WO2021043070A1 - 一种波长调节方法以及相关设备 - Google Patents

一种波长调节方法以及相关设备 Download PDF

Info

Publication number
WO2021043070A1
WO2021043070A1 PCT/CN2020/111855 CN2020111855W WO2021043070A1 WO 2021043070 A1 WO2021043070 A1 WO 2021043070A1 CN 2020111855 W CN2020111855 W CN 2020111855W WO 2021043070 A1 WO2021043070 A1 WO 2021043070A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical module
target
remote
control signal
Prior art date
Application number
PCT/CN2020/111855
Other languages
English (en)
French (fr)
Inventor
周恩波
蒋方
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20861668.0A priority Critical patent/EP4020842A4/en
Publication of WO2021043070A1 publication Critical patent/WO2021043070A1/zh
Priority to US17/683,531 priority patent/US11916599B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0799Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0276Transmission of OAMP information using pilot tones

Definitions

  • This application relates to an optical communication technology, in particular to a wavelength adjustment method and related equipment.
  • the optical communication system includes multiple optical modules 101 at the transmitting end and multiple optical modules 102 at the receiving end.
  • the multiple optical modules 101 at the end and the multiple optical modules 102 at the receiving end have a one-to-one correspondence.
  • the optical module 101 is used to convert an electrical signal into an optical signal and transmit it to the optical module 102 through an optical fiber, and the optical module 102 then converts the optical signal into an electrical signal.
  • the laser in the optical module 102 can be used to limit the wavelength of the laser to a fixed wavelength channel through the Ethernet dragon wave lock, so as to realize that the different optical modules 102 at the receiving end use different wavelengths to perform wavelength division multiplexing (wavelength division multiplexing).
  • Wavelength division multiplexing Wavelength division multiplexing
  • the method of sampling the Ethernet dragon wave lock shown in the prior art can only lock the laser to a single fixed wavelength, and the locking accuracy is high. Moreover, the detection and control of the Ether Dragon Wave Lock are complicated, the power consumption is high, and additional costs are required.
  • the present application provides a wavelength adjustment method, related equipment, and an optical communication system, which can monitor the working wavelength of each remote optical module, avoid wavelength drift of the remote optical module, and improve the efficiency and accuracy of monitoring.
  • the first aspect of the embodiments of the present invention provides a wavelength adjustment method, the method includes: a remote optical module receives a wavelength control signal, the wavelength control signal is used to indicate the adjusted target wavelength of the remote optical module, and The wavelength control signal is loaded into the first service optical signal in a top adjustment manner; the remote optical module adjusts the operating wavelength of the remote optical module according to the wavelength control signal.
  • the working wavelength of each remote optical module included in the remote device can be monitored through the remote device, and the monitoring process does not depend on the network management, which improves the efficiency and accuracy of monitoring. And it can realize a low-cost, highly reliable, operable, and protected wavelength division transmission system.
  • the central office equipment and the remote optical module can directly exchange data without relying on network management (or other independent control channels) to transmit data, which improves the efficiency of data transmission.
  • the remote optical module performs wavelength adjustment according to the wavelength control signal, including: the remote optical module determines a target temperature according to the wavelength control signal, wherein the target temperature is the same as the target temperature.
  • the adjusted target wavelength corresponds to; the remote optical module adjusts the operating wavelength of the remote optical module to the adjusted target wavelength according to the target temperature adjustment.
  • the wavelength control signal is used to indicate a wavelength offset
  • the wavelength offset is the remote The wavelength at which the operating wavelength of the optical module is shifted from the target wavelength range.
  • the wavelength control signal is used to indicate a target wavelength range.
  • the wavelength control signal is used to indicate the target temperature.
  • the method further includes: the remote optical module determines the adjusted Target wavelength; the remote optical module determining the target temperature according to the wavelength control signal includes: the remote optical module obtains a temperature control list, the temperature control list includes the correspondence between different temperatures and different wavelengths; The remote module determines the target temperature corresponding to the adjusted target wavelength according to the temperature control list.
  • the method further includes: the remote optical module The detection signal is sent to the central office equipment, and the detection signal is loaded into the second service optical signal in a top adjustment manner.
  • the central office device shown in this embodiment can receive all the top adjustment signals (detection signals) sent by the remote optical module located in the remote device through a photodetector (PD), and can detect the occurrence according to the top adjustment signal.
  • PD photodetector
  • For remote optical modules with wavelength shifts it can be seen that through the detection process of remote optical modules with wavelength shifts shown in this embodiment, overhead adjustment can be reduced, and remote optical module fault information monitoring is achieved without relying on network management and remote equipment. And escalate. Because the central office device shown in this embodiment can receive the top adjustment signals of all the remote optical modules of the remote device through the PD, the cost is reduced.
  • the remote optical module determining the target temperature according to the wavelength control signal includes: determining a reference wavelength ⁇ i , so The reference wavelength ⁇ i is the wavelength with the smallest difference between the adjusted target wavelength ⁇ among the wavelengths included in the temperature control list; the adjacent wavelength ⁇ i+ included in the temperature control list is determined 1.
  • the adjacent wavelengths are the wavelengths adjacent to the reference wavelength ⁇ i included in the temperature control list; according to the maximum cut-off wavelength ⁇ i_max , the minimum cut-off wavelength ⁇ i_min and the adjacent wavelength ⁇ of the target wavelength range i+1 determines the target temperature T.
  • the remote optical module may calculate the target temperature T according to the following formula:
  • the second aspect of the embodiments of the present invention provides a wavelength adjustment method, the method includes: when the operating wavelength of the remote optical module exceeds the target wavelength range, sending a wavelength control signal to the remote optical module, where the wavelength control signal is used for Indicate the adjusted target wavelength of the remote optical module, and the wavelength control signal is loaded into the first service optical signal in a top adjustment manner.
  • the wavelength control signal is used to indicate a wavelength offset
  • the wavelength offset is a remote optical module The working wavelength of is shifted from the target wavelength range.
  • the wavelength control signal is used to indicate a target wavelength range.
  • the method further includes: receiving a detection signal sent from a remote optical module, where the detection signal is adjusted The method is loaded in the second service optical signal; according to the top adjustment signal, it is determined whether the operating wavelength of the remote optical module is within the target wavelength range.
  • the determining whether the operating wavelength of the remote optical module is in the target wavelength range is determined according to the detection signal This includes: if the frequency point intensity of the detection signal is greater than or equal to a preset value, determining that the working wavelength of the remote optical module is within the target wavelength range.
  • a third aspect of the embodiments of the present invention provides an optical module, the optical module is provided in a remote device, and includes: a receiving unit for receiving a wavelength control signal, the wavelength control signal for instructing the optical module to adjust After the target wavelength, the wavelength control signal is loaded into the first service optical signal by top adjustment; the control unit is configured to adjust the working wavelength of the optical module according to the wavelength control signal.
  • control unit is configured to determine a target temperature according to the wavelength control signal, wherein the target temperature corresponds to the adjusted target wavelength; the wavelength is adjusted according to the target temperature adjustment To the adjusted target wavelength.
  • the wavelength control signal is used to indicate a wavelength offset
  • the wavelength offset is the optical module The shift of the working wavelength relative to the target wavelength range.
  • the wavelength control signal is used to indicate a target wavelength range.
  • the wavelength control signal is used to indicate the target temperature.
  • control unit is further configured to: determine the adjusted target wavelength according to the wavelength control signal; and obtain A temperature control list, the temperature control list includes the correspondence between different temperatures and different wavelengths; according to the temperature control list, the target temperature corresponding to the adjusted target wavelength is determined.
  • the optical module further includes: a laser for sending a detection signal to the central office device, and the detection signal passes The top adjustment mode is loaded in the second service optical signal.
  • the control unit is further configured to: determine a reference wavelength ⁇ i , where the reference wavelength ⁇ i is the temperature Among the wavelengths included in the control list, the wavelength with the smallest difference between the adjusted target wavelength ⁇ ; determine the adjacent wavelengths ⁇ i+1 included in the temperature control list, and the adjacent wavelengths are all
  • the temperature control list includes wavelengths adjacent to the reference wavelength ⁇ i ; the target temperature T is determined according to the maximum cut-off wavelength ⁇ i_max , the minimum cut-off wavelength ⁇ i_min and the adjacent wavelength ⁇ i+1 of the target wavelength range .
  • the fourth aspect of the embodiments of the present invention provides a central office equipment, including: a wavelength detection unit, configured to determine whether the working wavelength of a remote optical module is within a target wavelength range; a sending unit, when the remote optical module is working If the wavelength exceeds the target wavelength range, a wavelength control signal is sent to the remote optical module.
  • the wavelength control signal is used to indicate the adjusted target wavelength of the remote optical module.
  • the wavelength control signal is loaded on the first A service optical signal.
  • the wavelength control signal is used to indicate a wavelength offset
  • the wavelength offset is a remote optical module The working wavelength of is shifted from the target wavelength range.
  • the wavelength control signal is used to indicate a target wavelength range.
  • the wavelength detection unit is further configured to receive a detection signal sent from a remote optical module, and the detection signal Load the second service optical signal in a top adjustment mode; determine whether the working wavelength of the remote optical module is within the target wavelength range according to the detection signal.
  • the wavelength detection unit is specifically configured to: if the frequency point intensity of the detection signal is greater than or equal to a preset Value, it is determined that the operating wavelength of the remote optical module is within the target wavelength range.
  • a fifth aspect of the embodiments of the present invention provides a remote device, and the network device includes the optical module in the third aspect or any one of the possible implementation manners of the third aspect.
  • Another aspect of the present application provides a communication system, which includes the central office device in the foregoing fourth aspect or any one of the possible implementation manners of the fourth aspect, and the remote device in the foregoing fifth aspect.
  • Another aspect of the present application provides a readable storage medium that stores instructions in the readable storage medium, and when the instructions run on a network device, the network device executes the methods described in the above aspects.
  • Another aspect of the present application provides a program product containing instructions, which, when the instructions run on a network device, cause the network device to execute the methods described in the foregoing aspects.
  • Fig. 1 is an exemplary structure of an optical communication system provided by the prior art
  • FIG. 2 is a schematic structural diagram of an embodiment of the optical communication system provided by this application.
  • FIG. 3 is a flowchart of the steps of an embodiment of the wavelength adjustment method provided by this application.
  • FIG. 4 is a structural example diagram of an embodiment of a remote optical module provided by this application.
  • FIG. 5 is a flowchart of the steps of another embodiment of the wavelength adjustment method provided by this application.
  • Figure 6 is a diagram of an application example provided by this application.
  • FIG. 7 is a diagram of another application example provided by this application.
  • FIG. 8 is a diagram of another application example provided by this application.
  • FIG. 9 is a schematic structural diagram of another embodiment of the optical communication system provided by this application.
  • FIG. 10 is a schematic diagram of a top adjustment signal provided by an embodiment of the present invention.
  • the optical communication system shown in this embodiment includes a central office device 201, a first splitting/multiplexing unit 202, a second splitting/multiplexing unit 203, and a remote device 204;
  • the first demultiplexing unit 202 is provided inside the central office equipment 201
  • the second demultiplexing unit 203 is provided between the central office equipment 201 and the remote equipment 204 as an example.
  • the first splitting/multiplexing unit 202 and the second splitting/multiplexing unit 203 can be independently arranged between the central office equipment 201 and the remote equipment 204
  • at least one of the first wave splitting and combining unit 202 and the second wave splitting and combining unit 203 may be arranged in the remote device 204, or the first wave splitting and combining unit 202 and the second wave splitting and combining unit 203 are implemented by a wave splitting and combining unit.
  • the direction from the central office equipment 201 to the remote equipment 204 is defined as the downstream direction
  • the direction from the remote equipment 204 to the central office equipment 201 is defined as the upstream direction.
  • the first demultiplexing unit 202 is used for multiplexing
  • the second demultiplexing unit 203 is used for demultiplexing
  • the second demultiplexing unit 203 is used for multiplexing.
  • the first wave splitting and combining unit 202 is used for wave splitting.
  • data transmission is required between the central office equipment 201 and the remote equipment 204.
  • the data transmission between the central office equipment 201 and the remote equipment 204 can pass through all
  • the passive components in the first splitting/multiplexing unit 202 and the second splitting/multiplexing unit 203 are implemented by the passive components included in the first splitting/multiplexing unit 202 and the second splitting/multiplexing unit 203
  • the device realizes the function of splitting and combining, and further realizes the data transmission between the central office equipment 201 and the remote equipment 204.
  • This embodiment does not limit the specific device types of the central office equipment 201 and the remote equipment 204, as long as the central office equipment 201 can perform unified management of the remote equipment 204, for example, if this
  • the optical communication system shown in the embodiment is applied to the third-generation mobile communication technology (3rd-generation, 3G), the fourth generation of mobile phone mobile communication technology standards, or the fifth-generation mobile communication technology (4G) Mobile communication technology (5th generation mobile networks, 5G)
  • the central office equipment 201 may be a baseband processing unit (BBU)
  • the remote equipment 204 may be a remote radio unit (RRU) .
  • Step 301 The central office equipment judges whether the target wavelength is within the target wavelength range of the target wavelength channel, and if yes, execute step 302, and if not, execute step 303.
  • the central office equipment 201 includes multiple optical modules, namely, optical module 1, optical module 2, ... optical module N, and the remote device 204 internally includes multiple optical modules. It also includes multiple optical modules, namely, optical module 1, optical module 2,... optical module N, and multiple optical modules included in the central office device 201 and multiple optical modules included in the remote device 204 There may be a one-to-one correspondence relationship, so that data transmission can be performed between the optical modules located in the central office equipment 201 and the optical modules located in the remote equipment 204 corresponding to each other.
  • the optical module N located in the central office equipment 201 corresponds to the optical module N located in the remote equipment 204, then the optical module N located in the central office equipment 201 and the optical module N located at the remote Data transmission can be performed between the optical modules N in the device 204.
