WO2021042644A1 - 可变中冷型绝热式内燃机 - Google Patents

可变中冷型绝热式内燃机 Download PDF

Info

Publication number
WO2021042644A1
WO2021042644A1 PCT/CN2020/000185 CN2020000185W WO2021042644A1 WO 2021042644 A1 WO2021042644 A1 WO 2021042644A1 CN 2020000185 W CN2020000185 W CN 2020000185W WO 2021042644 A1 WO2021042644 A1 WO 2021042644A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
combustion chamber
valve
variable
rod
Prior art date
Application number
PCT/CN2020/000185
Other languages
English (en)
French (fr)
Inventor
韩培洲
Original Assignee
韩培洲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韩培洲 filed Critical 韩培洲
Publication of WO2021042644A1 publication Critical patent/WO2021042644A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/06Engines with prolonged expansion in compound cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/40Other reciprocating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine, particularly a variable intercooling type adiabatic internal combustion engine.
  • variable intercooling and adiabatic internal combustion engine with application number 201910420955.5, although the combustion chamber valve is arranged outside the variable combustion chamber to reduce the heat-receiving parts in the variable combustion chamber, the offset combustion chamber valve allows The work gas flowing out of the variable combustion chamber enters the cylinder through a bent gas path, and the work gas still has a certain heat loss.
  • the cylinder valve and the controllable one-way valve that control the compressed air outlet are both controlled by the external cams, which are more complicated in structure.
  • the purpose of the present invention is to provide a variable intercooling type adiabatic internal combustion engine, in which the combustion chamber valve is arranged on the bottom surface of the cylinder head, so that the working gas can directly enter the cylinder, reducing the heat loss of the working gas.
  • the controllable one-way valve is actively opened by the electric control coil, which simplifies the structure accordingly.
  • the variable intercooling type adiabatic internal combustion engine of the present invention includes a cylinder head and a cylinder equipped with a piston.
  • a vent and a compressed air outlet are respectively provided on the bottom surface of the cylinder head.
  • the compressed air that is opened and closed is controlled by a cylinder valve and a controllable one-way valve.
  • the outlet is connected to the intercooler through the air outlet pipeline, and the intercooler is connected to the variable combustion chamber through the air supply pipeline and the controlled charging valve in the cylinder head.
  • the variable combustion chamber is then connected to the vent controlled by the combustion chamber valve. It is connected to the cylinder below; the combustion chamber valve is located outside the variable combustion chamber, and the variable lift piston is installed in the cylinder constituting the variable combustion chamber.
  • the auxiliary cylinder is connected to the upper side of the cylinder through the vent hole.
  • the follower piston in the cylinder is connected to the variable lift piston in the variable combustion chamber via a linkage mechanism, and is controlled by the lift adjustment device.
  • the variable lift piston is driven by the lift adjustment device to press into the variable
  • the slave piston in the corresponding auxiliary cylinder is driven by the linkage mechanism to increase the volume in the auxiliary cylinder correspondingly, so that the compressed air in the cylinder is moved to the auxiliary cylinder. More in the cylinder, so that the compressed air in the cylinder fills the intercooler correspondingly less. If the engine power is increased, the lift adjustment device will also increase the volume of the variable combustion chamber.
  • the volume in the auxiliary cylinder is correspondingly reduced, so that more compressed air is charged into the intercooler.
  • the vent of the variable combustion chamber is within the range of the cylinder, and the combustion chamber valve below the vent passes through the side on the piston.
  • the valve stem of the side through hole and the lower sealing sleeve extends downwards from the cylinder. After the lower side of the valve stem passes through the sliding sleeve seat fixed on the outside of the bottom of the cylinder, the connector at the lower end of the valve stem is connected to the swing arm through the shaft pin and the connecting plate.
  • the lower axle pin on the inner end is connected, the swing arm passes through the hole in the side wall of the crankcase, and then extends into the space formed by the outside of the crankcase and the side cover, and is installed on the side wall of the crankcase through the support pin in the middle of the swing arm.
  • the short arm on the outside of the swing arm is connected to the lower end of the ejector rod through a pressure pin, and the upper end of the ejector rod is also connected to the lower side of the swing rod through an intermediate shaft pin.
  • the upper side of the swing rod is restricted to the upper side of the side cover.
  • the lower end of the elastic top seat is connected with the ejector pin.
  • a pressure wheel is installed on the intermediate shaft pin between the pendulum rod and the ejector rod.
  • the pressure wheel can be pressed by the work cam to flatten the pendulum rod and the ejector rod.
  • the short arm on the swing arm presses down, so that the inner end of the swing arm moves the combustion chamber valve upward through the connecting plate and the valve stem, and presses it on the sealing ring below the vent, and then is acted by the spring on the back of the elastic top seat. Make the valve of the combustion chamber press tightly on the sealing ring below the vent.
  • the lower end of the sleeve on the lower side of the gland extends into the controllable check valve In the concave hole of the lower vent sealing seat, there is an electric control coil in the pressure sleeve below the gland.
  • the electric control coil directly or indirectly allows the controllable one-way valve to be opened upwards
  • the force causes the controllable one-way valve to actively open upwards, so that the compressed air in the cylinder is filled into the intercooler through the cylinder valve that moves downward to open and the vent hole on the vent seal seat.
  • a spring top rod is installed on the spring seat on the side cover on the outside of the crankcase.
  • the top of the spring top rod is connected with the pendulum rod, so that the pendulum rod and the top rod are connected.
  • a top block is provided on the side of the pressure roller, and correspondingly, a convex block is formed on the side of the work cam.
  • the top block on the side of the pressure wheel is still top.
  • the swing rod and the ejector rod will immediately bend inward toward the low concave section of the work cam, and withdraw the upper part of the combustion chamber valve. The top force allows the combustion chamber valve to quickly leave the vent of the variable combustion chamber.
  • an ejection cam is provided on the side of the work cam to act as the work cam to turn away from the pressure wheel between the pendulum rod and the ejector rod.
  • the top opening cam also turns to the contact position with the shift arm, and when the shift arm is raised, the swing rod and the ejector rod immediately bend inward to the low concave section of the work cam, so that the combustion chamber valve is no longer lifted and left quickly. The vent of the variable combustion chamber.
  • the connecting rod between the piston and the crankshaft is made into a front and rear double-plate structure in the axial direction.
  • the diagonal ribs are connected, and the diagonal ribs extending to the big end of the connecting rod are inclined toward the outer end of the swing arm away from the lower side of the valve stem, so that the front connecting rod plate, the rear connecting rod plate and the side of the diagonal ribs form the outer end of the accommodating swing arm ,
  • the upper connecting plate and the space of the sliding sleeve seat prevent the connecting rod from colliding with the outer end of the swing arm when it rotates with the crankshaft.
  • an armature sleeve extending into the electric control coil is formed on the upper side of the lifting sleeve, and a valve spring is installed between the outer side of the lower pressing seat of the lifting sleeve and the electric control coil.
  • a lifting spring is installed between the inner side of the lower pressure seat and the upper retaining ring of the controllable one-way valve.
