JPH06174386A - Thermal connection tape - Google Patents

Thermal connection tape

Info

Publication number
JPH06174386A
JPH06174386A JP32109192A JP32109192A JPH06174386A JP H06174386 A JPH06174386 A JP H06174386A JP 32109192 A JP32109192 A JP 32109192A JP 32109192 A JP32109192 A JP 32109192A JP H06174386 A JPH06174386 A JP H06174386A
Authority
JP
Japan
Prior art keywords
heat
tape
pipe
bonded
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32109192A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
久輝 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP32109192A priority Critical patent/JPH06174386A/en
Publication of JPH06174386A publication Critical patent/JPH06174386A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To make simple and easy the thermal connection between the inside and outside of an apparatus by a method wherein the parts of straight pipe containers of long and thin heat pipes are lined up side by side in parallel and formed to be a flat-plate tape-shaped body being abundant in movability, bendability and flexibility and a prescribed part of this tape-shaped body is bonded to be integral by a bonding means being excellent in thermal conductivity. CONSTITUTION:A group of straight pipes of meandering, long and thin heat pipes 1 are bonded mutually by a bonding means being excellent in thermal conductivity, such as soldering, at the parts of the opposite terminals except turn parts 2-1 and 2-2, so as to be formed in the shape of a laminated flat plate of two layers, and a high-temperature-side bonded part 3-l as a heat-receiving part and a low-temperature- side bonded part 3-2 as a heat-radiating part are formed. A part formed of the residual parts of the grouped straight pipes is made a thermal connection part 1-2 connecting thermally the high-temperature part with the low-temperature part in an apparatus, and in this connection part 1-2, the grouped straight pipe container parts are made to have a non-bonded structure wherein they are separated from each other although lined up side by side in parallel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は細管ヒートパイプの適用
構造に関するもので、特にループ型細管ヒートパイプ又
は蛇行細管ヒートパイプの新規な適用構造であって、そ
の細管コンテナ群がテープ形状に形成されてあり、テー
プ形状の所定の部分を高温部と低温部に貼りつけるのみ
の簡便な手段で高温部と低温部の間を熱的に接続して熱
交換せしめる細管ヒートパイプの適用構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an application structure of a thin tube heat pipe, and more particularly to a novel application structure of a loop type thin tube heat pipe or a meandering thin tube heat pipe, in which the thin tube container group is formed in a tape shape. The present invention relates to an application structure of a thin tube heat pipe in which a high temperature part and a low temperature part are thermally connected and heat is exchanged by a simple means in which a predetermined tape-shaped part is attached to the high temperature part and the low temperature part.

【0002】[0002]

【従来の技術】機器内外に於ける高温部(又は発熱部)
とそれに対し距離を隔てた低温部(又は冷却手段)との
間を、熱的に接続して熱量を交換せしめる手段の一例と
しては分離型ヒートパイプ(又はセパレート型ヒートパ
イプとも称される)がある。図5は小型機器内にも適用
することが可能な、分離型ヒートパイプの一例を示す説
明図である。図において11及び12は夫々受熱平板及
び放熱平板であり、これらは夫々機器内外に於ける高温
部(又は発熱部)及び低温部(又は冷却手段)に接触熱
抵抗の低い接着手段で接着されてある。13は図面簡略
化の為線図で示されてあるループ型細管ヒートパイプで
あって、その受熱部13−1及び放熱部13−2は夫々
受熱平板1及び放熱平板2に内蔵されて一体化されてあ
る。その断熱部13−3は受熱平板1及び放熱平板2の
間を熱的に接続する。この様なループ型細管ヒートパイ
プ式の分離型ヒートパイプは通常の分離型ヒートパイプ
に比較して、パイプが細径であること、作動液循環の為
のポンプが不要なこと、等の点から大幅に小型化するこ
とが可能となり、小型機器内に適用する場合でも比較的
容易に配設することが可能であり、機器内外の高温部と
低温部を熱的に接続して有効に熱交換せしめることが出
来る。
2. Description of the Related Art High temperature parts (or heat generating parts) inside and outside equipment
As an example of means for thermally connecting the low temperature part (or cooling means) spaced apart from it and exchanging the amount of heat, a separation type heat pipe (also called a separate type heat pipe) is used. is there. FIG. 5: is explanatory drawing which shows an example of a separation-type heat pipe which can be applied also in a small apparatus. In the figure, 11 and 12 are a heat receiving flat plate and a heat radiating flat plate, respectively, which are bonded to a high temperature part (or a heat generating part) and a low temperature part (or a cooling means) inside and outside the equipment by a bonding means having a low contact thermal resistance. is there. Reference numeral 13 is a loop type thin pipe heat pipe shown in a diagram for simplification of the drawing, and its heat receiving portion 13-1 and heat radiating portion 13-2 are built in and integrated with the heat receiving flat plate 1 and the heat radiating flat plate 2, respectively. It has been done. The heat insulating part 13-3 thermally connects the heat receiving flat plate 1 and the heat radiating flat plate 2. Such a loop type thin pipe heat pipe type separation type heat pipe has a smaller diameter than a normal separation type heat pipe and does not require a pump for circulating a working fluid. The size can be significantly reduced, and it can be installed relatively easily even when it is applied to a small device, and the high temperature part and low temperature part inside and outside the device are thermally connected to effectively exchange heat. It can be done.

【0003】[0003]

【発明が解決しようとする課題】従来例の分離型ヒート
パイプはヒートパイプ自身が大型である為、対象となる
機器は大型であり通常の機器内には適用が困難であっ
た。図5例示の如き小型なループ型細管ヒートパイプ応
用の分離型ヒートパイプに於てさえも、高温部や低温部
のヒートパイプとの接着部の接触面、及び接続手段とし
てのヒートパイプの受熱平板及び放熱平板の平面に厳密
な平滑性や、正確な平行度が要求されたり、接触熱抵抗
を少なくする為の各種手段が要求されたりすることから
は免れず、簡便容易に熱接続することが出来なかった。
Since the heat pipe itself is large in the separation type heat pipe of the conventional example, the target device is large and it is difficult to apply it to a normal device. Even in the case of the separate type heat pipe applied to the small loop type thin pipe heat pipe as illustrated in FIG. 5, the heat receiving flat plate of the heat pipe as the contact surface of the bonding portion with the heat pipe at the high temperature portion and the low temperature portion and the connecting means. In addition, strict smoothness and accurate parallelism are required on the flat surface of the heat dissipation plate, and various means for reducing the contact thermal resistance are required. I could not do it.

