WO2021043271A1 - 触控传感器、触控显示屏及电子设备 - Google Patents

触控传感器、触控显示屏及电子设备 Download PDF

Info

Publication number
WO2021043271A1
WO2021043271A1 PCT/CN2020/113518 CN2020113518W WO2021043271A1 WO 2021043271 A1 WO2021043271 A1 WO 2021043271A1 CN 2020113518 W CN2020113518 W CN 2020113518W WO 2021043271 A1 WO2021043271 A1 WO 2021043271A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch sensor
concave
electrode
display screen
touch
Prior art date
Application number
PCT/CN2020/113518
Other languages
English (en)
French (fr)
Inventor
王焕
张君勇
方刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227008040A priority Critical patent/KR20220045021A/ko
Priority to US17/639,793 priority patent/US11899891B2/en
Priority to EP20861535.1A priority patent/EP4016259A4/en
Publication of WO2021043271A1 publication Critical patent/WO2021043271A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the embodiments of the present application relate to the field of electronic devices, and in particular, to a touch sensor, a touch display screen, and an electronic device.
  • the touch screen is also known as the "touch screen". Users can directly operate and give instructions through the objects displayed on the touch screen.
  • the touch screen provides the human nature between the user and the electronic product.
  • the operation interface is optimized to realize good human-computer interaction functions. Therefore, display devices with touch functions are more and more widely used.
  • Touch screens can be divided into vector pressure-sensing touch screens, resistive touch screens, capacitive touch screens, infrared touch screens and surface acoustic wave touch screens.
  • the existing capacitive touch screen when the user's hand touches the capacitive touch screen, the change in capacitance generated between the touch electrode on the capacitive touch screen and the static electricity of the human body is converted into an induced current to confirm the touch position of the user's hand .
  • the existing touch electrodes are generally made of transparent metal materials. Due to the thickness and material limitations of the touch electrode, the flexibility of the touch electrode is poor. In the application of a foldable touch display screen, after multiple bendings, cracks are likely to appear in the bending area to cause the touch electrode to be disconnected, which in turn leads to the failure of the function of the touch display screen.
  • the embodiments of the present application provide a touch sensor, a touch display screen, and an electronic device.
  • the touch sensor improves the bending resistance of the touch electrode. It solves the problem that the existing touch electrodes are prone to cracks in the bending area after multiple bendings, which causes the touch electrodes to be disconnected, thereby causing the function of the touch display screen to fail.
  • an embodiment of the present application provides a touch sensor, including:
  • the electrode layer includes at least a first electrode pattern, the first electrode pattern includes a plurality of first conductive units spaced apart from each other, the first conductive units have a boundary line, and the boundary line includes a curved connection section,
  • the connecting section includes at least one first concave-convex portion, and each of the first concave-convex portions is sequentially connected to form a smooth curve;
  • a bridge electrode line both ends of the bridge electrode line respectively cross the connecting sections of two adjacent first conductive units to electrically connect the two first conductive units; and the bridge electrode line is curved Extending, the bridge electrode line includes at least one second concave-convex portion, and each of the second concave-convex portions is connected in sequence to form a smooth curve.
  • the first concave-convex portion includes concave and convex portions, and the concave and convex portions are connected at intervals in order to form a smooth curve without corners, that is, the boundary line of the first conductive unit is connected by the concave portion and the convex portion to form a curve.
  • the curved curve can ease the stress concentration on the boundary line of the first conductive unit when the display screen is bent, which can reduce the stress concentration of the display screen during bending and the fracture of the first conductive unit, which will lead to the failure of the touch screen of the display screen. .
  • Setting the bridging electrode line to a curve increases the reliability of the bridging electrode line, and can reduce the stress concentration when the display screen is bent and the breakage of the bridging electrode line.
  • the touch sensor provided in the embodiment of the present application,
  • the boundary line of the first conductive unit is a polygon
  • the connecting segment constitutes an edge of the polygon
  • the connecting segment and the adjacent edge are transitioned by rounded corners.
  • the stress concentration during bending of the display screen is further reduced, which leads to the fracture of the first conductive unit.
  • the visibility of the first electrode pattern is reduced, and the touch sensitivity is improved.
  • the touch sensor provided in the embodiment of the present application,
  • the connecting section of the first conductive unit includes a first concave portion and a first convex portion in a circular arc shape;
  • the bridge electrode line includes a second concave portion and a second convex portion in a circular arc shape.
  • the touch sensor provided in the embodiment of the present application,
  • the connecting sections of two adjacent first conductive units are arranged opposite to each other, and the first concave-convex portion on the connecting section of one first conductive unit is opposite to another adjacent first conductive unit
  • the first concave-convex portion on the connecting section is correspondingly arranged.
  • the touch sensor provided in the embodiment of the present application,
  • the bridging electrode lines include at least two, and the second concave-convex portions on each of the bridging electrode lines are correspondingly arranged.
  • the touch sensor provided in the embodiment of the present application,
  • the electrode layer further includes a second electrode pattern, the second electrode pattern includes a plurality of second conductive units, and each of the second conductive units is electrically connected in sequence.
  • the touch sensor provided in the embodiment of the present application,
  • Each of the first conductive units in the first electrode pattern is arranged along a first direction; each of the second conductive units in the second electrode pattern is arranged along a second direction, wherein the first direction is aligned with The second party is vertical.
  • the touch sensor provided in the embodiment of the present application,
  • the first conductive unit has a contact hole, and both ends of the bridge electrode line are electrically connected to the contact hole across the connecting sections of two adjacent first conductive units.
  • the touch sensor provided in the embodiment of the present application,
  • the contact holes on two adjacent first conductive units are staggered. In this way, the positions of the contact holes on the different first conductive units are staggered, so that the overall extension direction of the bridge electrode line will not be along the X-axis direction or the Y-axis direction, reducing stress concentration along the overall extension direction of the bridge electrode line.
  • the touch sensor provided in the embodiment of the present application,
  • It also includes at least one first etching stripe and at least one second etching stripe, and each of the first etching stripes and each of the second etching stripes are arranged in a staggered manner.
  • the touch sensor provided in the embodiment of the present application,
  • the first etched stripe is in an arc shape or in an I-shape with an arc-shaped connecting portion;
  • the second etched stripes are arc-shaped or I-shaped with arc-shaped connecting parts.
  • an embodiment of the present application provides a touch display screen
  • the touch sensor includes a display screen and the touch sensor provided in the above embodiments, and the touch sensor is located on the display screen.
  • the touch sensor includes a first electrode pattern, and the first concave-convex portion of the first conductive unit on the first electrode pattern can alleviate the stress concentration on the boundary line of the first conductive unit when the display screen is bent, which can reduce the bending of the display screen.
  • the stress is concentrated during folding, and the first conductive unit is broken, which in turn leads to the failure of touch control of the display screen. Setting the bridging electrode line as a curve increases the reliability of the bridging electrode line, and can reduce the stress concentration and the breakage of the bridging electrode line when the display screen is bent.
  • an embodiment of the present application provides an electronic device
  • the touch display screen is connected to the casing, and the touch display screen and the casing are connected to jointly enclose an accommodating space for accommodating components .
  • the present application provides a touch sensor, a touch display screen, and an electronic device.
  • the touch sensor includes a first electrode pattern.
  • the first concave-convex portion of the first conductive unit on the first electrode pattern can alleviate the stress when the display screen is bent. Concentrating on the boundary line of the first conductive unit can reduce stress concentration when the display screen is bent, and the fracture of the first conductive unit caused by the display screen can be reduced, thereby causing the display screen to fail to touch.
  • Setting the bridging electrode line as a curve increases the reliability of the bridging electrode line, and can reduce the stress concentration and the breakage of the bridging electrode line when the display screen is bent.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a split structure of an electronic device provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of an electronic device in a bent state according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of a split structure of a display screen in an electronic device provided by an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of a touch sensor in an electronic device provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a first electrode pattern and a bridge electrode line in a touch sensor in an electronic device according to an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a second electrode pattern in a touch sensor in an electronic device according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a neutron sensing pattern unit of a touch sensor in an electronic device provided by an embodiment of the application;
  • Fig. 9 is a partial enlarged view of A in Fig. 8.
  • Fig. 10 is a schematic diagram of the split structure of Fig. 8.
  • An electronic device provided by an embodiment of this application includes, but is not limited to, mobile phones, tablet computers, notebook computers, ultra-mobile personal computers (UMPC), handheld computers, walkie-talkies, netbooks, POS machines, and personal digital assistants (personal digital assistant, PDA), wearable devices, virtual reality (VR) devices, augmented reality (Augmented Reality, AR) devices, mixed reality (Mixed Reality, MR), etc.
  • UMPC ultra-mobile personal computers
  • PDA personal digital assistants
  • VR virtual reality
  • AR Augmented Reality
  • MR mixed reality
  • the mobile phone 100 is taken as an example to describe the above-mentioned electronic device example.
  • the mobile phone 100 provided in the embodiment of the present application may be a foldable mobile phone.
  • FIG. 1 is a schematic diagram of the structure of an electronic device provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of a disassembled structure of the electronic device provided by an embodiment of the application.
  • Figures 1 and 2 respectively show the overall structure and split structure of the mobile phone 100.
  • the mobile phone 100 may include: a display screen 10 and a housing, and the display screen 10 and the housing together form a The accommodating space for accommodating components, where components may include circuit boards, processors, batteries, etc.
  • the housing may include a middle frame 20 and a back cover 30, the middle frame 20 is located between the display screen 10 and the back cover 30, the display screen 10 is connected to one side of the middle frame 20, and the back cover 30 is connected to the other side of the middle frame 20.
  • the display screen 10, the back cover 30, and the middle frame 20 jointly enclose an accommodating space for components.
  • the circuit board and the battery can be arranged on the middle frame 20, for example, the circuit board and the battery are arranged on the side of the middle frame 20 facing the back cover 21; or the circuit board and the battery can be arranged on the side of the middle frame 20 facing the display screen 10. on.
  • an opening may be opened on the middle frame 20 for placing components on the circuit board at the opening of the middle frame 20.
  • a battery compartment may be arranged on the side of the back cover 30 facing the middle frame 20, and the battery is installed in the battery compartment.
  • the battery can be connected to the charging management module and the circuit board through the power management module.
  • the power management module receives input from the battery and/or the charging management module and is a processor, internal memory, external memory, and display screen 10, Power supply for cameras and communication modules.
  • the power management module can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module may also be provided in the processor of the circuit board.
  • the power management module and the charging management module may also be provided in the same device.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the mobile phone 100.
  • the mobile phone 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the back cover 30 may be a metal back cover, a glass back cover, a plastic back cover, or a ceramic back cover.
  • the material of the back cover 30 is not limited.
  • the middle frame 20 may include a metal middle plate 21 and a frame 22.
  • the frame 22 is arranged one week along the outer circumference of the metal middle plate 21.
  • the frame 22 may include a top edge and a bottom edge arranged oppositely, and a frame located between the top and bottom edges. Two sides arranged in opposite directions.
  • the connection between the frame 22 and the metal middle plate 21 includes but is not limited to welding, clamping or integral injection molding.
  • the material of the metal middle plate 21 may be aluminum, aluminum alloy or stainless steel.
  • the material of the frame 22 may be metal, glass, plastic or ceramic. It should be noted that the materials of the metal middle plate 21 and the frame 22 include but are not limited to the above-mentioned materials.
  • FIG. 3 is a schematic structural diagram of an electronic device in a bent state according to an embodiment of the application
  • FIG. 4 is a schematic diagram of a split structure of a display screen in the electronic device according to an embodiment of the application.
  • the display screen 10 may be a flexible display screen, for example, the flexible display screen may be an organic light-emitting diode (OLED) Display screen.
  • OLED organic light-emitting diode
  • the display screen 10 when the display screen 10 is an OLED display screen, the display screen 10 may include: a display layer 11 and a flexible cover layer 12, the flexible cover layer 12 covers the display layer 11, and the flexible cover
  • the size of the plate layer 12 may be greater than or equal to the size of the display layer 11. Since the display screen 10 needs to be bent, the flexible cover layer 12 may be a bendable flexible cover.
  • the display layer 11 may include multiple functional layers, for example, organic light-emitting layers, anode layers, cathode layers, thin film transistor layers (Thin Film Transistor, TFT) and other film layers, so the display layer 11 has multiple layers of metal Floor.
  • the display screen 10 may further include a touch sensor 13, where the touch sensor 13 may be disposed between the display layer 11 and the flexible cover layer 12.
  • the touch sensor 13 may be integrated in the display layer 11 to form a touch display screen integrating touch and display functions, and the flexible cover layer 12 is provided on the touch display screen.
  • FIG. 5 is a schematic structural diagram of a touch sensor in an electronic device provided by an embodiment of the application
  • FIG. 6 is a schematic structural diagram of a first electrode pattern and a bridge electrode line in the touch sensor in an electronic device provided by an embodiment of the application
  • 7 is a schematic diagram of the structure of the second electrode pattern in the touch sensor in the electronic device provided by an embodiment of the application.
  • the touch sensor 13 may include a base body and an electrode layer formed on the base body.
  • the electrode layer includes at least a first electrode pattern 131.