  • the distributor of the electronic control coil is also Energize the electric control coil, let the electric control coil attract the armature sleeve of the lifting sleeve to move up, and let the lower pressing seat of the lifting sleeve leave the controllable check valve below, and at the same time drive the lifting spring to move up, so that the controllable check valve advance Subject to opening force.
  • a simpler control structure can also be adopted.
  • the armature sleeve extending in the electric control coil is directly formed on the upper side of the controllable check valve, and the relevant valve spring is installed between the controllable check valve and the electric control coil to cool in the middle.
  • the static pressure sensor and dynamic pressure sensor are installed on the cylinder and the cylinder respectively. When the dynamic pressure sensor detects that the compressed air pressure in the cylinder is close to the air pressure in the intercooler, the controller connected to the dynamic pressure sensor will energize the electric control coil , When the compressed air in the cylinder will flow to the intercooler, it will drive the air outlet check valve to move up and open.
  • variable lift piston installed in the cylinder of the variable combustion chamber is connected to the end of the pressure arm on the upper control shaft in the cylinder head through the upper connecting rod.
  • the follower piston in the auxiliary cylinder is connected to the top arm end of the lower control shaft on the outside of the cylinder through the lower connecting rod, and the upper control shaft is fixed on the outer side of the lower control shaft by the upper pull arm and pull rod fixed on the outer side
  • the lower arm is connected, and then the upper control shaft or the lower control shaft is controlled by the set lift adjustment device, and the variable lift piston and the follower piston are driven to move up or down synchronously.
  • a hydraulic control cylinder is provided on the tie rod between the upper control shaft and the lower control shaft.
  • the tie rod is divided into an upper rod and a lower rod.
  • the brake pedal also controls the supply.
  • the oil valve supplies oil to the hydraulic control cylinder, so that the upper rod and the lower rod are correspondingly contracted in the middle, thereby driving the variable lift piston and the follower piston to reduce the internal volume of the variable combustion chamber and the auxiliary cylinder, so that the compressed air is only Entering the intercooler without entering the variable combustion chamber increases the braking force of the engine accordingly.
  • a delay controller can also be set between the brake pedal and the control oil supply valve. When the brake pedal is depressed for a certain period of time, the delay controller will let the oil supply valve supply oil to the hydraulic control cylinder.
  • variable intercooling type adiabatic internal combustion engine of the present invention after the combustion chamber valve is directly arranged on the bottom surface of the cylinder head, and the lower valve rod is passed through the piston to be controlled by the external transmission, it not only reduces the work gas The heat loss is conducive to the improvement of engine efficiency. Moreover, when starting to ignite and burn, the fuel in the combustion chamber can be properly pre-ignited and burned, and after the piston moves to the top dead center, the combustion chamber valve is allowed to communicate with the combustion chamber and the cylinder, so that the work gas can enter at the best time.
  • the piston is pushed in the cylinder to do work, eliminating the time loss and afterburning loss that reduce the efficiency of the internal combustion engine, so that the engine can emit more power, and the efficiency of the engine is further improved.
  • the control mechanism of the controllable one-way valve is simplified accordingly. After the internal combustion engine is stopped, the power supply to the electronic control coil is cut off. The valve will also close naturally, preventing the leakage of compressed air.
  • variable intercooling type adiabatic internal combustion engine of the present invention will be described in detail below with reference to the accompanying drawings.
  • Fig. 1 is an overall structure diagram of a variable intercooling type adiabatic internal combustion engine of the present invention.
  • Fig. 2 is a state diagram of the combustion chamber valve moving downward and opening after the start of the work process in Fig. 1.
  • Figure 3 is the second type of electronic control coil for the combustion chamber valve of the variable intercooling type adiabatic internal combustion engine of the present invention.
  • Fig. 4 is an enlarged structural diagram in which the controllable one-way valve of the variable intercooling type adiabatic internal combustion engine is controlled to be opened by the electronic control coil.
  • Fig. 5 is a structural diagram of a transmission connection mechanism between a variable lift piston and a follower piston of a variable intercooling type adiabatic internal combustion engine.
  • FIG. 1 The overall structure of the variable intercooling adiabatic internal combustion engine of the present invention is shown in Figure 1.
  • This internal combustion engine includes a cylinder head 1 and a cylinder 5 equipped with a piston 10, respectively.
  • the charge valve 2 controlled in the cylinder head communicates with the variable combustion chamber 4, and the variable combustion chamber 4 communicates with the lower cylinder 5 through the vent 11 controlled by the combustion chamber valve 3, thus being outside the cylinder of the ordinary internal combustion engine It constitutes an inter-cooling circulation system.
  • the combustion chamber valve 3 is arranged outside the variable combustion chamber 4, and because of variable intercooling, a variable lift piston 13 is installed in the cylinder block 22 constituting the variable combustion chamber 4.
  • an auxiliary cylinder 12 is provided on the cylinder side. If the auxiliary cylinder is not provided, an adjustable compression ratio structure similar to that of Nissan can also be used to change the lift height of the piston.
  • the sub-cylinder 12 is provided in communication with the upper side of the cylinder 5 through the vent 14 and the follower piston 15 provided in the sub-cylinder 12 is in transmission connection with the variable lift piston 13 in the variable combustion chamber 4 through a linkage mechanism. And is controlled by the lift adjustment device 17.
  • variable lift piston 13 When the variable lift piston 13 is driven by the lift adjustment device 17 into the variable combustion chamber 4, the volume of the combustion chamber is reduced, the compressed air entering the variable combustion chamber is reduced, and the engine power is reduced, the corresponding auxiliary cylinder
  • the follower piston 15 provided in 12 is driven by the linkage mechanism to increase the volume in the auxiliary cylinder 12 accordingly, allowing the compressed air in the cylinder to enter more into the auxiliary cylinder 12, and the compressed air in the cylinder is cooled in the middle.
  • the charging amount in the air cooler 20 is correspondingly reduced, and the compressed air entering the auxiliary cylinder 12 will not be dissipated by the intercooler, so that the heat dissipation of the intercooler can be adjusted accordingly.
  • the lift adjustment device 17 will also increase the volume of the variable combustion chamber 4, and make the volume in the auxiliary cylinder 12 correspondingly smaller, so that more compressed air is charged into the intercooler 20. Increase the amount of compressed air entering the variable combustion chamber.
  • the vent 11 of the variable combustion chamber 4 is within the range of the cylinder 5.
  • the combustion chamber valve 3 below the vent passes through the side of the piston 10
  • the valve stem 8 of the through hole and the lower sealing sleeve 38 extends downwards from the cylinder.
  • the connecting head 9 at the lower end of the valve stem passes through the shaft pin 39 and
  • the connecting plate 40 is connected with the lower shaft pin 42 on the inner end of the swing arm 41.
  • the swing arm 41 passes through the hole 49 of the side wall of the crankcase, it extends into the space formed by the outside of the crankcase and the side cover 50, and is mounted on the support on the outside of the side wall of the crankcase through the support pin 45 in the middle of the swing arm.
  • the short arm 43 outside the swing arm is connected to the lower end of the top rod 52 through the pressing pin 44, and the upper end of the top rod 52 is also connected to the lower side of the swing rod 54 through the intermediate pin 53.
