WO2021043280A1 - 一种补偿方法及电子设备 - Google Patents

一种补偿方法及电子设备 Download PDF

Info

Publication number
WO2021043280A1
WO2021043280A1 PCT/CN2020/113571 CN2020113571W WO2021043280A1 WO 2021043280 A1 WO2021043280 A1 WO 2021043280A1 CN 2020113571 W CN2020113571 W CN 2020113571W WO 2021043280 A1 WO2021043280 A1 WO 2021043280A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
value
parameter
measured
brightness
Prior art date
Application number
PCT/CN2020/113571
Other languages
English (en)
French (fr)
Inventor
胡凯
侯伟波
肖啸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20860772.1A priority Critical patent/EP4020445A4/en
Priority to US17/640,649 priority patent/US11790819B2/en
Publication of WO2021043280A1 publication Critical patent/WO2021043280A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • G09G3/035Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays for flexible display surfaces
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/046Dealing with screen burn-in prevention or compensation of the effects thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/048Preventing or counteracting the effects of ageing using evaluation of the usage time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/02Flexible displays

Definitions

  • This application relates to the field of terminal technology, and in particular to a compensation method and electronic equipment.
  • OLEDs organic light emitting diodes
  • OLED uses the electroluminescence characteristics of organic materials to emit light, and organic materials have a life limit. Therefore, as the use time of the display screen increases, there will be problems of material exhaustion and aging. For example, when a fixed position of the display screen displays the same and still image for a long time, the organic material corresponding to the sub-pixels in these positions will be more depleted than the organic material corresponding to the sub-pixels in other positions.
  • the attenuation speed of the organic materials corresponding to the pixels is inconsistent, or the use and duration of each area on the screen is inconsistent, which will cause uneven aging on the display, especially the blue color in it.
  • the material decay period of the sub-pixel is shorter, and the aging is more serious.
  • LCD may also have the problem of inconsistency in the degree of aging.
  • the present application provides a compensation method and electronic equipment, which are used to reduce the difference in parameters to be measured between the display screens of the electronic equipment, so that the display effects of different display screens are consistent.
  • an embodiment of the present application provides a compensation method, which is applied to an electronic device with a folding screen, the folding screen includes at least a first screen and a second screen, and the method includes: The first average use value of the parameter to be measured in a statistical period and the first corresponding relationship are used to determine the first actual value of the parameter to be measured at the end of the first statistical period on the first screen; The second average use value of the parameter to be tested in the period and the second corresponding relationship, determine the second actual value of the parameter to be tested at the end of the first statistical period on the second screen; then, when the first actual value is less than the second actual value When, according to the first actual value and the second actual value, determine the compensation target value; write the compensation target value into the first register used to control the parameters to be measured on the first screen, and write the compensation target value to control the second In the second register of the parameter to be tested on the screen; or, write the compensation target value into the first register used to control the parameter to be tested on the first screen, and extend the working time of
  • the electronic device can respectively determine the actual values of the first screen and the second screen through statistical data, and then for the first screen with a lower actual value of the parameter to be measured, write the target compensation in the first register To increase the maximum value of the parameter to be measured; for the second screen with a higher actual value of the parameter to be measured, reduce the maximum value of the parameter to be measured by writing the target compensation value in the second register.
  • the maximum value of the parameter to be measured on the first screen and the second screen can also be increased by extending the working time Consistent, which can reduce the difference of the parameters to be measured between the first screen and the second screen, and make the display effects of different display screens consistent.
  • the first average use value of the parameter to be tested in the first statistical period of the first screen and the first corresponding relationship determine the value of the parameter to be tested at the end of the first statistical period on the first screen.
  • the first actual value may specifically include: the electronic device may obtain the first statistical data corresponding to the parameter to be measured of the first screen in the first statistical period, and determine that the first screen is in the first statistical period according to the first statistical data.
  • the electronic device can periodically count the usage statistics of the parameters to be measured on the first screen, and then the first corresponding relationship can accurately determine the actual values of the parameters to be measured on the first screen at the end of a statistical period.
  • the second screen of the parameter to be measured at the end of the first statistical period is determined.
  • the second actual value may specifically include: the electronic device may obtain the second usage statistics data corresponding to the parameters to be measured of the second screen in the first statistical period, and determine the second screen usage statistics in the first statistical period according to the second usage statistics data.
  • the second average use value of the parameter to be measured; then, the second actual value is determined according to the second average use value and the second correspondence relationship.
  • the second correspondence relationship includes the average use value of the parameter to be measured on the second screen and the actual value Correspondence.
  • the electronic device can periodically count the usage statistics of the parameters to be measured on the second screen, and then, according to the second correspondence, can accurately determine the actual parameters of the parameters to be measured at the end of a statistical period on the second screen. value.
  • the parameter to be measured is brightness
  • writing the compensation target value into the first register used to control the parameter to be measured on the first screen includes: determining the first current value corresponding to the compensation target value and increasing The working current of the first screen reaches the first current value; the driving IC of the first screen is triggered by the first current value to write the compensation target value into the first register.
  • the electronic device can adjust the operating current of the first screen with lower actual brightness to increase the brightness of the first screen, so that the display effects of the first screen and the second screen are consistent.
  • the parameter to be measured is brightness
  • writing the target compensation value into a second register for controlling the parameter to be measured on the second screen includes: determining the target value of the compensation. Corresponding to the second current value, lower the operating current of the second screen to the second current value; the second current value triggers the driver IC of the second screen to write the compensation target value In the second register.
  • the electronic device can adjust the operating current of the second screen with higher actual brightness to increase the brightness of the second screen, so that the display effects of the first screen and the second screen are consistent.
  • the parameter to be measured is brightness; the working time of the second screen is extended to increase the actual value of the parameter to be measured on the second screen to the compensation target value , Including: when determining that the brightness of the second screen is set to a preset brightness, reducing the second actual value to the first working time required for the compensation target value, and extending the working time of the second screen The first working hours.
  • the electronic device can adjust the working time of the second screen with higher actual brightness to reduce the brightness of the second screen, so that the display effects of the first screen and the second screen are consistent.
  • extending the working time of the second screen by the first working time may specifically include: when the second screen is in the off-screen state, lighting the second screen and controlling the working time of the second screen in the on-screen state Is the first working hours. In this way, the brightness of the second screen can be adjusted when the user is not using the second screen, so that the user's use of the second screen may not be affected.
  • the second screen can be lighted in the following situations:
  • the electronic device can detect the device state of the electronic device, and the device state may include a static state or a moving state.
  • the device state of the electronic device is in the static state and the second screen is in the off-screen state
  • the working duration for lighting the second screen and controlling the second screen to be in the on-screen state is the first working duration.
  • a gyroscope sensor and a gravity sensor may be used to collect the device state data of the electronic device, and then determine the device state of the electronic device.
  • the device When the device is in a static state, it may be that the user does not use the electronic device, such as a charging scene, so that the brightness adjustment of the second screen can be realized in a scene where the user does not perceive it.
  • the electronic device can detect the brightness of the surrounding environment of the electronic device, and when it detects that the brightness of the surrounding environment of the second screen is lower than a preset threshold, it lights up the second screen and controls the working time of the second screen in the on-screen state Is the first working hours.
  • the ambient light sensor can be used to detect the brightness of the surrounding environment of the electronic device, such as in a dark night scene, or the electronic device is placed in a bag or pocket, or the user puts the electronic device on the desktop
  • the ambient light sensor can be used to detect the brightness of the surrounding environment of the electronic device, such as in a dark night scene, or the electronic device is placed in a bag or pocket, or the user puts the electronic device on the desktop
  • the user generally does not use the second screen in these scenarios, and the brightness adjustment of the second screen can be realized in scenarios where the user does not perceive.
  • the electronic device can count the usage time data of the user of the electronic device using the second screen, and determine the time period during which the user does not use the second screen according to the usage time data.
  • the working time period for lighting the second screen and controlling the second screen to be in the on-screen state is the first working time period.
  • the electronic device can detect the orientation of the second screen when the user is holding the electronic device. For example, if the gyroscope and acceleration sensor detect that the second screen is facing away from the first screen, it can light up at this time.
  • the working duration of the second screen and controlling the second screen to be in the on-screen state is the first working duration.
  • the second screen may be lighted up, and the brightness of the second screen may be controlled to increase step by step according to a preset brightness interval.
  • the first actual value is less than the second actual value, that is, the actual brightness of the first screen is less than the actual brightness of the second screen, and the sum of the second compensation value and the target value is equal to the second actual value and the third actual value.
  • the sum of the compensation value, that is, for the second screen, two adjustment methods can be combined to reduce the brightness of the second screen to the target value.
  • the electronic device determines the first current value corresponding to the sum of the first actual value and the first compensation value, determines the second current value corresponding to the sum of the second actual value and the third compensation value, and determines the second screen
  • the second working time required to reduce the brightness of the second screen from the sum of the second actual value and the third compensation value to the target value, then increase the working current of the first screen to the first current value, and increase the working of the second screen
  • the current reaches the second current value, and the working duration of the second screen is controlled to extend the second working duration.
  • the electronic device can adjust the current of the first screen with lower actual brightness to increase the brightness of the first screen to the target value, and can use two different adjustment methods (working current adjustment and working time) Adjustment) Combined with the adjustment of the working time of the second screen with higher actual brightness, the brightness of the second screen can be increased by increasing the working current, and the brightness of the second screen can be reduced by prolonging the working time, so as to reduce the brightness of the second screen in combination To the target value, so that the display effect of the brightness of the first screen and the second screen are consistent.
  • the parameter to be measured is grayscale; write the compensation target value into the first register used to control the parameter to be measured on the first screen, and write the compensation target value to control the second screen to be measured
  • the second register of the parameter includes: determining the R component, G component, and B component corresponding to the compensation target value of the gray scale; writing the R component, G component, and B component corresponding to the compensation target value of the gray scale into the first Register and second register.
  • the RGB components corresponding to the first actual value of the gray scale of the first screen and the RGB components corresponding to the actual value of the second screen gray scale can be compensated respectively, so as to realize the first
  • the gray scale display effect of the second screen is the same as that of the second screen.
  • the display area of the first screen is divided into N first areas, and the display area of the second screen is divided into the N second areas, where N is a positive integer;
  • the first screen of the parameter to be measured at the end of the first statistical period is determined
  • An actual value including: determining each first area according to the first average use value of the parameter to be measured in the first statistical period of each first area in the N first areas, and the first corresponding relationship The first actual value of the parameter to be measured at the end of the first statistical period; the second average use value of the parameter to be measured in the first statistical period according to the second screen, and the second corresponding relationship , Determining the second actual value of the parameter to be measured at the end of the first statistical period of the second screen includes: according to each second area of the N second areas in the first statistical period The second average use value of the internal parameter to be tested and the second corresponding relationship determine the second actual value of the parameter to
  • the working time of the second screen to increase the actual value of the parameter to be measured on the second screen to the compensation target value includes: writing the compensation target value to the target value for controlling the first area
  • the electronic device can compare the area of the first screen and the second screen at the same position respectively, so as to compensate for the difference between the first screen and the second screen in more detail, so that the first screen and the second screen
  • the display effect of the parameters to be measured is the same.
  • an embodiment of the present application also provides an electronic device.
  • the electronic device includes a display screen, wherein the display screen includes at least a first screen and a second screen; one or more processors; a memory; one or more programs; wherein the one or more programs are stored in the memory
  • the one or more programs include instructions, and when the instructions are executed by the electronic device, the electronic device executes the above-mentioned first aspect and any possible design technical solution of the first aspect.
  • an embodiment of the present application further provides an electronic device.
  • the electronic device includes modules/units that execute the above-mentioned first aspect or any one of the possible design methods of the first aspect; these modules/units can be implemented through hardware Realization can also be realized by hardware executing corresponding software.
  • an embodiment of the present application further provides a chip, which is coupled with a memory in an electronic device, and is used to call a computer program stored in the memory and execute the first aspect of the embodiments of the present application and any one of the first aspects thereof.
  • a chip which is coupled with a memory in an electronic device, and is used to call a computer program stored in the memory and execute the first aspect of the embodiments of the present application and any one of the first aspects thereof.
  • an embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute the first On the one hand and any possible design technical solutions of the first aspect.
  • a program product in the embodiments of the present application includes program instructions.
  • the program instructions run on an electronic device, the electronic device executes the first aspect of the embodiments of the present application and any of the first aspects thereof. A possible technical solution.
  • FIG. 1A is a schematic diagram of a fully deployed scene of a mobile phone according to an embodiment of the application
  • FIG. 1B is a schematic diagram of a partial folding scene of a mobile phone according to an embodiment of the application
  • FIG. 1C is a schematic diagram of a fully folded scenario of a mobile phone according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a mobile phone provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of the software structure of the mobile phone 100 provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a compensation method provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a display screen according to an embodiment of the present application according to areas.
  • the mura phenomenon involved in the embodiments of the present application is due to the limitations of the crystallization process. Take a low temperature poly-silicon thin-film transistor (LTPS TFT) fabricated on a large-area glass substrate as an example To illustrate, TFTs in different positions usually have non-uniformity in electrical parameters such as threshold voltage and mobility. This non-uniformity will be converted into the current difference and brightness difference of the OLED display device, and will be perceived by the human eye, that is, Mura phenomenon. It should be understood that the color difference recognizable by the human eye can also be regarded as a Mura phenomenon.
  • LTPS TFT low temperature poly-silicon thin-film transistor
  • the optical compensation (Demura) technology involved in the embodiments of this application is a technology that uses certain technical means to detect whether the display screen has a mura phenomenon, and after the Mura phenomenon is detected, the difference in the Mura phenomenon is compensated to eliminate the difference in the Mura phenomenon.
  • an electronic device with a folding screen includes a main screen and a secondary screen, which compensates for the brightness difference between the main screen and the secondary screen to achieve the same brightness between the main screen and the secondary screen.
  • the main screen brightness setting The value is the same as the setting value of the brightness of the secondary screen.
  • the maximum brightness of the main screen is 500nit
  • the maximum brightness of the secondary screen is 400nit.
  • the user sets the brightness parameters of the primary and secondary screens to 50%, and the brightness of the primary screen is set The value is 250nit, and the maximum brightness of the secondary screen is 200nit. Therefore, the brightness of the main screen and the brightness of the secondary screen are not consistent.
  • the maximum brightness of the main screen is the same as the maximum brightness of the secondary screen.
  • the following uses various methods to compensate the brightness of the main screen and the secondary screen.
  • the result of the compensation is to adjust the maximum brightness of the main screen and the secondary screen to reduce the difference in the maximum brightness value between the main screen and the secondary screen. Make the maximum brightness value of the main screen and the secondary screen the same.
  • the compensation for the gray-scale difference (or the difference in RGB value) between the main screen and the secondary screen is also the same, and will not be repeated in the following.
  • the electronic device with a folding screen in the embodiment of the present application may be a mobile phone, a tablet computer (pad), a notebook computer, or the like.
  • the folding screen of the mobile phone may adopt an integrated flexible display screen, or may adopt a display screen composed of at least two rigid screens and a flexible screen located between the two rigid screens.
  • the folding screen provided by the embodiment of the present application includes three parts as an example. As shown in FIGS. 1A, 1B, and 1C, the folding screen may include a first screen 111, a second screen 112, and a connection between the first screen 111 and the second screen 113.
  • FIG. 1A shows a schematic diagram of the shape of the mobile phone when it is fully unfolded.
  • the folding screen 110 may include a first screen 111, a bendable area 112, and a second screen 113.
  • the first screen 111, the bendable area 112, and the second screen 113 are connected.
  • the gravity sensor can detect that the angle a between the first screen 111 and the second screen 113 is 180° (the actual folding angle may not reach 180°, and the actual folding angle reported shall prevail. ).
  • the folding screen 110 when the first screen 111 or the second screen 113 is rotated, the folding screen 110 can be folded through the bendable area 112.
  • FIG. 1B When the folding screen of the mobile phone is partially folded, see FIG. 1B, which is completely folded The shape afterwards can be seen in Figure 1C.
  • the housing 120 of the mobile phone is also folded; at the same time, the folding screen 110 is also folded.
  • 1B and 1C exemplarily show that the folding screen 110 is located on the exposed side when the mobile phone is folded. It should be understood that the housing 120 may also be exposed when the mobile phone is folded, and the folding screen 110 is located on the inner side, and the folding screen 110 may also be Exposed part.
  • the angle a between the first screen 111 and the second screen 113 is getting smaller and smaller.
  • the angle between the first screen 111 and the second screen 113 is 180°.
  • the gravity sensor 180E can detect that the angle between the first screen 111 and the second screen 113 is 40°.
  • the sensor detects that the included angle between the first screen 111 and the second screen 113 is 0 degrees (the actual folding angle may not reach 0°, so that it is actually reported
  • the first screen 111 and the second screen 113 are located on the exposed side.
  • the second screen 113 facing the user is called the main screen
  • the first screen 111 is called the secondary screen on the back
  • the bendable area 112 can be called the side screen.
  • the mobile phone is folded, due to different usage scenarios and user habits of the primary and secondary screens, for example, users are used to using the primary screen when the mobile phone is folded, and the secondary screen is in the off-screen state. You will find out after using the mobile phone for a period of time. The use time of the main screen, side screen, and secondary screen varies, which will cause the aging of the main screen, side screen, and secondary screen to be inconsistent. Take the brightness as an example.
  • the brightness of the main screen is lower than that of the secondary screen.
  • the brightness is lower than that of the folded area.
  • the main screen, side screen, and secondary screen form one screen.
  • the user faces the entire screen.
  • the display brightness in different areas of the entire screen is inconsistent or the color is inconsistent.
  • this application provides a compensation method for compensating for each screen (such as the main screen, the secondary screen, and the secondary screen) when there are differences in the aging degree of the multiple screens included in the electronic device (such as the main screen, the side screen, and the secondary screen).
  • the brightness of each screen can be compensated to make the brightness of each screen consistent; for example, when there is a color difference between each screen, the RGB value of each screen can be adjusted to make The color of each screen is consistent, so that the display effect of the entire screen is consistent.
  • the side screen can be adjusted together with the main screen, or the side screen can be adjusted together with the secondary screen, which is related to which screen rotates with the hinge of the folding screen. Take for example that when the mobile phone is folded, the shaft and the secondary screen rotate together.
  • the working circuits of the secondary screen and the side screen can be controlled together. For example, when the brightness of the secondary screen is reduced by controlling the working circuit of the secondary screen, the brightness of the side screen will also be reduced. , That is, the brightness of the secondary screen and the side screen will be adjusted together.
  • the electronic device may be a portable terminal including a display screen, such as a mobile phone, a tablet computer, and the like.
  • portable electronic devices include, but are not limited to, carrying Or portable electronic devices with other operating systems.
  • the aforementioned portable electronic device may also be other portable electronic devices, such as a digital camera.
  • the above-mentioned electronic device may not be a portable electronic device, but a desktop computer with a display screen or the like.
  • FIG. 2 shows a schematic structural diagram of the mobile phone 100.
  • the mobile phone 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, Mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone interface 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and user Identification module (subscriber identification module, SIM) card interface 195, etc.
  • a processor 110 an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, Mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone interface 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 19
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the mobile phone 100.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that the processor 110 has just used or used cyclically. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the processor 100 can run the software code of the compensation algorithm provided in the embodiment of the present application to realize the process of compensating the parameters to be measured of each screen of the electronic device, where the parameters to be measured can be brightness, grayscale, and RGB values.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the USB interface 130 can be used to connect a charger to charge the mobile phone 100, and can also be used to transfer data between the mobile phone 100 and peripheral devices.
