WO2021042632A1 - 平面移动变形测量系统及其在二维相似模拟实验中的应用 - Google Patents

平面移动变形测量系统及其在二维相似模拟实验中的应用 Download PDF

Info

Publication number
WO2021042632A1
WO2021042632A1 PCT/CN2019/127685 CN2019127685W WO2021042632A1 WO 2021042632 A1 WO2021042632 A1 WO 2021042632A1 CN 2019127685 W CN2019127685 W CN 2019127685W WO 2021042632 A1 WO2021042632 A1 WO 2021042632A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
measurement system
deformation measurement
frame
similar
Prior art date
Application number
PCT/CN2019/127685
Other languages
English (en)
French (fr)
Inventor
江宁
陈绍杰
赵金海
尹大伟
马俊彪
潘海洋
常西坤
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2021042632A1 publication Critical patent/WO2021042632A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Definitions

  • the invention relates to the technical field of similar simulation experiments in mining engineering, in particular to a plane movement deformation measurement system and a measurement method thereof used for two-dimensional similar simulation experiments.
  • the similar simulation experiment is to make a physical model similar to the original model in the laboratory according to the similar principle. While the model is mining, the displacement, stress and other indicators of the rock layer are measured to study the movement, deformation and stress distribution of the rock layer. Similar material simulation experiments can visually show the movement of rock formations during the mining process, and provide convenience for researchers to study the laws of rock formation movement and deformation. It has become an important research method in mining engineering, geotechnical engineering and other disciplines.
  • Rock formation movement includes horizontal movement and vertical movement.
  • two-dimensional similar simulation experiment rock formation movement mainly used three methods: total station, cable displacement sensor and manual measurement.
  • the total station measurement is manual operation, time-consuming, low degree of automation, and human error;
  • the measurement method of the cable displacement sensor is to drive the connecting wire through the hard metal plate embedded in the model and then pull the cable displacement sensor reader to measure the settlement value of the rock formation. This method can only measure the vertical movement of the ground surface. Value, and apply external force to similar material models, which will affect the accuracy of the measurement results;
  • the prior art currently does not have a high-automation, high-precision, non-contact planar movement deformation measurement system for two-dimensional similar simulation experiments.
  • One of the objectives of the present invention is to provide a plane movement deformation measurement system, which has the advantages of high automation, high precision, and non-contact measurement.
  • a plane movement and deformation measurement system for two-dimensional similar simulation experiments which includes a rock formation movement and deformation measurement system and a two-dimensional simulation experiment table for holding similar simulation materials, and the similar simulation materials are laid layer by layer on the In the two-dimensional simulation experiment platform of, several layers are formed in the vertical direction, and mica powder is sprinkled between the similar simulation materials of each layer;
  • the rock formation movement and deformation measurement system includes a frame, a vertical slide, a measuring head, a wireless data acquisition instrument, and a computer processing system.
  • the frame is composed of a left frame, an upper frame, a right frame, and a lower frame.
  • a square structure formed by successively connecting bodies, with supports installed on the four corners of the frame body;
  • the vertical sliding rail is a square rod, which is connected to the frame body by sliding grooves;
  • the frame body is fixedly connected with the left and right columns of the two-dimensional simulation experiment platform by bolts;
  • the right surface of the left frame and the inner surface of the left column of the two-dimensional simulation experiment platform are located in the same vertical plane, and the upper surface of the lower frame and the upper surface of the base of the two-dimensional simulation experiment platform are located in the same vertical plane. Located in the same horizontal plane;
  • the measuring head and the vertical sliding rail are connected by a sliding sleeve, and the measuring head includes a vertical direction rangefinder, a horizontal direction rangefinder, a sliding sleeve, an alignment device and a wireless transmitter;
  • the horizontal direction rangefinder is perpendicular to the left frame body
  • the vertical direction rangefinder is perpendicular to the lower frame body
  • the alignment device is arranged in the horizontal direction and perpendicular to the frame body
  • the vertical plane on which it is located; the axes of the horizontal direction rangefinder, the vertical direction rangefinder and the alignment device intersect at one point in space;
  • the data measured by the measuring head is transmitted to the wireless data acquisition instrument through the wireless transmitter;
  • the output end of the wireless data acquisition instrument is connected to the computer data processing system through a USB interface.
  • the above-mentioned two-dimensional simulation experiment platform is a rectangular parallelepiped structure without a cover as a whole, which includes a base, a left column, a right column, a movable baffle, a reaction frame, and a jack.
  • the above-mentioned left column, The right column is fixedly connected to the above-mentioned base.
