WO2021042267A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2021042267A1
WO2021042267A1 PCT/CN2019/104221 CN2019104221W WO2021042267A1 WO 2021042267 A1 WO2021042267 A1 WO 2021042267A1 CN 2019104221 W CN2019104221 W CN 2019104221W WO 2021042267 A1 WO2021042267 A1 WO 2021042267A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
display panel
liquid crystal
dielectric layer
Prior art date
Application number
PCT/CN2019/104221
Other languages
English (en)
French (fr)
Inventor
刘文渠
姚琪
张锋
吕志军
董立文
宋晓欣
崔钊
孟德天
王利波
谭纪风
孟宪东
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/964,106 priority Critical patent/US11650449B2/en
Priority to PCT/CN2019/104221 priority patent/WO2021042267A1/zh
Priority to CN201980001574.1A priority patent/CN113039482B/zh
Publication of WO2021042267A1 publication Critical patent/WO2021042267A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13756Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal selectively assuming a light-scattering state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel and a display device.
  • the liquid crystal display device is a major flat panel display (Flat Panel Display, FPD for short). Because of its small size, low power consumption, no radiation, and relatively low production cost, it is increasingly used in the field of high-performance displays.
  • FPD Flat Panel Display
  • the embodiments of the present disclosure provide a display panel and a display device, which can reduce the light leakage rate during dark state display and improve the display effect.
  • a display panel in the first aspect of the present disclosure, includes: a first substrate; a second substrate disposed opposite to the first substrate, and a liquid crystal layer located between the first substrate and the second substrate; A plurality of first electrodes arranged at intervals on one side of the second substrate; a first dielectric layer used to planarize the plurality of first electrodes; a plurality of first electrodes arranged between the first substrate and the second substrate A second electrode; a second dielectric layer disposed on the first dielectric layer on the side close to the liquid crystal layer; a light shielding portion on the second substrate on the side close to the liquid crystal layer; and a control circuit, so The control circuit is configured to apply a voltage between the first electrode and the second electrode so that the liquid crystal layer is in a first state or a second state, wherein, in the first state, the The liquid crystal layer can condense the light incident from the side of the liquid crystal layer close to the first substrate to the light shielding portion; and in the second state, the liquid crystal layer can diverge
  • the surface of the first dielectric layer close to the liquid crystal layer is flush with the surface of the first electrode close to the liquid crystal layer.
  • the surface of the first dielectric layer close to the liquid crystal layer covers the surface of the first electrode close to the liquid crystal layer.
  • the refractive index of the first dielectric layer is greater than or equal to the refractive index of the first electrode.
  • the thickness of the first electrode is greater than or equal to 200 angstroms, the distance between adjacent first electrodes is less than or equal to 50 microns, and the thickness of the first dielectric layer is 1 micron.
  • the thickness of the second dielectric layer is greater than or equal to 1000 angstroms, and the refractive index of the second dielectric layer is between 1.846 and 2.095.
  • the thickness of the first electrode is 200 angstroms
  • the width of the first electrode is 3 micrometers
  • the distance between adjacent first electrodes is 3 micrometers
  • the first electrode The thickness of the dielectric layer is 1.5 microns
  • the thickness of the second dielectric layer is 1000 angstroms
  • the refractive index of the second dielectric layer is 1.98.
  • the light leakage rate of the display panel is less than or equal to 0.0051%.
  • the display panel further includes a third dielectric layer disposed between the plurality of first electrodes and the first substrate, wherein the second electrode is disposed on the first substrate and the first substrate. Between the third dielectric layer.
  • the second electrode is disposed on a side of the second substrate close to the liquid crystal layer.
  • the plurality of first electrodes are strip electrodes or lattice electrodes, and the second electrodes are surface electrodes.
  • the display panel further includes: a first alignment layer located between the liquid crystal layer and the first substrate and contacting the liquid crystal layer, and a first alignment layer located between the liquid crystal layer and the second substrate A second alignment layer between and in contact with the liquid crystal layer.
  • the material of the second dielectric layer includes silicon nitride.
  • the material of the first dielectric layer includes resin.
  • the material of the first electrode and the second electrode includes a transparent conductive material.
  • the transparent conductive material includes indium tin oxide.
  • it further includes a thin film transistor located between the first electrode and the first substrate.
  • a display device in a second aspect of the present disclosure, includes any one of the display panels described in the first aspect of the present disclosure; and a backlight module located on the side of the first substrate of the display panel away from the second substrate.