  • the first electrode pattern 131 includes a plurality of first conductive units 1311 spaced apart from each other.
  • the first conductive units 1311 have a boundary line 1312, and the boundary line 1312 includes a curved connecting section 1313 that is connected to each other.
  • the segment 1313 includes at least one first concave-convex portion 1314, and each first concave-convex portion 1314 is connected in sequence to form a smooth curve.
  • the boundary line 1312 is the edge line of the first conductive unit 1311, and the boundary line 1312 of the first conductive unit 1311 includes multiple parts, that is, the boundary line 1312 is divided into multiple sections, and two of the boundary lines 1312 are curved
  • the connecting section 1313 (through the boundary line 1312 in the dashed circle in FIG. 6), the two connecting sections 1313 are respectively located on opposite sides of the first conductive unit 1311, and the other sections of the boundary line 1312 may be arcs, straight lines or curves.
  • Both ends of the bridge electrode line 132 respectively cross the connecting section 1313 of the two adjacent first conductive units 1311 to electrically connect the two first conductive units 1311; and the bridge electrode line 132 extends in a curve, and the bridge electrode line 132 includes at least one The second concave-convex portions 1321 and the second concave-convex portions 1321 are sequentially connected to form a smooth curve.
  • the plurality of first conductive units 1311 may be arranged in multiple rows along the vertical direction, and the first conductive units 1311 located in the same row are connected by bridging electrode lines 132. The description will be made with the connection of three first conductive units 1311 connected in sequence through the bridging electrode line 132.
  • Each first conductive unit 1311 has a first connection section 1313 and a second connection section 1313 opposite to each other.
  • the first connecting section 1313 of the first first conductive unit 1311 is opposite to the second connecting section 1313 of the second first conductive unit 1311, and the bridging electrode line 132 crosses the first first conductive unit 1311
  • the first connecting section 1313 and the second connecting section 1313 of the second first conductive unit 1311 are connected to the first first conductive unit 1311 and the second first conductive unit 1311.
  • the first connecting section 1313 of the second first conductive unit 1311 is opposite to the second connecting section 1313 of the third first conductive unit 1311 to connect the second first conductive unit 1311 with the third first conductive unit 1311 Unit 1311.
  • the first conductive units 1311 located in the same column are connected by the bridging electrode line 132.
  • the connecting section 1313 spanned by the bridge electrode line 132 includes at least one first concave-convex portion 1314, and each first concave-convex portion 1314 is connected sequentially to form a smooth curve.
  • the first concave-convex portion 1314 includes concave and convex portions, and the concave and convex portions are sequentially spaced and connected to form a smooth curve without corners, that is, the boundary line 1312 of the first conductive unit 1311 is sequentially separated by the concave and convex portions.
  • the connection forms a curved curve, so as to alleviate the stress concentration on the boundary line 1312 of the first conductive unit 1311 when the display screen 10 is bent, which can reduce the fracture of the first conductive unit 1311 when the display screen 10 is bent, and thereby As a result, the touch control of the display screen 10 fails.
  • the bridge electrode line 132 is also arranged in a curved shape.
  • the bridging electrode line 132 extends in a curve, and the bridging electrode line 132 may include at least one second concave-convex portion 1321, and each second concave-convex portion 1321 is connected in sequence to form a smooth curve. Setting the bridging electrode line 132 as a curve increases the reliability of the bridging electrode line 132, and can reduce the stress concentration and the breakage of the bridging electrode line 132 when the display screen 10 is bent.
  • the structure of the second concave-convex portion 1321 and the first concave-convex portion 1314 may be the same, which is not limited in this embodiment.
  • the curvature of the concave portion and the convex portion in the connecting section 1313 and the bridging electrode wire 132 is not particularly limited, and for example, the radius of the concave portion and the convex portion may be 0.02 mm to 0.1 mm. If the radius of the recesses and protrusions is less than 0.02mm, the effect of suppressing cracks and improving the visibility of the first electrode pattern 131 will be small due to the non-curved right angle. If it exceeds 0.1mm, it will be close to a straight line, making it difficult to show dense recesses and protrusions.
  • the effect of suppressing cracks and improving the visibility of the first electrode pattern 131 will be small.
  • the radius of the recesses and protrusions can be 0.02 mm to 0.05 mm.
  • the first electrode pattern 131 may be directly formed on the display layer 11, that is, the touch sensor 13 is integrated in the display layer 11 to form a touch display screen integrating touch and display functions.
  • the first electrode pattern 131 may also be formed on the substrate.
  • the material of the substrate may include, but is not limited to, glass, polyethersulfone (PES, polyethersulphone), polyacrylate (PAR, polyacrylate), and polyetherimide (PEI, polyetherimide).
  • PEN Polyethylene naphthalate
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • polyallylate polyallylate
  • Polyimide polyimide
  • PC polycarbonate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • the material of the first electrode pattern 131 may include, but is not limited to, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), carbon nanotubes (CNT), Ag nanowires, conductive polymers , Graphene or alloys. Any metal with good conductivity and low resistance can be used as the material of the first electrode pattern 131, which is not limited in this embodiment.
  • the first electrode pattern 131 may be formed on the substrate by a photolithography method.
  • the electrode layer further includes a second electrode pattern 133
  • the second electrode pattern 133 includes a plurality of second conductive units 1331
  • each second conductive unit 1331 is electrically connected in sequence.
  • the plurality of second conductive units 1331 may be arranged in multiple rows along the horizontal direction, and adjacent second conductive units 1331 are electrically connected.
  • the second electrode pattern 133 and the first electrode pattern 131 may be located on the same layer, and the second electrode pattern 133 and the first electrode pattern 131 may also be located on different layers.
  • the material of the second electrode pattern 133 and the first electrode pattern 131 may be the same.
  • Each first conductive unit 1311 in the first electrode pattern 131 is arranged along a first direction; each second conductive unit 1331 in the second electrode pattern 133 is arranged along a second direction, wherein the first direction is perpendicular to the second direction. That is, each first conductive unit 1311 and each second conductive unit 1331 are arranged along different directions.
  • each first conductive unit 1311 may be arranged along the X axis in the rectangular coordinate axis.
  • each second conductive unit 1331 may be arranged along the Y axis in the rectangular coordinate axis; each first conductive unit 1311 may also be arranged along the right angle.
  • the setting direction of the Y axis in the coordinate axis correspondingly, the setting direction of each second conductive unit 1331 along the X axis in the rectangular coordinate axis.
  • the touch display screen it also includes detection electrodes, processing circuits, and driving electrodes.
  • the driving electrodes and the detection electrodes are both located on the upper surface of the substrate.
  • the first conductive unit 1311 and the second conductive unit 1331 are located on the upper surface of the substrate.
  • the conductive unit 1311 is a driving electrode
  • the second conductive unit 1331 is a detection electrode
  • the first conductive unit 1311 is a detection electrode
  • the second conductive unit 1331 is a driving electrode.
  • the first conductive unit 1311 and the second conductive unit 1331 provide information about the X coordinate and the Y coordinate of the touched position.
  • the capacitance change between the first conductive unit 1311 and the second conductive unit 1331 is detected to determine whether there is a finger touch.
  • the first conductive unit 1311 and the second conductive unit 1331 are arrayed in the X-axis direction and the Y-axis direction, and the specific position of the finger touch is determined by detecting the capacitance change triggered by the chip finger, and converted into the X coordinate of the touch position And the Y coordinate information is input into the mobile phone 100.
  • the first conductive unit 1311 can have a variety of different shapes and arrangements.
  • the boundary line 1312 of the first conductive unit 1311 may be a polygon, and the connecting section 1313 constitutes an edge of the polygon, and the connecting section 1313 and the adjacent edge are transitioned by rounded corners. .
  • the stress concentration when the display screen 10 is bent is further reduced, which causes the first conductive unit 1311 to break.
  • the visibility of the first electrode pattern 131 is reduced, and the touch sensitivity is improved.
  • the first conductive unit 1311 has a polygonal shape as a whole, and in order to detect electrical parameters such as capacitance, the first conductive unit 1311 will be arranged in pairs.
  • the connecting section 1313 can form the first conductive unit 1311.
  • One of the edges of the polygonal edge is arranged toward or adjacent to the other first conductive unit 1311, thereby facilitating the connection between the connecting section 1313 and the connecting section 1313 on the other first conductive unit 1311 through the bridging electrode line 132 .
  • FIG. 8 is a schematic structural diagram of a neutron sensing pattern unit of a touch sensor in an electronic device provided by an embodiment of the application;
  • FIG. 9 is a partial enlarged view of A in FIG. 8;
  • FIG. 10 is a schematic diagram of a split structure of FIG. 8.
  • the sensing pattern unit has a plurality of sensing pattern units, and each sensing pattern unit may include at least two first conductive units 1311 and at least two second conductive units 1331, wherein two second conductive units 1311 The conductive units 1331 are electrically connected to each other.
  • the first electrode pattern 131 and the second electrode pattern 133 may be arranged in the same layer.
  • the first conductive unit 1311 in the first electrode pattern 131 and the second conductive unit 1331 in the second electrode pattern 133 may be arranged adjacent to each other.
  • the second conductive unit 1331 separates two adjacent first conductive units 1311, and the two adjacent first conductive units 1311 are electrically connected through the bridge electrode line 132.
  • two adjacent first conductive units 1311 and two adjacent second conductive units 1331 can respectively detect the X coordinate and Y coordinate of the touch position. , So as to obtain the user's touch information.
  • the two second conductive units 1331 may be connected to form an integrated structure.
  • the two second conductive units 1331 may be connected to form an integrated structure through the connecting portion on the second conductive unit 1331.
  • two adjacent first conductive units 1311 are separated by two connected second conductive units 1331.
  • the connecting section 1313 in the boundary line 1312 of the first conductive unit 1311 is arranged opposite to the other first conductive unit 1311.
  • the connecting sections 1313 of the two first conductive units 1311 are opposite to each other, and are arranged adjacent to the connecting portion between the two second conductive units 1331.
  • the connecting section 1313 of the first conductive unit 1311 has a curved shape, and correspondingly, the connecting portion between the two second conductive units 1331 may also have a curved shape corresponding to the connecting section 1313.
  • the connecting section 1313 of each first conductive unit 1311 protrudes toward another adjacent first conductive unit 1311, and the connecting section 1313 includes a plurality of first conductive units connected in sequence.
  • the concave-convex portion 1314, and the second conductive unit 1331 and the part of the connecting portion adjacent to the connecting section 1313 will correspondingly have a plurality of consecutively connected concave-convex structures, and the shape of the concave-convex structure and the shape of the connection section 1313 coincide with each other, For example, there are a protruding structure 1332 and a recessed structure 1333.
  • the convex structure 1332 and the concave shape of the first concave-convex portion 1314 match and match each other
  • the concave structure 1333 and the convex shape of the first concave-convex portion 1314 match and match each other.
  • each first concave-convex portion 1314 has a corresponding boundary shape on the second conductive unit 1331. Since the connecting section 1313 and the connecting portion on the second conductive unit 1331 will form a smooth curve, the common area between two adjacent first conductive units 1311 and two adjacent second conductive units 1331 can alleviate and release stress , To avoid the phenomenon of stress concentration, and prevent the display screen 10 from breaking in this area.
  • the connecting section 1313 of the first conductive unit 1311 may include a first concave portion 1315 and a first convex portion 1316.
  • the first concave portion 1315 and the first convex portion 1316 are arranged in sequence, so that the connecting section 1313 forms multiple arcs. Line structure, and different sections of the arc structure bend in different directions.
  • the first concave portion 1315 and the first convex portion 1316 may be arc-shaped, and the transition between the first concave portion 1315 and the first convex portion 1316 may also be a circular arc.
  • each section of the connecting section 1313 is a smooth arc, and no stress concentration phenomenon occurs due to the convex ridge line.
  • the number of the first concave portion 1315 and the first convex portion 1316 in the connecting section 1313 may be greater than or equal to three, respectively.
  • the number of the first concave portions 1315 is between three and six
  • the number of the first convex portions 1316 is between three and six.
  • the connecting section 1313 of the first conductive unit 1311 may include a first concave portion 1315 and a first convex portion 1316, and the second conductive unit 1331 and the portion of the connecting portion adjacent to the connecting section 1313 will correspondingly have multiple sequential connections.
  • the concave-convex structure, and the shape of the concave-convex structure coincides with the shape of the connecting section 1313, so as to reduce the stress concentration in the connection of the second conductive unit 1331.
  • the shapes of the protruding structure 1332 and the first concave portion 1315 match each other, and the shapes of the concave structure 1333 and the first convex portion 1316 match each other.
  • the protruding structure 1332 and the recessed structure 1333 may both be arc-shaped, the first recess 1315 is an arc recessed toward the inside of the first conductive unit 1311, and correspondingly, the protruding structure 1332 is toward the outside of the second conductive unit 1331 Protruding arc.
  • the first concave portion 1315 is an arc shape of a circle with a large radius
  • the convex structure 1332 is a radius opposite to the first concave portion 1315.
  • the first convex portion 1316 has an arc shape that is recessed toward the outside of the first conductive unit 1311, and correspondingly, the recessed structure 1333 is an arc shape that protrudes toward the outside and inside of the second conductive unit 1331.
  • the first convex portion 1316 is an arc of a circle with a small radius, and the concave structure 1333 is opposite to the first convex portion 1316.
  • the boundary line 1312 of the first conductive unit 1311 may all be curved connecting sections 1313, that is, the boundary line 1312 is formed by sequentially connecting the first concave portion 1315 and the first convex portion 1316, and the first concave portion 1315 and the first concave portion 1315 and the first convex portion 1316 in each connecting end 1313 are connected in sequence.
  • the curvature of the first convex portion 1316 may be the same or different.
  • the edge line of the second conductive unit 1331 (also referred to as the boundary line of the second conductive unit 1331) is formed by successively connecting the protruding structure 1332 and the recessed structure 1333, and the curvature between the protruding structures 1332 can be the same or It can be different, and the curvature between the recessed structures 1333 can be the same or different.
  • the bridge electrode line 132 can also have a similar uneven structure.