  • the above-mentioned left and right columns are U-shaped steel with the top corners facing inward. A number of screw holes are evenly opened on both outer sides of the U-shaped steel.
  • the above-mentioned reaction frame is connected to the above-mentioned left , The top of the right column; the above-mentioned jacks are provided with several, which are arranged side by side under the above-mentioned reaction frame, the above-mentioned movable baffle is provided with several pieces, and the two ends are respectively detachably connected to the above-mentioned left and right columns on.
  • both ends of each movable baffle are provided with through holes, and the movable baffle is movably connected to the left and right uprights through the through holes and bolts.
  • the aforementioned computer data processing system includes:
  • Input subsystem manually input the number of each measuring point according to the specific experimental arrangement
  • Management subsystem automatic storage of measurement data, historical query and data sharing
  • the output subsystem can dynamically display measurement data online, generate comprehensive reports and mobile deformation curves, and have a printing function.
  • sliding grooves are provided in the upper frame body and the lower frame body, and the vertical sliding rails can slide left and right in the sliding grooves;
  • the rock formation movement and deformation measurement system used for the two-dimensional similarity simulation experiment is arranged outside the two-dimensional similar material model. During the experiment, the movement at different positions of the two-dimensional similar model can be observed in a timely, true and accurate manner.
  • the measured data is transmitted to the wireless data acquisition instrument in real time, and after the computer data processing system is processed, the rock formation movement deformation value is displayed on the computer screen in real time;
  • the plane movement deformation measurement system used for two-dimensional similar simulation experiment is used in During the experiment, it does not touch the measurement object (two-dimensional similar material model), and will not apply any external force to the measurement object (two-dimensional similar material model), thus further ensuring the accuracy of the observation results; used for two-dimensional similar simulation experiments
  • the plane movement deformation measurement system, the alignment of the measuring head, the measurement, transmission and processing of the data are automatically synchronized, which completely avoids the interference of human factors and avoids human errors.
  • Another object of the present invention is to provide a plane movement deformation measurement method for a two-dimensional similar simulation experiment, which includes the following steps:
  • Figure 1 is a schematic diagram of the structure of the measurement system of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the two-dimensional simulation experiment platform of the present invention.
  • Figure 3 is a schematic diagram of the rock formation movement and deformation measurement system of the present invention.
  • Figure 4 is a schematic diagram of the frame structure of the present invention.
  • Figure 5 is a schematic diagram of the vertical sliding rod structure of the present invention.
  • Fig. 6 is a schematic diagram of the structure of the measuring head of the present invention.
  • the present invention proposes a plane movement deformation measurement system and its application in a two-dimensional similar simulation experiment.
  • the present invention will be described in detail below with reference to specific embodiments.
  • the “inner surface of the column” mentioned in the present invention refers to the side on which similar simulated materials are placed, and the “outer surface of the column” refers to the surface opposite to its inner surface.
  • the “inner” in the present invention all means that the surface where similar analog materials are placed is inside.
  • a plane movement deformation measurement system of the present invention includes a two-dimensional simulation experiment table 1 for holding similar simulated materials and a rock formation movement and deformation measurement system 2 fixed on the two-dimensional simulation experiment table 1.
  • the above-mentioned two-dimensional simulation experiment table 1 for holding similar simulation materials is a rectangular parallelepiped structure without a top cover, including a base 11, two vertical columns 12 fixedly connected to both ends of the base, and a movable baffle 14 that is detachably connected. , Reaction frame 13 and hydraulic jack 15 installed on the reaction frame.
  • the above-mentioned two uprights 12 are fixed on the base 11, and the movable baffle 14 is detachably connected.
  • the term "detachable" means that the connection between the movable baffle 14 and the two uprights is detachable.
  • the movable baffle 14 is installed on two uprights. When the similar simulated material is cured until its performance index meets the mining requirements, the movable baffle 14 can be completely removed.
  • the specific detachable connection method is preferably the connection method of bolts and screw holes. Of course, the present invention is not limited to this.
  • the above-mentioned two uprights are U-shaped steel with the top corners facing inward.
  • a number of bolt holes are evenly arranged on the two outer sides of the U-shaped steel.
  • the number of movable baffles 14 is several, and each movable Both ends of the baffle 14 are respectively provided with through holes.