【0004】近来の機器の小型化や、複雑化の傾向は、
機器内に於ける一部の突出した高温度の発熱部品や部分
の温度を機器内の低温度の部品や低温度部分に逃がすこ
とにより機器の全体的な温度を許容温度範囲内に押さえ
る必要が生じたり、機器内の高温度部品と筐体内壁面と
を熱的に接続し、筐体壁を介して熱量を筐体外に排出す
る必要が生じたりすることが多くなりつつある。これら
の事情から機器内外の高温度部分と低温度部分とを簡便
且つ容易に熱的に接続して両者間の熱量を交換せしめる
手段の出現が望まれつつある。本発明が解決しようとす
る課題はそのような機器内外間の熱接続を簡便容易化す
ることの出来る手段を提供することである。
[0004] The recent tendency toward miniaturization and complexity of equipment is
It is necessary to keep the overall temperature of the device within the allowable temperature range by letting the temperature of some protruding high-temperature heat-generating components or parts inside the device to low-temperature components or low-temperature parts inside the device. In many cases, it is necessary to thermally connect the high temperature component in the device and the inner wall surface of the housing and to discharge the amount of heat to the outside of the housing through the housing wall. Under these circumstances, the advent of means for easily and easily thermally connecting the high temperature portion and the low temperature portion inside and outside the device and exchanging the amount of heat between them is desired. The problem to be solved by the present invention is to provide means capable of simplifying and facilitating such a thermal connection between the inside and outside of a device.

【0005】[0005]

【課題を解決する為の手段】課題を解決する為の手段の
基本的な構造としては同一の面に添って往復蛇行して螺
旋形状か又は蛇行形状に形成されてある長尺細管ヒート
パイプの直管コンテナの部分は平行並列に整列されて可
撓性、屈曲性及び柔軟性に富む平板テープ形状体に形成
されてあり、このテープ形状体の所定の部分は熱伝導性
の良好な接着手段により接着一体化されてあることを特
徴とする。
The basic structure of the means for solving the problems is that of a long thin tube heat pipe which is reciprocally meandered along the same plane to form a spiral shape or a meandering shape. The straight pipe containers are arranged in parallel and in parallel and formed into a flat tape-shaped body having high flexibility, flexibility and flexibility, and a predetermined portion of the tape-shaped body is a bonding means having good thermal conductivity. It is characterized by being integrally bonded by.

【0006】図1はこのような課題を解決する為の手段
である本発明の熱接続テープの基本構造及び第一実施例
を示す説明図である。1は蛇行(または螺旋)長尺細管
ヒートパイプ、2はそのターン部であって、ターン部2
を除いた長尺細管ヒートパイプ1の直管コンテナの部分
は平行並列に整列されて平板テープ形状に形成されてあ
る。このテープ形状体の所定の部分3は熱伝導性の良好
な接着手段により接着一体化されてあり図に於ては3−
1は高温側接着部、3−2は低温側接着部になっており
それらは夫々機器内外の高温部及び低温部に所定の手段
で接着され、それらの間を熱的に接続する。
FIG. 1 is an explanatory view showing a basic structure and a first embodiment of a thermal connection tape of the present invention which is means for solving such a problem. 1 is a meandering (or spiral) long thin tube heat pipe, 2 is its turn part, and 2 is its turn part.
Parts of the straight tube container of the long thin tube heat pipe 1 except for are arranged in parallel and parallel to form a flat tape shape. The predetermined portion 3 of the tape-shaped body is bonded and integrated by a bonding means having good thermal conductivity.
Reference numeral 1 denotes a high temperature side adhesive portion, and 3-2 denotes a low temperature side adhesive portion, which are adhered to the high temperature portion and the low temperature portion inside and outside the device by predetermined means, respectively, and thermally connect them.

【0007】[0007]

【作用】このように形成されてある熱接続テープの構成
は、本発明者が提案し実用化している特開平4−190
O90号(ループ型細管ヒートパイプ)及び特開平4−
251189号(マイクロヒートパイプ)の構成の応用
であり、細管ヒートパイプの両端末が連通状態に連結さ
れたループ構造であれば特開平4−190090号の構
造の応用であり、細管ヒートパイプがループに形成され
ておらず両端末が夫々に封止された構造であれば特開平
4−251189号の構造の応用である。従って本発明
の熱接続テープは上述の両特開の何れかのヒートパイプ
としての作用効果をそのままに発揮する。
The structure of the thermal connection tape thus formed is proposed by the present inventor and put into practical use.
O90 (loop type thin tube heat pipe) and JP-A-4-
251189 (micro heat pipe) is an application of the structure, and a loop structure in which both ends of the thin tube heat pipe are connected in a communicating state is an application of the structure of Japanese Patent Laid-Open No. 4-190090, and the thin tube heat pipe is a loop. If the structure is not formed on both ends and both terminals are sealed, the structure of JP-A-4-251189 is applied. Therefore, the thermal connection tape of the present invention can exert the same function and effect as the heat pipe of either of the above-mentioned Japanese Patent Laid-Open.

【0008】即ち第一の作用としては、この熱接続テー
プの両端末を夫々機器内の高温部と低温部に接着した場
合、平板テープ形状の細管ヒートパイプ内の作動液は、
活発に振動しながらループ内を緩やかに循環して熱量を
高温部側から低温部側に輸送するか、より活発な振動に
より振動のみで熱量を高温部側から低温部側に輸送す
る。また上述の両特願のヒートパイプの特性として、こ
の熱輸送は高温部側と低温部側の相互間の位置の高低に
係わらず、例えばトップヒート状態に配設されてもその
機能が失われることがない。即ちこの熱接続テープは熱
接続手段として最適の熱輸送機能を発揮する。
That is, as a first action, when both ends of the heat connecting tape are respectively adhered to a high temperature portion and a low temperature portion in the equipment, the working fluid in the flat tape heat pipe heat pipe is
While vibrating vigorously, it gently circulates in the loop to transfer the amount of heat from the high temperature part side to the low temperature part side, or due to more vibrating vibration, it transfers the heat amount from the high temperature part side to the low temperature part side only by vibration. Further, as a characteristic of the heat pipes of both of the above-mentioned patent applications, this heat transport loses its function even if it is arranged in a top heat state, regardless of the height of the position between the high temperature side and the low temperature side. Never. That is, this heat connecting tape exerts an optimum heat transport function as heat connecting means.

