構成について、説明を行う。
(Header structure)
Next, the configuration of the header (header 3, header 4 and header 5) and the connecting tube (connecting tube 6 and connecting tube 7) will be described.
 第1実施形態では、ヘッダ3およびヘッダ4は、熱伝導率の高い材料を含む複数の材料を積層して形成されたフィルムにより構成されるとともに、熱接着シート31(図4および図6参照)により扁平多穴管1の外周面を取り囲んで覆うように接着されることにより、扁平多穴管1と接続するように構成されている。なお、熱接着シート31は、請求の範囲の「接着層」の一例である。具体的には、ヘッダ3、ヘッダ4およびヘッダ5は、熱伝導率の高い材料を含む複数の材料を積層して形成されたフィルムを、熱接着シート31により、貼り合わせて形成されている。ヘッダ3、ヘッダ4およびヘッダ5は、たとえば、アルミラミネートフィルムを貼り合わせて構成されていてもよい。また、ヘッダ4は、熱接着シート31により、扁平多穴管1の外周面を取り囲んで覆う(図3および図6参照)ように接着されるとともに、扁平多穴管2の外周面を取り囲んで覆う(図3および図6参照)ように接着されている。また、ヘッダ3は、熱接着シート31により、接続チューブ6の外周面を取り囲んで覆う(図4、図5および図6参照)ように接着されるとともに、扁平多穴管1の外周面を取り囲んで覆う(図4、図5および図6参照)ように接着されている。また、ヘッダ5は、熱接着シート31により、扁平多穴管2の外周面を取り囲んで覆う(図5および図6参照)ように接着されるとともに、接続チューブ7の外周面を取り囲んで覆う(図5および図6参照)ように接着されている。 In the first embodiment, the header 3 and the header 4 are composed of a film formed by laminating a plurality of materials including a material having a high thermal conductivity, and a heat-adhesive sheet 31 (see FIGS. 4 and 6). It is configured to be connected to the flat multi-hole tube 1 by being adhered so as to surround and cover the outer peripheral surface of the flat multi-hole tube 1. The thermal adhesive sheet 31 is an example of the "adhesive layer" in the claims. Specifically, the header 3, the header 4, and the header 5 are formed by laminating a film formed by laminating a plurality of materials including a material having a high thermal conductivity by a heat adhesive sheet 31. The header 3, the header 4, and the header 5 may be configured by, for example, laminating an aluminum laminated film. Further, the header 4 is adhered by a heat-bonding sheet 31 so as to surround and cover the outer peripheral surface of the flat multi-hole pipe 1 (see FIGS. 3 and 6), and also surrounds and covers the outer peripheral surface of the flat multi-hole pipe 2. They are glued together to cover (see FIGS. 3 and 6). Further, the header 3 is adhered by a heat-bonding sheet 31 so as to surround and cover the outer peripheral surface of the connection tube 6 (see FIGS. 4, 5 and 6), and also surrounds the outer peripheral surface of the flat multi-hole tube 1. It is adhered so as to be covered with (see FIGS. 4, 5 and 6). Further, the header 5 is adhered by the heat-bonding sheet 31 so as to surround and cover the outer peripheral surface of the flat multi-hole tube 2 (see FIGS. 5 and 6), and also surround and cover the outer peripheral surface of the connecting tube 7 (see FIGS. 5 and 6). It is adhered as shown in FIGS. 5 and 6).
 また、ヘッダ3は、図4に示すように、熱接着シート31によりフィルムが接着された外側の部分(ハッチングで示した箇所)と接着されていない部分を有している。ヘッダ3は、ヘッダ3の接着されていない部分に冷媒が流れ込むことにより、接着されていない部分が膨らみ、袋状の流路となるように構成(図6参照)されている。また、ヘッダ4およびヘッダ5についても、ヘッダ3と同様に、フィルムが接着された外側の部分と接着されていない部分を有しており、接着されていない部分に冷媒が流れ込むことにより、接着されていない部分が膨らみ、袋状の流路となるように構成(図6参照)されている。なお、熱接着シート31は、貼り合わせる箇所や対象に応じて、異なる種類の熱接着シートを用いてもよい。 Further, as shown in FIG. 4, the header 3 has an outer portion (the portion indicated by hatching) to which the film is adhered by the heat-bonding sheet 31 and a portion not adhered. The header 3 is configured so that the non-bonded portion swells to form a bag-shaped flow path when the refrigerant flows into the non-bonded portion of the header 3 (see FIG. 6). Further, the header 4 and the header 5 also have a portion where the film is adhered and a portion where the film is not adhered, and the header 4 and the header 5 are adhered by flowing the refrigerant into the portion where the film is not adhered. The part that is not bulged is configured to form a bag-shaped flow path (see FIG. 6). As the heat-bonding sheet 31, different types of heat-bonding sheets may be used depending on the place to be bonded and the target.
 第1実施形態では、ヘッダ3は、扁平多穴管1の一方の端部側において、扁平多穴管1と接続された可撓性を有するヘッダであり、扁平多穴管1の一方の端部側において、扁平多穴管1の複数の流路を接続するように構成されている。具体的には、ヘッダ3は、上記のようなフィルムにより構成されることにより、可撓性を有している。また、ヘッダ3は、ポンプ20により送液された冷媒が、扁平多穴管1に形成された複数の流路に流れ込むように構成されている。また、ヘッダ3は、扁平多穴管1の複数の流路の上流側(扁平多穴管1がヘッダ4と接続する側と反対側)において、接続チューブ6内の流路と扁平多穴管1の複数の流路とを接続している。 In the first embodiment, the header 3 is a flexible header connected to the flat multi-hole pipe 1 on one end side of the flat multi-hole pipe 1, and is one end of the flat multi-hole pipe 1. On the portion side, it is configured to connect a plurality of flow paths of the flat multi-hole tube 1. Specifically, the header 3 has flexibility because it is made of the film as described above. Further, the header 3 is configured so that the refrigerant sent by the pump 20 flows into a plurality of flow paths formed in the flat multi-hole pipe 1. Further, the header 3 has a flow path in the connecting tube 6 and a flat multi-hole pipe on the upstream side of the plurality of flow paths of the flat multi-hole pipe 1 (the side opposite to the side where the flat multi-hole pipe 1 connects to the header 4). 1 is connected to a plurality of flow paths.
 また、第1実施形態では、ヘッダ4は、扁平多穴管1の他方の端部側において、扁平多穴管1と接続された可撓性を有するヘッダであり、扁平多穴管1の他方の端部側において、扁平多穴管1の複数の流路を接続するように構成されている。具体的には、ヘッダ4は、上記のようなフィルムにより構成されることにより、可撓性を有している。また、ヘッダ4は、ポンプ20により送液された冷媒が、扁平多穴管1に形成された複数の流路から流れ込むように扁平多穴管1と接続している。 Further, in the first embodiment, the header 4 is a flexible header connected to the flat multi-hole pipe 1 on the other end side of the flat multi-hole pipe 1, and is the other of the flat multi-hole pipe 1. It is configured to connect a plurality of flow paths of the flat multi-hole pipe 1 on the end side of the pipe. Specifically, the header 4 has flexibility because it is made of the film as described above. Further, the header 4 is connected to the flat multi-hole pipe 1 so that the refrigerant sent by the pump 20 flows from a plurality of flow paths formed in the flat multi-hole pipe 1.
 また、第1実施形態では、ヘッダ4は、扁平多穴管2の他方の端部側において、扁平多穴管1の複数の流路と扁平多穴管2の複数の流路とを接続するように構成されている。具体的には、ヘッダ4は、ポンプ20により送液された冷媒が、扁平多穴管1に形成された複数の流路から、扁平多穴管2に形成された複数の流路に流れ込むように構成されている。また、ヘッダ4は、扁平多穴管1の複数の流路の下流側(扁平多穴管1がヘッダ3と接続する側と反対側)において、扁平多穴管1の複数の流路と扁平多穴管2の複数の流路とを接続している。 Further, in the first embodiment, the header 4 connects a plurality of flow paths of the flat multi-hole pipe 1 and a plurality of flow paths of the flat multi-hole pipe 2 on the other end side of the flat multi-hole pipe 2. It is configured as follows. Specifically, in the header 4, the refrigerant sent by the pump 20 flows from the plurality of flow paths formed in the flat multi-hole pipe 1 into the plurality of flow paths formed in the flat multi-hole pipe 2. It is configured in. Further, the header 4 is flat with the plurality of flow paths of the flat multi-hole pipe 1 on the downstream side of the plurality of flow paths of the flat multi-hole pipe 1 (the side opposite to the side where the flat multi-hole pipe 1 connects to the header 3). It connects a plurality of flow paths of the multi-hole pipe 2.
 また、第1実施形態では、ヘッダ5は、扁平多穴管2の一方の端部側において、扁平多穴管2と接続され、可撓性を有するように構成されている。具体的には、ヘッダ5は、上記のようなフィルムにより構成されることにより、可撓性を有している。また、ヘッダ5は、扁平多穴管2の複数の流路の下流側(扁平多穴管2がヘッダ4と接続する側と反対側)において、扁平多穴管2と接続している。 Further, in the first embodiment, the header 5 is connected to the flat multi-hole pipe 2 on one end side of the flat multi-hole pipe 2 and is configured to have flexibility. Specifically, the header 5 has flexibility because it is made of the film as described above. Further, the header 5 is connected to the flat multi-hole pipe 2 on the downstream side of the plurality of flow paths of the flat multi-hole pipe 2 (the side opposite to the side where the flat multi-hole pipe 2 is connected to the header 4).
