WO2021043084A1 - 一种微机电系统装置的封装系统及其加工方法 - Google Patents

一种微机电系统装置的封装系统及其加工方法 Download PDF

Info

Publication number
WO2021043084A1
WO2021043084A1 PCT/CN2020/112201 CN2020112201W WO2021043084A1 WO 2021043084 A1 WO2021043084 A1 WO 2021043084A1 CN 2020112201 W CN2020112201 W CN 2020112201W WO 2021043084 A1 WO2021043084 A1 WO 2021043084A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
spacer
adhesive
packaging system
spacer unit
Prior art date
Application number
PCT/CN2020/112201
Other languages
English (en)
French (fr)
Inventor
李啟光
Original Assignee
深圳市中光工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中光工业技术研究院 filed Critical 深圳市中光工业技术研究院
Publication of WO2021043084A1 publication Critical patent/WO2021043084A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Definitions

  • the present invention relates to the field of micro-electro-mechanical systems, in particular to a packaging system for micro-electro-mechanical system devices and a processing method thereof.
  • micro-electro-mechanical system MEMS, Micro-Electro-Mechanical System
  • MEMS Micro-Electro-Mechanical System
  • an airtight environment is usually required.
  • Encapsulation is usually done by soldering or diffusion bonding, which is expensive and requires a higher processing temperature, which may exceed the temperature tolerance of the device.
  • An alternative solution is to use a resin-encapsulated glass composite layer, which has poor airtightness, complex process and high cost. Therefore, there is a need for a microelectromechanical system packaging structure with better sealing and low cost.
  • the present invention provides a packaging system for microelectromechanical system devices with better sealing and low cost, including a first substrate and a second substrate , It also includes a sealing structure arranged between the first substrate and the second substrate, the first substrate, the second substrate and the sealing structure enclose a closed space, and the functional elements of the microelectromechanical system device are arranged on the first substrate And/or the second substrate, and the functional element is located in the closed space, the sealing structure includes a spacer group and an adhesive, the spacer group includes at least two spacer units, each spacer unit and the first substrate and One of the second substrates is directly connected, and the spacer unit is indirectly connected to the other of the first substrate and the second substrate through an adhesive.
  • the spacer group includes a first spacer unit and a second spacer unit arranged side by side, and the first spacer unit, the adhesive, the first substrate and the second substrate enclose a first closed space , The second spacer unit and the adhesive, the first substrate and the second substrate enclose a second closed space, the first spacer unit, the second spacer unit, the adhesive and the first substrate and the second One of the substrates encloses a third closed space, and the third closed space is located in the first closed space and outside the second closed space.
  • a cavity is provided in the third enclosed space.
  • the size of the end close to the adhesive of at least part of the spacer unit is smaller than the size of the end remote from the adhesive.
  • the spacer unit is integrally formed with one of the first substrate and the second substrate.
  • the first spacer unit is directly connected to the first substrate, and the second spacer unit is directly connected to the second substrate.
  • the first substrate and the second substrate are respectively one of a glass substrate and a silicon substrate.
  • the adhesive is epoxy
  • a desiccant is provided in the third enclosed space.
  • the present invention includes the following beneficial effects: by using a spacer group including at least two spacer units and an adhesive as the sealing structure between the two substrates, on the one hand, the process is simplified and no high temperature is required. Treatment, on the other hand, the use of the spacer group reduces the cross-sectional area of the sealing resin in the sealing channel and improves the sealing performance. In addition, the contact area between the adhesive and the spacer group is increased through multiple spacer units, thereby increasing the two Binding force and reliability of the structure.
  • the present invention also provides a method for processing a packaging system of a microelectromechanical system device, which includes the steps of obtaining a first substrate and a second substrate, and the functional elements of the microelectromechanical system device are formed on the first substrate and/or the second substrate.
  • a spacer group is formed on the surface of at least one of the first substrate and the second substrate, the spacer group includes at least two spacer units; the first substrate and/or the second substrate are coated with adhesive Assemble the first substrate and the second substrate, so that the spacer unit is indirectly connected to the other of the first substrate and the second substrate by squeezing the adhesive, so that the first substrate and the second substrate ,