【0009】第二の作用としては、この熱接続テープは
細管ヒートパイプが並列に集合されて形成されてあるか
ら可撓性、屈曲性及び柔軟性に富み又機器内の間隙に合
わせて自在に曲げることが容易であり、配設時の手扱い
が容易である。特に細管の外径が1.2mm以下の場合
の可撓性は極めて優れている。
As a second function, since this heat connecting tape is formed by collecting thin heat pipes in parallel, it is highly flexible, bendable and flexible, and can be freely adjusted according to the gap in the equipment. It is easy to bend and easy to handle when arranging. In particular, the flexibility is extremely excellent when the outer diameter of the thin tube is 1.2 mm or less.

【0010】第三の作用は、この熱接続テープは平板状
であり且つ可撓性、屈曲性及び柔軟性に富んでいること
により、被接着体の接着面に倣って柔軟に接着すること
が出来るので、分離型ヒートパイプの受放熱面の如き厳
密な平滑度や平面度が要求されることなく、簡便容易に
接着することが出来る。
The third function is that the heat connecting tape is flat and has high flexibility, flexibility and flexibility, so that it can be adhered flexibly along the adhering surface of the adherend. As a result, it is possible to easily and easily adhere without requiring strict smoothness and flatness such as the heat radiation surface of the separation type heat pipe.

【0011】[0011]

【実施例】【Example】

第一実施例 図1は本発明熱接続テープの基本構造を示すとともに第
一実施例の説明図を兼ねている。図に於て蛇行長尺細管
ヒートパイプ1の直管部群はターン部2−1、2−2を
除いた両端末の部分において半田接着の如き熱伝導性の
良好な接着手段により相互に接着され二層の平板が積層
された平板状に形成され、受熱部としての高温側接着部
3−1及び放熱部としての低温側接着部3−2を形成し
ている。このような接着部はその可撓性と半田の良好な
接着性が助け合って機器内の高温部や低温部と容易に半
田接着することが出来る。
First Embodiment FIG. 1 shows the basic structure of the thermal connection tape of the present invention and also serves as an explanatory view of the first embodiment. In the figure, the straight tube parts of the meandering long thin tube heat pipe 1 are bonded to each other by a bonding means having good thermal conductivity such as solder bonding at both ends except the turn parts 2-1 and 2-2. The two layers of flat plates are laminated to form a flat plate, and a high temperature side adhesive section 3-1 as a heat receiving section and a low temperature side adhesive section 3-2 as a heat radiating section are formed. Such an adhesive portion can be easily solder-bonded to a high-temperature portion or a low-temperature portion inside the device, because of its flexibility and good adhesiveness of the solder.

【0012】直管部群の残余の部分で形成される部分は
機器内の高温部と低温部の間を熱的に連結する熱接続部
1−2になっており、この熱接続部1−2においては直
管コンテナ部群は平行並列に整列されてはあるが夫々に
分離されて非接着構造になっている。熱接続部1−2の
直管コンテナ部群は非接着状態であるから、この部分に
於て熱接続テープの可撓性、屈曲性及び柔軟性は著しく
改善され、機器内の間隙に沿って容易自在に屈曲せしめ
ることが出来る。特に図に例示の如く熱接続テープが二
層構造に形成されてある場合は、熱接続部における層間
又は細管相互間が非接着状態であることは、可撓性、屈
曲性及び柔軟性を改善する為に極めて効果的である。
A portion formed by the remaining portion of the straight pipe portion group serves as a heat connecting portion 1-2 which thermally connects the high temperature portion and the low temperature portion in the equipment, and this heat connecting portion 1- In Fig. 2, the straight pipe container parts are arranged in parallel and parallel, but are separated from each other to have a non-adhesive structure. Since the straight pipe container section group of the thermal connection section 1-2 is in a non-adhesive state, the flexibility, bendability and flexibility of the thermal connection tape are remarkably improved in this section, and along the gap in the equipment. Can be easily bent. In particular, when the thermal connection tape is formed in a double-layer structure as illustrated in the figure, the non-adhesive state between the layers in the thermal connection or between the thin tubes improves flexibility, bendability and flexibility. It is extremely effective for

【0013】このように構成されてある熱接続テープに
よる熱接続状態を図2(イ)(ロ)に示す。図2(イ)
に於て4−1は発熱体、5−1は冷却手段であり、夫々
機器内の高温部及び低温部に相当する。図の如く高温部
の接着面と低温部の接着面が夫々に位置及び面方向が異
なっていても、本実施例の熱接続テープは非接着部にお
いて自在に屈曲せしめることが出来るので、両接着面の
間を容易に接続することが出来ることを示している。図
はまた発熱体4−1の位置は冷却手段5−1の位置より
高位置に配置されてあり、所謂トップヒート状態に配設
されてある場合でも、本発明の熱接続テープは熱輸送が
可能であることを示している。
The thermal connection state by the thermal connection tape configured as described above is shown in FIGS. Figure 2 (a)
In the figure, 4-1 is a heating element and 5-1 is a cooling means, which correspond to a high temperature part and a low temperature part in the device, respectively. As shown in the figure, even if the bonding surface of the high temperature portion and the bonding surface of the low temperature portion are different in position and surface direction, the thermal connection tape of this embodiment can be flexibly bent in the non-bonding portion. It shows that the faces can be easily connected. The figure also shows that the position of the heating element 4-1 is arranged higher than the position of the cooling means 5-1, and even when the heating element 4-1 is arranged in a so-called top heat state, the heat connection tape of the present invention does not transport heat. It shows that it is possible.