 また、第1実施形態では、ヘッダ5は、扁平多穴管2の複数の流路を接続するように構成されるとともに、扁平多穴管2の複数の流路を通過した冷媒が、凝縮器30に送液されるように、扁平多穴管2と接続するように構成されている。具体的には、ヘッダ5は、上記のように、扁平多穴管2と接続するとともに、ポンプ20により送液された冷媒が、扁平多穴管2に形成された複数の流路から流れ込むように構成されている。また、ヘッダ5は、接続チューブ7および冷媒流路を介して、ポンプ20により送液された冷媒が凝縮器30に送液されるように扁平多穴管2の複数の流路を接続している。 Further, in the first embodiment, the header 5 is configured to connect a plurality of flow paths of the flat multi-hole pipe 2, and the refrigerant that has passed through the plurality of flow paths of the flat multi-hole pipe 2 is a condenser. It is configured to be connected to the flat multi-hole tube 2 so that the liquid is sent to 30. Specifically, the header 5 is connected to the flat multi-hole pipe 2 as described above, and the refrigerant sent by the pump 20 flows from the plurality of flow paths formed in the flat multi-hole pipe 2. It is configured in. Further, the header 5 connects a plurality of flow paths of the flat multi-hole pipe 2 so that the refrigerant sent by the pump 20 is sent to the condenser 30 via the connection tube 7 and the refrigerant flow path. There is.
 接続チューブ6は、ポンプ20下流の冷媒流路とヘッダ3とを接続するように構成されている。また、接続チューブ6は、たとえば、ステンレス材、アルミニウム材、または、銅材により形成された曲げ可能な配管である。また、ポンプ20下流の冷媒流路と、接続チューブ6は、ろう付けなどにより接続されてもよい。 The connection tube 6 is configured to connect the refrigerant flow path downstream of the pump 20 and the header 3. Further, the connecting tube 6 is a bendable pipe made of, for example, a stainless steel material, an aluminum material, or a copper material. Further, the refrigerant flow path downstream of the pump 20 and the connection tube 6 may be connected by brazing or the like.
 接続チューブ7は、ヘッダ5と凝縮器30上流の冷媒流路とを接続するように構成されている。また、接続チューブ7は、たとえば、ステンレス材、アルミニウム材、または、銅材により形成された曲げ可能な配管である。また、凝縮器30上流の冷媒流路と、接続チューブ7は、ろう付けなどにより接続されてもよい。 The connection tube 7 is configured to connect the header 5 and the refrigerant flow path upstream of the condenser 30. Further, the connecting tube 7 is a bendable pipe made of, for example, a stainless steel material, an aluminum material, or a copper material. Further, the refrigerant flow path upstream of the condenser 30 and the connection tube 7 may be connected by brazing or the like.
 (気液二相状態)
 図6に示すように、第1実施形態において、ヘッダ4は、冷却対象物の扁平多穴管2が配置される面と垂直な方向から見て、扁平多穴管1および扁平多穴管2が重なるように折り曲げて構成されている。具体的には、ヘッダ4を折り曲げることにより、冷却対象物の取り付け面に対して、垂直な方向から見て、扁平多穴管1および扁平多穴管2が重なるように構成されている。
(Gas-liquid two-phase state)
As shown in FIG. 6, in the first embodiment, the header 4 has the flat multi-hole pipe 1 and the flat multi-hole pipe 2 when viewed from the direction perpendicular to the surface on which the flat multi-hole pipe 2 of the object to be cooled is arranged. It is configured to be bent so that they overlap. Specifically, by bending the header 4, the flat multi-hole pipe 1 and the flat multi-hole pipe 2 are configured to overlap with each other when viewed from a direction perpendicular to the mounting surface of the object to be cooled.
 第1実施形態では、扁平多穴管2は、扁平多穴管1および冷却対象物と冷却対象物の扁平多穴管2が配置される面と垂直な方向から見て、重なるように配置されるとともに、冷却対象物と扁平多穴管1との間に配置され、扁平多穴管2が冷却対象物から奪った熱が、扁平多穴管1に伝達するように構成されている。具体的には、扁平多穴管2は、冷却対象物の取り付け面に対して、垂直な方向から見て、扁平多穴管1および冷却対象物と重なるように配置される。また、扁平多穴管2は、熱伝導シート9を介して、冷却対象物から熱を奪うことにより、冷却対象物の冷却を行うように構成されている。また、扁平多穴管2が、冷却対象物から奪った熱は、重ねて配置された扁平多穴管1に、熱伝導シート8を介して、伝達するように構成されている。そして、熱伝導シート8を介して、扁平多穴管2より伝達した熱により、扁平多穴管1内の冷媒の温度が上昇することにより、扁平多穴管1内の冷媒が、気液二相の状態になるように(図7参照)構成されている。 In the first embodiment, the flat multi-hole pipe 2 is arranged so as to overlap the flat multi-hole pipe 1 and the object to be cooled and the flat multi-hole pipe 2 of the object to be cooled when viewed from a direction perpendicular to the plane on which the flat multi-hole pipe 2 is arranged. In addition, it is arranged between the object to be cooled and the flat multi-hole tube 1, and is configured so that the heat taken from the object to be cooled by the flat multi-hole tube 2 is transferred to the flat multi-hole tube 1. Specifically, the flat multi-hole pipe 2 is arranged so as to overlap the flat multi-hole pipe 1 and the cooling target when viewed from a direction perpendicular to the mounting surface of the cooling target. Further, the flat multi-hole tube 2 is configured to cool the object to be cooled by removing heat from the object to be cooled via the heat conductive sheet 9. Further, the heat taken by the flat multi-hole tube 2 from the object to be cooled is transferred to the flat multi-hole tube 1 arranged in layers via the heat conductive sheet 8. Then, the heat transferred from the flat multi-hole pipe 2 via the heat conductive sheet 8 raises the temperature of the refrigerant in the flat multi-hole pipe 1, so that the refrigerant in the flat multi-hole pipe 1 becomes gas-liquid two. It is configured to be in a phase state (see FIG. 7).
 (第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
(Effect of the first embodiment)
In the first embodiment, the following effects can be obtained.
 第1実施形態では、上記のように、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)は、可撓性を有する。これにより、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)を、冷却対象物に沿わせて折り曲げることにより、狭いスペースでも設置することができる。その結果、冷却対象物の周囲のスペースが狭い場合でも容易に取り付けることが可能な蒸発器10(熱交換器)および冷却装置100を提供することができる。 In the first embodiment, as described above, the header 3 (first flexible member) and the header 4 (second flexible member) have flexibility. As a result, the header 3 (first flexible member) and the header 4 (second flexible member) can be installed even in a narrow space by bending along the object to be cooled. As a result, it is possible to provide the evaporator 10 (heat exchanger) and the cooling device 100 that can be easily attached even when the space around the object to be cooled is narrow.
 また、第1実施形態では、上記のように、熱接着シート31(接着層)が、扁平多穴管1(第1多穴管)と、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)とを接着する。これにより、扁平多穴管1(第1多穴管)と、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)とを、熱接着シート31(接着層)により接着することにより、ろう材が溶ける温度まで温度を上げる必要のある、ろう付けに比べて、より低い温度において、扁平多穴管1(第1多穴管)と、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)と、を接続することができる。その結果、小型の恒温槽などの簡易な設備により、扁平多穴管1(第1多穴管)と、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)とを接続をすることができる。 Further, in the first embodiment, as described above, the heat-bonding sheet 31 (adhesive layer) includes the flat multi-hole pipe 1 (first multi-hole pipe), the header 3 (first flexible member), and the header 4. (Second flexible member) is adhered. As a result, the flat multi-hole pipe 1 (first multi-hole pipe), the header 3 (first flexible member), and the header 4 (second flexible member) are attached by the heat-bonding sheet 31 (adhesive layer). Flat multi-hole tube 1 (first multi-hole tube) and header 3 (first flexible) at a lower temperature than brazing, where it is necessary to raise the temperature to the temperature at which the brazing material melts by bonding. The sex member) and the header 4 (second flexible member) can be connected. As a result, the flat multi-hole pipe 1 (first multi-hole pipe), the header 3 (first flexible member), and the header 4 (second flexible member) are provided by a simple facility such as a small constant temperature bath. Can be connected.