  • the design of several bolt holes is convenient to connect with the through holes on the movable baffle 14 by bolts, and the through holes are fixedly connected to the above U-shaped steel by bolts. Different layer height positions on the two outer sides.
  • the reaction force frame 13 is fixedly connected to the column 12 by bolts.
  • the number of the hydraulic jacks 15 is 4, and they are fixedly connected to the reaction frame 13 by bolts.
  • the above-mentioned rock formation movement and deformation measurement system 2 includes a frame body 21, a vertical sliding rail 22, a measuring head 23, a wireless data acquisition instrument 24 and a computer data processing system 25.
  • the frame body 21 has a square shape, and is composed of a left frame body 211, an upper frame body 212, a right frame body 213, and a lower frame body 214 that are fixedly connected to each other.
  • Four supports 216 are fixedly connected to the four corner positions of the frame body 21. .
  • the right surface of the above-mentioned left frame body 211 and the inner surface of the left column of the two-dimensional simulation experiment platform 1 are located in the same vertical plane.
  • the upper surface of the above-mentioned lower frame body 213 and the upper surface of the base 11 of the two-dimensional simulation experiment platform are located in the same horizontal plane.
  • the support 216 is provided with a screw hole; the frame body 21 is fixedly connected to the column 12 of the two-dimensional simulation experiment platform by bolts.
  • the upper frame body 212 and the lower frame body 214 are provided with horizontal sliding grooves 215.
  • the vertical sliding rail 22 is a square rod, and is slidably connected to the frame 21 through a sliding groove 215.
  • the measuring head 23 includes a vertical direction rangefinder 232, a horizontal direction rangefinder 233, a sliding sleeve 234, an alignment device 235, and a wireless transmitter 231.
  • the above-mentioned horizontal direction rangefinder 233 is arranged in the horizontal direction and perpendicular to the left frame body 211.
  • the above-mentioned vertical direction rangefinder 232 is arranged in the vertical direction and perpendicular to the lower frame 214.
  • the alignment device 235 is arranged in a horizontal direction and is perpendicular to the vertical plane where the frame body 21 is located.
  • the axes of the horizontal direction rangefinder 233, the vertical direction rangefinder 232, and the alignment device 235 intersect at one point in space.
  • the sliding sleeve 234 has a square shape as a whole.
  • the aforementioned measuring head 23 is slidably connected to the vertical sliding rail 22 through a sliding sleeve 234.
  • the data measured by the above-mentioned measuring head 23 is transmitted to the wireless data acquisition instrument 24 through the above-mentioned wireless transmitter 231.
  • the output terminal of the above-mentioned wireless data acquisition instrument 24 is connected to the above-mentioned computer data processing system through a USB interface.
  • the aforementioned computer data processing system includes the following subsystems:
  • the management subsystem which automatically stores the measurement data, and enables historical query and data sharing;
  • Output subsystem dynamically display measurement data online, generate comprehensive reports and mobile deformation curves, and have a printing function.
  • the present invention a plane movement deformation measurement system used for two-dimensional similarity simulation experiments
  • its main technical innovation is that, on the one hand, the rock formation movement deformation measurement system used for two-dimensional similarity simulation experiments interacts with the measurement object during the experiment (two The two-dimensional similar material model) does not touch and does not apply any external force to the measurement object (two-dimensional similar material model), thus further ensuring the accuracy of the observation results; on the other hand, the alignment of the measuring head, the measurement and transmission of data
  • the processing and processing are carried out automatically and synchronously, which completely avoids the interference of human factors and avoids human errors.
  • the measurement method of plane movement and deformation used for two-dimensional similar simulation experiment includes the following steps in sequence:
  • the first step is to install the movable baffle 14 layer by layer from bottom to top, and carry out the laying of similar simulated materials until all the similar simulated materials have been laid;
  • the third step is to arrange survey lines and points according to the purpose of the experiment.
  • the rock formation movement and deformation measurement system 2 is installed on the two-dimensional simulation experiment table 1 through bolts, the equipment is adjusted to the working state, and the measurement points are comprehensively measured as the initial value;
  • the fifth step is to recover similar simulated materials, measure and collect the displacement of each measuring point during the recovery process, until the experimental recovery is completed, export the required experimental data and images through the computer data processing system.
  • the above-mentioned measurement method has simple operation steps and simple control, and the experimental results are true, accurate, and intuitive.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种平面移动变形测量系统及其在二维相似模拟实验中的应用,属于采矿工程中相似模拟实验技术领域。其主要结构包括用于盛放相似模拟材料的二维模拟实验台(1)及岩层移动变形测量系统(2),岩层移动变形测量系统(2)包括框架体、竖向滑轨(22)、测量头(23)、无线数据采集仪(24)及计算机处理系统(25),通过对岩层移动变形测量系统(2)的具体部件进行结构及位置的限定,在实验过程中,可以适时、真实准确、全方位的观测二维相似材料模型不同位置处的移动变形值,测量的数据实时传输给采集仪,经计算机数据处理系统(25)处理完毕后,实时将岩层移动变形值显示在电脑屏幕上。该测量系统中,测量头(23)的对准,数据的测量、传输和处理均自动同步进行,避免了人为误差。

Description

平面移动变形测量系统及其在二维相似模拟实验中的应用 技术领域
本发明涉及采矿工程中相似模拟实验技术领域,具体涉及一种用于二维相似模拟实验的平面移动变形测量系统及其测量方法。
背景技术
岩层移动变形规律是采矿工程的重要研究内容,但因其研究对象具有隐蔽性,给研究带来了诸多不便。
相似模拟实验是在实验室内按相似原理制作与原模型相似的物理模型,在模型回采的同时通过测量岩层的位移、应力等指标,研究岩层的移动变形和应力分布规律。相似材料模拟实验可将回采过程中的岩层移动直观的呈现出来,为科研工作者研究岩层移动变形规律提供了便利,已成为矿业工程、岩土工程等学科的重要研究手段。
岩层移动包括水平移动和垂直移动,以往二维相似模拟实验岩层移动主要采用全站仪、拉线位移传感器和人工测量三种方式。
上述三种测量方式均存在不足:
(1)全站仪测量为人工操作、费时、自动化程度低、具有人为误差;
(2)拉线位移传感器测量方法是通过埋设于模型中的坚硬金属片带动连接线进而牵引拉线位移传感器读取器,实现对岩层沉降值的测量,该种方法仅能测量地表竖直方向的移动值,并且会对相似材料模型施加外力,会影响测量结果的准确性;
(3)人工测量误差大。
综上所述,现有技术目前还没有一种自动化程度高、精度高、非接触式的用于二维相似模拟实验的平面移动变形测量系统。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明的目的之一在于提供一种平面移动变形测量系统,其具有自动化程度高、精度高、非接触式的测量优势。
本发明为实现上述目的所采用的技术方案是:
一种用于二维相似模拟实验的平面移动变形测量系统,其包括岩层移动变形测量系统及用于盛放相似模拟材料的二维模拟实验台,所述的相似模拟材料逐层铺设在所述的二维模拟实验台内,并在竖直方向上形成若干分层,在各分层相似模拟材料之间撒有云母粉;
所述的岩层移动变形测量系统包括框架体、竖向滑轨、测量头、无线数据采集仪及计算机处理系统,所述的框架体是由左框体、上框体、右框体及下框体依次连接而成的方形结构,在所述的框架体的四个角上均安装有支座;
所述的竖向滑轨为方形杆件,其与所述的框架体之间通过滑槽滑动连接;
所述框架体通过螺栓与所述的二维模拟实验台的左立柱、右立柱固定连接;
所述左框体的右表面与所述二维模拟实验台的左立柱的内表面位于同一竖直平面内,所述下框体的上表面与所述二维模拟实验台的底座的上表面位于同一水平面内;
所述的测量头与所述的竖向滑轨之间通过滑套连接,所述的测量头包括竖直方向测距仪、水平方向测距仪、滑套、对准装置及无线发射器;所述水平方向测距仪垂直于所述的左框体,所述竖直方向测距仪垂直于所述的下框体;所述对准装置沿水平方向布置,并垂直于所述框架体所在的竖直平面;所述水平方向测距仪、竖直方向测距仪和对准装置的轴线在空间交于一点;
所述测量头测得的数据通过所述的无线发射器传输给所述的无线数据采集仪;
所述无线数据采集仪的输出端通过USB接口与所述计算机数据处理系统连接。
作为本发明的一个优选方案,上述的二维模拟实验台整体呈一无上盖的长方体结构,其包括底座、左立柱、右立柱、活动挡板、反力架及千斤顶,上述的左立柱、右立柱固定连接在上述的底座上,上述的左、右立柱均为顶角朝里的U型 钢,上述U型钢的两外侧面上均匀开设有若干螺孔,上述的反力架连接在上述的左、右立柱的顶部;上述的千斤顶设置有若干个,其并列设置在上述的反力架的下方,上述的活动挡板设置有若干块,其两端分别可拆卸连接在上述的左、右立柱上。
作为本发明的另一个优选方案,每块活动挡板的两端均设置有通透孔,通过上述通透孔与螺栓配合将上述的活动挡板活动连接在左、右立柱上。
进一步的,上述计算机数据处理系统包括:
输入子系统,根据具体的实验布置人工输入各个测点的编号;
管理子系统,对测量数据自动存储,并可以历史查询以及数据共享;
分析子系统,对测量数据进行分析和计算;
输出子系统,在线动态显示测量数据,生成综合报表和移动变形曲线,并具有打印功能。
进一步的,在上述的上框体和下框体内设置上述滑槽,上述的竖向滑轨在上述滑槽内可左右滑动;
进一步的,上述的滑套整体结构呈方形。
上述测量系统中,用于二维相似模拟实验的岩层移动变形测量系统布设于二维相似材料模型外侧,实验过程中,可以适时、真实准确、全方位的观测二维相似模型不同位置处的移动变形值,测量的数据实时传输给无线数据采集仪,经计算机数据处理系统处理完毕后,实时将岩层移动变形值显示在电脑屏幕上;用于二维相似模拟实验的平面移动变形测量系统,在实验过程中与测量对象(二维相似材料模型)不接触,不会对测量对象(二维相似材料模型)施加任何的外力,因而进一步保证了观测结果的准确性;用于二维相似模拟实验的平面移动变形测量系统,测量头的对准,数据的测量、传输和处理均自动同步进行,完全避免了人为因素的干扰,避免了人为误差。
本发明的另一目的在于提供一种用于二维相似模拟实验的平面移动变形测量方法,包括以下步骤:
S1、自下而上,逐层安装活动挡板,并进行相似模拟材料的铺设,直至相似模拟材料全部铺设完毕;
S2、待相似模拟材料固化至其性能指标达到回采要求后,将活动挡板全部拆除;
S3、根据实验目的布置测线和测点;
S4、将岩层移动变形测量系统通过螺栓安装于所述二维模拟实验台上,并将设备调至工作状态,并对测点进行全面测量,作为初始值;
S5、对相似模拟材料进行回采,对回采过程中对各测点的位移情况进行测量和数据采集,直至实验回采完毕,通过计算机数据处理系统导出所需要的实验数据和图像。
上述技术方案直接带来的技术效果是,操作步骤简单、控制简便,实验结果真实、准确,且直观。
发明的有益效果
有益效果
与现有技术相比,本发明带来了以下有益技术效果:
(1)结构简单、合理,实验结果真实准确、系统误差小;
(2)测量头的对准,数据的测量、传输和处理均自动同步进行,系统自动化程度高,可实现自动测量及数据分析,完全避免了人为因素的干扰。
对附图的简要说明
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明测量系统的结构示意图;
图2为本发明二维模拟实验台结构示意图;
图3为本发明岩层移动变形测量系统示意图;
图4为本发明框架体结构示意图;
图5为本发明竖向滑杆结构示意图;
图6为本发明测量头结构示意图。
图中:1、二维模拟实验台,11、底座,12、立柱,13、反力架,14、活动挡板,15、液压千斤顶,2、岩层移动变形测量系统,21、框架体,22、竖向滑轨,23、测量头,24、无线数据采集仪,25、计算机数据处理系统,211、左框体 ,212、上框体,213、右框体,214、下框体,215、滑槽,216、支座,231、无线发射器,232、竖直方向测距仪,233、水平方向测距仪,234、滑套,235、对准装置。
发明实施例
本发明的实施方式
本发明提出了一种平面移动变形测量系统及其在二维相似模拟实验中的应用,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
本发明述及的“立柱的内表面”是指放置相似模拟材料的一面,“立柱的外表面”是指与其内表面相对的面。
本发明所指“内”均是指放置相似模拟材料的面为内。
如图1所示,本发明一种平面移动变形测量系统,包括用于盛放相似模拟材料的二维模拟实验台1和固定在二维模拟实验台1上的岩层移动变形测量系统2。
上述用于盛放相似模拟材料的二维模拟实验台1整体为一无上盖的长方体结构,包括底座11、竖直固定连接在底座两端的两根立柱12、可拆卸连接的活动挡板14、反力架13和安装在反力架上的液压千斤顶15。
上述的两根立柱12其固定在底座11上,可拆卸连接的活动挡板14,其中所指“可拆卸”是指活动挡板14与两根立柱之间的连接方式为可拆卸,当进行相似模拟材料铺设之前,将活动挡板14安装在两根立柱上,当相似模拟材料固化至其性能指标达到回采要求后,即可将活动挡板14全部拆除。具体的可拆卸连接方式,优选螺栓与螺孔的连接方式,当然,本发明不限于此。
上述的两根立柱,如图2所示,其为顶角朝里的U型钢,在该U型钢的两个外侧面上均匀设置有若干个螺栓孔,活动挡板14数量为若干,每一活动挡板14的两端均分别开设有通透孔,若干个螺栓孔的设计,方便与活动挡板14上的通透孔通过螺栓连接在一起,通透孔通过螺栓固定连接在上述U型钢的两外侧面的不同层高位置。
上述的活动挡板14的具体数量,本领域技术人员可根据具体要求进行合理选择。
上述反力架13通过螺栓与上述立柱12固定连接。
上述液压千斤顶15数量为4个,通过螺栓与上述反力架13固定连接。
上述岩层移动变形测量系统2包括框架体21、竖向滑轨22、测量头23、无线数据采集仪24和计算机数据处理系统25。
上述框架体21为方形,由彼此固定连接的左框体211、上框体212、右框体213、下框体214,在框架体21的4个顶角位置固定连接有4个支座216。
上述的左框体211的右表面与所述二维模拟实验台1左侧立柱内表面位于同一竖直平面内。
上述的下框体213的上表面与所述二维模拟实验台底座11的上表面位于同一水平面内。
支座216开设有螺孔;框架体21通过螺栓与所述二维模拟实验台立柱12固定连接。
上框体212和下框体214开设有水平方向的滑槽215。
竖向滑轨22为方形杆件,与框架21通过滑槽215滑动连接。
结合图3至图6所示,测量头23包括竖直方向测距仪232、水平方向测距仪233、滑套234、对准装置235、无线发射器231。
上述水平方向测距仪233沿水平方向布置,并垂直于左框体211。
上述竖直方向测距仪232沿竖直方向布置,并垂直于下框体214。
对准装置235沿水平方向布置,并垂直于框架体21所在竖直平面。
上述的水平方向测距仪233、竖直方向测距仪232和对准装置235的轴线在空间交于一点。
上述滑套234整体呈方形。
上述的测量头23通过滑套234与竖向滑轨22滑动连接。
上述的测量头23测得的数据通过上述的无线发射器231传输给无线数据采集仪24。
上述的无线数据采集仪24输出端通过USB接口与上述计算机数据处理系统连接。
上述计算机数据处理系统包括以下子系统:
(1)输入子系统,根据具体的实验布置人工输入各个测点的编号;
(2)管理子系统,对测量数据自动存储,并可以历史查询以及数据共享;
(3)分析子系统,对测量数据进行分析和计算;
(4)输出子系统,在线动态显示测量数据,生成综合报表和移动变形曲线,并具有打印功能。
本发明,用于二维相似模拟实验的平面移动变形测量系统,其主要技术创新点在于,一方面,用于二维相似模拟实验的岩层移动变形测量系统,在实验过程中与测量对象(二维相似材料模型)不接触,不会对测量对象(二维相似材料模型)施加任何的外力,因而进一步保证了观测结果的准确性;另一方面,测量头的对准,数据的测量、传输和处理均自动同步进行,完全避免了人为因素的干扰,避免了人为误差。
在了解上述用于二维相似模拟实验的平面移动变形测量系统的基础上,对其测量方法做详细说明。
用于二维相似模拟实验的平面移动变形测量方法,依次包括以下步骤:
第一步,自下而上,逐层安装活动挡板14,并进行相似模拟材料的铺设,直至相似模拟材料全部铺设完毕;
第二步,待相似模拟材料固化至其性能指标达到回采要求后,将活动挡板14全部拆除;
第三步,根据实验目的布置测线和测点;
第四步,将岩层移动变形测量系统2通过螺栓安装于所述二维模拟实验台1上,并将设备调至工作状态,并对测点进行全面测量,作为初始值;
第五步,对相似模拟材料进行回采,对回采过程中各测点的位移情况进行测量和数据采集,直至实验回采完毕,通过计算机数据处理系统导出所需要的实验数据和图像。
上述测量方法,其操作步骤简单、控制简便,实验结果真实、准确,且直观。
本发明中未述及的部分借鉴现有技术即可实现。
需要说明的是:在本说明书的教导下本领域技术人员所做出的任何等同方式或明显变型方式均应在本发明的保护范围内。

Claims (7)

  1. 一种用于二维相似模拟实验的平面移动变形测量系统,其包括岩层移动变形测量系统及用于盛放相似模拟材料的二维模拟实验台,其特征在于:
    所述的相似模拟材料逐层铺设在所述的二维模拟实验台内,并在竖直方向上形成若干分层,在各分层相似模拟材料之间撒有云母粉;
    所述的岩层移动变形测量系统包括框架体、竖向滑轨、测量头、无线数据采集仪及计算机处理系统,所述的框架体是由左框体、上框体、右框体及下框体依次连接而成的方形结构,在所述的框架体的四个角上均安装有支座;
    所述的竖向滑轨为方形杆件,其与所述的框架体之间通过滑槽滑动连接;
    所述框架体通过螺栓与所述的二维模拟实验台的左立柱、右立柱固定连接;
    所述左框体的右表面与所述二维模拟实验台的左立柱的内表面位于同一竖直平面内,所述下框体的上表面与所述二维模拟实验台的底座的上表面位于同一水平面内;
    所述的测量头与所述的竖向滑轨之间通过滑套连接,所述的测量头包括竖直方向测距仪、水平方向测距仪、滑套、对准装置及无线发射器;所述水平方向测距仪垂直于所述的左框体,所述竖直方向测距仪垂直于所述的下框体;所述对准装置沿水平方向布置,并垂直于所述框架体所在的竖直平面;所述水平方向测距仪、竖直方向测距仪和对准装置的轴线在空间交于一点;
    所述测量头测得的数据通过所述的无线发射器传输给所述的无线数据采集仪;
    所述无线数据采集仪的输出端通过USB接口与所述计算机数据处理系统连接。
  2. 根据权利要求1所述的一种用于二维相似模拟实验的平面移动变形测量系统,其特征在于:所述的二维模拟实验台整体呈一无上盖的长方体结构,其包括底座、左立柱、右立柱、活动挡板、反力架及千斤顶,所述的左立柱、右立柱固定连接在所述的底座上,所述的左、右立柱均为顶角朝里的U型钢,所述U型钢的两外侧面上均匀开设有若干螺孔,所述的反力架连接在所述的左、右立柱的顶部;所述的千斤顶设置有若干个,其并列设置在所述的反力架的下方,所述的活动挡板设置有若干块,其两端分别可拆卸连接在所述的左、右立柱上。
  3. 根据权利要求2所述的一种用于二维相似模拟实验的平面移动变形测量系统,其特征在于:每块活动挡板的两端均设置有通透孔,通过所述通透孔与螺栓配合将所述的活动挡板活动连接在左、右立柱上。
  4. 根据权利要求1所述的一种用于二维相似模拟实验的平面移动变形测量系统,其特征在于,所述计算机数据处理系统包括:
    输入子系统,根据具体的实验布置人工输入各个测点的编号;
    管理子系统,对测量数据自动存储,并可以历史查询以及数据共享;
    分析子系统,对测量数据进行分析和计算;
    输出子系统,在线动态显示测量数据,生成综合报表和移动变形曲线,并具有打印功能。
  5. 根据权利要求1所述的一种用于二维相似模拟实验的平面移动变形测量系统,其特征在于:在所述的上框体和下框体内设置所述滑槽,所述的竖向滑轨在所述滑槽内可左右滑动。
  6. 根据权利要求1所述的一种用于二维相似模拟实验的平面移动变形测量系统,其特征在于:所述的滑套整体结构呈方形。
  7. 一种用于二维相似模拟实验的平面移动变形测量方法,其特征在于,其采用权利要求1-6任一项所述的一种用于二维相似模拟实验 的平面移动变形测量系统,所述的测量方法依次包括以下步骤:
    S1、自下而上,逐层安装活动挡板,并进行相似模拟材料的铺设,直至相似模拟材料全部铺设完毕;
    S2、待相似模拟材料固化至其性能指标达到回采要求后,将活动挡板全部拆除;
    S3、根据实验目的布置测线和测点;
    S4、将岩层移动变形测量系统通过螺栓安装于所述二维模拟实验台上,并将设备调至工作状态,并对测点进行全面测量,作为初始值;
    S5、对相似模拟材料进行回采,对回采过程中各测点的位移情况进行测量和数据采集,直至实验回采完毕,通过计算机数据处理系统导出所需要的实验数据和图像。
PCT/CN2019/127685 2019-09-06 2019-12-24 平面移动变形测量系统及其在二维相似模拟实验中的应用 WO2021042632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910839630.0 2019-09-06
CN201910839630.0A CN110702062B (zh) 2019-09-06 2019-09-06 平面移动变形测量系统及其在二维相似模拟实验中的应用

Publications (1)

Publication Number Publication Date
WO2021042632A1 true WO2021042632A1 (zh) 2021-03-11

Family

ID=69194352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127685 WO2021042632A1 (zh) 2019-09-06 2019-12-24 平面移动变形测量系统及其在二维相似模拟实验中的应用

Country Status (2)

Country Link
CN (1) CN110702062B (zh)
WO (1) WO2021042632A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115792184B (zh) * 2022-12-01 2024-05-24 山东科技大学 用于相似材料模拟实验的无线应力和位移测量系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339368B2 (ja) * 1997-07-14 2002-10-28 株式会社大林組 コンクリート構造物の劣化測定方法および測定装置
CN201173776Y (zh) * 2008-02-26 2008-12-31 天津商业大学 适用于岩层移动相似模拟实验的位移测量装置
CN104501747A (zh) * 2014-12-24 2015-04-08 山东科技大学 一种三维相似模拟材料模拟试验位移测量装置及其测量方法
CN107179396A (zh) * 2017-07-07 2017-09-19 东北大学 多功能拼装式岩土工程物理相似试验系统
CN108196263A (zh) * 2018-01-22 2018-06-22 上海诺司纬光电仪器有限公司 激光定位装置
CN109655575A (zh) * 2019-01-06 2019-04-19 山东科技大学 一种模拟采空区自然发火及三带分布的实验系统及方法
CN110007061A (zh) * 2019-03-29 2019-07-12 山东科技大学 一种模拟煤层开挖上覆岩层及地表变形的试验装置及方法
CN110046432A (zh) * 2019-04-17 2019-07-23 上海建工集团股份有限公司 离散元模拟混凝土坍落形态的验证装置及方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402892B (zh) * 2011-05-12 2013-07-17 中国矿业大学 充填开采平面应变模拟试验装置及方法
CN102866241B (zh) * 2012-09-29 2015-04-15 重庆大学 三向加载大型三维相似模拟试验方法
CN203465180U (zh) * 2013-08-19 2014-03-05 安徽理工大学 巷道围岩二维应力模拟平面实验装置
CN103791884B (zh) * 2014-01-24 2017-10-13 安徽理工大学 一种煤矿开采覆岩及地表移动变形一体化规律的研究方法
CN103983517B (zh) * 2014-05-30 2016-08-03 山东科技大学 累积变形加载真三轴试验箱
CN104123876A (zh) * 2014-07-08 2014-10-29 山东科技大学 一种相似材料模拟实验装置及其使用方法
CN104297067B (zh) * 2014-09-22 2016-09-07 山东科技大学 一种相似材料模拟半柔性加载实验装置及其实验方法
CN104266913B (zh) * 2014-10-10 2017-02-08 山东科技大学 一种矿井工作面底板采动破坏模拟试验装置
CN204288688U (zh) * 2014-11-11 2015-04-22 山东科技大学 一种带有采煤装置的模拟试验台
CN104390861B (zh) * 2014-11-24 2016-11-23 山东科技大学 一种用于测试沿空留巷稳定性的实验装置及测试方法
CN104502201B (zh) * 2014-12-18 2016-09-28 四川大学 用于测试岩质边坡稳定的地质力学模型试验装置
CN104613905B (zh) * 2014-12-24 2017-05-03 山东科技大学 一种位移监测装置及其用于三维相似模拟材料模拟试验的使用方法
CN104568593B (zh) * 2015-01-30 2017-01-18 河北煤炭科学研究院 固体充填法采煤二维物理模拟实验装置及实验方法
CN104833537B (zh) * 2015-02-17 2016-03-30 北京交通大学 一种模拟隧道施工的相似模型试验装置
CN106124732A (zh) * 2015-09-10 2016-11-16 安徽理工大学 一种煤岩巷的材料相似模拟实验台
CN105118376B (zh) * 2015-10-09 2018-02-09 西安科技大学 一种用于模拟大开挖空间二维相似模拟实验装置
CN105277441B (zh) * 2015-11-23 2018-06-26 山东科技大学 一种大尺寸长方体煤岩试样长期承载试验监测装置
CN205247763U (zh) * 2015-12-18 2016-05-18 山东科技大学 一种相似材料模拟实验台
CN105469686B (zh) * 2015-12-25 2018-03-13 西安科技大学 一种可变角度的物理相似模拟实验平台及其应用方法
CN105675840B (zh) * 2015-12-31 2017-05-31 中国矿业大学(北京) 动压巷道支护物理模型试验装置及方法
CN105547526B (zh) * 2016-01-13 2017-12-26 中国矿业大学(北京) 一种断层构造应力的监测装置和方法
CN105928440B (zh) * 2016-06-29 2018-06-05 河南理工大学 一种矿山立体物理模拟煤层开采顶板移动监测方法
CN205786122U (zh) * 2016-07-01 2016-12-07 西安科技大学 一种可实现调节加卸载的平面物理相似模拟实验装置
CN206504955U (zh) * 2016-12-31 2017-09-19 河北工程大学 巷道相似模拟平面应变试验台
CN107687958B (zh) * 2017-09-13 2023-07-11 河南理工大学 沙漠地区煤层顶板垮落与输气管道协同变形物理模拟装置及方法
CN207231356U (zh) * 2017-10-10 2018-04-13 湖南科技大学 一种相似模拟实验巷道表面位移测量装置
WO2019147936A1 (en) * 2018-01-26 2019-08-01 Vanderbilt University Systems and methods for non-destructive evaluation of optical material properties and surfaces
CN108226447B (zh) * 2018-01-31 2023-09-12 山东科技大学 煤炭地下开采地表移动三维模拟试验装置及试验方法
CN109164245A (zh) * 2018-08-30 2019-01-08 安徽理工大学 一种矿用岩层倾角可调及多向加载相似模拟实验架
CN208751495U (zh) * 2018-09-29 2019-04-16 广东新一系实业有限公司 疵点坐标定位仪
CN108910560B (zh) * 2018-09-29 2024-06-07 明度智云(浙江)科技有限公司 一种工业装载车辆定位装置和方法
CN109706982A (zh) * 2019-01-24 2019-05-03 山东大学 平面应变条件下的挡墙土压力模型实验装置及试验方法
CN109765110A (zh) * 2019-01-25 2019-05-17 山东科技大学 一种模拟顶板岩梁破断的试验装置及试验方法
CN109855974B (zh) * 2019-02-27 2020-08-07 重庆大学 基于相似模拟试验系统的覆岩应力与变形特性试验方法
CN209342052U (zh) * 2019-03-06 2019-09-03 太仓市恒博金属制品有限公司 一种激光测量设备
CN109917108A (zh) * 2019-04-16 2019-06-21 辽宁工程技术大学 一种模拟煤层开采的三维相似材料模型实验装置及方法
CN110455171B (zh) * 2019-09-19 2021-02-19 河南理工大学 一种可移动测量相似模拟巷道围岩壁面变形监测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339368B2 (ja) * 1997-07-14 2002-10-28 株式会社大林組 コンクリート構造物の劣化測定方法および測定装置
CN201173776Y (zh) * 2008-02-26 2008-12-31 天津商业大学 适用于岩层移动相似模拟实验的位移测量装置
CN104501747A (zh) * 2014-12-24 2015-04-08 山东科技大学 一种三维相似模拟材料模拟试验位移测量装置及其测量方法
CN107179396A (zh) * 2017-07-07 2017-09-19 东北大学 多功能拼装式岩土工程物理相似试验系统
CN108196263A (zh) * 2018-01-22 2018-06-22 上海诺司纬光电仪器有限公司 激光定位装置
CN109655575A (zh) * 2019-01-06 2019-04-19 山东科技大学 一种模拟采空区自然发火及三带分布的实验系统及方法
CN110007061A (zh) * 2019-03-29 2019-07-12 山东科技大学 一种模拟煤层开挖上覆岩层及地表变形的试验装置及方法
CN110046432A (zh) * 2019-04-17 2019-07-23 上海建工集团股份有限公司 离散元模拟混凝土坍落形态的验证装置及方法