  • the spacer group and the adhesive form a closed space, and the functional elements are located in the closed space.
  • the spacer group is formed on the surface of at least one of the first substrate and the second substrate by wet etching.
  • the minimum horizontal distance between the adhesive coated on the first substrate and/or the second substrate and the functional element is greater than the minimum horizontal distance between the spacer group and the functional element.
  • FIG. 1 is a schematic structural diagram of a packaging system of a micro-electro-mechanical system device according to the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of the packaging system of the MEMS device according to the second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the packaging system of the microelectromechanical system device according to the third embodiment of the present invention.
  • FIG. 4 is a processing flow chart of the packaging system of the MEMS device according to the first embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a packaging system of a microelectromechanical system device according to the first embodiment of the present invention.
  • the packaging system 10 includes a first substrate 101 and a second substrate 102, and is disposed on the first substrate 101 and the second substrate.
  • the sealing structure between the two substrates 102.
  • the sealing structure includes a spacer group 110 and an adhesive 120.
  • the first substrate 101, the second substrate 102 and the sealing structure enclose a closed space.
  • the function of the MEMS device The element 130 is disposed in the closed space, and is located on the second substrate 102 in this embodiment.
  • the spacer group 110 includes three spacer units 111, 112 and 113 (it can be understood that the present invention is to achieve the effect of improving the sealing performance and structural reliability, only the spacer group includes at least two The spacer unit is sufficient.
  • a structure including three spacer units is used for distance description, which is not a limitation of the present invention).
  • Each spacer unit is directly connected to the first substrate 101 and is directly connected to the first substrate 101 through an adhesive 120 It is indirectly connected to the second substrate 102.
  • the first substrate 101 is a glass substrate
  • the second substrate 102 is a silicon substrate
  • the functional element 130 is a micro-optical element.
  • the light from outside the microelectromechanical system passes through the first substrate 101 and enters the functional element. 130. After being modulated by the functional element 130, the light passes through the first substrate 101 and then exits.
  • the functional element may also be provided on the first substrate, or partly on the first substrate and partly on the second substrate at the same time.
  • FIG. 1 shows a cross-sectional side view of the packaging system. From the perspective of the top view, each spacer unit can be seen In a closed shape, such as a rectangular ring, a circular ring, etc., as shown in Figure 1, the first spacer unit 111, the second spacer unit 112, and the third spacer unit 113 are nested layer by layer, and each spacer unit is matched with an adhesive Both the first substrate 101 and the second substrate 102 can form a closed space.
  • the first spacer unit 111 and the adhesive 120 and the first substrate 101 and the second substrate 102 enclose a first closed space; the second spacer unit 112 and the adhesive 120, the first substrate 101 and the second substrate The substrate 102 encloses a second closed space.
  • the first partition unit 111, the second partition unit 112, the adhesive 120, and the substrate enclose a third closed space 140, and the third closed space 140 is located in the first closed space and outside the second closed space.
  • the multi-spacer unit structure of the present invention increases obstacles for external water vapor and air to contact the functional elements, and greatly improves the air tightness; in addition, the multi-spacer unit makes the adhesive squeeze Time can enter between the two spacer units. On the one hand, it prevents the adhesive from extending to the functional element and causing pollution, and on the other hand, it prevents the adhesive from extending to the outside and hindering the cutting, installation and other processes.
  • a cavity is provided in the third enclosed space 140, and the existence of the cavity can serve as a buffer between the enclosed space where the functional element 130 is located and the outside.
  • the MEMS device is packaged under an inert atmosphere or nitrogen, and the pressure may be different from the outside atmospheric pressure. Therefore, when the device is exposed to the air environment for assembly and use, the difference between the external air environment and the environment in the enclosed space may cause gas expansion, permeation, etc., thereby affecting the sealing structure.