 また、第1実施形態では、上記のように、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)は、熱伝導率の高い材料を含む複数の材料を積層して形成されたフィルムにより構成されるとともに、熱接着シート31(接着層)により扁平多穴管1(第1多穴管)の外周面を取り囲んで覆うように接着されることにより、扁平多穴管1(第1多穴管)と接続されている。これにより、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)の熱伝導率を高めることができるので、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)の熱交換の効率を高めることができる。その結果、ヘッダ3(第1可撓性部材)に加えて、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)においても、熱交換を行うことができる。また、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)を接着層により扁平多穴管1(第1多穴管)の外周面を取り囲んで覆うように接着することにより、扁平多穴管1(第1多穴管)の複数の流路を一括して、接続することができる。その結果、扁平多穴管1(第1多穴管)の複数の流路のそれぞれにヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)を接続する場合に比べて、容易に扁平多穴管1(第1多穴管)の複数の流路を接続することができる。 Further, in the first embodiment, as described above, the header 3 (first flexible member) and the header 4 (second flexible member) are laminated with a plurality of materials including a material having high thermal conductivity. The flat multi-hole tube 1 (first multi-hole tube) is formed by the heat-adhesive sheet 31 (adhesive layer) so as to surround and cover the outer peripheral surface of the flat multi-hole tube 1 (first multi-hole tube). It is connected to the pipe 1 (first multi-hole pipe). As a result, the thermal conductivity of the header 3 (first flexible member) and the header 4 (second flexible member) can be increased, so that the header 3 (first flexible member) and the header 4 (first flexible member) can be increased. 2 The efficiency of heat exchange of the flexible member) can be increased. As a result, heat exchange can be performed not only in the header 3 (first flexible member) but also in the header 3 (first flexible member) and the header 4 (second flexible member). Further, the header 3 (first flexible member) and the header 4 (second flexible member) are bonded so as to surround and cover the outer peripheral surface of the flat multi-hole pipe 1 (first multi-hole pipe) with an adhesive layer. Thereby, a plurality of flow paths of the flat multi-hole pipe 1 (first multi-hole pipe) can be collectively connected. As a result, as compared with the case where the header 3 (first flexible member) and the header 4 (second flexible member) are connected to each of the plurality of flow paths of the flat multi-hole pipe 1 (first multi-hole pipe). Therefore, a plurality of flow paths of the flat multi-hole pipe 1 (first multi-hole pipe) can be easily connected.
 また、第1実施形態では、上記のように、ヘッダ4(第2可撓性部材)は、扁平多穴管2(第2多穴管)の他方の端部側において、扁平多穴管1(第1多穴管)の複数の流路と扁平多穴管2(第2多穴管)の複数の流路とを接続するように構成され、ヘッダ5(第3可撓性部材)は、扁平多穴管2(第2多穴管)の一方の端部側において、扁平多穴管2(第2多穴管)の複数の流路を接続するように構成されている。これにより、扁平多穴管1(第1多穴管)の複数の流路と扁平多穴管2(第2多穴管)の複数の流路とをヘッダ4(第2可撓性部材)により接続するので、ヘッダ4(第2可撓性部材)を折り曲げることにより、熱交換を行う対象物の形状に合わせて、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)の配置を変化させることができる。その結果、複雑な立体形状を有する対象物に対しても、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)を対象物に沿うように容易に配置することができる。 Further, in the first embodiment, as described above, the header 4 (second flexible member) is the flat multi-hole pipe 1 on the other end side of the flat multi-hole pipe 2 (second multi-hole pipe). The header 5 (third flexible member) is configured to connect the plurality of flow paths of the (first multi-hole pipe) and the plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe). , On one end side of the flat multi-hole pipe 2 (second multi-hole pipe), a plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe) are connected. As a result, the header 4 (second flexible member) connects the plurality of flow paths of the flat multi-hole pipe 1 (first multi-hole pipe) and the plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe). By bending the header 4 (second flexible member), the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 are connected according to the shape of the object to be exchanged with heat. The arrangement of the (second multi-hole tube) can be changed. As a result, even for an object having a complicated three-dimensional shape, the flat multi-hole tube 1 (first multi-hole tube) and the flat multi-hole tube 2 (second multi-hole tube) can be easily aligned with the object. Can be placed.
 また、第1実施形態では、上記のように、扁平多穴管1(第1多穴管)、扁平多穴管2(第2多穴管)およびヘッダ4(第2可撓性部材)は、ポンプ20(送液部)により送液された冷媒を蒸発させることにより、冷却対象物の熱を奪うように構成されている蒸発器10(熱交換器)であり、ヘッダ3(第1可撓性部材)は、ポンプ20(送液部)により送液された冷媒が、扁平多穴管1(第1多穴管)の複数の流路に送液されるように、扁平多穴管1(第1多穴管)と接続するように構成され、ヘッダ4(第2可撓性部材)は、扁平多穴管2(第2多穴管)の他方の端部側において、扁平多穴管1(第1多穴管)の複数の流路と扁平多穴管2(第2多穴管)の複数の流路とを接続するように構成され、ヘッダ5(第3可撓性部材)は、扁平多穴管2(第2多穴管)の複数の流路を接続するように構成されるとともに、扁平多穴管2(第2多穴管)の複数の流路を通過した冷媒が、凝縮器30(凝縮部)に送液されるように、扁平多穴管2(第2多穴管)と接続するように構成されている。これにより、蒸発潜熱を利用して冷却を行うことができるので、蒸発潜熱を利用せず冷媒の温度変化(顕熱)のみを利用する場合と比べて、冷却効率が向上するので、冷媒の循環量を小さくすることができる。その結果、蒸発器10である扁平多穴管1(第1多穴管)、扁平多穴管2(第2多穴管)およびヘッダ4(第2可撓性部材)を小さくすることができるので、より狭いスペースに蒸発器10を取り付けることができる。また、ポンプ20(送液部)の出力を小さくすることができるので、装置の小型化を図ることができる。 Further, in the first embodiment, as described above, the flat multi-hole pipe 1 (first multi-hole pipe), the flat multi-hole pipe 2 (second multi-hole pipe), and the header 4 (second flexible member) are , The evaporator 10 (heat exchanger) configured to take away the heat of the object to be cooled by evaporating the refrigerant sent by the pump 20 (liquid feeding section), and the header 3 (first possible). The flexible member) is a flat multi-hole pipe so that the refrigerant sent by the pump 20 (liquid feeding unit) is sent to a plurality of flow paths of the flat multi-hole pipe 1 (first multi-hole pipe). The header 4 (second flexible member) is configured to be connected to 1 (first multi-hole pipe), and the header 4 (second flexible member) is flat on the other end side of the flat multi-hole pipe 2 (second multi-hole pipe). It is configured to connect a plurality of flow paths of the hole pipe 1 (first multi-hole pipe) and a plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe), and is configured to connect the header 5 (third flexible pipe). The member) is configured to connect a plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe) and passes through the plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe). It is configured to be connected to the flat multi-hole pipe 2 (second multi-hole pipe) so that the generated refrigerant is sent to the condenser 30 (condensing portion). As a result, cooling can be performed using the latent heat of vaporization, so that the cooling efficiency is improved as compared with the case where only the temperature change (sensible heat) of the refrigerant is used without using the latent heat of vaporization, so that the refrigerant circulates. The amount can be reduced. As a result, the flat multi-hole tube 1 (first multi-hole tube), the flat multi-hole tube 2 (second multi-hole tube), and the header 4 (second flexible member), which are the evaporator 10, can be made smaller. Therefore, the evaporator 10 can be installed in a narrower space. Further, since the output of the pump 20 (liquid feeding unit) can be reduced, the size of the device can be reduced.
 また、第1実施形態では、上記のように、ヘッダ4(第2可撓性部材)は、冷却対象物の扁平多穴管2が配置される面と垂直な方向から見て、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)が重なるように折り曲げて構成されており、扁平多穴管2(第2多穴管)は、扁平多穴管1(第1多穴管)および冷却対象物と冷却対象物の扁平多穴管2が配置される面と垂直な方向から見て、重なるように配置されるとともに、冷却対象物と扁平多穴管1(第1多穴管)との間に配置され、扁平多穴管2(第2多穴管)が冷却対象物から奪った熱が、扁平多穴管1(第1多穴管)に伝達するように構成されている。これにより、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)が冷却対象物上に折り重ねて配置されるので、設置面積当たりの冷却能力を向上することができる。また、扁平多穴管2(第2多穴管)よりも上流の扁平多穴管1(第1多穴管)内の冷媒を気液二相の状態にすることにより、冷却対象物に接する扁平多穴管2(第2多穴管)において、蒸発潜熱を利用せず冷媒の温度変化(顕熱)のみを利用する冷却よりも冷却効率の良い蒸発潜熱を利用した冷却に迅速に移行することができる。その結果、冷却効率を向上させることができる。 Further, in the first embodiment, as described above, the header 4 (second flexible member) has a flat multi-hole when viewed from a direction perpendicular to the surface on which the flat multi-hole pipe 2 of the object to be cooled is arranged. The flat multi-hole pipe 2 (second multi-hole pipe) is formed by bending so that the pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) overlap each other. The flat multi-hole pipe 2 of the pipe 1 (first multi-hole pipe) and the cooling target and the cooling target are arranged so as to overlap each other when viewed from the direction perpendicular to the plane on which the cooling target and the flat multi-hole pipe 2 are arranged. The heat taken from the object to be cooled by the flat multi-hole pipe 2 (second multi-hole pipe) arranged between the hole pipe 1 (first multi-hole pipe) is the flat multi-hole pipe 1 (first multi-hole pipe). ) Is configured to be transmitted. As a result, the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) are folded and arranged on the object to be cooled, so that the cooling capacity per installation area is improved. can do. Further, the refrigerant in the flat multi-hole tube 1 (first multi-hole tube) upstream of the flat multi-hole tube 2 (second multi-hole tube) is brought into contact with the object to be cooled by putting it in a gas-liquid two-phase state. In the flat multi-hole tube 2 (second multi-hole tube), the cooling is rapidly shifted to the cooling using the latent heat of vaporization, which has better cooling efficiency than the cooling using only the temperature change (sensible heat) of the refrigerant without using the latent heat of vaporization. be able to. As a result, the cooling efficiency can be improved.