  • This embodiment does not limit the specific value of N, as long as N is a positive integer greater than 1.
  • the optical module may be a centum form-factor pluggable (CFP) optical module, a small form-factor pluggable (SFP) optical module, and the like.
  • Each of the optical modules includes, but is not limited to, a laser.
  • the remote device 204 needs to be multiplexed.
  • the wavelength of each laser is locked to the wavelength range.
  • the wavelength of the laser often drifts, and the laser with wavelength drift cannot realize wavelength division multiplexing.
  • the wavelength of the laser is affected by a variety of factors, which causes the wavelength of the laser to drift. These factors include but are not limited to the operating temperature of the laser, laser current, laser voltage, vibration source, or electrical noise.
  • the laser is a distributed feedback (distribution feedback, DFB) as an example.
  • DFB distributed feedback
  • the central office device shown in this embodiment is to detect whether each optical module included in the remote device has wavelength drift, then the central office device may first determine the remote optical module in the remote device , Wherein the remote optical module may be any one of a plurality of optical modules included in the remote device. Second, the central office equipment determines whether the target wavelength of the remote optical module is within the target wavelength range of the target wavelength channel. Continuing with the above example, taking the N optical modules included in the remote device as an example, the target wavelength may be the working wavelength currently used by any one of the N optical modules.
  • the central office device shown in this embodiment is used to control the wavelengths of the lasers in the remote device to be within the corresponding wavelength range, so that the lasers in the remote device will not have wavelength drift, thereby making the remote device
  • the lasers inside can realize wavelength division multiplexing.
  • the central office equipment shown in this embodiment may first determine the demultiplexing unit of the central office.
  • the demultiplexing unit shown in this embodiment has N wavelength channels. More specifically, the central office equipment determines The number of wavelength channels included in the demultiplexing unit of the central office is equal to the number of optical modules included in the remote device, and the wavelength channels included in the demultiplexing unit and the optical modules included in the remote device It can be a one-to-one relationship.
  • the wavelength channel N included in the splitting/multiplexing unit corresponds to the optical module N included in the remote device.
  • Table 1 takes Table 1 as an example for the splitting/multiplexing determined by the central office device Unit description:
  • the optical module j located in the remote device (j is an integer from 1 to N in Table 1) performs data transmission with the optical module located in the central office device through wavelength division multiplexing.
  • the wavelength of the optical module j located in the remote device needs to be within the wavelength range of the wavelength channel j. Only when the wavelength of the optical module j in the remote device is within the wavelength range of the wavelength channel j, can the optical module j of the remote device successfully perform data transmission with the optical module in the central office device.
  • the splitting and combining unit shown in this embodiment includes wavelength channels respectively corresponding to the N optical modules included in the remote device.
  • the wavelength channels shown in this embodiment are wavelength ranges, so in this embodiment, The target wavelength range indicated by the target wavelength channel is the target wavelength range.
  • the central office equipment determines the wavelength ranges respectively corresponding to the optical modules different from the remote equipment, that is, ⁇ i_min ⁇ i_max .
  • is the wavelength of the laser included in the optical module N of the remote device
  • ⁇ i_min is the minimum value of the wavelength range of the wavelength channel N
  • ⁇ i_max is the maximum value of the wavelength range of the wavelength channel N.
  • the central office equipment may determine a target wavelength channel in the wavelength splitting and combining unit, wherein the target wavelength channel is connected to the remote The wavelength channel corresponding to the optical module.
  • the target wavelength of the remote optical module is initialized.
  • the target wavelength of the remote optical module is connected to the wavelength division multiplexing system, and the central office device performs step 301 shown in this embodiment in a polling manner. If it is monitored that the target wavelength of the remote optical module is not located in the target wavelength channel Within the wavelength range, you need to adjust the target wavelength as shown in the next steps, so that the remote optical module can successfully connect to the wavelength division multiplexing system. If the target wavelength of the remote optical module is monitored in the target wavelength channel Within the wavelength range, the central office device may re-execute step 301 after a preset time period. This embodiment does not limit the specific duration of the preset time period.
  • Step 302 The central office equipment determines that there is no need to adjust the target wavelength of the remote optical module.
  • the central office equipment determines that the target wavelength of the laser of the remote optical module is located in the corresponding target wavelength channel, it means that the laser of the remote optical module does not have wavelength drift, so The central office equipment does not need to adjust the target wavelength of the remote optical module.
  • the central office equipment may be set with a reinspection time length, and then the central office equipment starts a timer for timing after performing step 302, and if the time counted by the timer reaches the reinspection time length, Then the central office equipment returns to perform step 301.
  • Step 303 The central office device sends a wavelength control signal to the remote device.
  • the central office equipment determines that the target wavelength of the laser of the remote optical module is not in the corresponding target wavelength channel, it indicates that the laser of the remote optical module has a wavelength drift, and the central office equipment determines The target wavelength of the remote optical module needs to be adjusted.
  • the remote optical module 400 shown in this embodiment includes but is not limited to a laser 401, a temperature control unit 402, and a control unit 403.
  • the description of the specific structure of the optical module 400 is an optional example and is not limited.
  • the laser 401 and the temperature control unit 402 are attached and arranged, and the control unit 403 is electrically connected to the temperature control unit 402. Since the wavelength value of the laser 401 and the ambient temperature of the laser 401 are in a positive correlation, the temperature of the temperature control unit 402 can be adjusted to realize the temperature (or wavelength) of the laser 401 The purpose of the adjustment.
  • This embodiment does not limit the specific device type of the temperature control unit 402, as long as the temperature control unit 402 can perform temperature adjustment under the control of the control unit 403, so as to adjust the wavelength of the laser 401.
  • the temperature control unit may be a thermoelectric cooler (TEC) or a thermistor heater.
  • the control unit 403 can adjust the temperature of the temperature control unit 402 by controlling the current flowing through the temperature control unit 402, thereby achieving the purpose of adjusting the wavelength of the laser 401.
  • the central office device shown in this embodiment can send a wavelength control signal to the remote optical module of the remote device
  • the wavelength control signal is used to instruct the remote optical module to adjust the wavelength of the laser so that the wavelength of the laser is within the wavelength range of the target wavelength channel.
  • the content is not limited.
  • the wavelength control signal may be used to indicate the wavelength offset
  • the wavelength offset is used to instruct the central office equipment to adjust the laser of the remote optical module according to the wavelength offset, so as to follow the The target wavelength after the wavelength offset is adjusted is located in the target wavelength channel.
  • the wavelength shift amount is used to indicate the shift wavelength of the working wavelength currently used by the remote optical module relative to the target wavelength channel. For example, if the target wavelength range indicated by the target wavelength channel is between 1309 nanometers and 1311 nanometers. In the case where the working wavelength of the remote optical module is currently 1312 nanometers, the central office equipment can determine that the wavelength of the remote optical module has shifted, and the central office equipment can determine the wavelength The offset is any value between -1 nanometer and -3 nanometers.
  • the wavelength offset at this time is a positive number; if the currently used wavelength of the remote optical module is greater than the target wavelength range The maximum value of, then the wavelength shift at this time is a negative number.
  • the wavelength control signal may be used to indicate the target wavelength range of the target wavelength channel.
  • the central office equipment may directly determine the target wavelength channel corresponding to the remote optical module.
  • the central office device can directly adjust the wavelength of the laser of the remote optical module according to the target wavelength range, so that the adjusted wavelength of the laser is within the target wavelength range.
  • Step 304 The remote optical module receives the wavelength control signal from the central office equipment.
  • the remote optical module shown in this embodiment can perform polling detection on the wavelength control signal. If the wavelength control signal is received through polling detection, the execution of step 305 is triggered.
  • Step 305 The remote optical module performs wavelength adjustment according to the wavelength control signal.
  • the remote optical module that has undergone a wavelength shift receives the wavelength control signal, and the remote optical module can perform a control on the temperature control unit located in the remote optical module according to the wavelength control signal. Temperature adjustment is used to adjust the working temperature of the laser, and then to adjust the wavelength of the laser, so that the wavelength of the adjusted remote optical module is within the wavelength range of the target wavelength channel. How to adjust the wavelength of the end optical module:
  • the remote optical module shown in this embodiment can obtain a preset temperature control list.
  • the temperature control list shown in this embodiment can include correspondences between different wavelength ranges and different temperatures.
  • there is no limitation on how the remote optical module generates the temperature control list as long as the temperature control list can be reflected in the case of ensuring that the output optical power of the remote optical module remains unchanged, different temperatures and The corresponding relationship between different wavelengths is sufficient.
  • the temperature control list shown in Table 2 is exemplified below:
  • the remote optical module determines the adjusted target wavelength according to the wavelength control signal, wherein the adjusted target wavelength is within the target wavelength range of the target wavelength channel, that is, at the remote end
  • the optical module adjusts the wavelength of the laser to the adjusted target wavelength, so that the wavelength of the laser does not drift.
  • the remote optical module may determine according to the wavelength offset The adjusted target wavelength.
  • the remote optical module can determine that the current actual wavelength shifts by 2 nanometers.
  • the adjusted target wavelength 1310 obtained after the current actual wavelength adjustment is within the target wavelength range of 1309 nanometers to 1311 nanometers.
  • the remote optical module may determine that the adjusted target wavelength is any value within the target wavelength range, for example, if If the target wavelength range is between 1309 nanometers and 1311 nanometers, the remote optical module can determine that the adjusted target wavelength is 1310 nanometers.
  • the remote optical module queries the temperature control list to determine the target temperature corresponding to the adjusted target wavelength in the temperature control list.
  • the remote optical module can adjust the operating temperature of the laser of the remote optical module according to the target temperature, so that the wavelength of the laser is the adjusted target wavelength, so that the wavelength of the laser is located at the target wavelength.
  • the remote optical module can perform wavelength division multiplexing through the adjusted target wavelength.
  • the control unit 403 of the remote optical module can obtain the target temperature, and the control unit 403 can control the magnitude of the current flowing through the temperature control unit 402 so that the The temperature of the temperature control unit 402 is the target temperature.
  • the control unit 403 can control the flow through the temperature control unit 402.
  • the size of the current is such that the temperature of the temperature control unit 402 is 35°C. Because the temperature control unit 402 and the laser 401 are attached to each other, the temperature of the temperature control unit 402 can be adjusted.
  • the wavelength ⁇ of the laser 401 1310 nm.
  • the remote optical module of the optical communication system shown in this embodiment may be initialized based on the temperature control list;
  • the temperature control unit 402 of the remote optical module detects the current temperature T typ of the temperature control unit 402;
  • the remote optical module can make a difference between all the temperatures included in the temperature control list and the current temperature T typ , that is, min
  • the difference of T typ is the smallest;
  • the remote optical module determines that the wavelength corresponding to the temperature T i is the wavelength of the laser of the remote optical module.
  • the remote optical module can be connected to a detection module, and the detection module is used to detect the different wavelengths of the remote optical module and The corresponding relationship of different temperatures generates a temperature control list as shown in Table 2 and stores it in the memory of the remote optical module.
  • Step 501 The remote optical module sends a top-adjusting signal to the central office equipment.
  • the remote optical module shown in this embodiment encodes the control signaling and loads it onto the laser, and sends the top-adjusting signaling to the central office device through the laser.
  • the remote optical module please refer to the above-mentioned embodiment for details, and details are not repeated.
  • Step 502 The central office equipment receives the top adjustment signal from the remote optical module.
  • the central office equipment receives all the lasers located on the remote equipment through different The topping signal sent by the carrier frequency frequency point.
  • the central office equipment can receive a total of six topping signals sent by six remote optical modules.
  • the central office equipment shown in this embodiment receives all the remote optical modules included in the remote equipment.
  • the central office equipment can determine the corresponding relationship between any topping signal and the remote optical module according to the prefabricated algorithm, that is, any topping signal is sent by the corresponding remote optical module of.
  • Step 503 The central office equipment determines whether the target wavelength is within the target wavelength range according to the top adjustment signal, if yes, execute step 504, and if not, execute step 505.
  • the central office equipment shown in this embodiment can receive the top adjustment signal of the remote optical module through the set photodetector (PD), and determine the top adjustment signal one by one according to all the top adjustment signals that have been received. Whether the target wavelength of the remote optical module of the signal is within the target wavelength range.
  • PD photodetector
  • the central office equipment can determine the corresponding relationship as shown in Figure 7, where the corresponding relationship includes the peak adjustment signals of each remote optical module detected by the central office equipment. It can be seen that the central office equipment shown in this embodiment can determine the frequency of the top adjustment signal of each remote optical module through the corresponding relationship as shown in FIG. 7 Corresponding relationship with the frequency point intensity of the top signal.
  • V th embodiment of the present embodiment is preset it is not limited as long as in the case where the frequency intensity V i greater than or equal to the preset value V th, then the distal end of the optical modulation signal roof module for transmitting a target wavelength is in the wavelength range of interest Inside, it further shows that the laser of the remote optical module has no wavelength drift, and the target wavelength of the laser does not need to be adjusted.
  • the frequency point intensity Vi is less than the preset value V th , it means that the target wavelength of the remote optical module used to transmit the top adjustment signal is not in the target wavelength range, and further indicates that the remote optical module is not in the target wavelength range.
  • the laser of the module has been drifting in wavelength, and the target wavelength of the laser needs to be adjusted.
  • Step 504 The central office equipment determines that there is no need to adjust the target wavelength of the remote optical module.