  • the charging management module 140 is used to receive charging input from the charger.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charge management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160.
  • the wireless communication function of the mobile phone 100 can be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the mobile phone 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the mobile phone 100.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the wireless communication module 160 can provide applications on the mobile phone 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellite systems. (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive the signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the antenna 1 of the mobile phone 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the mobile phone 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the mobile phone 100 implements a display function through a GPU, a display screen 194, and an application processor.
  • the GPU is an image processing microprocessor, which is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs, which execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, and the like.
  • the display screen 194 includes a display panel.
  • the display panel can use liquid crystal display (LCD), organic light-emitting diode (OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the mobile phone 100 may include one or N display screens 194, and N is a positive integer greater than one.
  • the camera 193 is used to capture still images or videos.
  • the camera 193 may include a front camera and a rear camera.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the processor 110 executes various functional applications and data processing of the mobile phone 100 by running instructions stored in the internal memory 121.
  • the internal memory 121 may include a storage program area and a storage data area. Wherein, the storage program area can store an operating system, and software code of at least one application program, etc.
  • the data storage area can store data (such as images, videos, etc.) generated during the use of the mobile phone 100.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), and the like.
  • UFS universal flash storage
  • the internal memory 121 can also store the software code of the compensation method provided in the embodiment of the present application.
  • the processor 110 runs the software code, the process steps of the compensation method are executed to realize the process of compensating the target parameters of each screen of the electronic device. .
  • the internal memory 121 may also store usage statistics corresponding to the parameters to be measured of each screen, the calculated compensation value, the aging model, various corresponding relationships, and the like.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the mobile phone 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function.
  • the software code of the compensation method provided in the embodiments of the present application can also be stored in an external memory, and the processor 110 can run the software code through the external memory interface 120, execute the process steps of the compensation method, and realize the control of each screen of the electronic device.
  • the process of compensating the target parameters The usage statistics corresponding to the parameters to be measured of each screen acquired by the mobile phone 100, the calculated compensation value, the aging model, various corresponding relationships, etc. may also be stored in an external memory.
  • the mobile phone 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. For example, music playback, recording, etc.
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be provided on the display screen 194.
  • the gyro sensor 180B may be used to determine the movement posture of the mobile phone 100.
  • the angular velocity of the mobile phone 100 around three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the air pressure sensor 180C is used to measure air pressure.
  • the mobile phone 100 uses the air pressure value measured by the air pressure sensor 180C to calculate the altitude to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the mobile phone 100 can use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the mobile phone 100 can detect the opening and closing of the flip according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the mobile phone 100 in various directions (generally three axes). When the mobile phone 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and apply to applications such as horizontal and vertical screen switching, pedometers and so on.
  • the mobile phone 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the mobile phone 100 may use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the mobile phone 100 emits infrared light to the outside through the light emitting diode.
  • the mobile phone 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the mobile phone 100. When insufficient reflected light is detected, the mobile phone 100 can determine that there is no object near the mobile phone 100.
  • the mobile phone 100 can use the proximity light sensor 180G to detect that the user holds the mobile phone 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, and the pocket mode will automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the mobile phone 100 can adaptively adjust the brightness of the display 194 according to the perceived brightness of the ambient light.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the mobile phone 100 is in the pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the mobile phone 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, access application locks, fingerprint photographs, fingerprint answering calls, and so on.
  • the temperature sensor 180J is used to detect temperature.
  • the mobile phone 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the mobile phone 100 performs a reduction in the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the mobile phone 100 when the temperature is lower than another threshold, the mobile phone 100 heats the battery 142 to avoid abnormal shutdown of the mobile phone 100 due to low temperature.
  • the mobile phone 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch panel”.
  • the touch sensor 180K may be disposed on the display screen 194, and the touch screen is composed of the touch sensor 180K and the display screen 194, which is also called a “touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K may also be disposed on the surface of the mobile phone 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the human pulse and receive the blood pressure pulse signal.
  • the button 190 includes a power-on button, a volume button, and so on.
  • the button 190 may be a mechanical button. It can also be a touch button.
  • the mobile phone 100 can receive key input, and generate key signal input related to user settings and function control of the mobile phone 100.
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 195 is used to connect to the SIM card.
  • the SIM card can be connected to and separated from the mobile phone 100 by inserting into the SIM card interface 195 or pulling out from the SIM card interface 195.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the mobile phone 100.
  • the mobile phone 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the embodiment of the present application also provides a software architecture.
  • the software architecture of the mobile phone 100 may divide the software into several layers, and each layer has a clear role and division of labor. Communication between layers through software interface.
  • the software architecture can be divided into four layers, from top to bottom, the application layer (referred to as the application layer), the application framework layer (referred to as the framework layer), and the hardware abstraction layer (hardware abstraction layer, HAL). , And the kernel layer (also known as the driver layer).
  • the application layer can include a series of application packages.
  • the application layer may include multiple application packages such as application 1 and application 2.
  • the application package may be, but not limited to, applications such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, short message, and launcher.
  • the framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
  • the application framework layer includes some predefined functions.
  • the framework layer may include a window manager (WMS) and an activity manager (AMS), among which the window manager WMS is used to manage window programs.
  • the activity manager AMS is used to manage the Activity, and is responsible for the startup, switching, scheduling of various components in the system, and the management and scheduling of applications.
  • the framework layer may also include a content provider, a view system, a phone manager, a resource manager, a notification manager, etc. (not shown in the drawings).
  • the hardware abstraction layer is used to provide the Framework layer with a general interface for calling the drivers in the kernel layer, and distribute the input events sent by the kernel layer to the upper layer, that is, the application framework layer.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer may include display drivers, camera drivers, audio drivers, sensor drivers, input/output device drivers (for example, keyboards, touch screens, earphones, speakers, microphones, etc.) and so on.
  • the kernel layer may also include a data statistics module 310, a compensation calculation module 320, a display subsystem (DSS) 330, a driver (display driver IC, DDIC) 340 for driving a display chip, and so on.
  • a data statistics module 310 a compensation calculation module 320
  • a compensation calculation module 320 a compensation calculation module 320
  • a display subsystem (DSS) 330 a driver (display driver IC, DDIC) 340 for driving a display chip, and so on.
  • DSS display subsystem
  • driver display driver IC, DDIC
  • the data statistics module 310 is configured to count usage statistics corresponding to the parameters to be measured on each screen of the mobile phone in the current statistics period, and send the usage statistics to the compensation calculation module 320.
  • the data statistics module 310 may include a brightness statistics module 311 and a color statistics module 312.
  • the brightness statistics module 311 is used to count the use time of each screen in a period of time corresponding to each brightness level
  • the color statistics module 312 is used to count the display time of each screen. The corresponding use time of each level of color value or each level of gray level in a period of time.
  • the compensation calculation module 320 after receiving the usage statistics sent by the data statistics module 310, calculates the compensation information between each screen, and calculates the compensation information and the values of the parameters to be measured for each screen calculated at the end of the last statistical period , Sent to the display subsystem (DSS) 330.
  • DSS display subsystem
  • the display subsystem (DSS) 330 receives the compensation information and the value of the parameter to be measured for each screen calculated at the end of the last statistical period, and determines the compensation value used to compensate each screen and the adjustment of the parameter to be measured. And send the compensation value and the adjustment mode of the parameter to be measured to the driver 340 for driving the display chip.
  • the driver 340 for driving the display chip compensates the parameters to be tested for each screen according to the compensation value corresponding to each screen and the adjustment method of the parameters to be tested.
  • the brightness level is expressed, the maximum brightness level is 500 nits, and the difference between each two brightness levels is 1 nit, and the brightness statistics
  • the module 311 uses 10 minutes as a statistical period to record in real time the usage time of the main screen at each brightness level, and record the usage time of the secondary screen at each brightness level.
  • the brightness statistics module 311 can count the main screen within 10 minutes, the corresponding use time at the brightness level of 500nit is 2s,..., the corresponding use time at the brightness level of 450nit is 5s, and the corresponding use time at the brightness level of 449nit is 12s.
  • the use time corresponding to the brightness level 448nit is 3s,..., the use time corresponding to the brightness level 57nit is 38s, the use time corresponding to the brightness level 56nit is 38s,..., the use time corresponding to the brightness level 1nit is 0s ,
  • the use time corresponding to the brightness level 0nit is 360s. For example, in a statistical period of 10 minutes for the secondary screen, the usage time corresponding to the brightness level 0nit is 10 minutes, that is, the secondary screen is not used in the statistical period.
  • the brightness statistics module 311 sends the usage time corresponding to each brightness level of the main screen and the usage time corresponding to each brightness level of the secondary screen calculated within 10 minutes to the compensation calculation module 320.
  • the compensation calculation module 320 may calculate the average brightness usage value of the main screen after receiving the usage time corresponding to each brightness level of the main screen, see the following formula (1):
  • the average brightness usage value of the main screen within 10 minutes, L 1 , L 2 , ..., L n-1 , L n are the respective brightness levels, T 1 , T 2 , ..., T n-1 , T n
  • the compensation calculation module 320 can calculate the And the first corresponding relationship, the first corresponding relationship includes the corresponding relationship between the average use value of the brightness of the main screen and the actual value, and the first actual value of the brightness of the main screen at the end of the current statistical period is determined from the first corresponding relationship, that is, The corresponding actual value.
  • the first correspondence relationship may be pre-configured in the mobile phone 100 before the mobile phone leaves the factory, or may be determined according to historical usage data during the use of the mobile phone.
  • the process of determining the first correspondence relationship will be introduced by taking the example that the first correspondence relationship is configured in the mobile phone 100 before the mobile phone leaves the factory.
  • the brightness statistics module 311 calculates the brightness usage of multiple displays belonging to the same batch as the display 194 of the mobile phone 100 at the same ambient temperature to obtain historical statistical data.
  • the same batch of displays uses the same material and manufacturing process .
  • the historical statistics are shown in the following example a1 and example a2:
  • Example a1 at an ambient temperature of 25°C, the working brightness of the display screen A with an initial brightness of 500 nits is measured and set to the brightness loss value ⁇ L 1 corresponding to the use of 200 nits for 24 hours, that is to say, the display screen A’s working brightness in 24 hours Average brightness usage value It is 200 nit/s, assuming that ⁇ L 1 is 10 nit, the actual brightness value of the display screen A at the end of 24 hours is the difference between the initial brightness and the brightness loss value, that is, 490 nit.
  • Example a2 at an ambient temperature of 25°C, the working brightness of the display screen B with an initial brightness of 500 nits is measured and set to the brightness loss value ⁇ L 2 corresponding to the use of 300 nits for 24 hours, that is to say, the display screen B’s operating brightness within 24 hours Average brightness usage value It is 300 nit/s, assuming that ⁇ L 2 is 20 nit, the actual brightness value of the display screen A at the end of 24 hours is 480 nit.
  • the compensation calculation module 320 can be based on the initial brightness of the display screen A in example a1 of 500 nit, the actual brightness value of the display screen A at the end of 24 hours of 490 nit, the initial brightness of the display screen B in example a2 of 500 nit, and the display screen B in 24 hours.
  • the actual brightness value at the end of 480nit and the following aging formula (2) can determine ⁇ and ⁇ in formula (2).
  • t is the working time
  • L 0 is the initial brightness of the display screen
  • is the coefficient related to the initial brightness of the display screen
  • is related to factors such as the material, production process and ambient temperature of the display screen.
  • Coefficient L is the actual brightness value of the display screen when it is used for the working time t.
  • is a fixed value.
  • the compensation calculation module 320 calculates the average brightness usage value of the main screen in the current statistical period When, according to Corresponding relationship with ⁇ , determine Corresponding to ⁇ , then will The corresponding ⁇ is substituted into the above formula (2), and the actual brightness value of the main screen at the end of the current statistical period can be obtained. In this way, the corresponding relationship between the average brightness usage value of the main screen and the actual brightness value can be obtained, that is, the first corresponding relationship.
  • the compensation calculation module 320 may also calculate the average brightness usage value of the secondary screen after receiving the usage time corresponding to each brightness level of the secondary screen, see the following formula (3):
  • the compensation calculation module 320 can calculate the And the second corresponding relationship determines the second actual value of the brightness of the secondary screen at the end of the current statistical period.
  • the second correspondence relationship includes the correspondence relationship between the average use value of the brightness of the secondary screen and the actual value. It should be noted that the second correspondence relationship may be pre-configured in the mobile phone 100 before the mobile phone leaves the factory, or may be determined according to historical usage data during the use of the mobile phone.
  • the manner of determining the second correspondence relationship may refer to the manner of determining the first correspondence relationship, which will not be repeated here.
  • the method for determining the first correspondence relationship is described by taking the parameter to be measured as brightness as an example.
  • the first correspondence relationship when the parameter to be measured is grayscale information or RGB values can also refer to the above example of brightness.
  • the compensation calculation module 320 may determine according to the first actual value and the second actual value Compensation information corresponding to the brightness.
  • the difference between the first actual value and the second actual value can be used as the brightness compensation information between the main screen and the secondary screen.
  • the first actual value of the brightness of the main screen is 400nit
  • the second actual value of the brightness of the secondary screen is 450nit.
  • the loss value of the brightness of the main screen is If it is greater than the brightness loss of the secondary screen, it can be determined that the aging degree of the main screen is greater than the aging degree of the secondary screen, and the brightness difference between the primary screen and the secondary screen can be determined to be 50nit, which is the brightness compensation information between the primary screen and the secondary screen.
  • the compensation coefficient may be determined according to the first actual value and the second actual value, and the first initial value of the parameter to be measured of the first screen, as the brightness compensation information between the main screen and the auxiliary screen.
  • the compensation coefficient a can be determined according to the following formula (4):
  • L is the beginning of the main screen and sub-screen of the initial luminance
  • L is the luminance of the sub-sub-screen at the end of the current cycle count The second actual value.
  • the compensation coefficient can be determined to be 1% by the above formula (4) , Which is the brightness compensation information between the main screen and the secondary screen.
  • the display subsystem (DSS) 330 can determine the compensation value for each screen and the brightness adjustment method according to the compensation information, and then according to the compensation
  • the adjustment method of the value and the brightness compensates the brightness of the main screen and/or the sub screen to make the brightness between the main screen and the sub screen consistent.
  • the following takes the aging degree of the main screen greater than the aging degree of the secondary screen, that is, the actual brightness value of the main screen is less than the actual brightness value of the secondary screen.
  • the brightness of the main screen is compensated so that the brightness of the main screen is increased to be consistent with the brightness of the secondary screen.
  • the first actual value of the brightness of the main screen is 400nit
  • the second actual value of the brightness of the secondary screen is 450nit.
  • the working current of the main screen can be increased to achieve the situation that the brightness setting value of the main screen is not changed.
  • Increase the maximum brightness value of the main screen from 400nit to 450nit.
  • the current working current of the main screen is 1mA
  • the corresponding maximum brightness value is 400nit
  • the working current 1.2mA corresponds to the maximum brightness value 450nit, so the working current of the main screen can be adjusted to 1.2mA to increase the maximum brightness value of the main screen.
  • 450nit the working current of the main screen can be adjusted to 1.2mA to increase the maximum brightness value of the main screen.
  • the brightness of the main screen can be adjusted, that is, the brightness of the main screen can be increased, so that the brightness of the main screen is consistent with the aging degree of the auxiliary screen, so that the display effect of the brightness of the main screen and the auxiliary screen are consistent.
  • Method c2 the brightness of the secondary screen is compensated, so that the brightness of the secondary screen is reduced to be consistent with the brightness of the main screen.
  • the first actual value of the brightness of the main screen is 400nit
  • the second actual value of the brightness of the secondary screen is 450nit, which can extend the working time of the secondary screen to reduce the maximum brightness value of the secondary screen from 450nit to 400nit. For example, it takes 24 hours to set the brightness of the secondary screen to 200nit to reduce the maximum brightness of the secondary screen by 50nit.
  • the secondary screen can set the brightness of the secondary screen to 200nit during the main screen (such as a charging scene), and the secondary screen continues Work at 200nit for 24 hours, so that the maximum brightness value of the secondary screen is reduced to 400nit so that when the user is not using the mobile phone, the mobile phone automatically adjusts the maximum brightness value of the secondary screen without the user's perception, so that the main screen can be adjusted. It is consistent with the aging degree of the secondary screen, so that the brightness of the main screen and the secondary screen have the same display effect.
  • the brightness of the main screen and the brightness of the secondary screen are compensated, the brightness of the primary screen is increased, and the brightness of the secondary screen is reduced, so that the adjusted brightness of the primary screen and the secondary screen are consistent.
  • the display subsystem may determine the first compensation value and the second compensation value according to the compensation information corresponding to the brightness.
  • the brightness of the main screen is compensated according to the first compensation value, so that the brightness of the main screen is increased to the sum of the first actual value and the first compensation value, and the brightness of the secondary screen is compensated according to the second compensation value to make the secondary screen
  • the brightness of is reduced to the difference between the second actual value and the second compensation value.
  • the sum of the first actual value and the first compensation value is equal to the difference between the second actual value and the second compensation value.
  • the first actual value of the brightness of the main screen is 400 nit
  • the second actual value of the brightness of the secondary screen is 450 nit
  • the first compensation value is 20 nit
  • the second compensation value is 30 nit, that is, the maximum brightness of the main screen is increased by 20 nit.
  • the maximum brightness of the secondary screen is reduced by 30nit, so that the maximum brightness of the main screen and the secondary screen can be the same, both of 420nit.
  • the display subsystem determines the first current value corresponding to the sum of the first actual value and the first compensation value, and determines the second working time required for the brightness of the secondary screen to decrease the second compensation value Then, the driver 340 for driving the display chip increases the working current of the main screen to the first current value, and extends the working time of the secondary screen to the second working time. In this way, after the second working time, the main screen and the secondary The brightness of the screen is consistent after adjustment.
  • the working time of the secondary screen is extended by the second working time, which can be implemented in the following ways: when the second screen is in the resting state, the second screen is turned on, and the second screen is controlled to be on
  • the working duration of the state is the first working duration.
  • the second screen can be lighted in the following situations:
  • the electronic device can detect the device state of the electronic device, and the device state may include a static state or a moving state.
  • the device state of the electronic device is in the static state and the second screen is in the off-screen state
  • the working duration for lighting the second screen and controlling the second screen to be in the on-screen state is the first working duration.
  • a gyroscope sensor and a gravity sensor may be used to collect the device state data of the electronic device, and then determine the device state of the electronic device.
  • the device When the device is in a static state, it may be that the user does not use the electronic device, such as a charging scene, so that the brightness adjustment of the second screen can be realized in a scene where the user does not perceive it.
  • the electronic device can detect the brightness of the surrounding environment of the electronic device, and when it detects that the brightness of the surrounding environment of the second screen is lower than a preset threshold, it lights up the second screen and controls the working time of the second screen in the on-screen state Is the first working hours.
  • the ambient light sensor can be used to detect the brightness of the surrounding environment of the electronic device, such as in a dark night scene, or the electronic device is placed in a bag or pocket, or the user puts the electronic device on the desktop
  • the ambient light sensor can be used to detect the brightness of the surrounding environment of the electronic device, such as in a dark night scene, or the electronic device is placed in a bag or pocket, or the user puts the electronic device on the desktop
  • the user generally does not use the second screen in these scenarios, and the brightness adjustment of the second screen can be realized in scenarios where the user does not perceive.
  • the electronic device can count the usage time data of the user of the electronic device using the second screen, and determine the time period during which the user does not use the second screen according to the usage time data.
  • the working time period for lighting the second screen and controlling the second screen to be in the on-screen state is the first working time period.
  • the electronic device can detect the orientation of the second screen when the user is holding the electronic device. For example, if the gyroscope and acceleration sensor detect that the second screen is facing away from the first screen, it can light up at this time.
  • the working duration of the second screen and controlling the second screen to be in the on-screen state is the first working duration.