 また、第1実施形態では、上記のように、熱伝導シート8は、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)の対向する面に接触し、扁平多穴管2(第2多穴管)の熱を、扁平多穴管1(第1多穴管)に伝達させる。これにより、熱伝導シート8により、第2多穴管の熱を、第1多穴管に効率よく伝達することができる。 Further, in the first embodiment, as described above, the heat conductive sheet 8 contacts the facing surfaces of the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe). Then, the heat of the flat multi-hole pipe 2 (second multi-hole pipe) is transferred to the flat multi-hole pipe 1 (first multi-hole pipe). As a result, the heat conductive sheet 8 can efficiently transfer the heat of the second multi-hole pipe to the first multi-hole pipe.
 [第2実施形態]
 図8および図9を参照して、第2実施形態による冷却装置100の蒸発器11の構成について説明する。この第2実施形態による蒸発器11では、扁平多穴管1および扁平多穴管2が、冷却対象物に対して、折り重なるように取り付けられている上記第1実施形態の蒸発器10と異なり、図8および図9に示すように、冷却対象物の異なる面に対して、扁平多穴管1および扁平多穴管2のそれぞれが、熱伝導シート8および熱伝導シート9により、冷却対象物に取り付けられている。
[Second Embodiment]
The configuration of the evaporator 11 of the cooling device 100 according to the second embodiment will be described with reference to FIGS. 8 and 9. In the evaporator 11 according to the second embodiment, unlike the evaporator 10 of the first embodiment, in which the flat multi-hole tube 1 and the flat multi-hole tube 2 are attached so as to be folded with respect to the object to be cooled. As shown in FIGS. 8 and 9, with respect to different surfaces of the object to be cooled, the flat multi-hole tube 1 and the flat multi-hole tube 2 are respectively subjected to the heat conductive sheet 8 and the heat conductive sheet 9 to be the object to be cooled. It is installed.
 第2実施形態において、扁平多穴管1および扁平多穴管2は、扁平多穴管1の他方の端部側と、扁平多穴管2の一方の端部側と、が対向するように配置されている。具体的には、扁平多穴管1におけるヘッダ3と接続する側の反対側(ヘッダ4と接続する側)と、扁平多穴管2におけるヘッダ5と接続する側の反対側(ヘッダ4と接続する側)と、が対向するようにして、ヘッダ4によって接続されている。 In the second embodiment, the flat multi-hole tube 1 and the flat multi-hole tube 2 are such that the other end side of the flat multi-hole tube 1 and the one end side of the flat multi-hole tube 2 face each other. Have been placed. Specifically, the side of the flat multi-hole tube 1 that connects to the header 3 (the side that connects to the header 4) and the side of the flat multi-hole tube 2 that connects to the header 5 (connect to the header 4). The side) and the header 4 are connected by the header 4 so as to face each other.
 また、第2実施形態において、扁平多穴管1および扁平多穴管2は、ヘッダ4の互いに異なる側において、ヘッダ4と接続されている。具体的には、扁平多穴管1および扁平多穴管2は、ヘッダ4の互いに対向する側において、ヘッダ4に接続される。 Further, in the second embodiment, the flat multi-hole tube 1 and the flat multi-hole tube 2 are connected to the header 4 on different sides of the header 4. Specifically, the flat multi-hole tube 1 and the flat multi-hole tube 2 are connected to the header 4 on the opposite sides of the header 4.
また、蒸発器10は、図8および図9に示すように、冷却対象物の角部にヘッダ4が配置するように、冷却対象物に取り付けられている。ヘッダ4は、角部に沿うように折り曲げた状態で取り付けられている。また、蒸発器10は、扁平多穴管1と冷却対象物との間に設けられた熱伝導シート8および扁平多穴管2と冷却対象物との間に設けられた熱伝導シート9の粘着力により冷却対象物に貼り付けられるようにして、取り付けられている。 Further, as shown in FIGS. 8 and 9, the evaporator 10 is attached to the object to be cooled so that the header 4 is arranged at the corner of the object to be cooled. The header 4 is attached in a bent state along the corners. Further, the evaporator 10 adheres the heat conductive sheet 8 provided between the flat multi-hole tube 1 and the object to be cooled and the heat conductive sheet 9 provided between the flat multi-hole tube 2 and the object to be cooled. It is attached so that it can be attached to the object to be cooled by force.
 また、接続チューブ6および接続チューブ7は、扁平多穴管1および扁平多穴管2内の複数の流路の方向と交差する方向において、ヘッダ3およびヘッダ5と接続されている。 Further, the connecting tube 6 and the connecting tube 7 are connected to the header 3 and the header 5 in a direction intersecting the directions of the plurality of flow paths in the flat multi-hole pipe 1 and the flat multi-hole pipe 2.
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。 The other configurations of the second embodiment are the same as those of the first embodiment.
 (第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
(Effect of the second embodiment)
In the second embodiment, the following effects can be obtained.
 第2実施形態では、上記のように、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)を、冷却対象物に沿わせて折り曲げることにより、狭いスペースでも設置することができる。その結果、冷却対象物の周囲のスペースが狭い場合でも容易に取り付けることが可能な蒸発器11(熱交換器)および冷却装置100を提供することができる。 In the second embodiment, as described above, the header 3 (first flexible member) and the header 4 (second flexible member) are installed even in a narrow space by bending along the object to be cooled. be able to. As a result, it is possible to provide the evaporator 11 (heat exchanger) and the cooling device 100 that can be easily attached even when the space around the object to be cooled is narrow.
 また、第2実施形態では、上記のように、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)は、扁平多穴管1(第1多穴管)におけるヘッダ4(第2可撓性部材)と接続する側と、扁平多穴管2(第2多穴管)におけるヘッダ4(第2可撓性部材)と接続する側と、が対向するように配置されているとともに、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)は、ヘッダ4(第2可撓性部材)の互いに対向する側(異なる側)において、ヘッダ4(第2可撓性部材)と接続されている。これにより、熱交換を行う対象物が角を有する形状の場合において、対象物の角の位置にヘッダ4(第2可撓性部材)を配置することにより、対象物の角に沿って、ヘッダ4(第2可撓性部材)を折り曲げることができる。その結果、対象物の角に対しても、密着させた状態において、ヘッダ4(第2可撓性部材)を密着させることができる。 Further, in the second embodiment, as described above, the flat multi-hole tube 1 (first multi-hole tube) and the flat multi-hole tube 2 (second multi-hole tube) are the flat multi-hole tube 1 (first multi-hole tube). The side of the pipe) connected to the header 4 (second flexible member) and the side of the flat multi-hole pipe 2 (second multi-hole pipe) connected to the header 4 (second flexible member) face each other. The flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) face each other of the header 4 (second flexible member). On the side (different side), it is connected to the header 4 (second flexible member). As a result, when the object to be heat exchanged has a shape, the header 4 (second flexible member) is arranged at the corner of the object, so that the header is along the corner of the object. 4 (second flexible member) can be bent. As a result, the header 4 (second flexible member) can be brought into close contact with the corners of the object in a state of being in close contact with the corners of the object.
 なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。 The other effects of the second embodiment are the same as those of the first embodiment.
 [第3実施形態]
 図10および図11を参照して、第3実施形態による冷却装置100の蒸発器12の構成について説明する。この第3実施形態による蒸発器12では、扁平多穴管1および扁平多穴管2が、冷却対象物に対して、折り重なるように取り付けられている上記第1実施形態による蒸発器10と異なり、冷却対象物に対して、扁平多穴管1および扁平多穴管2のそれぞれが、熱伝導シート8および熱伝導シート9により、冷却対象物に貼り付けられるようにして、取り付けられている。
[Third Embodiment]
The configuration of the evaporator 12 of the cooling device 100 according to the third embodiment will be described with reference to FIGS. 10 and 11. In the evaporator 12 according to the third embodiment, unlike the evaporator 10 according to the first embodiment, in which the flat multi-hole tube 1 and the flat multi-hole tube 2 are attached so as to be folded with respect to the object to be cooled. Each of the flat multi-hole tube 1 and the flat multi-hole tube 2 is attached to the object to be cooled by the heat conductive sheet 8 and the heat conductive sheet 9 so as to be attached to the object to be cooled.
 第3実施形態において、扁平多穴管2は、扁平多穴管2の複数の流路が扁平多穴管1の複数の流路に沿うように、隣接して配置されるように構成されている。具体的には、扁平多穴管2は、扁平多穴管1内に形成された複数の流路と、扁平多穴管2内に形成された複数の流路と、が略平行になるように配置(図10参照)されている。また、扁平多穴管2は、扁平多穴管1内および扁平多穴管2内に形成された複数の流路の上流から下流への方向と交差する方向(扁平多穴管1および扁平多穴管2の短辺方向)に隣接して配置されている。 In the third embodiment, the flat multi-hole pipe 2 is configured so that the plurality of flow paths of the flat multi-hole pipe 2 are arranged adjacent to each other so as to be along the plurality of flow paths of the flat multi-hole pipe 1. There is. Specifically, in the flat multi-hole tube 2, the plurality of flow paths formed in the flat multi-hole tube 1 and the plurality of flow paths formed in the flat multi-hole tube 2 are substantially parallel to each other. (See FIG. 10). Further, the flat multi-hole pipe 2 has a direction intersecting the direction from the upstream to the downstream of a plurality of flow paths formed in the flat multi-hole pipe 1 and the flat multi-hole pipe 2 (flat multi-hole pipe 1 and flat multi-hole pipe 2). It is arranged adjacent to the short side direction of the hole pipe 2.