  • the bridge electrode line 132 may include a second concave portion 1322 in a circular arc shape and a second convex portion 1323 in a circular arc shape.
  • the second concave portion 1322 and the second convex portion 1323 are connected in sequence, thereby avoiding the protruding ridge lines on the bridging electrode line 132 and reducing the stress concentration on the bridging electrode line 132.
  • the specific shape and arrangement of the second concave portion 1322 and the second convex portion 1323 on the bridging electrode line 132 are related to the first concave portion 1315 and the first convex portion 1316 on the connecting section 1313 of the aforementioned first conductive unit 1311
  • the shape and setting method are similar, so I won’t repeat them here.
  • the bridging electrode lines 132 may include at least two, and the second concave-convex portions 1321 on each bridging electrode line 132 are correspondingly arranged.
  • the number of the bridging electrode lines 132 may be two or more, so that different bridging electrode lines 132 are all connected to the connecting section 1313.
  • the bridging electrode line 132 itself can form a small resistance and can have a small interference, thereby ensuring accurate detection of the capacitance by the first electrode pattern.
  • the concave-convex direction of the second concave-convex portion 1321 on each bridging electrode line 132 is kept consistent, so when the touch sensor and the display screen 10 are bent, the force is more uniform, and the bridging electrode line 132 is prevented from breaking due to bending.
  • the touch sensor 13 and the touch display screen need to be planarized by polishing and other processes, and the polishing and grinding rate of the low pattern density area is higher than the grinding rate of the high pattern density area, the touch sensor 13 Different thicknesses will be formed due to the pattern density of different areas inside, resulting in problems such as poor pattern uniformity.
  • different pattern densities in different areas may also produce different refractive indices, which will cause the touch sensor 13
  • the first electrode pattern 131 and the second electrode pattern 133 and other areas form a relatively obvious visual boundary, which can be seen by the user and affect the visual effect of the touch sensor 13.
  • a dummy pattern 136 may be provided in the low pattern density area of the touch sensor 13.
  • the area where the touch sensor 13 is located can have a relatively uniform pattern density, thereby improving the uniformity of the touch sensor 13, increasing the product yield, and preventing the electrode pattern in the touch sensor 13 from forming a clear visual boundary.
  • the touch sensor 13 of the present application may be provided with a dummy pattern 136 electrically separated from them between the first electrode pattern 131 and the second electrode pattern 133, or the first electrode pattern 131 A dummy pattern 136 is set inside.
  • the touch sensor 13 can be divided into a sensing area for sensing touch operations and an ineffective area electrically separate from the electrode pattern in the sensing area.
  • the sensing area mainly includes the first electrode pattern 131 and the second electrode pattern 133
  • the ineffective area mainly consists of the dummy pattern 136. Since the dummy pattern 136 and the inactive area are electrically separated from the first electrode pattern 131 or the second electrode pattern 133, when the user touches the dummy pattern 136, the induction formed by the first electrode pattern 131 and the second electrode pattern 133 will not be caused. The electrode is affected.
  • At least a part of the boundary of the dummy pattern 136 may correspond to the boundary of the first electrode pattern 131 and the second electrode pattern 133.
  • at least part of the boundary of the dummy pattern 136 may also have concave and convex portions connected in sequence, thereby forming a smooth curve.
  • the boundary shape of the dummy pattern 136 and the boundary shape of the first electrode pattern 131 or the second electrode pattern 133 correspond to each other, for example, the boundary shapes of the first electrode pattern 131 and the second electrode pattern 133 coincide with each other, Therefore, the area where the dummy pattern 136 exists between the first electrode pattern 131 and the second electrode pattern 133 will be smaller, which can make the boundary and shape formed by the first electrode pattern 131 and the second electrode pattern 133 blurry, making it difficult for users Perception.
  • dummy patterns 136 There may be multiple dummy patterns 136, that is, a plurality of sub-dummy patterns 136 separated from each other. In this way, the dummy pattern 136 can be divided into a plurality of patterns, and each dummy pattern 136 can be independent of each other, so that the touch sensor 13 and the entire touch display screen are more flexible and easy to bend.
  • the dummy pattern 136 may have a similar thickness to the first electrode pattern 131 or the second electrode pattern 133, so as to maintain the entire touch sensor 13 to have a relatively flat and consistent structure.
  • the thickness of the dummy pattern 136 may be a thickness commonly used by those skilled in the art.
  • the thickness of the dummy pattern 136 may be between 10 nm and 350 nm.
  • the dummy pattern 136 can use the same or similar material as that of the first electrode pattern 131 or the second electrode pattern 133, so that the first electrode pattern 131 or There is a small difference in refractive index between the area of the second electrode pattern 133 and the ineffective area where the dummy pattern 136 is located.
  • the method for forming the dummy pattern 136 may be a pattern forming method commonly used by those skilled in the art.
  • the method for forming the first electrode pattern 131 or the second electrode pattern 133 may be used to form the dummy pattern.
  • the dummy pattern 136 can be formed in the same process or etching process as the first electrode pattern 131 and the second electrode pattern 133, or can be formed in a different process and the first electrode pattern 131 or the second electrode pattern 133. Formed during etching.
  • each of the first conductive units 1311 in the first electrode pattern 131 can be connected to each other through the bridge electrode line 132, in order to avoid the bridge electrode line 132 and the second electrode pattern 133 conduction and interfere with the touch sensor For normal sensing and detection of 13, the touch sensor 13 in this application may also include an insulating layer 137.
  • the insulating layer 137 may be disposed between the electrode layer and the bridging electrode line 132 to isolate the electrode layer and the bridging electrode line 132, so that the second electrode pattern 133 and the bridging electrode line 132 in the electrode layer are isolated and insulated from each other.
  • the insulating layer 137 can be arranged in a variety of different ways.
  • the insulating layer 137 may have an isolated island structure.
  • the insulating layer 137 is only located in the area between the two second electrode patterns 133, so that the area between the two second electrode patterns 133 and the bridge electrode
  • the wires 132 are separated, or the insulating layer 137 may also have a larger coverage area, for example, covering the entire electrode layer.
  • the actual setting method of the insulating layer 137 can be set according to the specific structure and requirements of the touch sensor 13.
  • the bridging electrode line 132 and the electrode layer may be arranged in different layers, so that the bridging electrode line 132 and the second electrode pattern 133 are kept insulated, and the contact hole 1317 and other structures are used to realize the bridging electrode line 132.
  • the first electrode pattern 131 Specifically, a contact hole 1317 may be provided on the first conductive unit 1311, and two ends of the bridging electrode line 132 respectively cross the connecting section 1313 of two adjacent first conductive units 1311 and are electrically connected to the contact hole 1317.
  • the bridge electrode line 132 and the electrode layer are in different layers, the bridge electrode line 132 and the second electrode pattern 133 in the electrode layer can be insulated from each other, and the first conductive unit 1311 in the first electrode pattern 131 is provided
  • the contact hole 1317 and the contact hole 1317 can connect the electrode layer and the layer where the bridge electrode line 132 is located, so that the contact hole 1317 connects the bridge electrode line 132131 and each first conductive unit 1311, thereby realizing each first electrode pattern 131
  • the conductive units 1311 are connected to each other.
  • connection methods well known to those skilled in the art can also be used to connect the bridging electrode line 132 and the first conductive unit 1311, for example, allowing the bridging electrode line 132 and the first conductive unit 1311 to be in direct contact and conduction, etc. There is no restriction here.
  • the contact holes 1317 on two adjacent first conductive units 1311 may be arranged in a staggered manner. In this way, the positions of the contact holes 1317 on the different first conductive units 1311 are staggered, so that the overall extension direction of the bridge electrode line 132 will not be along the X-axis direction or the Y-axis direction, and the stress along the overall extension direction of the bridge electrode line 132 is reduced. Concentration phenomenon.
  • the contact hole 1317 may be a round hole, an elliptical hole, an elongated hole, or the like.
  • the contact hole may be a round hole, and when the display screen 10 is bent, the force on the round hole is relatively uniform.
  • the touch sensor 13 can also be provided with a device that can release stress and avoid stress concentration. Structure.
  • etched stripes are provided inside the touch sensor 13. Since the cavities or gaps are formed inside the etched stripes, when the touch screen is bent, the etched stripes The opposite sides of the edge can be close to each other or far away with the bending deformation, so as to provide a certain deformation space at the position of the etched stripe, and release the stress at the position of the etched stripe, so as to prevent the touch sensor 13 from being etched on the stripe Stress concentration and tearing occur at the place.
  • the touch sensor 13 further includes at least one first etched stripe 134 and at least one second etched stripe 135, and the extension directions of the first etched stripe 134 and the second etched stripe 135 are staggered.
  • the sensing pattern unit has a first etched stripe 134 and a second etched stripe 135 extending in different directions, and the first etched stripe 134 and the second etched stripe 135 can respectively provide deformation space in different directions Therefore, stresses in different directions are released, so that the touch sensor 13 can avoid tearing when it is bent in different directions.
  • each first etching stripe 134 can be parallel to the bridging electrode line 132, and each second etching stripe 135 can be perpendicular to the bridging electrode line 132.
  • the first etched stripes 134 and the second etched stripes 135 are interlaced with each other and are arranged at an angle substantially perpendicular to each other. In this way, the first etched stripes 134 and the second etched stripes 135 can cooperate with each other and release the stress in various directions generated when the touch sensor 13 and the touch display screen are bent.
  • the first etching stripe 134 and the second etching stripe 135 may be one or more. Because when the touch sensor 13 and the touch display screen are bent, the bending area may be located at different positions on the touch display screen, so correspondingly, both the first etched stripe 134 and the second etched stripe 135 can be There are multiple, and they are arranged at intervals on the touch sensor 13.
  • first etched stripes 134 and the second etched stripes 135 may be evenly arranged on the first electrode pattern 131 and the second electrode pattern 133 of the touch sensor 13, so that the first electrode pattern 1331 and the second electrode pattern 133 Each part of the two electrode pattern 133 can rely on the etching stripes to release stress, so as to avoid stress concentration and tearing of the touch sensor 13.
  • the dummy pattern 136 may also be provided with a first etched stripe 134 and a second etched stripe 135, and the dummy pattern 136
  • the arrangement of the first etching stripes 134 and the second etching stripes 135 is the same as the etching stripes on the first electrode pattern 131 or the second electrode pattern 133.
  • the sensing pattern of the touch sensor 13 and the dummy pattern 136 are both provided with the first etched stripe 134 and the second etched stripe 135. Therefore, the coverage of the etched stripe is relatively large, so that each part of the touch sensor 13 is uniform. Has a better effect of preventing stress concentration.
  • the entire or partial parts of the first etched stripes 134 and the second etched stripes 135 can be arc.
  • the entire or partial parts of the first etched stripes 134 and the second etched stripes 135 can be arc.
  • the entire or partial parts of the first etched stripes 134 and the second etched stripes 135 can be arc.
  • the sensor 13 has a certain angle in both the horizontal and vertical directions, so when the touch sensor 13 and the entire touch screen are bent along the horizontal or vertical bending axis, the first etched stripe 134 and the second etched stripe 135
  • the arc shape can be used to eliminate stress concentration during bending and avoid cracks.
  • first etching stripe 134 and the second etching stripe 135 may have a variety of different shapes.
  • the first etched stripe 134 and the second etched stripe 135 may be formed in an arc shape as a whole.
  • the first etched stripe 134 or the second etched stripe 135 itself has a relatively uniform width and a circular arc shape curved along a certain arc.
  • the different first etching stripes 134 or the different second etching stripes 135 may have different bending directions.
  • a plurality of first etching stripes 134 may be arranged at intervals along a certain direction, and the bending direction between two adjacent first etching stripes 134 may be opposite.
  • the first first etched stripe 134 of the two adjacent first etched stripes 134 protrudes toward the first conductive unit 1311
  • the second first etched stripe 134 protrudes toward the opposite direction. It is the direction of the other first conductive unit 1311.
  • first etched stripe 134 and the second etched stripe 135 may be partially arc-shaped, for example, I-shaped, where the connecting portion 1341 in the middle of the I-shaped may be arc.
  • the first etched stripe 134 or the second etched stripe 135 may be a circular arc with a relatively uniform width in the middle section and curved along a certain arc, and the width of the two ends will be greater than the width of the middle section, so that the first etched stripe 134 or the second etched stripe 135 has a shape similar to a dumbbell.
  • the end with a larger width can effectively release the first etched stripe 134 or the second etched stripe 135, so as to prevent the stress of the first etching stripe 134 or the second etching stripe 135 from being concentrated on the end of the stripe, and tearing along the extending direction of the first etching stripe 134 or the second etching stripe 135 Cracking occurs.
  • the first etched stripe 134 and the connecting portion 1341 of the middle section of the second etched stripe 135 may also be It is different that the first etching stripes 134 or the second etching stripes 135 have different bending directions. And illustratively, the first first etched stripe 134 of the two adjacent first etched stripes 134 protrudes in one direction, and the second first etched stripe 134 protrudes in the opposite direction. In this way, the middle sections of the first etched stripes 134 and the second etched stripes 135 are bent in different directions, which can disperse the stress of two adjacent first etched stripes 134 or two adjacent second etched stripes 135, and avoid tearing. Cracking phenomenon.
  • the first etched stripe 134 can be made to have an arc shape as a whole, and the second etched stripe 135 can have an arc-shaped connecting portion 1341. I-shaped; or the first etching stripe 134 is an I-shaped connecting portion 1341 with an arc shape, and the second etching stripe 135 is an arc shape as a whole. Wherein, the first etching stripe 134 and the second etching stripe 135 may have different shapes respectively, which is not limited here.
  • first etched stripes 134 and the second etched stripes 135 can also have other different shapes.
  • first etched stripes 134 and the second etched stripes 135 can have an "S" shape, or other shapes that can relieve stress. , The arc form to avoid stress concentration, etc., will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控传感器(13)、触控显示屏及电子设备,该触控传感器(13)包括:基体、桥接电极线、以及形成在基体上的电极层;电极层至少包括第一电极图案(131),第一电极图案(131)包括彼此互相隔开的多个第一导电单元(1311),第一导电单元(1311)的边界线(1312)包括弯曲的连接段(1313),该连接段(1313)包括至少一个第一凹凸部(1314),且各第一凹凸部(1314)顺次连接形成平滑的曲线;桥接电极线(132)呈曲线延伸,且两端分别跨越相邻的两个第一导电单元(1311)的连接段,并使两个第一导电单元(1311)电连接;桥接电极线(132)包括至少一个第二凹凸部(1321),各第二凹凸部(1321)顺次连接形成平滑的曲线。该触控传感器(13)提高了触控电极的耐弯折性能。