  • the second screen there may be multiple implementation manners for lighting the second screen.
  • One possible way is to turn on the second screen, and the brightness of the second screen quickly reaches the desired brightness.
  • the second screen can be lighted up, and the brightness of the second screen can be controlled to increase step by step according to a preset brightness interval.
  • the maximum brightness of the main screen can be increased, and the maximum brightness of the secondary screen can be adjusted in a combination of two ways, that is, the maximum brightness of the secondary screen is increased by increasing the working current, and the working current of the secondary screen is extended.
  • the maximum brightness of the secondary screen is reduced by the method, and the final adjusted maximum brightness of the secondary screen is lower than before the adjustment, so that the adjusted maximum brightness of the main screen and the secondary screen are the same.
  • the display subsystem determines the first current value corresponding to the sum of the first actual value and the first compensation value, and determines the second current value corresponding to the sum of the second actual value and the third compensation value, And it is determined that the brightness of the secondary screen decreases from the sum of the second actual value and the third compensation value to the second working duration corresponding to the difference between the second actual value and the second compensation value.
  • the driver 340 for driving the display chip increases the working current of the main screen to the first current value, increases the working current of the secondary screen to the second current value, and controls the working time of the secondary screen to extend the second working time.
  • controlling the working time of the secondary screen to extend the second working time is similar to extending the working time of the secondary screen to the second working time. You can refer to the above related content of extending the working time of the secondary screen to the second working time.
  • the adjusted brightness value at the end of the current statistical period is used as the initial value of the primary and secondary screens in the next statistical period, and the statistics of the main and secondary screens are continued.
  • the Mura difference is described as an example of the brightness difference between the main screen and the secondary screen.
  • the parameter to be measured can be either RGB value or grayscale. You can refer to the above related content for brightness compensation to compare the color difference between the main screen and the secondary screen. Make compensation.
  • the value of R can be from 0 to 255
  • the value of G can be from 0 to 255
  • the value of B can be from 0 to 255.
  • the color statistics module 312 can count the data of the main screen during a statistical period.
  • Each level of R value, G value, B value corresponds to the use time
  • the use time corresponding to the B value and the use time corresponding to the R value, G value, and B value of the secondary screen at each level are sent to the compensation calculation module 320.
  • the compensation calculation module 320 calculates the average R usage value, the average G usage value, and the average B usage value of the main screen in the statistical period, see the following formula (5) to formula (7):
  • R 1 , R 2 , ..., R n-1 , R n are the R values of each level, T 1 , T 2 , ..., T n-1 , T n are mainly used when the length of the screen at all levels of the R value, e.g., when the main screen using the length of R n T n.
  • G 1 , G 2 , ..., G n-1 , G n are the G values at all levels
  • T 1 , T 2 , ..., T n-1 , T n are mainly used when the length of the screen G value at all levels, for example, when the length of the main screen using the G n T n.
  • the average B usage value of the main screen in the statistical period, B 1 , B 2 , ..., B n-1 , B n are the B values of each level, T 1 , T 2 , ..., T n-1 , T n are mainly used when the screen length B value levels, e.g., duration of the main screen using B n T n.
  • the compensation calculation module 320 calculates the average R usage value, the average G usage value, and the average B usage value of the secondary screen in the statistical period. Refer to the following formula (8) to formula (10):
  • R 1 , R 2 , ..., R n-1 , R n are the R values of each level, T 1 ′, T 2 ′, ..., T n- 1 ′ and T n ′ are the use time of the secondary screen at each level of R value, for example, T n is the use time of the secondary screen at R n.
  • G 1 , G 2 , ..., G n-1 , G n are the G values of each level, T 1 ′, T 2 ′, ..., T n- 1 ′ and T n ′ are the use time of the secondary screen at each level of G value, for example, T n is the use time of the secondary screen at G n.
  • B 1 , B 2 , ..., B n-1 , B n are the B values of each level, T 1 ′, T 2 ′, ..., T n- 1 ′ and T n ′ are the use time of the secondary screen at each level of B value, for example, T n is the use time of the secondary screen at B n.
  • the compensation calculation module 320 can calculate the And the first corresponding relationship determines the first actual value of the R value of the main screen at the end of the current statistical period.
  • the first corresponding relationship includes the corresponding relationship between the average R usage value of the main screen and the actual value.
  • the compensation calculation module 320 can calculate the And the second corresponding relationship determines the second actual value of the R value of the main screen at the end of the current statistical period.
  • the second correspondence relationship includes the correspondence relationship between the average R usage value of the secondary screen and the actual value.
  • the compensation calculation module 320 may perform the calculation according to the first actual value and the second actual value. , Determine the compensation information corresponding to the R value.
  • the method of determining the compensation information corresponding to the R value is similar to the method of determining the compensation information corresponding to the brightness. For details, please refer to the related content of the foregoing method b1 or method b2, which will not be repeated here.
  • the display subsystem (DSS) 330 can determine the compensation value for each screen and the adjustment of the R value according to the compensation information of the R value. Then, according to the compensation value and the adjustment method of the R value, the R value of the main screen and/or the sub screen is compensated to make the R value between the main screen and the sub screen consistent. Among them, for the R value between the main screen and the sub screen.
  • the adjustment of the value is similar to the adjustment method of the brightness between the main screen and the auxiliary screen. For details, please refer to the related content of the above method c1, method c2, or method c3, which will not be repeated here.
  • the parameter to be measured can also be represented by grayscale information.
  • the value of each level of grayscale is 0-255, and the color statistics module 312 can count In a statistical period, each level of gray scale of the main screen corresponds to the use time, and each level of gray scale of the secondary screen corresponds to the use time, and the statistics of each level of gray scale of the main screen correspond to the use time and the secondary screen respectively.
  • the corresponding usage time of each level of gray scale is sent to the compensation calculation module 320.
  • the compensation calculation module 320 can calculate the average gray scale usage value of the main screen in the statistical period, see the following formula (11):
  • the average gray scale usage value of the main screen in the statistical period, g 1 , g 2 , ..., g n-1 , g n are the gray scale values at all levels, T 1 , T 2 , ..., T n-1 , T n are respectively the use time length of the main screen at each level of gray scale value, for example, T n is the use time length of the main screen gray scale g n .
  • the compensation calculation module 320 can calculate the average gray scale usage value of the main screen according to the above formula (11) And the first corresponding relationship of the gray level, the first actual value of the gray level of the main screen at the end of the current statistical period is determined.
  • the first corresponding relationship of the gray scale includes the corresponding relationship between the average gray scale usage value of the main screen and the actual gray scale value.
  • the average gray scale usage value of the secondary screen that can be calculated by the compensation calculation module 320 And the second corresponding relationship of the gray level, the second actual value of the gray level of the secondary screen at the end of the current statistical period is determined.
  • the second correspondence relationship includes the correspondence relationship between the average gray scale usage value of the secondary screen and the actual gray scale value.
  • the compensation calculation module 320 may determine the first actual value of the gray scale according to the first actual value of the gray scale and the gray scale.
  • the second actual value of the level determines the compensation information corresponding to the gray level.
  • the method of determining the compensation information corresponding to the gray scale is similar to the method of determining the compensation information corresponding to the brightness. For details, please refer to the related content of the foregoing method b1 or method b2, which will not be repeated here.
  • the display subsystem (DSS) 330 can determine the compensation value for each screen and the adjustment of the R value according to the compensation information of the R value. Then, the R value of the main screen and/or the secondary screen is compensated according to the compensation value and the adjustment mode of the R value, so that the R value between the main screen and the secondary screen is consistent.
  • the R component and G corresponding to the target value of the gray scale can be determined according to the first actual value of the gray scale of the main screen and the second actual value of the gray scale of the secondary screen at the end of the current statistical period.
  • the first R component difference is used to compensate the R component value corresponding to the first actual value
  • the first G component difference is used to compensate the R component value corresponding to the first actual value
  • the first B component difference is used to compensate
  • the B component value corresponding to the first actual value is compensated
  • the second R component difference is used to compensate the R component value corresponding to the second actual value
  • the second G component difference is used to compensate the R component value corresponding to the second actual value. Compensation, using the second B component difference to compensate the B component value corresponding to the second actual value.
  • the RGB components corresponding to the first actual value of the gray scale of the first screen and the RGB components corresponding to the actual value of the second screen gray scale are respectively compensated, so as to realize the first screen and the second screen
  • the display effect of the gray scale is the same.
  • the parameter to be measured is grayscale; determine the R component, G component, and B component corresponding to the grayscale compensation target value; set the R component and G component corresponding to the grayscale compensation target value , B components are respectively written into the first register for controlling the gray scale of the first screen and the second register for controlling the gray scale of the first screen.
  • the embodiments of the present application provide a compensation method, which can be implemented in the electronic device shown in FIGS. 1A-1C or other electronic devices with a folding screen. As shown in Figure 4, the method may include the following steps:
  • Step 401 The electronic device determines the first actual value of the parameter to be measured on the first screen at the end of the first statistical period according to the first average use value of the parameter to be measured in the first statistical period and the first corresponding relationship. value.
  • the first screen may be the main screen in the above embodiment, and the second screen may be the secondary screen in the above embodiment.
  • the first actual value may be the first actual value in the above example in conjunction with FIG. 3, where the maximum brightness of the first screen is taken as an example for introduction.
  • Step 402 Determine the second actual value of the parameter to be measured on the second screen at the end of the first statistical period according to the second average usage value of the parameter to be measured in the first statistical period of the second screen and the second corresponding relationship.
  • the second actual value refers to the maximum brightness of the second screen. It may be the second actual value in the above example in conjunction with FIG. 3, where the maximum brightness of the second screen is taken as an example for introduction.
  • Step 403 When the first actual value is less than the second actual value, determine the compensation target value according to the first actual value and the second actual value. After that, step 404 or step 405 can be performed.
  • first actual value may be the maximum brightness of the first screen, or may be half of the maximum brightness of the first screen, or other values
  • the second actual value may be the maximum brightness of the second screen, or It is half of the maximum brightness of the second screen, or other values.
  • the compensation target value is determined according to the first actual value and the second actual value
  • the maximum brightness of the first screen can be adjusted to the maximum brightness of the second screen. The brightness is the same.
  • step 404 the compensation target value is written into the first register for controlling the parameter to be measured on the first screen, and the compensation target value is written into the second register for controlling the parameter to be measured on the second screen.
  • Step 405 Write the compensation target value into the first register for controlling the parameter to be measured on the first screen, and extend the working time of the second screen, so that the actual value of the parameter to be measured on the second screen rises to the compensation target value .
  • the electronic device can respectively determine the actual values of the first screen and the second screen through statistical data, and then for the first screen with a lower actual value of the parameter to be measured, write the target compensation in the first register To increase the maximum value of the parameter to be measured; for the second screen with a higher actual value of the parameter to be measured, reduce the maximum value of the parameter to be measured by writing the target compensation value in the second register.
  • the maximum value of the parameter to be measured on the first screen and the second screen can also be increased by extending the working time Consistent, which can reduce the difference of the parameters to be measured between the first screen and the second screen, and make the display effects of different display screens consistent.
  • the above step 401 can be implemented in the following manner: the electronic device can obtain the first statistical data corresponding to the parameter to be measured of the first screen in the first statistical period, and determine the first screen according to the first statistical data.
  • the electronic device can periodically count the usage statistics of the parameters to be measured on the first screen, and then the first corresponding relationship can accurately determine the actual values of the parameters to be measured on the first screen at the end of a statistical period.
  • the above step 402 can be implemented in the following manner: the electronic device can obtain the second usage statistics data corresponding to the parameters to be measured of the second screen in the first statistical period, and determine the second usage statistics data according to the second usage statistics data.
  • the electronic device can periodically count the usage statistics of the parameters to be measured on the second screen, and then according to the second correspondence relationship, can accurately determine the actual values of the parameters to be measured on the second screen at the end of a statistical period.
  • writing the compensation target value into the first register for controlling the parameter to be measured on the first screen may include: determining the first current value corresponding to the compensation target value , Increase the working current of the first screen to the first current value; trigger the driver IC of the first screen by the first current value to write the compensation target value into the first register.
  • the electronic device can adjust the operating current of the first screen with lower actual brightness to increase the brightness of the first screen, so that the display effects of the first screen and the second screen are consistent.
  • the parameter to be measured is brightness
  • writing the target compensation value into a second register for controlling the parameter to be measured on the second screen includes: determining the target compensation value Corresponding to the second current value, lower the operating current of the second screen to the second current value; the second current value triggers the driver IC of the second screen to write the compensation target value The second register.
  • the electronic device can adjust the operating current of the second screen with higher actual brightness to increase the brightness of the second screen, so that the display effects of the first screen and the second screen are consistent.
  • the parameter to be measured is brightness; the working time of the second screen is extended to increase the actual value of the parameter to be measured on the second screen to the compensation target
  • the value includes: when it is determined that the brightness of the second screen is set to the preset brightness, the first working time required to reduce the second actual value to the compensation target value, and the working time of the second screen Extend the first working hours. In this way, the electronic device can adjust the working time of the second screen with higher actual brightness to reduce the brightness of the second screen, so that the display effects of the first screen and the second screen are consistent.
  • extending the working time of the second screen to the first working time can be achieved in the following manner: when the second screen is in the resting state, the second screen is turned on and the second screen is controlled to be in the on-screen state.
  • Working hours are the first working hours. In this way, the brightness of the second screen can be adjusted when the user is not using the second screen, so that the user's use of the second screen may not be affected.
  • the second screen can be lighted in the following situations:
  • the electronic device can detect the device state of the electronic device, and the device state may include a static state or a moving state.
  • the device state of the electronic device is in the static state and the second screen is in the off-screen state
  • the working duration for lighting the second screen and controlling the second screen to be in the on-screen state is the first working duration.
  • a gyroscope sensor and a gravity sensor may be used to collect the device state data of the electronic device, and then determine the device state of the electronic device.
  • the device When the device is in a static state, it may be that the user does not use the electronic device, such as a charging scene, so that the brightness adjustment of the second screen can be realized in a scene where the user does not perceive it.
  • the electronic device can detect the brightness of the surrounding environment of the electronic device, and when it detects that the brightness of the surrounding environment of the second screen is lower than a preset threshold, it lights up the second screen and controls the working time of the second screen in the on-screen state Is the first working hours.
  • the ambient light sensor can be used to detect the brightness of the surrounding environment of the electronic device, such as in a dark night scene, or the electronic device is placed in a bag or pocket, or the user puts the electronic device on the desktop
  • the ambient light sensor can be used to detect the brightness of the surrounding environment of the electronic device, such as in a dark night scene, or the electronic device is placed in a bag or pocket, or the user puts the electronic device on the desktop
  • the user generally does not use the second screen in these scenarios, and the brightness adjustment of the second screen can be realized in scenarios where the user does not perceive.
  • the electronic device can count the usage time data of the user of the electronic device using the second screen, and determine the time period during which the user does not use the second screen according to the usage time data.
  • the working time period for lighting the second screen and controlling the second screen to be in the on-screen state is the first working time period.
  • the electronic device can detect the orientation of the second screen when the user is holding the electronic device. For example, if the gyroscope and acceleration sensor detect that the second screen is facing away from the first screen, it can light up at this time.
  • the working duration of the second screen and controlling the second screen to be in the on-screen state is the first working duration.
  • the second screen may be lighted up, and the brightness of the second screen may be controlled to increase step by step according to a preset brightness interval.
  • the parameter to be measured is grayscale; the compensation target value is written into the first register used to control the parameter to be measured on the first screen, and the compensation target value is written to control the second screen to be measured.
  • the second register for measuring parameters it can be realized by the following methods: determine the R component, G component, and B component corresponding to the compensation target value of the gray scale; and set the R component, G component, and B component corresponding to the compensation target value of the gray scale Write to the first register and the second register respectively.
  • the RGB components corresponding to the first actual value of the gray scale of the first screen and the RGB components corresponding to the actual value of the second screen gray scale can be compensated respectively, so as to realize the first screen and
  • the grayscale display effect of the second screen is the same.
  • the mobile phone 100 includes two screens as an example, and the Mura difference between the two screens is compensated for in detail.
  • the Mura difference between two of the multiple screens can be determined and compensated until there is no Mura difference between all the screens included in the mobile phone 100.
  • the brightness difference between the main screen and the secondary screen can also be compensated in more detail, for example, the display areas of the main screen and the secondary screen are separated. It is divided into N areas, and the brightness between a certain area A of the main screen and an area B that has a positional correspondence with the area A in the secondary screen is compensated, so that the brightness between the area A and the area B is consistent.
  • the foregoing step 402 can be implemented in the following manner: determining each second area according to the second average use value of the parameter to be measured in the first statistical period in the first statistical period and the second corresponding relationship among the N second areas. The second actual value of the parameter to be measured in the second area at the end of the first statistical period.
  • the above step 403 may be implemented in the following manner: for each first area of the N first areas, a second area that has a positional correspondence with the first area is determined; according to the first area of the first area An actual value and a second actual value of the second area corresponding to the position of the first area determine the compensation target value.
  • the above step 404 can be implemented in the following manner: write the compensation target value into the first register used to control the parameter to be measured in the first area, and write the compensation target value into the first register used for controlling and the first area.
  • the actual values of the measured parameters are consistent.
  • the working circuits between any two areas can be adjusted separately, so as to realize the adjustment of the parameters to be measured of the display screen by area.
  • the display area of the main screen is divided into 16 areas, which are area A11, area A12, area A13, area A14, area A21, area A22, area A23, area A24, area A31, Area A32, Area A33, Area A34, Area A41, Area A42, Area A43, Area A44.
  • the display area of the secondary screen is divided into 16 areas, namely: area B11 corresponding to area A11, area B12 corresponding to area A12, area B13 corresponding to area A13, area B14 corresponding to area A14, and area A21 Area B21, area B22 corresponding to area A22, area B23 corresponding to area A23, area B24 corresponding to area A24, area B31 corresponding to area A31, area B32 corresponding to area A32, area corresponding to area A33 B33, area B34 corresponding to area A34, area B41 corresponding to area A 41, area B42 corresponding to area A 42, area B43 corresponding to area A 43, area B44 corresponding to area A 44.
  • the specific process of realizing the compensation method can be as follows: First, determine the first average use value of the parameter to be measured in the first statistical period of the area A11 and the first The corresponding relationship determines the first actual value of the parameter to be measured in the area A11 at the end of the first statistical period. Determine the second actual value of the parameter to be measured in the area B11 at the end of the first statistical period according to the second average usage value of the parameter to be measured in the first statistical period of the area B11 and the second corresponding relationship; then, according to the area A11 The first actual value of B11 and the second actual value of area B11 determine the compensation target value.
  • the first register used to control the parameter to be measured in the area A11, and to extend the working time of the area B11, so that the actual value of the parameter to be measured in the area B11 is consistent with the actual value of the parameter to be measured in the area A11.
  • the first actual value of the area A11 and the second actual value of the area B11 refer to the relevant content of the actual values corresponding to the two screens in the above embodiment, and write the compensation target value into the corresponding area
  • For the corresponding register refer to the related content of writing the compensation target value into the corresponding register of the corresponding screen.
  • To extend the working time of area B11 refer to the related content of extending the working time of the second screen, which will not be repeated here.
  • the method provided in the embodiments of the present application is introduced from the perspective of the electronic device (mobile phone 100) as the execution subject.
  • the terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • the term “when” can be interpreted as meaning “if" or “after” or “in response to determining" or “in response to detecting".
  • the phrase “when determining" or “if detected (statement or event)” can be interpreted as meaning “if determined" or “in response to determining" or “when detected (Condition or event stated)” or “in response to detection of (condition or event stated)”.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本申请提供了一种补偿方法及电子设备。该方法包括:电子设备根据第一屏的统计数据以及第一对应关系,确定第一屏在第一统计周期结束时的待测参数的第一实际值;根据第二屏的统计数据、以及第二对应关系,确定第二屏在第一统计周期结束时待测参数的第二实际值;在第一实际值小于第二实际值时,根据第一实际值与第二实际值,确定补偿目标值;将补偿目标值写入用于控制第一屏待测参数的第一寄存器,并将补偿目标值写入用于控制第二屏待测参数的第二寄存器中;或者,将补偿目标值写入用于控制第一屏待测参数的第一寄存器,并延长第二屏的工作时长,以使第二屏的待测参数的实际值升高至补偿目标值。从而可以将第一屏与第二屏的待测参数的最大值调一致。