 第3実施形態において、扁平多穴管1および扁平多穴管2は、ヘッダ4の同一の側において、ヘッダ4と接続されるように構成されている。具体的には、ヘッダ4は、扁平多穴管1とヘッダ3とが接続する側と反対側において、扁平多穴管1と接続されるとともに、扁平多穴管2とヘッダ5とが接続する側と反対側において、扁平多穴管1と接続(図11参照)されている。また、扁平多穴管1とヘッダ4とが接続する側と、扁平多穴管2がヘッダ4とが接続する側は、ヘッダ4の同一側である。 In the third embodiment, the flat multi-hole tube 1 and the flat multi-hole tube 2 are configured to be connected to the header 4 on the same side of the header 4. Specifically, the header 4 is connected to the flat multi-hole pipe 1 and the flat multi-hole pipe 2 and the header 5 are connected to each other on the side opposite to the side where the flat multi-hole pipe 1 and the header 3 are connected. On the opposite side to the side, it is connected to the flat multi-hole tube 1 (see FIG. 11). Further, the side where the flat multi-hole pipe 1 and the header 4 are connected and the side where the flat multi-hole pipe 2 is connected to the header 4 are the same side of the header 4.
 なお、第3実施形態のその他の構成は、上記第1実施形態と同様である。 The other configurations of the third embodiment are the same as those of the first embodiment.
 (第3実施形態の効果)
 第3実施形態では、以下のような効果を得ることができる。
(Effect of Third Embodiment)
In the third embodiment, the following effects can be obtained.
 第3実施形態では、上記のように、ヘッダ3(第1可撓性部材)およびヘッダ4(第2可撓性部材)を、冷却対象物に沿わせて折り曲げることにより、狭いスペースでも設置することができる。その結果、冷却対象物の周囲のスペースが狭い場合でも容易に取り付けることが可能な蒸発器12(熱交換器)および冷却装置100を提供することができる。 In the third embodiment, as described above, the header 3 (first flexible member) and the header 4 (second flexible member) are installed even in a narrow space by bending along the object to be cooled. be able to. As a result, it is possible to provide the evaporator 12 (heat exchanger) and the cooling device 100 that can be easily attached even when the space around the object to be cooled is narrow.
 第3実施形態では、上記のように、扁平多穴管2(第2多穴管)は、扁平多穴管2(第2多穴管)の複数の流路が扁平多穴管1(第1多穴管)の複数の流路に沿うように、隣接して配置されており、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)は、ヘッダ4(第2可撓性部材)の同一の側において、ヘッダ4(第2可撓性部材)と接続されている。これにより、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)が隣接する方向において、冷却対象物の取り付け面が段差や凹凸を有する場合においても、可撓性を有するヘッダ4(第2可撓性部材)により、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)を接続していることにより、段差や凹凸に合わせて、ヘッダ4(第2可撓性部材)を曲げることができる。その結果、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)が隣接する方向において、対象物の取り付け面が段差や凹凸を含む場合においても、容易に取り付けを行うことができる。 In the third embodiment, as described above, in the flat multi-hole pipe 2 (second multi-hole pipe), the plurality of flow paths of the flat multi-hole pipe 2 (second multi-hole pipe) are flat multi-hole pipe 1 (first multi-hole pipe). The flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) are arranged adjacent to each other along a plurality of flow paths of the (1 multi-hole pipe). It is connected to the header 4 (second flexible member) on the same side of the header 4 (second flexible member). As a result, even when the mounting surface of the object to be cooled has a step or unevenness in the direction in which the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) are adjacent to each other. By connecting the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) by the flexible header 4 (second flexible member), The header 4 (second flexible member) can be bent according to the step or unevenness. As a result, even when the mounting surface of the object includes steps or irregularities in the direction in which the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) are adjacent to each other, it is easy. Can be attached to.
 なお、第3実施形態のその他の効果は、上記第1実施形態と同様である。 The other effects of the third embodiment are the same as those of the first embodiment.
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification example]
It should be noted that the embodiments disclosed this time are exemplary in all respects and are not considered to be restrictive. The scope of the present invention is shown by the claims rather than the description of the above-described embodiment, and further includes all modifications (modifications) within the meaning and scope equivalent to the claims.
 たとえば、上記第1~第3実施形態では、冷却装置100の蒸発器10、11および12(熱交換器)を扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)により構成する例を示したが、本発明はこれに限られない。本発明では、図12に示した第1変形例のように、第1多穴管(扁平多穴管1)に接続された第2可撓性部材(ヘッダ4)に接続チューブ7を接続して、1つの多穴管により熱交換器13を構成してもよいし、3つ以上の多穴管により熱交換器を構成してもよい。 For example, in the first to third embodiments, the evaporators 10, 11 and 12 (heat exchangers) of the cooling device 100 are flat multi-hole pipe 1 (first multi-hole pipe) and flat multi-hole pipe 2 (second multi-hole pipe). Although an example of forming a multi-hole tube) is shown, the present invention is not limited to this. In the present invention, the connection tube 7 is connected to the second flexible member (header 4) connected to the first multi-hole tube (flat multi-hole tube 1) as in the first modification shown in FIG. The heat exchanger 13 may be configured by one multi-hole tube, or the heat exchanger may be configured by three or more multi-hole tubes.
 また、上記第1~第3実施形態では、冷却装置100の蒸発器10、11および12(熱交換器)をヘッダ3(第1可撓性部材)、ヘッダ4(第2可撓性部材)およびヘッダ5(第3可撓性部材)の3つのヘッダにより構成する例を示したが、本発明はこれに限られない。本発明では、ヘッダとして、4つ以上の可撓性部材を用いて、熱交換器を構成してもよい。 Further, in the first to third embodiments, the evaporators 10, 11 and 12 (heat exchangers) of the cooling device 100 are attached to the header 3 (first flexible member) and the header 4 (second flexible member). An example is shown in which the header 5 (third flexible member) is composed of three headers, but the present invention is not limited to this. In the present invention, the heat exchanger may be configured by using four or more flexible members as the header.
 また、上記第1~第3実施形態では、ヘッダ4(第2可撓性部材)に扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)が接続される例を示したが、本発明はこれに限られない。本発明では、第2可撓性部材に3つ以上の多穴管が接続するように構成してもよい。 Further, in the first to third embodiments, the flat multi-hole pipe 1 (first multi-hole pipe) and the flat multi-hole pipe 2 (second multi-hole pipe) are connected to the header 4 (second flexible member). However, the present invention is not limited to this. In the present invention, it may be configured so that three or more multi-hole pipes are connected to the second flexible member.
 また、上記第1~第3実施形態では、扁平多穴管1(第1多穴管)および扁平多穴管2(第2多穴管)は、熱伝導シート8および熱伝導シート9を介して、冷却対象物の熱を奪うように構成されている例を示したが、本発明は、これに限られない。本発明では、第1多穴管および第2多穴管が、冷却対象物の表面に直接接することにより、冷却対象物の熱を奪うように構成してもよい。 Further, in the first to third embodiments, the flat multi-hole tube 1 (first multi-hole tube) and the flat multi-hole tube 2 (second multi-hole tube) are via the heat conductive sheet 8 and the heat conductive sheet 9. The present invention is not limited to this, although an example is shown in which the heat of the object to be cooled is taken away. In the present invention, the first multi-hole pipe and the second multi-hole pipe may be configured to take heat of the cooling target by directly contacting the surface of the cooling target.
 また、上記第1実施形態では、扁平多穴管2(第2多穴管)が冷却対象物から奪った熱を、熱伝導シート8を介して、扁平多穴管1(第1多穴管)に伝達するように構成されている例を示したが、本発明は、これに限られない。本発明では、第2多穴管が、第1多穴管に直接接することにより、第2多穴管が冷却対象物から奪った熱が、第1多穴管に伝達するようにしてもよい。 Further, in the first embodiment, the heat taken by the flat multi-hole pipe 2 (second multi-hole pipe) from the object to be cooled is transferred to the flat multi-hole pipe 1 (first multi-hole pipe) via the heat conductive sheet 8. ) Is shown, but the present invention is not limited to this. In the present invention, the heat taken by the second multi-hole pipe from the object to be cooled may be transferred to the first multi-hole pipe by directly contacting the second multi-hole pipe with the first multi-hole pipe. ..
 また、上記第1~第3実施形態では、ヘッダ3(第1可撓性部材)、ヘッダ4(第2可撓性部材)およびヘッダ5(第3可撓性部材)は、アルミラミネートフィルムを貼り合わせて構成されている例を示したが、本発明は、これに限られない。本発明では、第1可撓性部材、第2可撓性部材および第3可撓性部材がアルミ以外の熱伝導率の高い材料を含むフィルムにより構成してもよいし、熱伝導率の高い材料を含まずに、ポリエチレンなど材料のみによりフィルムを構成してもよい。 Further, in the first to third embodiments, the header 3 (first flexible member), the header 4 (second flexible member), and the header 5 (third flexible member) are made of an aluminum laminated film. Although an example in which they are laminated is shown, the present invention is not limited to this. In the present invention, the first flexible member, the second flexible member, and the third flexible member may be made of a film containing a material having a high thermal conductivity other than aluminum, or may have a high thermal conductivity. The film may be composed of only a material such as polyethylene without containing the material.