Description

触控传感器、触控显示屏及电子设备
本申请要求于2019年09月06日提交中国专利局、申请号为201910840030.6、申请名称为“触控传感器、触控显示屏及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子设备领域,尤其涉及一种触控传感器、触控显示屏及电子设备。
背景技术
触控屏(touch screen)又称为“触控显示屏”,用户可直接透过触控显示屏上显示的对象进行操作与下达指令,触控显示屏提供了用户与电子产品之间的人性化操作接口,实现很好的人机交互功能,因此,带有触控功能的显示装置得到越来越广泛的应用。触控显示屏可以分为矢量压力传感式触摸屏、电阻式触摸屏、电容式触摸屏、红外线式触摸屏和表面声波式触摸屏。
现有电容式触摸屏,在用户的手接触电容式触摸屏时,将电容式触摸屏上的触控电极和人体静电之间产生的电容上的变化,转换为感应电流,从而来确认用户手的触摸位置。为了保证显示效果及电性能,现有的触控电极一般使用透明金属材料制作。由于触控电极的厚度及材料限制,触控电极的柔韧性较差。在可折叠触控显示屏的应用中,进行多次弯折后,容易在弯折区域出现裂纹导致触控电极断路,进而导致触控显示屏的功能失效。
发明内容
本申请实施例提供一种触控传感器、触控显示屏及电子设备,触控传感器提高了触控电极的耐弯折性能。解决了现有的触控电极在多次弯折后,容易在弯折区域出现裂纹导致触控电极断路,进而导致触控显示屏的功能失效的问题。
第一方面,本申请实施例提供一种触控传感器,包括:
基体;
以及形成在所述基体上的电极层;
所述电极层至少包括第一电极图案,所述第一电极图案包括彼此互相隔开的多个第一导电单元,所述第一导电单元具有边界线,所述边界线包括弯曲的连接段,所述连接段包括至少一个第一凹凸部,且各所述第一凹凸部顺次连接形成平滑的曲线;
桥接电极线,所述桥接电极线的两端分别跨越相邻的两个所述第一导电单元的所述连接段将两个所述第一导电单元电连接;且所述桥接电极线呈曲线延伸,所述桥接电极线包括至少一个第二凹凸部,各所述第二凹凸部顺次连接形成平滑的曲线。
其中,第一凹凸部包括凹部和凸部,凹部和凸部依次间隔连接,从而形成平滑的没有棱角的曲线,也就是说,第一导电单元的边界线由凹部和凸部依次间隔连接形成弯曲状的曲线,从而缓和显示屏在弯折时,应力向第一导电单元的边界线集中,能够减少显示屏在弯折时应力集中,第一导电单元产生的断裂,进而导致显示屏触控失效。将桥接电极线设 置为曲线,增加了桥接电极线的可靠性,能够减少显示屏在弯折时应力集中,桥接电极线产生的断裂。
在一种可能的实现方式中,本申请实施例提供的触控传感器,
所述第一导电单元的边界线为多边形,所述连接段构成所述多边形的一个边线,且所述连接段与相邻的边线之间通过圆角过渡。
这样,进一步减少显示屏在弯折时应力集中,导致第一导电单元产生的断裂。减小第一电极图案的可见性,提高了触摸灵敏度。
在一种可能的实现方式中,本申请实施例提供的触控传感器,
所述第一导电单元的连接段包括圆弧状的第一凹部和第一凸部;
所述桥接电极线包括圆弧状的第二凹部和第二凸部。
在一种可能的实现方式中,本申请实施例提供的触控传感器,
相邻的两个所述第一导电单元的连接段相对设置,且一个所述第一导电单元的所述连接段上的所述第一凹凸部与相邻的另一所述第一导电单元的所述连接段上的第一凹凸部对应设置。
在一种可能的实现方式中,本申请实施例提供的触控传感器,
所述桥接电极线包括至少两个,且各所述桥接电极线上的所述第二凹凸部对应设置。
在一种可能的实现方式中,本申请实施例提供的触控传感器,
所述电极层上还包括第二电极图案,所述第二电极图案包括多个第二导电单元,且各所述第二导电单元依次电连接。
在一种可能的实现方式中,本申请实施例提供的触控传感器,
所述第一电极图案中的各所述第一导电单元沿第一方向排列;所述第二电极图案中的各所述第二导电单元沿第二方向排列,其中,所述第一方向与所述第二方垂直。
在一种可能的实现方式中,本申请实施例提供的触控传感器,
所述第一导电单元上具有接触孔,所述桥接电极线的两端分别跨越相邻的两个所述第一导电单元的所述连接段与所述接触孔电连接。
在一种可能的实现方式中,本申请实施例提供的触控传感器,
相邻的两个所述第一导电单元上的所述接触孔交错设置。这样不同第一导电单元上的接触孔位置相互错开,因而桥接电极线的整体延伸方向不会沿着X轴方向或者Y轴方向,减少了沿桥接电极线整体延伸方向上的应力集中现象。
在一种可能的实现方式中,本申请实施例提供的触控传感器,
还包括至少一条第一刻蚀条纹和至少一条第二刻蚀条纹,各所述第一刻蚀条纹和各所述第二刻蚀条纹交错设置。
在一种可能的实现方式中,本申请实施例提供的触控传感器,
所述第一刻蚀条纹呈弧形状或呈连接部为弧形的工字型;
所述第二刻蚀条纹呈弧形状或呈连接部为弧形的工字型。
第二方面,本申请实施例提供一种触控显示屏,
包括显示屏和上述实施例提供的触控传感器,所述触控传感器位于所述显示屏上。其中触控传感器包括第一电极图案,第一电极图案上第一导电单元的第一凹凸部能缓和显示屏在弯折时,应力向第一导电单元的边界线集中,能够减少显示屏在弯折时应力集中,第 一导电单元产生的断裂,进而导致显示屏触控失效。将桥接电极线设置为曲线,增加了桥接电极线的可靠性,能够减少显示屏在弯折时应力集中,桥接电极线产生的断裂。
第三方面,本申请实施例提供一种电子设备,
包括壳体和上述实施例提供的触控显示屏,所述触控显示屏和所述壳体连接,且所述触控显示屏和所述壳体连接共同围成供元器件容纳的容纳空间。
本申请提供一种触控传感器、触控显示屏及电子设备,触控传感器包括第一电极图案,第一电极图案上第一导电单元的第一凹凸部能缓和显示屏在弯折时,应力向第一导电单元的边界线集中,能够减少显示屏在弯折时应力集中,第一导电单元产生的断裂,进而导致显示屏触控失效。将桥接电极线设置为曲线,增加了桥接电极线的可靠性,能够减少显示屏在弯折时应力集中,桥接电极线产生的断裂。
附图说明
图1为本申请一实施例提供的电子设备的结构示意图;
图2为本申请一实施例提供的电子设备的拆分结构示意图;
图3为本申请一实施例提供的电子设备的弯折状态的结构示意图;
图4为本申请一实施例提供的电子设备中显示屏的拆分结构示意图;
图5为本申请一实施例提供的电子设备中触控传感器的结构示意图;
图6为本申请一实施例提供的电子设备中触控传感器中第一电极图案和桥接电极线的结构示意图;
图7为本申请一实施例提供的电子设备中触控传感器中第二电极图案的结构示意图;
图8为本申请一实施例提供的电子设备中触控传感器中子感知图案单元的结构示意图;
图9为图8中A处的局部放大图;
图10为图8的拆分结构示意图。
附图标记说明:
100-手机;
10-显示屏;11-显示层;12-柔性盖板层;13-触控传感器;131-第一电极图案;1311-第一导电单元;1312-边界线;1313-连接段;1314-第一凹凸部;1315-第一凹部;1316-第一凸部;1317-接触孔;132-桥接电极线;1321-第二凹凸部;1322-第二凹部;1323-第二凸部;133-第二电极图案;1331-第二导电单元;1332-凸出结构;1333-凹陷结构;134-第一刻蚀条纹;1341-连接部;135-第二刻蚀条纹;136-虚设图案;137-绝缘层;
20-中框;21-金属中板;22-边框;
30-后盖。
具体实施方式
本申请实施例提供的一种电子设备,包括但不限于手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、POS机、个人数字助理(personal digital assistant,PDA)、可穿戴设备、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、混合现实(Mixed Reality,MR)等。
其中,为了描述方便,本申请实施例中,以手机100为例对上述电子设备例进行说明。
本申请实施例提供的手机100可以为可折叠的手机。图1为本申请一实施例提供的电子设备的结构示意图;图2为本申请一实施例提供的电子设备的拆分结构示意图。图1和图2分别示出了手机100的整体结构和拆分结构,参见图1和图2所示,手机100可以包括:显示屏10和壳体,显示屏10和壳体共同围成可供元器件容纳的容纳空间,其中,元器件可以包括电路板、处理器、电池等。其中,壳体可以包括中框20和后盖30,中框20位于显示屏10和后盖30之间,显示屏10与中框20的一面连接,后盖30与中框20的另一面连接,显示屏10、后盖30和中框20共同围成可供元器件容纳的容纳空间。其中,电路板和电池可以设置在中框20上,例如,电路板与电池设置在中框20朝向后盖21的一面上;或者电路板与电池可以设置在中框20朝向显示屏10的一面上。其中,电路板在中框20上设置时,中框20上可以开设开口,用于将电路板上的元件置于中框20的开口处。
其中,电池在中框20上设置时,例如,中框20朝向的后盖30的一面上可以设置电池仓,电池安装在电池仓内。本申请实施例中,电池可以通过电源管理模块与充电管理模块和电路板相连,电源管理模块接收电池和/或充电管理模块的输入,并为处理器、内部存储器、外部存储器、显示屏10、摄像头以及通信模块等供电。电源管理模块还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块也可以设置于电路板的处理器中。在另一些实施例中,电源管理模块和充电管理模块也可以设置于同一个器件中。
可以理解的是,本申请实施例示意的结构并不构成对手机100的具体限定。在本申请另一些实施例中,手机100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
其中,后盖30可以为金属后盖,也可以为玻璃后盖,还可以为塑料后盖,或者,还可以为陶瓷后盖,本申请实施例中,对后盖30材质不作限定。
其中,中框20可以包括金属中板21和边框22,边框22沿着金属中板21的外周设置一周,例如,边框22可以包括相对设置顶边和底边,以及位于顶边和底边之间且相对设置的两个侧边。其中,边框22与金属中板21之间的连接方式包括但不限于焊接、卡接或一体注塑成型。其中,金属中板21的材料可以为铝、铝合金或者不锈钢材料。边框22的材料可以为金属、玻璃、塑胶或者陶瓷。需要说明的是,金属中板21和边框22的材料包括但不限于上述材料。
图3为本申请一实施例提供的电子设备的弯折状态的结构示意图;图4为本申请一实施例提供的电子设备中显示屏的拆分结构示意图。参见图3所示,本申请实施例中,由于显示屏10需要进行弯折,所以,显示屏10可以为柔性显示屏,例如柔性显示屏可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏。
一般来说,参见图4所示,显示屏10为OLED显示屏时,该显示屏10可以包括:显示层11和柔性盖板层12,柔性盖板层12覆盖在显示层11上,柔性盖板层12的尺寸可以大于等于显示层11的尺寸。由于显示屏10需要进行弯折,所以柔性盖板层12可以为可弯折的柔性盖板。显示层11可以包括多层功能层,多层功能层例如可以为有机发光层、阳极层、阴极层、薄膜晶体管层(Thin Film Transistor,TFT)等膜层,所以显示层11中具有 多层金属层。
在其他示例中,显示屏10还可以包括:触控传感器13,其中触控传感器13可以设置在显示层11与柔性盖板层12之间。或者,触控传感器13可以集成在显示层11内,形成集触控和显示功能为一体的触控显示屏,柔性盖板层12盖设在触控显示屏上。
图5为本申请一实施例提供的电子设备中触控传感器的结构示意图;图6为本申请一实施例提供的电子设备中触控传感器中第一电极图案和桥接电极线的结构示意图;图7为本申请一实施例提供的电子设备中触控传感器中第二电极图案的结构示意图。参见图5至图7所示,触控传感器13可以包括基体、以及形成在基体上的电极层。
电极层至少包括第一电极图案131,第一电极图案131包括彼此互相隔开的多个第一导电单元1311,第一导电单元1311具有边界线1312,边界线1312包括弯曲的连接段1313,连接段1313包括至少一个第一凹凸部1314,且各第一凹凸部1314顺次连接形成平滑的曲线。其中,边界线1312即为第一导电单元1311边缘线,第一导电单元1311的边界线1312包括多个部分,也就是说,将边界线1312分成多段,边界线1312的其中两段为弯曲的连接段1313(图6中通过虚线圈内的边界线1312),两段连接段1313分别位于第一导电单元1311的相对侧,边界线1312的其他段可以为弧线、直线或者曲线等。
桥接电极线132的两端分别跨越相邻的两个第一导电单元1311的连接段1313将两个第一导电单元1311电连接;且桥接电极线132呈曲线延伸,桥接电极线132包括至少一个第二凹凸部1321,各第二凹凸部1321顺次连接形成平滑的曲线。