  • the backlight module includes: a light guide plate having a light-emitting surface, a bottom surface opposite to the light-emitting surface, and an end surface located between the light-emitting surface and the bottom surface; a light source, which is located One side of the end surface of the light guide plate; a light extraction component located on the side of the light exit surface of the light guide plate.
  • the display device further includes a light shielding part located on a side of the second substrate of the display panel close to the liquid crystal layer, wherein the light extraction part and the light shielding part are on the first substrate The projections overlap at least partially.
  • the light source includes a monochromatic LED light source, a monochromatic OLED light source or a monochromatic laser light source.
  • the light extraction component includes any one of a tilt grating, a holographic Bragg grating, and a step grating.
  • the second substrate also serves as the light guide plate.
  • the second dielectric layer with a higher refractive index is used to converge the light by refracting the light, so that the width of the light-shielding portion on the second substrate Without increasing, the light leakage rate when the display panel is in the dark state can be effectively reduced, and the display effect can be improved.
  • Fig. 1 schematically shows a cross-sectional view of a display panel
  • FIG. 2 schematically shows a cross-sectional view of a display panel according to an embodiment of the present disclosure
  • FIG. 3 schematically shows a cross-sectional view of a display panel according to another embodiment of the present disclosure
  • FIG. 4 schematically shows a cross-sectional view of a display panel according to still another embodiment of the present disclosure
  • FIG. 5 schematically shows a cross-sectional view of a display panel according to another embodiment of the present disclosure
  • FIG. 6 schematically shows a cross-sectional view of a display device according to an embodiment of the present disclosure
  • FIG. 7 schematically shows a cross-sectional view of a display device according to another embodiment of the present disclosure.
  • Fig. 8 schematically shows two different shapes of first electrodes.
  • Fig. 1 schematically shows a cross-sectional view of a display panel.
  • the display panel includes a second electrode 22 (ie, a common electrode), an insulating layer 10, and a plurality of first electrodes 18 (ie, pixel Electrode), the liquid crystal layer 16 and the light shielding portion 28.
  • the voltage applied between the first electrode and the second electrode makes the liquid crystal layer operate in the raster equivalent cell mode, and the grating equivalent cell radiates the light incident on the liquid crystal layer to the light shielding part. The light is emitted from the second substrate, thereby achieving a bright state.
  • the display panel performs dark state display, as shown in FIG.
  • the inventors have discovered that since the distance between adjacent first electrodes is close to the wavelength of light, the collimated light L1 is diffracted at the first electrode. , Produce diffracted light L2. Then, the diffracted light L2 is condensed by the liquid crystal layer operating in the lens-equivalent cell mode by the voltage between the first electrode and the second electrode into the light L3 toward the light shielding portion, and the light L3 is shielded by the light shielding portion, thereby Achieve the dark state.
  • the divergence angle of the diffracted light L2 is disadvantageously increased, so that the light L3 cannot be completely shielded by the light shielding portion, resulting in light leakage of the display panel.
  • the width of the light shielding portion can be increased, but this will disadvantageously reduce the aperture ratio of the display panel.
  • FIG. 2 schematically shows a cross-sectional view of a display panel according to an embodiment of the present disclosure.
  • the display panel may include a first substrate 12; a second substrate 14 disposed opposite to the first substrate 12; and a liquid crystal layer 16 located between the first substrate 12 and the second substrate 14; 12 on the side of the second substrate 14 and spaced apart a plurality of first electrodes 18; used to planarize the first dielectric layer 20 of the plurality of first electrodes 18; arranged between the first substrate 12 and the second substrate 14 And the second dielectric layer 24 on the side close to the liquid crystal layer 16 disposed on the first dielectric layer 20.
  • the distance d (as shown in FIG. 2) between adjacent first electrodes is less than or equal to 50 microns.
  • the distance between adjacent first electrodes may be 3 micrometers, and the width of the first electrodes may be 3 micrometers. According to actual needs, the distance between adjacent first electrodes and the width of the first electrodes can also be selected as other values.
  • the refractive index of the second dielectric layer 24 is greater than the refractive indexes of the first electrode 18 and the first dielectric layer 20.
  • the refractive index of the second medium layer may be between 1.846 and 2.095.
  • the material of the first dielectric layer 20 may include resin, and the material of the second dielectric layer 24 may include silicon nitride.