  • the upper side of the swing rod is connected to the side cover 50.
  • the top pin 55 at the lower end of the upper limited elastic top seat 57 is connected, and the intermediate shaft pin 53 between the swing rod 54 and the top rod 52 is equipped with a pressing wheel 51, which can be pressed by the work cam 66, As shown in the state in Figure 1, the swing rod 54 and the top rod 52 are flat, and the short arm 43 on the swing arm 41 is pressed downward, so that the inner end of the swing arm 41 is burned through the connecting plate 40 and the valve rod 8.
  • the chamber valve 3 moves upward and presses against the sealing ring below the vent 11, and is acted on by the spring 58 on the back of the elastic top seat 57 to make the combustion chamber valve 3 press against the sealing ring under the vent 11.
  • the combustion chamber valve 3 can be tightly pressed upwards against the vent 11, preventing the work gas in the variable combustion chamber 4 from leaking, but the downward movement distance of the elastic top seat 57 is limited.
  • the elastic jack 57 only moves up a small distance (for example, 0.5 mm), and the required pressing force of the work cam 66 is not large.
  • the piston 10 of the cylinder 5 in Fig. 1 has just moved to the top dead center.
  • the fuel mixture in the variable combustion chamber 4 has completed the combustion process to form high-temperature and high-pressure work gas.
  • the combustion chamber valve 3 below the vent 11 will also be immediately followed. Turn on.
  • the high-temperature and high-pressure work gas in the variable combustion chamber 4 will immediately enter the lower cylinder 5, pushing the piston 10 down to perform work, and will not be dropped on the piston 10 by the upper combustion chamber valve 3, and will interact with The piston moves down synchronously by a corresponding distance. Because the combustion chamber valve 3 is pressed on the piston 10, the working gas will not leak from the combustion chamber valve 3 and the piston 10 at this time. According to the size ratio of the piston and the combustion chamber valve in the figure, the distance that the combustion chamber valve 3 presses down on the piston 10 is about 1/4 of the piston stroke.
  • the spring seat 61 on the side cover 50 outside the crankcase 37 is equipped with a spring top rod 62.
  • the top of the spring top rod is connected to the swing rod 54 so that the pressure wheel 51 between the swing rod and the top rod is always subjected to The force applied to the work cam 66.
  • a top block can also be provided on the side of the pressure roller 51 69.
  • a convex block 67 is also formed on the side of the work cam 66.
  • the connecting rod 74 between the piston and the crankshaft is made in the axial direction.
  • the rear double-plate structure, the front link plate 75 and the rear link plate 77 are connected by the inclined rib plate 76, and the inclined rib plate 76 extending toward the large end of the connecting rod 78 is away from the outer end of the lower side swing arm 41 of the valve stem 8.
  • the enlarged structure of the cylinder valve 6, the controllable one-way valve 7 and the electronic control coil 88 on the cylinder head 1 is shown in Figure 4.
  • the gland 89 on the upper side of the cylinder valve 6 is provided with a downwardly passing through the controllable one-way
  • the sleeve 90 of the valve 7 and the valve mandrel 91 of the cylinder valve 6 pass upward through the sleeve 90 and are controlled by the upper air outlet cam to open and close the compressed air outlet 18.
  • the lower end of the sleeve 90 on the lower side of the gland 89 extends into the recess of the vent sealing seat 92 under the controllable one-way valve 7.
  • An electric control coil 88 is provided in the compression sleeve 94 under the gland 89, and the piston 10 When moving upward to discharge the compressed air, the electronic control coil 88 directly or indirectly causes the controllable one-way valve 7 to receive an upward opening force, so that the controllable one-way valve is actively opened upward, and the compressed air in the cylinder 5 is moved downward to open The cylinder valve 6 and the vent hole 93 on the vent seal seat 92 are filled into the intercooler 20.
  • FIG. 4 The structure of the electric control coil 88 acting as the lifting sleeve 81 is shown in FIG. 4, an armature sleeve 83 extending in the electric control coil 88 is formed on the upper side of the lifting sleeve 81.
  • a valve spring 84 is installed between the coil 88, and a lifting spring 86 is installed between the inner side of the lower seat 82 of the lifting sleeve and the upper retaining ring 85 of the controllable one-way valve 7.
  • the distributor of the electric control coil 88 also energizes the electric control coil, so that the electric control coil attracts the armature sleeve 83 of the lifting sleeve to move up, and the lower pressing seat 82 of the lifting sleeve leaves the lower part.
  • the controllable one-way valve 7 simultaneously drives the lifting spring 86 to move upward, so that the controllable one-way valve receives an opening force in advance.
  • the piston 10 has just moved to the top dead center and will go down to perform the work process, and the cylinder valve 6 has also moved up and closed the compressed air outlet 18 before colliding with the piston.
  • the electric control coil 88 adopts a simpler structure to control the controllable one-way valve 7.
  • an armature sleeve 83 extending in the electric control coil 88 is directly formed on the upper side of the controllable one-way valve 7.
  • a valve spring 84 is installed between 7 and the electronic control coil 88.
  • a static pressure sensor and a dynamic pressure sensor are installed on the intercooler 20 and the cylinder 5 respectively. When the dynamic pressure sensor detects that the compressed air pressure in the cylinder is close to the intercooler When the air pressure is within 20, the controller connected to the dynamic pressure sensor will energize the electronic control coil 88. When the compressed air in the cylinder will flow to the intercooler 20, the air outlet check valve 7 will be moved up and opened. The controllable one-way valve 7 is controlled to open in this way, and the controller connected to the dynamic pressure sensor is required to accurately estimate the opening time of the valve.
  • Allowing the controllable check valve 7 to be opened by the electronic control coil 88 has the following advantages. After the internal combustion engine is stopped, after the power supply to the electronic control coil is cut off, the controllable one-way valve will naturally close, preventing the compressed air from flowing External leakage. If the controllable one-way valve 7 is controlled to be opened by a cam, the compressed air may leak outward due to the cam stopping at the open position. Since the weight of the controllable check valve 7 is very light and the opening time is short, the electric control coil 88 does not consume too much power.
  • a hydraulic control cylinder can also be provided on the tie rod 30 between the upper control shaft 25 and the lower control shaft 2 34. Divide the pull rod into an upper rod 36 and a lower rod 32.
  • the brake pedal When braking, the brake pedal will also control the oil supply valve to supply oil to the hydraulic control cylinder 34, so that the upper rod 36 and the lower rod 32 will be correspondingly contracted in the middle, thereby driving the variable
  • the lift piston 13 and the follower piston 15 correspondingly reduce the internal volume of the variable combustion chamber 4 and the auxiliary cylinder 12, so that the compressed air only enters the intercooler 20 and rarely enters the variable combustion chamber 4, which increases the engine size accordingly.
  • the braking force If the braking time is longer, the braking energy will be stored accordingly due to more compressed air entering the intercooler 20. Of course, the increase in the stored compressed air will also increase the air pressure in the intercooler, and the air pressure will increase beyond the limit and then the intercooler will be intercooled.
  • the device will also control the corresponding deflation.
  • the delay controller between the brake pedal and the control oil supply valve.
  • the delay controller allows the oil supply valve to supply oil to the hydraulic control cylinder 34. In this way, the driver will not control the hydraulic control cylinder when braking for a short time, and does not need to activate the internal combustion engine to brake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