【0014】図2(ロ)に於ては機器内の部品群P−
1、P−2の間の狭隘な間隙に配設されてある発熱体4
−1の熱量を、熱接続テープとして構成された蛇行長尺
細管ヒートパイプ1によって空間的に余裕のある部分ま
で運搬し、放熱フィン5−2の受熱板を冷却体5−1と
してこの熱量を吸収せしめ冷却対流7−1の中に放熱せ
しめている状態を示している。本発明の熱接続テープは
このように極めて狭隘な間隙に発生する熱量を取り出し
て、放熱手段との間を熱的に接続して放熱冷却せしめる
ことが出来る。
In FIG. 2B, a component group P- in the equipment is shown.
Heating element 4 arranged in a narrow gap between 1 and P-2
The heat quantity of -1 is carried by the meandering long thin tube heat pipe 1 configured as a heat connection tape to a spatially vacant part, and this heat quantity is used as the heat receiving plate of the heat radiation fin 5-2 as the cooling body 5-1. It shows a state in which heat is absorbed in the cooling convection 7-1. The heat connecting tape of the present invention can take out the amount of heat generated in such an extremely narrow space and thermally connect it to the heat radiating means for heat radiation cooling.

【0015】第二実施例 図3は第二実施例の説明図であって(イ)は側面略図
(ロ)は横断面略図である。第一実施例の熱接続テープ
は二層構造であるが第二実施例では一層構造であること
を特徴としている。図3に於て蛇行長尺細管ヒートパイ
プ1の直管コンテナ部群は同一平面内において平行並列
に整列されてある。二層構造の場合は可撓性及び屈曲性
を改善する為に接続部分は非接着構造にする必要がある
が、本実施例の一層構造の場合は直管コンテナ部群の全
ての直管コンテナが相互に接着され一枚の平板状テープ
として構成されてあっても可撓性、屈曲性及び柔軟性を
失うことが少ないから、ターン部2−1、2−2を除く
熱接続テープの全てを接着構造として完全なテープ形状
に構成することが出来る点が特徴となっている。従って
本実施例は第一実施例に比較しては配設時の取扱い性が
極めて良好である。然し同一の幅の中の直管コンテナ部
群の本数が第一実施例に比較して半数になるから熱量輸
送能力も半減することは止むを得ないことである。
Second Embodiment FIG. 3 is an explanatory view of the second embodiment, in which (a) is a schematic side view and (b) is a schematic cross-sectional view. The heat connecting tape of the first embodiment has a two-layer structure, but the second embodiment is characterized by a single layer structure. In FIG. 3, the straight tube container parts of the meandering long thin tube heat pipe 1 are arranged in parallel and parallel in the same plane. In the case of the two-layer structure, the connecting portion needs to have a non-adhesive structure in order to improve flexibility and flexibility, but in the case of the one-layer structure of the present embodiment, all the straight pipe containers of the straight pipe container section group. Since they do not lose their flexibility, bendability and flexibility even if they are configured as a single flat tape that is adhered to each other, all of the thermal connection tapes except the turn parts 2-1 and 2-2 It is characterized in that it can be formed into a complete tape shape as an adhesive structure. Therefore, in this embodiment, the handleability at the time of arrangement is extremely good as compared with the first embodiment. However, since the number of straight pipe container parts within the same width is half that of the first embodiment, it is unavoidable that the heat transfer capacity is also halved.

【0016】第三実施例 図3の第二実施例において熱接続テープを構成する蛇行
細管ヒートパイプの全ての直管コンテナ部分が相互に接
着された構造であって接着手段が半田接着である場合に
は、その製造作業性の良好さ、機器内の高温部及び低温
部に対する接着性の良好さ、可撓性、屈曲性及び柔軟性
の良好さ等から優れた熱接続テープとして構成すること
が出来る。然し熱接続テープの熱接続部1−2における
隣接する直管コンテナ部の内部を循環する作動液の流れ
は相互に反対方向であり、高温部から熱量を低温部に向
かって運搬する高温作動液と、低温部にて冷却され熱吸
収のために高温部に向かって流れる作動液が隣接して流
れることになる。従って隣接する直管コンテナ部間に熱
量の授受が行われ、高温であるべき作動液が熱輸送の途
中で熱量を失い、低温であるべき作動液が高温部に向か
う途中で熱量を吸収し、熱量運搬効率が低下する。
Third Embodiment In the second embodiment of FIG. 3, when all the straight pipe container parts of the meandering thin pipe heat pipe constituting the heat connecting tape are bonded to each other and the bonding means is solder bonding Can be configured as an excellent heat connecting tape because of its good manufacturing workability, good adhesiveness to high temperature parts and low temperature parts in equipment, flexibility, flexibility and good flexibility. I can. However, the flows of the working fluid circulating inside the adjacent straight pipe container portions in the heat joining portion 1-2 of the heat joining tape are in opposite directions to each other, and the high temperature working fluid carries the heat quantity from the high temperature portion toward the low temperature portion. Then, the working fluid that is cooled in the low temperature portion and flows toward the high temperature portion for absorbing heat flows adjacently. Therefore, the amount of heat is exchanged between the adjacent straight pipe container parts, the working fluid that should be at high temperature loses the amount of heat during the heat transport, and the working fluid that should be at low temperature absorbs the amount of heat on the way to the high temperature portion, The heat transfer efficiency decreases.

【0017】熱接続テープ内の熱量の移動速度は迅速で
あるから、直管コンテナ群が半田の如き熱伝導性の良好
な接着手段で接着されてあっても熱量運搬効率の低下は
それ程著しいものでは無く、熱接続部1−2が短い場合
は実用的に大きな問題になる程ではない。然し熱接続部
1−2が長い場合は上述のごとき直管コンテナ部相互間
の熱干渉による熱輸送効率の低下は無視することが出来
ない。また受熱部である高温側接着部3−1が短い為作
動液循環力が弱く即ち熱輸送量が非常に少ない場合には
僅かな直管部相互間の熱干渉によっても熱接続テープの
機能が失われることが多い。
Since the moving speed of the amount of heat in the heat connecting tape is fast, even if the straight pipe container group is adhered by an adhesive means having a good thermal conductivity such as solder, the reduction of the heat amount carrying efficiency is remarkable. However, when the thermal connection part 1-2 is short, it is not a serious problem in practical use. However, when the heat connecting portion 1-2 is long, the decrease in heat transfer efficiency due to the heat interference between the straight pipe container portions cannot be ignored, as described above. Further, since the high temperature side adhesive portion 3-1 which is the heat receiving portion is short, the working fluid circulation force is weak, that is, when the heat transport amount is very small, the function of the heat connecting tape may be caused by slight thermal interference between the straight pipe portions. Often lost.