  • the material of the first electrode 18 and the second electrode 22 includes a transparent conductive material, such as indium tin oxide or the like.
  • the thickness of the second dielectric layer is greater than or equal to 1000 angstroms. In an example, the thickness of the second dielectric layer is 1000 angstroms. According to actual needs, the thickness of the second dielectric layer can also be selected to other values. It should be noted that in this application, the thickness refers to the distance extending along the longitudinal direction of the first substrate.
  • the display panel shown in FIG. 2 may further include a light shielding portion 28 located on the side of the second substrate 14 close to the liquid crystal layer 16.
  • the light shielding portion 28 is closer to the second substrate 14 than the second dielectric layer 24.
  • the display panel may further include a color filter layer (not shown) between the light shielding parts.
  • the color filter layer may include quantum dots.
  • the light coupled from the liquid crystal layer can excite the quantum dots to emit light of different colors, so that color display can be realized.
  • the display panel shown in FIG. 2 may further include a control circuit 30.
  • the control circuit 30 is configured to apply a voltage between the plurality of first electrodes 18 and the second electrodes 22 so that the liquid crystal layer 16 is in the first state or the second state.
  • the first state for example, the dark state
  • the light incident from the side of the liquid crystal layer 16 close to the first substrate 12 is condensed to the light shielding portion 28.
  • the liquid crystal The layer 16 is equivalent to forming a plurality of lens equivalent units; when the display panel is in the second state (for example, the bright state), light incident from the side of the liquid crystal layer 16 close to the first substrate 12 (for example, through Diffraction) diverges to the part between the light shielding portions 28, and then exits from the second substrate 14. At this time, the liquid crystal layer 16 is equivalent to forming a plurality of grating equivalent units.
  • the plurality of first electrodes 18 may be pixel electrodes, which may be a plurality of strip electrodes arranged in parallel (as shown on the left in FIG. 8), or dot matrix electrodes arranged in an array in a plane ( 8) or other electrode shapes that can control the deflection of liquid crystal molecules together with the second electrode; the second electrode may be a common electrode, which may be a planar electrode.
  • the surface of the first dielectric layer 20 close to the liquid crystal layer 16 covers the surface of the first electrode 18 close to the liquid crystal layer 16, that is, the first dielectric layer 20
  • the thickness of the dielectric layer 20 is greater than the thickness of the first electrode 18 so that the surface of the first electrode 18 is flattened.
  • the thickness of the first electrode is greater than or equal to 200 angstroms, and the thickness of the first dielectric layer is between 1 ⁇ m and 1.5 ⁇ m.
  • the thickness of the first electrode may be 200 angstroms.
  • the thickness of the first dielectric layer may be 1.5 microns. According to actual needs, the thickness of the first electrode and the thickness of the first dielectric layer can also be selected as other values.
  • the refractive index of the first dielectric layer 20 is greater than or equal to the refractive index of the first electrode 18.
  • the refractive index of the first dielectric layer 20 is equal to the refractive index of the first electrode 18, the effect of the display panel on light will be described in detail with reference to FIG. 2; the refractive index of the first dielectric layer 20 is greater than the refractive index of the first electrode 18.
  • the effect of the display panel on light will be described in detail with reference to FIG. 3.
  • the refractive index of the first dielectric layer 20 is equal to the refractive index of the first electrode 18.
  • the display panel performs dark state display as shown in FIG. 2, first, the collimated light L1 is diffracted at the first electrode 18 to generate diffracted light L2. Since the refractive index of the first dielectric layer 20 is equal to the refractive index of the first electrode 18, the diffracted light L2 is not refracted at the first dielectric layer 20, and L3 continues to propagate along the optical path of L2. Then, since the refractive index of the second dielectric layer 24 is greater than the refractive index of the first dielectric layer 20, the light L3 is refracted at the second dielectric layer 24 and refracted into light L4.
  • the exit angle of the light L4 is smaller than that of the light L3. Therefore, the light L4 converges toward the light shielding portion 28 more than the light L3.
  • the light L4 is condensed into the light L5 toward the light shielding portion 28 by the liquid crystal layer 16 operating in the first state by the voltage between the first electrode 18 and the second electrode 22.
  • the light L5 can be substantially completely shielded by the light shielding portion, which can effectively reduce the light leakage rate.
  • the light leakage rate means the ratio of light incident on the display panel and light emitted from the display panel.
  • FIG. 3 schematically shows a cross-sectional view of a display panel according to still another embodiment of the present disclosure.