Also Published As

Publication number Publication date
CN110702062B (zh) 2020-11-17
CN110702062A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021042631A1 (zh) 三维移动变形测量系统及其在三维相似模拟实验中的应用
CN108362864B (zh) 一种多功能组合式隧道开挖相似模型试验装置
CN203275401U (zh) 一种新型公路土工击实快速测厚调节仪
WO2020206759A1 (zh) 煤系断层形成模拟试验装置及正、逆断层模拟试验方法
CN110006764B (zh) 岩土与地下工程模型试验交通动荷载模拟装置及试验方法
CN107063883A (zh) 一种土力学多功能联合试验装置及试验方法
CN102175533A (zh) 超大型岩土工程三维模型试验系统
CN103868799A (zh) 非常规油气储集层岩石力学特征分析仪
CN201983987U (zh) 超大型岩土工程三维模型试验系统
CN105842418A (zh) 实时量测开挖放坡滑坡坡体位移应力的模型试验装置
WO2021042632A1 (zh) 平面移动变形测量系统及其在二维相似模拟实验中的应用
CN103018029B (zh) 移动式扣件扣压力测试平台及测试方法
CN202939101U (zh) 一种多层剪切的直接剪切仪装置
CN204330374U (zh) 一种可调角度的模型试验台
CN206862748U (zh) 模拟断层处隧道应力特征的实验装置
CN207215587U (zh) 一种侧限条件可调节式岩土体竖向压缩辅助试验装置
CN109238761A (zh) 一种模拟深部条件下的巷道试验的模型试验方法及其装置
CN101982753B (zh) 一种用于煤矸石三维压缩物理试验的试验装置
CN112857939B (zh) 一种走滑断裂物理模拟装置
CN207123280U (zh) 一种新型建筑工程测量仪器
CN209878515U (zh) 岩土与地下工程模型试验交通动荷载模拟装置
CN111060410A (zh) 一种岩土体直接剪切试验装置及方法
CN206247990U (zh) 一种物理模型试验监测位移的结构
CN207439829U (zh) 原级配粗粒土压缩试验装置
CN206300850U (zh) 一种环向伸缩式剪切盒三向受压直剪仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944050

Country of ref document: EP

Kind code of ref document: A1