【0018】第3実施例に於ては、上述の如き直管コン
テナ部相互間の熱干渉による熱輸送効率の低下を防ぐ手
段として、熱接続部における、直管コンテナ部相互間又
は層間相互の接着の為の接着材料として、選択的に熱伝
導率の小さな接着材料を使用することを特徴とする。
In the third embodiment, as a means for preventing the reduction of the heat transport efficiency due to the heat interference between the straight pipe container parts as described above, the straight pipe container parts or the interlayers in the heat connection part are connected to each other. An adhesive material having a small thermal conductivity is selectively used as an adhesive material for adhesion.

【0019】第4実施例 図4(イ)(ロ)(ハ)(ニ)は本発明の熱接続テープ
の第4実施例の説明図であり(イ)はその構造を示す斜
視図、他はその適用例の説明図である。図4(イ)に於
て長尺細管ヒートパイプ1は螺旋形状に形成されてあ
り、螺旋の各ターンの細管コンテナ群は全て平行並列に
整列されて全体としてエンドレスの平ベルト形状に形成
されてあり、その所定の部分に於て細管コンテナ群は各
細管相互に接着されてあることを特徴としている。この
場合は平ベルト形状の全部分に於て一層構造であること
もこの実施例の特徴である。従って各細管相互間の接着
によってその可撓性、屈曲性及び柔軟性を失うことが少
ないから図に於ては平ベルト形状の全部分に於て各細管
相互間は接着されて一体化されてある。
Fourth Embodiment FIGS. 4 (a), (b), (c), and (d) are explanatory views of a fourth embodiment of the thermal connecting tape of the present invention. FIG. 4 (a) is a perspective view showing its structure, and the like. Is an explanatory diagram of an application example thereof. In FIG. 4 (a), the long thin tube heat pipe 1 is formed in a spiral shape, and the thin tube container groups of each turn of the spiral are all aligned in parallel and parallel to each other to form an endless flat belt shape. The thin tube container group is adhered to each other at a predetermined portion thereof. In this case, it is also a feature of this embodiment that the flat belt has a one-layer structure in all parts. Therefore, since the flexibility, bendability, and flexibility are less likely to be lost due to the adhesion between the thin tubes, the thin tubes are bonded and integrated in the entire flat belt shape in the figure. is there.

【0020】このように構成されてある熱接続テープは
他の実施例とは異なった独特の熱接続態様の適用構造を
実施することが出来る。図4(ロ)の如く高温側接着部
3−1及びターン部2−1により発熱体4−1を巻回挟
持して接着適用すれば接着面積が倍増するので他の実施
例より強力に熱吸取せしめることが出来る。図4(ハ)
は低温側接着部3−2に於て、直管コンテナ部群の接着
を解除して、セパレータ細管8を挿入して図の如く展開
し冷却対流風7−1により放熱せしめることが出来る。
このようにして適用する場合は熱量を狭隘な部分から冷
却対流風7−1の使用できる部分に引き出して放熱せし
めることが出来る。図4(ニ)は円柱形状の発熱体と円
柱形状の冷却手段とを熱的に接続する例を示す。4−2
は高温流体6が貫流する高温管路である。5−2は低温
流体7−2が貫流する低温管路である。それら高温部と
低温部はエンドレスベルト形状の熱接続テープにより図
の如く容易に且つ効果的に熱接続することが出来る。
The thermal connecting tape having the above-described structure can be applied to a structure for applying a unique thermal connecting mode different from the other embodiments. As shown in FIG. 4B, if the heating element 4-1 is wound and sandwiched by the high temperature side adhesive portion 3-1 and the turn portion 2-1, and the adhesive is applied, the adhesive area is doubled. Can be sucked up. Figure 4 (C)
At the low temperature side adhesion portion 3-2, the adhesion of the straight pipe container portion group can be released, the separator thin tube 8 can be inserted and expanded as shown in the figure, and heat can be radiated by the cooling convection air 7-1.
When applied in this way, the amount of heat can be drawn from the narrow part to the part where the cooling convection air 7-1 can be used for heat dissipation. FIG. 4D shows an example in which a cylindrical heating element and a cylindrical cooling means are thermally connected. 4-2
Is a hot conduit through which the hot fluid 6 flows. 5-2 is a low temperature pipe line through which the low temperature fluid 7-2 flows. The high temperature portion and the low temperature portion can be easily and effectively thermally connected as shown by the endless belt-shaped heat connecting tape.

【0021】[0021]

【発明の効果】以上説明した通り同一平面に添って往復
蛇行する細管ヒートパイプの直管コンテナ部が平行並列
に整列され所定の部分において相互に接着されてテープ
形状に形成された本発明の熱接続テープは可撓性、屈曲
性及び柔軟性に富むから、機器内の高温部と機器内外の
低温部に簡便容易にテープの両端を接着してそれらの間
を熱的に連結することが出来る。また狭隘な部分に配設
されてある高温部にテープの一端を接着して他端を放熱
の容易な空間に引出して放熱せしめることも可能であ
る。このテープは蛇行細管ヒートパイプであるから特開
平4−190090号及び特開平4−251189号の
作動原理により高温側から低温側に向かってその装着姿
勢に係らず活発に熱量を輸送する。
As described above, the heat of the present invention formed into a tape shape by arranging the straight pipe container portions of the thin pipe heat pipe reciprocating along the same plane in parallel and in parallel and adhering to each other at predetermined portions. Since the connecting tape is highly flexible, flexible and flexible, both ends of the tape can be easily and easily adhered to the high temperature part inside the device and the low temperature part inside and outside the device to thermally connect them. . It is also possible to bond one end of the tape to a high temperature portion arranged in a narrow portion and draw the other end into a space where heat can be easily radiated. Since this tape is a meandering thin tube heat pipe, the amount of heat is actively transported from the high temperature side to the low temperature side regardless of the mounting posture according to the operating principles of JP-A-4-190090 and JP-A-4-251189.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱接続テープの基本構造及び第一実施
例を示す説明図である。
FIG. 1 is an explanatory view showing a basic structure and a first embodiment of a thermal connection tape of the present invention.