  • the display panel shown in FIG. 3 has the same structure as the panel shown in FIG. 2, except that the refractive index of the first dielectric layer 20 is greater than the refractive index of the first electrode 18.
  • the display panel performs dark state display, as shown in FIG. 3, first, the collimated light L1 is diffracted at the first electrode 18 to generate diffracted light L2. Since the refractive index of the first dielectric layer 20 is greater than the refractive index of the first electrode 18, the diffracted light L2 is refracted in the first dielectric layer 20 and is refracted into light L3.
  • the exit angle of light L3 is smaller than that of light L2. Therefore, the light L3 converges toward the light shielding portion 28 more than the light L2. Then, the light L3 is further refracted into light L4 at the second dielectric layer 24. Since the refractive index of the second dielectric layer 24 is greater than the refractive index of the first dielectric layer 20, according to the law of refraction, the exit angle of the light L4 is smaller than that of the light L3. The incident angle, therefore, the light L4 is more condensed toward the light shielding portion 28 than the light L3.
  • the light L4 is condensed into the light L5 toward the light shielding portion 28 by the liquid crystal layer 16 operating in the first state by the voltage between the first electrode 18 and the second electrode 22.
  • the light leakage rate can be further reduced.
  • the light leakage rate of the display panel can be reduced by increasing the refractive index of the second medium layer 24.
  • Table 1 shows the light leakage rate of the related art display panel and the display panel shown in FIG. 2 including the second dielectric layer with different refractive index.
  • the related art display panel except for not including the second medium layer shown in FIG. 2, the related art display panel has the same other structure as the display panel shown in FIG. 2.
  • the material of the second dielectric layer is silicon nitride with a thickness of about 1000 angstroms
  • the width of the first electrode is 3 microns
  • the distance between adjacent first electrodes is 3 microns
  • the thickness of the first dielectric layer is 1.5 microns.
  • the light leakage rates in Table 1 are all obtained when the display panel performs dark state display.
  • the second dielectric layer with a higher refractive index is used to redirect the light toward the light-shielding portion by refracting the light. 28 is convergent, so that when the width of the light-shielding portion on the second substrate does not increase, the light leakage rate of the display panel in the dark state can be effectively reduced, and the display effect can be improved.
  • Table 1 the first The greater the thickness of an electrode, the higher the light leakage rate of the display panel. This is because the longer the light path the light travels, the more the light diverges.
  • the display panel may further include a third dielectric layer 26 disposed between the plurality of first electrodes 18 and the first substrate 12.
  • the second electrode 22 may be disposed between the first substrate 12 and the third dielectric layer 26.
  • the third dielectric layer 26 may be an insulating layer, which is used to insulate and separate the plurality of first electrodes 18 from the second electrodes 22.
  • the display panel shown in FIG. 2 may further include a first alignment layer 32 located between the liquid crystal layer 16 and the first substrate 12 and contacting the liquid crystal layer 16, and between the liquid crystal layer 16 and the second substrate 14 and contacting the liquid crystal layer 16
  • the second alignment layer 34 located between the liquid crystal layer 16 and the first substrate 12 and contacting the liquid crystal layer 16, and between the liquid crystal layer 16 and the second substrate 14 and contacting the liquid crystal layer 16
  • the second alignment layer 34 is used to orient the liquid crystal molecules in the liquid crystal layer 16.
  • the display panel shown in FIG. 2 may further include a thin film transistor 40 located between the first substrate 12 and the first electrode 18 for driving the first electrode 18, for example.
  • FIG. 4 schematically shows a cross-sectional view of a display panel according to still another embodiment of the present disclosure.
  • the display panel shown in FIG. 4 has the same other structure as the display panel shown in FIG. 2 except for the difference in the arrangement of the first dielectric layer 20.
  • the surface of the first dielectric layer 20 near the liquid crystal layer 16 is flush with the surface of the first electrode 18 near the liquid crystal layer 16, that is to say, the first dielectric layer
  • the thickness of 20 is equal to the thickness of the first electrode 18.
  • the collimated light L1 is diffracted at the first electrode 18 to generate diffracted light L2.
  • the refractive index of the second dielectric layer 24 is greater than the refractive index of the first dielectric layer 20 and the first electrode 18, the light L3 is refracted at the second dielectric layer 24 and is refracted into light L4.
  • the light L4 The exit angle is smaller than the incident angle of the light L3, and therefore, the light L4 converges toward the light shielding portion 28 more than the light L3.