其中,多个第一导电单元1311可沿竖直方向设置多列,其中,位于同一列的第一导电单元1311之间通过桥接电极线132连接。以依次连接的三个第一导电单元1311通过桥接电极线132的连接方式进行说明,每个第一导电单元1311具有相对的第一个连接段1313和第二个连接段1313。第一个第一导电单元1311的第一个连接段1313与第二个第一导电单元1311的第二个连接段1313相对,并且,桥接电极线132跨过第一个第一导电单元1311的第一个连接段1313与第二个第一导电单元1311的第二个连接段1313,以连接第一个第一导电单元1311和第二个第一导电单元1311。第二个第一导电单元1311的第一个连接段1313与第三个第一导电单元1311的第二个连接段1313相对,以连接第二个第一导电单元1311和第三个第一导电单元1311。依次类推,以完成位于同一列的第一导电单元1311之间通过桥接电极线132连接。
显示屏10在弯折时,弯折区裂纹的产生主要集中在桥接电极线132区域,主要为显示屏10弯折时,第一导电单元1311位于桥接电极线132区域的连接段1313以及桥接电极线132产生应力集中。因此,本申请实施例中,桥接电极线132跨越的连接段1313包括至少一个第一凹凸部1314,且各第一凹凸部1314顺次连接形成平滑的曲线。
其中,第一凹凸部1314包括凹部和凸部,凹部和凸部依次间隔连接,从而形成平滑的没有棱角的曲线,也就是说,第一导电单元1311的边界线1312由凹部和凸部依次间隔连接形成弯曲状的曲线,从而缓和显示屏10在弯折时,应力向第一导电单元1311的边界线1312集中,能够减少显示屏10在弯折时,第一导电单元1311产生的断裂,进而导致显示屏10触控失效。
其中,在将第一导电单元1311的连接段1313设置为由凹部和凸部依次间隔连接形成弯曲状的曲线同时,将桥接电极线132也设置为曲线状。其中,桥接电极线132呈曲线延 伸,桥接电极线132可以包括至少一个第二凹凸部1321,各第二凹凸部1321顺次连接形成平滑的曲线。将桥接电极线132设置为曲线,增加了桥接电极线132的可靠性,能够减少显示屏在10弯折时应力集中,桥接电极线132产生的断裂。
其中,第二凹凸部1321和第一凹凸部1314的结构可以相同,本实施例在此不做限定。连接段1313和桥接电极线132中的凹部和凸部的曲率不特别限定,例如,凹部和凸部的半径可以为0.02mm至0.1mm。若凹部和凸部的半径小于0.02mm,则由于接近非曲线的直角,抑制裂纹及第一电极图案131可见性改善效果会微小,如果超过0.1mm,则接近直线,难以体现稠密的凹部和凸部,抑制裂纹及第一电极图案131可见性改善效果会微小。在实现稠密的凹部和凸部而使抑制裂纹及可见性效果最大化方面,凹部和凸部的半径可以为0.02mm至0.05mm。
其中,第一电极图案131可以直接形成在显示层11上,即触控传感器13集成在显示层11内,形成集触控和显示功能为一体的触控显示屏。第一电极图案131也可以形成在基体上,基体的材质可以包括但不限于玻璃、聚醚砜(PES,polyethersulphone)、聚丙烯酸酯(PAR,polyacrylate)、聚醚酰亚胺(PEI,polyetherimide)、聚萘二甲酸乙二醇酯(PEN,polyethyelenen napthalate)、聚对苯二甲酸乙二醇酯(PET,polyethyelene terepthalate)、聚苯硫醚(PPS,polyphenylene sulfide)、聚芳酯(polyallylate)、聚酰亚胺(polyimide)、聚碳酸酯(PC,polycarbonate)、三乙酸纤维素(TAC)、醋酸丙酸纤维素(CAP,cellulose acetate propionate)。
其中,第一电极图案131的材质可以包括但不限于ITO(铟锡氧化物)、IZO(铟锌氧化物)、ZnO(氧化锌)、碳纳米管(CNT)、Ag纳米线、导电聚合物、石墨烯或合金。只要是导电性好、电阻低的金属均可作为第一电极图案131的材质,本实施例在此不做限定。其中,第一电极图案131可以通过光刻的方法形成在基体上。
其中,电极层上还包括第二电极图案133,第二电极图案133包括多个第二导电单元1331,且各第二导电单元1331依次电连接。多个第二导电单元1331可沿水平方向设置多行,相邻的第二导电单元1331电连接。其中,第二电极图案133和第一电极图案131可以位于同一层,第二电极图案133与第一电极图案131也可以位于不同层。其中,第二电极图案133与第一电极图案131的材质可以相同。
第一电极图案131中的各第一导电单元1311沿第一方向排列;第二电极图案133中的各第二导电单元1331沿第二方向排列,其中,第一方向与第二方垂直。即各第一导电单元1311和各第二导电单元1331沿不同的方向设置。例如,各第一导电单元1311可以沿直角坐标轴中的X轴设置方向,相应的,各第二导电单元1331沿直角坐标轴中的Y轴设置方向;各第一导电单元1311也可以沿直角坐标轴中的Y轴设置方向,相应的,各第二导电单元1331沿直角坐标轴中的X轴设置方向。
在触控显示屏中,还包括检测电极、处理电路和驱动电极,驱动电极和检测电极均处于基体的上表面,第一导电单元1311和第二导电单元1331位于基体的上表面上,第一导电单元1311为驱动电极,第二导电单元1331为检测电极;或者第一导电单元1311为检测电极,第二导电单元1331为驱动电极。第一导电单元1311和第二导电单元1331提供关于触摸的位置的X坐标及Y坐标的信息。也就是说,如果人的手或物体接触触控传感器13,则经由检测第一导电单元1311和第二导电单元1331之间的电容变化来判断是否有手指触 摸。而且,将第一导电单元1311和第二导电单元1331在X轴方向和Y轴方向上阵列变化,通过检测芯片手指触发的电容变化,确定手指触摸的具体位置,并转换成触摸位置的X坐标及Y坐标信息输入手机100。
在触控显示屏中,第一导电单元1311可以具有多种不同的形状以及设置方式。例如,作为一种可选的实施方式,第一导电单元1311的边界线1312可以为多边形,而连接段1313构成该多边形的一个边线,且连接段1313与相邻的边线之间通过圆角过渡。这样,进一步减少显示屏在10弯折时应力集中,导致第一导电单元1311产生的断裂。减小第一电极图案131的可见性,提高了触摸灵敏度。
此时,第一导电单元1311整体呈一个多边形形状,而为了进行电容量等电参数的检测,第一导电单元1311会成对设置,此时,可以让连接段1313构成第一导电单元1311的多边形边缘的其中一条边线,并让该条边线朝向或邻近另一第一导电单元1311设置,从而便于该连接段1313和另一第一导电单元1311上连接段1313之间通过桥接电极线132连接。
其中,第一电极图案131和第二电极图案133以矩形阵列的形式排布,形成规则的感知图案单元。图8为本申请一实施例提供的电子设备中触控传感器中子感知图案单元的结构示意图;图9为图8中A处的局部放大图;图10为图8的拆分结构示意图。参见图8至图10所示,该感知图案单元具有多个,而每个感知图案单元中可以包括至少两个第一导电单元1311和至少两个第二导电单元1331,其中,两个第二导电单元1331相互电连接。
其中,第一电极图案131和第二电极图案133可以同层设置,此时,第一电极图案131中的第一导电单元1311和第二电极图案133中的第二导电单元1331可以相邻设置,且第二导电单元1331将相邻的两个第一导电单元1311隔开,而这相邻的两个第一导电单元1311之间通过桥接电极线132实现电性连接。由前述第一导电单元1311和第二导电单元1331的检测原理可知,相邻的两个第一导电单元1311和相邻的两个第二导电单元1331可以分别检测触摸位置的X坐标以及Y坐标,从而得到用户的触控信息。
其中,该感知图案单元中,两个第二导电单元1331之间可以连成一体,示例性的,两个第二导电单元1331之间可以通过第二导电单元1331上的连接部连接成为一体结构,而两个相邻的第一导电单元1311被连成一体的两个第二导电单元1331所隔开。且第一导电单元1311的边界线1312中的连接段1313会和另一第一导电单元1311相对设置。此时,两个第一导电单元1311的连接段1313彼此相对,且和两个第二导电单元1331之间的连接部相邻设置。
具体的,第一导电单元1311的连接段1313为弯曲形状,而相应的,在两个第二导电单元1331之间的连接部,也可以具有和连接段1313相对应的弯曲形状。示例性的,该感知图案单元中,每个第一导电单元1311的连接段1313会向相邻的另一第一导电单元1311凸出,且连接段1313中包括多个顺次连接的第一凹凸部1314,而第二导电单元1331以及连接部的和连接段1313相邻的部分,也会相应的具有多段顺次连接的凹凸结构,且凹凸结构的形状和连接段1313的形状相互吻合,例如是凸出结构1332和凹陷结构1333。其中,凸出结构1332和第一凹凸部1314中凹陷的形状相互匹配吻合,而凹陷结构1333和第一凹凸部1314中凸起的形状相互匹配吻合。这样且各第一凹凸部1314在第二导电单元1331上均具有对应的边界形状。由于连接段1313和第二导电单元1331上的连接部均会形成平滑曲线,所以相邻两个第一导电单元1311和相邻两个第二导电单元1331之间的公共区域 能够缓和并释放应力,避免应力集中现象,避免显示屏10在该区域发生断裂现象。
其中,可选的,第一导电单元1311的连接段1313可以包括第一凹部1315和第一凸部1316,第一凹部1315和第一凸部1316顺次设置,从而让连接段1313形成多段弧线结构,且弧线结构的不同段分别弯向不同的方向。
具体的,为了减少应力集中,第一凹部1315和第一凸部1316可以为圆弧状,而第一凹部1315和第一凸部1316之间也可以为圆弧过渡。这样连接段1313的各段均为圆滑的弧线,不会因为凸出的棱线而产生应力集中现象。其中,连接段1313中的第一凹部1315和第一凸部1316的数量可以分别大于或者等于三个。可选的,第一凹部1315的数量介于三个至六个之间,第一凸部1316的数量的数量介于三个至六个之间。
第一导电单元1311的连接段1313可以包括第一凹部1315和第一凸部1316,而第二导电单元1331以及连接部的和连接段1313相邻的部分,也会相应的具有多段顺次连接的凹凸结构,且凹凸结构的形状和连接段1313的形状相互吻合,以减小第二导电单元1331的连接不得应力集中。例如可以为凸出结构1332和凹陷结构1333。其中,凸出结构1332和第一凹部1315的形状相互匹配吻合,而凹陷结构1333和第一凸部1316的形状相互匹配吻合。具体的,凸出结构1332和凹陷结构1333可以均为弧形,第一凹部1315为朝向第一导电单元1311内部凹陷的弧形,相应的,凸出结构1332为朝向第二导电单元1331的外部凸出的弧形。也就是说,在第二导电单元1331的内部同圆形画两个半径不同的圆,第一凹部1315为半径大的圆的一段弧形,凸出结构1332为与第一凹部1315相对的半径小的圆的一段弧形。第一凸部1316为朝向第一导电单元1311外部凹陷的弧形,相应的,凹陷结构1333为朝向第二导电单元1331的外内部凸出的弧形。也就是说,在第一导电单元1311的内部同圆形画两个半径不同的圆,第一凸部1316为半径小的圆的一段弧形,凹陷结构1333为与第一凸部1316相对的半径大的圆的一段弧形。
其中,第一导电单元1311的边界线1312可以全部为弯曲的连接段1313,即边界线1312由第一凹部1315和第一凸部1316依次连接形成,各个连接端1313中的第一凹部1315和第一凸部1316的弧度可以相同也可以不同。相应的,第二导电单元1331的边缘线(也可称为第二导电单元1331的边界线)由凸出结构1332和凹陷结构1333依次连接形成,各凸出结构1332之间的弧度可以相同也可以不同,各凹陷结构1333之间的弧度可以相同也可以不同。
而相应的,桥接电极线132上也可以具有类似的凹凸结构。具体的,作为一种可选的方式,桥接电极线132可以包括圆弧状的第二凹部1322和圆弧状的第二凸部1323。其中,第二凹部1322和第二凸部1323顺次连接,从而避免桥接电极线132上出现凸出的棱线,减少了桥接电极线132上的应力集中现象。
可以理解的是,桥接电极线132上的第二凹部1322和第二凸部1323的具体形状和设置方式,与前述第一导电单元1311的连接段1313上第一凹部1315以及第一凸部1316的形状和设置方式相似,此处不再赘述。
其中,作为一种可选的方式,桥接电极线132可以包括至少两个,且各桥接电极线132上的第二凹凸部1321对应设置。