 また、上記第1~第3実施形態では、冷却装置100は、蒸発器10、11および12(熱交換器)を並列に複数配置した構成の例を示したが、本発明は、これに限られない。本発明では、冷却装置は、複数の熱交換器を直列に配置した構成にしてもよいし、1つの熱交換器により構成してもよい。 Further, in the first to third embodiments, the cooling device 100 shows an example of a configuration in which a plurality of evaporators 10, 11 and 12 (heat exchangers) are arranged in parallel, but the present invention is limited to this. I can't. In the present invention, the cooling device may be configured by arranging a plurality of heat exchangers in series, or may be configured by one heat exchanger.
 また、上記第1~第3実施形態では、蒸発器10、11および12(熱交換器)により冷却対象物の冷却を行う冷却装置100の例を示したが、本発明は、これに限られない。本発明では、熱交換器により、対象物の昇温を行う装置に本発明を適用してもよい。 Further, in the first to third embodiments, examples of the cooling device 100 for cooling the object to be cooled by the evaporators 10, 11 and 12 (heat exchangers) have been shown, but the present invention is limited to this. Absent. In the present invention, the present invention may be applied to a device that raises the temperature of an object by using a heat exchanger.
 また、上記第1~第3実施形態では、蒸発器10、11および12(熱交換器)ならびに冷却装置100は、扁平多穴管1(第1多穴管)内の冷媒を気液二相の状態にするとともに、蒸発潜熱を利用して冷却対象物の冷却を行うように構成する例を示したが、本発明は、これに限られない。本発明では、熱交換器ならびに冷却装置は、扁平多穴管1内の冷媒を単相の状態にしてもよく、蒸発潜熱を利用せずに、顕熱のみを利用して冷却対象物の冷却を行うように構成してもよい。 Further, in the first to third embodiments, the evaporators 10, 11 and 12 (heat exchangers) and the cooling device 100 use the refrigerant in the flat multi-hole pipe 1 (first multi-hole pipe) as a gas-liquid two-phase. However, the present invention is not limited to this, although an example is shown in which the object to be cooled is cooled by utilizing the latent heat of vaporization. In the present invention, the heat exchanger and the cooling device may make the refrigerant in the flat multi-hole tube 1 in a single-phase state, and cool the object to be cooled by using only sensible heat without utilizing latent heat of vaporization. May be configured to do.
 また、上記第1~第3実施形態では、調整弁22を、ポンプ20をバイパスする流路に設けて、調整弁22の調整により、ポンプ20により送られる冷媒の流量を調整するように構成する例を示したが、本発明は、これに限られない。本発明では、調整弁を用いずに、ポンプのインバータ制御により、ポンプにより送られる冷媒の流量を制御するように構成してもよい。 Further, in the first to third embodiments, the adjusting valve 22 is provided in the flow path bypassing the pump 20, and the flow rate of the refrigerant sent by the pump 20 is adjusted by adjusting the adjusting valve 22. Although an example is shown, the present invention is not limited to this. In the present invention, the flow rate of the refrigerant sent by the pump may be controlled by controlling the inverter of the pump without using the regulating valve.
 [態様]
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be understood by those skilled in the art that the above exemplary embodiments are specific examples of the following embodiments.
 (項目1)
 冷媒を流すための流路としての複数の穴を有する第1多穴管と、
 前記第1多穴管の一方の端部側において、前記第1多穴管と接続された可撓性を有するヘッダとしての第1可撓性部材と、
 前記第1多穴管の他方の端部側において、前記第1多穴管と接続された可撓性を有するヘッダとしての第2可撓性部材と、を備え、
 前記第1可撓性部材は、前記第1多穴管の一方の端部側において、前記第1多穴管の複数の流路を接続するように構成され、
 前記第2可撓性部材は、前記第1多穴管の他方の端部側において、前記第1多穴管の複数の流路を接続するように構成されている、熱交換器。
(Item 1)
A first multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant,
A first flexible member as a flexible header connected to the first multi-hole pipe on one end side of the first multi-hole pipe.
On the other end side of the first multi-hole tube, a second flexible member as a flexible header connected to the first multi-hole tube is provided.
The first flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on one end side of the first multi-hole pipe.
The second flexible member is a heat exchanger configured to connect a plurality of flow paths of the first multi-hole pipe on the other end side of the first multi-hole pipe.
 (項目2)
 前記第1多穴管と、前記第1可撓性部材および前記第2可撓性部材とを接着する接着層をさらに備える、項目1に記載の熱交換器。
(Item 2)
The heat exchanger according to item 1, further comprising an adhesive layer for adhering the first multi-hole tube, the first flexible member, and the second flexible member.
 (項目3)
 前記第1可撓性部材および前記第2可撓性部材は、熱伝導率の高い材料を含む複数の材料を積層して形成されたフィルムにより構成されるとともに、前記接着層により前記第1多穴管の外周面を取り囲んで覆うように接着されることにより、前記第1多穴管と接続されている、項目2に記載の熱交換器。
(Item 3)
The first flexible member and the second flexible member are composed of a film formed by laminating a plurality of materials including a material having a high thermal conductivity, and the first poly member is formed by the adhesive layer. The heat exchanger according to item 2, which is connected to the first multi-hole pipe by being adhered so as to surround and cover the outer peripheral surface of the hole pipe.
 (項目4)
 冷媒を流すための流路としての複数の穴を有する第2多穴管と、
 前記第2多穴管の一方の端部側において、前記第2多穴管と接続された可撓性を有する、第3可撓性部材と、をさらに備え、
 前記第2可撓性部材は、前記第2多穴管の他方の端部側において、前記第1多穴管の複数の流路と前記第2多穴管の複数の流路とを接続するように構成され、
 前記第3可撓性部材は、前記第2多穴管の一方の端部側において、前記第2多穴管の複数の流路を接続するように構成されている、項目1~3のいずれか1項に記載の熱交換器。
(Item 4)
A second multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant,
A third flexible member having flexibility connected to the second multi-hole tube is further provided on one end side of the second multi-hole tube.
The second flexible member connects a plurality of flow paths of the first multi-hole pipe and a plurality of flow paths of the second multi-hole pipe on the other end side of the second multi-hole pipe. Is configured as
The third flexible member is configured to connect a plurality of flow paths of the second multi-hole pipe on one end side of the second multi-hole pipe, any of items 1 to 3. The heat exchanger according to item 1.
(項目5)
 前記第1多穴管および前記第2多穴管は、前記第1多穴管の他方の端部側と、前記第2多穴管の一方の端部側と、が対向するように配置されているとともに、前記第1多穴管および前記第2多穴管は、前記第2可撓性部材の互いに異なる側において、前記第2可撓性部材と接続されている、項目4に記載の熱交換器。
(Item 5)
The first multi-hole pipe and the second multi-hole pipe are arranged so that the other end side of the first multi-hole pipe and one end side of the second multi-hole pipe face each other. 4. The item 4 wherein the first multi-hole tube and the second multi-hole tube are connected to the second flexible member on different sides of the second flexible member. Heat exchanger.
 (項目6)
 前記第2多穴管は、前記第2多穴管の複数の流路が前記第1多穴管の複数の流路に沿うように、隣接して配置されており、
 前記第1多穴管および前記第2多穴管は、前記第2可撓性部材の同一の側において、前記第2可撓性部材と接続されている、項目4に記載の熱交換器。
(Item 6)
The second multi-hole pipe is arranged adjacent to each other so that the plurality of flow paths of the second multi-hole pipe follow the plurality of flow paths of the first multi-hole pipe.
The heat exchanger according to item 4, wherein the first multi-hole tube and the second multi-hole tube are connected to the second flexible member on the same side of the second flexible member.
 (項目7)
 冷媒を流すための流路としての複数の穴を有する第1多穴管と、
 前記第1多穴管の一方の端部側において、前記第1多穴管と接続された可撓性を有するヘッダとしての第1可撓性部材と、
 前記第1多穴管の他方の端部側において、前記第1多穴管と接続された可撓性を有するヘッダとしての第2可撓性部材と、を備え、
 前記第1可撓性部材は、前記第1多穴管の一方の端部側において、前記第1多穴管の複数の流路を接続するように構成され、
 前記第2可撓性部材は、前記第1多穴管の他方の端部側において、前記第1多穴管の複数の流路を接続するように構成されている、冷却装置。
(Item 7)
A first multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant,
A first flexible member as a flexible header connected to the first multi-hole pipe on one end side of the first multi-hole pipe.
On the other end side of the first multi-hole tube, a second flexible member as a flexible header connected to the first multi-hole tube is provided.
The first flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on one end side of the first multi-hole pipe.
The second flexible member is a cooling device configured to connect a plurality of flow paths of the first multi-hole pipe on the other end side of the first multi-hole pipe.