  • FIG. 5 schematically shows a cross-sectional view of a display panel according to another embodiment of the present disclosure.
  • the display panel shown in FIG. 5 is different from the display panel shown in FIG. 2 in that the second electrode 22 is disposed on the side 16 of the second substrate 14 close to the liquid crystal layer, and the display panel does not include the third dielectric layer 26.
  • Other structures and/or functions in the display panel shown in FIG. 5 are the same as those in the display panel shown in FIG. 2 and will not be described in detail here.
  • FIG. 6 schematically shows a cross-sectional view of a display device including the display panel in FIG. 2.
  • the display device shown in FIG. 6 also includes: a light guide plate 42 having a light-emitting surface 421, a bottom surface 422 opposite to the light-emitting surface 421, and located between the light-emitting surface 421 and the bottom surface 422
  • the light source 44 which is located on the end surface 423 side of the light guide plate 42
  • the light extraction component 36 which is located on the light exit surface 321 side of the light guide plate 42.
  • a transparent fourth medium layer 38 may also be provided on the light extraction part 36, which is used to planarize the light extraction part 36.
  • the projections of the light extraction member 36 and the light shielding portion 28 on the first substrate 12 at least partially overlap, so that the light shielding portion 28 can effectively shield the light emitted from the light extraction member 36.
  • the light source 44 may be a monochromatic light source.
  • the light source 44 may be a monochromatic LED light source, such as a micro-LED; a monochromatic OLED light source, such as a micro-OLED light source; or a monochromatic laser source.
  • the light extraction part 36 may include any one of a tilt grating, a holographic Bragg grating, and a step grating.
  • the specific structure of the light extraction part 36 can be designed according to the incident angle of the incident light emitted by the light source part 34.
  • the light emitted from the light source 44 is totally reflected in the light guide plate 42, and can be collimated and emitted from the light extraction member 36 after being diffracted or reflected by the light extraction member 36, for example. It should be noted that, as shown in FIG. 6, when the angle ⁇ between the light emitted from the light extraction component 36 and the normal of the light guide plate 42 is less than or equal to 0.15 degrees, the light can be considered as collimated. Light.
  • the second dielectric layer with a higher refractive index is used to make the light converge toward the shield by refracting the light. Therefore, when the width of the light-shielding portion on the second substrate is not increased, the light leakage rate when the display device is in the dark state can be effectively reduced, and the display effect can be improved.