具体的,因为第一导电单元1311的连接段1313为一条弧线段,所以桥接电极线132的数量可以为两个或者两个以上,以使不同桥接电极线132均连接在连接段1313上。这 样桥接电极线132自身可以形成较小的电阻,能够具有较小的干扰,从而保证第一电极图案对电容量的准确检测。各桥接电极线132上第二凹凸部1321的凹凸方向保持一致,因而在触控传感器和显示屏10发生弯折时,受力较为均匀,避免桥接电极线132因弯折而发生断裂现象。
此外,由于在制造触控传感器13及触控显示屏时,需要利用抛光等工艺进行平坦化,而低图案密度区域的抛光和研磨速率高于高图案密度区域的研磨速率,所以触控传感器13会因其内部不同区域的图案密度不同而形成不同的厚度,导致后续出现图案均匀性不良等问题;此外,不同区域的图案密度不同,也可能会产生不同的折射率,而导致触控传感器13中的第一电极图案131和第二电极图案133和其它区域之间形成较为明显的视觉界限,从而被使用者看到,影响触控传感器13的外观视觉效果。
为了改善触控传感器13中的图案密度均匀性,在触控传感器13的低图案密度区域中可以设置虚设图案136。这样触控传感器13所在的区域可以具有较为均匀的图案密度,由此改善触控传感器13的均匀度,提高产品良率并避免触控传感器13中的电极图案形成明显的视觉界限。具体的,作为一种可选的方式,本申请的触控传感器13可以在第一电极图案131与第二电极图案133之间设置与它们电气分离的虚设图案136,或者在第一电极图案131内设置虚设图案136。
其中,触控传感器13可以分为用于感知触摸操作的感知区域和与感知区域中的电极图案电气分立的无效区域。其中,感知区域中主要包括第一电极图案131和第二电极图案133,而无效区域中主要由虚设图案136构成。由于虚设图案136和无效区域会和第一电极图案131或者第二电极图案133电气分离,因而用户在触摸虚设图案136时,不会让第一电极图案131和第二电极图案133所形成的感应电极受到影响。
具体的,虚设图案136的至少部分边界可以对应于第一电极图案131和第二电极图案133的边界。此时,当第一电极图案131和第二电极图案133具有凹凸起伏的边界曲线时,相应的,虚设图案136的至少部分边界也可以具有顺次连接的凹部和凸部,从而形成平滑的曲线。这样由于虚设图案136的边界形状和第一电极图案131或者第二电极图案133的边界形状相互对应匹配,示例性的,第一电极图案131和第二电极图案133两者的边界形状相互吻合,所以第一电极图案131和第二电极图案133之间存在虚设图案136的区域会较小,可以让第一电极图案131和第二电极图案133所形成的界限和形状较为模糊,不易被使用者感知。
而虚设图案136可以为多个,即包括多个相互分开的子虚设图案136。这样虚设图案136可以分开为多个图案,各虚设图案136之间可以相互独立,从而让触控传感器13以及整个触控显示屏更为柔软,便于弯折。
其中,本领域技术人员可以理解的是,虚设图案136可以和第一电极图案131或者是第二电极图案133具有相近的厚度,从而保持整个触控传感器13具有较为平整、一致的结构。其中,虚设图案136的厚度可以为本领域技术人员所常用的厚度,例如虚设图案136的厚度可以为10nm至350nm之间。
其中,和第一电极图案131和第二电极图案133类似,虚设图案136可以使用和第一电极图案131或第二电极图案133的材料相同或者相近的材料,以使存在第一电极图案131或第二电极图案133的区域和虚设图案136所处的无效区域之间具有较小的折射率差异。
此外,在形成虚设图案136时,虚设图案136的形成方法可以为本领域技术人员常用的图案形成方法,例如,可以采用前述第一电极图案131或第二电极图案133的形成方法来形成虚设图案136,此处不加以限制。其中,可以理解的是,虚设图案136可以和第一电极图案131以及第二电极图案133在同一工序或蚀刻过程中形成,也可以和第一电极图案131或者第二电极图案133在不同工序和蚀刻过程中形成。
此外,由于第一电极图案131中的各个第一导电单元1311之间可以通过桥接电极线132连接而导通,而为了避免桥接电极线132和第二电极图案133导通而干扰到触控传感器13的正常感应和检测,本申请中的触控传感器13还可以包括绝缘层137。
其中,绝缘层137可以设置在电极层和桥接电极线132之间,从而隔离电极层和桥接电极线132,让电极层中的第二电极图案133和桥接电极线132相互隔离和绝缘。
具体的,在具体实施时,绝缘层137可以有多种不同的设置方式。例如,绝缘层137可以以为孤立的岛状结构,此时,绝缘层137仅位于两个第二电极图案133之间的区域,从而将该两个第二电极图案133之间的区域和桥接电极线132隔离开,或者绝缘层137也可以具有较大的覆盖面积,例如是覆盖整个电极层等。其中,绝缘层137的实际设置方式可以根据触控传感器13的具体结构和要求而相应设置。
在一种可选的方式中,可以让桥接电极线132和电极层为不同层设置,以使桥接电极线132和第二电极图案133保持绝缘,且利用接触孔1317等结构实现桥接电极线132和第一电极图案131之间的连接。具体的,可以在第一导电单元1311上设置接触孔1317,桥接电极线132的两端分别跨越相邻的两个第一导电单元1311的连接段1313,并与接触孔1317电连接。
其中,由于桥接电极线132和电极层分别处于不同层,所以桥接电极线132和电极层中的第二电极图案133可以相互绝缘,而在第一电极图案131中的第一导电单元1311上设置接触孔1317,接触孔1317可以连通电极层和桥接电极线132所处的层,从而让接触孔1317连通桥接电极线132131以及各第一导电单元1311,从而实现第一电极图案131中各第一导电单元1311的相互导通。
此外,还可以采用其它本领域技术人员所熟知的连接方式来连接桥接电极线132和第一导电单元1311,例如是让桥接电极线132和第一导电单元1311之间直接接触并导通等,此处不加以限制。
其中,可选的,相邻的两个第一导电单元1311上的接触孔1317可以交错设置。这样不同第一导电单元1311上的接触孔1317位置相互错开,因而桥接电极线132的整体延伸方向不会沿着X轴方向或者Y轴方向,减少了沿桥接电极线132整体延伸方向上的应力集中现象。
其中,接触孔1317可以为圆孔、椭圆孔、长条孔等。可选的,接触孔可以为圆孔,显示屏10的折弯时,圆孔受力较均匀。
为了增强触控传感器13的柔韧性,避免触控传感器13和触控显示屏在弯折时因应力集中而出现裂纹等现象,触控传感器13的内部还可以设置有能够释放应力,避免应力集中的结构。其中,作为一种可选的方式,在触控传感器13的内部设置刻蚀条纹,由于刻蚀条纹的内部会形成空腔或者是间隙,所以当触控显示屏发生弯折时,刻蚀条纹的相对两侧边缘可以随着弯折形变而相互靠近或者相互远离,从而在刻蚀条纹的位置提供一定的形 变空间,并在刻蚀条纹的位置释放应力,避免触控传感器13在刻蚀条纹处产生应力集中和撕裂现象。
其中,触控传感器13中还包括至少一条第一刻蚀条纹134和至少一条第二刻蚀条纹135,第一刻蚀条纹134和第二刻蚀条纹135的延伸方向相互交错。
由于触控传感器13以及整个触控显示屏可以产生多个角度和方向的弯折,所以相应的,为了在触控传感器13沿不同方向弯折时,均能够释放弯折时的应力,所以相应的,感知图案单元中具有分别向不同方向延伸的第一刻蚀条纹134和第二刻蚀条纹135,而第一刻蚀条纹134和第二刻蚀条纹135可以分别提供不同方向上的形变空间,从而释放不同方向上的应力,让触控传感器13在向不同方向弯折时都能够避免撕裂现象。
其中,由于触控传感器13的第一电极图案131和第二电极图案133分别用于检测不同方向上的触碰动作,因而相应的,在本实施例中,可以让刻蚀条纹的延伸方向与第一电极图案131以及第二电极图案133的感应方向保持一致。具体的,可以让各第一刻蚀条纹134与桥接电极线132平行,各第二刻蚀条纹135与桥接电极线132垂直。
此时,第一刻蚀条纹134和第二刻蚀条纹135相互交错,且大致呈相互垂直的角度设置。这样第一刻蚀条纹134和第二刻蚀条纹135可以相互配合,并释放因触控传感器13和触控显示屏弯折时所产生的各个方向上的应力。
其中,第一刻蚀条纹134和第二刻蚀条纹135可以为一条或者多条。因为在触控传感器13和触控显示屏弯折时,发生弯折的区域可能位于触控显示屏上的不同位置,所以相应的,第一刻蚀条纹134和第二刻蚀条纹135均可以为多条,且在触控传感器13上间隔排布。
其中,示例性的,第一刻蚀条纹134和第二刻蚀条纹135可以在触控传感器13的第一电极图案131以及第二电极图案133上均匀排布,这样第一电极图案1331和第二电极图案133的各个部位均能够依靠刻蚀条纹释放应力,以避免触控传感器13发生应力集中和撕裂现象。
而当触控传感器13的感知图案单元中包括有虚设图案136时,可选的,在虚设图案136中也可以设置有第一刻蚀条纹134以及第二刻蚀条纹135,且虚设图案136中的第一刻蚀条纹134和第二刻蚀条纹135的排布方式均和第一电极图案131或者第二电极图案133上的刻蚀条纹相同。这样触控触控传感器13的感应图案和虚设图案136中均设置有第一刻蚀条纹134以及第二刻蚀条纹135,因而刻蚀条纹的覆盖范围较大,让触控传感器13各个部位均具有较好的防止应力集中效果。
其中,为了让第一刻蚀条纹134和第二刻蚀条纹135具有较好的释放应力效果,可选的,可以让第一刻蚀条纹134以及第二刻蚀条纹135的整体或者局部部位呈弧形。其中,由前述可知,和第一电极图案131的边界线1312形状类似,当第一刻蚀条纹134和第二刻蚀条纹135的整体或者大部分局部呈弧形时,由于弧形和触控传感器13的横向或纵向均具有一定的夹角,所以在触控传感器13以及整个触控显示屏沿着横向或纵向弯折轴弯折时,第一刻蚀条纹134和第二刻蚀条纹135可以利用弧形来消除弯折时的应力集中现象,避免裂纹的产生。
其中,当第一刻蚀条纹134以及第二刻蚀条纹135的整体或局部部位呈弧形时,具体可以有多种不同的形状。
例如,在一种可选的实施方式中,第一刻蚀条纹134和第二刻蚀条纹135可以整体形成弧形形状。此时,第一刻蚀条纹134或者第二刻蚀条纹135自身为宽度较为均匀,且沿一定弧度弯曲的圆弧状。
其中,不同第一刻蚀条纹134或者不同第二刻蚀条纹135可以具有不同的弯曲方向。以第一刻蚀条纹134为例,多个第一刻蚀条纹134可以沿着某一方向间隔排布,而相邻两个第一刻蚀条纹134之间的弯曲方向可以相反。具体的,可以是相邻两个第一刻蚀条纹134中的前一个第一刻蚀条纹134凸向第一导电单元1311,而后一个第一刻蚀条纹134凸向与之相对的方向,也就是另一第一导电单元1311的方向。这样相邻两个第一刻蚀条纹134或者第二刻蚀条纹135的弯曲方向不同,可以有效分散相邻两个第一刻蚀条纹134或者相邻两个第二刻蚀条纹135处的应力,提高应力释放效果。
而在另一种可选的实施方式中,第一刻蚀条纹134和第二刻蚀条纹135可以局部呈弧形,例如是可以工字型,其中,工字型中间的连接部1341可以为弧形。
具体的,第一刻蚀条纹134或者第二刻蚀条纹135可以为中段为宽度较为均匀,且沿一定弧度弯曲的圆弧,而两端的宽度会大于中段的宽度,从而让第一刻蚀条纹134或者第二刻蚀条纹135呈类似于哑铃的形状。当第一刻蚀条纹134和第二刻蚀条纹135为端部具有较大宽度的工字型时,具有较大宽度的端部可以有效释放位于第一刻蚀条纹134或者第二刻蚀条纹135端部的应力,从而避免因为第一刻蚀条纹134或者第二刻蚀条纹135的应力集中于条纹的端部,而产生沿第一刻蚀条纹134或者第二刻蚀条纹135延伸方向撕裂的情况发生。
其中,和前一实施方式类似,当第一刻蚀条纹134和第二刻蚀条纹135为工字型时,第一刻蚀条纹134以及第二刻蚀条纹135中段的连接部1341,也可以是不同第一刻蚀条纹134或者第二刻蚀条纹135具有不同的弯曲方向。且示例性的,相邻两个第一刻蚀条纹134中的前一个第一刻蚀条纹134凸向一个方向,而后一个第一刻蚀条纹134凸向与之相对的方向。这样第一刻蚀条纹134和第二刻蚀条纹135的中段弯向不同方向,能够分散相邻两个第一刻蚀条纹134或者相邻两个第二刻蚀条纹135的应力,避免出现撕裂现象。
此外,本领域技术人员可以理解的是,在又一种可选的实施方式中,可以令第一刻蚀条纹134整体呈弧形,而第二刻蚀条纹135呈连接部1341为弧形的工字型;或者是令第一刻蚀条纹134呈连接部1341为弧形的工字型,而第二刻蚀条纹135整体呈弧形等。其中,第一刻蚀条纹134和第二刻蚀条纹135可以分别具有不同的形状,此处不加以限制。
此外,第一刻蚀条纹134和第二刻蚀条纹135也可以为其它不同的形状,例如第一刻蚀条纹134和第二刻蚀条纹135可以呈“S”形状,或者是其它可以释放应力,避免应力集中的弧线形式等,此处不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (13)