Description

一种补偿方法及电子设备
相关申请的交叉引用
本申请要求在2019年09月06日提交中国国家知识产权局、申请号为201910844673.8、申请名称为“一种补偿方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种补偿方法及电子设备。
背景技术
随着电子产品的普及,例如手机、电脑等电子设备越来越深入人们的生活,电子设备的屏幕也越做越大,为了方便携带,后来也出现了具有折叠屏的电子设备。
为了给用户提供更好的显示体验,有机发光二极管(organic light emitting diode,OLED)由于其具有自发光、高亮度、广视角、快速反应、以及RGB全彩组件皆可制作等特性,目前已被广泛应用于显示屏中。OLED利用有机材料电致发光的特性进行发光,而有机材料有寿命限制,因而随着显示屏的使用时间的增长,会存在材料衰竭和老化的问题。比如,当显示屏某些固定位置长时间显示相同且静止的图像画面时,这些位置的子像素对应的有机材料则会比其他位置的子像素对应的有机材料损耗的更厉害,而不同的子像素(R像素、G像素、B像素)对应的有机材料的衰减速度不一致,或者屏幕上的各个区域使用和时长不一致,都会造成显示屏上出现老化程度不均匀的问题,尤其是其中的蓝色子像素的材料衰减周期更短,老化更严重。类似的,LCD也可能存在这种老化程度不一致的问题,将LCD、OLED等应用在具有折叠屏的电子设备时,在具有折叠屏的电子设备处于折叠状态的情况下,用户对于各个屏幕的使用时长不一致,在完全展开屏幕时就会发现各个屏幕由于老化程度不均匀导致显示效果差异很大。
发明内容
本申请提供了一种补偿方法及电子设备,用以实现降低电子设备的各显示屏之间的待测参数的差异,使不同显示屏的显示效果一致。
第一方面,本申请实施例提供一种补偿方法,该方法应用于具有折叠屏的电子设备,该折叠屏至少包括第一屏和第二屏,该方法包括:电子设备根据第一屏在第一统计周期内待测参数的第一平均使用值、以及第一对应关系,确定第一屏在第一统计周期结束时的待测参数的第一实际值;并根据第二屏在第一统计周期内待测参数的第二平均使用值、以及第二对应关系,确定第二屏在第一统计周期结束时待测参数的第二实际值;然后,在第一实际值小于第二实际值时,根据第一实际值与第二实际值,确定补偿目标值;将补偿目标值写入用于控制第一屏待测参数的第一寄存器,并将补偿目标值写入用于控制第二屏待测参数的第二寄存器中;或者,将补偿目标值写入用于控制第一屏待测参数的第一寄存器,并延长第二屏的工作时长,以使第二屏的待测参数的实际值升高至补偿目标值。
基于上述方案,电子设备可以分别通过统计数据确定出第一屏与第二屏的实际值,对然后对于待测参数的实际值较低的第一屏,通过在第一寄存器中写入目标补偿值的方式来提高待测参数的最大值;对于待测参数的实际值较高的第二屏,通过在第二寄存器中写入目标补偿值的方式来降低待测参数的最大值,这样可以使得第一屏与第二屏的待测参数的最大值一致;对于待测参数的实际值较高的第二屏,也可以通过延长工作时长的方式使第一屏与第二屏的最大值一致,从而可以降低第一屏与第二屏之间的待测参数的差异,使不同显示屏的显示效果一致。
在一种可能的设计中,根据第一屏在第一统计周期内待测参数的第一平均使用值、以及第一对应关系,确定第一屏在第一统计周期结束时的待测参数的第一实际值,具体可以包括:电子设备可以获取第一屏在第一统计周期内的待测参数对应的第一使用统计数据,根据第一使用统计数据确定第一屏在第一统计周期内的待测参数的第一平均使用值;然后,根据第一平均使用值、以及第一对应关系确定第一实际值,第一对应关系包括第一屏的待测参数的平均使用值与实际值的对应关系。
通过该设计,电子设备可以周期性的统计第一屏待测参数的使用统计数据,然后第一对应关系,可以准确定的确定出第一屏在一个统计周期结束时待测参数的实际值。
在一种可能的设计中,根据第二屏在第一统计周期内待测参数的第二平均使用值、以及第二对应关系,确定第二屏在第一统计周期结束时待测参数的第二实际值,具体可以包括:电子设备可以获取第二屏在第一统计周期内的待测参数对应的第二使用统计数据,根据第二使用统计数据确定第二屏在第一统计周期内的待测参数的第二平均使用值;然后,根据第二平均使用值、以及第二对应关系确定第二实际值,第二对应关系包括第二屏的待测参数的平均使用值与实际值的对应关系。
通过该设计,电子设备可以周期性的统计第二屏的待测参数的使用统计数据,然后根据第二对应关系,可以准确定的确定出第二屏在一个统计周期结束时待测参数的实际值。
在一种可能的设计中,待测参数为亮度;将补偿目标值写入用于控制第一屏待测参数的第一寄存器,包括:确定补偿目标值所对应的第一电流值,调高第一屏的工作电流至第一电流值;通过第一电流值触发第一屏的驱动IC将补偿目标值写入第一寄存器中。通过该方式,电子设备可以通过对实际亮度较低的第一屏进行工作电流调节,以实现对提高第一屏的亮度,以使第一屏与第二屏的显示效果一致。
在一种可能的设计中,所述待测参数为亮度;所述将所述补偿目标值写入用于控制第二屏待测参数的第二寄存器中,包括:确定所述补偿目标值所对应的第二电流值,调低所述第二屏的工作电流至所述第二电流值;通过所述第二电流值触发所述第二屏的驱动IC将所述补偿目标值写入所述第二寄存器中。通过该方式,电子设备可以通过对实际亮度较高的第二屏进行工作电流调节,以实现对提高第二屏的亮度,以使第一屏与第二屏的显示效果一致。
在一种可能的设计中,所述待测参数为亮度;所述延长所述第二屏的工作时长,以使所述第二屏的待测参数的实际值升高至所述补偿目标值,包括:确定所述第二屏的亮度设置为预设亮度时,将所述第二实际值降低至所述补偿目标值所需要的第一工作时长,将所述第二屏的工作时长延长所述第一工作时长。通过该方式,电子设备可以通过对实际亮度较高的第二屏进行工作时长调节,以实现降低第二屏的亮度,以使第一屏与第二屏的显示效果一致。
进一步的,将第二屏的工作时长延长第一工作时长,具体可以包括:在第二屏处于息屏状态时,点亮所述第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。如此,可以在用户不使用第二屏时调节第二屏的亮度,从而可以不影响用户使用第二屏。
进一步,为了可以在用户无感知的场景实现对第二屏的亮度调节,实现第一屏和第二屏的亮度的显示效果一致,可以采用在以下几种情况下点亮第二屏:
第一种,电子设备可以检测电子设备的设备状态,设备状态可包括静止状态或运动状态。在电子设备的设备状态为静止状态,且第二屏处于息屏状态时,点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
这种情况下,示例的,可以采用陀螺仪传感器和重力传感器采集电子设备的设备状态数据,然后确定该电子设备的设备状态。在设备状态处于静止状态,可以是用户并未使用该电子设备,比如充电场景,这样可以在用户无感知的场景实现对第二屏的亮度调节。
第二种,电子设备可以检测电子设备的周围环境亮度,在检测到第二屏的周围环境亮度低于预设阈值时,点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
这种情况下,示例的,可以采用环境光传感器检测电子设备的周围环境亮度,比如黑夜的场景下,再比如电子设备放在包里或口袋中,又比如,用户将电子设备放在桌面上充电、且第二屏与桌面接触,这些场景下用户一般不使用该第二屏,而且实现可以在用户无感知的场景实现对第二屏的亮度调节。
第三种,电子设备可以统计电子设备的用户使用第二屏的使用时间数据,并根据使用时间数据确定用户不使用第二屏的时间段。在用户不使用第二屏的时间段,点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
第四种,电子设备可以在检测到用户握持电子设备时所述第二屏的朝向,比如,陀螺仪和加速度传感器检测到第二屏与所述第一屏背向,此时可以点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
上述几种情况中,点亮所述第二屏的实现方式可以有多种,一种可能的方式为点亮所述第二屏、且第二屏的亮度快速达到需要达到的亮度。另一种可能的方式中,可以点亮所述第二屏,且控制所述第二屏的亮度按照预设亮度间隔逐级调高。
在一种可能的设计中,第一实际值小于第二实际值,即第一屏的实际亮度小于第二屏的实际亮度,第二补偿值与目标值之和等于第二实际值与第三补偿值之和,即对第二屏可以通过两种调节方式结合使第二屏的亮度降低为目标值。具体来说,电子设备确定第一实际值与第一补偿值之和所对应的第一电流值,确定第二实际值与第三补偿值之和所对应的第二电流值,确定第二屏的亮度从第二实际值与第三补偿值之和降低至目标值所需要的第二工作时长,然后,调高第一屏的工作电流至第一电流值,并调高第二屏的工作电流至第二电流值、且控制第二屏的工作时长延长第二工作时长。
通过该方式,电子设备可以通过对实际亮度较低的第一屏进行电流调节,以实现对提高第一屏的亮度至目标值,并可以采用两种不同的调节方式(工作电流调节和工作时长调节)结合对实际亮度较高的第二屏进行工作时长调节,通过提高工作电流可以提高第二屏的亮度,通过延长工作时长可以降低第二屏的亮度,从而结合实现降低第二屏的亮度至目标值,从而使第一屏与第二屏的亮度的显示效果一致。
在一种可能的设计中,待测参数为灰阶;将补偿目标值写入用于控制第一屏待测参数的第一寄存器,并将补偿目标值写入用于控制第二屏待测参数的第二寄存器中,包括:确 定出灰阶的补偿目标值对应的R分量、G分量、B分量;将灰阶的补偿目标值对应的R分量、G分量、B分量分别写入第一寄存器与第二寄存器。
通过该方式,可以通过调节RGB分量的方式,分别对第一屏的灰阶的第一实际值对应的RGB分量与第二屏的灰阶的实际值对应的RGB分量进行补偿,从而实现第一屏与第二屏的灰阶的显示效果一致。
在一种可能的设计中,所述第一屏的显示区域划分为N个第一区域,所述第二屏的显示区域划分为所述N个第二区域,所述N为正整数;所述根据所述第一屏在第一统计周期内待测参数的第一平均使用值、以及第一对应关系,确定所述第一屏在所述第一统计周期结束时的待测参数的第一实际值,包括:根据所述N个第一区域中每个第一区域在第一统计周期内待测参数的第一平均使用值、以及第一对应关系,确定每个所述第一区域在所述第一统计周期结束时的待测参数的第一实际值;所述根据所述第二屏在所述第一统计周期内待测参数的第二平均使用值、以及第二对应关系,确定所述第二屏在所述第一统计周期结束时所述待测参数的第二实际值,包括:根据所述N个第二区域中每个第二区域在所述第一统计周期内待测参数的第二平均使用值、以及第二对应关系,确定每个所述第二区域在所述第一统计周期结束时的待测参数的第二实际值;所述在所述第一实际值小于所述第二实际值时,根据所述第一实际值与所述第二实际值,确定补偿目标值,包括:针对所述N个第一区域中的每个第一区域,确定出与所述第一区域存在位置对应关系的第二区域;根据所述第一区域的第一实际值、所述与所述第一区域存在位置对应关系的第二区域的第二实际值,确定所述补偿目标值;所述将所述补偿目标值写入用于控制第一屏待测参数的第一寄存器,并将所述补偿目标值写入用于控制第二屏待测参数的第二寄存器中,包括:将所述补偿目标值写入用于控制所述第一区域的待测参数的第一寄存器,并将所述补偿目标值写入用于控制与所述第一区域存在位置对应关系的第二区域的待测参数的第二寄存器中;或者,所述将所述补偿目标值写入用于控制第一屏待测参数的第一寄存器,并延长所述第二屏的工作时长,以使所述第二屏的待测参数的实际值升高至所述补偿目标值,包括:将所述补偿目标值写入用于控制所述第一区域的待测参数的第一寄存器,并延长与所述第一区域存在位置对应关系的第二区域的工作时长,以使所述与所述第一区域存在位置对应关系的第二区域的待测参数的实际值与所述第一区域的待测参数实际值一致。
通过该设计,电子设备可以对第一屏和第二屏分别进行相同位置的区域比较,从而更细致的对第一屏与第二屏之间的差异进行补偿,使得第一屏与第二屏之间的待测参数的显示效果一致。
第二方面,本申请实施例还提供一种电子设备。该电子设备包括显示屏,其中显示屏至少包括第一屏和第二屏;一个或多个处理器;存储器;一个或多个程序;其中所述一个或多个程序被存储在所述存储器中,所述一个或多个程序包括指令,当所述指令被所述电子设备执行时,使得所述电子设备执行上述第一方面及其第一方面任一可能设计的技术方案。
第三方面,本申请实施例还提供一种电子设备,所述电子设备包括执行上述第一方面或者第一方面的任意一种可能的设计的方法的模块/单元;这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第四方面,本申请实施例还提供一种芯片,所述芯片与电子设备中的存储器耦合,用于调用存储器中存储的计算机程序并执行本申请实施例第一方面及其第一方面任一可能 设计的技术方案;本申请实施例中“耦合”是指两个部件彼此直接或间接地结合。
第五方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行本申请实施例第一方面及其第一方面任一可能设计的技术方案。
第六方面,本申请实施例的中一种程序产品,包括程序指令,当所述程序指令在电子设备上运行时,使得所述电子设备执行本申请实施例第一方面及其第一方面任一可能设计的技术方案。
附图说明
图1A为本申请实施例提供的一种手机完全展开场景示意图;
图1B为本申请实施例提供的一种手机部分折叠场景示意图;
图1C为本申请实施例提供的一种手机完全折叠场景示意图;
图2为本申请实施例提供的一种手机的结构示意图;
图3为本申请实施例提供的手机100的软件结构示意图;
图4为本申请实施例提供的一种补偿方法示意图;
图5为本申请实施例提供的显示屏分区域示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
本申请实施例涉及的斑(Mura)现象,是由于晶化工艺的局限性,以在大面积玻璃基板上制作的低温多晶硅薄膜晶体管(low temperature poly-silicon thin-film transistor,LTPS TFT)为例进行说明,不同位置的TFT通常在阈值电压、迁移率等电学参数上具有非均匀性,这种非均匀性会转化为OLED显示器件的电流差异和亮度差异,并被人眼所感知,即Mura现象。应理解,人眼可识别的颜色差异也可看作是一种Mura现象。
此处,并不对显示屏的材质造成限制,即只要显示屏上存在的由于电学参数的非均匀性导致的亮度、色彩等差异,都可以通过本申请实施例中的补偿方法进行补偿,以减少差异。
本申请实施例涉及的光学补偿(Demura)技术,为采用一定技术手段检测显示屏是否存在mura现象,并在检测到Mura现象后,对Mura现象的差异进行补偿,以消除Mura现象的差异的技术。比如,具有折叠屏的电子设备包括主屏和副屏,对主屏和副屏之间的亮度差异进行补偿,实现使主屏和副屏之间的亮度一致。
具体来说,在主屏与副屏之间的亮度存在差异时,即在主屏的最大亮度值与副屏的最大亮度值不一致时,即使对主屏和副屏设置同样的亮度参数时,主屏亮度设置值与副屏亮度的设置值并一样,举个例子,主屏的最大亮度值为500nit,副屏的最大亮度为400nit,用户将主屏和副屏的亮度参数都设置为50%,主屏的亮度设置值为250nit,副屏的最大亮 度为200nit,所以,主屏的亮度和副屏的亮度显示效果并不一致。
本申请实施例中,可以通过在主屏的驱动IC写入数值(在驱动IC中该数值对应一个目标亮度值),驱动IC可以将屏幕的最大亮度调整到目标亮度值,同样的,也可以通过在副屏的驱动IC中写入另一个数值(也对应该目标亮度值),驱动IC可以将屏幕的最大亮度也调整到该目标亮度值。这样主屏的最大亮度和副屏的最大亮度值一致,那么对主屏和副屏分别进行设置同样的亮度参数时,主屏显示的亮度与副屏显示的亮度相同,即主屏与副屏的亮度显示效果相同。
下文中采用各种方式对主屏和副屏的亮度进行补偿,实际上补偿的结果是对主屏和副屏的最大亮度进行了调整,以降低主屏与副屏之间的最大亮度值的差异,从而使主屏和副屏的最大亮度值一致。下文中,对于主屏与副屏之间的灰阶差异(或RGB值差异)的补偿也是相同道理,后文不在赘述。
本申请实施例中的具有折叠屏的电子设备,该电子设备可以为手机、平板电脑(pad)、笔记本电脑等。以电子设备为手机为例,手机的折叠屏可以采用一个一体的柔性显示屏,也可以采用至少两个刚性屏以及位于两个刚性屏之间的一个柔性屏组成的显示屏。本申请实施例提供的折叠屏以包括三部分为例,如图1A、1B以及1C所示,折叠屏可包括第一屏111、第二屏112、以及连接第一屏111和第二屏113的可弯折区112。
下面结合附图对手机的折叠屏处于不同状态下的形状进行说明。
图1A示出了手机在完全展开时的形状示意图。如图1A中所示,在手机展开时,手机的壳体120展开,同时,折叠屏110也展开。其中,折叠屏110可以包括第一屏111、可弯折区112以及第二屏113,在手机的折叠屏110被完全展开时,第一屏111、可弯折区112以及第二屏113连接成一个整屏幕,此时,重力传感器可以检测到第一屏111和第二屏113之间的夹角a为180°(实际的折叠角度可能无法达到180°,以实际上报的折叠角度为准)。
本申请实施例中,当第一屏111或者第二屏113发生旋转时,该折叠屏110可通过可弯折区112进行折叠,在手机的折叠屏被部分折叠时可参见图1B,完全折叠后的形状可参见图1C。
如图1B以及1C所示,在手机折叠时,手机的壳体120也折叠;同时,折叠屏110也折叠。图1B以及1C中示例性示出了折叠屏110在手机折叠时位于外露的一侧,应理解,手机折叠时也可以是壳体120外露,而折叠屏110位于内侧,折叠屏110也可以是外露一部分。
手机的折叠屏110从完全展开到被完全折叠的过程中,第一屏111与第二屏113之间的夹角a越来越小。如图1A所示,在折叠屏110完全展开时,第一屏111与第二屏113之间的夹角为180°。如图1B所示,在手机的折叠屏110被部分折叠时,重力传感器180E可以检测到第一屏111和第二屏113之间的夹角为40°。如1C所示,在手机的折叠屏110被完全折叠时,传感器检测到第一屏111和第二屏113之间的夹角为0度(实际的折叠角度可能无法达到0°,以实际上报的折叠角度为准),此时第一屏111与第二屏113在手机折叠时位于外露的一侧。
当手机被折叠时,以第二屏113面向用户为例进行说明,第二屏113面向用户称为主屏,第一屏111在背面称为副屏,可弯折区112可称为侧屏,在手机被折叠时,由于在不同的使用场景和用户对主副屏的使用习惯,比如,用户习惯在手机被折叠时使用主屏,而 副屏处于息屏状态,手机使用一段时间后就会发现主屏、侧屏、副屏的使用时间长短不一,就会导致主屏、侧屏、副屏的老化程度不一致的问题,以亮度为例,比如主屏的亮度低于副屏的亮度,副屏的亮度低于折叠区的亮度。当手机完全展开时,主屏、侧屏、副屏组成一个屏幕,用户面向整个屏幕,在整个屏幕显示时,就会发现整个屏幕不同区域的显示亮度不一致,或色彩不一致等问题。
因此,本申请提供了一种补偿方法,用于在电子设备包括的多个屏(如主屏、侧屏、副屏)存在老化程度的差异时,对各个屏进行补偿,比如主屏、副屏、侧屏之间存在亮度差异时,可以对各个屏的亮度进行补偿,以使各个屏的亮度一致;再比如,各个屏之间存在色彩差异时,可以对各个屏的RGB值进行调整,以使各个屏的色彩一致,从而使整个屏幕的显示效果保持一致。
需要说明的是,目前具有折叠屏的手机,侧屏可以与主屏一起调整,或者,侧屏可以与副屏一起调整,这和折叠屏的转轴与哪个屏一起转动有关。以手机折叠时,转轴与副屏一起转动为例,副屏与侧屏的工作电路可以一起控制,即比如通过控制副屏的工作电路来降低副屏的亮度时,也会降低侧屏的亮度,即副屏与侧屏的亮度会一起调整。
本申请实施例涉及的多个,是指大于或等于两个。
需要说明的是,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。且在本申请实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
以下介绍电子设备和用于使用这样的电子设备的实施例。在本申请一些实施例中,电子设备可以是包含显示屏的便携式终端,诸如手机、平板电脑等。便携式电子设备的示例性实施例包括但不限于搭载
Figure PCTCN2020113571-appb-000001
或者其它操作系统的便携式电子设备。上述便携式电子设备也可以是其它便携式电子设备,例如数码相机。还应当理解的是,在本申请其他一些实施例中,上述电子设备也可以不是便携式电子设备,而是具有显示屏的台式计算机等。
下文以电子设备是手机为例,图2示出了手机100的结构示意图。
手机100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network  processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是手机100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
处理器100可以运行本申请实施例提供的补偿算法的软件代码,实现对电子设备的各个屏的待测参数进行补偿的过程,其中待测参数可以为亮度、灰阶、RGB值。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为手机100充电,也可以用于手机100与外围设备之间传输数据。
充电管理模块140用于从充电器接收充电输入。电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。
手机100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。手机100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在手机100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在手机100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,手机100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得手机100可以通过无线通信技术与网络以及其他设备通信。所述无线通 信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
手机100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,手机100可以包括1个或N个显示屏194,N为大于1的正整数。
摄像头193用于捕获静态图像或视频。摄像头193可以包括前置摄像头和后置摄像头。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行手机100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,以及至少一个应用程序的软件代码等。存储数据区可存储手机100使用过程中所产生的数据(比如图像、视频等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
内部存储器121还可以存储本申请实施例提供的补偿方法的软件代码,当处理器110运行所述软件代码时,执行补偿方法的流程步骤,实现对电子设备的各个屏的目标参数进行补偿的过程。
内部存储器121还可以存储各个屏的待测参数对应的使用统计数据、计算得到的补偿值、以及老化模型、各种对应关系等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展手机100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。
当然,本申请实施例提供的补偿方法的软件代码也可以存储在外部存储器中,处理器110可以通过外部存储器接口120运行所述软件代码,执行补偿方法的流程步骤,实现对电子设备的各个屏的目标参数进行补偿的过程。手机100获取的各个屏的待测参数对应的使用统计数据、计算得到的补偿值、以及老化模型、各种对应关系等也可以存储在外部存储器中。
手机100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。
陀螺仪传感器180B可以用于确定手机100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定手机100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。
气压传感器180C用于测量气压。在一些实施例中,手机100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。手机100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当手机100是翻盖机时,手机100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测手机100在各个方向上(一般为三轴)加速度的大小。当手机100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。手机100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,手机100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。手机100通过发光二极管向外发射红外光。手机100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定手机100附近有物体。当检测到不充分的反射光时,手机100可以确定手机100附近没有物体。手机100可以利用接近光传感器180G检测用户手持手机100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。手机100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测手机100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。手机100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,手机100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,手机100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,手机100对电池142加热,以避免低温导致手机100异常关机。在其他一些实施例中,当温度低于又一阈值时,手机100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于手机100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以 获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。手机100可以接收按键输入,产生与手机100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和手机100的接触和分离。
可以理解的是,本申请实施例示意的结构并不构成对手机100的具体限定。在本申请另一些实施例中,手机100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
以下实施例均可以在具有上述结构的手机100中实现。
本申请实施例还提供一种软件架构,如图3所示,手机100的软件架构可以可将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,可将软件架构分为四层,从上至下分别为应用程序层(简称应用层),应用程序框架层(简称框架层),硬件抽象层(hardware abstraction layer,HAL),以及内核层(也称为驱动层)。
其中,应用层可以包括一系列应用程序包。如图3所示,应用层可以包括应用1和应用2等多个应用程序包。例如,应用程序包可以但不限于相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息以及桌面启动(Launcher)等应用程序。
框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。如图2所示,框架层可以包括窗口管理器(window manager service,WMS)和活动管理器(activity manager service,AMS)等,其中,窗口管理器WMS用于管理窗口程序。活动管理器AMS用于负责管理Activity,负责系统中各组件的启动、切换、调度及应用程序的管理和调度等工作。可选的,框架层还可以包括内容提供器,视图系统,电话管理器,资源管理器,通知管理器等(附图未示出)。
硬件抽象层,用于向Framework层提供调用内核层中的驱动的通用接口,并将内核层发送的输入事件分发给上层,即应用程序框架层。
内核层是硬件和软件之间的层。内核层可以包括显示驱动,摄像头驱动,音频驱动,传感器驱动,输入/输出设备驱动(例如,键盘、触摸屏、耳机、扬声器、麦克风等)等。
此外,该内核层中还可以包括数据统计模块310、补偿计算模块320、显示子系统(display subsystem,DSS)330、用于驱动显示芯片的驱动(display driver IC,DDIC)340等。各个模块的功能介绍如下:
数据统计模块310用于在当前统计周期内,统计手机的各个屏的待测参数对应的使用统计数据,并将使用统计数据发送给补偿计算模块320。其中,数据统计模块310可以包括亮度统计模块311和色彩统计模块312,亮度统计模块311用于统计各个屏在一段时间 内各亮度级分别对应的使用时长,色彩统计模块312用于统计各个屏在一段时间内各级颜色值或者各级灰阶分别对应的使用时长。
补偿计算模块320,在接收到数据统计模块310发送的使用统计数据之后,计算各个屏之间的补偿信息,并将补偿信息以及上一统计周期结束时计算出的各个屏的待测参数的值,发送给显示子系统(display subsystem,DSS)330。
显示子系统(DSS)330接收到补偿信息以及上一统计周期结束时计算出的各个屏的待测参数的值,确定出分别用于对各个屏进行补偿的补偿值、以及待测参数的调整方式,并将补偿值、以及待测参数的调整方式下发到用于驱动显示芯片的驱动340。
用于驱动显示芯片的驱动340根据各个屏对应的补偿值以及待测参数的调整方式,对各个屏的待测参数进行补偿。
为了便于理解,下面结合上述图3介绍一个以待测参数为亮度为例的具体示例。
以对手机100包括的主屏和副屏的亮度差异进行补偿为例进行说明,比如,将亮度分级表示,最大亮度级为500尼特(nit),每两个亮度级之间相差1nit,亮度统计模块311以10min为一个统计周期,实时记录主屏在各个亮度级对应的使用时长,并记录副屏在各个亮度级对应的使用时长。示例的,亮度统计模块311可以统计主屏在10分钟内,在亮度级500nit对应的使用时长为2s,……,在亮度级450nit对应的使用时长为5s,在亮度级449nit对应的使用时长为12s,在亮度级448nit对应的使用时长为3s,……,在亮度级57nit对应的使用时长为38s,在亮度级56nit对应的使用时长为38s,……,在亮度级1nit对应的使用时长为0s,在亮度级0nit对应的使用时长为360s。示例的,副屏在一个统计周期10分钟内,亮度级0nit对应的使用时长为10min,即副屏在该统计周期中未使用。
亮度统计模块311将10分钟内统计的主屏在各个亮度级对应的使用时长,以及副屏在各个亮度级对应的使用时长发送给补偿计算模块320。
一方面,补偿计算模块320可以在接收到主屏在各个亮度级对应的使用时长之后,计算主屏的平均亮度使用值,参见下述公式(1):
Figure PCTCN2020113571-appb-000002
在公式(1)中,
Figure PCTCN2020113571-appb-000003
为主屏在10分钟内的平均亮度使用值,L 1、L 2、……、L n-1、L n分别为各个亮度级,T 1、T 2、……、T n-1、T n分别为主屏在各个亮度级的使用时长,例如,T n为主屏在亮度级L n的使用时长。
然后,补偿计算模块320可以根据上述公式(1)计算出的
Figure PCTCN2020113571-appb-000004
以及第一对应关系,第一对应关系包括主屏的亮度的平均使用值与实际值的对应关系,从第一对应关系中确定出在当前统计周期结束时主屏的亮度的第一实际值,即
Figure PCTCN2020113571-appb-000005
所对应的实际值。
需要说明的是,第一对应关系可以是在手机出厂之前预先配置在手机100中,也可以是手机在使用过程中根据历史使用数据确定的。
下面以第一对应关系为在手机出厂之前配置在手机100中为例,对确定第一对应关系的过程进行介绍。
首先,亮度统计模块311统计与该手机100的显示屏194属于同一批次的多个显示屏在同一环境温度下亮度使用情况得到历史统计数据,同一批次的显示屏使用的材质、制作工艺相同。历史统计数据如下述示例a1和示例a2:
示例a1,在25℃环境温度下,测量初始亮度为500nit的显示屏A的工作亮度设置为 200nit使用24小时所对应的亮度损失值ΔL 1,也就是说,该显示屏A在24小时内的平均亮度使用值
Figure PCTCN2020113571-appb-000006
为200nit/s,假设ΔL 1为10nit,该显示屏A在24小时结束时的实际亮度值为初始亮度与亮度损失值的差值,即490nit。
示例a2,在25℃环境温度下,测量初始亮度为500nit的显示屏B的工作亮度设置为300nit使用24小时所对应的亮度损失值ΔL 2,也就是说,该显示屏B在24小时内的平均亮度使用值
Figure PCTCN2020113571-appb-000007
为300nit/s,假设ΔL 2为20nit,该显示屏A在24小时结束时的实际亮度值为480nit。
以上示例a1和示例a2仅为其中两个示例,在实际统计时,对越多的显示屏的亮度使用情况进行统计,第一对应关系越准确。
然后,补偿计算模块320可以根据示例a1中显示屏A的初始亮度500nit、显示屏A在24小时结束时的实际亮度值490nit、示例a2中显示屏B的初始亮度500nit、显示屏B在24小时结束时的实际亮度值480nit、以及以下老化公式(2),可以确定公式(2)中的τ和β。
L=L 0e -(t/τ)β……公式(2)
在公式(2)中,t为工作时长,L 0为显示屏的初始亮度,τ为与显示屏的初始亮度相关的系数,β为与显示屏的材质、制作工艺和环境温度等因素有关的系数,L为显示屏在使用工作时长t时的实际亮度值。
假设显示屏A和显示屏B的材质、制作工艺、以及环境温度等因素一致,则β为定值。从而可以根据统计出的多组L、L 0、t、
Figure PCTCN2020113571-appb-000008
以及公式(2),可以得到多组
Figure PCTCN2020113571-appb-000009
与τ的对应关系。
进一步,在补偿计算模块320计算当前统计周期主屏的平均亮度使用值
Figure PCTCN2020113571-appb-000010
时,可以根据
Figure PCTCN2020113571-appb-000011
与τ的对应关系,确定出
Figure PCTCN2020113571-appb-000012
对应的τ,之后将
Figure PCTCN2020113571-appb-000013
对应的τ代入至上述公式(2)中,可得到当前统计周期结束时主屏的实际亮度值。这样,可得到主屏的平均亮度使用值与实际亮度值的对应关系,即第一对应关系。
另一方面,补偿计算模块320还可以在接收到副屏在各个亮度级对应的使用时长之后,计算副屏的平均亮度使用值,参见下述公式(3):
Figure PCTCN2020113571-appb-000014
在公式(3)中,
Figure PCTCN2020113571-appb-000015
为副屏在10分钟内的平均亮度使用值,L 1、L 2、……、L n-1、L n分别为各个亮度级,T 1′、T 2′、……、T n-1′、T n′分别为副屏在各个亮度级的使用时长,例如,T n′为副屏在亮度级L n的使用时长。
然后,补偿计算模块320可以根据上述公式(2)计算出的
Figure PCTCN2020113571-appb-000016
以及第二对应关系,确定出在当前统计周期结束时副屏的亮度的第二实际值。其中,第二对应关系包括副屏的亮度的平均使用值与实际值的对应关系。需要说明的是,第二对应关系可以是在手机出厂之前预先配置在手机100中,也可以是手机在使用过程中根据历史使用数据确定的。
本申请实施例中,确定第二对应关系的方式可以参见第一对应关系的确定方式,此处不再赘述。
以上示例中,确定第一对应关系的方式是以待测参数为亮度为例进行描述的,待测参数为灰阶信息、或RGB值时的第一对应关系也可以参见上述亮度的示例。
在确定出当前统计周期结束时主屏的亮度的第一实际值和当前统计周期结束时副屏 的亮度的第二实际值之后,补偿计算模块320可以根据第一实际值和第二实际值,确定出亮度对应的补偿信息。
本申请实施例中,根据第一实际值和第二实际值,确定主屏与副屏之间亮度的补偿信息的方式有多种,包括但不限于以下两种:
方式b1,可以根据第一实际值和第二实际值之间的差值,作为主屏与副屏之间亮度的补偿信息。
在一个示例中,以主屏和副屏的初始亮度为500nit为例,以主屏的亮度的第一实际值为400nit,副屏的亮度的第二实际值为450nit,可见,主屏的亮度的损失值大于副屏亮度的损失值,即可以确定主屏的老化程度大于副屏的老化程度,可以确定主屏与副屏之间的亮度差值为50nit,即为主屏与副屏之间亮度的补偿信息。
方式b2,可以根据第一实际值和第二实际值、以及所述第一屏的待测参数的第一初始值,确定出补偿系数,作为主屏与副屏之间亮度的补偿信息。
其中,补偿系数a可以根据以下公式(4)确定:
Figure PCTCN2020113571-appb-000017
在公式(4)中,L 为主屏和副屏的初始亮度,L 为主屏在当前统计周期结束时的亮度的第一实际值,L 为副屏在当前统计周期结束时的亮度的第二实际值。
以主屏和副屏的初始亮度为500nit,主屏的亮度的第一实际值为400nit,副屏的亮度的第二实际值为450nit为例,通过上述公式(4)可以确定出补偿系数为1%,即为主屏与副屏之间亮度的补偿信息。
在补偿计算模块320确定出主屏与副屏之间亮度的补偿信息之后,显示子系统(DSS)330可以根据补偿信息确定出对各个屏进行补偿的补偿值、以及亮度的调整方式,然后根据补偿值、以及亮度的调整方式对主屏和/或副屏的亮度进行补偿,以使主屏与副屏之间的亮度一致。在实施中有多种可以实现副屏与副屏之间的亮度一致的方式,下面以主屏的老化程度大于副屏的老化程度,即主屏的实际亮度值小于副屏的实际亮度值为例,对几种可能的调整方式进行介绍。
方式c1,对主屏的亮度进行补偿,以使主屏的亮度提高至与副屏的亮度一致。
在一个示例中,主屏的亮度的第一实际值为400nit,副屏的亮度的第二实际值为450nit,可以通过提高主屏的工作电流,以实现在不改变主屏的亮度设置值的情况下,将主屏的最大亮度值从400nit提高至450nit。比如,主屏的当前工作电流为1mA,对应的最大亮度值400nit,工作电流1.2mA对应的最大亮度值450nit,所以可以将主屏的工作电流调整至1.2mA,以使主屏的亮度的最大亮度值提高至450nit。这样可以通过调整主屏的亮度,即提高主屏的亮度,以使主屏的亮度与副屏老化程度一致,从而使主屏和副屏的亮度的显示效果一致。
方式c2,对副屏的亮度进行补偿,以使副屏的亮度降低至与主屏的亮度一致。
在一个示例,主屏的亮度的第一实际值为400nit,副屏的亮度的第二实际值为450nit,可以延长副屏的工作时长,以实现将副屏的最大亮度值从450nit降低至400nit。比如,将副屏的亮度设置为200nit需要24小时可以使副屏的最大亮度值降低50nit,那么可以在主屏息屏(比如充电场景)时,将副屏的亮度设置为200nit、且副屏持续在200nit工作24 小时,这样副屏的最大亮度值就降低至400nit这样可以在用户不使用时手机时,手机自动在用户无感知的情况下对副屏的最大亮度值进行调整,可实现使主屏和副屏的老化程度一致,从而使主屏和副屏的亮度的显示效果一致。
方式c3,对主屏的亮度和副屏的亮度均进行补偿,调高主屏的亮度,并调低副屏的亮度,以使主屏和副屏的调节后的亮度一致。
在一种可能的实现方式中,显示子系统(DSS)可以根据亮度对应的补偿信息,确定第一补偿值和第二补偿值。根据第一补偿值对主屏的亮度进行补偿,以使主屏的亮度升高至第一实际值与第一补偿值之和,并根据第二补偿值对副屏的亮度进行补偿,以使副屏的亮度降低至第二实际值与第二补偿值之差。其中,第一实际值与第一补偿值之和等于第二实际值与第二补偿值之差。
示例性的,主屏的亮度的第一实际值为400nit,副屏的亮度的第二实际值为450nit,第一补偿值为20nit,第二补偿值为30nit,即将主屏的最大亮度提高20nit,将副屏的最大亮度降低30nit,从而可以使得主屏和副屏的最大亮度一致,均为420nit。
在一些实施例中,显示子系统(DSS)确定第一实际值与第一补偿值之和所对应的第一电流值,并确定副屏的亮度降低第二补偿值所需要的第二工作时长,然后,用于驱动显示芯片的驱动340调高主屏的工作电流至第一电流值,并将副屏的工作时长延长第二工作时长,如此,可以在经过第二工作时长之后,主屏和副屏的亮度在调节之后达到一致。
一种可能的实现方式中,将副屏的工作时长延长第二工作时长,具体可以通过以下方式实现:第二屏处于息屏状态时,点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
进一步,为了可以在用户无感知的场景实现对第二屏的亮度调节,实现第一屏和第二屏的亮度的显示效果一致,可以采用在以下几种情况下点亮第二屏:
第一种,电子设备可以检测电子设备的设备状态,设备状态可包括静止状态或运动状态。在电子设备的设备状态为静止状态,且第二屏处于息屏状态时,点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
这种情况下,示例的,可以采用陀螺仪传感器和重力传感器采集电子设备的设备状态数据,然后确定该电子设备的设备状态。在设备状态处于静止状态,可以是用户并未使用该电子设备,比如充电场景,这样可以在用户无感知的场景实现对第二屏的亮度调节。
第二种,电子设备可以检测电子设备的周围环境亮度,在检测到第二屏的周围环境亮度低于预设阈值时,点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
这种情况下,示例的,可以采用环境光传感器检测电子设备的周围环境亮度,比如黑夜的场景下,再比如电子设备放在包里或口袋中,又比如,用户将电子设备放在桌面上充电、且第二屏与桌面接触,这些场景下用户一般不使用该第二屏,而且实现可以在用户无感知的场景实现对第二屏的亮度调节。
第三种,电子设备可以统计电子设备的用户使用第二屏的使用时间数据,并根据使用时间数据确定用户不使用第二屏的时间段。在用户不使用第二屏的时间段,点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
第四种,电子设备可以在检测到用户握持电子设备时所述第二屏的朝向,比如,陀螺仪和加速度传感器检测到第二屏与所述第一屏背向,此时可以点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
上述几种情况中,点亮第二屏的实现方式可以有多种,一种可能的方式为点亮第二屏、且第二屏的亮度快速达到需要达到的亮度。另一种可能的方式中,可以点亮第二屏,且控制第二屏的亮度按照预设亮度间隔逐级调高。
在其他一些实施例中,可调高主屏的最大亮度,并采用两种方式结合调节副屏的最大亮度,即采用调高工作电流的方式调高副屏的最大亮度,并通过延长副屏的工作电流的方式调低副屏的最大亮度,最终经过调节的副屏的最大亮度相对于调节之前是降低的,以使主屏和副屏的调节后的最大亮度一致。示例性的,显示子系统(DSS)确定第一实际值与第一补偿值之和所对应的第一电流值,确定第二实际值与第三补偿值之和所对应的第二电流值,并确定副屏的亮度从第二实际值与第三补偿值之和降低至第二实际值与第二补偿值之差所对应的第二工作时长。然后,用于驱动显示芯片的驱动340调高主屏的工作电流至第一电流值,并调高副屏的工作电流至第二电流值、并控制副屏的工作时长延长第二工作时长。
需要说明的是,控制副屏的工作时长延长第二工作时长,与将副屏的工作时长延长第二工作时长类似,可以参照上述将副屏的工作时长延长第二工作时长的相关内容。
在当前统计周期结束之后,对主屏和副屏之间的亮度差异进行补偿之后,将当前统计周期结束时的调整后亮度值作为下一统计周期主副屏的初始值,继续统计主屏和副屏的亮度的使用统计数据,并在下一统计周期结束时,若主屏和副屏之间的亮度存在差异,则继续对主屏和副屏之间的亮度差异进行补偿。
以上实施例中,是以Mura差异为主屏与副屏之间的亮度差异为例进行说明的。当Mura差异为主屏与副屏之间的色彩差异时,待测参数为可以RGB值,也可以为灰阶,可以参考上述对亮度进行补偿的相关内容,对主屏和副屏之间的色彩差异进行补偿。
以待测参数为RGB值为例,R值可以取值0~255,G值可以取值0~255,B值可以取值0~255,色彩统计模块312可以统计一个统计周期内,主屏的各级R值、G值、B值分别对应的使用时长、以及副屏的各级R值、G值、B值分别对应的使用时长,并将统计的主屏的各级R值、G值、B值分别对应的使用时长、以及副屏的各级R值、G值、B值分别对应的使用时长发送给补偿计算模块320。
然后,补偿计算模块320计算主屏在统计周期内的平均R使用值、平均G使用值、平均B使用值,参见下述公式(5)~公式(7):
Figure PCTCN2020113571-appb-000018
在公式(5)中,
Figure PCTCN2020113571-appb-000019
为主屏在统计周期内的平均R使用值,R 1、R 2、……、R n-1、R n分别为各级R值,T 1、T 2、……、T n-1、T n分别为主屏在各级R值的使用时长,例如,T n为主屏R n的使用时长。
Figure PCTCN2020113571-appb-000020
在公式(6)中,
Figure PCTCN2020113571-appb-000021
为主屏在统计周期内的平均G使用值,G 1、G 2、……、G n-1、G n分别为各级G值,T 1、T 2、……、T n-1、T n分别为主屏在各级G值的使用时长,例如,T n为主屏G n的使用时长。
Figure PCTCN2020113571-appb-000022
在公式(7)中,
Figure PCTCN2020113571-appb-000023
为主屏在统计周期内的平均B使用值,B 1、B 2、……、B n-1、B n分别为各级B值,T 1、T 2、……、T n-1、T n分别为主屏在各级B值的使用时长,例如,T n为主屏B n的使用时长。
然后,补偿计算模块320计算副屏在统计周期内的平均R使用值、平均G使用值、平均B使用值,参见下述公式(8)~公式(10):
Figure PCTCN2020113571-appb-000024
在公式(8)中,
Figure PCTCN2020113571-appb-000025
为副屏在统计周期内的平均R使用值,R 1、R 2、……、R n-1、R n分别为各级R值,T 1′、T 2′、……、T n-1′、T n′分别为副屏在各级R值的使用时长,例如,T n为副屏在R n的使用时长。
Figure PCTCN2020113571-appb-000026
在公式(9)中,
Figure PCTCN2020113571-appb-000027
为副屏在统计周期内的平均G使用值,G 1、G 2、……、G n-1、G n分别为各级G值,T 1′、T 2′、……、T n-1′、T n′分别为副屏在各级G值的使用时长,例如,T n为副屏在G n的使用时长。
Figure PCTCN2020113571-appb-000028
在公式(10)中,
Figure PCTCN2020113571-appb-000029
为副屏在统计周期内的平均B使用值,B 1、B 2、……、B n-1、B n分别为各级B值,T 1′、T 2′、……、T n-1′、T n′分别为副屏在各级B值的使用时长,例如,T n为副屏在B n的使用时长。
然后,补偿计算模块320可以根据上述公式(5)计算出的
Figure PCTCN2020113571-appb-000030
以及第一对应关系,确定出在当前统计周期结束时主屏的R值的第一实际值。其中,第一对应关系包括主屏的平均R使用值与实际值的对应关系。类似的,补偿计算模块320可以根据上述公式(8)计算出的
Figure PCTCN2020113571-appb-000031
以及第二对应关系,确定出在当前统计周期结束时主屏的R值的第二实际值。其中,第二对应关系包括副屏的平均R使用值与实际值的对应关系。
在确定出当前统计周期结束时主屏的R值的第一实际值和当前统计周期结束时副屏的R值的第二实际值之后,补偿计算模块320可以根据第一实际值和第二实际值,确定出R值对应的补偿信息。其中,确定R值对应的补偿信息的方式与确定亮度对应的补偿信息的方式类似,具体可以参照上述方式b1、或方式b2的相关内容,此处不再赘述。
在补偿计算模块320确定出主屏与副屏之间R值的补偿信息之后,显示子系统(DSS)330可以根据R值的补偿信息确定出对各个屏进行补偿的补偿值、以及R值的调整方式,然后根据补偿值、以及R值的调整方式对主屏和/或副屏的R值进行补偿,以使主屏与副屏之间的R值一致,其中,针对主屏与副屏之间的R值的调整与对主屏与副之间的亮度的调整方式类似,具体可以参照上述方式c1、方式c2、或方式c3的相关内容,此处不再赘述。
上述实施例中,当Mura差异为主屏与副屏之间的色彩差异时,待测参数也可以用灰阶信息来表示,各级灰阶的取值为0~255,色彩统计模块312可以统计一个统计周期内,主屏的各级灰阶分别对应的使用时长、以及副屏的各级灰阶分别对应的使用时长,并将统计的主屏的各级灰阶分别对应的使用时长、以及副屏的各级灰阶分别对应的使用时长发送 给补偿计算模块320。
补偿计算模块320可以计算主屏在统计周期内的平均灰阶使用值,参见下述公式(11):
Figure PCTCN2020113571-appb-000032
在公式(11)中,
Figure PCTCN2020113571-appb-000033
为主屏在统计周期内的平均灰阶使用值,g 1、g 2、……、g n-1、g n分别为各级灰阶值,T 1、T 2、……、T n-1、T n分别为主屏在各级灰阶值的使用时长,例如,T n为主屏灰阶g n的使用时长。
然后,补偿计算模块320可以根据上述公式(11)计算出的主屏的平均灰阶使用值
Figure PCTCN2020113571-appb-000034
以及灰阶的第一对应关系,确定出在当前统计周期结束时主屏的灰阶的第一实际值。其中,灰阶的第一对应关系包括主屏的平均灰阶使用值与灰阶实际值的对应关系。类似的,补偿计算模块320可以计算出的副屏的平均灰阶使用值
Figure PCTCN2020113571-appb-000035
以及灰阶的第二对应关系,确定出在当前统计周期结束时副屏的灰阶的第二实际值。其中,第二对应关系包括副屏的平均灰阶使用值与灰阶实际值的对应关系。
在确定出当前统计周期结束时主屏的灰阶的第一实际值和当前统计周期结束时副屏的灰阶的第二实际值之后,补偿计算模块320可以根据灰阶的第一实际值和灰阶的第二实际值,确定出灰阶对应的补偿信息。其中,确定灰阶对应的补偿信息的方式与确定亮度对应的补偿信息的方式类似,具体可以参照上述方式b1、或方式b2的相关内容,此处不再赘述。
在补偿计算模块320确定出主屏与副屏之间R值的补偿信息之后,显示子系统(DSS)330可以根据R值的补偿信息确定出对各个屏进行补偿的补偿值、以及R值的调整方式,然后根据补偿值、以及R值的调整方式对主屏和/或副屏的R值进行补偿,以使主屏与副屏之间的R值一致。
在一种可能的实现方式中,可以根据主屏的灰阶的第一实际值和当前统计周期结束时副屏的灰阶的第二实际值,确定出灰阶的目标值对应的R分量、G分量、B分量,并确定出灰阶的目标值与灰阶的第一实际值之间的第一R分量差值、第一G分量差值、第一B分量差值,作为第一补偿值;确定出灰阶的目标值与灰阶的第二实际值之间的第二R分量差值、第二G分量差值、第二B分量差值,作为第二补偿值。然后,采用第一R分量差值对第一实际值对应的R分量值进行补偿,采用第一G分量差值对第一实际值对应的R分量值进行补偿,采用第一B分量差值对第一实际值对应的B分量值进行补偿;采用第二R分量差值对第二实际值对应的R分量值进行补偿,采用第二G分量差值对第二实际值对应的R分量值进行补偿,采用第二B分量差值对第二实际值对应的B分量值进行补偿。通过调节RGB分量的方式,分别对第一屏的灰阶的第一实际值对应的RGB分量与第二屏的灰阶的实际值对应的RGB分量进行补偿,从而实现第一屏与第二屏的灰阶的显示效果一致。
在另一种可能的实现方式中,待测参数为灰阶;确定出灰阶的补偿目标值对应的R分量、G分量、B分量;将灰阶的补偿目标值对应的R分量、G分量、B分量分别写入用于控制第一屏灰阶的第一寄存器与用于控制第一屏灰阶的第二寄存器。
结合上述实施例及相关附图,本申请实施例提供了一种补偿方法,该方法可以在如图1A-图1C所示的电子设备或其他具有折叠屏的电子设备中实现。如图4所示,该方法可以 包括以下步骤:
步骤401,电子设备根据第一屏在第一统计周期内待测参数的第一平均使用值、以及第一对应关系,确定第一屏在第一统计周期结束时的待测参数的第一实际值。
示例的,第一屏可以为上述实施例中的主屏,第二屏可以为上述实施例中的副屏。第一实际值可以是上述结合图3的示例中第一实际值,其中以第一屏的最大亮度为例进行介绍。
步骤402,根据第二屏在第一统计周期内待测参数的第二平均使用值、以及第二对应关系,确定第二屏在第一统计周期结束时待测参数的第二实际值。
示例的,如果第一实际值指的是第一屏的最大亮度,那么第二实际值指的是第二屏最大亮度。可以是上述结合图3的示例中第二实际值,其中以第二屏的最大亮度为例进行介绍。
步骤403,在第一实际值小于第二实际值时,根据第一实际值与第二实际值,确定补偿目标值。之后,可以执行步骤404、或步骤405。
应理解,上述第一实际值可以为第一屏的最大亮度,也可以是第一屏的最大亮度的一半,也可以是其它值,第二实际值可以为第二屏的最大亮度,也可以是第二屏的最大亮度的一半,也可以是其它值,只要根据第一实际值和第二实际值确定出的补偿目标值,可以将第一屏的最大亮度调整到与第二屏的最大亮度一致就可以。
步骤404,将补偿目标值写入用于控制第一屏待测参数的第一寄存器,并将补偿目标值写入用于控制第二屏待测参数的第二寄存器中。
步骤405,将补偿目标值写入用于控制第一屏待测参数的第一寄存器,并延长第二屏的工作时长,以使第二屏的待测参数的实际值升高至补偿目标值。
基于该方案,电子设备可以分别通过统计数据确定出第一屏与第二屏的实际值,对然后对于待测参数的实际值较低的第一屏,通过在第一寄存器中写入目标补偿值的方式来提高待测参数的最大值;对于待测参数的实际值较高的第二屏,通过在第二寄存器中写入目标补偿值的方式来降低待测参数的最大值,这样可以使得第一屏与第二屏的待测参数的最大值一致;对于待测参数的实际值较高的第二屏,也可以通过延长工作时长的方式使第一屏与第二屏的最大值一致,从而可以降低第一屏与第二屏之间的待测参数的差异,使不同显示屏的显示效果一致。
进一步,可选的,上述步骤401可以通过以下方式实现:电子设备可以获取第一屏在第一统计周期内的待测参数对应的第一使用统计数据,根据第一使用统计数据确定第一屏在第一统计周期内的待测参数的第一平均使用值;然后,根据第一平均使用值、以及第一对应关系确定第一实际值,第一对应关系包括第一屏的待测参数的平均使用值与实际值的对应关系。如此,电子设备可以周期性的统计第一屏待测参数的使用统计数据,然后第一对应关系,可以准确定的确定出第一屏在一个统计周期结束时待测参数的实际值。
进一步,可选的,上述步骤402可以通过以下方式实现:电子设备可以获取第二屏在第一统计周期内的待测参数对应的第二使用统计数据,根据第二使用统计数据确定第二屏在第一统计周期内的待测参数的第二平均使用值;然后,根据第二平均使用值、以及第二对应关系确定第二实际值,第二对应关系包括第二屏的待测参数的平均使用值与实际值的对应关系。如此,电子设备可以周期性的统计第二屏的待测参数的使用统计数据,然后根据第二对应关系,可以准确定的确定出第二屏在一个统计周期结束时待测参数的实际值。
在一种可能的实现方式中,若待测参数为亮度,将补偿目标值写入用于控制第一屏待测参数的第一寄存器,可以包括:确定补偿目标值所对应的第一电流值,调高第一屏的工作电流至第一电流值;通过第一电流值触发第一屏的驱动IC将补偿目标值写入第一寄存器中。通过该方式,电子设备可以通过对实际亮度较低的第一屏进行工作电流调节,以实现对提高第一屏的亮度,以使第一屏与第二屏的显示效果一致。
在一种可能的实现方式中,所述待测参数为亮度;所述将所述补偿目标值写入用于控制第二屏待测参数的第二寄存器中,包括:确定所述补偿目标值所对应的第二电流值,调低所述第二屏的工作电流至所述第二电流值;通过所述第二电流值触发所述第二屏的驱动IC将所述补偿目标值写入所述第二寄存器中。通过该方式,电子设备可以通过对实际亮度较高的第二屏进行工作电流调节,以实现对提高第二屏的亮度,以使第一屏与第二屏的显示效果一致。
在一种可能的实现方式中,所述待测参数为亮度;所述延长所述第二屏的工作时长,以使所述第二屏的待测参数的实际值升高至所述补偿目标值,包括:确定所述第二屏的亮度设置为预设亮度时,将所述第二实际值降低至所述补偿目标值所需要的第一工作时长,将所述第二屏的工作时长延长所述第一工作时长。通过该方式,电子设备可以通过对实际亮度较高的第二屏进行工作时长调节,以实现降低第二屏的亮度,以使第一屏与第二屏的显示效果一致。
进一步的,将第二屏的工作时长延长第一工作时长,可以通过以下方式实现:在第二屏处于息屏状态时,点亮所述第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。如此,可以在用户不使用第二屏时调节第二屏的亮度,从而可以不影响用户使用第二屏。
进一步,为了可以在用户无感知的场景实现对第二屏的亮度调节,实现第一屏和第二屏的亮度的显示效果一致,可以采用在以下几种情况下点亮第二屏:
第一种,电子设备可以检测电子设备的设备状态,设备状态可包括静止状态或运动状态。在电子设备的设备状态为静止状态,且第二屏处于息屏状态时,点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
这种情况下,示例的,可以采用陀螺仪传感器和重力传感器采集电子设备的设备状态数据,然后确定该电子设备的设备状态。在设备状态处于静止状态,可以是用户并未使用该电子设备,比如充电场景,这样可以在用户无感知的场景实现对第二屏的亮度调节。
第二种,电子设备可以检测电子设备的周围环境亮度,在检测到第二屏的周围环境亮度低于预设阈值时,点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
这种情况下,示例的,可以采用环境光传感器检测电子设备的周围环境亮度,比如黑夜的场景下,再比如电子设备放在包里或口袋中,又比如,用户将电子设备放在桌面上充电、且第二屏与桌面接触,这些场景下用户一般不使用该第二屏,而且实现可以在用户无感知的场景实现对第二屏的亮度调节。
第三种,电子设备可以统计电子设备的用户使用第二屏的使用时间数据,并根据使用时间数据确定用户不使用第二屏的时间段。在用户不使用第二屏的时间段,点亮第二屏、且控制第二屏处于亮屏状态的工作时长为第一工作时长。
第四种,电子设备可以在检测到用户握持电子设备时所述第二屏的朝向,比如,陀螺仪和加速度传感器检测到第二屏与所述第一屏背向,此时可以点亮第二屏、且控制第二屏 处于亮屏状态的工作时长为第一工作时长。
上述几种情况中,点亮所述第二屏的实现方式可以有多种,一种可能的方式为点亮所述第二屏、且第二屏的亮度快速达到需要达到的亮度。另一种可能的方式中,可以点亮所述第二屏,且控制所述第二屏的亮度按照预设亮度间隔逐级调高。
在一种可能的实现方式中,待测参数为灰阶;将补偿目标值写入用于控制第一屏待测参数的第一寄存器,并将补偿目标值写入用于控制第二屏待测参数的第二寄存器中,可以通过以下方式实现:确定出灰阶的补偿目标值对应的R分量、G分量、B分量;将灰阶的补偿目标值对应的R分量、G分量、B分量分别写入第一寄存器与第二寄存器。如此,可以通过调节RGB分量的方式,分别对第一屏的灰阶的第一实际值对应的RGB分量与第二屏的灰阶的实际值对应的RGB分量进行补偿,从而实现第一屏与第二屏的灰阶的显示效果一致。
需要说明的是,以上实施例中仅以手机100包括两个屏为例,对两个屏之间的Mura差异进行补偿进行详细说明。当手机100包括多个屏时,可以对多个屏中两两之间确定Mura差异,并进行补偿,直至手机100包括的所有屏之间不存在Mura差异。
进一步,两个屏之间存在Mura差异时,以待测参数为亮度为例,还可以对主屏和副屏之间的亮度差异进行更为细致的补偿,比如将主屏和副屏的显示区域分别划分为N个区域,分别对主屏的某一区域A与副屏中与区域A存在位置对应关系的区域B之间的亮度进行补偿,以使区域A与区域B之间的亮度一致。
以将第一屏的显示区域划分为N个第一区域,第二屏的显示区域划分为N个第二区域为例,N为正整数;上述步骤401可以通过以下方式实现:根据所述N个第一区域中每个第一区域在第一统计周期内待测参数的第一平均使用值、以及第一对应关系,确定每个所述第一区域在所述第一统计周期结束时的待测参数的第一实际值。上述步骤402可以通过以下方式实现:根据所述N个第二区域中每个第二区域在所述第一统计周期内待测参数的第二平均使用值、以及第二对应关系,确定每个所述第二区域在所述第一统计周期结束时的待测参数的第二实际值。上述步骤403可以通过以下方式实现:针对所述N个第一区域中的每个第一区域,确定出与所述第一区域存在位置对应关系的第二区域;根据所述第一区域的第一实际值、所述与所述第一区域存在位置对应关系的第二区域的第二实际值,确定所述补偿目标值。上述步骤404可以通过以下方式实现:将所述补偿目标值写入用于控制所述第一区域的待测参数的第一寄存器,并将所述补偿目标值写入用于控制与所述第一区域存在位置对应关系的第二区域的待测参数的第二寄存器中;或者,将所述补偿目标值写入用于控制所述第一区域的待测参数的第一寄存器,并延长与所述第一区域存在位置对应关系的第二区域的工作时长,以使所述与所述第一区域存在位置对应关系的第二区域的待测参数的实际值与所述第一区域的待测参数实际值一致。
需要说明的是,对于第一屏和第二屏分别划分的区域,任两个区域之间的工作电路可以分别调整,从而实现分区域调节显示屏的待测参数。
以N为16为例,参见图5,主屏的显示区域划分为16个区域,分别为区域A11,区域A12,区域A13,区域A14,区域A21,区域A22,区域A23,区域A24,区域A31,区域A32,区域A33,区域A34,区域A41,区域A42,区域A43,区域A44。副屏的显示区域划分为16个区域,分别为:与区域A11对应的区域B11,与区域A12对应的区域B12,与区域A13对应的区域B13,与区域A14对应的区域B14,与区域A21对应的区域 B21,与区域A22对应的区域B22,与区域A23对应的区域B23,与区域A24对应的区域B24,与区域A31对应的区域B31,与区域A32对应的区域B32,与区域A33对应的区域B33,与区域A34对应的区域B34,与区域A 41对应的区域B41,与区域A 42对应的区域B42,与区域A 43对应的区域B43,与区域A 44对应的区域B44。
以第一屏的区域A11与第二屏的区域B11为例,具体实现补偿方法的过程可以为:首先,确定区域A11在第一统计周期内待测参数的第一平均使用值、以及第一对应关系,确定区域A11在第一统计周期结束时的待测参数的第一实际值。根据区域B11在第一统计周期内待测参数的第二平均使用值、以及第二对应关系,确定区域B11在第一统计周期结束时的待测参数的第二实际值;然后,根据区域A11的第一实际值、区域B11的第二实际值,确定补偿目标值。将补偿目标值写入用于控制区域A11的待测参数的第一寄存器,并将补偿目标值写入用于控制区域A11的待测参数的第二寄存器中;或者,将补偿目标值写入用于控制区域A11的待测参数的第一寄存器,并延长区域B11的工作时长,以使区域B11的待测参数的实际值与区域A11的待测参数实际值一致。
需要说明的是,确定区域A11的第一实际值、以及区域B11的第二实际值,可以参见上述实施例中两个屏分别对应的实际值的相关内容,以及将补偿目标值写入相应区域对应的寄存器,参见将补偿目标值写入相应屏对应的寄存器的相关内容,延长区域B11的工作时长,可参见延长第二屏的工作时长的相关内容,此处不再赘述。
上述本申请提供的实施例中,从电子设备(手机100)作为执行主体的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
上述实施例中所用,根据上下文,术语“当…时”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
为了解释的目的,前面的描述是通过参考具体实施例来进行描述的。然而,上面的示例性的讨论并非意图是详尽的,也并非意图要将本申请限制到所公开的精确形式。根据以 上教导内容,很多修改形式和变型形式都是可能的。选择和描述实施例是为了充分阐明本申请的原理及其实际应用,以由此使得本领域的其他技术人员能够充分利用具有适合于所构想的特定用途的各种修改的本申请以及各种实施例。

Claims (13)

  1. 一种补偿方法,其特征在于,应用于具有折叠屏的电子设备,所述折叠屏至少包括第一屏和第二屏,所述方法包括:
    根据所述第一屏在第一统计周期内待测参数的第一平均使用值、以及第一对应关系,确定所述第一屏在所述第一统计周期结束时的待测参数的第一实际值;
    根据所述第二屏在所述第一统计周期内待测参数的第二平均使用值、以及第二对应关系,确定所述第二屏在所述第一统计周期结束时所述待测参数的第二实际值;
    在所述第一实际值小于所述第二实际值时,根据所述第一实际值与所述第二实际值,确定补偿目标值;
    将所述补偿目标值写入用于控制第一屏待测参数的第一寄存器,并将所述补偿目标值写入用于控制第二屏待测参数的第二寄存器中;或者,将所述补偿目标值写入用于控制第一屏待测参数的第一寄存器,并延长所述第二屏的工作时长,以使所述第二屏的待测参数的实际值与所述第一屏的待测参数实际值一致。
  2. 根据权利要求1所述的方法,其特征在于,所述待测参数为亮度;所述将所述补偿目标值写入用于控制第一屏待测参数的第一寄存器,包括:
    确定所述补偿目标值所对应的第一电流值,调高所述第一屏的工作电流至所述第一电流值;
    通过所述第一电流值触发所述第一屏的驱动IC将所述补偿目标值写入所述第一寄存器中。
  3. 根据权利要求1所述的方法,其特征在于,所述待测参数为亮度;所述将所述补偿目标值写入用于控制第二屏待测参数的第二寄存器中,包括:
    确定所述补偿目标值所对应的第二电流值,调低所述第二屏的工作电流至所述第二电流值;
    通过所述第二电流值触发所述第二屏的驱动IC将所述补偿目标值写入所述第二寄存器中。
  4. 根据权利要求1所述的方法,其特征在于,所述待测参数为亮度;所述延长所述第二屏的工作时长,以使所述第二屏的待测参数的实际值升高至所述补偿目标值,包括:
    确定所述第二屏的亮度设置为预设亮度时,将所述第二实际值降低至所述补偿目标值所需要的第一工作时长;
    将所述第二屏的工作时长延长所述第一工作时长。
  5. 根据权利要求4所述的方法,其特征在于,所述将所述第二屏的工作时长延长所述第一工作时长,包括:
    在所述第二屏处于息屏状态时,点亮所述第二屏、且控制所述第二屏处于亮屏状态的工作时长为所述第一工作时长。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    检测所述电子设备的设备状态;所述设备状态包括静止状态或运动状态;
    所述点亮所述第二屏、且控制所述第二屏处于亮屏状态的工作时长为所述第一工作时长,包括:
    在所述电子设备的设备状态为静止状态,且所述第二屏处于息屏状态时,点亮所述第 二屏、且控制所述第二屏处于亮屏状态的工作时长为所述第一工作时长。
  7. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    检测所述电子设备的周围环境亮度;
    所述点亮所述第二屏、且控制所述第二屏处于亮屏状态的工作时长为所述第一工作时长,包括:
    在检测到所述第二屏的周围环境亮度低于预设阈值时,点亮所述第二屏、且控制所述第二屏处于亮屏状态的工作时长为所述第一工作时长。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    统计所述电子设备的用户使用所述第二屏的使用时间数据,并根据所述使用时间数据确定所述用户不使用所述第二屏的时间段;
    所述点亮所述第二屏、且控制所述第二屏处于亮屏状态的工作时长为所述第一工作时长,包括:
    在所述用户不使用所述第二屏的时间段,点亮所述第二屏、且控制所述第二屏处于亮屏状态的工作时长为所述第一工作时长。
  9. 根据权利要求5-6任一项所述的方法,其特征在于,所述点亮所述第二屏,包括:
    点亮所述第二屏,且控制所述第二屏的亮度按照预设亮度间隔逐级调高。
  10. 根据权利要求1所述的方法,其特征在于,所述待测参数为灰阶;所述将所述补偿目标值写入用于控制第一屏待测参数的第一寄存器,并将所述补偿目标值写入用于控制第二屏待测参数的第二寄存器中,包括:
    确定出所述灰阶的所述补偿目标值对应的R分量、G分量、B分量;
    将所述灰阶的所述补偿目标值对应的R分量、G分量、B分量分别写入所述第一寄存器与所述第二寄存器。
  11. 根据权利要求1所述的方法,其特征在于,所述第一屏的显示区域划分为N个第一区域,所述第二屏的显示区域划分为所述N个第二区域,所述N为正整数;
    所述根据所述第一屏在第一统计周期内待测参数的第一平均使用值、以及第一对应关系,确定所述第一屏在所述第一统计周期结束时的待测参数的第一实际值,包括:
    根据所述N个第一区域中每个第一区域在第一统计周期内待测参数的第一平均使用值、以及第一对应关系,确定每个所述第一区域在所述第一统计周期结束时的待测参数的第一实际值;
    所述根据所述第二屏在所述第一统计周期内待测参数的第二平均使用值、以及第二对应关系,确定所述第二屏在所述第一统计周期结束时所述待测参数的第二实际值,包括:
    根据所述N个第二区域中每个第二区域在所述第一统计周期内待测参数的第二平均使用值、以及第二对应关系,确定每个所述第二区域在所述第一统计周期结束时的待测参数的第二实际值;
    所述在所述第一实际值小于所述第二实际值时,根据所述第一实际值与所述第二实际值,确定补偿目标值,包括:
    针对所述N个第一区域中的每个第一区域,确定出与所述第一区域存在位置对应关系的第二区域;根据所述第一区域的第一实际值、所述与所述第一区域存在位置对应关系的第二区域的第二实际值,确定所述补偿目标值;
    所述将所述补偿目标值写入用于控制第一屏待测参数的第一寄存器,并将所述补偿目 标值写入用于控制第二屏待测参数的第二寄存器中,包括:将所述补偿目标值写入用于控制所述第一区域的待测参数的第一寄存器,并将所述补偿目标值写入用于控制与所述第一区域存在位置对应关系的第二区域的待测参数的第二寄存器中;或者,
    所述将所述补偿目标值写入用于控制第一屏待测参数的第一寄存器,并延长所述第二屏的工作时长,以使所述第二屏的待测参数的实际值升高至所述补偿目标值,包括:
    将所述补偿目标值写入用于控制所述第一区域的待测参数的第一寄存器,并延长与所述第一区域存在位置对应关系的第二区域的工作时长,以使所述与所述第一区域存在位置对应关系的第二区域的待测参数的实际值与所述第一区域的待测参数实际值一致。
  12. 一种电子设备,其特征在于,包括显示屏,其中所述显示屏至少包括第一屏和第二屏;一个或多个处理器;存储器;一个或多个程序;其中所述一个或多个程序被存储在所述存储器中,所述一个或多个程序包括指令,当所述指令被所述电子设备执行时,使得所述电子设备执行如权利要求1-11中任一所述的方法步骤。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求1至11任一项所述的方法。
PCT/CN2020/113571 2019-09-06 2020-09-04 一种补偿方法及电子设备 WO2021043280A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20860772.1A EP4020445A4 (en) 2019-09-06 2020-09-04 COMPENSATION METHOD AND ELECTRONIC DEVICE
US17/640,649 US11790819B2 (en) 2019-09-06 2020-09-04 Compensation method and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910844673.8A CN110808003B (zh) 2019-09-06 2019-09-06 一种补偿方法及电子设备
CN201910844673.8 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021043280A1 true WO2021043280A1 (zh) 2021-03-11

Family

ID=69487438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113571 WO2021043280A1 (zh) 2019-09-06 2020-09-04 一种补偿方法及电子设备

Country Status (4)

Country Link
US (1) US11790819B2 (zh)
EP (1) EP4020445A4 (zh)
CN (1) CN110808003B (zh)
WO (1) WO2021043280A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808003B (zh) 2019-09-06 2021-01-15 华为技术有限公司 一种补偿方法及电子设备
CN113963658B (zh) * 2020-07-21 2023-05-30 Oppo广东移动通信有限公司 亮度补偿方法及亮度数据确定方法、装置、芯片
CN112259035B (zh) * 2020-10-30 2023-11-14 天马微电子股份有限公司 一种显示控制方法、柔性显示面板及显示装置
CN113395447B (zh) * 2021-05-31 2023-04-04 江西晶浩光学有限公司 防抖机构、摄像装置及电子设备
CN113593501B (zh) * 2021-07-29 2022-09-02 昆山国显光电有限公司 一种显示面板的mura补偿方法、补偿装置及显示装置
CN115311977B (zh) * 2022-08-10 2023-11-24 昆山国显光电有限公司 显示面板及其亮度补偿方法、补偿装置、补偿设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461406A (zh) * 2018-12-17 2019-03-12 Oppo广东移动通信有限公司 显示方法、装置、电子设备及介质
CN110164398A (zh) * 2019-05-24 2019-08-23 京东方科技集团股份有限公司 一种显示亮度调节方法及系统
CN110808003A (zh) * 2019-09-06 2020-02-18 华为技术有限公司 一种补偿方法及电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8499227B2 (en) * 2010-09-23 2013-07-30 Micron Technology, Inc. Memory quality monitor based compensation method and apparatus
US8886033B2 (en) * 2012-03-22 2014-11-11 Source Photonics, Inc. Enhanced status monitoring, storage and reporting for optical transceivers
KR102204378B1 (ko) * 2014-09-04 2021-01-19 삼성디스플레이 주식회사 표시장치 및 그 구동방법
US9591720B2 (en) * 2015-08-05 2017-03-07 Mitsubishi Electric Corporation LED display apparatus
CN105788531A (zh) 2016-05-20 2016-07-20 深圳市华星光电技术有限公司 Oled显示面板的驱动电路
WO2018176536A1 (zh) * 2017-04-01 2018-10-04 华为技术有限公司 血压监测方法、装置和设备
CN107248392B (zh) 2017-06-29 2019-11-26 联想(北京)有限公司 一种显示驱动方法以及电子设备
CN107170424B (zh) * 2017-06-30 2020-02-21 联想(北京)有限公司 一种显示控制方法,显示方法及电子设备
CN108156056B (zh) * 2017-12-28 2021-07-09 华为技术有限公司 网络质量测量方法及其装置
CN108257579B (zh) * 2018-01-17 2020-06-05 中兴通讯股份有限公司 一种屏幕校准的方法、装置及终端
CN109088989A (zh) 2018-08-07 2018-12-25 京东方科技集团股份有限公司 一种移动终端及其折叠屏显示控制方法
CN109036271B (zh) 2018-08-17 2020-06-12 武汉华星光电半导体显示技术有限公司 曲面屏弯折区色偏修正的方法、装置、存储介质及终端
CN109981843B (zh) * 2019-03-15 2020-12-08 Oppo广东移动通信有限公司 电子设备的屏幕处理方法、装置、电子设备及存储介质
CN110177174B (zh) * 2019-05-24 2021-03-12 Oppo广东移动通信有限公司 显示处理方法、装置、移动终端以及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461406A (zh) * 2018-12-17 2019-03-12 Oppo广东移动通信有限公司 显示方法、装置、电子设备及介质
CN110164398A (zh) * 2019-05-24 2019-08-23 京东方科技集团股份有限公司 一种显示亮度调节方法及系统
CN110808003A (zh) * 2019-09-06 2020-02-18 华为技术有限公司 一种补偿方法及电子设备

Also Published As

Publication number Publication date
EP4020445A4 (en) 2022-10-05
US11790819B2 (en) 2023-10-17
US20220358864A1 (en) 2022-11-10
CN110808003A (zh) 2020-02-18
EP4020445A1 (en) 2022-06-29
CN110808003B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2021043280A1 (zh) 一种补偿方法及电子设备
WO2020192362A1 (zh) 一种光传感器状态控制方法及电子设备
KR102248841B1 (ko) 디스플레이 장치, 전자 장치 및 전자 장치의 동작 방법
CN112333335B (zh) 一种环境光和接近检测方法、拍摄方法、终端及计算机存储介质
EP3537709B1 (en) Electronic device photographing method and apparatus
WO2021098790A1 (zh) 一种补偿方法及电子设备
US20200320919A1 (en) Display Method, Display Device, and Electronic Device
WO2021169402A1 (zh) 一种屏幕亮度调节方法和电子设备
WO2020093833A1 (zh) 一种接近光传感器的控制方法及电子设备
US9691318B2 (en) Image display method and device and electronic apparatus
WO2019210731A1 (zh) 灰阶补偿方法及装置、显示装置、计算机存储介质
WO2021037149A1 (zh) 一种应用图标的显示方法及电子设备
CN110459180B (zh) 驱动控制方法、装置及显示装置
CN113722030B (zh) 一种显示方法、电子设备及计算机存储介质
WO2023103951A1 (zh) 一种折叠屏的显示方法及相关装置
WO2023000772A1 (zh) 模式切换方法、装置、电子设备及芯片系统
WO2021057472A1 (zh) 一种显示控制方法与电子设备
WO2021223630A1 (zh) 电子设备
WO2021254438A1 (zh) 驱动控制方法及相关设备
WO2023273844A1 (zh) 一种显示方法及电子设备
WO2022001383A1 (zh) 显示处理方法及装置
CN117079596B (zh) 屏幕亮度调节方法、终端设备及存储介质
US20230178050A1 (en) Electronic device comprising display, and operation method thereof
CN116048368B (zh) 亮度调整方法和电子设备
WO2023273466A1 (zh) 显示控制装置、显示装置以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020860772

Country of ref document: EP

Effective date: 20220322