【図2】熱接続テープの適用例の熱接続状態を示す説明
図である。
FIG. 2 is an explanatory diagram showing a heat connection state of an application example of a heat connection tape.

【図3】本発明の熱接続テープの第二実施例を示す説明
図である。
FIG. 3 is an explanatory view showing a second embodiment of the thermal connection tape of the present invention.

【図4】本発明の熱接続テープの第三実施例を示す説明
図である。(イ)構造説明図 (ロ)(ハ)(ニ)適用
例説明図
FIG. 4 is an explanatory view showing a third embodiment of the thermal connection tape of the present invention. (A) Structural explanatory diagram (b) (c) (d) Application example explanatory diagram

【図5】従来の分離型ヒートパイプの説明図である。FIG. 5 is an explanatory view of a conventional separation type heat pipe.

【符号の説明】[Explanation of symbols]

1 蛇行長尺細管ヒートパイプ 1−2 熱接続部 2 ターン部 3 接着部 3−1 高温側接着部 3−2 低温側接着部 4−1 発熱体 4−2 高温管路 5−1 冷却手段 5−2 低温管路 6 高温流体 7−1 冷却対流風 7−2 低温流体 P 部品群 11 受熱平板 12 放熱平板 13−1 ループ型細管ヒートパイプの受熱部 13−2 ループ型細管ヒートパイプの放熱部 13−3 ループ型細管ヒートパイプの断熱部 DESCRIPTION OF SYMBOLS 1 Meandering long thin tube heat pipe 1-2 Thermal connection part 2 Turn part 3 Adhesive part 3-1 High temperature side adhesive part 3-2 Low temperature side adhesive part 4-1 Heating element 4-2 High temperature pipe line 5-1 Cooling means 5 -2 low temperature pipe 6 high temperature fluid 7-1 cooling convection wind 7-2 low temperature fluid P parts group 11 heat receiving flat plate 12 heat radiating flat plate 13-1 heat receiving part of loop type thin tube heat pipe 13-2 heat radiating part of loop type thin tube heat pipe 13-3 Heat insulation part of loop type thin tube heat pipe

【手続補正書】[Procedure amendment]

【提出日】平成5年12月8日[Submission date] December 8, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】機器内外に於ける高温部(又は発熱部)
とそれに対し距離を隔てた低温部(又は冷却手段)との
間を、熱的に接続して熱量を交換せしめる手段の一例と
しては分離型ヒートパイプ(又はセパレート型ヒートパ
イプとも称される)がある。図は小型機器内にも適用
することが可能な、分離型ヒートパイプの一例を示す説
明図である。図において11及び12は夫々受熱平板及
び放熱平板であり、これらは夫々機器内外に於ける高温
部(又は発熱部)及び低温部(又は冷却手段)に接触熱
抵抗の低い接着手段で接着されてある。13は図面簡略
化の為線図で示されてあるループ型細管ヒートパイプで
あって、その受熱部13−1及び放熱部13−2は夫々
受熱平板1及び放熱平板2に内蔵されて一体化されてあ
る。その断熱部13−3は受熱平板1及び放熱平板2の
間を熱的に接続する。この様なループ型細管ヒートパイ
プ式の分離型ヒートパイプは通常の分離型ヒートパイプ
に比較して、パイプは細径であること、作動液循環の為
のポンプが不要なこと、等の点から大幅に小型化するこ
とが可能となり、小型機器内に適用する場合でも比較的
容易に配設することが可能であり、機器内外の高温部と
低温部を熱的に接続して有効に熱交換せしめることが出
来る。
2. Description of the Related Art High temperature parts (or heat generating parts) inside and outside equipment
As an example of means for thermally connecting the low temperature part (or cooling means) spaced apart from it and exchanging the amount of heat, a separation type heat pipe (also called a separate type heat pipe) is used. is there. FIG. 8 is an explanatory diagram showing an example of a separation type heat pipe that can be applied to a small device. In the figure, 11 and 12 are a heat receiving flat plate and a heat radiating flat plate, respectively, which are bonded to a high temperature part (or a heat generating part) and a low temperature part (or a cooling means) inside and outside the equipment by a bonding means having a low contact thermal resistance. is there. Reference numeral 13 is a loop type thin pipe heat pipe shown in a diagram for simplification of the drawing, and its heat receiving portion 13-1 and heat radiating portion 13-2 are built in and integrated with the heat receiving flat plate 1 and the heat radiating flat plate 2, respectively. It has been done. The heat insulating part 13-3 thermally connects the heat receiving flat plate 1 and the heat radiating flat plate 2. Such a loop type thin pipe heat pipe type separation type heat pipe has a smaller diameter than a normal separation type heat pipe, and a pump for circulating a working fluid is not required. The size can be significantly reduced, and it can be installed relatively easily even when it is applied to a small device, and the high temperature part and low temperature part inside and outside the device are thermally connected to effectively exchange heat. It can be done.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】[0003]