  • the cavity the direct effect of the external environment and the enclosed space is separated; and the volume of the cavity is small.
  • a desiccant can be further arranged in the third enclosed space to absorb the invading water vapor.
  • the adhesive 120 is epoxy resin.
  • other materials may also be used for the adhesive.
  • the adhesive adopts a material with low light reflectivity, which can effectively avoid the interference of the sealing structure to light.
  • FIG. 2 is a schematic diagram of the structure of the packaging system of the MEMS device according to the second embodiment of the present invention.
  • the packaging system 20 includes a first substrate 201, a second substrate 202, and a sealing structure disposed between the first substrate 201 and the second substrate 202, and the sealing structure includes a spacer group 210 and an adhesive 220 ,
  • the spacer group 210 includes three spacer units 211, 212, and 213.
  • the difference between this embodiment and the embodiment shown in FIG. 1 is that the shape of the spacer unit in this embodiment is different from that in the first embodiment.
  • the cross section of the spacer unit is rectangular, while the cross section of the spacer unit of this embodiment is trapezoidal.
  • the structure design of this embodiment makes the size of the end of the spacer unit close to the adhesive 220 smaller than the size of the end far away from the adhesive 220, which is beneficial to make the structure formed by the adhesive 220 thinner during the processing. , More use of spacer units instead of adhesives to seal the functional components.
  • the cross-section of the spacer unit may also have other shapes, such as triangular shapes.
  • the spacer unit component and the substrate directly connected to it are an integrally formed structure. It can be understood that, in other embodiments of the present invention, the two can also be independent structures and connected through post-processing.
  • FIG. 3 is a schematic diagram of the structure of the packaging system of the MEMS device according to the third embodiment of the present invention.
  • the packaging system 30 includes a first substrate 301, a second substrate 302, and a sealing structure disposed between the first substrate 301 and the second substrate 302.
  • the sealing structure includes a spacer group 310 and an adhesive 320,
  • the spacer group 310 includes two spacer units 311 and 312.
  • the two spacer units in this embodiment are directly connected to different substrates respectively.
  • the first spacer unit 311 is directly connected to the first substrate 301
  • the second spacer unit is directly connected to the first substrate 301.
  • the unit 312 is directly connected to the second substrate 302.
  • the sealing structure can be obtained by squeezing the adhesive 320 by etching the spacer units on the two substrates respectively, and then aligning the substrates.
  • the present invention also provides a processing method for the packaging system of the above-mentioned MEMS device.
  • FIG. 4 is a processing flow chart of the packaging system of the MEMS device in the first embodiment of the present invention.
  • the marks in the figure refer to the first embodiment. description of.
  • the processing method includes the steps of obtaining a first substrate 101 and a second substrate 102, and the functional element 130 of the MEMS device is formed on the second substrate 102 (it is understood that in other embodiments of the present invention, it can also be formed On the first substrate and/or the second substrate); a spacer group 110 is formed on the surface of the first substrate 101, and the spacer group 110 includes at least two spacer units (specifically, three spacer units in this embodiment).
  • Piece unit coat adhesive 120 on the second substrate 102, assemble the first substrate 101 and the second substrate 102, so that the spacer unit is indirectly connected to the second substrate 102 by squeezing the adhesive 120 , So that the first substrate 101, the second substrate 102, the spacer group 110 and the adhesive 120 enclose a closed space, and the functional element 130 is located in the closed space.
  • the spacer group 110 may be formed on the surface of the first substrate 101 by wet etching.
  • the first substrate 101 is a glass substrate, which is easier to etch.
  • the position where the adhesive is applied during processing is set such that the adhesive 120 coated on the second substrate 102 is in contact with each other.
  • the minimum horizontal distance of the functional element 130 is greater than the minimum horizontal distance between the spacer group 110 and the functional element 130. That is, as shown in Figure 4, the adhesive should be placed at a position far away from the functional element by the dotted line in the figure.
  • the horizontal in the present invention refers to the direction parallel to the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)