 (項目8)
 冷媒を流すための流路としての複数の穴を有する第2多穴管と、
 前記第2多穴管の一方の端部側において、前記第2多穴管と接続された可撓性を有する、第3可撓性部材と、
 前記第1多穴管の一方の端部側に設けられ、冷媒を送液する送液部と、
 前記第2多穴管の一方の端部側に設けられ、冷媒を凝縮させる凝縮部と、をさらに備え、
 前記第1多穴管、前記第2多穴管および前記第2可撓性部材は、前記送液部により送液された冷媒を蒸発させることにより、冷却対象物の熱を奪うように構成されている蒸発器であり、
 前記第1可撓性部材は、前記送液部により送液された冷媒が、前記第1多穴管の複数の流路に送液されるように、前記第1多穴管と接続するように構成され、
 前記第2可撓性部材は、前記第2多穴管の他方の端部側において、前記第1多穴管の複数の流路と前記第2多穴管の複数の流路とを接続するように構成され、
 前記第3可撓性部材は、前記第2多穴管の複数の流路を接続するように構成されるとともに、前記第2多穴管の複数の流路を通過した冷媒が、前記凝縮部に送液されるように、前記第2多穴管と接続するように構成されている、項目7に記載の冷却装置。
(Item 8)
A second multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant,
A third flexible member having flexibility connected to the second multi-hole pipe on one end side of the second multi-hole pipe.
A liquid feeding part provided on one end side of the first multi-hole pipe and feeding a refrigerant, and a liquid feeding part.
Further provided with a condensing portion provided on one end side of the second multi-hole pipe to condense the refrigerant.
The first multi-hole pipe, the second multi-hole pipe, and the second flexible member are configured to take heat of the object to be cooled by evaporating the refrigerant sent by the liquid feeding unit. Is an evaporator
The first flexible member is connected to the first multi-hole pipe so that the refrigerant sent by the liquid feeding unit is sent to a plurality of flow paths of the first multi-hole pipe. Consists of
The second flexible member connects a plurality of flow paths of the first multi-hole pipe and a plurality of flow paths of the second multi-hole pipe on the other end side of the second multi-hole pipe. Is configured as
The third flexible member is configured to connect a plurality of flow paths of the second multi-hole pipe, and the refrigerant that has passed through the plurality of flow paths of the second multi-hole pipe is a condensed portion. Item 7. The cooling device according to item 7, which is configured to be connected to the second multi-hole pipe so as to be fed to the liquid.
 (項目9)
 前記第2可撓性部材は、前記冷却対象物の前記第2多穴管が配置される面と垂直な方向から見て、前記第1多穴管および前記第2多穴管が重なるように折り曲げて構成されており、
 前記第2多穴管は、前記第1多穴管および前記冷却対象物と前記冷却対象物の前記第2多穴管が配置される面と垂直な方向から見て、重なるように配置されるとともに、前記冷却対象物と前記第1多穴管との間に配置され、
 前記第2多穴管が前記冷却対象物から奪った熱が、前記第1多穴管に伝達するように構成されている、項目8に記載の冷却装置。
(Item 9)
The second flexible member is such that the first multi-hole pipe and the second multi-hole pipe overlap each other when viewed from a direction perpendicular to the surface of the cooling object on which the second multi-hole pipe is arranged. It is composed by folding
The second multi-hole pipe is arranged so as to overlap the first multi-hole pipe and the object to be cooled so as to be viewed from a direction perpendicular to the surface on which the second multi-hole pipe of the object to be cooled is arranged. At the same time, it is arranged between the cooling object and the first multi-hole pipe.
The cooling device according to item 8, wherein the heat taken from the cooling object by the second multi-hole pipe is configured to be transferred to the first multi-hole pipe.
(項目10)
 前記第1多穴管および前記第2多穴管の対向する面に接触し、前記第2多穴管の熱を、前記第1多穴管に伝達させる熱伝導シートをさらに備える、項目9に記載の冷却装置。
(Item 10)
Item 9. The item 9 further includes a heat conductive sheet that comes into contact with the facing surfaces of the first multi-hole pipe and the second multi-hole pipe and transfers the heat of the second multi-hole pipe to the first multi-hole pipe. The cooling device described.
 1 扁平多穴管(第1多穴管)
 2 扁平多穴管(第2多穴管)
 3 ヘッダ(第1可撓性部材)
 4 ヘッダ(第2可撓性部材)
 5 ヘッダ(第3可撓性部材)
 8 熱伝導シート
 9 熱伝導シート
 10 蒸発器(熱交換器)
 11 蒸発器(熱交換器)
 12 蒸発器(熱交換器)
 20 ポンプ(送液部)
 30 凝縮器(凝縮部)
 31 熱接着シート(接着層)
 100 冷却装置
1 Flat multi-hole tube (1st multi-hole tube)
2 Flat multi-hole tube (second multi-hole tube)
3 Header (1st flexible member)
4 Header (second flexible member)
5 Header (3rd flexible member)
8 Heat conductive sheet 9 Heat conductive sheet 10 Evaporator (heat exchanger)
11 Evaporator (heat exchanger)
12 Evaporator (heat exchanger)
20 Pump (Liquid supply section)
30 Condenser (condensing part)
31 Thermal adhesive sheet (adhesive layer)
100 cooling device

Claims (10)

  1.  冷媒を流すための流路としての複数の穴を有する第1多穴管と、
     前記第1多穴管の一方の端部側において、前記第1多穴管と接続された可撓性を有するヘッダとしての第1可撓性部材と、
     前記第1多穴管の他方の端部側において、前記第1多穴管と接続された可撓性を有するヘッダとしての第2可撓性部材と、を備え、
     前記第1可撓性部材は、前記第1多穴管の一方の端部側において、前記第1多穴管の複数の流路を接続するように構成され、
     前記第2可撓性部材は、前記第1多穴管の他方の端部側において、前記第1多穴管の複数の流路を接続するように構成されている、熱交換器。
    A first multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant,
    A first flexible member as a flexible header connected to the first multi-hole pipe on one end side of the first multi-hole pipe.
    On the other end side of the first multi-hole tube, a second flexible member as a flexible header connected to the first multi-hole tube is provided.
    The first flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on one end side of the first multi-hole pipe.
    The second flexible member is a heat exchanger configured to connect a plurality of flow paths of the first multi-hole pipe on the other end side of the first multi-hole pipe.
  2.  前記第1多穴管と、前記第1可撓性部材および前記第2可撓性部材とを接着する接着層をさらに備える、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, further comprising an adhesive layer for adhering the first multi-hole tube, the first flexible member, and the second flexible member.
  3.  前記第1可撓性部材および前記第2可撓性部材は、熱伝導率の高い材料を含む複数の材料を積層して形成されたフィルムにより構成されるとともに、前記接着層により前記第1多穴管の外周面を取り囲んで覆うように接着されることにより、前記第1多穴管と接続されている、請求項2に記載の熱交換器。 The first flexible member and the second flexible member are composed of a film formed by laminating a plurality of materials including a material having a high thermal conductivity, and the first poly member is formed by the adhesive layer. The heat exchanger according to claim 2, which is connected to the first multi-hole tube by being adhered so as to surround and cover the outer peripheral surface of the hole tube.
  4.  冷媒を流すための流路としての複数の穴を有する第2多穴管と、
     前記第2多穴管の一方の端部側において、前記第2多穴管と接続された可撓性を有する、第3可撓性部材と、をさらに備え、
     前記第2可撓性部材は、前記第2多穴管の他方の端部側において、前記第1多穴管の複数の流路と前記第2多穴管の複数の流路とを接続するように構成され、
     前記第3可撓性部材は、前記第2多穴管の一方の端部側において、前記第2多穴管の複数の流路を接続するように構成されている、請求項1~3のいずれか1項に記載の熱交換器。
    A second multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant,
    A third flexible member having flexibility connected to the second multi-hole tube is further provided on one end side of the second multi-hole tube.
    The second flexible member connects a plurality of flow paths of the first multi-hole pipe and a plurality of flow paths of the second multi-hole pipe on the other end side of the second multi-hole pipe. Is configured as
    The third flexible member is configured to connect a plurality of flow paths of the second multi-hole pipe on one end side of the second multi-hole pipe, according to claims 1 to 3. The heat exchanger according to any one item.
  5.  前記第1多穴管および前記第2多穴管は、前記第1多穴管の他方の端部側と、前記第2多穴管の一方の端部側と、が対向するように配置されているとともに、前記第1多穴管および前記第2多穴管は、前記第2可撓性部材の互いに異なる側において、前記第2可撓性部材と接続されている、請求項4に記載の熱交換器。 The first multi-hole pipe and the second multi-hole pipe are arranged so that the other end side of the first multi-hole pipe and one end side of the second multi-hole pipe face each other. The fourth multi-hole tube and the second multi-hole tube are connected to the second flexible member on different sides of the second flexible member. Heat exchanger.
  6.  前記第2多穴管は、前記第2多穴管の複数の流路が前記第1多穴管の複数の流路に沿うように、隣接して配置されており、
     前記第1多穴管および前記第2多穴管は、前記第2可撓性部材の同一の側において、前記第2可撓性部材と接続されている、請求項4に記載の熱交換器。
    The second multi-hole pipe is arranged adjacent to each other so that the plurality of flow paths of the second multi-hole pipe follow the plurality of flow paths of the first multi-hole pipe.
    The heat exchanger according to claim 4, wherein the first multi-hole tube and the second multi-hole tube are connected to the second flexible member on the same side of the second flexible member. ..