  • Step 505 The central office device sends a wavelength control signal to the remote device.
  • Step 506 The remote optical module receives the wavelength control signal from the central office equipment.
  • step 504 to step 506 shown in this embodiment please refer to step 303 to step 305 shown in FIG. 3 for details, and the specific execution process is not limited.
  • Step 507 The remote optical module generates a temperature control list.
  • step 507 shows the specific process of generating the temperature control list by the remote optical module.
  • step 506 shows the specific process of generating the temperature control list by the remote optical module.
  • the control unit 403 may first adjust the temperature of the temperature control unit 402 to T 0 , and record the wavelength ⁇ 0 at this time, And the corresponding relationship between T 0 and ⁇ 0 is stored in the temperature control list.
  • the control unit 403 may first adjust the temperature of the temperature control unit 402 to T n , and record the wavelength ⁇ n at this time, and set T n The corresponding relationship with ⁇ n is stored in the temperature control list.
  • the temperature control list can also continue to be shown in Table 2.
  • Step 508 The remote optical module adjusts the target wavelength according to the wavelength control signal to generate an adjusted target wavelength.
  • the remote optical module first determines the adjusted target wavelength ⁇ according to the wavelength control signal. The following describes if all the wavelengths included in the temperature control list are the same as the adjusted target wavelength. How to adjust the target wavelength of the laser when the wavelength ⁇ is not equal:
  • the remote optical module determines a target channel, the adjusted target wavelength ⁇ is located in the target channel, and the maximum cut-off wavelength included in the target channel is ⁇ i_max, and the target channel includes The minimum cut-off wavelength of is ⁇ i_min ;
  • the remote optical module determines a reference wavelength ⁇ i , the reference wavelength ⁇ i is the wavelength with the smallest difference between the adjusted target wavelength ⁇ among the wavelengths included in the temperature control list ;
  • Determining the temperature controller comprises a list of adjacent wavelengths ⁇ i + 1, a wavelength of the temperature controller comprises a list adjacent to the said adjacent wavelength ⁇ i;
  • the adjacent wavelengths there may be zero wavelengths between the adjacent wavelengths ⁇ i+1 and the ⁇ i , or, in the temperature control list, the adjacent wavelengths There may be at least one wavelength between ⁇ i+1 and the ⁇ i , which is not specifically limited in this embodiment.
  • the remote optical module can determine the target temperature T according to the maximum cut-off wavelength ⁇ i_max , the minimum cut-off wavelength ⁇ i_min and adjacent wavelengths of the target channel;
  • the remote optical module may calculate the target temperature T according to the following formula:
  • the process of how the remote optical module specifically adjusts the wavelength of the laser of the remote optical module according to the target temperature T is shown in FIG. 3 for details, and details are not described in this embodiment.
  • Step 509 The central office equipment judges whether the adjusted target wavelength is within the target wavelength range of the target wavelength channel, if yes, execute step 510, and if not, execute step 501.
  • the central office device needs to re-determine whether the adjusted target wavelength is within the target wavelength range Inside.
  • the central office device shown in this embodiment can determine whether the number of times the adjusted target wavelength is not within the target wavelength range of the target wavelength channel is greater than or equal to the preset threshold, if so, it is determined that the remote optical module needs to be replaced, if not , Then return to step 501.
  • Step 510 The central office equipment determines that there is no need to adjust the target wavelength of the remote optical module.
  • step 510 For the specific execution process of step 510 shown in this embodiment, please refer to step 302 shown in FIG. 3 for details, and details are not described in detail.
  • the target wavelength of any remote laser included in the remote device is concentrated on one of the multiple channels.
  • the channel is associated with each uplink communication channel, and one channel among the multiple channels may correspond to one uplink channel.
  • the channel corresponding to the wavelength ⁇ 0 is the channel 801 shown in Fig. 8.
  • the wavelength of the laser is ⁇ 0
  • the encoding modes of the lasers corresponding to different channels are different. It can be seen that in the existing solution, there is a one-to-one correspondence between the channel 801 and the wavelength ⁇ 0.
  • the correspondence between any channel and wavelength between the central office device and the remote device can be expanded, that is, the correspondence between one channel and M wavelengths can be realized.
  • the specific number of M in this embodiment is It is not limited, as long as the M is a positive integer greater than 1.
  • This embodiment takes the example shown in FIG. 8 as an example, that is, takes M being 4 as an example for illustrative description, then the channel 801 and the channel 801 shown in this embodiment can be realized. Correspondence of 4 wavelengths.
  • the four wavelengths corresponding to the channel 801 are ⁇ -2 , ⁇ -1 , ⁇ +1 and ⁇ +2 respectively , where ⁇ -2 , ⁇ -1 , ⁇ +1 and ⁇ +2 are located within the range of the channel 801, Moreover , the wavelength sizes of ⁇ -2 , ⁇ -1 , ⁇ +1 and ⁇ +2 gradually increase. This embodiment does not limit the specific sizes of ⁇ -2 , ⁇ -1 , ⁇ +1 and ⁇ +2.
  • the temperature T corresponding to any wavelength of ⁇ -2 , ⁇ -1 , ⁇ +1 and ⁇ +2 can be determined by generating a temperature control list.
  • the temperature corresponding to ⁇ -2 is T 1
  • the temperature corresponding to ⁇ -1 is T 2
  • the temperature corresponding to ⁇ +1 is T 3
  • the temperature corresponding to ⁇ +2 is T 4 as an example.
  • T 1 is 25°C
  • T 2 is 35°C
  • T 3 is 45°C
  • T 4 is 55°C as an example.
  • one laser can be configured for each wavelength of ⁇ -2 , ⁇ -1 , ⁇ +1 and ⁇ +2 . It can be seen that 4 lasers can be set corresponding to the channel 801, Optionally, the encoding modes of multiple lasers corresponding to the same channel may be the same.
  • the wavelength corresponding to laser 1 is ⁇ -2
  • the wavelength corresponding to laser 2 is ⁇ -1
  • the wavelength corresponding to laser 3 is ⁇ +1
  • the wavelength corresponding to laser 4 Is ⁇ +2 .
  • the remote optical module can adjust the wavelength of laser 1 by executing the foregoing method embodiment, for example, the temperature control unit 402 Adjust the temperature to 25°C;
  • the remote optical module can adjust the wavelength of laser 2 by executing the foregoing method embodiment, for example, the temperature control unit 402 The temperature is adjusted to 35°C, this time by analogy, the details will not be repeated.
  • the central office device monitors the remote optical module of the remote device. If the wavelength of the laser of the remote optical module is monitored to drift, the central office device sends a wavelength control signal to the remote optical module.
  • the remote optical module correspondingly adjusts the temperature of the temperature control unit 402 according to the wavelength control signal, so that the adjusted target wavelength is within the target wavelength range, so that the laser of the remote optical module can be successfully connected to the wavelength division multiplexer.
  • the Ethernet Dragon Wave Lock adjusts the wavelength to the ITU grid, such as ⁇ 0 ⁇ 2.5 GHz.
  • the target wavelength is adjusted within the target wavelength range of the filter, for example, within the range of 10 nm.
  • the method shown in this embodiment can realize the adjustment of the wavelength of the laser by reusing the industry chain of the traditional WDM coarse wavelength division multiplexer, that is, the combination of the laser and the temperature control unit.
  • N times such as achieving the effect of doubling and 4 times the number of wavelengths, thereby improving the utilization efficiency of the frequency band.
  • the central office device shown in this embodiment can receive all the top adjustment signals sent by the remote optical module located in the remote device through the PD, and the remote optical module with wavelength shift can be detected according to the top adjustment signal. It can be seen that, Through the detection process of the remote optical module with wavelength drift shown in this embodiment, the overhead of adjusting the ceiling can be reduced, and the remote optical module fault information monitoring and reporting can be realized without relying on the network management and remote equipment.
  • the central office equipment shown in this embodiment can receive the top adjustment signals of all the remote optical modules of the remote equipment through the PD, which reduces the cost.
  • the method shown in this embodiment can monitor the target wavelength of each remote optical module included in the remote device through the remote device, and the monitoring process does not depend on the network management, which improves the efficiency and accuracy of monitoring.
  • the central office device implements the monitoring of the wavelength of the remote optical module.
  • This embodiment does not limit the implementation of the specific execution subject shown in the foregoing method embodiment.
  • the central office device implements the foregoing
  • the function can be any unit included in the central office equipment, for example, can be the central office optical module included in the central office equipment, wherein the central office optical module and the remote optical module are There is a one-to-one correspondence relationship, that is, the central office optical module and the remote optical module have a master-slave relationship.
  • the central office optical module as the master control module is used to monitor the wavelength of the remote optical module as the controlled module, and the specific monitoring process , Please refer to the above for details, and I won’t go into details for details.
  • the central office equipment 900 specifically includes a first splitting/multiplexing unit 901.
  • the first demultiplexing unit 901 shown in the embodiment is an optional structure. In other examples, the first demultiplexing unit 901 may not be included in the central office equipment 900.
  • the central office equipment 900 also includes a wavelength detection unit 902, which is used to determine whether the target wavelength of the remote optical module is within the target wavelength range, and the target wavelength range corresponds to the remote optical module.
  • a wavelength detection unit 902 which is used to determine whether the target wavelength of the remote optical module is within the target wavelength range, and the target wavelength range corresponds to the remote optical module.
  • the central office equipment 900 further includes a wavelength calculation unit 903, configured to generate a wavelength control signal if it is determined that the target wavelength of the remote optical module is outside the target wavelength range.
  • a wavelength calculation unit 903 configured to generate a wavelength control signal if it is determined that the target wavelength of the remote optical module is outside the target wavelength range.
  • the wavelength detection unit 902 is further configured to send a wavelength control signal to the remote optical module, where the wavelength control signal is used to indicate the adjusted target wavelength, and the adjusted target wavelength is within the range of the target wavelength.
  • the wavelength control signal is used to indicate the adjusted target wavelength, and the adjusted target wavelength is within the range of the target wavelength.
  • the central office equipment 900 shown in this embodiment further includes N optical modules, and the optical modules included in the central office equipment 900 correspond to the N optical modules included in the remote equipment 904 in a one-to-one correspondence.
  • the optical module included in the central office equipment 900 shown in this embodiment may be a pluggable optical module or a non-pluggable optical module, which is not specifically limited in this embodiment.
  • the wavelength control signal is used to indicate a wavelength shift amount, and the wavelength shift amount is a wavelength shifted by the actual detection wavelength relative to the target wavelength range.
  • the wavelength control signal is used to indicate the target wavelength range.
  • the wavelength detection unit 902 is also configured to receive the top-adjusting signal sent from the remote optical module;
  • the wavelength calculation unit 903 is further configured to determine whether the actual detection wavelength of the remote optical module is within the target wavelength range according to the top adjustment signal.
  • the wavelength calculation unit 903 is specifically configured to: if it is determined whether the frequency point intensity of the tipping signal is greater than or equal to a preset value, determine that the actual detection wavelength is within the target wavelength range; if it is determined that the tipping signal is within the target wavelength range; If the frequency point intensity of the signal is less than the preset value, it is determined that the actual detection wavelength is outside the target wavelength range.
  • the remote device 904 includes N optical modules that correspond to the N optical modules included in the central office device 900 in a one-to-one correspondence.
  • the remote optical module for the description of the specific structure of the remote optical module included in the remote device 904, refer to the above-mentioned FIG. 4, the remote optical module shown in this embodiment further includes a receiving unit 404
  • the receiving unit 404 is configured to receive a wavelength control signal, and the wavelength control signal is used to indicate the adjusted target wavelength.
  • the control unit 403 is configured to determine a target temperature according to the wavelength control signal, where the target temperature corresponds to the adjusted target wavelength.
  • the control unit 403 is further configured to adjust the wavelength of the laser of the remote optical module according to the target temperature, the wavelength of the laser after the wavelength adjustment is the adjusted target wavelength, and the adjusted target wavelength
  • the target wavelength of is within the target wavelength range.
  • the wavelength control signal is used to indicate a wavelength offset
  • the wavelength offset is a wavelength offset of the actual detection wavelength with respect to the target wavelength range.
  • the wavelength control signal is used to indicate the target wavelength range.
  • control unit 403 is specifically configured to: determine the adjusted target wavelength according to the wavelength control signal; obtain a temperature control list, where the temperature control list includes the correspondence between different temperatures and different wavelengths; According to the temperature control list, the target temperature corresponding to the adjusted target wavelength is determined.
  • the laser 401 is used to send a top-adjusting signal to the central office equipment.
  • control unit 403 is specifically configured to: determine a reference wavelength, where the reference wavelength is the wavelength that has the smallest difference with the adjusted target wavelength ⁇ among the wavelengths included in the temperature control list. Wavelength; determine the adjacent wavelength ⁇ i+1 included in the temperature control list, and the adjacent wavelength is the wavelength adjacent to the ⁇ i included in the temperature control list; according to the maximum cutoff of the target channel The wavelength ⁇ i_max , the minimum cut-off wavelength ⁇ i_min and the adjacent wavelength ⁇ i+1 determine the target temperature T.
  • the wavelength control signal sent by the central office equipment to the remote optical module may be realized by a top-adjusting signal, and the adjusted target wavelength is indicated by the top-adjusting signal.
  • the remote optical module can also send a top-adjusting signal to the central office equipment, so that the central office equipment can monitor the wavelength of the remote optical module.
  • the topping signal is sometimes called pilot tone, low-frequency perturbation signal, over-modulation signal, etc. It refers to generating a low-speed optical associated signal through topping, and loading it on the service optical signal of the bearer service Above, it is used to realize the monitoring of wavelength and the overhead of transmission light along the path.
  • FIG. 10 is a schematic diagram of a top adjustment signal provided by an embodiment of the present invention.
  • the top adjustment signal can carry the adjusted target wavelength information (such as wavelength offset or target wavelength range, etc.). Therefore, it is equivalent to loading the adjusted target wavelength information on the service optical signal.
  • a high-frequency service optical signal (such as above a few GHz) 1002 sent by the central office equipment transmitter to the remote optical module can be superimposed with a low-frequency (such as below tens of MHz) amplitude modulation signal (such as A sinusoidal signal) 1001, and a superimposed signal 1003 is generated.
  • the adjusted target wavelength information can be represented by the binary bit "1010" carried by the adjusted top signal.
  • Wavelength monitoring can calculate the optical power of the wavelength by measuring the amplitude of the tipping pilot frequency and combining the modulation depth of the tipping pilot frequency. Using frequency division technology to load different top-regulating signals on different wavelengths, multi-channel monitoring can be realized.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明实施例公开了一种波长调节方法以及相关设备,所述方法包括远端光模块接收波长控制信号,所述波长控制信号用于指示所述远端光模块调节后的目标波长,所述波长控制信号通过调顶方式加载于第一业务光信号中;所述远端光模块根据所述波长控制信号对所述远端光模块的工作波长进行调节。采用本实施例所示的方法,可通过远端设备对远端设备所包括的远端光模块的工作波长进行监控,提高了监控的效率和准确性。且能够实现低成本,高可靠,可运维的波分传输系统。

Description

一种波长调节方法以及相关设备
本申请要求于2019年9月3日提交中国国家知识产权局、申请号为201910829675.X、申请名称为“一种波长调节方法以及相关设备”的中国专利申请的优先权,以及要求于2020年8月24日提交中国国家知识产权局、申请号为202010857528.6、申请名称为“一种波长调节方法以及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种光通信技术,尤其涉及一种波长调节方法以及相关设备。
背景技术
现有技术所提供的光通信系统的结构可参见图1所示,如图1所示可知,光通信系统包括位于发送端的多个光模块101以及位于接收端的多个光模块102,且位于发送端的多个光模块101和位于接收端的多个光模块102是一一对应的关系。光模块101用于把电信号转换为光信号,并通过光纤向光模块102传送,光模块102再把光信号转换为电信号。
现有技术可通过光模块102中的激光器,通过以太龙波锁的方式将激光器的波长限定在固定波长通道内,从而实现位于接收端的不同的光模块102通过不同波长以波分复用(wavelength division multiplexing,WDM)方式进行复用。
采样现有技术所示的以太龙波锁的方式只能将激光器锁定到某单一固定波长,锁定精度高。而且以太龙波锁检测和控制复杂,功耗较高,且需要额外成本。
发明内容
本申请提供一种波长调节方法、相关设备以及光通信系统,其能够对各远端光模块的工作波长进行监控,避免远端光模块波长漂移,且提高了监控的效率和准确性。
本发明实施例第一方面提供了一种波长调节方法,所述方法包括:远端光模块接收波长控制信号,所述波长控制信号用于指示所述远端光模块调节后的目标波长,所述波长控制信号通过调顶方式加载于第一业务光信号中;所述远端光模块根据所述波长控制信号对所述远端光模块的工作波长进行调节。
采用本实施例所示的方法,可通过远端设备对远端设备所包括的各远端光模块的工作波长进行监控,监控过程不依赖于网管,提高了监控的效率和准确性。且能够实现低成本,高可靠,可运维,带保护的波分传输系统。且所述局端设备和远端光模块之间可直接进行数据交互,无需依赖于网管(或者其他独立控制信道)传输数据,提高了数据传输的效率。
一种可能的实现方式中,所述远端光模块根据所述波长控制信号进行波长调节,包括:所述远端光模块根据所述波长控制信号确定目标温度,其中,所述目标温度与所述调节后的目标波长对应;所述远端光模块根据所述目标温度调节将所述远端光模块的工作波长调节至所述调节后的目标波长。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述波长控制信号用于指示波长偏移量,所述波长偏移量为所述远端光模块的工作波长相对于目标波长范围所偏移的波长。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述波长控制信号用于指示目标波长范围。
一种可能的实现方式中,波长控制信号用于指示所述目标温度。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述方法还包括:所述远端光模块根据所述波长控制信号确定所述调节后的目标波长;所述远端光模块根据所述波长控制信号确定目标温度包括:所述远端光模块获取温控列表,所述温控列表包括不同的温度与不同的波长的对应关系;所述远端模块根据所述温控列表,确定与所述调节后的目标波长对应的所述目标温度。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述远端光模块接收波长控制信号之前,所述方法还包括:所述远端光模块向局端设备发送检测信号,所述检测信号通过调顶方式加载于第二业务光信号中。
本实施例所示的局端设备可通过光探测器(photodetector,PD)接收位于远端设备中的远端光模块所发送的所有调顶信号(检测信号),根据调顶信号即可检测出现波长漂移的远端光模块,可见,通过本实施例所示对出现波长漂移的远端光模块检测过程,能够减少调顶开销,不依赖于网管和远端设备实现远端光模块故障信息监控和上报。因本实施例所示的所述局端设备通过PD即可接收远端设备的所有远端光模块的调顶信号,则降低了成本。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述远端光模块根据所述波长控制信号确定目标温度包括:确定参考波长λ i,所述参考波长λ i为所述温控列表所包括的波长中,与所述调节后的目标波长λ之间的差值最小的波长;确定所述温控列表所包括的相邻波长λ i+1,所述相邻波长为所述温控列表所包括与所述参考波长λ i相邻的波长;根据所述目标波长范围的最大截止波长λ i_max、最小截止波长λ i_min以及相邻波长λ i+1确定所述目标温度T。
具体的,所述远端光模块可根据如下公式计算出所述目标温度T:
T=T i+(T i+1-T i)*(λ i_center-λ)/(λ i+1i),其中λ i_center=1/2*(λ i_maxi_min),其中,T i+1为所述温控列表中,与所述相邻波长λ i+1对应的温度。
可见,通过本方面所示实现了远端光模块的波长的精确调节。
本发明实施例第二方面提供了一种波长调节方法,所述方法包括:当远端光模块的工作波长超出目标波长范围,向远端光模块发送波长控制信号,所述波长控制信号用于指示所述远端光模块调节后的目标波长,所述波长控制信号通过调顶方式加载于第一业务光信号中。
本方面所示的方法有益效果请详见上述第一方面所示,具体不做赘述。
基于本发明实施例第二方面,本发明实施例第二方面的一种可选的实现方式中,所述波长控制信号用于指示波长偏移量,所述波长偏移量为远端光模块的工作波长相对于所述目标波长范围所偏移的波长。
基于本发明实施例第二方面,本发明实施例第二方面的一种可选的实现方式中,所述波长控制信号用于指示目标波长范围。
基于本发明实施例第二方面,本发明实施例第二方面的一种可选的实现方式中,所述方法还包括:接收来自远端光模块发送的检测信号,所述检测信号通过调顶方式加载于第二业务光信号中;根据所述调顶信号判断所述远端光模块的工作波长是否位于所述目标波长范围内。
基于本发明实施例第二方面,本发明实施例第二方面的一种可选的实现方式中,所述根 据所述检测信号判断所述远端光模块的工作波长是否位于所述目标波长范围内包括:若所述检测信号的频点强度是否大于或等于预设值,则确定所述远端光模块的工作波长位于所述目标波长范围内。
本发明实施例第三方面提供了一种光模块,所述光模块设置于远端设备内,包括:接收单元,用于接收波长控制信号,所述波长控制信号用于指示所述光模块调节后的目标波长,所述波长控制信号通过调顶方式加载于第一业务光信号中;控制单元,用于根据所述波长控制信号对所述光模块的工作波长进行调节。
本方面所示的光模块执行波长调节方法的具体过程以及有益效果的说明,请详见上述第一方面所示,具体不做赘述。
一种可能的实现方式中,所述控制单元,用于根据所述波长控制信号确定目标温度,其中,所述目标温度与所述调节后的目标波长对应;根据所述目标温度调节将波长调节至所述调节后的目标波长。
基于本发明实施例第三方面,本发明实施例第三方面的一种可选的实现方式中,所述波长控制信号用于指示波长偏移量,所述波长偏移量为所述光模块的工作波长相对于目标波长范围所偏移的波长。
基于本发明实施例第三方面,本发明实施例第三方面的一种可选的实现方式中,所述波长控制信号用于指示目标波长范围。
一种可能的实现方式中,波长控制信号用于指示所述目标温度。
基于本发明实施例第三方面,本发明实施例第三方面的一种可选的实现方式中,所述控制单元还用于:根据所述波长控制信号确定所述调节后的目标波长;获取温控列表,所述温控列表包括不同的温度与不同的波长的对应关系;根据所述温控列表,确定与所述调节后的目标波长对应的所述目标温度。
基于本发明实施例第三方面,本发明实施例第三方面的一种可选的实现方式中,所述光模块还包括:激光器,用于向局端设备发送检测信号,所述检测信号通过调顶方式加载于第二业务光信号中。
基于本发明实施例第三方面,本发明实施例第三方面的一种可选的实现方式中,所述控制单元还用于:确定参考波长λ i,所述参考波长λ i为所述温控列表所包括的波长中,与所述调节后的目标波长λ之间的差值最小的波长;确定所述温控列表所包括的相邻波长λ i+1,所述相邻波长为所述温控列表所包括与所述参考波长λ i相邻的波长;根据所述目标波长范围的最大截止波长λ i_max、最小截止波长λ i_min以及相邻波长λ i+1确定所述目标温度T。
本发明实施例第四方面提供了一种局端设备,包括:波长检测单元,用于判断远端光模块的工作波长是否位于目标波长范围内;发送单元,当所述远端光模块的工作波长超出目标波长范围,向所述远端光模块发送波长控制信号,所述波长控制信号用于指示所述远端光模块调节后的目标波长,所述波长控制信号通过调顶方式加载于第一业务光信号中。
本方面所示的局端设备执行波长调节方法的具体过程以及有益效果的说明,请详见上述第一方面所示,具体不做赘述。
基于本发明实施例第四方面,本发明实施例第四方面的一种可选的实现方式中,所述波长控制信号用于指示波长偏移量,所述波长偏移量为远端光模块的工作波长相对于所述目标波长范围所偏移的波长。
基于本发明实施例第四方面,本发明实施例第四方面的一种可选的实现方式中,所述波 长控制信号用于指示目标波长范围。
基于本发明实施例第四方面,本发明实施例第四方面的一种可选的实现方式中,所述波长检测单元还用于,接收来自远端光模块发送的检测信号,所述检测信号通过调顶方式加载于第二业务光信号中;根据所述检测信号判断所述远端光模块的工作波长是否位于所述目标波长范围内。
基于本发明实施例第四方面,本发明实施例第四方面的一种可选的实现方式中,所述波长检测单元具体用于:若所述检测信号的频点强度是否大于或等于预设值,则确定所述远端光模块的工作波长位于所述目标波长范围内。
本发明实施例第五方面提供了一种远端设备,该网络设备包括第三方面或第三方面任意一种可能的实现方式中的光模块。
本申请的又一方面提供了一种通信系统,该通信系统包括上述第四方面或第四方面任意一种可能的实现方式中的局端设备,和上述第五方面中的远端设备。
本申请的又一方面提供了一种可读存储介质,所述可读存储介质中存储有指令,当该指令在网络设备上运行时,使得网络设备执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的程序产品,当该指令在网络设备上运行时,使得网络设备执行上述各方面所述的方法。
附图说明
图1为现有技术所提供的光通信系统的一种示例性结构;
图2为本申请所提供的光通信系统的一种实施例结构示意图;
图3为本申请所提供的波长调节方法的一种实施例步骤流程图;
图4为本申请所提供的远端光模块的一种实施例结构示例图;
图5为本申请所提供的波长调节方法的另一种实施例步骤流程图;
图6为本申请所提供的一种应用示例图;
图7为本申请所提供的另一种应用示例图;
图8为本申请所提供的另一种应用示例图;
图9为本申请所提供的光通信系统的另一种实施例结构示意图;
图10为本发明实施例提供的一种调顶信号的示意图。
具体实施方式
为更好的理解本申请所提供的波长调节方法,以下首先结合图2所示对本申请所示的方法所应用的光通信系统的具体结构进行示例性说明:
如图2所示可知,本实施例所示的所述光通信系统包括局端设备201、第一分合波单元202、第二分合波单元203以及远端设备204;可选的,本实施例以所述第一分合波单元202设置于所述局端设备201内部,所述第二分合波单元203设置于所述局端设备201和所述远端设备204之间为例进行示例性说明,不做限定,在其他示例中,所述第一分合波单元202和第二分合波单元203均可独立设置于所述局端设备201和所述远端设备204之间,也可将所述第一分合波单元202、第二分合波单元203中的至少一个设置于所述所述远端设备204内,或者也可将所述第一分合波单元202和所述第二分合波单元203由一个分合波单元实现。
其中,从所述局端设备201到所述远端设备204的方向定义为下行方向,而从所述远端 设备204到所述局端设备201的方向为上行方向。在下行方向,所述第一分合波单元202用于进行合波,所述第二分合波单元203用于进行分波,而在上行方向,所述第二分合波单元203用于进行合波,所述第一分合波单元202用于进行分波。
本实施例所示的所述局端设备201和所述远端设备204之间需要进行数据传输,具体的,所述局端设备201和所述远端设备204之间的数据传输可以通过所述第一分合波单元202和所述第二分合波单元203中的无源器件来实现,即通过第一分合波单元202和所述第二分合波单元203所包括的无源器件实现分合波功能,进而实现所述局端设备201和所述远端设备204之间的数据传输。
本实施例对所述局端设备201以及所述远端设备204具体的设备类型不做限定,只要所述局端设备201能够对所述远端设备204进行统一管理即可,例如,若本实施例所示的所述光通信系统应用于第三代移动通信技术(3rd-generation,3G)、第四代移动通信技术(the fourth generation of mobile phone mobile communication technology standards,4G)或第五代移动通信技术(5th generation mobile networks,5G),则所述局端设备201可为基带处理单元(baseband unit,BBU),所述远端设备204可为射频拉远模块(remote radio unit,RRU)。
基于图2所示的光通信系统,以下结合图3所示对本申请所提供的波长调节方法的一种实施例进行示例性说明:
步骤301、局端设备判断目标波长是否位于目标波长通道的目标波长范围内,若是,则执行步骤302,若否,则执行步骤303。
本实施例中,继续参见图2所示为例,所述局端设备201内部包括有多个光模块,即光模块1、光模块2……光模块N,而所述远端设备204内部也包括有多个光模块,即光模块1、光模块2……光模块N,且所述局端设备201所包括的多个光模块和所述远端设备204所包括的多个光模块之间可以是一一对应的关系,以使相互对应的位于所述局端设备201内的光模块和位于所述远端设备204内的光模块之间可进行数据传输。例如,若位于所述局端设备201内的光模块N和位于所述远端设备204内的光模块N对应,则使得位于所述局端设备201内的光模块N和位于所述远端设备204内的光模块N之间可进行数据传输。本实施例对N的具体数值不做限定,只要N为大于1的正整数即可。
其中,光模块可以是外形封装可插拔(centum form-factor pluggable,CFP)光模块、小型可插拔(small form pluggable,SFP)光模块等。各所述光模块内部包括但不限于激光器,具体的,为使得远端设备204所包括的所有光模块能够通过不同波长以波分复用的方式进行复用,则需要远端设备204所包括的各激光器的波长锁定到波长范围内,但是,在激光器实际应用中,往往会出现激光器的波长漂移的情况,已出现波长漂移的激光器无法实现波分复用。具体的,激光器的波长都受多种因素的影响从而使得激光器的波长出现漂移的现象,这些因素包括但不限于激光器的工作温度、激光器电流、激光器电压、振动源或电噪声。
本实施例对所述激光器的具体类型不做限定,本实施例以所述激光器为分布式反馈(distribution feedback,DFB)为例。
本实施例所示的局端设备为检测远端设备所包括的各光模块是否出现波长漂移情况,则所述局端设备可首先在所述远端设备中确定出远端(remote)光模块,其中,所述远端光模块可为所述远端设备所包括的多个光模块中的任一个。其次,所述局端设备确定所述远端光 模块的目标波长是否位于目标波长通道的目标波长范围内。继续以上述示例所示,以所述远端设备包括的N个光模块为例,则所述目标波长可以为N个光模块中的任意一个光模块当前使用的工作波长。
本实施例所示的局端设备用于控制远端设备内的各激光器的波长均位于对应波长范围内,从而使得远端设备内的各激光器不会出现波长漂移的情况,进而使得远端设备内的各激光器能够实现波分复用。
具体的,本实施例所示所述局端设备可先确定局端的分合波单元,本实施例所示的分合波单元具有N个波长通道,更具体的,所述局端设备所确定局端的分合波单元所包括的波长通道数量和所述远端设备所包括的光模块的数量相等,且所述分合波单元所包括的波长通道和所述远端设备所包括的光模块可以是一一对应的关系。例如,所述分合波单元所包括的波长通道N和所述远端设备所包括的光模块N是对应的,如下以表1所示为例对所述局端设备所确定的分合波单元进行说明:
表1
分合波单元 远端设备的光模块
波长通道1 光模块1
波长通道2 光模块2
…… ……
波长通道N 光模块N
本实施例中,位于远端设备内的光模块j(j为表1中从1到N的整数)为通过波分复用的方式与位于所述局端设备内的光模块进行数据传输,则需要位于远端设备内的光模块j的波长位于波长通道j的波长范围内。只有在位于远端设备内的光模块j的波长位于所述波长通道j的波长范围内,所述远端设备的光模块j才能够成功的与局端设备内的光模块进行数据传输。
可见,本实施例所示的分合波单元包括分别与远端设备所包括的N个光模块分别对应的波长通道,本实施例所示的波长通道为波长范围,则本实施例中,所述目标波长通道所指示的目标波长范围为目标波长范围。
可见,通过如表1所示的分合波单元,所述局端设备确定了与远端设备不同的光模块分别对应的波长范围,即λ i_min<λ<λ i_max。其中,λ为远端设备的光模块N所包括的激光器的波长,λ i_min为波长通道N的波长范围的最小值,λ i_max为波长通道N的波长范围的最大值。
在所述局端设备已确定所述分合波单元的情况下,所述局端设备可在所述分合波单元中确定目标波长通道,其中,所述目标波长通道为与所述远端光模块对应的波长通道。
可选的,在如图2所示的光通信系统初始化时,远端光模块的目标波长初始化。远端光模块的目标波长接入波分复用系统,局端设备以轮询的方式执行本实施例所示的步骤301,若监控到远端光模块的目标波长不位于目标波长通道的目标波长范围内,则需要执行后续步骤所示对目标波长进行调节,以使远端光模块能够成功接入至波分复用系统,若监控到远端光模块的目标波长位于目标波长通道的目标波长范围内,则局端设备可间隔预设时间段后重新执行步骤301,本实施例对所述预设时间段的具体持续时间不做限定。
步骤302、局端设备确定无需对所述远端光模块的目标波长进行调节。
本实施例中,在所述局端设备确定出所述远端光模块的激光器的目标波长位于对应的目 标波长通道内时,则说明所述远端光模块的激光器未出现波长漂移,则所述局端设备无需对所述远端光模块的目标波长进行调节。
可选的,所述局端设备可设置有重检时长,则所述局端设备在执行了步骤302后,启动计时器进行计时,若所述计时器所计时长达到所述重检时长,则所述局端设备返回执行步骤301。
步骤303、局端设备向远端设备发送波长控制信号。
在所述局端设备确定出所述远端光模块的激光器的目标波长不位于对应的目标波长通道内时,则说明所述远端光模块的激光器出现波长漂移,则所述局端设备确定需要对所述远端光模块的目标波长进行调节。
为更好的理解本实施例所示的局端设备对远端光模块的激光器的波长进行调节的过程,以下首先结合图4所示对所述远端光模块的具体结构进行示例性说明:
如图4所示可知,本实施例所示的所述远端光模块400包括但不限于激光器401、温控单元402以及控制单元403等,需明确的是,本实施例对所述远端光模块400的具体结构的说明为可选的示例,不做限定。
如图4所示,所述激光器401和所述温控单元402贴合设置,所述控制单元403与所述温控单元402电连接设置。因所述激光器401的波长值和所述激光器401所处的环境温度的大小呈正相关关系,则可通过对温控单元402的温度进行调节,以实现对所述激光器401的温度(或波长)进行调节的目的。
本实施例对所述温控单元402的具体设备类型不做限定,只要所述温控单元402能够在所述控制单元403的控制下进行温度调节,从而对激光器401的波长进行调节即可,例如,所述温控单元可为热电冷却器(TEC)、热敏电阻heater。所述控制单元403可通过控制流经所述温控单元402的电流,从而调节温控单元402的温度,进而实现调节激光器401的波长的目的。
可见,本实施例所示的所述局端设备可向远端设备的远端光模块发送波长控制信号,
所述波长控制信号用于指示所述远端光模块对激光器的波长进行调节,以使激光器的波长位于所述目标波长通道的波长范围内,本实施例对所述波长控制信号所包括的具体内容不做限定。
例如,所述波长控制信号可用于指示波长偏移量,所述波长偏移量用于指示所述局端设备对远端光模块的激光器按照所述波长偏移量进行调节,从而按照所述波长偏移量进行调节后的目标波长位于所述目标波长通道内。
具体的,所述波长偏移量用于指示远端光模块当前使用的工作波长相对于所述目标波长通道所偏移的波长。例如,若所述目标波长通道所指示的目标波长范围为1309纳米至1311纳米之间。在远端光模块当前使用的工作波长为1312纳米的情况下,所述局端设备可确定出所述远端光模块的波长发生了偏移,则所述局端设备可确定出所述波长偏移量为-1纳米至-3纳米之间的任一数值。
可选的,若远端光模块当前使用的工作波长低于目标波长范围的最小值,则此时的所述波长偏移量为正数;若远端光模块当前使用的波长大于目标波长范围的最大值,则此时的所述波长偏移量为负数。
又如,所述波长控制信号可用于指示目标波长通道所具有的目标波长范围。具体的,在所述局端设备确定出远端光模块的波长发生了波长偏移的情况下,所述局端设备可直接确定 与所述远端光模块对应的目标波长通道所具有的目标波长范围,则所述局端设备可直接根据所述目标波长范围对所述远端光模块的激光器的波长进行调节,从而使得激光器调节后的波长位于所述目标波长范围内。
步骤304、远端光模块接收来自局端设备的波长控制信号。
本实施例所示的远端光模块可对所述波长控制信号进行轮询检测,若通过轮询检测接收到波长控制信号,则触发进行步骤305的执行。
步骤305、远端光模块根据波长控制信号进行波长调节。
本实施例中,发生了波长漂移的所述远端光模块接收所述波长控制信号,所述远端光模块即可根据所述波长控制信号对位于所述远端光模块的温控单元进行温度调节以调节激光器的工作温度,进而实现对激光器的波长的调节,以使调节后的远端光模块的波长位于所述目标波长通道的波长范围内,以下对本实施例所示的所述远端光模块具体是如何对波长进行调节的进行说明:
首先,本实施例所示的所述远端光模块可获取预设确定的温控列表,本实施例所示的温控列表可包括有不同的波长范围和不同的温度的对应关系,本实施例对所述远端光模块具体是如何生成所述温控列表的不做限定,只要所述温控列表能够体现在保障远端光模块的输出光功率不变的情况下,不同的温度与不同的波长的对应关系即可,为更好的理解本实施例所示的所述温控列表,以下参见表2所示对所述温控列表进行示例性说明:
表2
温度T 波长
T=25℃ λ=1309nm
T=35℃ λ=1310nm
T=45℃ λ=1311nm
T=55℃ λ=1312nm
…… ……
其次,所述远端光模块根据所述波长控制信号确定调节后的目标波长,其中,所述调节后的目标波长位于所述目标波长通道所具有的目标波长范围内,即在所述远端光模块将激光器的波长调节至调节后的目标波长,则使得该激光器的波长不会出现漂移的现象。
继续参见步骤304所示对所述波长控制信号的说明,可选的,若所述波长控制信号用于指示波长偏移量,则所述远端光模块可根据所述波长偏移量确定出所述调节后的目标波长。
例如,所述局端设备向远端光模块所发送的所述波长控制信号所指示的波长偏移量为2纳米,则所述远端光模块可确定出所述当前实际波长偏移了2纳米,若所述波长偏移量为正2,则所述调节后的目标波长=当前实际波长和波长偏移量的和,具体例如,若所述当前实际波长为1308纳米,所述目标波长范围为1309纳米至1311纳米之间,则所述远端光模块确定所述调节后的目标波长=1308+2=1310纳米,可见,所述远端光模块根据所述波长偏移量对所述当前实际波长调节后所获取到的调节后的目标波长1310,位于所述目标波长范围1309纳米至1311纳米之间。
可选的,若所述波长控制信号用于指示所述目标波长范围,则所述远端光模块可确定所述调节后的目标波长为所述目标波长范围内的任一数值,例如,若所述目标波长范围为1309纳米至1311纳米之间,则所述远端光模块可确定所述调节后的目标波长为1310纳米。
再次,所述远端光模块查询所述温控列表,以确定在所述温控列表中与所述调节后的目 标波长对应的目标温度。
例如,在所述远端光模块确定出所述调节后的目标波长为1310纳米的情况下,所述远端光模块根据所述温控列表即可确定出与1310纳米对应的目标温度T=35℃。
最后,所述远端光模块可根据目标温度对所述远端光模块的激光器的工作温度进行调节,以使该激光器的波长为所述调节后的目标波长,进而使得该激光器的波长位于所述目标波长通道内,所述远端光模块即可通过该调节后的目标波长进行波分复用。
继续以图4所示为例,所述远端光模块的控制单元403可获取目标温度,则所述控制单元403可通过控制流经所述温控单元402的电流的大小,以使所述温控单元402的温度为所述目标温度,例如,在所述控制单元403确定出所述目标温度T=35℃的情况下,所述控制单元403即可控制流经所述温控单元402的电流的大小,以使所述温控单元402的温度为35℃,因所述温控单元402和所述激光器401贴合设置,即可通过调节所述温控单元402的温度的情况下,实现对所述激光器401的波长的调节,具体例如,在所述控制单元403的目标温度为35℃的情况下,所述激光器401的波长λ=1310nm。
可选的,本实施例所示的光通信系统的远端光模块,可基于所述温控列表实现初始化;
首先,远端光模块的所述温控单元402检测出温控单元402的当前温度T typ
其次,所述远端光模块可对所述温控列表所包括的所有温度与所述当前温度T typ作差,即min|T i–T typ|,其中,T i为所述温控列表所包括的任一温度,所述远端光模块确定差值最小的温度所对应的波长为所述远端光模块的激光器的波长,即温控列表所包括的温度T i与所述当前温度T typ的差值最小;
再次,所述远端光模块确定与温度T i对应的波长为所述远端光模块的激光器的波长。
可选的,在需要对远端光模块生成对应的所述温控列表时,可将该远端光模块连接至检测模块,该检测模块用于根据所述远端光模块的不同的波长与不同的温度的对应关系生成如表2所示的温控列表,并存储至所述远端光模块的存储器中。
基于图3所示的波长调节方法,以下结合图5所示对波长调节方法所示的确定目标波长是否位于目标波长通道的目标波长范围内的过程进行详细说明:
步骤501、远端光模块向局端设备发送调顶信号。
本实施例所示的远端光模块将控制信令编码后加载到激光器上,通过激光器将调顶信令向局端设备发送。对远端光模块的具体说明,请详见上述实施例所示,具体不做赘述。
步骤502、局端设备接收来自远端光模块的调顶信号。
因位于远端设备内的不同的激光器所发送的调顶信号的载频频点不同,一般为几十K至1MHz之间,则所述局端设备接收到位于远端设备上的所有激光器通过不同的载频频点发送的调顶信号。
即以图6所示为例,在所述远端设备内包括有六个光模块的情况下,该六个光模块具有的波长分别为图6所示的λ 1、λ 2……λ 6,所述局端设备即可接收到六个远端光模块共发送的六个调顶信号,其中,本实施例所示的局端设备在接收到远端设备所包括的所有远端光模块所发送的调顶信号的情况下,所述局端设备可根据预制算法确定出任一调顶信号与远端光模块的对应关系,即任一调顶信号是由对应的远端光模块所发送的。
步骤503、局端设备根据调顶信号确定目标波长是否位于目标波长范围内,若是,则执行步骤504,若否,则执行步骤505。
具体的,本实施例所示的局端设备可通过已设置的光探测器(PD),接收远端光模块的调顶信号,并根据已接收到的所有调顶信号,逐一确定发送调顶信号的远端光模块的目标波长是否位于目标波长范围内。
首先,请参见图7所示,所述局端设备可确定出如图7所示的对应关系,其中,该对应关系包括所述局端设备所检测的各远端光模块的调顶信号的频率以及该调顶信号的频点强度,可见,本实施例所示的所述局端设备可通过如图7所示的对应关系,确定出与每个远端光模块的调顶信号的频率和调顶信号的频点强度的对应关系。
其次,所述局端设备根据所述对应关系判断远端光模块的调顶信号的频点强度V i是否大于或等于预设值V th,本实施例对预设值V th的具体数值大小不做限定,只要在所述频点强度V i大于或等于所述预设值V th的情况下,则说明用于发送该调顶信号的远端光模块的目标波长位于所述目标波长范围内,进而说明该远端光模块的激光器未出现波长漂移的情况,该激光器的目标波长无需进行调节。
若所述频点强度Vi小于所述预设值V th的情况下,则说明用于发送该调顶信号的远端光模块的目标波长不位于所述目标波长范围,进而说明该远端光模块的激光器已出现波长漂移的情况,该激光器的目标波长需要进行调节。
例如,继续以图7所示为例,λ 1、λ 2……λ 5分别对应的调顶信号的频点强度V i均大于预设值V th,则局端设备无需对λ 1、λ 2……λ 5进行调节,而λ 6对应的调顶信号的频点强度V i小于预设值V th,则说明需要对λ 6进行调节。
步骤504、局端设备确定无需对所述远端光模块的目标波长进行调节。
步骤505、局端设备向远端设备发送波长控制信号。
步骤506、远端光模块接收来自局端设备的波长控制信号。
本实施例所示的步骤504至步骤506的具体执行过程,请详见图3所示的步骤303至步骤305所示,具体执行过程不做限定。
步骤507、远端光模块生成温控列表。
本实施例所示的步骤507和上述所示的步骤501至步骤506之间无执行时序上的先后限定,本步骤所示对所述远端光模块生成所述温控列表的具体过程进行说明,其中,所述温控列表的具体说明,请详见图3所示的实施例。
继续结合图4所示,在保障远端光模块输出功率P不变的情况下,所述控制单元403可首先将温控单元402的温度调节为T 0,并记录此时的波长λ 0,并将T 0和λ 0的对应关系存储在温控列表中。依次类推,在保障远端光模块输出功率P不变的情况下,所述控制单元403可首先将温控单元402的温度调节为T n,并记录此时的波长λ n,并将T n和λ n的对应关系存储在温控列表中。该温控列表也可继续参见表2所示。
步骤508、远端光模块根据波长控制信号对目标波长进行调节以生成调节后的目标波长。
参阅上述步骤305所示可知,所述远端光模块首先根据波长控制信号确定调节后的目标波长λ,以下说明若所述温控列表所包括的所有波长中,均与所述调节后的目标波长λ不相等的情况是如何实现对激光器的目标波长进行调节的过程:
首先,所述远端光模块确定目标通道,所述调节后的目标波长λ位于所述目标通道内,且所述目标通道的所包括的最大截止波长为λ i_max,所述目标通道的所包括的最小截止波长为λ i_min
其次,所述远端光模块确定参考波长λ i,所述参考波长λ i为所述温控列表所包括的各 波长中,与所述调节后的目标波长λ之间的差值最小的波长;
确定所述温控列表所包括的相邻波长λ i+1,所述相邻波长为所述温控列表所包括与所述λ i相邻的波长;
可选的,在所述温控列表中,所述相邻波长λ i+1和所述λ i之间可间隔有零个波长,或,在所述温控列表中,所述相邻波长λ i+1和所述λ i之间可间隔有至少一个波长,具体在本实施例中不做限定。
再次,所述远端光模块可根据所述目标通道的最大截止波长λ i_max、最小截止波长λ i_min以及相邻波长确定出目标温度T;
具体的,所述远端光模块可根据如下公式计算出所述目标温度T:
T=T i+(T i+1-T i)*(λ i_center-λ)/(λ i+1i),其中λ i_center=1/2*(λ i_maxi_min),其中,T i+1为所述温控列表中,与所述相邻波长λ i+1对应的温度。
所述远端光模块具体是如何根据所述目标温度T对所述远端光模块的激光器的波长进行调节的过程,请详见图3所示,具体在本实施例中不做赘述。
步骤509、局端设备判断调节后的目标波长是否位于目标波长通道的目标波长范围内,若是,则执行步骤510,若否,则返回执行步骤501。
本实施例中,在所述远端光模块对激光器的目标波长进行调节以生成所述调节后的目标波长后,所述局端设备需要重新判断调节后的目标波长是否位于所述目标波长范围内。
其中,所述局端设备判断调节后的目标波长是否位于所述目标波长范围内的具体过程,请详见上述所示的局端设备判断目标波长是否位于所述目标波长范围内的具体过程,具体执行过程不做赘述。
本实施例所示的局端设备可判断调节后的目标波长不位于目标波长通道的目标波长范围内的次数是否大于或等于预设门限,若是,则确定远端光模块需要进行更换,若否,则返回执行步骤501。
步骤510、局端设备确定无需对所述远端光模块的目标波长进行调节。
本实施例所示的步骤510的具体执行过程,请详见图3所示的步骤302所示,具体不做赘述。
以下结合图8所示说明,本实施例所示的光通信系统是如何实现波长扩充的过程进行示例性说明:
具体的,远端设备所包括的任一远端激光器的目标波长集中到多个通道中的一个上。通道与各个上行通信通道相关联,且多个通道中的一个通道可对应于一个上行通道。
如图8所示为例,以远端光模块的波长为λ 0为例,则该波长λ 0对应的通道为图8所示通道801,在现有的方案中,与该通道801对应有一个激光器,该激光器的波长为λ 0,且现有的光通信系统中,不同的通道对应的激光器的编码方式是不同的。可见,现有方案中,通道801与波长λ 0为一一对应的关系。
而本实施例所示,可实现对局端设备和远端设备之间的任一通道与波长对应关系的扩充,即实现一个通道与M个波长的对应关系,本实施例对M的具体数量不做限定,只要该M为大于1的正整数即可,本实施例以图8所示为例,即以M为4为例进行示例性说明,则本实施例所示可实现通道801与4个波长的对应关系。
通道801对应的四个波长分别为λ -2,λ -1,λ +1以及λ +2,其中,λ -2,λ -1,λ +1以及λ +2 位于所述通道801范围内,且λ -2,λ -1,λ +1以及λ +2的波长大小逐渐递增,本实施例对λ -2,λ -1,λ +1以及λ +2具体大小不做限定,例如,本实施例以所述通道801的长度为4nm为例,则λ -2=λ 0-1.5nm,λ -1=λ 0-0.5nm,λ +1=λ 0+0.5nm,λ +2=λ 0+1.5nm
本实施例所示的可通过生成温控列表的方式,确定出λ -2,λ -1,λ +1以及λ +2中任一波长对应的温度T,对温控列表的具体说明,请详见上述所示,具体不做赘述。在本示例中,以λ -2对应的温度为T 1,λ -1对应的温度为T 2,λ +1对应的温度为T 3以及λ +2对应的温度为T 4为例,具体的,本实施例以T 1为25℃,T 2为35℃,T 3为45℃以及T 4为55℃为例。
在具体部署光通信系统的过程中,可针对λ -2,λ -1,λ +1以及λ +2中的每个波长配置一个激光器,可见,与所述通道801对应可设置4个激光器,可选的,与同一通道对应的多个激光器的编码方式可相同。
具体的,与所述通道801对应的四个激光器中,激光器1对应的波长为λ -2,激光器2对应的波长为λ -1,激光器3对应的波长为λ +1以及激光器4对应的波长为λ +2
对于激光器1,若局端设备通过上述方法实施例确定出激光器1的波长出现漂移,则远端光模块可通过执行上述方法实施例对激光器1的波长进行调节,例如,将温控单元402的温度调节至25℃;
对于激光器1,若局端设备通过上述方法实施例确定出激光器2的波长出现漂移,则远端光模块可通过执行上述方法实施例对激光器2的波长进行调节,例如,将温控单元402的温度调节至35℃,此次类推,具体不做赘述。
以下对本申请所示的方法的有益效果进行说明:
本申请是在局端设备对远端设备的远端光模块进行监控,若监控到远端光模块的激光器的波长出现漂移,则局端设备通过向远端光模块发送波长控制信号,所述远端光模块根据波长控制信号对温控单元402的温度进行对应调节,从而使得调节后的目标波长位于所述目标波长范围内,进而使得远端光模块的激光器能够成功接入至波分复用系统,可见,本申请所示的方法,能够对远端设备的多个远端光模块的波长进行调节,提高了对远端光模块的波长进行调节的效率。
虽然都是通过温度调波长,以太龙波锁是把波长调整到ITU栅格上,例如λ 0±2.5GHz。而本申请是把目标波长调节在滤波器的目标波长范围内,例如10nm范围内。
可见,采用本实施例所示的对目标波长进行调节的方法,能够实现低成本,高可靠,可运维,带保护的波分传输系统。且所述局端设备和远端光模块之间可通过光物理控制信道(调顶信号)直接进行数据交互,无需依赖于网管(或者其他独立控制信道)传输数据,提高了数据传输的效率。
因本实施例所示的方法可通过重用传统WDM粗波分复用器的产业链,即激光器和温控单元的组合实现对激光器的波长的调节。实现低成本波长数量翻N倍的效果,如实现波长数量翻2倍、4倍的效果,从而提高了频带的利用效率。
且本实施例所示的局端设备可通过PD接收位于远端设备中的远端光模块所发送的所有调顶信号,根据调顶信号即可检测出现波长漂移的远端光模块,可见,通过本实施例所示对出现波长漂移的远端光模块检测过程,能够减少调顶开销,不依赖于网管和远端设备实现远端光模块故障信息监控和上报。
本实施例所示的所述局端设备通过PD即可接收远端设备的所有远端光模块的调顶信号, 则降低了成本。
本实施例所示的方法可通过远端设备对远端设备所包括的各远端光模块的目标波长进行监控,监控过程不依赖于网管,提高了监控的效率和准确性。
可选的,上述实施例所示由局端设备实现对远端光模块的波长的监控,本实施例对实现上述方法实施例所示的具体执行主体不做限定,例如,执行局端设备上述功能的可为所述局端设备所包括的任一单元,又如,可为所述局端设备所包括的局端光模块,其中,所述局端光模块和所述远端光模块之间为一一对应的关系,即局端光模块和远端光模块具有主从关系,作为主控模块的局端光模块用于监控作为被控模块的远端光模块的波长,具体监控过程,请详见上述所示,具体不做赘述。
以下结合图9所示对用于执行上述波长调节方法的局端设备的具体结构进行示例性说明:
如图9所示,所述局端设备900具体包括有第一分合波单元901,对第一分合波单元901的具体说明,可参见上述图2所示,具体不做赘述,即本实施例所示的所述第一分合波单元901为可选结构,在其他示例中,所述局端设备900内也可不包括所述第一分合波单元901。所述局端设备900还包括有波长检测单元902,所述波长检测单元902用于判断远端光模块的目标波长是否位于目标波长范围内,所述目标波长范围与所述远端光模块对应,具体执行过程请详见上述实施例所示,具体不做赘述。
所述局端设备900还包括波长计算单元903,用于若确定所述远端光模块的所述目标波长位于所述目标波长范围之外,则生成波长控制信号,具体获取过程,请详见上述实施例所示,具体不做赘述。
所述波长检测单元902还用于向远端光模块发送波长控制信号,所述波长控制信号用于指示调节后的目标波长,所述调节后的目标波长位于所述目标波长范围内,所述波长控制信号的具体说明,请详见上述方法实施例所示,具体不做赘述。
本实施例所示的所述局端设备900还包括N个光模块,且所述局端设备900所包括的光模块与所述远端设备904所包括的N个光模块一一对应。
本实施例所示的所述局端设备900所包括的光模块可为可插拔的光模块,也可为不可插拔的光模块,具体在本实施例中不做限定。
所述波长控制信号用于指示波长偏移量,所述波长偏移量为所述实际检测波长相对于所述目标波长范围所偏移的波长。
所述波长控制信号用于指示目标波长范围。
所述波长检测单元902还用于接收来自远端光模块发送的调顶信号;
所述波长计算单元903还用于,根据所述调顶信号判断所述远端光模块的所述实际检测波长是否位于所述目标波长范围内。
所述波长计算单元903具体用于;若确定所述调顶信号的频点强度是否大于或等于预设值,则确定所述实际检测波长位于所述目标波长范围内;若确定所述调顶信号的频点强度小于所述预设值,则确定所述实际检测波长位于所述目标波长范围之外。
本实施例所示的局端设备执行如图3或图5所示的波长调节方法的具体执行流程以及有益效果的说明,请详见上述方法实施例所示,具体不做赘述。
继续结合图4和图9所示对远端光模块的具体结构进行示例性说明:所述远端设备904 包括有N个与所述局端设备900所包括的N个光模块一一对应的远端光模块,对所述远端设备904所包括的远端光模块的具体结构的说明,可参见上述图4所示,本实施例所示的所述远端光模块还包括接收单元404,所述接收单元404用于接收波长控制信号,所述波长控制信号用于指示调节后的目标波长。所述控制单元403用于根据所述波长控制信号确定目标温度,其中,所述目标温度与所述调节后的目标波长对应。所述控制单元403还用于,根据所述目标温度调节所述远端光模块的激光器的波长,波长调节后的所述激光器所具有的波长为所述调节后的目标波长,所述调节后的目标波长位于目标波长范围内。
可选的,所述波长控制信号用于指示波长偏移量,所述波长偏移量为所述实际检测波长相对于所述目标波长范围所偏移的波长。
可选的,所述波长控制信号用于指示目标波长范围。
可选的,所述控制单元403具体用于:根据所述波长控制信号确定所述调节后的目标波长;获取温控列表,所述温控列表包括不同的温度与不同的波长的对应关系;根据所述温控列表,确定与所述调节后的目标波长对应的所述目标温度。
可选的,所述激光器401用于向局端设备发送调顶信号。
可选的,所述控制单元403具体用于:确定参考波长,所述参考波长为所述温控列表所包括的各波长中,与所述调节后的目标波长λ之间的差值最小的波长;确定所述温控列表所包括的相邻波长λ i+1,所述相邻波长为所述温控列表所包括与所述λ i相邻的波长;根据所述目标通道的最大截止波长λ i_max、最小截止波长λ i_min以及相邻波长λ i+1确定所述目标温度T。
本实施例所示的远端光模块执行波长调节方法的具体执行流程以及有益效果的说明,请详见上述方法实施例所示,具体不做赘述。
本发明实施例中,局端设备向远端光模块发送的波长控制信号可以采用调顶信号实现,通过调顶信号指示调节后的目标波长。此外,远端光模块也可以向局端设备发送调顶信号,以便于局端设备对远端光模块进行波长监控。调顶信号有时也叫导频音(pilot tone)、低频微扰信号、过调制信号等,是指通过调顶的方式来生成一个低速的光随路信号,并加载在承载业务的业务光信号上,用于实现波长的监控以及传输光随路开销等。图10为本发明实施例提供的一种调顶信号的示意图。通过调顶信号指示调节后的目标波长,可以理解为通过对业务光信号叠加调顶信号,调顶信号可以携带调节后的目标波长信息(如波长偏移量或目标波长范围等)。因此,相当于业务光信号上加载调节后的目标波长的信息。如图10所示,可以在局端设备发射机向远端光模块发送的高频业务光信号(如几GHz以上)1002上,叠加一个低频(如几十MHz以下)幅度调顶信号(如正弦信号)1001,生成叠加信号1003。例如,调节后的目标波长信息可以通过调顶信号携带的二进制比特“1010”表示。波长监控可以通过测量调顶导频幅度,结合调顶导频调制深度,推算出该波长的光功率。利用频分技术,在不同的波长上加载不同的调顶信号,可实现多波道的监控。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信 连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (27)

  1. 一种波长调节方法,其特征在于,所述方法包括:
    远端光模块接收来自局端设备的波长控制信号,所述波长控制信号用于指示所述远端光模块调节后的目标波长,所述波长控制信号通过调顶方式加载于第一业务光信号中;
    所述远端光模块根据所述波长控制信号对所述远端光模块的工作波长进行调节。
  2. 根据权利要求1所述的方法,其特征在于,所述远端光模块根据所述波长控制信号对所述远端光模块的工作波长进行调节,包括:
    所述远端光模块根据所述波长控制信号确定目标温度,其中,所述目标温度与所述调节后的目标波长对应;
    所述远端光模块根据所述目标温度调节将所述远端光模块的工作波长调节至所述调节后的目标波长。
  3. 根据权利要求1或2所述的方法,其特征在于,所述波长控制信号用于指示波长偏移量,所述波长偏移量为所述远端光模块的工作波长相对于目标波长范围所偏移的波长;或者,所述波长控制信号用于指示目标波长范围。
  4. 根据权利要求2所述的方法,其特征在于,所述波长控制信号用于指示所述目标温度。
  5. 根据权利要求2至4任一项所述的方法,其特征在于,所述方法还包括:
    所述远端光模块根据所述波长控制信号确定所述调节后的目标波长;
    所述远端光模块根据所述波长控制信号确定目标温度包括:
    所述远端光模块获取温控列表,所述温控列表包括不同的温度与不同的波长的对应关系;
    所述远端模块根据所述温控列表,确定与所述调节后的目标波长对应的所述目标温度。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述远端光模块接收波长控制信号之前,所述方法还包括:
    所述远端光模块向局端设备发送检测信号,所述检测信号通过调顶方式加载于第二业务光信号中。
  7. 根据权利要求5所述的方法,其特征在于,所述远端光模块根据所述波长控制信号确定目标温度包括:
    确定参考波长,所述参考波长为所述温控列表所包括的波长中,与所述调节后的目标波长之间的差值最小的波长;
    确定所述温控列表所包括的相邻波长,所述相邻波长为所述温控列表所包括与所述参考波长相邻的波长;
    根据目标波长范围的最大截止波长、最小截止波长以及相邻波长确定所述目标温度。
  8. 一种波长调节方法,其特征在于,所述方法包括:
    当远端光模块的工作波长超出目标波长范围,局端设备向远端光模块发送波长控制信号,所述波长控制信号用于指示所述远端光模块调节后的目标波长,所述波长控制信号通 过调顶方式加载于第一业务光信号中。
  9. 根据权利要求8所述的方法,其特征在于,所述波长控制信号用于指示波长偏移量,所述波长偏移量为所述远端光模块的工作波长相对于目标波长范围所偏移的波长。
  10. 根据权利要求8所述的方法,其特征在于,所述波长控制信号用于指示目标波长范围。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述方法还包括:
    接收来自远端光模块发送的检测信号,所述检测信号通过调顶方式加载于第二业务光信号中;
    根据所述检测信号判断所述远端光模块的工作波长是否位于所述目标波长范围内。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述检测信号判断所述远端光模块的工作波长是否位于所述目标波长范围内包括:
    若所述检测信号的频点强度大于或等于预设值,则确定所述远端光模块的工作波长位于所述目标波长范围内。
  13. 一种光模块,其特征在于,包括:
    接收单元,用于接收来自局端设备的波长控制信号,所述波长控制信号用于指示所述光模块调节后的目标波长,所述波长控制信号通过调顶方式加载于第一业务光信号中;
    控制单元,用于根据所述波长控制信号对所述光模块的工作波长进行调节。
  14. 根据权利要求13所述的光模块,其特征在于:
    所述控制单元,用于根据所述波长控制信号确定目标温度,其中,所述目标温度与所述调节后的目标波长对应;
    根据所述目标温度调节将波长调节至所述调节后的目标波长。
  15. 根据权利要求13或14所述的光模块,其特征在于,所述波长控制信号用于指示波长偏移量,所述波长偏移量为所述光模块的工作波长相对于目标波长范围所偏移的波长;或者,所述波长控制信号用于指示目标波长范围。
  16. 根据权利要求14所述的光模块,其特征在于,所述波长控制信号用于指示所述目标温度。
  17. 根据权利要求14至16任一项所述的光模块,其特征在于,所述控制单元还用于:
    根据所述波长控制信号确定所述调节后的目标波长;
    获取温控列表,所述温控列表包括不同的温度与不同的波长的对应关系;
    根据所述温控列表,确定与所述调节后的目标波长对应的所述目标温度。
  18. 根据权利要求13至17任一项所述的光模块,其特征在于,所述光模块还包括:
    激光器,用于向局端设备发送检测信号,所述检测信号通过调顶方式加载于第二业务光信号中。
  19. 根据权利要求17所述的光模块,其特征在于,所述控制单元还用于:
    确定参考波长,所述参考波长为所述温控列表所包括的波长中,与所述调节后的目标波长之间的差值最小的波长;
    确定所述温控列表所包括的相邻波长,所述相邻波长为所述温控列表所包括与所述参考波长相邻的波长;
    根据目标波长范围的最大截止波长、最小截止波长以及相邻波长确定所述目标温度。
  20. 一种局端设备,其特征在于,包括:
    波长检测单元,用于判断远端光模块的工作波长是否位于目标波长范围内;
    发送单元,当所述远端光模块的工作波长超出所述目标波长范围,向所述远端光模块发送波长控制信号,所述波长控制信号用于指示所述远端光模块调节后的目标波长,所述波长控制信号通过调顶方式加载于第一业务光信号中。
  21. 根据权利要求20所述的局端设备,其特征在于,所述波长控制信号用于指示波长偏移量,所述波长偏移量为所述远端光模块的工作波长相对于目标波长范围所偏移的波长。
  22. 根据权利要求20所述的局端设备,其特征在于,所述波长控制信号用于指示目标波长范围。
  23. 根据权利要求20至22任一项所述的局端设备,其特征在于,所述波长检测单元还用于,接收来自远端光模块发送的检测信号,所述检测信号通过调顶方式加载于第二业务光信号中;
    根据所述检测信号判断所述远端光模块的工作波长是否位于所述目标波长范围内。
  24. 根据权利要求23所述的局端设备,其特征在于,所述波长检测单元具体用于:
    若所述检测信号的频点强度是否大于或等于预设值,则确定所述远端光模块的工作波长位于所述目标波长范围内。
  25. 一种网络设备,包括如权利要求13-19任一所述的光模块。
  26. 一种网络系统,包括如权利要求25所述的网络设备,以及如权利要求20-24任一所述的局端设备。
  27. 一种网络系统,包括第一网络设备和第二网络设备,所述第一网络设备,用于执行如权利要求1-7任一所述的方法,所述第二网络设备,用于执行如权利要求8-12任一所述的方法。
PCT/CN2020/111855 2019-09-03 2020-08-27 一种波长调节方法以及相关设备 WO2021043070A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20861668.0A EP4020842A4 (en) 2019-09-03 2020-08-27 WAVELENGTH SETTING METHODS AND RELATED DEVICES
US17/683,531 US11916599B2 (en) 2019-09-03 2022-03-01 Wavelength tuning method and related device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910829675.X 2019-09-03
CN201910829675 2019-09-03
CN202010857528.6A CN112448758B (zh) 2019-09-03 2020-08-24 一种波长调节方法以及相关设备
CN202010857528.6 2020-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/683,531 Continuation US11916599B2 (en) 2019-09-03 2022-03-01 Wavelength tuning method and related device