  1. 一种触控传感器,其特征在于,包括:
    基体;
    以及形成在所述基体上的电极层;
    所述电极层至少包括第一电极图案,所述第一电极图案包括彼此互相隔开的多个第一导电单元,所述第一导电单元具有边界线,所述边界线包括弯曲的连接段,所述连接段包括至少一个第一凹凸部,且各所述第一凹凸部顺次连接形成平滑的曲线;
    桥接电极线,所述桥接电极线的两端分别跨越相邻的两个所述第一导电单元的所述连接段将两个所述第一导电单元电连接;且所述桥接电极线呈曲线延伸,所述桥接电极线包括至少一个第二凹凸部,各所述第二凹凸部顺次连接形成平滑的曲线。
  2. 根据权利要求1所述的触控传感器,其特征在于,
    所述第一导电单元的边界线为多边形,所述连接段构成所述多边形的一个边线,且所述连接段与相邻的边线之间通过圆角过渡。
  3. 根据权利要求2所述的触控传感器,其特征在于,
    所述第一导电单元的连接段包括圆弧状的第一凹部和第一凸部;
    所述桥接电极线包括圆弧状的第二凹部和第二凸部。
  4. 根据权利要求1所述的触控传感器,其特征在于,
    相邻的两个所述第一导电单元的连接段相对设置,且一个所述第一导电单元的所述连接段上的所述第一凹凸部与相邻的另一所述第一导电单元的所述连接段上的第一凹凸部对应设置。
  5. 根据权利要求1所述的触控传感器,其特征在于,
    所述桥接电极线包括至少两个,且各所述桥接电极线上的所述第二凹凸部对应设置。
  6. 根据权利要求1至5任一项所述的触控传感器,其特征在于,
    所述电极层上还包括第二电极图案,所述第二电极图案包括多个第二导电单元,且各所述第二导电单元依次电连接。
  7. 根据权利要求6所述的触控传感器,其特征在于,
    所述第一电极图案中的各所述第一导电单元沿第一方向排列;所述第二电极图案中的各所述第二导电单元沿第二方向排列,其中,所述第一方向与所述第二方垂直。
  8. 根据权利要求1至5任一项所述的触控传感器,其特征在于,
    所述第一导电单元上具有接触孔,所述桥接电极线的两端分别跨越相邻的两个所述第一导电单元的所述连接段与所述接触孔电连接。
  9. 根据权利要求8所述的触控传感器,其特征在于,
    相邻的两个所述第一导电单元上的所述接触孔交错设置。
  10. 根据权利要求1至5任一项所述的触控传感器,其特征在于,
    还包括至少一条第一刻蚀条纹和至少一条第二刻蚀条纹,各所述第一刻蚀条纹和各所述第二刻蚀条纹交错设置。
  11. 根据权利要求10所述的触控传感器,其特征在于,
    所述第一刻蚀条纹呈弧形状或工字型;
    所述第二刻蚀条纹呈弧形状或工字型。
  12. 一种触控显示屏,其特征在于,
    包括显示屏和权利要求1至11任一项所述的触控传感器,所述触控传感器位于所述显示屏上。
  13. 一种电子设备,其特征在于,
    包括壳体和权利要求12所述的触控显示屏,所述触控显示屏和所述壳体连接,且所述触控显示屏和所述壳体连接共同围成供元器件容纳的容纳空间。
PCT/CN2020/113518 2019-09-06 2020-09-04 触控传感器、触控显示屏及电子设备 WO2021043271A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227008040A KR20220045021A (ko) 2019-09-06 2020-09-04 터치 센서, 터치 디스플레이 및 전자 장치
US17/639,793 US11899891B2 (en) 2019-09-06 2020-09-04 Touch sensor, touch display, and electronic device
EP20861535.1A EP4016259A4 (en) 2019-09-06 2020-09-04 TOUCH SENSOR, TOUCH SCREEN AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910840030.6A CN112462962B (zh) 2019-09-06 2019-09-06 触控传感器、触控显示屏及电子设备
CN201910840030.6 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021043271A1 true WO2021043271A1 (zh) 2021-03-11