  7.  冷媒を流すための流路としての複数の穴を有する第1多穴管と、
     前記第1多穴管の一方の端部側において、前記第1多穴管と接続された可撓性を有するヘッダとしての第1可撓性部材と、
     前記第1多穴管の他方の端部側において、前記第1多穴管と接続された可撓性を有するヘッダとしての第2可撓性部材と、を備え、
     前記第1可撓性部材は、前記第1多穴管の一方の端部側において、前記第1多穴管の複数の流路を接続するように構成され、
     前記第2可撓性部材は、前記第1多穴管の他方の端部側において、前記第1多穴管の複数の流路を接続するように構成されている、冷却装置。
    A first multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant,
    A first flexible member as a flexible header connected to the first multi-hole pipe on one end side of the first multi-hole pipe.
    On the other end side of the first multi-hole tube, a second flexible member as a flexible header connected to the first multi-hole tube is provided.
    The first flexible member is configured to connect a plurality of flow paths of the first multi-hole pipe on one end side of the first multi-hole pipe.
    The second flexible member is a cooling device configured to connect a plurality of flow paths of the first multi-hole pipe on the other end side of the first multi-hole pipe.
  8.  冷媒を流すための流路としての複数の穴を有する第2多穴管と、
     前記第2多穴管の一方の端部側において、前記第2多穴管と接続された可撓性を有する、第3可撓性部材と、
     前記第1多穴管の一方の端部側に設けられ、冷媒を送液する送液部と、
     前記第2多穴管の一方の端部側に設けられ、冷媒を凝縮させる凝縮部と、をさらに備え、
     前記第1多穴管、前記第2多穴管および前記第2可撓性部材は、前記送液部により送液された冷媒を蒸発させることにより、冷却対象物の熱を奪うように構成されている蒸発器であり、
     前記第1可撓性部材は、前記送液部により送液された冷媒が、前記第1多穴管の複数の流路に送液されるように、前記第1多穴管と接続するように構成され、
     前記第2可撓性部材は、前記第2多穴管の他方の端部側において、前記第1多穴管の複数の流路と前記第2多穴管の複数の流路とを接続するように構成され、
     前記第3可撓性部材は、前記第2多穴管の複数の流路を接続するように構成されるとともに、前記第2多穴管の複数の流路を通過した冷媒が、前記凝縮部に送液されるように、前記第2多穴管と接続するように構成されている、請求項7に記載の冷却装置。
    A second multi-hole pipe having a plurality of holes as a flow path for flowing a refrigerant,
    A third flexible member having flexibility connected to the second multi-hole pipe on one end side of the second multi-hole pipe.
    A liquid feeding part provided on one end side of the first multi-hole pipe and feeding a refrigerant, and a liquid feeding part.
    Further provided with a condensing portion provided on one end side of the second multi-hole pipe to condense the refrigerant.
    The first multi-hole pipe, the second multi-hole pipe, and the second flexible member are configured to take heat of the object to be cooled by evaporating the refrigerant sent by the liquid feeding unit. Is an evaporator
    The first flexible member is connected to the first multi-hole pipe so that the refrigerant sent by the liquid feeding unit is sent to a plurality of flow paths of the first multi-hole pipe. Consists of
    The second flexible member connects a plurality of flow paths of the first multi-hole pipe and a plurality of flow paths of the second multi-hole pipe on the other end side of the second multi-hole pipe. Is configured as
    The third flexible member is configured to connect a plurality of flow paths of the second multi-hole pipe, and the refrigerant that has passed through the plurality of flow paths of the second multi-hole pipe is a condensed portion. The cooling device according to claim 7, which is configured to be connected to the second multi-hole pipe so as to be fed to the liquid.
  9.  前記第2可撓性部材は、前記冷却対象物の前記第2多穴管が配置される面と垂直な方向から見て、前記第1多穴管および前記第2多穴管が重なるように折り曲げて構成されており、
     前記第2多穴管は、前記第1多穴管および前記冷却対象物と前記冷却対象物の前記第2多穴管が配置される面と垂直な方向から見て、重なるように配置されるとともに、前記冷却対象物と前記第1多穴管との間に配置され、
     前記第2多穴管が前記冷却対象物から奪った熱が、前記第1多穴管に伝達するように構成されている、請求項8に記載の冷却装置。
    The second flexible member is such that the first multi-hole pipe and the second multi-hole pipe overlap each other when viewed from a direction perpendicular to the surface of the cooling object on which the second multi-hole pipe is arranged. It is composed by folding
    The second multi-hole pipe is arranged so as to overlap the first multi-hole pipe and the object to be cooled so as to be viewed from a direction perpendicular to the surface on which the second multi-hole pipe of the object to be cooled is arranged. At the same time, it is arranged between the cooling object and the first multi-hole pipe.
    The cooling device according to claim 8, wherein the heat taken by the second multi-hole pipe from the object to be cooled is transferred to the first multi-hole pipe.
  10.  前記第1多穴管および前記第2多穴管の対向する面に接触し、前記第2多穴管の熱を、前記第1多穴管に伝達させる熱伝導シートをさらに備える、請求項9に記載の冷却装置。 9. A heat conductive sheet that comes into contact with the facing surfaces of the first multi-hole pipe and the second multi-hole pipe and transfers the heat of the second multi-hole pipe to the first multi-hole pipe is further provided. The cooling device described in.
PCT/JP2019/034363 2019-09-02 2019-09-02 Heat exchanger and cooling device WO2021044464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034363 WO2021044464A1 (en) 2019-09-02 2019-09-02 Heat exchanger and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034363 WO2021044464A1 (en) 2019-09-02 2019-09-02 Heat exchanger and cooling device

Publications (1)

Publication Number Publication Date
WO2021044464A1 true WO2021044464A1 (en) 2021-03-11

Family

ID=74852520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034363 WO2021044464A1 (en) 2019-09-02 2019-09-02 Heat exchanger and cooling device

Country Status (1)

Country Link
WO (1) WO2021044464A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825914U (en) * 1981-07-27 1983-02-18 トヨタ自動車株式会社 Freeze-rupture prevention air conditioning coil
JPS6336883U (en) * 1986-08-18 1988-03-09
JPH04187991A (en) * 1990-11-22 1992-07-06 Showa Alum Corp Heat exchanger
JPH04115257U (en) * 1991-03-15 1992-10-13 サンデン株式会社 Heat exchanger
US5725047A (en) * 1995-01-13 1998-03-10 Lytron Incorporated Heat exchanger
JP2005026259A (en) * 2003-06-30 2005-01-27 Matsushita Electric Ind Co Ltd Cooling system
JP2008221951A (en) * 2007-03-09 2008-09-25 Sumitomo Light Metal Ind Ltd Cooling system of electronic parts for automobile
JP2012082986A (en) * 2010-10-07 2012-04-26 Mitsubishi Electric Corp Heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825914U (en) * 1981-07-27 1983-02-18 トヨタ自動車株式会社 Freeze-rupture prevention air conditioning coil
JPS6336883U (en) * 1986-08-18 1988-03-09
JPH04187991A (en) * 1990-11-22 1992-07-06 Showa Alum Corp Heat exchanger
JPH04115257U (en) * 1991-03-15 1992-10-13 サンデン株式会社 Heat exchanger
US5725047A (en) * 1995-01-13 1998-03-10 Lytron Incorporated Heat exchanger
JP2005026259A (en) * 2003-06-30 2005-01-27 Matsushita Electric Ind Co Ltd Cooling system
JP2008221951A (en) * 2007-03-09 2008-09-25 Sumitomo Light Metal Ind Ltd Cooling system of electronic parts for automobile
JP2012082986A (en) * 2010-10-07 2012-04-26 Mitsubishi Electric Corp Heat exchanger

Similar Documents

Publication Publication Date Title
JP4725164B2 (en) Heat storage device
US9746256B2 (en) Shell and tube heat exchanger with a vapor port
US20120199330A1 (en) Staged graphite foam heat exchangers
US20110094257A1 (en) Micro-channel heat exchanger suitable for bending
CN107003085A (en) Cascade type collector, heat exchanger and air-conditioning device
CN107949762B (en) Distributor, laminated type collector, heat exchanger and conditioner
JP2018194197A (en) Heat pipe and electronic equipment
CN102282436A (en) Water heat exhanger and hot-water heat source device
JP2004020174A (en) Flat radiating fin, heat exchanger using it, and its manufacturing method
JP2005228877A (en) Cooling apparatus
WO2021044464A1 (en) Heat exchanger and cooling device
JP2003028582A (en) Heat exchanger
JP2009264686A (en) Heat exchanger and heat pump type heating device
US10816271B2 (en) Heat exchanger and absorption refrigerator
US20130098582A1 (en) Method using heat pipes with multiple evaporator/condenser zones and heat exchangers using same
WO2013132544A1 (en) Heat exchanger, and heat pump system with heat exchanger
WO2016119367A1 (en) Air conditioning unit having tubesheet combined heat-exchanging evaporative condenser
EP1977183A1 (en) Finned heat exchanger
CN111504111B (en) Evaporator and method of manufacture
WO2016119369A1 (en) Water chiller-heater unit with tube-and-plate type compound heat exchanging evaporative condenser
WO2020217285A1 (en) Electronic device
JP3485731B2 (en) Absorption chiller / heater
JP2001133184A (en) Plate-type heat exchanger
JP2008134016A (en) Heat exchanger and its manufacturing method
JPH06174386A (en) Thermal connection tape

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP