WO2021042997A1 - 头戴式显示装置及其制备方法 - Google Patents

头戴式显示装置及其制备方法 Download PDF

Info

Publication number
WO2021042997A1
WO2021042997A1 PCT/CN2020/110145 CN2020110145W WO2021042997A1 WO 2021042997 A1 WO2021042997 A1 WO 2021042997A1 CN 2020110145 W CN2020110145 W CN 2020110145W WO 2021042997 A1 WO2021042997 A1 WO 2021042997A1
Authority
WO
WIPO (PCT)
Prior art keywords
display screen
hot melt
head
display device
coordinate
Prior art date
Application number
PCT/CN2020/110145
Other languages
English (en)
French (fr)
Inventor
高磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021042997A1 publication Critical patent/WO2021042997A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • This application relates to the technical field of electronic products, and in particular to a method for manufacturing a head-mounted display device and a head-mounted display device.
  • Virtual reality (VR) glasses are glasses that can display virtual images to users.
  • the virtual reality glasses are prone to damage when they fall or collide with external objects, resulting in poor user experience of the virtual reality glasses.
  • the present application provides a method for manufacturing a head-mounted display device and a head-mounted display device.
  • the head-mounted display device prepared by the method has better impact resistance.
  • the present application provides a method for manufacturing a head-mounted display device.
  • the method includes:
  • the first amount of hot melt glue and the second amount of UV-moisture dual curing glue are formed, or the third amount of hot melt glue and the fourth amount of glue are formed UV curing adhesive;
  • Curing the hot melt adhesive and the ultraviolet light-moisture dual curing adhesive or curing the hot melt adhesive and the ultraviolet curing adhesive.
  • the hot melt adhesive connected to the display screen and the first part can buffer part of the stress and thereby The head-mounted display device is prevented from being damaged, that is, the head-mounted display device has better impact resistance.
  • the connection between the display screen and the lens barrel can speed up the connection between the display screen and the lens barrel. State the connection speed of the lens barrel.
  • the ultraviolet light-moisture dual curing adhesive or the ultraviolet light curing adhesive does not need to be cured through a heating process, the curing process of the ultraviolet light-moisture dual curing adhesive or the ultraviolet light curing adhesive will not cause any damage. The said display causes damage.
  • the ultraviolet light-moisture dual-curing adhesive is cured by ultraviolet light irradiation, that is, the ultraviolet light-moisture dual-curing adhesive does not need to be cured by a heating process, so in the curing process of the hot melt adhesive, the hot melt adhesive does not Carbon dioxide is generated due to the heating process of the ultraviolet light-moisture dual curing adhesive, which causes the internal expansion of the hot melt adhesive formed by curing, which in turn causes the thickness of the hot melt adhesive to increase significantly.
  • the first glue amount and the second glue amount are confirmed by the following method:
  • the display screen When the display screen is moved to a plurality of different positions, and the display screen is in each position, the virtual image formed by the display screen through the lens is acquired through the photographing device;
  • the modulation transfer function value is the largest, the virtual image captured by the photographing device is clearer, that is, when the user wears the head-mounted display device, the virtual image seen by the user is clearer.
  • confirming the first glue amount and the second glue amount according to the installation position can ensure that when the display screen is fixedly connected to the lens barrel, the display screen is in the installation position, thereby ensuring that the user can clearly view the Describe the virtual image displayed on the display screen.
  • the position of the photographing device is the position of the user's eyes when the user wears the head-mounted display device.
  • the modulation transfer function value is the largest
  • the virtual image taken by the photographing device is clearer, that is, the virtual image seen by the user is clearer.
  • confirming the first glue amount and the second glue amount according to the installation position can ensure that when the display screen is fixedly connected to the lens barrel, the display screen is in the installation position, thereby ensuring that the user can more clearly Watch the virtual image displayed on the display screen.
  • the method of confirming the first glue amount and the second glue amount according to the installation position includes:
  • the display surface is a part of the surface of the display screen facing the first surface
  • the first glue amount and the first glue amount can be accurately calculated by the above method.
  • the hot melt adhesive and the ultraviolet light-moisture dual curing glue will not flow to the display surface due to the excessive amount of glue, thereby affecting the display effect of the display surface.
  • hot melt glue and ultraviolet light-moisture dual curing glue will not reduce the connection firmness of the display screen and the lens barrel due to too little glue.
  • the method for confirming the first distance and the second distance includes:
  • the first position is different from the installation position
  • the first distance is confirmed according to the first coordinate and the fourth coordinate
  • the second distance is confirmed according to the second coordinate and the fourth coordinate.
  • first distance and the second distance can be accurately measured by the above method.
  • a laser displacement sensor is used to confirm the first coordinate, the second coordinate, and the third coordinate. It is understandable that because the laser displacement sensor can accurately measure the distance between two points, the accuracy of the first coordinate, the second coordinate, and the third coordinate confirmed by the laser displacement sensor is better.
  • the method for confirming the first coordinate of the first part in the first direction, and the second coordinate of the second part in the first direction includes:
  • the step of confirming the first coordinate and the second coordinate through the laser displacement sensor is omitted, so that the manufacturing cost of the head-mounted display device can be significantly reduced.
  • the method for confirming the first distance and the second distance includes:
  • the first distance is confirmed based on the first coordinate and the third coordinate
  • the second distance is confirmed based on the second coordinate and the third coordinate.
  • the method of this embodiment eliminates the need to detect the coordinates of the display screen at the first position, thus significantly Reduce the manufacturing cost of the head-mounted display device.
  • a laser displacement sensor is used to confirm the first area and the second area.
  • the ultraviolet light-moisture curing adhesive or the ultraviolet light curing adhesive is cured by an ultraviolet light source. It is understandable that curing the ultraviolet light-moisture curing adhesive or the ultraviolet light curing adhesive by an ultraviolet light source can prevent the occurrence of damage to the display screen or the lens due to the curing of the ultraviolet light curing adhesive through the heating process. damage.
  • the curing method of the hot melt adhesive includes:
  • the hot melt adhesive is solidified into a first colloid through natural cooling
  • the first colloid absorbs water vapor in the air and solidifies into a hot melt colloid.
  • the lens barrel has a first connection position.
  • the first face includes a third portion.
  • the third part is connected to the first part and is staggered from the second part.
  • the first connection location is located in the third part.
  • the spectacle frame is fixedly connected to the first connection position.
  • the impact resistance of the head-mounted display device is better. Specifically, when the head-mounted display device is dropped or collided, the external force applied to the head-mounted display device by a foreign object is transmitted to the display screen through the first connection position. Since the first connection position is located close to the first part, the hot melt adhesive provided on the first part can quickly buffer the stress of this part, thereby avoiding cracking or damage of the display screen.
  • the third glue amount and the fourth glue amount are confirmed by the following method:
  • the display screen When the display screen is moved to a plurality of different positions, and the display screen is in each position, the virtual image formed by the display screen through the lens is confirmed by the photographing device;
  • the modulation transfer function value is the largest, the virtual image captured by the photographing device is clearer, that is, when the user wears the head-mounted display device, the virtual image seen by the user is clearer.
  • confirming the third glue amount and the fourth glue amount according to the installation position can ensure that when the display screen is fixedly connected to the lens barrel, the display screen is in the installation position, thereby ensuring that the user can clearly view the Describe the virtual image displayed on the display screen.
  • the present application provides a head-mounted display device.
  • the head-mounted display device is manufactured by the method for manufacturing the head-mounted display device described in any one of the above.
  • the head-mounted display device prepared by the above method has better impact resistance.
  • the present application provides a head-mounted display device.
  • the head-mounted display device includes a lens, a display screen, and a connecting gel.
  • the lens includes a lens barrel and a lens.
  • the lens barrel includes a first surface and a through hole penetrating the first surface.
  • the lens is connected to the hole wall of the through hole.
  • the connecting glue is located between the first surface and the display screen.
  • the first surface includes a first part and a second part.
  • the connecting glue includes a hot melt glue that fixedly connects the first part and the display screen, and an ultraviolet light-moisture dual curing glue or an ultraviolet light curing glue that fixedly connects the second part and the display screen.
  • the display screen can be stabilized. And it is firmly connected to the lens barrel.
  • the Young’s modulus of the hot melt adhesive is small, that is, the elasticity of the hot melt adhesive is better, when the head-mounted display device is dropped or collided, the hot melt adhesive does not It is easy to be degummed, so that the lens barrel and the display screen are not easily separated. Therefore, the head-mounted display device has better impact resistance.
  • the display screen and the lens barrel can be assembled faster during the assembly process. State the connection speed of the lens barrel.
  • the ultraviolet light-moisture dual-curing colloid or the UV-curing adhesive does not need to be cured through a heating process, the curing process of the ultraviolet light-moisture dual-curing colloid or the UV-curing adhesive will not Cause damage to the display.
  • the ultraviolet light-moisture dual-curing adhesive is cured by ultraviolet light irradiation, that is, the ultraviolet light-moisture dual-curing adhesive does not need to be cured by a heating process, so in the curing process of the hot melt adhesive, the hot melt adhesive does not Carbon dioxide is generated due to the heating process of the ultraviolet light-moisture dual curing adhesive, which causes the internal expansion of the hot melt adhesive formed by curing, which in turn causes the thickness of the hot melt adhesive to increase significantly.
  • the thicknesses of the hot melt adhesive and the ultraviolet light-moisture dual curing adhesive in the first direction are both in the range of 0.05 to 0.8 mm, or the hot melt adhesive and the ultraviolet light curing
  • the thickness of the colloid in the first direction is all in the range of 0.05 to 0.8 mm, and the first direction is the direction in which the lens barrel faces the display screen.
  • the hot melt adhesive and the ultraviolet light-moisture dual-curing adhesive at this thickness can not only ensure a stable connection between the display screen and the lens, but also can be used when the user wears the headset.
  • the user's eyes can be in a better position to view the virtual image displayed on the display screen, thereby significantly improving the user experience of the head-mounted display device.
  • the thickness of the hot melt adhesive and the ultraviolet light-moisture dual curing adhesive in the first direction will not be too thick to cause the display screen to be too far from the user's eyes, thereby causing the user to fail to see the The virtual image of the display screen or the user's eyes are sleepy due to focusing on the virtual image for too long, which reduces the user experience of the head-mounted display device.
  • the number of the hot melt adhesive and the ultraviolet light-moisture dual-curing adhesive is multiple, and the hot melt adhesive and the ultraviolet light-moisture dual-curing adhesive are arranged alternately in sequence, Alternatively, the number of the hot melt adhesive and the ultraviolet curing adhesive are both multiple, and the hot melt adhesive and the ultraviolet curing adhesive are arranged alternately in sequence.
  • the display screen can pass through the ultraviolet light-wet
  • the gas dual-curing colloid or the UV-curing colloid is fixedly connected to the lens barrel
  • there are more UV-moisture dual-curing colloids or the UV-curing colloid can ensure that the display screen is fast fixed and connected to the lens barrel at the same time
  • the display screen can also be connected to the lens barrel more stably.
  • the hot melt adhesive and the ultraviolet light-moisture dual curing adhesive are spliced into a ring structure, or the hot melt adhesive and the ultraviolet light curing glue are spliced into a ring structure.
  • the connection area between the lens barrel and the display screen is relatively large, thereby improving the connection firmness of the lens barrel and the display screen.
  • the lens barrel has a first connection position
  • the first surface includes a third part
  • the third part is connected to the first part and is offset from the second part.
  • a connection position is located in the third part
  • the head-mounted display device includes a frame, and the frame is connected to the first connection position.
  • the first connection position is located in the third part, and the third part is connected to the first part and is offset from the second part, the first connection position is compared with The second part is arranged close to the first part.
  • the first part is provided with the hot melt adhesive, the hot melt adhesive has better elasticity, so that the hot melt adhesive can quickly buffer this part of the stress, thereby avoiding cracking or damage to the display screen.
  • FIG. 1 is a schematic structural diagram of a head-mounted display device provided by an embodiment of the present application at an angle;
  • FIG. 2 is a schematic structural diagram of the head-mounted display device provided by an embodiment of the present application at another angle;
  • FIG. 3 is an exploded schematic diagram of the head-mounted display device shown in FIG. 1;
  • FIG. 4 is a schematic diagram of a part of the structure of the head-mounted display device shown in FIG. 1;
  • FIG. 5 is a cross-sectional view of the head-mounted display device shown in FIG. 4 at the line M-M;
  • FIG. 6 is an exploded schematic diagram of a part of the structure of the head-mounted display device shown in FIG. 4;
  • FIG. 7 is a schematic flowchart of a method for manufacturing a head-mounted display device provided by an embodiment of the present application
  • FIG. 8(a) is a schematic diagram of the structure of the head-mounted display device shown in FIG. 7 during the manufacturing process
  • FIG. 8(b) is a schematic diagram of the structure of the head-mounted display device shown in FIG. 8(a) during the manufacturing process;
  • FIG. 9 is a schematic partial flowchart of a method for manufacturing the head-mounted display device shown in FIG. 7;
  • FIG. 10 is a schematic diagram of the structure of the lens barrel of the head-mounted display device shown in FIG. 1;
  • FIG. 11 is a schematic diagram of the structure of the head-mounted display device shown in FIG. 9 during the manufacturing process
  • FIG. 12 is a schematic partial flowchart of the method for manufacturing the head-mounted display device shown in FIG. 7;
  • FIG. 13 is a schematic diagram of the structure of the head-mounted display device shown in FIG. 12 during the manufacturing process
  • FIG. 14 is a schematic diagram of the structure of the head-mounted display device shown in FIG. 12 during the manufacturing process
  • FIG. 15 is a schematic partial flowchart of the method for manufacturing the head-mounted display device shown in FIG. 7;
  • FIG. 16 is a schematic diagram of the structure of the head-mounted display device shown in FIG. 15 during the manufacturing process.
  • FIG. 1 is a schematic structural diagram of a head-mounted display device 100 provided by an embodiment of the present application at an angle.
  • FIG. 2 is a schematic structural diagram of the head-mounted display device 100 provided by an embodiment of the present application at another angle.
  • the head-mounted display device 100 may be virtual reality (VR) glasses or a VR helmet.
  • VR virtual reality
  • the head-mounted display device 100 of the embodiment shown in FIG. 1 and FIG. 2 is described by taking VR glasses as an example. It can be understood that when the user wears the head-mounted display device 100, the user can view the virtual image through the head-mounted display device 100.
  • FIG. 3 is an exploded schematic diagram of the head-mounted display device 100 shown in FIG. 1.
  • the head-mounted display device 100 includes a frame 10, a lens 20, a display screen 30 and a connecting gel 40.
  • the spectacle frame 10 includes a spectacle frame 11 and temples 12.
  • the spectacle frame 11 may include a nose pad for wearing on the nose of the user.
  • the temple 12 is used to be worn on the user's ears. At this time, when the user wears the head-mounted display device 100 on the head, the head-mounted display device 100 can be stably placed on the user's head through the temples 12 and the nose pads.
  • the number of lenses 20 is two.
  • the two lenses 20 are respectively mounted on the lens frame 11. At this time, the user's eyes can see the virtual image through the two lenses 20.
  • the number of lenses 20 is not limited. For example, there may be one lens 20, but the size of the lens 20 needs to cover the eyes of the user. In conjunction with FIG. 1 and FIG. 2, it can be seen that the lens 20 is located between the two temples 12. When the user puts on the head-mounted display device 100, the lens 20 faces the user.
  • the number of display screens 30 is two.
  • the two display screens 30 are fixedly connected to the lens 20 in a one-to-one correspondence, that is, each display screen 30 is arranged corresponding to one lens 20.
  • the two display screens 30 respectively provide virtual images for the two lenses 20 in a one-to-one correspondence.
  • the virtual image can be, but is not limited to, a three-dimensional virtual image.
  • FIG. 1 shows that the display screen 30 passes through the mirror frame 11 and is exposed.
  • the display screen 30 may also be located on the same side as the lens 20, that is, the display screen 30 does not pass through the lens frame 11.
  • the display screen 30 may be, but is not limited to, a liquid crystal display (LCD).
  • LCD liquid crystal display
  • the display screen 30 may also be an organic light emitting diode display screen 30 (Organic Light-Emitting Diode, OLED).
  • OLED Organic Light-Emitting Diode
  • the number of the display screen 30 may also be one.
  • the display screen 30 provides virtual images for the two lenses 20 through partitions.
  • the display screen 30 may also be wirelessly connected to an external device. At this time, the display screen 30 can receive the virtual image provided by the external device, and provide the received virtual image to the user through the lens 20.
  • the connecting gel 40 is connected between the lens 20 and the display screen 30.
  • the connecting gel 40 can ensure the stability of the connection between the lens 20 and the display screen 30.
  • FIG. 4 is a schematic diagram of a part of the structure of the head-mounted display device 100 shown in FIG. 1.
  • FIG. 5 is a cross-sectional view of the head-mounted display device 100 shown in FIG. 4 at the line M-M.
  • the lens 20 includes a lens barrel 21 and a lens 22.
  • the lens barrel 21 includes a first surface 212 and a second surface 211 disposed opposite to each other.
  • the lens barrel 21 is provided with a through hole 213.
  • the through hole 213 penetrates from the first surface 212 to the second surface 211.
  • the lens 22 is connected to the hole wall of the through hole 213. It is understandable that the lens 22 may be fixedly connected to the hole wall of the through hole 213, and the lens 22 may also be movably connected to the hole wall of the through hole 213.
  • the connecting glue 40 is located between the first surface 212 and the display screen 30.
  • FIG. 6 is an exploded schematic diagram of a part of the structure of the head-mounted display device 100 shown in FIG. 4.
  • the first surface 212 includes a first portion 2121 and a second portion 2122.
  • the second part 2122 may be connected to the first part 2121 or may be connected to the first part 2121 at intervals.
  • the hot melt adhesive 214 is disposed between the first part 2121 and the display screen 30.
  • the hot melt adhesive body 214 is formed by curing the hot melt adhesive.
  • the ultraviolet light-moisture dual curing gel 215 is disposed between the second part 2122 and the display screen 30.
  • the ultraviolet light-moisture dual-curing glue 215 is formed by curing the ultraviolet light-moisture dual-curing glue.
  • the display screen 30 is fixedly connected to the lens barrel 21 through the hot melt glue 214 and the ultraviolet light-moisture dual curing glue 215. Please refer to FIG. 4 and FIG. 5, when the display screen 30 is fixedly connected to the lens barrel 21, the display screen 30 covers the through hole 213 of the lens barrel 21.
  • the hot melt adhesive 214 will be arranged between the first part 2121 and the display screen 30, and the ultraviolet light-moisture dual curing adhesive 215 will be arranged between the second part 2122 and the display screen 30, so that the display screen 30 It can be connected to the lens barrel 21 stably and firmly.
  • the Young's modulus of the hot melt adhesive 214 is small, that is, the hot melt adhesive 214 has better elasticity, when the head-mounted display device 100 is dropped or collided, the hot melt adhesive 214 is not easily degummed. Therefore, the lens barrel 21 and the display screen 30 are not easily separated. Therefore, the head-mounted display device 100 has better impact resistance. At this time, when the lens barrel 21 and the display screen 30 are not easily separated, external dust or water vapor cannot easily enter the interior of the head-mounted display device 100, thereby destroying the internal structure of the head-mounted display device 100.
  • the display screen 30 and the lens barrel 21 can be quickly connected during the assembly process of the display screen 30 and the lens barrel 21.
  • the UV-moisture dual-curing adhesive can continue to be cured by absorbing moisture in the environment during the subsequent assembly process of the display screen 30 and the lens barrel 21, so that on the one hand The connection between the display screen 30 and the lens barrel 21 is further improved.
  • environmental water vapor is prevented from damaging the display screen 30 or the lens 20 (for example, water vapor destroys the circuit connection inside the display screen 30).
  • the ultraviolet light-moisture dual-curing adhesive is cured by ultraviolet light irradiation, that is, the ultraviolet light-moisture dual-curing adhesive does not need to be cured by a heating process, so in the curing process of the hot melt adhesive, the hot melt adhesive does not Carbon dioxide is generated due to the heating process of the ultraviolet light-moisture dual curing adhesive, which causes the internal expansion of the hot melt adhesive 214 formed by curing, which in turn causes the thickness of the hot melt adhesive 214 to increase significantly.
  • the thickness of the hot melt adhesive 214 and the ultraviolet light-moisture dual curing adhesive 215 in the first direction are both in the range of 0.05 to 0.8 mm.
  • the first direction is the direction in which the lens barrel 21 faces the display screen 30. It is understandable that the hot melt adhesive 214 and the ultraviolet light-moisture dual curing adhesive 215 at this thickness can not only ensure a stable connection between the display screen 30 and the lens 20, but also can when the user wears the head-mounted display device 100, The user's eyes can view the virtual image displayed on the display screen 30 at a better position, thereby significantly improving the user experience of the head-mounted display device 100.
  • the thickness of the hot melt adhesive 214 and the ultraviolet light-moisture dual curing adhesive 215 in the first direction will not be too thick to cause the display screen 30 to be too far from the user's eyes, thereby causing the user to lose sight of the virtual display of the display screen 30.
  • the image or the user's eyes are sleepy due to focusing on the virtual image for too long, which reduces the user experience of the head-mounted display device 100.
  • the surface of the display screen 30 facing the first surface 212 includes a display surface 31 and a non-display surface 32 connected to the periphery of the display surface 31.
  • the display screen 30 is divided into a middle part and a peripheral part connected to the periphery of the middle part by a dotted line.
  • the surface of the middle part facing the lens 20 is the display surface 31.
  • the surface of the peripheral portion facing the lens 20 is the non-display surface 32.
  • the display surface 31 faces the through hole 213. At this time, when the user wears the head-mounted display device 100, the user can see the virtual image displayed on the display surface 31 through the through hole 213. As shown in FIG.
  • the non-display surface 32 of the display screen 30 is fixedly connected to the lens barrel 21 through a hot melt adhesive 214 and an ultraviolet light-moisture dual curing adhesive 215. At this time, the hot melt adhesive 214 and the ultraviolet light-moisture dual curing adhesive 215 will not affect the display of the display surface 31.
  • the number of the hot melt adhesive 214 and the ultraviolet light-moisture dual curing adhesive 215 are both multiple.
  • the hot melt adhesive 214 and the ultraviolet light-moisture dual curing adhesive 215 are arranged alternately in sequence. For example, referring to FIG. 6 again, there are two hot melt adhesives 214 in the first part 2121.
  • the number of the ultraviolet light-moisture dual curing colloid 215 arranged in the second part 2122 is also two.
  • the two hot melt glue bodies 214 are staggered to each other.
  • the two ultraviolet light-moisture dual curing colloids 215 are staggered to each other. At this time, the number of the first part 2121 is two, and the number of the second part 2122 is also two.
  • the two first parts 2121 are staggered.
  • the two second parts 2122 are staggered.
  • the display screen 30 is connected to the lens barrel 21 through the hot melt glue 214 and the ultraviolet light-moisture dual curing glue 215, on the one hand, there are more elastic connection areas between the display screen 30 and the lens barrel 21, thereby Significantly increase the impact resistance of the head-mounted display device 100.
  • the display screen 30 is first fixedly connected to the lens barrel 21 through the ultraviolet light-moisture dual curing gel 215, there is more ultraviolet light-moisture
  • the dual-curing glue 215 can ensure that the display screen 30 is quickly fixedly connected to the lens barrel 21, and the display screen 30 can also be connected to the lens barrel 21 more stably.
  • the number of the first part 2121 and the number of the second part 2122 may also be one or more than two, which is not specifically limited in this application.
  • the hot melt glue 214 and the ultraviolet light-moisture dual curing glue 215 are spliced into a ring structure.
  • the connection area between the lens barrel 21 and the display screen 30 is relatively large, so that the connection firmness of the lens barrel 21 and the display screen 30 is improved.
  • the hot melt glue 214 and the ultraviolet light-moisture dual curing glue 215 can also be surrounded by an interval to form a ring structure. The specific application is not limited.
  • the lens barrel 21 has a first connection position A.
  • the first surface 212 includes a third portion 2123.
  • the third part 2123 is connected to the first part 2121 and is staggered from the second part 2122. In other words, the third part 2123 is arranged close to the first part 2121 and away from the second part 2122.
  • the first connection location A is located in the third part 2123.
  • the frame 10 is fixedly connected to the first connection position A.
  • FIG. 1 shows that the spectacle frame 11 is fixedly connected to the first connection position A.
  • the first connection position A is located in the third part 2123, and the third part 2123 is connected to the first part 2121 and is offset from the second part 2122, the first connection position A is compared to the second part 2122 Located near the first part 2121.
  • the hot melt glue 214 is arranged between the first part 2121 and the display screen 30, the hot melt glue 214 has better elasticity, so that the hot melt glue 214 can quickly buffer this part of the stress, thereby preventing the display screen 30 from cracking or damaging. .
  • the number of the first connection positions A is multiple.
  • the plurality of first connection positions A are all located in the third part 2123. At this time, when the frame 10 is fixedly connected to the first connection position A, the connection between the frame 10 and the lens barrel 21 is better.
  • the number of the third part 2123 may also be multiple. The specific application is not restricted.
  • the first connection position A of the lens barrel 21 is provided with a first mounting hole.
  • the frame 10 is provided with a second mounting hole.
  • a fastener is passed through the first mounting hole and the second mounting hole to lock the lens barrel 21 on the lens frame 10.
  • the fastener can be, but is not limited to, a screw, a screw or a rivet.
  • the frame 10 can also be connected to the first connection position A of the lens barrel 21 by welding, snap-fitting, or hot-melt column connection.
  • the first embodiment is specifically described above, and an ultraviolet light-moisture dual-curing colloid 215 is provided between the second part 2122 and the display screen 30.
  • the second embodiment will be described below.
  • the second part 2122 is provided with an ultraviolet curable colloid.
  • the second part 2122 is provided with an ultraviolet curable colloid.
  • the ultraviolet curing glue is cured to form an ultraviolet curing glue.
  • the connection speed of the display screen 30 and the lens barrel 21 can be increased during the assembly process of the display screen 30 and the lens barrel 21.
  • the UV-curable gel 215 does not need to be cured through a heating process, the curing process of the UV-curable gel 215 will not cause damage to the display screen 30.
  • FIG. 7 is a schematic flowchart of a method for manufacturing a head-mounted display device 100 according to an embodiment of the present application.
  • the head-mounted display device 100 can be manufactured by the manufacturing method of the head-mounted display device 100 of this embodiment.
  • a method for manufacturing the head-mounted display device 100 will be described in detail with reference to FIG. 7.
  • the method includes, but is not limited to, steps S100, S200, and S300.
  • S100 is formed on the first surface 212 of the lens barrel 21 of the lens 20 to form a first amount of hot melt glue and a second amount of ultraviolet light-moisture dual curing glue;
  • S200 move the display screen to the installation position so that the display screen contacts the hot melt adhesive and the ultraviolet light-moisture dual curing adhesive;
  • S300 cures the hot melt adhesive and the ultraviolet light-moisture dual curing adhesive, or cures the hot melt adhesive and the ultraviolet light curing adhesive.
  • the hot melt adhesive connected to the display screen 30 and the first part 2121 Part of the stress can be buffered to avoid damage to the head-mounted display device 100, that is, the head-mounted display device 100 has better impact resistance.
  • the display screen 30 and the lens barrel 21 can be quickly connected during the assembly process of the display screen 30 and the lens barrel 21.
  • the UV-moisture dual-curing adhesive can continue to be cured by absorbing moisture in the environment during the subsequent assembly process of the display screen 30 and the lens barrel 21, so that on the one hand The connection between the display screen 30 and the lens barrel 21 is further improved.
  • environmental water vapor is prevented from damaging the display screen 30 or the lens 20 (for example, water vapor destroys the circuit connection inside the display screen 30).
  • the ultraviolet light-moisture dual-curing adhesive is cured by ultraviolet light irradiation, that is, the ultraviolet light-moisture dual-curing adhesive does not need to be cured by a heating process, so in the curing process of the hot melt adhesive, the hot melt adhesive does not Carbon dioxide is generated due to the heating process of the ultraviolet light-moisture dual curing adhesive, which causes the internal expansion of the hot melt adhesive 214 formed by curing, which in turn causes the thickness of the hot melt adhesive 214 to increase significantly.
  • S100 is formed on the first surface 212 of the lens barrel 21 of the lens 20 to form a first glue amount of hot melt glue and a second glue amount of ultraviolet light-moisture dual curing glue; in this embodiment, the first glue amount refers to Is the weight of the hot melt adhesive.
  • the second glue amount refers to the weight of the UV-moisture dual curing glue.
  • the first glue amount may also refer to the volume of the hot melt glue.
  • the second glue volume can also refer to the volume of the UV-moisture dual curing glue.
  • FIG. 8(a) is a schematic diagram of a part of the process in the manufacturing method of the head-mounted display device shown in FIG. 7
  • FIG. 8(b) is a schematic diagram of the structure of the head-mounted display device shown in FIG. 8(a) during the manufacturing process
  • the lens 20 and the display screen 30 are moved to the same side of the photographing device 200, and the lens 20 is located between the display screen 30 and the photographing device 200.
  • the second surface 211 of the lens barrel 21 in the lens 20 faces the photographing device 200.
  • the first surface 212 of the lens barrel 21 faces the display screen 30; in one embodiment, the photographing device 200 may be, but is not limited to, an industrial camera.
  • the lens 20 is placed on a fixing table, and the fixing table has a through hole.
  • the through hole 213 of the lens barrel 21 and the through hole are arranged directly opposite to each other.
  • the photographing device 200 is located on the side of the fixing table away from the lens barrel 21. At this time, the imaging device 200 faces the second surface 211.
  • the manipulator 400 grasps the display screen 30 and moves the display screen 30 to the side of the lens barrel 21 away from the fixed platform. At this time, the display surface 31 of the display screen 30 faces the lens 20.
  • the manipulator 400 can accurately control the amount of movement of the display screen 30 and accurately move the display screen 30 to a predetermined position.
  • S120 moves the display screen 30 to a plurality of different positions, and when the display screen 30 is in each position, the virtual image formed by the display screen 30 through the lens 20 is acquired through the photographing device 200.
  • the display screen 30 is moved to the first collection position by the manipulator 400 so that the display screen 30 is directly facing the lens 22 in the lens barrel 21.
  • the virtual image of the display screen 30 in the lens 22 is captured by an industrial camera.
  • the industrial camera captures an image of the display screen 30 at the first capture position through the lens 22.
  • the display screen 30 is moved to the second collection position by the manipulator 400, and then the image of the display screen 30 is collected through the lens 22 by the industrial camera.
  • the display screen 30 is moved to different collection positions by the manipulator 400, and the images of the display screen 30 in different positions are collected by the industrial camera.
  • S130 confirms different modulation transfer function values according to different virtual images; when the display screen 30 moves to the first collection position, and the industrial camera collects the image of the display screen 30 at the first collection position through the lens 22, the industrial camera Calculate the first modulation transfer function value of the image. After the display screen 30 moves to the first collection position, and the industrial camera collects an image of the display screen 30 at the first collection position through the lens 22, the industrial camera calculates the second modulation transfer function value according to the collected image.
  • industrial cameras calculate different modulation transfer function values according to different images. It can be understood that because the definition of the virtual image formed in the lens 22 by the display screen 30 at different positions is different, the calculated modulation transfer function values are different.
  • S140 confirms that the installation position of the display screen 30 is the position of the display screen 30 corresponding to the maximum modulation transfer function value; it is understandable that because the modulation transfer function value is different, the adjustment transfer function value will have a maximum value. At this time, the position of the display screen 30 corresponding to the maximum modulation transfer function value is confirmed, and the position is confirmed as the installation position of the display screen 30.
  • S150 confirms the first glue amount and the second glue amount according to the installation position.
  • the modulation transfer function value is the largest, the virtual image captured by the imaging device 200 is clearer, that is, when the user wears the head-mounted display device 100, the virtual image seen by the user is clearer.
  • confirming the first glue amount and the second glue amount according to the installation position can ensure that when the display screen 30 is fixedly connected to the lens barrel 21, the display screen 30 is in the installation position, thereby ensuring that the user is clear Watch the virtual image displayed on the display screen 30 carefully.
  • the position of the photographing device 200 is the position of the user's eyes when the user wears the head-mounted display device 100.
  • the modulation transfer function value is the largest
  • the virtual image captured by the imaging device 200 is clearer, that is, the virtual image seen by the user is clearer.
  • FIG. 9 is a schematic partial flowchart of a method for manufacturing the head-mounted display device 100 shown in FIG. 7.
  • the head-mounted display device method also includes, but is not limited to, S151, S152, and S153.
  • S151, S152, and S153 are an embodiment of the above S150. In order to avoid excessive repetition, only S151, S152 and S153 are shown in Figure 9.
  • S151 confirm the first distance L between the non-display surface 32 in the installation position and the first portion 2121, and the second distance D between the non-display surface in the installation position and the second portion 2122;
  • S152 confirm the second area of the first part 2121 and the first area of the second part 2122;
  • S153 confirms the first glue quantity of the hot melt adhesive according to the first distance L and the second surface 211 area, and confirms the second glue quantity of the ultraviolet light-moisture dual curing glue according to the second distance D and the first surface 212 area.
  • the amount of hot melt adhesive can be accurately calculated by the methods of S151, S152, and S153.
  • the hot melt adhesive and ultraviolet light-moisture dual curing adhesive will not flow to the display surface 31 due to the excessive amount of glue, thereby affecting the display effect of the display surface 31.
  • the hot melt adhesive and ultraviolet light-moisture dual curing adhesive will not reduce the connection firmness of the display screen 30 and the lens barrel 21 due to too little glue.
  • FIG. 10 is a schematic structural diagram of the lens barrel of the head-mounted display device shown in FIG. 1.
  • FIG. 11 is a schematic diagram of the structure of the head-mounted display device 100 shown in FIG. 9 during the manufacturing process.
  • S151 confirms the first distance L between the non-display surface 32 in the installation position and the first portion 2121, and the second distance D between the non-display surface 32 in the installation position and the second portion 2122.
  • the vertical distance between the non-display surface 32 and two points on the first portion 2121 is measured. Specifically, the first point on the non-display surface 32 is first confirmed, and then the second point on the first part 2121 is confirmed. The line connecting the first point and the second point is perpendicular to the non-display surface 32 and the first portion 2121. At this time, the distance between the first point and the second point is the first distance L.
  • the vertical distance between the non-display surface 32 and a plurality of two points on the first portion 2121 is measured, and the plurality of vertical distances are averaged to calculate the first distance L.
  • the first point on the non-display surface 32 is first confirmed, and then the second point on the first part 2121 is confirmed.
  • the line connecting the first point and the second point is perpendicular to the non-display surface 32 and the first portion 2121.
  • the vertical distance between the first point and the second point is the first vertical distance.
  • confirm the third point on the non-display surface 32 the position of the third point is different from the first point. Confirm the fourth point on the first part 2121.
  • the line connecting the third point and the fourth point is perpendicular to the non-display surface 32 and the first portion 2121.
  • the vertical distance between the third point and the fourth point is the second vertical distance.
  • the Nth vertical distance is confirmed on the non-display surface 32 and the first portion 2121.
  • the first distance L is calculated by averaging the first vertical distance to the Nth vertical distance.
  • it is not limited to calculating the first distance L by averaging the first vertical distance to the Nth vertical distance, and a more accurate first distance L can also be obtained by other mathematical calculation methods.
  • the measurement method of the second distance D between the non-display surface 32 at the installation position and the second portion 2122 can refer to the measurement method of the first distance L described above. I won't repeat it here.
  • FIG. 12 is a schematic partial flowchart of a method for manufacturing the head-mounted display device 100 shown in FIG. 7.
  • FIG. 13 is a schematic diagram of the structure of the head-mounted display device 100 shown in FIG. 12 during the manufacturing process.
  • the first direction is the direction of the first part 2121 toward the non-display surface 32, that is, the second surface 211 Towards the first surface 212; it can be understood that by setting a reference surface S between the display screen 30 and the lens barrel 21, the reference surface S is a plane parallel to the first surface 212.
  • the distance from the first part 2121 to the reference plane S is the first coordinate A.
  • the distance from the second part 2122 to the reference plane S is the second coordinate B (not shown).
  • the laser displacement sensor 500 is used to confirm the first coordinate A and the second coordinate B. It can be understood that the first coordinate A and the second coordinate B can be accurately measured by the laser displacement sensor 500. Specifically, the laser displacement sensor 500 is moved to one side of the lens barrel 21, and the laser displacement sensor 500 faces the first part 2121. The laser displacement sensor 500 is located on the reference plane S. At this time, the first vertical distance between the first part 2121 and the laser displacement sensor 500 in the first direction is measured by the laser displacement sensor 500 emitting light to the first part 2121 and receiving the light reflected by the first part 2121. At this time, the first vertical distance is the first coordinate A.
  • the second vertical distance between the second part 2122 and the laser displacement sensor 500 in the first direction is measured by the laser displacement sensor 500 emitting light to the second part 2122 and receiving the light reflected back by the second part 2122.
  • the second vertical distance is the second coordinate B.
  • the plane where the first surface 212 is located is defined as the reference plane S.
  • the coordinates of the first surface 212 in the first direction are all zero.
  • the use of the laser displacement sensor 500 to confirm the first coordinate A and the second coordinate B is omitted, so that the manufacturing cost of the head-mounted display device 100 can be significantly reduced.
  • FIG. 14 is a schematic structural diagram of the head-mounted display device 100 shown in FIG. 12 during the manufacturing process.
  • S1512 moves the display screen 30 to the first position, and confirms the third coordinate C of the non-display surface 32 in the first direction, and the first position is different from the installation position;
  • the laser displacement sensor 500 is used to confirm the third coordinate C. It can be understood that the third coordinate C can be accurately measured by the laser displacement sensor 500. Specifically, the display screen 30 is moved to the first position. Then move the laser displacement sensor 500 to one side of the display screen 30, and the laser displacement sensor 500 faces the non-display surface 32 of the display screen 30. The laser displacement sensor 500 is located on the reference plane S. At this time, the third vertical distance between the non-display surface 32 and the laser displacement sensor 500 in the first direction is measured by the laser displacement sensor 500 emitting light to the non-display surface 32 and receiving the light reflected by the non-display surface 32. At this time, the third vertical distance is the third coordinate C.
  • the third coordinate C is the distance between the non-display surface 32 and the first surface 212.
  • S1513 moves the display screen 30 to the installation position, and confirms the fourth coordinate E of the non-display surface 32 in the first direction according to the movement amount of the display screen 30 in the first direction and the third coordinate C;
  • the display screen 30 is grasped by the manipulator 400.
  • the amount of movement of the display screen 30 in the first direction is equal to the amount of movement of the manipulator 400 in the first direction.
  • the fourth coordinate E of the non-display surface 32 in the first direction is confirmed based on the movement amount of the manipulator 400 in the first direction and the third coordinate C. For example, when the movement amount of the manipulator 400 in the first direction is -10 and the third coordinate C is 20, the fourth coordinate E is 10. When the movement amount of the manipulator 400 in the first direction is 1, and the third coordinate C is 5, the fourth coordinate E is 6.
  • S1514 confirms the first distance L according to the first coordinate A and the fourth coordinate E. Confirm the second distance D according to the second coordinate B and the fourth coordinate E.
  • the first coordinate A is 0, the second coordinate B is also 0, and the fourth coordinate E is 3.
  • the first distance L is 3, and the second distance D is also 3.
  • the unit is centimeter (cm). At this time, the first distance L is 3 cm.
  • the second distance D is also 3 cm.
  • first distance L and the second distance D can be accurately measured through the first implementation manner described above.
  • the method of confirming the first distance L and the second distance D includes:
  • the method of the second embodiment includes but is not limited to including steps S1515, S1516, and S1517.
  • S1515, S1516, and S1517 are another embodiment of the above S151.
  • Figure 15 only shows S1515, S1516 and S1517.
  • FIG. 15 is a schematic partial flowchart of a method for manufacturing the head-mounted display device 100 shown in FIG. 7.
  • FIG. 16 is a schematic diagram of the structure of the head-mounted display device 100 shown in FIG. 15 during the manufacturing process.
  • S1515 confirms the first coordinate A of the first part 2121 in the first direction, the second coordinate B of the second part 2122 in the first direction, and the first direction is the direction from the second surface 211 to the first surface 212; the specific implementation of this step For the method, please refer to the first embodiment. I won't repeat it here.
  • S1516 move the display screen 30 to the installation position, and confirm the third coordinate C of the non-display surface 32 in the first direction;
  • the first surface 212 is used as the reference surface, and the laser displacement sensor 500 is used to measure the third coordinate C.
  • the laser displacement sensor 500 is located on the peripheral side of the display screen 30. When the laser displacement sensor 500 emits light, the light is projected to the peripheral side of the display screen 30. At this time, the laser displacement sensor 500 can receive the reflected light.
  • the laser displacement sensor 500 is moved in the first direction, the light emitted by the laser displacement sensor 500 passes between the display screen 30 and the lens barrel 21. At this time, the laser displacement sensor 500 cannot receive the reflected light.
  • the laser displacement sensor 500 continues to be moved in the first direction, the light emitted by the laser displacement sensor 500 is blocked by the lens barrel 21.
  • the laser displacement sensor 500 can receive the reflected light. Therefore, the distance between the display screen 30 and the lens barrel 21, that is, the distance between the non-display surface 32 and the first surface 212 can be calculated by calculating the movement amount of the laser displacement sensor 500 in the first direction.
  • the above method can solve the problem that the laser displacement sensor 500 cannot be moved between the non-display surface 32 and the first portion 2121 due to the small distance between the non-display surface 32 in the installation position and the first portion 2121. problem.
  • the distance between the non-display surface 32 and the first surface 212 is the third coordinate C. Therefore, the third coordinate C can be accurately and quickly measured by the above method.
  • a miniature laser displacement sensor 500 is used. The miniature laser displacement sensor 500 can be moved between the display screen 30 and the lens barrel 21 to accurately and quickly measure the third coordinate C.
  • S1517 Confirm the first distance L according to the first coordinate A and the third coordinate C, and confirm the second distance D according to the second coordinate B and the third coordinate C.
  • the first coordinate A is 0, the second coordinate B is also 0, and the third coordinate C is 3.
  • the first distance L is 3, and the second distance D is also 3.
  • the unit is centimeter (cm). At this time, the first distance L is 3 cm.
  • the second distance is also 3 cm.
  • first distance L and the second distance D can be accurately measured through the second embodiment described above.
  • S152 confirm the second area of the first part 2121 and the first area of the second part 2122;
  • the first part 2121 and the second part 2122 are both regular patterns. At this time, the first part 2121 and the second part 2122 are calculated according to mathematical correlation formulas. For example, the first part 2121 and the second part 2122 are both rectangular. At this time, by measuring the length and width of the rectangle, the second area of the first part 2121 and the first area of the second part 2122 can be quickly calculated according to the area formula of the rectangle.
  • At least a part of the first part 2121 and the second part 2122 are irregular patterns.
  • the first part 2121 and the second part 2122 can be measured according to the following method.
  • a laser displacement sensor is used to confirm the second area and the first area. Specifically, the first part 2121 is scanned by a laser displacement sensor, and the second area of the first part 2121 in this direction is calculated. Similarly, the second part 2122 is scanned by the laser displacement sensor, and the first area of the second part 2122 in this direction is calculated. In this embodiment, the second area and the first area can be accurately calculated by the laser displacement sensor.
  • S153 confirms the first glue quantity of the hot melt adhesive according to the first distance L and the second area, and confirms the second glue quantity of the ultraviolet light-moisture dual curing glue according to the second distance D and the first area.
  • the first distance L is 3 centimeters
  • the second area is 10 square centimeters.
  • the volume of the space between the first portion 2121 and the non-display surface 32 in the installation position is 30 cubic centimeters. It can be understood that 30 cubic centimeters of hot melt adhesive can be formed between the first part 2121 and the non-display surface 32 in the installation position.
  • the glue volume of the hot melt adhesive is 30 cubic centimeters.
  • the quality of the hot melt adhesive can also be calculated based on the product of the density and volume of the hot melt adhesive. In the same way, first calculate the volume required for the UV-moisture dual-curing adhesive, and then calculate the quality of the UV-moisture dual-curing adhesive based on the product of the density and volume of the UV-moisture dual-curing adhesive.
  • the amount of hot melt adhesive calculated by the above method is more accurate.
  • the hot melt adhesive Melt glue and ultraviolet light-moisture dual-curing glue will not flow to the display surface due to too much glue, thereby affecting the display effect of the display surface.
  • the hot melt adhesive and ultraviolet light-moisture dual curing adhesive will not reduce the connection firmness of the display screen 30 and the lens barrel 21 due to too little glue.
  • the above specifically introduces an embodiment for confirming the glue amount of the hot melt adhesive and the glue amount of the ultraviolet light-moisture dual curing adhesive.
  • the glue amount of the hot melt adhesive and the glue amount of the ultraviolet light-moisture dual curing adhesive can be accurately measured.
  • a certain amount of hot melt adhesive may be directly formed on the first part 2121 and a certain amount of ultraviolet light-moisture dual curing adhesive may be formed on the second part 2122.
  • the method is simple and easy to operate.
  • the display screen 30 is moved to the installation position so that the display screen 30 is in contact with the hot melt adhesive and the ultraviolet light-moisture dual curing adhesive.
  • the manipulator 400 is used to move the display screen 30 to the installation position.
  • the display screen 30 is in contact with hot melt adhesive and ultraviolet light-moisture dual curing adhesive.
  • the hot-melt adhesive and the ultraviolet light-moisture dual-curing adhesive are cured, the hot-melt adhesive is cured into a hot-melt adhesive.
  • Ultraviolet light-moisture dual-curing glue is cured into ultraviolet light-moisture dual-curing glue.
  • the display screen 30 will be fixedly connected to the lens barrel 21 through a hot melt glue and an ultraviolet light-moisture dual curing glue.
  • the hot melt adhesive and the UV curable adhesive can be cured at the same time or can be cured step by step.
  • the curing steps can be saved, thereby significantly reducing the manufacturing cost of the head-mounted display device.
  • the head-mounted display device 100 can be manufactured by the above-mentioned method.
  • the ultraviolet light-moisture curing adhesive is cured by an ultraviolet light source. It is understandable that curing the ultraviolet light-moisture curing adhesive through an ultraviolet light source can prevent damage to the display screen or the lens due to curing of the ultraviolet light curing adhesive through a heating process. Specifically, when the display screen 30 is in contact with the hot melt adhesive and the ultraviolet light-moisture dual curing adhesive, the ultraviolet light source is turned on, so that the ultraviolet light source emits ultraviolet light. The ultraviolet light irradiates the ultraviolet light-moisture dual curing adhesive between the non-display surface 32 and the second portion 2122, so that the ultraviolet light-moisture dual curing adhesive is cured to form an ultraviolet light-moisture dual curing adhesive. In addition, during the curing process of the ultraviolet light-moisture dual curing adhesive, the curing process of the hot melt adhesive or the assembly process of the head-mounted display device 100 may continue to be cured by absorbing moisture in the environment.
  • the curing method of the hot melt adhesive includes:
  • the hot melt adhesive is solidified into a first colloid through natural cooling; the first colloid absorbs water vapor in the air and solidifies into a hot melt colloid.
  • the hot melt adhesive will not generate carbon dioxide due to the heating process, which will cause the internal expansion of the hot melt adhesive 214 formed by curing, thereby causing the thickness of the hot melt adhesive 214 to increase significantly.
  • the first gel absorbs water vapor in the air and solidifies into a hot melt gel, thereby ensuring that the water vapor does not enter the head-mounted display device 100 and damage the internal circuit.
  • the manufacturing method of the head-mounted display device 100 further includes:
  • the frame 10 is fixedly connected to the first connection position A.
  • the lens frame 10 is locked to the lens barrel 21 by screws.
  • a first mounting hole is defined in the third part 2123, and a second mounting hole is defined in the frame 10.
  • the screw passes through the first mounting hole and the second mounting hole to fix the lens barrel 21 to the frame 10.
  • a pin or a screw is passed through the first mounting hole and the second mounting hole in order to fix the frame 10 to the lens barrel 21.
  • the lens frame 10 can also be fixedly connected to the lens barrel 21 by means of snap-fitting, hot-melt posts, or welding.
  • the method for manufacturing the head-mounted display device 100 is specifically described above.
  • the second part 2122 in this method is formed with ultraviolet light-moisture dual curing glue.
  • the second part 2122 in the method may also be formed with ultraviolet curable glue.
  • the method of this embodiment is the same as most of the technical content of the foregoing embodiment, and will not be repeated here.
  • the confirmation of the third glue amount can refer to the method for confirming the first glue amount implemented above.
  • the method for confirming the fourth glue amount can refer to the method for confirming the second glue amount in the foregoing embodiment.
  • the difference is that in the process of confirming the fourth glue amount of the ultraviolet light curing glue, the density of the ultraviolet light curing glue is used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种头戴式显示装置(100)及其制备方法。头戴式显示装置(100)的制备方法包括在镜头(20)的镜筒(21)的第一面(212)上,形成第一胶量的热熔胶(214)和第二胶量的紫外光-湿气双固化胶(215),或者形成第三胶量的热熔胶(214)和第四胶量的紫外光固化胶(215);将显示屏(30)移动至安装位置,以使显示屏(30)接触热熔胶(214)与紫外光-湿气双固化胶(215),或者热熔胶(214)与紫外光固化胶(215);以及同时固化热熔胶(214)和紫外光-湿气双固化胶(215),或者同时固化热熔胶(214)和紫外光固化胶(215)。制备的头戴式显示装置(100)的抗冲击性能较佳。

Description

头戴式显示装置及其制备方法
本申请要求于2019年09月06日提交中国专利局、申请号为201910844376.3、申请名称为“头戴式显示装置及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子产品技术领域,尤其涉及一种头戴式显示装置的制备方法和头戴式显示装置。
背景技术
虚拟现实(virtual reality,VR)眼镜是一种能够将虚拟图像显示给用户观看的眼镜。然而,由于传统的虚拟现实眼镜的抗冲击性能较差,使得虚拟现实眼镜在发生跌落或者与外界物体发生碰撞时,虚拟现实眼镜容易发生损毁,导致虚拟现实眼镜的用户体验性较差。
发明内容
本申请提供一种头戴式显示装置的制备方法和头戴式显示装置,经该方法制备的头戴式显示装置的抗冲击性能较佳。
第一方面,本申请提供一种头戴式显示装置的制备方法。所述方法包括:
在镜头的镜筒的第一面上,形成第一胶量的热熔胶和第二胶量的紫外光-湿气双固化胶,或者形成第三胶量的热熔胶和第四胶量的紫外光固化胶;
将所述显示屏移动至安装位置,以使所述显示屏接触所述热熔胶与所述紫外光-湿气双固化胶,或者所述热熔胶与所述紫外光固化胶;以及
固化所述热熔胶和所述紫外光-湿气双固化胶,或者固化所述热熔胶和所述紫外光固化胶。
可以理解的是,通过上述方法所制备的头戴显示装置在发生掉落或者与其他物体发生触碰时,连接于所述显示屏与所述第一部分的所述热熔胶能够缓冲部分应力从而避免所述头戴式显示装置发生损坏,也即所述头戴式显示装置具有较佳的抗冲击性能。
此外,因为所述紫外光-湿气双固化胶或者所述紫外光固化胶的固化速度较快,所以在所述显示屏与所述镜筒的连接过程中,可以加快所述显示屏与所述镜筒的连接速度。此外,因为紫外光-湿气双固化胶或者所述紫外光固化胶不用通过加热工序来实现固化,所以在紫外光-湿气双固化胶或者所述紫外光固化胶的固化过程不会对所述显示屏造成损伤。此外,因为紫外光-湿气双固化胶是通过紫外光照射而发生固化,也即紫外光-湿气双固化胶无需通过加热工艺固化,所以在热熔胶在固化过程中,热熔胶不会因紫外光-湿气双固化胶的加热工艺而产生二氧化碳,从而造成固化形成的热熔胶体内部膨胀,进而造成热熔胶体的厚度显著增加。
一种实施方式中,所述第一胶量和所述第二胶量通过以下方法确认:
将镜头和显示屏移动至拍摄器件的同一侧,且所述镜头位于所述显示屏与所述拍摄器件之间;
移动所述显示屏至多个不同的位置,且所述显示屏处于各个位置时,均通过所述拍摄器件获取所述显示屏经所述镜头形成的虚像;
依据多个所述虚像形成多个调制传递函数值;
确认所述显示屏的安装位置,所述安装位置为所述多个调制传递函数值中最大的调制传递函数值所对应的所述显示屏的位置;
根据所述安装位置确认所述第一胶量和确认所述第二胶量。
可以理解的是,当调制传递函数值最大时,所述拍摄器件所拍摄的虚像较清楚,也即当用户佩戴所述头戴式显示装置时,用户看到的虚拟图像较清楚。此时,根据所述安装位置确认第一胶量和第二胶量,能够保证当所述显示屏固定连接于所述镜筒时,所述显示屏处于安装位置,从而保证用户清楚地观看所述显示屏所显示的虚拟图像。
一种实施方式中,所述拍摄器件的位置为当用户佩戴所述头戴式显示装置时,用户双眼的所在位置。此时,当调制传递函数值最大时,所述拍摄器件所拍摄的虚像较清楚,也即用户看到的虚拟图像较清楚。此时,根据所述安装位置确认第一胶量和第二胶量,能够保证当所述显示屏固定连接于所述镜筒时,所述显示屏处于安装位置,从而保证用户能够更加清楚地观看所述显示屏所显示的虚拟图像。
一种实施方式中,在根据所述安装位置确认第一胶量和第二胶量的方法中包括:
确认处于所述安装位置的非显示面与所述第一部分之间的第一距离,以及处于所述安装位置的所述非显示面与所述第二部分之间的第二距离,所述非显示面为所述显示屏朝向所述第一面的部分表面;
确认所述第一部分的第二面积以及所述第二部分的第一面积;
根据所述第一距离与所述第二面积确认所述热熔胶的第一胶量,以及根据所述第二距离与所述第一面积确认所述紫外光-湿气双固化胶的第二胶量。
可以理解的是,通过上述方法,可以准确地计算出的第一胶量和第一胶量,此时,当所述显示屏通过热熔胶与紫外光-湿气双固化胶固定连接于镜筒时,热熔胶与紫外光-湿气双固化胶不会因胶量太多而流至所述显示面,从而影响所述显示面的显示效果。当然,热熔胶与紫外光-湿气双固化胶不会因胶量太少而降低所述显示屏与所述镜筒的连接牢固度。
一种实施方式中,在确认所述第一距离和所述第二距离的方法中包括:
确认所述第一部分在所述第一方向的第一坐标,所述第二部分在所述第一方向的第二坐标,所述第一方向为所述第一面朝向所述非显示面的方向;
将所述显示屏移动至第一位置,并确认所述非显示面在第一方向的第三坐标,所述第一位置与所述安装位置不同;
将所述显示屏移动至所述安装位置,并根据所述显示屏在第一方向的移动量以及所述第三坐标确认所述非显示面的第四坐标;
根据所述第一坐标与所述第四坐标确认所述第一距离,根据所述第二坐标与所述第四坐标确认所述第二距离。
可以理解的是,通过上述方法,可以准确地测量第一距离和第二距离。
一种实施方式中,采用激光位移传感器确认所述第一坐标、所述第二坐标和所述第三坐标。可以理解的是,因为激光位移传感器能够准确测量两点之间的距离,所以采用激光 位移传感器确认的所述第一坐标、所述第二坐标和所述第三坐标的准确度更佳。
一种实施方式中,在确认所述第一部分在所述第一方向的第一坐标,所述第二部分在所述第一方向的第二坐标的方法中包括:
以所述第一面所在的平面定义为基准面;
确认所述第一坐标的值为零,所述第二坐标的值为零。
可以理解的是,在本实施方式中,省去了通过激光位移传感器确认第一坐标和第二坐标的步骤,从而可以显著地降低头戴式显示装置的制备成本。
一种实施方式中,确认所述第一距离和所述第二距离的方法中包括:
确认所述第一部分在第一方向的第一坐标,所述第二部分在所述第一方向的第二坐标,所述第一方向为所述第一面朝向所述非显示面的方向;
将所述显示屏移动至所述安装位置,并确认所述非显示面在所述第一方向的第三坐标;
根据所述第一坐标与所述第三坐标确认所述第一距离,根据所述第二坐标与所述第三坐标确认所述第二距离。
可以理解的是,通过上述方法可以准确地确认第一距离和第二距离,且相较于上述方法,本实施方式的方法省去检测了所述显示屏处于第一位置的坐标,从而显著地降低头戴式显示装置的制备成本。
一种实施方式中,采用激光位移传感器确认所述第一面积与所述第二面积。
一种实施方式中,通过紫外光源固化所述紫外光-湿气固化胶,或者所述紫外光固化胶。可以理解的是,通过紫外光光源固化所述紫外光-湿气固化胶,或者所述紫外光固化胶,可以避免因通过加热工序固化紫外光固化胶而对所述显示屏或者所述镜头产生损坏。
一种实施方式中,所述热熔胶的固化方法包括:
所述热熔胶通过自然冷却固化为第一胶体;
所述第一胶体吸收空气中的水汽固化为热熔胶体。
可以理解的是,通过自然冷却固化所述热熔胶,可以避免因通过加热工序固化所述热熔胶而对所述显示屏或者所述镜头产生损坏。
一种实施方式中,所述镜筒具有第一连接位置。所述第一面包括第三部分。所述第三部分连接于所述第一部分,且与所述第二部分错开。所述第一连接位置位于所述第三部分内。在所述热熔胶完成固化后所述方法还包括:
将所述镜架固定连接于所述第一连接位置。
可以理解的是,当所述镜架固定连接于所述第一连接位置时,所述头戴式显示装置的抗冲击性能较佳。具体的,当所述头戴式显示装置发生掉落或者发生碰撞时,外界物体对所述头戴式显示装置施加的外力通过所述第一连接位置传导至所述显示屏。由于所述第一连接位置靠近所述第一部分设置,所以设置于所述第一部分的热熔胶可以快速地缓冲掉该部分应力,进而避免所述显示屏发生破裂或者损坏。
一种实施方式中,所述第三胶量和所述第四胶量通过以下方法确认:
将镜头和显示屏移动至拍摄器件的同一侧,且所述镜头位于所述显示屏与所述拍摄器件之间;
移动所述显示屏至多个不同的位置,且所述显示屏处于各个位置时,均通过所述拍摄 器件确认所述显示屏经所述镜头形成的虚像;
依据多个所述虚像形成多个调制传递函数值;
确认所述显示屏的安装位置,所述安装位置为所述多个调制传递函数值中最大的调制传递函数值所对应的所述显示屏的位置;
根据所述安装位置确认所述第三胶量和确认所述第四胶量。
可以理解的是,当调制传递函数值最大时,所述拍摄器件所拍摄的虚像较清楚,也即当用户佩戴所述头戴式显示装置时,用户看到的虚拟图像较清楚。此时,根据所述安装位置确认第三胶量和第四胶量,能够保证当所述显示屏固定连接于所述镜筒时,所述显示屏处于安装位置,从而保证用户清楚地观看所述显示屏所显示的虚拟图像。
第二方面,本申请提供一种头戴式显示装置。所述头戴式显示装置由上述任一项所述的头戴式显示装置的制备方法制成。通过上述方法制备的头戴式显示装置的抗冲击性能较佳。
第三方面,本申请提供一种头戴式显示装置。头戴式显示装置包括镜头、显示屏及连接胶体。所述镜头包括镜筒和镜片。所述镜筒包括第一面及贯穿所述第一面的通孔。所述镜片连接于所述通孔的孔壁。所述连接胶体位于所述第一面与所述显示屏之间。所述第一面包括第一部分及第二部分。所述连接胶体包括固定连接所述第一部分与所述显示屏的热熔胶体,及固定连接所述第二部分与所述显示屏的紫外光-湿气双固化胶体或者紫外光固化胶体。
可以理解的是,通过在所述第一部分设置所述热熔胶体,所述第二部分设置所述紫外光-湿气双固化胶体或者所述紫外光固化胶体,从而使得所述显示屏能够稳定且牢固地连接在所述镜筒上。此外,因为所述热熔胶体的杨氏模量较小,即所述热熔胶体的弹性较佳,所以当所述头戴式显示装置发生掉落或者发生碰撞时,所述热熔胶体不容易脱胶,从而使得所述镜筒与所述显示屏不易分离。故而,所述头戴式显示装置的抗冲击性能较佳。
此外,因为所述紫外光-湿气双固化胶体或者所述紫外光固化胶的固化速度较快,所以在所述显示屏与所述镜筒的装配过程中,可以加快所述显示屏与所述镜筒的连接速度。此外,因为所述紫外光-湿气双固化胶体或者所述紫外光固化胶不用通过加热工序来实现固化,所以在紫外光-湿气双固化胶体或者所述紫外光固化胶的固化过程不会对显示屏造成损伤。
此外,因为紫外光-湿气双固化胶是通过紫外光照射而发生固化,也即紫外光-湿气双固化胶无需通过加热工艺固化,所以在热熔胶在固化过程中,热熔胶不会因紫外光-湿气双固化胶的加热工艺而产生二氧化碳,从而造成固化形成的热熔胶体内部膨胀,进而造成热熔胶体的厚度显著增加。
一种实施方式中,所述热熔胶体与所述紫外光-湿气双固化胶体在第一方向的厚度均在0.05至0.8毫米的范围内,或者所述热熔胶体与所述紫外光固化胶体在第一方向的厚度均在0.05至0.8毫米的范围内,所述第一方向为所述镜筒朝向所述显示屏的方向。
可以理解的是,在此厚度下的所述热熔胶体与所述紫外光-湿气双固化胶体既能够保证所述显示屏与所述镜头的稳定连接,又能够当用户佩戴所述头戴式显示装置时,用户的双眼能够处于较佳的位置观看所述显示屏显示的虚拟图像,从而显著地提高所述头戴式显示 装置的用户体验性。换言之,所述热熔胶体与所述紫外光-湿气双固化胶体在第一方向的厚度不会因太厚而使得所述显示屏离用户的眼睛太远,进而导致用户看不清所述显示屏的虚拟图像或者用户眼睛因聚焦虚拟图像太久而困乏,降低所述头戴式显示装置的用户体验性。
一种实施方式中,所述热熔胶体与所述紫外光-湿气双固化胶体的数量均为多个,所述热熔胶体与所述紫外光-湿气双固化胶体依次交错排布,或者所述热熔胶体与所述紫外光固化胶体的数量均为多个,所述热熔胶体与所述紫外光固化胶体依次交错排布。
可以理解的是,此时,当所述显示屏通过热熔胶体和紫外光-湿气双固化胶体或者所述热熔胶体与所述紫外光固化胶体连接于镜筒时,一方面,所述显示屏与所镜筒之间具有较多的弹性连接区,从而显著地增加所述头戴式显示装置的抗冲击性能,另一方面,当所述显示屏可先通过所述紫外光-湿气双固化胶体或者所述紫外光固化胶体固定连接于镜筒时,具有较多的紫外光-湿气双固化胶体或者所述紫外光固化胶体可以在保证显示屏快速固定连接于镜筒的同时,所述显示屏还能够更加稳定地连接在镜筒上。
一种实施方式中,所述热熔胶与所述紫外光-湿气双固化胶拼接成环状结构,或者所述热熔胶与所述紫外光固化胶拼接成环状结构。此时,所述镜筒与所述显示屏的连接面积较大,从而提高所述镜筒与所述显示屏的连接牢固度。
一种实施方式中,所述镜筒具有第一连接位置,所述第一面包括第三部分,所述第三部分连接于所述第一部分,且与所述第二部分错开,所述第一连接位置位于所述第三部分,所述头戴式显示装置包括镜架,所述镜架连接于所述第一连接位置。
可以理解的是,因为所述第一连接位置位于所述第三部分,且所述第三部分连接于所述第一部分,且与所述第二部分错开,所以所述第一连接位置相较于所述第二部分靠近所述第一部分设置。此时,当所述头戴式显示装置发生掉落或者发生碰撞时,外界物体对所述头戴式显示装置施加的外力,并通过所述第一连接位置传导至所述显示屏。由于所述第一部分设置有所述热熔胶体,所述热熔胶体的弹性较佳,从而通过所述热熔胶体可以快速地缓冲掉该部分应力,进而避免所述显示屏发生破裂或者损坏。
附图说明
图1是本申请实施例提供的头戴式显示装置在一种角度下的结构示意图;
图2是本申请实施例提供的头戴式显示装置在另一种角度下的结构示意图;
图3是图1所示的头戴式显示装置的分解示意图;
图4是图1所示头戴式显示装置的部分结构示意图;
图5是图4所示的头戴式显示装置在M-M线处的剖面图;
图6是图4所示的头戴式显示装置的部分结构的分解示意图;
图7是本申请实施例提供一种的头戴式显示装置的制备方法的流程示意图
图8(a)是图7所示头戴式显示装置在制备过程中的结构示意图;
图8(b)是图8(a)所示头戴式显示装置在制备过程中的结构示意图;
图9是图7所示的头戴式显示装置的制备方法的部分流程示意图;
图10是图1所示的头戴式显示装置的镜筒的结构示意图;
图11是图9所示头戴式显示装置在制备过程中的结构示意图;
图12是图7所示的头戴式显示装置的制备方法的部分流程示意图;
图13是图12所示头戴式显示装置在制备过程中的结构示意图;
图14是图12所示头戴式显示装置在制备过程中的结构示意图;
图15是图7所示的头戴式显示装置的制备方法的部分流程示意图;
图16是图15所示头戴式显示装置在制备过程中的结构示意图。
具体实施方式
请参阅图1和图2,图1是本申请实施例提供的头戴式显示装置100在一种角度下的结构示意图。图2是本申请实施例提供的头戴式显示装置100在另一种角度下的结构示意图。头戴式显示装置100可以为虚拟现实(virtual reality,VR)眼镜或者VR头盔。图1和图2所示实施例的头戴式显示装置100以VR眼镜为例进行阐述。可以理解的是,当用户穿戴上头戴式显示装置100时,用户能够通过头戴式显示装置100观看虚拟图像。
如图3所示,图3是图1所示的头戴式显示装置100的分解示意图。
头戴式显示装置100包括镜架10、镜头20、显示屏30及连接胶体40。可选的,镜架10包括镜框11及镜腿12。镜框11可包括用于佩戴在用户鼻部的鼻托。此外,镜腿12用于佩戴在用户的耳部。此时,当用户将头戴式显示装置100佩戴于头部时,通过镜腿12与鼻托可以将头戴式显示装置100稳定地放置在用户的头部。
此外,镜头20的数量为两个。两个镜头20分别安装于镜框11。此时,用户的双眼可通过两个镜头20看到虚拟画面。当然,在其他实施例中,镜头20的数量不做限制。例如镜头20也可以为一个,但镜头20的大小需覆盖用户的双眼。结合附图1和附图2可知,镜头20位于两个镜腿12之间。当用户佩戴上头戴式显示装置100时,镜头20朝向用户。
此外,显示屏30的数量为两个。两个显示屏30一一对应地固定连接于镜头20上,也即每个显示屏30均与一个镜头20对应设置。此时,两个显示屏30分别一一对应地为两个镜头20提供虚拟图像。虚拟图像可以为但不仅限于为三维虚拟图像。请结合图1所示,图1示意了显示屏30穿过镜框11,并露出。在其他实施方式中,显示屏30也可以位于与镜头20同一侧,也即显示屏30未穿过镜框11。可选的,显示屏30可以为但不仅限于为液晶显示屏30(liquid crystal display,LCD)。例如,显示屏30还可以为有机发光二极管显示屏30(OrganicLight-Emitting Diode,OLED)。此外,在其他实施例中,显示屏30的数量也可以为一个。显示屏30通过分区为两个镜头20提供虚拟图像。此外,显示屏30也可以与外部设备无线通信连接。此时,显示屏30能够接收外部设备所提供的虚拟图像,并将所接收的虚拟图像通过镜头20提供给用户。
此外,连接胶体40连接于镜头20与显示屏30之间。连接胶体40能够保证镜头20与显示屏30之间的连接稳定性。
如图4和图5所示,图4是图1所示头戴式显示装置100的部分结构示意图。图5是图4所示的头戴式显示装置100在M-M线处的剖面图。镜头20包括镜筒21和镜片22。镜筒21包括相背设置的第一面212与第二面211。镜筒21设有通孔213。通孔213自第一面212贯穿至第二面211。镜片22连接于通孔213的孔壁。可以理解的是,镜片22可以固定连接于通孔213的孔壁,镜片22也可以活动连接于通孔213的孔壁。连接胶体40位于第一面212与显示屏30之间。
请参阅图6,图6是图4所示的头戴式显示装置100的部分结构的分解示意图。
第一面212包括第一部分2121及第二部分2122。第二部分2122可以与第一部分2121相互连接,也可以与第一部分2121间隔连接。热熔胶体214设置在第一部分2121与显示屏30之间。热熔胶体214经热熔胶固化形成。紫外光-湿气双固化胶体215设置在第二部分2122与显示屏30之间。紫外光-湿气双固化胶体215经紫外光-湿气双固化胶固化形成。此时,显示屏30通过热熔胶体214与紫外光-湿气双固化胶体215固定连接于镜筒21。请结合附图4和图5所示,当显示屏30固定连接于镜筒21时,显示屏30遮盖镜筒21的通孔213。
可以理解的是,通过热熔胶体214将设置在第一部分2121与显示屏30之间,紫外光-湿气双固化胶体215设置在第二部分2122与显示屏30之间,从而使得显示屏30能够稳定且牢固地连接在镜筒21上。此外,因为热熔胶体214的杨氏模量较小,即热熔胶体214的弹性较佳,所以当头戴式显示装置100发生掉落或者发生碰撞时,热熔胶体214不容易脱胶,从而使得镜筒21与显示屏30不易分离。故而,头戴式显示装置100的抗冲击性能较佳。此时,当镜筒21与显示屏30之间不易分离,外界的灰尘或者水汽就不容易进入头戴式显示装置100的内部,从而破坏头戴式显示装置100内部结构。
可以理解的是,因为紫外光-湿气双固化胶的固化速度较快,所以在显示屏30与镜筒21的装配过程中,可以使得显示屏30与镜筒21的快速连接。此外,在紫外光-湿气双固化胶初步固化后,紫外光-湿气双固化胶还能够在后续显示屏30与镜筒21的装配过程中通过吸收环境中的水汽继续固化,从而一方面进一步提高显示屏30与镜筒21的连接牢固度,另一方面,避免环境的水汽对显示屏30或者镜头20产生破坏(例如,水汽破坏显示屏30内部的电路的连接。
此外,因为紫外光-湿气双固化胶是通过紫外光照射而发生固化,也即紫外光-湿气双固化胶无需通过加热工艺固化,所以在热熔胶在固化过程中,热熔胶不会因紫外光-湿气双固化胶的加热工艺而产生二氧化碳,从而造成固化形成的热熔胶体214内部膨胀,进而造成热熔胶体214的厚度显著增加。
一种实施方式中,热熔胶体214与紫外光-湿气双固化胶体215在第一方向的厚度均在0.05至0.8毫米的范围内。第一方向为镜筒21朝向显示屏30的方向。可以理解的是,在此厚度下的热熔胶体214与紫外光-湿气双固化胶体215既能够保证显示屏30与镜头20的稳定连接,又能够当用户佩戴头戴式显示装置100时,用户的双眼能够处于较佳的位置观看显示屏30显示的虚拟图像,从而显著地提高头戴式显示装置100的用户体验性。换言之,热熔胶体214与紫外光-湿气双固化胶体215在第一方向的厚度不会因太厚而使得显示屏30离用户的眼睛太远,进而导致用户看不清显示屏30的虚拟图像或者用户眼睛因聚焦虚拟图像太久而困乏,降低头戴式显示装置100的用户体验性。
一种实施方式中,请再次参阅图5,显示屏30朝向第一面212的表面包括显示面31和连接于显示面31的周缘的非显示面32。附图5中通过虚线将显示屏30分成了中间部分和连接在中间部分的周缘的周缘部分。中间部分朝向镜头20的表面为显示面31。周缘部分朝向镜头20的表面为非显示面32。显示面31正对于通孔213。此时,当用户佩戴上头戴式显示装置100时,用户能够通过通孔213看到显示面31所显示的虚拟图像。结合附图 6所示,显示屏30的非显示面32通过热熔胶体214与紫外光-湿气双固化胶体215固定连接于镜筒21。此时,热熔胶体214与紫外光-湿气双固化胶体215不会影响显示面31的显示。
一种实施方式中,热熔胶体214与所述紫外光-湿气双固化胶体215的数量均为多个。所述热熔胶体214与所述紫外光-湿气双固化胶体215依次交错排布。例如,请再次参阅图6,第一部分2121的热熔胶体214为两个。设置于第二部分2122的紫外光-湿气双固化胶体215的数量也为两个。两个热熔胶体214彼此错开设置。两个紫外光-湿气双固化胶体215彼此错开设置。此时,第一部分2121的数量为两个,第二部分2122的数量也为两个。两个第一部分2121错开设置。两个第二部分2122错开设置。此时,当显示屏30通过热熔胶体214和紫外光-湿气双固化胶体215连接于镜筒21时,一方面,显示屏30与镜筒21之间具有较多的弹性连接区,从而显著地增加头戴式显示装置100的抗冲击性能,另一方面,当显示屏30先通过紫外光-湿气双固化胶体215固定连接于镜筒21时,具有较多的紫外光-湿气双固化胶体215可以在保证显示屏30快速固定连接于镜筒21的同时,显示屏30还能够更加稳定地连接在镜筒21上。在其他实施方式中,第一部分2121的数量和第二部分2122的数量也可以为一个或者大于两个,具体的本申请不作限定。
请再次参阅图6,热熔胶体214与紫外光-湿气双固化胶体215拼接成环状结构。此时,镜筒21与显示屏30的连接面积较大,从而提高镜筒21与显示屏30的连接牢固度。当然,在其他实施方式中,热熔胶体214与紫外光-湿气双固化胶体215也可以间隔环绕形成环状结构。具体的本申请不做限定。
请再次参阅图6,镜筒21具有第一连接位置A。第一面212包括第三部分2123。第三部分2123连接于第一部分2121,且与第二部分2122错开。换言之,第三部分2123靠近第一部分2121设置,远离第二部分2122设置。第一连接位置A位于第三部分2123内。请结合附图1所示,镜架10固定连接于第一连接位置A。附图1示意了镜框11固定连接于第一连接位置A。
可以理解的是,因为第一连接位置A位于第三部分2123内,且第三部分2123连接于第一部分2121,且与第二部分2122错开,所以第一连接位置A相较于第二部分2122靠近第一部分2121设置。此时,当头戴式显示装置100发生掉落或者发生碰撞时,外界物体对头戴式显示装置100施加的外力通过第一连接位置A传导至显示屏30。由于第一部分2121与显示屏30之间设置有热熔胶体214,热熔胶体214的弹性较佳,从而通过热熔胶体214可以快速地缓冲掉该部分应力,进而避免显示屏30发生破裂或者损坏。
一种实施方式中,第一连接位置A的数量为多个。多个第一连接位置A均位于第三部分2123内。此时,当镜架10固定连接于第一连接位置A时,镜架10与镜筒21的连接牢固度较佳。此外,第三部分2123的数量也可以为多个。具体的本申请不做限制。
一种实施方式中,镜筒21的第一连接位置A设有第一安装孔。镜架10设有第二安装孔。通过紧固件穿过第一安装孔与第二安装孔,以将镜筒21锁紧于镜架10上。可以理解的是,紧固件可以为但不仅限于为螺钉、螺丝或者铆钉。在其他实施方式中,镜架10也可以通过焊接、卡扣卡合或者热熔柱等连接方式连接于镜筒21的第一连接位置A。
上文具体描述了第一种实施例,第二部分2122与显示屏30之间设置有紫外光-湿气双 固化胶体215。下文将描述第二种实施例,第二部分2122设置紫外光固化胶体。
第二种实施例,与第一种实施例大部分的相同技术内容不再赘述:第二部分2122设置紫外光固化胶体。紫外光固化胶固化形成紫外光固化胶体。
可以理解的是,因为紫外光固化胶体215的固化速度较快,所以在显示屏30与镜筒21的装配过程中,可以加快显示屏30与镜筒21的连接速度。此外,因为紫外光固化胶体215不用通过加热工序来实现固化,所以在紫外光固化胶体215的固化过程不会对显示屏30造成损伤。
请参阅图7,图7是本申请实施例提供一种的头戴式显示装置100的制备方法的流程示意图。通过本实施例的头戴式显示装置100的制备方法可以制备出头戴式显示装置100。下文将结合附图7具体描述一种头戴式显示装置100的制备方法。该方法包括但不限于包括步骤S100、S200和S300。
S100在镜头20的镜筒21的第一面212上,形成第一胶量的热熔胶和第二胶量的紫外光-湿气双固化胶;
S200将所述显示屏移动至安装位置,以使所述显示屏接触所述热熔胶与所述紫外光-湿气双固化胶;
S300固化所述热熔胶和所述紫外光-湿气双固化胶,或者固化所述热熔胶和所述紫外光固化胶。
在本实施例中,通过上述S100、S200和S300,从而当所制成的头戴式显示装置100发生掉落或者与其他物体发生触碰时,连接于显示屏30与第一部分2121的热熔胶能够缓冲部分应力从而避免头戴式显示装置100发生损坏,也即头戴式显示装置100具有较佳的抗冲击性能。
可以理解的是,因为紫外光-湿气双固化胶的固化速度较快,所以在显示屏30与镜筒21的装配过程中,可以使得显示屏30与镜筒21的快速连接。此外,在紫外光-湿气双固化胶初步固化后,紫外光-湿气双固化胶还能够在后续显示屏30与镜筒21的装配过程中通过吸收环境中的水汽继续固化,从而一方面进一步提高显示屏30与镜筒21的连接牢固度,另一方面,避免环境的水汽对显示屏30或者镜头20产生破坏(例如,水汽破坏显示屏30内部的电路的连接。
此外,因为紫外光-湿气双固化胶是通过紫外光照射而发生固化,也即紫外光-湿气双固化胶无需通过加热工艺固化,所以在热熔胶在固化过程中,热熔胶不会因紫外光-湿气双固化胶的加热工艺而产生二氧化碳,从而造成固化形成的热熔胶体214内部膨胀,进而造成热熔胶体214的厚度显著增加。
下文将结合相关附图具体描述步骤S100、S200和S300。
S100在镜头20的镜筒21的第一面212上,形成第一胶量的热熔胶和第二胶量的紫外光-湿气双固化胶;在本实施例中,第一胶量指的是热熔胶的重量。第二胶量指的是紫外光-湿气双固化胶的重量。当然,在其他实施例中,第一胶量也可以指热熔胶的体积。第二胶量也可以指的是紫外光-湿气双固化胶的体积。
可以理解的是,通过有效地控制热熔胶的胶量和紫外光-湿气双固化胶的胶量,可以避免在热熔胶和紫外光-湿气双固化胶不会因胶量太多而流至显示面31,从而影响显示面31 的显示效果。当然,热熔胶与紫外光-湿气双固化胶不会因胶量太少而降低显示屏30与镜筒21的连接牢固度。
下文将结合附图8(a)和图8(b)具体描述如何确认所述第一胶量和所述第二胶量。图8(a)是图7所示头戴式显示装置的制备方法中的部分流程示意图;图8(b)是图8(a)所示头戴式显示装置在制备过程中的结构示意图;
S110将镜头20和显示屏30移动至拍摄器件200的同一侧,且镜头20位于显示屏30与拍摄器件200之间,具体的,镜头20中的镜筒21的第二面211朝向拍摄器件200,镜筒21的第一面212朝向显示屏30;一种实施方式中,拍摄器件200可以为但不仅限于为工业相机。将镜头20放置于一固定台,固定台具有一贯通孔。镜筒21的通孔213与贯通孔正对设置。拍摄器件200位于固定台背离镜筒21的一侧。此时,拍摄器件200朝向第二面211。通过机械手400抓持显示屏30,并将显示屏30移动至镜筒21背离固定台的一侧。此时,显示屏30的显示面31朝向镜头20。机械手400可以精确地控制显示屏30的移动量,并将显示屏30准确地移动至预定位置。
S120移动显示屏30至多个不同的位置,且显示屏30处于各个位置时,均通过拍摄器件200获取显示屏30经镜头20形成的虚像。一种实施方式中,通过机械手400将显示屏30移动至第一采集位置,以使显示屏30正对于镜筒21中镜片22。此时,通过工业相机采集显示屏30在镜片22中的虚像。换言之,工业相机透过镜片22采集位于第一采集位置的显示屏30的图像。再者,通过机械手400移动显示屏30至第二采集位置,再通过工业相机透过镜片22采集显示屏30的图像。依次类推,通过机械手400移动显示屏30至不同的采集位置,再通过工业相机采集处于不同位置的显示屏30的图像。
S130根据不同的虚像确认不同的调制传递函数值;当显示屏30移动至第一采集位置,且工业相机透过镜片22采集位于第一采集位置的显示屏30的图像之后,工业相机根据所采集的图像计算出第一个调制传递函数值。当显示屏30移动至第一采集位置,且工业相机透过镜片22采集位于第一采集位置的显示屏30的图像之后,工业相机根据所采集的图像计算出第二个调制传递函数值。以此类推,工业相机根据不同的图像计算出不同的调制传递函数值。可以理解的是,因为处于不同位置的显示屏30在镜片22中所成的虚像的清晰度不同,所以计算出的调制传递函数值不同。
S140确认显示屏30的安装位置为调制传递函数值最大时所对应的显示屏30的位置;可以理解的是,因为调制传递函数值不同,所以调整传递函数值将存在最大值。此时,确认最大的调制传递函数值所对应的显示屏30的位置,并将该位置确认为显示屏30的安装位置。
S150根据安装位置确认第一胶量和确认第二胶量。
可以理解的是,当调制传递函数值最大时,拍摄器件200所拍摄的虚像较清楚,也即当用户佩戴所述头戴式显示装置100时,用户看到的虚拟图像较清楚。此时,根据所述安装位置确认第一胶量和第二胶量,能够保证当所述显示屏30固定连接于所述镜筒21时,所述显示屏30处于安装位置,从而保证用户清楚地观看所述显示屏30所显示的虚拟图像。
一种实施方式中,拍摄器件200的位置为当用户佩戴头戴式显示装置100时,用户双眼的所在位置。此时,当调制传递函数值最大时,拍摄器件200所拍摄的虚像较清楚,也 即用户看到的虚拟图像较清楚。此时,根据安装位置确认热熔胶的胶量和紫外光-湿气双固化胶的胶量,能够保证当显示屏30固定连接于镜筒21时,显示屏30处于安装位置,从而保证用户清楚地观看道显示屏30所显示的虚拟图像。
下文将通过相关附图具体描述一种确认热熔胶的第一胶量和紫外光-湿气双固化胶的第二胶量的实施方式。请参阅图9,图9是图7所示的头戴式显示装置100的制备方法的部分流程示意图。头戴式显示装置方法还包括但不限于包括S151、S152和S153。S151、S152和S153是上述S150的一种实施方式。为了避免过多赘述,附图9只给出了S151、S152和S153。
S151确认处于安装位置的非显示面32与第一部分2121之间的第一距离L,以及处于安装位置的非显示面与第二部分2122之间的第二距离D;
S152确认第一部分2121的第二面积以及第二部分2122的第一面积;
S153根据第一距离L与第二面211积确认热熔胶的第一胶量,以及根据第二距离D与第一面212积确认紫外光-湿气双固化胶的第二胶量。
在本实施方式中,通过S151、S152和S153的方法,可以准确地计算出的热熔胶量,此时,当显示屏30通过热熔胶与紫外光-湿气双固化胶固定连接于镜筒21时,热熔胶与紫外光-湿气双固化胶不会因胶量太多而流至显示面31,从而影响显示面31的显示效果。当然,热熔胶与紫外光-湿气双固化胶不会因胶量太少而降低显示屏30与镜筒21的连接牢固度。
下文将结合相关附图具体描述步骤S151、S152和S153。
请参阅图10和图11,图10是图1所示的头戴式显示装置的镜筒的结构示意图。图11是图9所示头戴式显示装置100在制备过程中的结构示意图。
S151确认处于安装位置的非显示面32与第一部分2121之间的第一距离L,以及处于安装位置的非显示面32与第二部分2122之间的第二距离D。
可以理解是,当非显示面32与第一部分2121均为平面时,测量非显示面32与第一部分2121上的两点之间的垂直距离。具体的,先确认非显示面32上的第一点,再确认第一部分2121上的第二点。第一点与第二点的连线垂直于非显示面32和第一部分2121。此时,第一点与第二点之间的距离为第一距离L。当非显示面32与显示面至少一个为曲面时,测量非显示面32与第一部分2121上多个两点之间的垂直距离,并对多个垂直距离求平均计算出第一距离L。具体的,先确认非显示面32上的第一点,再确认第一部分2121上的第二点。第一点与第二点的连线垂直于非显示面32和第一部分2121。此时,第一点与第二点之间的垂直距离为第一垂直距离。再确认非显示面32上的第三点,第三点与第一点的位置不同。确认第一部分2121上的第四点。第三点与第四点的连线均垂直于非显示面32和第一部分2121。此时,第三点与第四点之间的垂直距离为第二垂直距离。依次类推,在非显示面32和第一部分2121确认第N垂直距离。此时,将第一垂直距离至第N垂直距离求平均计算出第一距离L。当然,在其他实施方式,也不仅限于通过将第一垂直距离至第N垂直距离求平均计算出第一距离L,也可通过其他数学计算方法求出较准确的第一距离L。
此外,处于安装位置的非显示面32与第二部分2122之间的第二距离D的测量方式可参阅上述的第一距离L的测量方式。这里不再赘述。
可以理解的是,上述具体描述了通过测量至少两个点来实现测量第一距离L。此时,在测量两个点的距离的方式中具有多种,下文将结合附图具体描述两种测量第一距离L的方式。下文将结合附图12和图13来具体描述第一种实施方式。第一种实施方式的方法包括但不限于包括步骤S1511、S1512、S1513和S1514。S1511、S1512、S1513和S1514是上述S151的一种实施方式。为了避免过多赘述,附图12只给出了S1511、S1512、S1513和S1514。请参阅图12和图13,图12是图7所示的头戴式显示装置100的制备方法的部分流程示意图。图13是图12所示头戴式显示装置100在制备过程中的结构示意图。
S1511确认第一部分2121在第一方向的第一坐标A,第二部分2122在第一方向的第二坐标B,第一方向为第一部分2121朝向非显示面32的方向,也即第二面211朝向第一面212的方向;可以理解的是,通过在显示屏30与镜筒21之间设置基准面S,基准面S为平行于第一面212的平面。第一部分2121至基准面S的距离为第一坐标A。第二部分2122至基准面S的距离为第二坐标B(图未示)。
一种实施方式中,采用激光位移传感器500确认第一坐标A和第二坐标B。可以理解的是,通过激光位移传感器500可以准确地测量第一坐标A和第二坐标B。具体的,将激光位移传感器500移动至镜筒21的一侧,且激光位移传感器500朝向第一部分2121。激光位移传感器500位于基准面S。此时,通过激光位移传感器500向第一部分2121发射光线以及接收被第一部分2121反射回的光线来测量第一部分2121与激光位移传感器500在第一方向的第一垂直距离。此时,第一垂直距离为第一坐标A。相同的,通过激光位移传感器500向第二部分2122发射光线以及接收被第二部分2122反射回的光线来测量第二部分2122与激光位移传感器500在第一方向的第二垂直距离。此时,第二垂直距离为第二坐标B。
一种实施方式中,以第一面212所在的平面定义为基准面S。此时,第一面212在第一方向的坐标均为零。此时,确认第一坐标A的值为零,第二坐标B的值为零。在该种实施方式中,省去了采用激光位移传感器500确认第一坐标A和第二坐标B,从而可以显著地降低头戴式显示装置100的制备成本。
请参阅图14,图14是图12所示头戴式显示装置100在制备过程中的结构示意图。
S1512将显示屏30移动至第一位置,并确认非显示面32在第一方向的第三坐标C,第一位置与安装位置不同;
一种实施方式中,采用激光位移传感器500确认第三坐标C。可以理解的是,通过激光位移传感器500可以准确地测量第三坐标C。具体的,将显示屏30移动至第一位置。再将激光位移传感器500移动至显示屏30的一侧,且激光位移传感器500朝向显示屏30的非显示面32。激光位移传感器500位于基准面S。此时,通过激光位移传感器500向非显示面32发射光线以及接收被非显示面32反射回的光线来测量非显示面32与激光位移传感器500在第一方向的第三垂直距离。此时,第三垂直距离为第三坐标C。
一种实施方式中,当第一面212为基准面S时,第三坐标C即为非显示面32与第一面212之间的距离。
S1513将显示屏30移动至安装位置,并根据显示屏30在第一方向的移动量以及第三坐标C确认非显示面32在第一方向的第四坐标E;
一种实施方式中,通过机械手400抓持显示屏30。此时,显示屏30在第一方向的移动量等于机械手400在第一方向的移动量。此时,根据机械手400在第一方向的移动量以及第三坐标C确认非显示面32在第一方向的第四坐标E。例如,当机械手400在第一方向的移动量为-10,第三坐标C为20时,第四坐标E为10。当机械手400在第一方向的移动量为1,第三坐标C为5时,第四坐标E为6。
S1514根据第一坐标A与第四坐标E确认第一距离L。根据第二坐标B与第四坐标E确认第二距离D。例如,第一坐标A为0、第二坐标B也为0,第四坐标E为3,此时,第一距离L为3,第二距离D也为3。考虑到单位问题,以厘米(centimeter,cm)为单位。此时,第一距离L为3厘米。第二距离D也为3厘米。
可以理解的是,通过上述第一种实施方式,可以准确地测量第一距离L和第二距离D。
上文具体描述了确认第一距离L和第二距离D的第一种实施方式,下文将结合相关附图具体描述确认第一距离L和第二距离D的第二种实施方式。
第二种实施方式,与第一种实施方式相同的技术内容不再赘述:确认第一距离L和第二距离D的方法中包括:
请参阅图15至图16,第二种实施方式的方法包括但不限于包括步骤S1515、S1516和S1517。S1515、S1516和S1517是上述S151的另一种实施方式。为了避免过多赘述,附图15只给出了S1515、S1516和S1517。图15是图7所示的头戴式显示装置100的制备方法的部分流程示意图。图16是图15所示头戴式显示装置100在制备过程中的结构示意图。
S1515确认第一部分2121在第一方向的第一坐标A,第二部分2122在第一方向的第二坐标B,第一方向为第二面211朝向第一面212的方向;该步骤的具体实现方式可参阅第一种实施方式。这里不再赘述。
S1516将显示屏30移动至安装位置,并确认非显示面32在第一方向的第三坐标C;
一种实施方式中,以第一面212为基准面,且采用激光位移传感器500测量第三坐标C。在本实施方式中,激光位移传感器500位于显示屏30的周侧面。当激光位移传感器500发射光线,光线投射至显示屏30的周侧面。此时,激光位移传感器500能够接收被反射回的光线。当沿第一方向移动激光位移传感器500时,激光位移传感器500发射的光线穿过显示屏30与镜筒21之间,此时,激光位移传感器500无法接收被反射回的光线。当继续沿第一方向移动激光位移传感器500时,激光位移传感器500发射的光线被镜筒21所遮挡,此时,激光位移传感器500能够接收反射回的光线。故而,通过计算激光位移传感器500在第一方向的移动量可以计算出显示屏30与镜筒21之间的距离,也即非显示面32与第一面212之间的距离。在本实施方式中,通过上述方法可以解决因处于安装位置的非显示面32与第一部分2121之间的距离较小而无法将激光位移传感器500移动至非显示面32与第一部分2121之间的问题。非显示面32与第一面212之间的距离即为第三坐标C。故而,通过上述方法可以准确且快速地测量出第三坐标C。当然,在其他实施方式中,采用微型激光位移传感器500。微型激光位移传感器500可以移动至显示屏30与镜筒21之间,从而准确且快速地测量出第三坐标C。
S1517根据第一坐标A与第三坐标C确认第一距离L,根据第二坐标B与第三坐标C确认第二距离D。例如,第一坐标A为0、第二坐标B也为0,第三坐标C为3,此时,第一 距离L为3,第二距离D也为3。考虑到单位问题,以厘米(centimeter,cm)为单位。此时,第一距离L为3厘米。第二距离也为3厘米。
可以理解的是,通过上述的第二种实施方式,可以准确地测量出第一距离L和第二距离D。
上文具体描述了两种确认第一距离L和第二距离D的实施方式。下文将继续结合附图9和附图10具体介绍如何确认热熔胶和紫外光-湿气双固化胶的相关步骤。
S152确认第一部分2121的第二面积以及第二部分2122的第一面积;
一种实施方式中,第一部分2121与第二部分2122均为规则图形。此时,第一部分2121与第二部分2122根据数学相关公式计算出。例如,第一部分2121与第二部分2122均为长方形。此时,测量出长方形的长和宽,便可以根据长方形的面积公式快速计算出第一部分2121的第二面积与第二部分2122的第一面积。
一种实施方式中,第一部分2121与第二部分2122至少一部分为不规则图形。此时,第一部分2121与第二部分2122可根据以下方法测量出。
采用激光位移传感器确认第二面积与第一面积。具体的,通过激光位移传感器扫描第一部分2121,并计算出在该方向上第一部分2121的第二面积。相同的,通过激光位移传感器扫描第二部分2122,并计算出在该方向上第二部分2122的第一面积。在本实施方式中,通过激光位移传感器能够准确地计算出第二面积和第一面积。
S153根据第一距离L与第二面积确认热熔胶的第一胶量,以及根据第二距离D与第一面积确认紫外光-湿气双固化胶的第二胶量。例如,第一距离L为3厘米,第二面积为10平方厘米。此时,第一部分2121与处于安装位置的非显示面32之间的空间体积为30立方厘米。可以理解是,第一部分2121与处于安装位置的非显示面32之间可以形成30立方厘米的热熔胶。此时,热熔胶的胶量为30立方厘米。当然,在其他实施方式中,也可以再根据热熔胶的密度与体积之积计算出热熔胶的质量。相同的,先计算出紫外光-湿气双固化胶所需的体积,再根据紫外光-湿气双固化胶的密度与体积之积计算出紫外光-湿气双固化胶的质量。
在本实施方式中,通过上述方法计算出的热熔胶的胶量较准确,此时,当显示屏30通过热熔胶与紫外光-湿气双固化胶固定连接于镜筒21时,热熔胶与紫外光-湿气双固化胶不会因胶量太多而流至显示面,从而影响显示面的显示效果。当然,热熔胶与紫外光-湿气双固化胶不会因胶量太少而降低显示屏30与镜筒21的连接牢固度。
上述具体介绍了一种确认热熔胶的胶量和紫外光-湿气双固化胶的胶量的实施方式。该实施方式中,热熔胶的胶量和紫外光-湿气双固化胶的胶量能够准确地测量出。当然,在其他实施方式中,也可通过直接在第一部分2121形成一定量的热熔胶以及在第二部分2122上形成一定量的紫外光-湿气双固化胶。该方法简单易操作。
上文具体描述了一种确认所述胶量下的热熔胶和紫外光-湿气双固化胶。下文将继续结合附图7具体介绍如何将显示屏30装配在镜筒21上。
S200将显示屏30移动至安装位置,以使显示屏30接触于热熔胶与紫外光-湿气双固化胶。
一种实施方式中,利用机械手400将显示屏30移动至安装位置。此时,显示屏30接 触于热熔胶与紫外光-湿气双固化胶。当热熔胶与紫外光-湿气双固化胶固化后,热熔胶固化为热熔胶体。紫外光-湿气双固化胶固化为紫外光-湿气双固化胶体。此时,显示屏30将通过热熔胶体和紫外光-湿气双固化胶体固定连接于镜筒21上。
S300固化热熔胶和紫外光-湿气双固化胶。可以理解的是,热熔胶和紫外光固化胶可以同时固化,也可以分步固化。当热熔胶和紫外光-湿气双固化胶同时固化时,可以节省固化步骤,从而显著降低头戴式显示装置的制备成本。
可以理解的是,通过上述方法可以制备出头戴式显示装置100。
一种实施方式中,通过紫外光源固化所述紫外光-湿气固化胶。可以理解的是,通过紫外光光源固化所述紫外光-湿气固化胶,可以避免因通过加热工序固化紫外光固化胶而对所述显示屏或者所述镜头产生损坏。具体的,当显示屏30接触于热熔胶与紫外光-湿气双固化胶时,打开紫外光源,以使紫外光源发射紫外光线。紫外光线照射于非显示面32与第二部分2122之间的紫外光-湿气双固化胶,以使紫外光-湿气双固化胶发生固化形成紫外光-湿气双固化胶体。此外,紫外光-湿气双固化胶在固化过程中,也可在热熔胶的固化过程中或者头戴式显示装置100的装配过程中通过吸收环境中的水汽继续固化。
一种实施方式中,所述热熔胶的固化方法包括:
所述热熔胶通过自然冷却固化为第一胶体;所述第一胶体吸收空气中的水汽固化为热熔胶体。
可以理解的是,通过自然冷却固化所述热熔胶,可以避免因通过加热工序固化所述热熔胶而对所述显示屏或者所述镜头产生损坏。此外,在热熔胶在固化过程中,热熔胶不会因通过加热工艺而产生二氧化碳,从而造成固化形成的热熔胶体214内部膨胀,进而造成热熔胶体214的厚度显著增加。此外,所述第一胶体吸收空气中的水汽固化为热熔胶体,从而保证水汽不会进入头戴式显示设备100而破坏内部电路。
一种实施方式中,头戴式显示装置100的制备方法还包括:
将镜架10固定连接于第一连接位置A。
一种实施方式中,镜架10通过螺钉锁紧于镜筒21上。具体的,在第三部分2123开设第一安装孔,镜架10开设第二安装孔。螺钉穿过第一安装孔和第二安装孔,以将镜筒21固定连接于镜架10上。在其他实施方式中,通过销钉或者螺丝依次穿过第一安装孔和第二安装孔以将镜架10固定连接于镜筒21上。此外,镜架10也可以通过卡扣卡合、热熔柱或者焊接等方式于镜筒21固定连接。
上文具体描述了一种头戴式显示装置100的制备方法。该方法中的第二部分2122形成有紫外光-湿气双固化胶。在其他实施例中,该方法中的第二部分2122也可以形成有紫外光固化胶。该实施例的方法与上述实施例的大部分的技术内容均相同,这里不再赘述。例如,第三胶量的确认可以参考上述实施的第一胶量的确认方法。第四胶量的确认方法可以参考上述实施例的第二胶量的确认方法。但在该实施例中,不同的是在确认紫外光固化胶的第四胶量的过程中,采用紫外光固化胶的密度。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种头戴式显示装置的制备方法,其特征在于,包括
    在镜头的镜筒的第一面上形成第一胶量的热熔胶和第二胶量的紫外光-湿气双固化胶,或者形成第三胶量的热熔胶和第四胶量的紫外光固化胶;
    将显示屏移动至安装位置,以使所述显示屏接触所述热熔胶与所述紫外光-湿气双固化胶,或者所述热熔胶与所述紫外光固化胶;以及
    固化所述热熔胶和所述紫外光-湿气双固化胶,或者固化所述热熔胶和所述紫外光固化胶。
  2. 根据权利要求1所述的头戴式显示装置的制备方法,其特征在于,所述第一胶量和所述第二胶量通过以下方法确认:
    将镜头和显示屏移动至拍摄器件的同一侧,且所述镜头位于所述显示屏与所述拍摄器件之间;
    移动所述显示屏至多个不同的位置,且所述显示屏处于各个位置时,均通过所述拍摄器件获取所述显示屏经所述镜头形成的虚像;
    依据多个所述虚像形成多个调制传递函数值;
    确认所述显示屏的安装位置,所述安装位置为所述多个调制传递函数值中最大的调制传递函数值所对应的所述显示屏的位置;
    根据所述安装位置确认所述第一胶量和确认所述第二胶量。
  3. 根据权利要求2所述的头戴式显示装置的制备方法,其特征在于,在根据所述安装位置确认所述第一胶量和所述第二胶量的方法中包括:
    确认处于所述安装位置的非显示面与第一部分之间的第一距离,以及处于所述安装位置的所述非显示面与第二部分之间的第二距离,所述非显示面为所述显示屏朝向所述第一面的部分表面,所述第一面包括所述第一部分和所述第二部分;
    确认所述第一部分的第二面积以及所述第二部分的第一面积;
    根据所述第一距离与所述第二面积确认所述热熔胶的第一胶量,以及根据所述第二距离与所述第一面积确认所述紫外光-湿气双固化胶的第二胶量。
  4. 根据权利要求3所述的头戴式显示装置的制备方法,其特征在于,确认所述第一距离和所述第二距离通过以下方法获得:
    确认所述第一部分在第一方向的第一坐标,所述第二部分在所述第一方向的第二坐标,所述第一方向为所述第一面朝向所述非显示面的方向;
    将所述显示屏移动至第一位置,并确认所述非显示面在第一方向的第三坐标,所述第一位置与所述安装位置不同;
    将所述显示屏移动至所述安装位置,并根据所述显示屏在第一方向的移动量以及所述第三坐标确认所述非显示面的第四坐标;
    根据所述第一坐标与所述第四坐标确认所述第一距离,根据所述第二坐标与所述第四坐标确认所述第二距离。
  5. 根据权利要求4所述的头戴式显示装置的制备方法,其特征在于,采用激光位移传感器确认所述第一坐标、所述第二坐标和所述第三坐标。
  6. 根据权利要求3所述的头戴式显示装置的制备方法,其特征在于,确认所述第一距离和所述第二距离的方法中包括:
    确认所述第一部分在第一方向的第一坐标,所述第二部分在所述第一方向的第二坐标,所述第一方向为所述第一面朝向所述非显示面的方向;
    将所述显示屏移动至所述安装位置,并确认所述非显示面在所述第一方向的第三坐标;
    根据所述第一坐标与所述第三坐标确认所述第一距离,根据所述第二坐标与所述第三坐标确认所述第二距离。
  7. 根据权利要求1至6中任一项所述的头戴式显示装置的制备方法,其特征在于,通过紫外光源固化所述紫外光-湿气固化胶,或者所述紫外光固化胶。
  8. 根据权利要求1至6中任一项所述的头戴式显示装置的制备方法,其特征在于,所述热熔胶的固化方法包括:
    所述热熔胶通过自然冷却固化为第一胶体;
    所述第一胶体吸收空气中的水汽固化为热熔胶体。
  9. 根据权利要求3至6中任一项所述的头戴式显示装置的制备方法,其特征在于,所述镜筒具有第一连接位置,所述第一面包括第三部分,所述第三部分连接于所述第一部分,且与所述第二部分错开,所述第一连接位置位于所述第三部分;
    在所述热熔胶完成固化之后,所述方法还包括:
    将镜架固定连接于所述第一连接位置。
  10. 根据权利要求1至6中任一项所述的头戴式显示装置的制备方法,其特征在于,所述第三胶量和所述第四胶量通过以下方法确认:
    将镜头和显示屏移动至拍摄器件的同一侧,且所述镜头位于所述显示屏与所述拍摄器件之间;
    移动所述显示屏至多个不同的位置,且所述显示屏处于各个位置时,均通过所述拍摄器件确认所述显示屏经所述镜头形成的虚像;
    依据多个所述虚像形成多个调制传递函数值;
    确认所述显示屏的安装位置,所述安装位置为所述多个调制传递函数值中最大的调制传递函数值所对应的所述显示屏的位置;
    根据所述安装位置确认所述第三胶量和确认所述第四胶量。
  11. 一种头戴式显示装置,其特征在于,所述头戴式显示装置由权利要求1至10中任一项所述的头戴式显示装置的制备方法制成。
  12. 一种头戴式显示装置,其特征在于,包括镜头、显示屏及连接胶体,所述镜头包括镜筒和镜片,所述镜筒包括第一面及贯穿所述第一面的通孔,所述镜片连接于所述通孔的孔壁,所述连接胶体位于所述第一面与所述显示屏之间;
    所述第一面包括第一部分及第二部分,所述连接胶体包括固定连接所述第一部分与所述显示屏的热熔胶体,及固定连接所述第二部分与所述显示屏的紫外光-湿气双固化胶体或者紫外光固化胶体。
  13. 根据权利要求12所述的头戴式显示装置,其特征在于,所述热熔胶体与所述紫外光-湿气双固化胶体的数量均为多个,所述热熔胶体与所述紫外光固化胶体依次交错排布,或者所述热熔胶体与所述紫外光固化胶体的数量均为多个,所述热熔胶体与所述紫外光固化胶体依次交错排布。
  14. 根据权利要求12或13所述的头戴式显示装置,其特征在于,所述热熔胶与所述紫外光-湿气双固化胶拼接成环状结构,或者,所述热熔胶与所述紫外光固化胶拼接成环状结构。
  15. 根据权利要求12或13所述的头戴式显示装置,其特征在于,所述热熔胶体与所述紫外光-湿气双固化胶体在第一方向的厚度均在0.05至0.8毫米的范围内,或者所述热熔胶体与所述紫外光固化胶体在第一方向的厚度均在0.05至0.8毫米的范围内,所述第一方向为所述镜筒朝向所述显示屏的方向。
  16. 根据权利要求12或13所述的头戴式显示装置,其特征在于,所述镜筒具有第一连接位置,所述第一面包括第三部分,所述第三部分连接于所述第一部分,且与所述第二部分错开,所述第一连接位置位于所述第三部分,所述头戴式显示装置包括镜架,所述镜架连接于所述第一连接位置。
PCT/CN2020/110145 2019-09-06 2020-08-20 头戴式显示装置及其制备方法 WO2021042997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910844376.3 2019-09-06
CN201910844376.3A CN112462515B (zh) 2019-09-06 2019-09-06 头戴式显示装置及其制备方法

Publications (1)

Publication Number Publication Date
WO2021042997A1 true WO2021042997A1 (zh) 2021-03-11

Family

ID=74807033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110145 WO2021042997A1 (zh) 2019-09-06 2020-08-20 头戴式显示装置及其制备方法

Country Status (2)

Country Link
CN (1) CN112462515B (zh)
WO (1) WO2021042997A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201251647Y (zh) * 2008-08-20 2009-06-03 比亚迪股份有限公司 一种头戴显示器
CN202794802U (zh) * 2012-01-18 2013-03-13 鑫晶钻科技股份有限公司 取像装置
CN106990549A (zh) * 2017-05-05 2017-07-28 西安枭龙科技有限公司 一种光学显示模组精确装配方法及装配系统
US20180067317A1 (en) * 2016-09-06 2018-03-08 Allomind, Inc. Head mounted display with reduced thickness using a single axis optical system
CN108200247A (zh) * 2018-01-18 2018-06-22 广东欧珀移动通信有限公司 显示屏及电子设备
CN108611043A (zh) * 2018-05-07 2018-10-02 东莞市仕友粘合材料有限公司 一种紫外线和湿气双固化胶水
CN207976656U (zh) * 2018-04-09 2018-10-16 新野旭润光电科技有限公司 一种光学显示模组装配系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201096944Y (zh) * 2007-08-21 2008-08-06 三星高新电机(天津)有限公司 支撑定位无调焦的手机摄像头
KR101845350B1 (ko) * 2013-03-26 2018-05-18 세이코 엡슨 가부시키가이샤 두부 장착형 표시 장치 및 두부 장착형 표시 장치의 제어 방법
TW201515722A (zh) * 2013-10-29 2015-05-01 Hon Hai Prec Ind Co Ltd 成膜裝置及成膜方法
CN109675762B (zh) * 2018-11-09 2020-12-18 深德彩科技(深圳)股份有限公司 一种led显示屏的点胶方法以及led显示屏的点胶设备
CN109731734A (zh) * 2018-12-25 2019-05-10 广州奥松电子有限公司 高精度小面积点胶系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201251647Y (zh) * 2008-08-20 2009-06-03 比亚迪股份有限公司 一种头戴显示器
CN202794802U (zh) * 2012-01-18 2013-03-13 鑫晶钻科技股份有限公司 取像装置
US20180067317A1 (en) * 2016-09-06 2018-03-08 Allomind, Inc. Head mounted display with reduced thickness using a single axis optical system
CN106990549A (zh) * 2017-05-05 2017-07-28 西安枭龙科技有限公司 一种光学显示模组精确装配方法及装配系统
CN108200247A (zh) * 2018-01-18 2018-06-22 广东欧珀移动通信有限公司 显示屏及电子设备
CN207976656U (zh) * 2018-04-09 2018-10-16 新野旭润光电科技有限公司 一种光学显示模组装配系统
CN108611043A (zh) * 2018-05-07 2018-10-02 东莞市仕友粘合材料有限公司 一种紫外线和湿气双固化胶水

Also Published As

Publication number Publication date
CN112462515A (zh) 2021-03-09
CN112462515B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
US10401625B2 (en) Determining interpupillary distance and eye relief of a user wearing a head-mounted display
CN204615945U (zh) 可穿戴装置
KR20170039622A (ko) 시선 검지를 위한 장치
US9377624B2 (en) Reducing light damage in shutterless imaging devices according to future use
WO2018153368A1 (zh) 虚拟现实头戴设备
TWI486631B (zh) 頭戴式顯示裝置及其控制方法
WO2019165956A1 (zh) 控制方法、控制装置、终端、计算机设备和存储介质
US20150177521A1 (en) Heads up display systems for glasses
US10859843B1 (en) Backplate for head-mounted displays
TWI659229B (zh) Virtual reality headset
WO2021082798A1 (zh) 一种头戴式显示设备
US20200333596A1 (en) Reflective polarizer for augmented reality and virtual reality display
CN108376251A (zh) 控制方法、控制装置、终端、计算机设备和存储介质
US20210103150A1 (en) Inter-pupillary distance adjustment mechanisms for head-mounted displays
US20160170482A1 (en) Display apparatus, and control method for display apparatus
WO2019196694A1 (zh) 虚拟现实显示装置、显示设备及视线角度计算方法
JP2017224984A (ja) プログラム、装置、キャリブレーション方法
WO2018045985A1 (zh) 一种增强现实显示系统
WO2021042997A1 (zh) 头戴式显示装置及其制备方法
US10036892B1 (en) Adhesive immersion of an optical assembly
US20180267601A1 (en) Light Projection for Guiding a User within a Physical User Area During Virtual Reality Operations
US11622104B2 (en) Camera holder for economical and simplified test alignment
CN108169908A (zh) 虚拟现实显示装置及其方法
US11933983B2 (en) Virtual reality display device, lens barrel, and system
EP3139586B1 (en) Image shooting processing method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861476

Country of ref document: EP

Kind code of ref document: A1