一种可变中冷型绝热内燃机,包括缸盖(1)和装有活塞(10)的汽缸(5),在缸盖(1)中通过可变升程活塞(13)形成了可变燃烧室(24),该可变燃烧室(24)下侧的通气口(11)设在了汽缸(5)顶部范围内,让可变燃烧室(24)的燃烧室阀(3)处在了活塞(10)上侧,并经穿过活塞(10)的阀杆(8)被外侧控制,因能让作功燃气直接向下进入汽缸(5),从而减少了作功燃气的热量损失,在把燃烧室阀(3)设在可变燃烧室(24)之外的位置后,作功时可适当的提前点火燃烧,在活塞(10)移到上止点时再让燃烧室阀(3)把可变燃烧室(24)与汽缸(5)沟通,使作功燃气在最佳时刻进入汽缸(5)作功,消除了降低效率的时间损失,让发动机的效率进一步提高。

Description

可变中冷型绝热内燃机
技术领域 本发明涉及一种内燃机,特别是可变中冷型绝热内燃机。
背景技术 在申请号为201910420955.5的可变中冷绝热内燃机中,虽然燃烧室阀设在了可变燃烧室之外,减少了可变燃烧室内的受热部件,但偏置的燃烧室阀让从可变燃烧室流出的作功燃气是经一段弯折的气路进入汽缸内,作功燃气仍有一定的散热损失。另外,控制压缩空气出口的汽缸阀和可控单向阀都由外面的各自凸轮控制,在结构上较为复杂。
发明内容 本发明的目的是提供一种可变中冷型绝热内燃机,把燃烧室阀设在了缸盖底面,从而可让作功燃气能直接进入汽缸,减少了作功燃气的散热损失。另外,所设的可控单向阀是由电控线圈带动主动开启,使结构也相应简化。
本发明的可变中冷型绝热内燃机包括缸盖和装有活塞的汽缸,在缸盖的底面上分别设有通气口和压缩空气出口,被汽缸阀和可控单向阀控制开启关闭的压缩空气出口经出气管路与中间冷却器连通,中间冷却器再经供气管路和缸盖内被控制的充气阀与可变燃烧室相连通,可变燃烧室再经被燃烧室阀控制的通气口与下面的汽缸连通;燃烧室阀设在可变燃烧室外侧,在构成可变燃烧室的缸体内装有可变升程活塞,所设的副缸经通气孔与汽缸的上侧连通,副缸内所设的随动活塞经连动机构与可变燃烧室内的可变升程活塞传动连接,并被升程调节装置控制,当可变升程活塞被升程调节装置带动压进可变燃烧室、让燃烧室容积变小使发动机功率降低时,相应的副缸内所设的随动活塞被连动机构带动也让副缸内的容积相应增大,让汽缸内的压缩空气向副缸内进入的更多,使汽缸内的压缩空气向中间冷却器内的充入量相应变少,如加大发动机功率,升程调节装置也会让可变燃烧室的容积相应增大,而让副缸内的容积相应变小,使充入中间冷却器内的压缩空气更多,可变燃烧室的通气口处在汽缸范围内,通气口下面的燃烧室阀经穿过活塞上的侧边通孔和下面密封套的阀杆向下伸出汽缸,阀杆的下侧在穿过汽缸底部外侧固定的滑套座后,阀杆下端的连接头再经轴销和连接板与摆臂内端上的下轴销相连,摆臂向外穿过曲轴箱侧壁孔后、伸进曲轴箱外侧与侧盖形成的空间内,通过摆臂中部的支座轴销安装在曲轴箱侧壁外面上的支座上,摆臂外侧的短臂经压销与顶杆的下端相连,顶杆上端经中间轴销还与摆杆的下侧相连,摆杆的上侧与侧盖上被限位了的弹力顶座下端的顶销相连,在摆杆与顶杆之间的中间轴销上装有压轮,该压轮可被作功凸轮压动,把摆杆与顶杆顶平,让摆臂上的短臂向下压动,使摆臂的内端经连接板和阀杆把燃烧室阀向上移动、顶在通气口下面的密封圈上, 再由弹力顶座背面的弹簧作用,使燃烧室阀顶紧在通气口下面的密封圈上。作功时当作功凸轮转过摆杆与顶杆之间的压轮后,不被作用的摆杆与顶杆随压轮便折向作功凸轮的低凹段,使燃烧室阀不再被上顶并落在活塞上,让可变燃烧室经通气口和下移开启的燃烧室阀与下面的汽缸连通,不被上顶的燃烧室阀向下落在活塞上面,在与活塞同步下移相应的距离后,当摆杆与顶杆之间的压轮转到作功凸轮低凹段的下移缓冲段时,使燃烧室阀下移减速并停止,活塞则离开燃烧室阀继续下移作功;当转过来的作功凸轮再压动摆杆与顶杆之间的压轮时,内折状态的摆杆与顶杆又会被压平,又经摆臂和阀杆让燃烧室阀上移,赶在与上移排气的活塞相碰撞前顶在通气口下侧的密封圈上,切断可变燃烧室与汽缸的连通;在汽缸阀上侧的压盖上设有向下穿过可控单向阀的套管,汽缸阀的阀顶杆向上穿过套管被上部的出气凸轮控制开启关闭压缩空气出口,压盖下侧的套管的下端伸进可控单向阀下面的通气密封座的凹孔内,在压盖的下面压套内设有电控线圈,在活塞上移排出压缩空气时,由电控线圈直接或间接让可控单向阀受到向上的开启作用力,使可控单向阀主动向上开启,让汽缸内的压缩空气经下移开启的汽缸阀和通气密封座上的通气孔被充进中间冷却器。
为让压轮受到压向作功凸轮的作用力,在曲轴箱外侧的侧盖上的弹簧座上装有弹簧顶杆,该弹簧顶杆的顶部与摆杆相连,使摆杆与顶杆之间的压轮始终受到压向作功凸轮的作用力。
为让燃烧室阀能迅速开启,在压轮侧面设有顶块,相应的在作功凸轮的侧面也形成有凸块,当作功凸轮转离压轮后,压轮侧面的顶块还顶在作功凸轮侧面的凸块上,在作功凸轮侧面的凸块转离顶块后,摆杆与顶杆才立刻向内折向作功凸轮的低凹段,撤回对燃烧室阀的上顶力、让燃烧室阀能迅速离开可变燃烧室的通气口。
也可不设弹簧顶杆,而从摆杆上侧向内伸出有拨臂,相应的在作功凸轮侧面设有顶开凸轮,当作功凸轮转离摆杆与顶杆之间的压轮后,顶开凸轮也转到与拨臂相接触位置,上抬拨臂使摆杆与顶杆立刻向内折向作功凸轮的低凹段,让燃烧室阀不再被上顶、迅速离开可变燃烧室的通气口。
为让连杆躲开燃烧室阀下侧的摆臂外端,活塞与曲轴之间的连杆在轴向上制成前、后双板结构,前连杆板和后连杆板之间由斜筋板相连,伸向连杆大头的斜筋板向离开阀杆下侧摆臂的外端方向倾斜,让前连杆板、后连杆板和斜筋板一侧形成容纳摆臂外端、上部的连接板和滑套座的空间,让连杆随曲轴转动时避免与摆臂外端相撞。
对于电控线圈与可控单向阀,在提升套上侧形成有伸在电控线圈中的衔铁套,在提升套的下压座外侧与电控线圈之间装有关阀弹簧,在提升套的下压座内侧与可控单向阀的上挡圈之间装有提升弹簧,当汽缸内上行的活塞把压缩空气压缩到其压力接近 中间冷却器内气压时,电控线圈的分电器也给电控线圈通电,让电控线圈吸引提升套的衔铁套上移,让提升套的下压座离开下面的可控单向阀,并同时带动提升弹簧上移,让可控单向阀提前受到开启作用力。
还可采用更简单的控制结构,在可控单向阀的上侧直接形成伸在电控线圈中的衔铁套,在可控单向阀与电控线圈之间装有关阀弹簧,在中间冷却器和汽缸上分别装有静压力传感器和动压力传感器,当动压力传感器探测到汽缸内的压缩空气压力接近中间冷却器内气压时,与动压力传感器连接的控制器便会给电控线圈通电,在汽缸内的压缩空气将向中间冷却器流动时,带动出气单向阀上移开启。
对于可变升程活塞与随动活塞的控制,装在可变燃烧室的缸体内的可变升程活塞经上连杆与缸盖内的上控制轴上的压臂端部相连接,副缸内的随动活塞经下连杆与缸体外侧的下控制轴上的顶臂端部相连接,上控制轴经其外侧所固定的上拉臂和拉杆与下控制轴外侧所固定的下拉臂相连,再由所设的升程调节装置控制上控制轴或下控制轴、带动可变升程活塞和随动活塞同步上移或下移。
在车辆用可变中冷型绝热内燃机中,在上控制轴与下控制轴之间的拉杆上设有液压控制缸,把拉杆分成上拉杆和下拉杆,当刹车时,刹车踏板还会控制供油阀向液压控制缸供油,让上拉杆和下拉杆向中间相应收缩,从而带动可变升程活塞和随动活塞相应减小可变燃烧室和副缸的内部容积,让压缩空气只会进入中间冷却器而不进入可变燃烧室,相应增大发动机的制动力。
在刹车踏板与控制供油阀之间还可设延时控制器,当刹车踏板被踩下一定的时间后,延时控制器再让供油阀向液压控制缸供油。
在本发明的可变中冷型绝热内燃机中,在把燃烧室阀直接设在了缸盖底面、并让其下部的阀杆穿过活塞被外面的传动控制后,不仅减少了作功燃气的散热损失,有利于发动机效率的提高。而且在开始点火燃烧时,可让燃烧室内的燃料适当的提前点火燃烧,并在活塞移到上止点后再让燃烧室阀把燃烧室与汽缸沟通,使作功燃气能在最佳时刻进入汽缸内推动活塞作功,消除了让内燃机效率降低的时间损失和后燃损失,使发动机能发出更多的功率,让发动机的效率进一步提高。另外,在让可控单向阀由电控线圈带动主动开启后,不仅让可控单向阀的控制机构相应简化,在内燃机停机后,因切断了对电控线圈的供电,可控单向阀也会自然关闭,防止了压缩空气的泄漏。
附图说明 下面结合附图对本发明的可变中冷型绝热内燃机进行细的说明。
图1是本发明的可变中冷型绝热内燃机的总体结构图。
图2是图1中作功过程开始后燃烧室阀下移开启的状态图。
图3是本发明可变中冷型绝热内燃机的燃烧室阀第二种电控线圈。
图4是可变中冷型绝热内燃机的可控单向阀被电控线圈控制开启的放大结构图。
图5是可变中冷型绝热内燃机的可变升程活塞与随动活塞的传动连接机构结构图。
具体实施方式 本发明的可变中冷型绝热内燃机总体结构如图1所示,这种内燃机包括缸盖1和装有活塞10的汽缸5,在缸盖的底面23(参看图2)上分别设有通气口11和压缩空气出口18,被汽缸阀6和可控单向阀7控制开启关闭的压缩空气出口18经出气管路19与中间冷却器20连通,中间冷却器再经供气管路21和缸盖内被控制的充气阀2与可变燃烧室4相连通,可变燃烧室4再经被燃烧室阀3控制的通气口11与下面的汽缸5连通,从而在普通内燃机汽缸之外构成了中冷循环系统。燃烧室阀3设在可变燃烧室4外侧,因是可变中冷,在构成可变燃烧室4的缸体22内装有可变升程活塞13。相应的在汽缸侧设有副缸12,如不设副缸,也可采用类似日产公司的可调压缩比结构来改变活塞的升程高度。所设的副缸12经通气孔14与汽缸5的上侧连通,副缸12内所设的随动活塞15经连动机构与可变燃烧室4内的可变升程活塞13传动连接,并被升程调节装置17控制。当可变升程活塞13被升程调节装置17带动压进可变燃烧室4、让燃烧室容积变小,使进入可变燃烧室内的压缩空气变少让发动机功率降低时,相应的副缸12内所设的随动活塞15被连动机构带动也让副缸12内的容积相应增大,让汽缸内的压缩空气向副缸12内进入的更多,汽缸内的压缩空气向中间冷却器20内的充入量便相应变少,而进入副缸12内的压缩空气不会被中间冷却器散热,让中冷散热量可相应的调节。如加大发动机功率,升程调节装置17也会让可变燃烧室4的容积相应增大,而让副缸12内的容积相应变小,充入中间冷却器20内的压缩空气更多,使进入可变燃烧室内的压缩空气量增多。
为了让可变燃烧室4内的作功燃气可直接进入汽缸5,可变燃烧室4的通气口11处在汽缸5范围内,通气口下面的燃烧室阀3经穿过活塞10侧边的通孔和下面密封套38的阀杆8向下伸出汽缸,阀杆8的下侧在穿过汽缸底部外侧固定的滑套座48后,阀杆下端的连接头9再经轴销39和连接板40与摆臂41内端上的下轴销42相连。摆臂41向外穿过曲轴箱侧壁孔49后,伸进曲轴箱外侧与侧盖50形成的空间内,通过摆臂中部的支座轴销45安装在曲轴箱侧壁外面上的支座46上,摆臂外侧的短臂43经压销44与顶杆52的下端相连,顶杆52上端经中间轴销53还与摆杆54的下侧相连,摆杆的上侧与侧盖50上被限位了的弹力顶座57下端的顶销55相连,在摆杆54与顶杆52之间的中间轴销53上装有压轮51,该压轮可被作功凸轮66压动,如图1中状态所示,把摆杆54与顶杆52顶平,让摆臂41上的短臂43向下压动,使摆臂41的内端经 连接板40和阀杆8把燃烧室阀3向上移动、顶在通气口11下面的密封圈上,再由弹力顶座57背面的弹簧58作用,使燃烧室阀3顶紧在通气口下面的密封圈上。虽然弹簧58的弹力很大,能让燃烧室阀3向上紧紧顶住通气口11,不让可变燃烧室4内的作功燃气泄漏,但因弹力顶座57的向下移动距离被限位,摆杆54与顶杆52被压平时,弹力顶座57只上移了很小的距离(如0.5毫米),所需的作功凸轮66压动力并不大。图1中汽缸5的活塞10刚移动到上止点,可变燃烧室4内的燃油混合气已经完成燃烧过程形成了高温高压作功燃气,在通气口11下面的燃烧室阀3也将随即开启。
作功时,如图2中状态所示,当作功凸轮66转过摆杆与顶杆之间的压轮51后,不被作用的摆杆54与顶杆52随压轮51便折向作功凸轮66的低凹段70,使燃烧室阀3不再被上顶并落在活塞10上,让可变燃烧室4经通气口11和下移开启的燃烧室阀3与下面的汽缸5连通,可变燃烧室4内的高温高压作功燃气便会立即进入下面的汽缸5,推动活塞10下行作功,不被上顶的燃烧室阀3向下落在活塞10上面后,会与活塞同步下移相应的距离,因燃烧室阀3压在了活塞10上面,这时作功燃气并不会从燃烧室阀3与活塞10之间泄漏。按图中活塞与燃烧室阀的尺寸比例,燃烧室阀3压在活塞10上面下行的距离约占活塞行程的1/4。
随着活塞10下行作功,当摆杆与顶杆之间的压轮51转到作功凸轮66低凹段的下移缓冲段71时,使燃烧室阀3下移减速并在停止下移后,活塞10则离开燃烧室阀3继续下移作功。
当活塞10完成作功过程又开始上行排气后,转过来的作功凸轮66再压动摆杆与顶杆之间的压轮51时,内折状态的摆杆54与顶杆52又会被压平,又经摆臂41和阀杆8让燃烧室阀3上移,赶在与上移排气的活塞10相碰撞前顶在通气口11下侧的密封圈96上,切断可变燃烧室4与汽缸5的连通。
为让摆杆与顶杆之间的压轮51产生压向作功凸轮66的作用力,使摆杆与顶杆能及时折向转过来的作功凸轮66的低凹段70,如图1所示,在曲轴箱37外侧的侧盖50上的弹簧座61上装有弹簧顶杆62,该弹簧顶杆的顶部与摆杆54相连,使摆杆与顶杆之间的压轮51始终受到压向作功凸轮66的作用力。在作功凸轮66转离压轮51后,为防止圆形压轮51因逐渐转离作功凸轮66而使燃烧室阀3开启的速度变慢,还可在压轮51侧面设有顶块69,相应的在作功凸轮66的侧面也形成有凸块67,当作功凸轮66转离压轮51后,压轮侧面的顶块69会接下来还顶在作功凸轮侧面的凸块67上,只有在作功凸轮侧面的凸块67转离顶块69后,摆杆54外侧的顶块69才会迅速向内回落,让摆杆54与顶杆52也立刻向内折向作功凸轮66的低凹段70,撤回对燃烧室阀3的上顶力,让燃烧室阀能迅速离开可变燃烧室4的通气口11而落在活塞10上。
也可以采用如图3所示的结构,在曲轴箱的侧盖50上不设弹簧座,而从摆杆54的上侧向内伸出有拨臂64,相应的在作功凸轮66侧面设有顶开凸轮68,当作功凸轮66转离摆杆54与顶杆52之间的压轮51后,顶开凸轮68也转到与拨臂64相接触位置,上抬拨臂64使摆杆54与顶杆52立刻向内折向作功凸轮66的低凹段,让燃烧室阀3不再被上顶、迅速离开可变燃烧室4的通气口11。为减小拨臂64与顶开凸轮68的接触摩擦力,如图3中所示,可让拨臂外端通过滚轮97被顶开凸轮控制。
在把燃烧室阀3设在活塞上面后,为防止控制燃烧室阀的摆臂41端部与活塞的连杆74相碰撞,活塞与曲轴之间的连杆74在轴向上制成前、后双板结构,前连杆板75和后连杆板77之间由斜筋板76相连,伸向连杆大头78的斜筋板76向离开阀杆8下侧摆臂41的外端方向倾斜,让前连杆板、后连杆板和斜筋板一侧形成容纳摆臂41端部、上部的连接板40和滑套座48的空间79,让连杆74随曲轴80转动时避免与摆臂41外端相撞。当然,因连杆74的长度增加,让发动机的高度也相应增加,但带来的好处是较长的连杆也相应减少了作功时活塞对汽缸壁的侧压力,相应减少了活塞下行的摩擦力。
缸盖1上的汽缸阀6、可控单向阀7及电控线圈88的放大结构如图4所示,在汽缸阀6上侧的压盖89上设有向下穿过可控单向阀7的套管90,汽缸阀6的阀顶杆91向上穿过套管90被上部的出气凸轮控制开启关闭压缩空气出口18。压盖89下侧的套管90的下端伸进可控单向阀7下面的通气密封座92的凹孔内,在压盖89的下面压套94内设有电控线圈88,在活塞10上移排出压缩空气时,由电控线圈88直接或间接让可控单向阀7受到向上的开启作用力,使可控单向阀主动向上开启,让汽缸5内的压缩空气经下移开启的汽缸阀6和通气密封座92上的通气孔93被充进中间冷却器20。
电控线圈88作用提升套81的结构如图4中所示,在提升套81的上侧形成有伸在电控线圈88中的衔铁套83,在提升套的下压座82外侧与电控线圈88之间装有关阀弹簧84,在提升套的下压座82内侧与可控单向阀7的上挡圈85之间装有提升弹簧86,当汽缸内上行的活塞把压缩空气压缩到其压力接近中间冷却器20内气压时,电控线圈88的分电器也给电控线圈通电,让电控线圈吸引提升套的衔铁套83上移,让提升套的下压座82离开下面的可控单向阀7,并同时带动提升弹簧86上移,让可控单向阀提前受到开启作用力。在图4中,活塞10刚移到上止点将下行进行作功过程,而汽缸阀6也在与活塞碰撞前上移关闭了压缩空气出口18,因刚结束汽缸内的压缩空气排出过程,电控线圈88也刚断电,被上移开启的可控单向阀7还未下落到关闭位置。为增加可控单向阀7与通气密封座92之间的密封性,实际中,可以在可控单向阀7的底面固定一层耐磨、抗中等温度的类似橡胶的密封垫。
也可以让电控线圈88采用更简单的结构控制可控单向阀7,在可控单向阀7的上侧直接形成伸在电控线圈88中的衔铁套83,在可控单向阀7与电控线圈88之间装有关阀弹簧84,在中间冷却器20和汽缸5上分别装有静压力传感器和动压力传感器,当动压力传感器探测到汽缸内的压缩空气压力接近中间冷却器20内气压时,与动压力传感器连接的控制器便会给电控线圈88通电,在汽缸内的压缩空气将向中间冷却器20流动时,带动出气单向阀7上移开启。可控单向阀7按这种方式控制开启,要求与动压力传感器连接的控制器能准确的预算阀门开启的时刻。
让可控单向阀7被电控线圈88控制开启有以下优点,在内燃机停机后,在切断了对电控线圈的供电后,可控单向阀也会自然关闭,防止了压缩空气的向外泄漏。如让可控单向阀7被凸轮控制开启,便可能因凸轮停在开启位置而让压缩空气向外泄漏。因可控单向阀7的重量很轻,开启时间也很短,电控线圈88也不会耗电太多。
对于可变升程活塞13和随动活塞15的控制,如图5所示,装在可变燃烧室的缸体22内的可变升程活塞13经上连杆24与缸盖内的上控制轴25上的压臂26端部相连接,副缸12内的随动活塞15经下连杆16与缸体外侧的下控制轴27上的顶臂28端部相连接,上控制轴25经其外侧所固定的上拉臂31和拉杆30与下控制轴27外侧所固定的下拉臂29相连,再由所设的升程调节装置17控制上控制轴25或下控制轴27、带动可变升程活塞13和随动活塞15同步上移或下移。这种可变升程活塞与随动活塞的控制结构很适合直列多缸机,让上、下控制轴被一个外侧的拉杆30相连即可。
在车用可变中冷型绝热内燃机中,为能在车辆刹车时让内燃机产生较大的制动力,还可在上控制轴25与下控制轴2之间的拉杆30上设有液压控制缸34,把拉杆分成上拉杆36和下拉杆32,当刹车时,刹车踏板还会控制供油阀向液压控制缸34供油,让上拉杆36和下拉杆32向中间相应收缩,从而带动可变升程活塞13和随动活塞15相应减小可变燃烧室4和副缸12的内部容积,让压缩空气只会进入中间冷却器20而很少进入可变燃烧室4,相应增大了发动机的制动力。如刹车时间较长,因进入中间冷却器20的压缩空气更多而让刹车能量被相应储存,当然被储存的压缩空气增多后也让中间冷却器内的气压增加,气压增加超过限度后中间冷却器也会控制相应的放气。
在刹车踏板与控制供油阀之间还应设有延时控制器,当刹车踏板被踩下一定的时间后,延时控制器再让供油阀向液压控制缸34供油。这样,驾驶员在短时刹车时便不会控制液压控制缸,不必启动内燃机制动。

Claims (10)

  1. 一种可变中冷型绝热内燃机,包括缸盖(1)和装有活塞(10)的汽缸(5),在缸盖的底面(23)上分别设有通气口(11)和压缩空气出口(18),被汽缸阀(6)和可控单向阀(7)控制开启关闭的压缩空气出口(18)经出气管路(19)与中间冷却器(20)连通,中间冷却器再经供气管路(21)和缸盖内被控制的充气阀(2)与可变燃烧室(4)相连通,可变燃烧室(4)再经被燃烧室阀(3)控制的通气口(11)与下面的汽缸(5)连通;燃烧室阀(3)设在可变燃烧室(4)外侧,在构成可变燃烧室(4)的缸体(22)内装有可变升程活塞(13),所设的副缸(12)经通气孔(14)与汽缸(5)的上侧连通,副缸(12)内所设的随动活塞(15)经连动机构与可变燃烧室(4)内的可变升程活塞(13)传动连接,并被升程调节装置(17)控制,当可变升程活塞(13)被升程调节装置(17)带动压进可变燃烧室(4)、让燃烧室容积变小使发动机功率降低时,相应的副缸(12)内所设的随动活塞(15)被连动机构带动也让副缸(12)内的容积相应增大,让汽缸内的压缩空气向副缸(12)内进入的更多,使汽缸内的压缩空气向中间冷却器(20)内的充入量相应变少,如加大发动机功率,升程调节装置(17)也会让可变燃烧室(4)的容积相应增大,而让副缸(12)内的容积相应变小,使充入中间冷却器(20)内的压缩空气更多,其特征在于:可变燃烧室(4)的通气口(11)处在汽缸(5)范围内,通气口下面的燃烧室阀(3)经穿过活塞(10)上的侧边通孔和下面密封套(38)的阀杆(8)向下伸出汽缸,阀杆(8)的下侧在穿过汽缸底部外侧固定的滑套座(48)后,阀杆下端的连接头(9)再经轴销(39)和连接板(40)与摆臂(41)内端上的下轴销(42)相连,摆臂(41)向外穿过曲轴箱侧壁孔(49)后、伸进曲轴箱外侧与侧盖(50)形成的空间内,通过摆臂中部的支座轴销(45)安装在曲轴箱侧壁外面上的支座(46)上,摆臂外侧的短臂(43)经压销(44)与顶杆(52)的下端相连,顶杆(52)上端经中间轴销(53)还与摆杆(54)的下侧相连,摆杆的上侧与侧盖(50)上被限位了的弹力顶座(57)下端的顶销(55)相连,在摆杆(54)与顶杆(52)之间的中间轴销(53)上装有压轮(51),该压轮可被作功凸轮(66)压动,把摆杆(54)与顶杆(52)顶平,让摆臂(41)上的短臂(43)向下压动,使摆臂(41)的内端经连接板(40)和阀杆(8)把燃烧室阀(3)向上移动、顶在通气口(11)下面的密封圈上,再由弹力顶座(57)背面的弹簧(58)作用,使燃烧室阀(3)顶紧在通气口下面的密封圈上,作功时当作功凸轮(66)转过摆杆与顶杆之间的压轮(51)后,不被作用的摆杆(54)与顶杆(52)随压轮(51)便折向作功凸轮(66)的低凹段(70),使燃烧室阀(3)不再被上顶并落在活塞(10)上,让可变燃烧室(4)经通气口(11)和下移开启的燃烧室阀(3)与下面的汽缸(5)连通,不被上顶的燃 烧室阀(3)向下落在活塞(10)上面,在与活塞同步下移相应的距离后,当摆杆与顶杆之间的压轮(51)转到作功凸轮(66)低凹段的下移缓冲段(71)时,使燃烧室阀(3)下移减速并停止,活塞(10)则离开燃烧室阀(3)继续下移作功;当转过来的作功凸轮(66)再压动摆杆与顶杆之间的压轮(51)时,内折状态的摆杆(54)与顶杆(52)又会被压平,又经摆臂(41)和阀杆(8)让燃烧室阀(3)上移,赶在与上移排气的活塞(10)相碰撞前顶在通气口(11)下侧的密封圈(96)上,切断可变燃烧室(4)与汽缸(5)的连通;在汽缸阀(6)上侧的压盖(89)上设有向下穿过可控单向阀(7)的套管(90),汽缸阀(6)的阀顶杆(91)向上穿过套管(90)被上部的出气凸轮控制开启关闭压缩空气出口(18),压盖(89)下侧的套管(90)的下端伸进可控单向阀(7)下面的通气密封座(92)的凹孔内,在压盖(89)的下面压套(94)内设有电控线圈(88),在活塞(10)上移排出压缩空气时,由电控线圈(88)直接或间接让可控单向阀(7)受到向上的开启作用力,使可控单向阀主动向上开启,让汽缸(5)内的压缩空气经下移开启的汽缸阀(6)和通气密封座(92)上的通气孔(93)被充进中间冷却器(20)。
  2. 根据权利要求1所述的可变中冷型绝热内燃机,其特征在于:在曲轴箱(37)外侧的侧盖(50)上的弹簧座(61)上装有弹簧顶杆(62),该弹簧顶杆的顶部与摆杆(54)相连,使摆杆与顶杆之间的压轮(51)始终受到压向作功凸轮(66)的作用力。
  3. 根据权利要求2所述的可变中冷型绝热内燃机,其特征在于:在压轮(51)侧面设有顶块(69),相应的在作功凸轮(66)的侧面也形成有凸块(67),当作功凸轮(66)转离压轮(51)后,压轮侧面的顶块(69)还顶在作功凸轮侧面的凸块(67)上,在作功凸轮侧面的凸块(67)转离顶块(69)后,摆杆(54)与顶杆(52)才立刻向内折向作功凸轮(66)的低凹段,撤回对燃烧室阀(3)的上顶力、让燃烧室阀能迅速离开可变燃烧室(4)的通气口(11)。
  4. 根据权利要求1所述的可变中冷型绝热内燃机,其特征在于:从摆杆(54)上侧向内伸出有拨臂(64),相应的在作功凸轮(66)侧面设有顶开凸轮(68),当作功凸轮(66)转离摆杆(54)与顶杆(52)之间的压轮(51)后,顶开凸轮(68)也转到与拨臂(64)相接触位置,上抬拨臂(64)使摆杆(54)与顶杆(52)立刻向内折向作功凸轮(66)的低凹段,让燃烧室阀(3)不再被上顶、迅速离开可变燃烧室(4)的通气口(11)。
  5. 根据权利要求1、2、3或4所述的可变中冷型绝热内燃机,其特征在于:活塞与曲轴之间的连杆(74)在轴向上制成前、后双板结构,前连杆板(75)和后连杆板(77)之间由斜筋板(76)相连,伸向连杆大头(78)的斜筋板(76)向离开阀杆(8) 下侧摆臂(41)的外端方向倾斜,让前连杆板、后连杆板和斜筋板一侧形成容纳摆臂(41)外端、上部的连接板(40)和滑套座(48)的空间(79),让连杆(74)随曲轴(80)转动时避免与摆臂(41)外端相撞。
  6. 根据权利要求1所述的可变中冷型绝热内燃机,其特征在于:在提升套(81)上侧形成有伸在电控线圈(88)中的衔铁套(83),在提升套的下压座(82)外侧与电控线圈(88)之间装有关阀弹簧(84),在提升套的下压座(82)内侧与可控单向阀(7)的上挡圈(85)之间装有提升弹簧(86),当汽缸内上行的活塞把压缩空气压缩到其压力接近中间冷却器(20)内气压时,电控线圈(88)的分电器也给电控线圈通电,让电控线圈吸引提升套的衔铁套(83)上移,让提升套的下压座(82)离开下面的可控单向阀(7),并同时带动提升弹簧(86)上移,让可控单向阀提前受到开启作用力。
  7. 根据权利要求1所述的可变中冷型绝热内燃机,其特征在于:在可控单向阀(7)的上侧直接形成伸在电控线圈(88)中的衔铁套(83),在可控单向阀(7)与电控线圈(88)之间装有关阀弹簧(84),在中间冷却器(20)和汽缸(5)上分别装有静压力传感器和动压力传感器,当动压力传感器探测到汽缸内的压缩空气压力接近中间冷却器(20)内气压时,与动压力传感器连接的控制器便会给电控线圈(88)通电,在汽缸内的压缩空气将向中间冷却器(20)流动时,带动出气单向阀(7)上移开启。
  8. 根据权利要求1所述的可变中冷型绝热内燃机,其特征在于:装在可变燃烧室的缸体(22)内的可变升程活塞(13)经上连杆(24)与缸盖内的上控制轴(25)上的压臂(26)端部相连接,副缸(12)内的随动活塞(15)经下连杆(16)与缸体外侧的下控制轴(27)上的顶臂(28)端部相连接,上控制轴(25)经其外侧所固定的上拉臂(31)和拉杆(30)与下控制轴(27)外侧所固定的下拉臂(29)相连,再由所设的升程调节装置(17)控制上控制轴(25)或下控制轴(27)、带动可变升程活塞(13)和随动活塞(15)同步上移或下移。
  9. 根据权利要求8所述的可变中冷型绝热内燃机,其特征在于:在上控制轴(25)与下控制轴(27)之间的拉杆(30)上设有液压控制缸(34),把拉杆分成上拉杆(36)和下拉杆(32),当刹车时,刹车踏板还会控制供油阀向液压控制缸(34)供油,让上拉杆(36)和下拉杆(32)向中间相应收缩,从而带动可变升程活塞(13)和随动活塞(15)相应减小可变燃烧室(4)和副缸(12)的内部容积,让压缩空气只会进入中间冷却器(20)而不进入可变燃烧室(4),相应增大发动机的制动力。
  10. 根据权利要求9所述的可变中冷型绝热内燃机,其特征在于:在刹车踏板与控制供油阀之间设有延时控制器,当刹车踏板被踩下一定的时间后,延时控制器再让供油阀向液压控制缸(34)供油。
PCT/CN2020/000185 2019-09-04 2020-08-21 可变中冷型绝热式内燃机 WO2021042644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910831182.X 2019-09-04
CN201910831182 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021042644A1 true WO2021042644A1 (zh) 2021-03-11

Family

ID=74733365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000185 WO2021042644A1 (zh) 2019-09-04 2020-08-21 可变中冷型绝热式内燃机

Country Status (2)

Country Link
CN (1) CN112443391A (zh)
WO (1) WO2021042644A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3446192A (en) * 1967-09-05 1969-05-27 Mitchell J Woodward Four-cycle internal combustion engine
JPS5543238A (en) * 1978-09-19 1980-03-27 Honda Motor Co Ltd Side-valve type internal combustion engine
CN1302947A (zh) * 2000-01-03 2001-07-11 韩培洲 中冷、回热式二冲程内燃机
CN1854480A (zh) * 2005-03-30 2006-11-01 卡特彼勒公司 扩展内燃机中贫油点火极限的方法
CN105909382A (zh) * 2016-04-29 2016-08-31 韩培洲 用辅助曲轴带动辅助活塞的可变容积燃烧室内燃机
CN110173344A (zh) * 2019-05-21 2019-08-27 韩培洲 可变中冷绝热式内燃机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3446192A (en) * 1967-09-05 1969-05-27 Mitchell J Woodward Four-cycle internal combustion engine
JPS5543238A (en) * 1978-09-19 1980-03-27 Honda Motor Co Ltd Side-valve type internal combustion engine
CN1302947A (zh) * 2000-01-03 2001-07-11 韩培洲 中冷、回热式二冲程内燃机
CN1854480A (zh) * 2005-03-30 2006-11-01 卡特彼勒公司 扩展内燃机中贫油点火极限的方法
CN105909382A (zh) * 2016-04-29 2016-08-31 韩培洲 用辅助曲轴带动辅助活塞的可变容积燃烧室内燃机
CN110173344A (zh) * 2019-05-21 2019-08-27 韩培洲 可变中冷绝热式内燃机

Also Published As

Publication number Publication date
CN112443391A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
US6694933B1 (en) Lost motion system and method for fixed-time valve actuation
KR100596053B1 (ko) 내연 기관에서의 배기 가스 재순환을 제어하는 방법 및 시스템
JPS6238813A (ja) エンジン遅延方法および装置
US10323551B2 (en) Combustion engine, vehicle comprising the combustion engine and method for controlling the combustion engine
US5787859A (en) Method and apparatus to accomplish exhaust air recirculation during engine braking and/or exhaust gas recirculation during positive power operation of an internal combustion engine
JP2005522622A (ja) 可変弁作動のためのコンパクトな空動き装置
KR20110044977A (ko) 피스톤 엔진의 제어 장치
US7191756B2 (en) System and method for controling crankshaft position during engine shutdown using cylinder pressure
WO2002010568A1 (en) Hydraulically adjustable connecting rod for internal combustion engine efficiency
US20100307440A1 (en) Engine for an Air Hybrid Vehicle
WO2016150231A1 (zh) 带有辅助活塞的可变容积燃烧室内燃机
Trajkovic et al. Investigation of different valve geometries and valve timing strategies and their effect on regenerative efficiency for a pneumatic hybrid with variable valve actuation
CN105736086A (zh) 燃烧制动与减压制动结合的发动机制动方法及减压装置
WO2012051796A1 (zh) 主汽缸四冲程中冷回热内燃机
US11207964B2 (en) Method for controlling an internal combustion engine
WO2021042644A1 (zh) 可变中冷型绝热式内燃机
US11125151B2 (en) Wireless control of actuated valve in variable compression ratio piston
JP3306053B2 (ja) 発動機の弁装置
CN109469557A (zh) 一种自适应压气连续燃烧活塞发动机
KR102059029B1 (ko) 공기 충전량을 줄여 내연기관을 작동하기 위한 방법 및 장치
EP2443324B1 (en) A control arrangement for gas exchange in a piston engine
JPS6118013B2 (zh)
JPH09133031A (ja) 圧縮開放型エンジン補助ブレーキ装置
CN109339959A (zh) 一种内燃发动机及其提高效率的方法
KR101568189B1 (ko) 타행 주행 시 연비 향상을 위한 밸브 작동 방법 및 밸브 제어 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860106

Country of ref document: EP

Kind code of ref document: A1