【発明が解決しようとする課題】従来例の分離型ヒート
パイプはヒートパイプ自身が大型である為、対象となる
機器は大型であり通常の機器内には適用が困難であっ
た。図例示の如き小型なループ型細管ヒートパイプ応
用の分離型ヒートパイプに於てさえも、高温部や低温部
のヒートパイプとの接着部の接触面、及び接続手段とし
てのヒートパイプの受熱平板及び放熱平板の平面に厳密
な平滑性や、正確な平行度が要求されたり、接触熱抵抗
を少なくする為の各種手段が要求されたりすることから
は免れず、簡便容易に熱接続することが出来なかった。
Since the heat pipe itself is large in the separation type heat pipe of the conventional example, the target device is large and it is difficult to apply it to a normal device. Even in the case of the separate type heat pipe applied to the small loop type thin pipe heat pipe as shown in FIG. 8, the heat receiving flat plate of the heat pipe as the contact surface of the bonding portion with the heat pipe at the high temperature portion and the low temperature portion and the connecting means. In addition, strict smoothness and accurate parallelism are required on the flat surface of the heat dissipation plate, and various means for reducing the contact thermal resistance are required. I could not do it.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】第4実施例 図4,図5,図6,図7は本発明の熱接続テープの第4
実施例の説明図であり図4はその構造を示す斜視図、他
はその適用例の説明図である。図4に於て長尺細管ヒー
トパイプ1は螺旋形状に形成されてあり、螺旋の各ター
ンの細管コンテナ群は全て平行並列に整列されて全体と
してエンドレスの平ベルト形状に形成されてあり、その
所定の部分に於て細管コンテナ群は各細管相互に接着さ
れてあることを特徴としている。この場合は平ベルト形
状の全部分に於て一層構造であることもこの実施例の特
徴である。従って各細管相互間の接着によってその可撓
性、屈曲性及び柔軟性を失うことが少ないから図に於て
は平ベルト形状の全部分に於て各細管相互間は接着され
て一体化されてある。
Fourth Embodiment FIG. 4, FIG. 5, FIG. 6 and FIG. 7 show the fourth embodiment of the thermal connection tape of the present invention .
FIG. 4 is an explanatory view of an embodiment, FIG . 4 is a perspective view showing its structure, and the other is an explanatory view of its application example. In FIG. 4, the long thin tube heat pipe 1 is formed in a spiral shape, and the thin tube container groups of each turn of the spiral are all arranged in parallel and in parallel to form an endless flat belt shape. The thin tube container group is characterized by being adhered to each other at a predetermined portion. In this case, it is also a feature of this embodiment that the flat belt has a one-layer structure in all parts. Therefore, since the flexibility, bendability, and flexibility are less likely to be lost due to the adhesion between the thin tubes, the thin tubes are bonded and integrated in the entire flat belt shape in the figure. is there.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】このように構成されてある熱接続テープは
他の実施例とは異なった独特の熱接続態様の適用構造を
実施することが出来る。図の如く高温側接着部3−1
及びターン部2−1により発熱体4−1を巻回狭持して
接着適用すれば接着面積が倍増するので他の実施例より
強力に熱吸収せしめることが出来る。図は低温側接着
部3−2に於て、直管コンテナ部群の接着を解除して、
セパレータ細管8を挿入して図の如く展開し冷却対流風
7−1により放熱せしめることが出来る。このようにし
て適用する場合は熱量を狭隘な部分から冷却対流風7−
1の使用できる部分に引き出して放熱せしめることが出
来る。図は円柱形状の発熱体と円柱形状の冷却手段と
を熱的に接続する例を示す。4−2は高温流体6が貫流
する高温管路である。5−2は低温流体7−2が貫流す
る低温管路である。それら高温部と低温部はエンドレス
ベルト形状の熱接続テープにより図の如く容易に且つ効
果的に熱接続することが出来る。
The thermal connecting tape having the above-described structure can be applied to a structure for applying a unique thermal connecting mode different from the other embodiments. As shown in Fig. 5 , high temperature side adhesive section 3-1
Also, if the heating element 4-1 is wound and sandwiched by the turn portion 2-1, and the adhesive is applied, the adhesive area is doubled, so that the heat can be absorbed more strongly than in the other embodiments. FIG. 6 shows the low-temperature side adhesion section 3-2 in which the adhesion of the straight pipe container section group is released,
It is possible to insert the separator thin tube 8 and expand it as shown in the figure to radiate heat by the cooling convection air 7-1. When applied in this way, the amount of heat is reduced from the narrow part to the cooling convection air 7-
1 can be drawn to the usable part to dissipate heat. FIG. 7 shows an example in which a cylindrical heating element and a cylindrical cooling means are thermally connected. 4-2 is a high temperature pipe line through which the high temperature fluid 6 flows. 5-2 is a low temperature pipe line through which the low temperature fluid 7-2 flows. The high temperature portion and the low temperature portion can be easily and effectively thermally connected as shown by the endless belt-shaped heat connecting tape.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱接続テープの基本構造及び第1実施
例を示す説明図である。
FIG. 1 is an explanatory view showing a basic structure of a thermal connection tape of the present invention and a first embodiment.

【図2】熱接続テープの適用例の熱接続状態を示す説明
図である。
FIG. 2 is an explanatory diagram showing a heat connection state of an application example of a heat connection tape.

【図3】本発明の熱接続テープの第二実施例を示す説明
図である。
FIG. 3 is an explanatory view showing a second embodiment of the thermal connection tape of the present invention.

【図4】本発明の熱接続テープの第三実施例を示す構造
説明図である。
FIG. 4 is a structure showing a third embodiment of the thermal connection tape of the present invention.
FIG.

【図5】本発明の熱接続テープの第三実施例を示す適用FIG. 5: Application showing a third embodiment of the thermal connection tape of the present invention
例説明図である。It is an example explanatory view.

【図6】本発明の熱接続テープの第三実施例を示す適用FIG. 6 is an application showing a third embodiment of the thermal connection tape of the present invention.
例説明図である。It is an example explanatory view.

【図7】本発明の熱接続テープの第三実施例を示す適用FIG. 7: Application showing a third embodiment of the thermal connection tape of the present invention
例説明図である。It is an example explanatory view.

【図8】 従来の分離型ヒートパイプの説明図である。 FIG. 8 is an explanatory view of a conventional separation type heat pipe.

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図7】 [Figure 7]

【図3】 [Figure 3]

【図6】 [Figure 6]

【図8】 [Figure 8]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 同一の面に添って往復蛇行して螺旋形状
か又は蛇行形状に形成されてある長尺細管ヒートパイプ
の直管コンテナの部分は平行並列状態に整列されて可撓
性に富む平板テープ形状体に形成されてあり、このテー
プ形状体の所定の部分は所定の接着手段により接着一体
化されてあることを特徴とする熱接続テープ。
1. A straight tube container portion of a long thin tube heat pipe, which is formed in a spiral shape or a meandering shape by reciprocatingly meandering along the same plane, is arranged in parallel and in parallel and is highly flexible. A thermal connection tape, which is formed into a flat tape-shaped body, and a predetermined portion of the tape-shaped body is bonded and integrated by a predetermined bonding means.
【請求項2】 同一の平面内で往復蛇行する長尺細管ヒ
ートパイプの直管コンテナ部は一層の平板テープ形状に
形成されてあることを特徴とする請求項1に記載の熱接
続テープ。
2. The heat connection tape according to claim 1, wherein the straight tube container portion of the long thin tube heat pipe that reciprocates and meanders in the same plane is formed in a flat plate tape shape.
【請求項3】 熱接続テープの構造は、機器内の高温部
及び低温部の夫々と熱的に接合される接着部分と高温部
と低温部の間を熱的に連結する熱接続部分とからなり、
熱接続部分における長尺細管ヒートパイプの直管コンテ
ナ部群の、各直管コンテナの相互か、二層構造の場合は
その各層の相互間が接着されてある構造になっており、
その接着材料は低熱伝導率の接着材料であることを特徴
とする請求項1に記載の熱接続テープ。
3. The structure of the thermal connection tape comprises: an adhesive part that is thermally joined to each of the high temperature part and the low temperature part in the equipment; and a thermal connection part that thermally connects the high temperature part and the low temperature part. Becomes
In the straight pipe container part group of the long thin pipe heat pipe in the heat connection portion, each straight pipe container is mutually bonded, or in the case of a two-layer structure, the respective layers are bonded to each other,
The thermal bonding tape according to claim 1, wherein the adhesive material is an adhesive material having a low thermal conductivity.
【請求項4】 長尺細管ヒートパイプは螺旋形状に形成
されてあり、螺旋の各ターンの細管コンテナ群は全て平
行並列に整列されて、全体としてエンドレスの平ベルト
形状に形成されてあり、その所定の部分において細管コ
ンテナ群は各細管相互に接着されてあることを特徴とす
る請求項1に記載の熱接続テープ。
4. The long thin tube heat pipe is formed in a spiral shape, and the thin tube container groups of each turn of the spiral are all arranged in parallel and in parallel, and formed as an endless flat belt shape as a whole. The thermal connection tape according to claim 1, wherein the thin tube container group is adhered to each other in a predetermined portion.
JP32109192A 1992-10-19 1992-10-19 Thermal connection tape Pending JPH06174386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32109192A JPH06174386A (en) 1992-10-19 1992-10-19 Thermal connection tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32109192A JPH06174386A (en) 1992-10-19 1992-10-19 Thermal connection tape

Publications (1)

Publication Number Publication Date
JPH06174386A true JPH06174386A (en) 1994-06-24

Family

ID=18128717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32109192A Pending JPH06174386A (en) 1992-10-19 1992-10-19 Thermal connection tape

Country Status (1)

Country Link
JP (1) JPH06174386A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303983A (en) * 1996-05-09 1997-11-28 Akutoronikusu Kk Stereo-type heat pipe radiator
JP2002151636A (en) * 2000-11-10 2002-05-24 Ts Heatronics Co Ltd Heat sink
JP2002303493A (en) * 2001-04-03 2002-10-18 Ts Heatronics Co Ltd Heat radiating device
JP2002345964A (en) * 2001-05-28 2002-12-03 Teijin Ltd Medical pressure variable oxygen condensing device
EP1321735A2 (en) * 2001-12-19 2003-06-25 TS Heatronics Co., Ltd. Capillary tube heat pipe and temperature controlling apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303983A (en) * 1996-05-09 1997-11-28 Akutoronikusu Kk Stereo-type heat pipe radiator
JP2002151636A (en) * 2000-11-10 2002-05-24 Ts Heatronics Co Ltd Heat sink
JP2002303493A (en) * 2001-04-03 2002-10-18 Ts Heatronics Co Ltd Heat radiating device
JP2002345964A (en) * 2001-05-28 2002-12-03 Teijin Ltd Medical pressure variable oxygen condensing device
EP1321735A2 (en) * 2001-12-19 2003-06-25 TS Heatronics Co., Ltd. Capillary tube heat pipe and temperature controlling apparatus
EP1321735A3 (en) * 2001-12-19 2006-06-07 TS Heatronics Co., Ltd. Capillary tube heat pipe and temperature controlling apparatus

Similar Documents

Publication Publication Date Title
US6026895A (en) Flexible foil finned heatsink structure and method of making same
USRE40618E1 (en) Integrated cooling system
EP0780301B1 (en) A heat transport system for spacecraft integration
US5031689A (en) Flexible thermal apparatus for mounting of thermoelectric cooler
US20050121065A1 (en) Thermoelectric module with directly bonded heat exchanger
JPH0469959A (en) Semiconductor module
JP2005228954A (en) Heat conduction mechanism, heat dissipation system, and communication apparatus
JP2009290218A (en) Thermal management device and method for making the same
JPH0763487A (en) Plate type heat pipe
JP2001237582A (en) Heat sink, cooling device using it, and electronic apparatus comprising it
US20110168358A1 (en) Lap-joined heat pipe structure and thermal module using same
JP2001177024A (en) Heat diffusing composite plate
US20130271918A1 (en) Cold plate with reduced bubble effects
JPH06174386A (en) Thermal connection tape
JP2004293833A (en) Cooling device
JPH1187786A (en) Electron cooling/heating apparatus
JP2007139301A (en) Flexible heat pipe
JP7087192B2 (en) Module base with integrated thermal spreader and heatsink for thermal and structural management of high performance integrated circuits and other devices
JP3564560B2 (en) Flexible thin plate heat pipe
JPH10125836A (en) Heat sink cooling apparatus
JP2002151636A (en) Heat sink
JP4803515B2 (en) Interfacial heat transfer plate
JP3512691B2 (en) Thermoelectric element and method of manufacturing the same
JP6432295B2 (en) Waste heat device
JPH03110391A (en) Heat receiving and radiating device