Publications (1)

Publication Number Publication Date
WO2021043070A1 true WO2021043070A1 (zh) 2021-03-11

Family

ID=74733187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111855 WO2021043070A1 (zh) 2019-09-03 2020-08-27 一种波长调节方法以及相关设备

Country Status (4)

Country Link
US (1) US11916599B2 (zh)
EP (1) EP4020842A4 (zh)
CN (1) CN112448758B (zh)
WO (1) WO2021043070A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872690A (zh) * 2021-09-29 2021-12-31 烽火通信科技股份有限公司 Cwdm系统中无tec dml光模块波长自动监控调整方法与装置
CN113922915A (zh) * 2021-09-03 2022-01-11 烽火通信科技股份有限公司 Dml光模块波长自动纠偏方法、dml光模块及dwdm系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173937B (zh) * 2022-06-24 2023-05-26 烽火通信科技股份有限公司 一种自动调测锁定光模块波长的方法与装置
CN117767976A (zh) * 2022-09-19 2024-03-26 华为技术有限公司 一种光模块、光通信设备及光通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170126322A1 (en) * 2014-11-07 2017-05-04 Inphi Corporation Wavelength control of two-channel demux/mux in silicon photonics
CN109155684A (zh) * 2016-03-22 2019-01-04 菲尼萨公司 双向通信模块
CN109792131A (zh) * 2016-12-07 2019-05-21 华为技术有限公司 一种波长锁定方法及激光器
CN109981180A (zh) * 2019-03-15 2019-07-05 武汉电信器件有限公司 一种波长锁定光模块、装置和波长锁定方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100342431B1 (ko) * 2000-09-07 2002-07-03 윤덕용 파장분할다중방식 광통신시스템을 위한 다파장 안정화방법및 장치
US20030025957A1 (en) * 2001-07-24 2003-02-06 Anthony Jayakumar Low cost, all electronic and unobtrusive method of implementing a wavelength supervisory channel for the control and management of individual and multiple wavelengths in an optical communication system
KR100734873B1 (ko) * 2005-12-12 2007-07-03 한국전자통신연구원 파장 분할 다중방식 수동형 광 가입자망에서의 파장 추적장치 및 방법
CN101247199A (zh) 2007-02-13 2008-08-20 华为技术有限公司 波长漂移检测装置、波长锁定系统及其方法
CN101674135A (zh) * 2008-09-09 2010-03-17 华为技术有限公司 滤波锁定方法、装置
US20100111533A1 (en) * 2008-11-06 2010-05-06 Nortel Networks Limited Wdm pon system
US8929748B2 (en) 2010-03-16 2015-01-06 Source Photonics Tunable dense wavelength division multiplexing transceiver, circuits and devices therefor, and methods for making and using such transceivers, circuits and devices
US9634792B2 (en) * 2010-11-24 2017-04-25 Alcatel Lucent Method and apparatus of performing ONT wavelength tuning via a heat source
EP2506476B1 (en) * 2011-03-29 2019-02-06 ADVA Optical Networking SE Method of operating an optical network element and optical network element
EP2642676B1 (en) * 2012-03-20 2017-03-15 ADVA Optical Networking SE A method and system for operating an optical transmission system
EP2675089B1 (en) * 2012-06-15 2019-07-24 ADVA Optical Networking SE Method of operating a primary optical node and a secondary optical node
EP3008836B1 (en) * 2013-05-14 2019-07-24 Aurora Networks, Inc. Dynamic wavelength management using bi-directional communication for the prevention of optical beat interference
US20140341593A1 (en) * 2013-05-16 2014-11-20 Alcatel-Lucent Usa Inc. Method And Apparatus For Optical Transmission In A Communication Network
US20150063812A1 (en) * 2013-08-27 2015-03-05 Calix, Inc. Compensator for wavelength drift due to variable laser injection current and temperature in a directly modulated burst mode laser
US9432140B2 (en) * 2013-11-13 2016-08-30 Futurewei Technologies, Inc. Flexible grid TWDM-PON architecture and intelligent set-up for TWDM-PON
US9455782B2 (en) 2014-08-11 2016-09-27 Applied Optoelectronics, Inc. Monitoring a multiplexed laser array in an optical communication system
EP2999151B1 (en) * 2014-09-19 2019-06-19 ADVA Optical Networking SE Method and communication control device for establishing a communication channel in a communication network
US9537577B2 (en) * 2014-10-15 2017-01-03 Infinera Corporation Arbitrary grid wavelocking using digitally generated out-of-band tones
JP5822038B1 (ja) * 2015-02-20 2015-11-24 沖電気工業株式会社 光送信器、加入者側装置、及び光源の温度変化抑制方法。
EP3079284B1 (en) * 2015-04-09 2019-04-03 ADVA Optical Networking SE Method and device for creating a control channel in an optical transmission signal and method and device for extracting the information included therein
KR102291046B1 (ko) * 2015-07-20 2021-08-19 한국전자통신연구원 광망 종단 장치 및 그 제어 방법
JP2017163423A (ja) * 2016-03-10 2017-09-14 富士通株式会社 伝送装置および波長設定方法
KR101865147B1 (ko) * 2017-01-26 2018-06-08 (주) 라이트론 수동형 광통신망에서 광신호의 파장을 변환하는 방법
JP2019097108A (ja) * 2017-11-27 2019-06-20 富士通株式会社 光伝送装置、光伝送システムおよび光伝送方法
JP6997375B2 (ja) * 2018-03-02 2022-02-04 日本電信電話株式会社 光通信装置、波長校正方法及びプログラム
CN109889273B (zh) * 2019-03-27 2020-07-28 成都优博创通信技术股份有限公司 波分复用无源光网络中的收发机及波长调整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170126322A1 (en) * 2014-11-07 2017-05-04 Inphi Corporation Wavelength control of two-channel demux/mux in silicon photonics
CN109155684A (zh) * 2016-03-22 2019-01-04 菲尼萨公司 双向通信模块
CN109792131A (zh) * 2016-12-07 2019-05-21 华为技术有限公司 一种波长锁定方法及激光器
CN109981180A (zh) * 2019-03-15 2019-07-05 武汉电信器件有限公司 一种波长锁定光模块、装置和波长锁定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922915A (zh) * 2021-09-03 2022-01-11 烽火通信科技股份有限公司 Dml光模块波长自动纠偏方法、dml光模块及dwdm系统
CN113922915B (zh) * 2021-09-03 2023-05-23 烽火通信科技股份有限公司 Dml光模块波长自动纠偏方法、dml光模块及dwdm系统
CN113872690A (zh) * 2021-09-29 2021-12-31 烽火通信科技股份有限公司 Cwdm系统中无tec dml光模块波长自动监控调整方法与装置

Also Published As

Publication number Publication date
EP4020842A1 (en) 2022-06-29
EP4020842A4 (en) 2022-11-02
US11916599B2 (en) 2024-02-27
US20220190928A1 (en) 2022-06-16
CN112448758A (zh) 2021-03-05
CN112448758B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2021043070A1 (zh) 一种波长调节方法以及相关设备
EP3269055B1 (en) Optical transceiving using self-homodyne detection (shd) and remote modulation
US8306419B2 (en) Techniques for controlling a light source in a wavelength division multiplexed passive optical network
US9843397B2 (en) Wavelength stabilizer for TWDM-PON burst mode DBR laser
CN106788964B (zh) 一种基于wrc-fpld和wdm-pon组网的混沌保密通信装置与方法
CN109889273A (zh) 波分复用无源光网络中的收发机及波长调整方法
JP2016131273A (ja) 光伝送システム、波長制御方法、及び、ノード
KR101600014B1 (ko) 파장분할 다중화 광통신 시스템 및 이를 위한 출력신호의 광 성능 측정 방법
WO2007140033A2 (en) Optical injection locking of vcsels for wavelength division multiplexed passive optical networks (wdm-pons)
Honda et al. Wavelength adjustment of upstream signal using AMCC with power monitoring for WDM-PON in 5G mobile era
CN103891066A (zh) 自表征可调谐光网络单元
WO2017028803A1 (zh) Olt光收发一体模块、处理多种pon的方法及系统
CN107872288B (zh) 一种wdm pon系统中上行传输方法及其装置
EP4351041A1 (en) Optical signal receiving apparatus, system and method, optical line terminal, and computer-readable storage medium
CN113922915B (zh) Dml光模块波长自动纠偏方法、dml光模块及dwdm系统
US9686016B2 (en) Optical transmission apparatus, optical transmission system, and control method of optical transmission system
US10236992B2 (en) Apparatus and methods for mitigating wavelength drift in an optical communication network
Yang et al. A mobile fronthaul system architecture for dynamic provisioning and protection
Giorgi et al. WDM-PON based on self-seeded OLT and wavelength reuse at ONU
CN111478732A (zh) 用于控制无源光网络的光线路控制器系统
CN107346989A (zh) 一种多通道激光波长相关性监测器及监测方法
Igawa et al. Symmetric 10G-EPON ONU transceiver integrated with newly-developed burst-mode pre-bias timing control IC
CN111108703B (zh) 检测波长偏差的方法和汇聚节点
WO2024051286A1 (zh) 一种光接入网拓扑的确定方法、装置及系统
KR101239240B1 (ko) 주입잠김된 광원의 잡음억제 장치 및 이를 구비한 wdm-pon 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861668

Country of ref document: EP

Effective date: 20220324