Family

ID=74807051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113518 WO2021043271A1 (zh) 2019-09-06 2020-09-04 触控传感器、触控显示屏及电子设备

Country Status (5)

Country Link
US (1) US11899891B2 (zh)
EP (1) EP4016259A4 (zh)
KR (1) KR20220045021A (zh)
CN (1) CN112462962B (zh)
WO (1) WO2021043271A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114356129B (zh) * 2020-10-12 2024-04-09 京东方科技集团股份有限公司 触控电极结构和显示装置
GB2609794A (en) * 2021-01-28 2023-02-15 Boe Technology Group Co Ltd Touch module, fabrication method therefor, and touch display apparatus
CN114063319A (zh) * 2021-11-16 2022-02-18 Oppo广东移动通信有限公司 显示膜片、壳体和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271782A (ja) * 2009-05-19 2010-12-02 Toshiba Mobile Display Co Ltd タッチパネル及び画像表示装置
US20150181716A1 (en) * 2013-12-25 2015-06-25 Hon Hai Precision Industry Co., Ltd. Method for manufacturing touch panel
CN106293202A (zh) * 2016-07-29 2017-01-04 上海天马微电子有限公司 一种触控模组及触控显示装置
CN107632740A (zh) * 2017-10-23 2018-01-26 京东方科技集团股份有限公司 触控基板及其制备方法和触控装置
CN109002205A (zh) * 2018-06-29 2018-12-14 京东方科技集团股份有限公司 一种触控面板和触控显示装置
CN109917969A (zh) * 2019-04-01 2019-06-21 昆山龙腾光电有限公司 触控基板、触摸屏以及显示装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654104B2 (en) * 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination
DE112011103678T5 (de) * 2010-11-04 2014-01-23 Tokai Rubber Industries, Ltd. Biegesensor
KR20130069938A (ko) 2011-12-19 2013-06-27 엘지이노텍 주식회사 터치패널의 전극 패턴
CN103576998B (zh) * 2012-07-20 2017-07-28 上海思立微电子科技有限公司 电容式触摸屏及单层布线电极阵列
US9195108B2 (en) * 2012-08-21 2015-11-24 Apple Inc. Displays with bent signal lines
KR102132780B1 (ko) * 2013-08-28 2020-07-13 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR102363255B1 (ko) * 2013-12-02 2022-02-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 터치 패널 및 터치 패널의 제작 방법
KR102258037B1 (ko) * 2014-06-02 2021-05-27 가부시키가이샤 브이티에스 터치센서 터치 센서용 전극, 터치 패널 및, 표시 장치
TW201633080A (zh) * 2015-03-05 2016-09-16 明興光電股份有限公司 觸控面板以及觸控顯示面板
KR102027775B1 (ko) * 2015-03-30 2019-10-02 동우 화인켐 주식회사 터치 센서
CN204706011U (zh) * 2015-06-26 2015-10-14 鄂尔多斯市源盛光电有限责任公司 一种触控显示装置
CN205068345U (zh) * 2015-10-29 2016-03-02 合肥鑫晟光电科技有限公司 一种触控结构、触控屏及显示装置
KR101739000B1 (ko) 2015-11-23 2017-05-23 동우 화인켐 주식회사 터치 센서
CN205486028U (zh) * 2016-03-17 2016-08-17 京东方科技集团股份有限公司 一种触控显示面板和触控显示装置
KR102332579B1 (ko) * 2016-03-31 2021-11-29 동우 화인켐 주식회사 터치 센서
CN105867709B (zh) * 2016-04-05 2019-03-29 信利(惠州)智能显示有限公司 触控面板架桥结构及触控面板
CN105912164A (zh) * 2016-04-12 2016-08-31 京东方科技集团股份有限公司 一种触控基板及其制备方法、显示装置
CN108334215B (zh) 2017-01-20 2020-01-14 京东方科技集团股份有限公司 一种柔性触控面板及显示装置
CN107301003B (zh) * 2017-08-08 2021-03-23 京东方科技集团股份有限公司 一种触控面板、其制作方法、触摸屏及显示装置
CN109388294B (zh) * 2017-08-11 2021-01-22 京东方科技集团股份有限公司 触控面板及其制作方法、触控显示装置
KR20190019557A (ko) * 2017-08-18 2019-02-27 동우 화인켐 주식회사 터치 센서 및 이를 포함하는 화상 표시 장치
CN109426373A (zh) * 2017-08-21 2019-03-05 京东方科技集团股份有限公司 触控面板及其制作方法、触控显示装置
CN209606950U (zh) * 2017-08-22 2019-11-08 东友精细化工有限公司 触摸传感器和包括该触摸传感器的图像显示设备
KR102467874B1 (ko) * 2017-10-16 2022-11-16 삼성디스플레이 주식회사 표시 장치
CN108052239A (zh) * 2018-01-25 2018-05-18 武汉华星光电半导体显示技术有限公司 触摸屏
US20190227646A1 (en) * 2018-01-25 2019-07-25 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch panel
CN108598290B (zh) * 2018-04-04 2020-05-05 武汉华星光电半导体显示技术有限公司 柔性显示器及其制作方法
CN109508118A (zh) * 2018-12-21 2019-03-22 武汉华星光电半导体显示技术有限公司 柔性触控显示面板
WO2020166882A1 (ko) * 2019-02-14 2020-08-20 동우화인켐 주식회사 터치 센서, 이를 포함하는 윈도우 적층체 및 이를 포함하는 화상 표시 장치
KR20200115807A (ko) * 2019-03-26 2020-10-08 삼성디스플레이 주식회사 표시 장치
CN110162214B (zh) 2019-05-05 2020-10-13 武汉华星光电半导体显示技术有限公司 触控面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271782A (ja) * 2009-05-19 2010-12-02 Toshiba Mobile Display Co Ltd タッチパネル及び画像表示装置
US20150181716A1 (en) * 2013-12-25 2015-06-25 Hon Hai Precision Industry Co., Ltd. Method for manufacturing touch panel
CN106293202A (zh) * 2016-07-29 2017-01-04 上海天马微电子有限公司 一种触控模组及触控显示装置
CN107632740A (zh) * 2017-10-23 2018-01-26 京东方科技集团股份有限公司 触控基板及其制备方法和触控装置
CN109002205A (zh) * 2018-06-29 2018-12-14 京东方科技集团股份有限公司 一种触控面板和触控显示装置
CN109917969A (zh) * 2019-04-01 2019-06-21 昆山龙腾光电有限公司 触控基板、触摸屏以及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4016259A4

Also Published As

Publication number Publication date
EP4016259A4 (en) 2022-10-19
CN112462962A (zh) 2021-03-09
US11899891B2 (en) 2024-02-13
EP4016259A1 (en) 2022-06-22
CN112462962B (zh) 2023-01-06
US20220291781A1 (en) 2022-09-15
KR20220045021A (ko) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2021043271A1 (zh) 触控传感器、触控显示屏及电子设备
US9823792B2 (en) Touch panel
US9086766B2 (en) Touch panel and touch display panel
KR101691619B1 (ko) 터치 스크린 패널 및 이를 구비한 표시 장치
US20120044662A1 (en) Display device having touch panel
CN205563500U (zh) 触摸窗口以及包含该触摸窗口的显示器
WO2019047580A1 (zh) 触控基板及其制备方法、显示面板
JP2017533583A (ja) フレキシブル基板の信号トレースパターン
US20130201348A1 (en) Capacitive touch panel
US8896571B2 (en) Touch panel
JP2019091159A (ja) タッチパネル付き表示装置
KR102232774B1 (ko) 터치 패널 및 이를 포함하는 표시 장치
TW201642100A (zh) 觸控感測器
US11294519B2 (en) Touch panel
TWI630517B (zh) 觸控視窗以及包含其之觸控裝置
TW201510811A (zh) 觸控面板及其製作方法
US20240029629A1 (en) Display panel and mobile terminal
US20120056824A1 (en) Composite structure and touch device
CN112639706A (zh) 触控电极结构、触摸屏和触控显示装置
US9977548B2 (en) Touch panel and touch electrode structure thereof
US20160195987A1 (en) Touch sensor device and method for forming the same
TWI623862B (zh) 觸控面板
TWI401489B (zh) 電容式觸控基板結構及電容式觸控面板結構
US11526231B2 (en) Touch routing lines for self-capacitance touch display screen and display device thereof
TWI688887B (zh) 觸控面板與電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008040

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020861535

Country of ref document: EP

Effective date: 20220316