Abstract

一种微机电系统装置的封装系统(10),包括第一基片(101)和第二基片(102),还包括设置于第一基片与第二基片之间的密封结构,第一基片、第二基片与密封结构围成一封闭空间,微机电系统装置的功能元件(130)设置于第一基片和/或第二基片上,且功能元件位于封闭空间内,密封结构包括间隔件组(110)和粘合剂(120),间隔件组包括至少两个间隔件单元,每个间隔件单元与第一基片和第二基片之一直接连接,且间隔件单元与第一基片和第二基片的另一个通过粘合剂间接连接。封装系统简化了工艺,提高了密封性,此外还提高了结构的可靠性。还包括封装系统对应的加工方法。

Description

一种微机电系统装置的封装系统及其加工方法 技术领域
本发明涉及微机电系统领域,特别是涉及一种用于微机电系统装置的封装系统及其加工方法。
背景技术
对于微机电系统(MEMS,Micro-Electro-Mechanical System)装置,特别是微光机电系统,通常需要气密性环境。封装通常通过钎焊或者扩散键合的方式,该类方式昂贵而且需要较高的处理温度,会导致超过装置的温度耐受能力。一种替代的方案是利用树脂封装的玻璃复合层,该封装方式的密封性不佳,而且工艺复杂、成本高。因此,需要一种密封性更好而且成本低廉的微机电系统封装结构。
发明内容
针对上述现有技术的密封性不佳、工艺复杂、成本高的缺陷,本发明提供一种密封性更好、成本低廉的微机电系统装置的封装系统,包括第一基片和第二基片,还包括设置于第一基片与第二基片之间的密封结构,第一基片、第二基片与密封结构围成一封闭空间,微机电系统装置的功能元件设置于第一基片和/或第二基片上,且功能元件位于封闭空间内,密封结构包括间隔件组和粘合剂,间隔件组包括至少两个间隔件单元,每个间隔件单元与第一基片和第二基片之一直接连接,且该间隔件单元与第一基片和第二基片的另一个通过粘合剂间接连接。
在一个实施方式中,间隔件组包括并列设置的第一间隔件单元和第二间隔件单元,第一间隔件单元与粘合剂及第一基片和第二基片围成第一封闭空间,第二间隔件单元与粘合剂及第一基片和第二基片围成第二封闭空间,第一间隔件单元、第二间隔件单元、粘合剂与第一基片和第二基片之一围成第三封闭空间,第三封闭空间位于第一封闭空间内且位 于第二封闭空间外。
在一个实施方式中,第三封闭空间内设有空腔。
在一个实施方式中,至少部分间隔件单元的靠近粘合剂的一端的尺寸小于远离粘合剂的一端的尺寸。
在一个实施方式中,间隔件单元与第一基片和第二基片之一一体成型。
在一个实施方式中,第一间隔件单元设置与第一基片直接连接,第二间隔件单元与第二基片直接连接。
在一个实施方式中,第一基片和第二基片分别为玻璃基片和硅基片中的之一。
在一个实施方式中,粘合剂为环氧树脂。
在一个实施方式中,第三封闭空间内设有干燥剂。
与现有技术相比,本发明包括如下有益效果:通过使用包括至少两个间隔件单元的间隔件组与粘合剂作为两个基片之间的密封结构,一方面简化了工艺,无需高温处理,另一方面利用间隔件组减少了封装树脂在密封通道的截面积,提高了密封性,此外还通过多个间隔件单元增加了粘合剂与间隔件组的接触面积,从而提高了两者的结合力和结构的可靠性。
本发明还提供一种微机电系统装置的封装系统的加工方法,包括步骤:获得第一基片和第二基片,微机电系统装置的功能元件形成于第一基片和/或第二基片上;在第一基片和第二基片的至少之一的表面形成间隔件组,间隔件组包括至少两个间隔件单元;在第一基片和/或第二基片上涂覆粘合剂,装配第一基片和第二基片,使得间隔件单元通过挤压粘合剂与第一基片和第二基片的另一个间接连接,以使第一基片、第二基片、间隔件组与粘合剂围成一封闭空间,功能元件位于封闭空间内。
在一个实施方式中,通过湿式蚀刻在第一基片和第二基片的至少之一的表面形成间隔件组。
在一个实施方式中,在第一基片和/或第二基片上涂覆的粘合剂与功能元件的最小水平距离大于间隔件组与功能元件的最小水平距离。
附图说明
图1为本发明实施例一的微机电系统装置的封装系统的结构示意图;
图2为本发明实施例二的微机电系统装置的封装系统的结构示意图;
图3为本发明实施例三的微机电系统装置的封装系统的结构示意图;
图4为本发明实施例一的微机电系统装置的封装系统的加工流程图。
具体实施方式
下面结合附图和实施方式对本发明实施例进行详细说明。
请参见图1,为本发明实施例一的微机电系统装置的封装系统的结构示意图,该封装系统10包括第一基片101和第二基片102,以及设置于第一基片101和第二基片102之间的密封结构,该密封结构包括间隔件组110和粘合剂120,第一基片101、第二基片102和密封结构围成一封闭空间,微机电系统装置的功能元件130设置于该封闭空间内,且在本实施例中位于第二基片102上。其中,在本实施例中,间隔件组110包括三个间隔件单元111、112和113(可以理解,本发明要实现提高密封性和结构可靠性的效果,只需要间隔件组包括至少两个间隔件单元即可,本实施例以包括三个间隔件单元的结构进行距离说明,并非对本发明的限制),每个间隔件单元都与第一基片101直接连接,并通过粘合剂120与第二基片102间接连接。
在本实施例中第一基片101为玻璃基片,第二基片102为硅基片,功能元件130为微光学元件,微机电系统外的光线透过第一基片101入射到功能元件130,经功能元件130调制后,光线再透过第一基片101出射。可以理解,在本发明的其他实施方式中,功能元件也可以设置在第一基片上,或者同时部分设置于第一基片上,部分设置于第二基片上。
本实施例中,第一间隔单元111、第二间隔单元112和第三间隔单元113并列设置,图1示出的为封装系统的横截面侧视图,从俯视图的角度,可以看到各间隔单元呈封闭形状,如矩形环、圆环等,则如图1所示,第一间隔单元111、第二间隔单元112和第三间隔单元113层层嵌套,每个间隔单元与粘合剂配合第一基片101和第二基片102都能够 形成封闭空间。第一间隔件单元111与粘合剂120及第一基片101和第二基片102围成第一封闭空间;第二间隔件单元112与粘合剂120及第一基片101和第二基片102围成第二封闭空间。第一间隔单元111、第二间隔单元112、粘合剂120与基片围成第三封闭空间140,该第三封闭空间140位于第一封闭空间内且位于第二封闭空间外。相对于单个间隔件单元的封装结构,本发明的多间隔单元结构为外界水汽、空气接触到功能元件增加了障碍,大大提高了气密性;此外,多间隔单元使得粘合剂在被挤压时得以进入到两个间隔单元之间,一方面避免粘合剂向功能元件延伸而造成污染,另一方面避免粘合剂向外部延伸而妨碍切割、安装等工艺。
在本实施例中,第三封闭空间140内设置有空腔,该空腔的存在可以作为功能元件130所在的封闭空间与外界的缓冲。通常地,由于功能元件130的敏感性,为避免氧化等反应,在惰性气氛或氮气下进行对微机电系统装置进行封装,而且气压可能与外界的大气压有差异。因此,当器件暴露于空气环境下装配使用时,外界空气环境与封闭空间内的环境的差异可能导致气体膨胀、渗透等,从而对密封结构产生影响。通过设置空腔,隔开了外界环境与封闭空间的直接作用;而且空腔的体积很小,即使进行了收缩/膨胀,由于比例是大致相同的,那么体现在形变的尺寸也很小,不会对密封结构产生影响。为进一步改善密封效果,避免长时间使用后水汽侵入,可以进一步在第三封闭空间内设置干燥剂,以将侵入的水汽吸收。
在本实施例中,粘合剂120为环氧树脂。在本发明的其他实施方式中,粘合剂也可以采用其他材料。特别地,在功能元件为光功能元件时,粘合剂采用具有低光反射率的材料,可以有效避免密封结构对光的干扰。
请参见图2,为本发明实施例二的微机电系统装置的封装系统的结构示意图。该封装系统20包括第一基片201、第二基片202,以及设置于第一基片201和第二基片202之间的密封结构,该密封结构包括间隔件组210和粘合剂220,间隔件组210包括三个间隔件单元211、212和213。本实施例与图1所示实施例的不同之处在于,本实施例中的间隔件单元的形状与实施例一不同。实施例一中,间隔件单元的截面为矩形, 而本实施例的间隔件单元的截面为梯形。本实施例的该结构设计,使得间隔件单元的靠近粘合剂220的一端的尺寸小于远离粘合剂220的一端的尺寸,从而在加工过程中有利于使粘合剂220形成的结构更薄,更多的利用间隔件单元而非粘合剂对功能元件进行密封。
除了梯形之外,在本发明其他实施方式中,间隔件单元件的截面还可以是其他形状,如三角形等形状。
本发明实施例二的其他结构的描述,可以参照上述实施例一的描述,此处不再赘述。
上述各实施方式中,间隔件单元件与其直接连接的基片为一体成型结构。可以理解,在本发明的其他实施方式中,也可以两者为独立结构,通过后期加工连接。
请参见图3,为本发明实施例三的微机电系统装置的封装系统的结构示意图。封装系统30包括第一基片301、第二基片302,以及设置于第一基片301和第二基片302之间的密封结构,该密封结构包括间隔件组310和粘合剂320,间隔件组310包括两个间隔件单元311和312。
与上述各实施例不同的是,本实施例中的两个间隔件单元分别与不同的基片直接连接,其中,第一间隔件单元件311与第一基片301直接连接,第二间隔件单元312与第二基片302直接连接。可以通过分别在两个基片上蚀刻出间隔件单元,然后对齐基片的方式,挤压粘合剂320得到密封结构。
本发明还提供了上述各微机电系统装置的封装系统的加工方法,请参见图4,为本发明实施例一的微机电系统装置的封装系统的加工流程图,图中的标记参照实施例一的描述。该加工方法包括步骤:获得第一基片101和第二基片102,微机电系统装置的功能元件130形成于第二基片102上(可以理解,在本发明其他实施方式中,也可以形成于第一基片和/或第二基片上);在第一基片101的表面形成间隔件组110,该间隔件组110包括至少两个间隔件单元(本实施例中具体为三个间隔件单元);在第二基片102上涂覆粘合剂120,装配第一基片101和第二基片102,使得间隔件单元通过挤压粘合剂120与第二基片102间接连接,以使第一基片101、第二基片102、间隔件组110和粘合剂120围成一 封闭空间,功能元件130恰好位于该封闭空间内。
在本实施例中,可以通过湿式蚀刻的方式在第一基片101的表面形成间隔件组110。优选地,第一基片101采用玻璃基片,更容易进行蚀刻。
在本实施例的变形实施例中,为了减少粘合剂120向功能元件的方向溢出,加工时将粘合剂涂覆的位置设置为使第二基片102上涂覆的粘合剂120与功能元件130的最小水平距离大于间隔件组110与功能元件130的最小水平距离。即如图4所示,粘合剂应设置于图中虚线远离功能元件的位置。本发明的水平是指平行于基片的方向。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种微机电系统装置的封装系统,其特征在于,包括第一基片和第二基片,还包括设置于所述第一基片与第二基片之间的密封结构,所述第一基片、所述第二基片与所述密封结构围成一封闭空间,所述微机电系统装置的功能元件设置于所述第一基片和/或所述第二基片上,且所述功能元件位于所述封闭空间内,所述密封结构包括间隔件组和粘合剂,所述间隔件组包括至少两个间隔件单元,每个所述间隔件单元与所述第一基片和第二基片之一直接连接,且该间隔件单元与所述第一基片和第二基片的另一个通过所述粘合剂间接连接。
  2. 根据权利要求1所述的封装系统,其特征在于,所述间隔件组包括并列设置的第一间隔件单元和第二间隔件单元,所述第一间隔件单元与所述粘合剂及所述第一基片和第二基片围成第一封闭空间,所述第二间隔件单元与所述粘合剂及所述第一基片和第二基片围成第二封闭空间,所述第一间隔件单元、所述第二间隔件单元、所述粘合剂与所述第一基片和第二基片之一围成第三封闭空间,所述第三封闭空间位于所述第一封闭空间内且位于第二封闭空间外。
  3. 根据权利要求2所述的封装系统,其特征在于,所述第三封闭空间内设有空腔。
  4. 根据权利要求2所述的封装系统,其特征在于,至少部分所述间隔件单元的靠近所述粘合剂的一端的尺寸小于远离所述粘合剂的一端的尺寸。
  5. 根据权利要求2所述的封装系统,其特征在于,所述间隔件单元与所述第一基片和第二基片之一一体成型。
  6. 根据权利要求2所述的封装系统,其特征在于,所述第一间隔件单元设置与所述第一基片直接连接,所述第二间隔件单元与所述第二基片直接连接。
  7. 根据权利要求1所述的封装系统,其特征在于,所述第一基片和所述第二基片分别为玻璃基片和硅基片中的之一。
  8. 根据权利要求1所述的封装系统,其特征在于,所述粘合剂为环 氧树脂。
  9. 根据权利要求2所述的封装系统,其特征在于,所述第三封闭空间内设有干燥剂。
  10. 一种微机电系统装置的封装系统的加工方法,包括步骤:
    获得第一基片和第二基片,所述微机电系统装置的功能元件形成于所述第一基片和/或所述第二基片上;
    在所述第一基片和第二基片的至少之一的表面形成间隔件组,所述间隔件组包括至少两个间隔件单元;
    在所述第一基片和/或第二基片上涂覆粘合剂,装配所述第一基片和第二基片,使得所述间隔件单元通过挤压粘合剂与所述第一基片和第二基片的另一个间接连接,以使所述第一基片、所述第二基片、间隔件组与粘合剂围成一封闭空间,所述功能元件位于所述封闭空间内。
  11. 根据权利要求10所述的加工方法,其特征在于,通过湿式蚀刻在所述第一基片和第二基片的至少之一的表面形成所述间隔件组。
  12. 根据权利要求10所述的加工方法,其特征在于,在所述第一基片和/或第二基片上涂覆的所述粘合剂与所述功能元件的最小水平距离大于所述间隔件组与所述功能元件的最小水平距离。
PCT/CN2020/112201 2019-09-06 2020-08-28 一种微机电系统装置的封装系统及其加工方法 WO2021043084A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910840232.0A CN112456431A (zh) 2019-09-06 2019-09-06 一种微机电系统装置的封装系统及其加工方法
CN201910840232.0 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021043084A1 true WO2021043084A1 (zh) 2021-03-11

Family

ID=74806817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112201 WO2021043084A1 (zh) 2019-09-06 2020-08-28 一种微机电系统装置的封装系统及其加工方法

Country Status (2)

Country Link
CN (1) CN112456431A (zh)
WO (1) WO2021043084A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023239238A1 (en) 2022-06-09 2023-12-14 Technische Universiteit Eindhoven A method for bonding a first and second planar substrate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404162A (zh) * 2001-09-05 2003-03-19 矶光显示科技股份有限公司 有机光发射二极管的密封构造、密封方法及密封装置
CN101233553A (zh) * 2005-07-29 2008-07-30 罗姆股份有限公司 平板显示器
CN101389167A (zh) * 2007-09-11 2009-03-18 精工爱普生株式会社 发光装置
CN101866943A (zh) * 2010-02-26 2010-10-20 信利半导体有限公司 一种有机电致发光显示器及其封装方法
TWM408132U (en) * 2010-12-30 2011-07-21 Chunghwa Picture Tubes Ltd Package structure
CN103288038A (zh) * 2012-02-24 2013-09-11 视频有限公司 耐水分封装件
WO2014050039A1 (ja) * 2012-09-26 2014-04-03 シャープ株式会社 有機エレクトロルミネセンス表示装置及びその製造方法
CN104538555A (zh) * 2014-12-02 2015-04-22 深圳市华星光电技术有限公司 Oled封装结构及oled封装方法
CN107994130A (zh) * 2017-11-27 2018-05-04 合肥京东方光电科技有限公司 一种oled显示器件及其封装方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404162A (zh) * 2001-09-05 2003-03-19 矶光显示科技股份有限公司 有机光发射二极管的密封构造、密封方法及密封装置
CN101233553A (zh) * 2005-07-29 2008-07-30 罗姆股份有限公司 平板显示器
CN101389167A (zh) * 2007-09-11 2009-03-18 精工爱普生株式会社 发光装置
CN101866943A (zh) * 2010-02-26 2010-10-20 信利半导体有限公司 一种有机电致发光显示器及其封装方法
TWM408132U (en) * 2010-12-30 2011-07-21 Chunghwa Picture Tubes Ltd Package structure
CN103288038A (zh) * 2012-02-24 2013-09-11 视频有限公司 耐水分封装件
WO2014050039A1 (ja) * 2012-09-26 2014-04-03 シャープ株式会社 有機エレクトロルミネセンス表示装置及びその製造方法
CN104538555A (zh) * 2014-12-02 2015-04-22 深圳市华星光电技术有限公司 Oled封装结构及oled封装方法
CN107994130A (zh) * 2017-11-27 2018-05-04 合肥京东方光电科技有限公司 一种oled显示器件及其封装方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023239238A1 (en) 2022-06-09 2023-12-14 Technische Universiteit Eindhoven A method for bonding a first and second planar substrate
NL2032112B1 (en) * 2022-06-09 2023-12-18 Univ Eindhoven Tech A method for bonding a first and second planar substrate

Also Published As

Publication number Publication date
CN112456431A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
JP5329914B2 (ja) マイクロマシン装置及びマイクロマシン装置の製造方法
US9174836B2 (en) Integrated bondline spacers for wafer level packaged circuit devices
US8829628B2 (en) MEMS package structure
US20130285175A1 (en) Micromechanical component and method for manufacturing a micromechanical component
KR20140033211A (ko) 환경에 노출된 부분을 갖는 밀봉 mems 디바이스를 위한 공정
US20140260612A1 (en) Composite Sensor and Method for Manufacturing The Same
WO2021043084A1 (zh) 一种微机电系统装置的封装系统及其加工方法
US20150353347A1 (en) Component including two semiconductor elements, between which at least two hermetically sealed cavities are formed and method for establishing a corresponding bonding connection between two semiconductor elements
US7510947B2 (en) Method for wafer level packaging and fabricating cap structures
US10012828B2 (en) Assembly body for micromirror chips, mirror device and production method for a mirror device
US20160229687A1 (en) Chip package and fabrication method thereof
US20130087379A1 (en) High reliability wafer level package and manufacturing method
JP2009178778A (ja) 微小電気機械装置
JP2012033718A (ja) 半導体装置及びその製造方法
US8378433B2 (en) Semiconductor device with a controlled cavity and method of formation
US20110042137A1 (en) Suspended lead frame electronic package
JP5771921B2 (ja) 封止型デバイス及びその製造方法
US10633247B2 (en) Semiconductor device and manufacture thereof
JP2012040677A (ja) Memsセンサ
JP2004235440A (ja) マイクロパッケージとその製造方法
US20060084238A1 (en) Method for bonding wafers
JP2021145072A (ja) パッケージ及びパッケージの製造方法
JP6891203B2 (ja) 応力低減レイヤを有する密封されたパッケージ
JP6891202B2 (ja) 応力低減レイヤを有する密封されたパッケージ
JP5783601B2 (ja) 中空パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861472

Country of ref document: EP

Kind code of ref document: A1