  • the display device shown in FIG. 6 includes the display panel shown in FIG. 2 as an example for description, the display device shown in FIG. 6 may also include the display panel shown in FIG. 4 or FIG. 5, which will not be described in detail here. Narrated.
  • FIG. 7 schematically shows a cross-sectional view of a display device according to another embodiment of the present disclosure.
  • the display device shown in FIG. 7 multiplexes the first substrate 12 in FIG. 6 as the light guide plate 42.
  • Other structures and/or functions of the display device shown in FIG. 7 are the same as those in the display device shown in FIG.
  • the other structures and/or functions of the display device shown in FIG. 6 are the same, and will not be described in detail here.

Abstract

一种显示面板,包括:第一基板(12);与第一基板(12)相对设置的第二基板(14),以及位于第一基板(12)和第二基板(14)之间的液晶层(16);位于第一基板(12)上的靠近第二基板(14)一侧且间隔设置的多个第一电极(18);用于平坦化多个第一电极(18)的第一介质层(20);设置在第一介质层(20)上的靠近液晶层(16)一侧的第二介质层(24);位于第二基板(14)的靠近液晶层(16)一侧的遮光部(28);以及控制电路(30),控制电路(30)被配置为在第一电极(18)和第二电极(22)之间施加电压,以使液晶层(16)处于第一状态或第二状态,在第一状态下,液晶层(16)能够将从液晶层(16)的靠近第一基板(12)的一侧入射的光会聚到遮光部(28);以及在第二状态下,液晶层(16)能够将该光发散到遮光部(28)之间的部分,以从第二基板(14)出射,其中,第二介质层(24)的折射率大于第一电极(18)和第一介质层(20)的折射率;能够减小显示面板在暗态显示时的漏光率,并提高显示效果。

Description

显示面板及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及显示面板及显示装置。
背景技术
液晶显示装置是一种主要的平板显示装置(Flat Panel Display,简称FPD)。因其具有体积小、功耗低、无辐射以及制作成本相对较低等特点,而越来越多地应用于高性能显示领域当中。
发明内容
本公开的实施例提供了一种显示面板及显示装置,能够减小暗态显示时的漏光率,并提高显示效果。
在本公开的第一方面中,提供了一种显示面板。该显示面板包括:第一基板;与所述第一基板相对设置的第二基板,以及位于所述第一基板和所述第二基板之间的液晶层;位于所述第一基板上的靠近所述第二基板一侧且间隔设置的多个第一电极;用于平坦化所述多个第一电极的第一介质层;设置在所述第一基板和所述第二基板之间的第二电极;设置在所述第一介质层上的靠近所述液晶层一侧的第二介质层;位于所述第二基板的靠近所述液晶层一侧的遮光部;以及控制电路,所述控制电路被配置为在所述第一电极和所述第二电极之间施加电压,以使所述液晶层处于第一状态或第二状态,其中,在所述第一状态下,所述液晶层能够将从所述液晶层的靠近所述第一基板的一侧入射的光会聚到所述遮光部;以及在所述第二状态下,所述液晶层能够将所述光发散到所述遮光部之间的部分,以从所述第二基板出射,其中,所述第二介质层的折射率大于所述第一电极和所述第一介质层的折射率。
在本公开的实施例中,所述第一介质层的靠近所述液晶层的一层的表面与所述第一电极的靠近所述液晶层的一层的表面齐平。
在本公开的实施例中,所述第一介质层的靠近所述液晶层的一层的表面覆盖所述第一电极的靠近所述液晶层的一层的表面。
在本公开的实施例中,所述第一介质层的折射率大于或等于所述第一电极的折射率。
在本公开的实施例中,所述第一电极的厚度大于或等于200埃,相邻的所述第一电极之间的距离小于或等于50微米,所述第一介质层的厚度在1微米至1.5微米之间,所述第二介质层的厚度大于或等于1000埃,所述第二介质层的折射率在1.846至2.095之间。
在本公开的实施例中,所述第一电极的厚度为200埃,所述第一电极的宽度为3微米,相邻的所述第一电极之间的距离为3微米,所述第一介质层的厚度为1.5微米,所述第二介质层的厚度为1000埃,以及所述第二介质层的折射率为1.98。
在本公开的实施例中,所述显示面板的漏光率小于或等于0.0051%。
在本公开的实施例中,显示面板还包括设置在所述多个第一电极和所述第一基板之间的第三介质层,其中,所述第二电极设置在所述第一基板和所述第三介质层之间。
在本公开的实施例中,所述第二电极设置在所述第二基板的靠近所述液晶层一侧。
在本公开的实施例中,所述多个第一电极为条状电极或点阵状电极,所述第二电极为面电极。
在本公开的实施例中,显示面板还包括:位于所述液晶层和所述第一基板之间且接触所述液晶层的第一取向层,以及位于所述液晶层和所述第二基板之间且接触所述液晶层的第二取向层。
在本公开的实施例中,第二介质层的材料包括氮化硅。
在本公开的实施例中,所述第一介质层的材料包括树脂。
在本公开的实施例中,所述第一电极和所述第二电极的材料包括透明导电材料。
在本公开的实施例中,所述透明导电材料包括氧化铟锡。
在本公开的实施例中,还包括位于所述第一电极和所述第一基板之间的薄膜晶体管。
在本公开的第二方面中,提供了一种显示装置。该显示装置包括本公开的第一方面中描述的任意一种显示面板;以及位于所述显示面板的第一基板的远离第二基板一侧的背光模组。
在本公开的实施例中,所述背光模组包括:导光板,其具有出光面、与所述出光面相对的底面以及位于所述出光面和所述底面之间的端面;光源,其位于所述导光板的所述端面一侧;光提取部件,其位于所述导光板的所述出光面一侧。
在本公开的实施例中,显示装置还包括位于所述显示面板的第二基板的靠近液晶层一侧的遮光部,其中,所述光提取部件和所述遮光部在所述第一基板上的投影至少部分重叠。
在本公开的实施例中,所述光源包括单色LED光源、单色OLED光源或单色激光光源。
在本公开的实施例中,所述光提取部件包括倾斜光栅、全息布拉格光栅、台阶光栅中的任一种。
在本公开的实施例中,所述第二基板还作为所述导光板。
根据本公开的实施例,在显示面板处于暗态显示时,利用具有较高折射率的第二介质层,通过对光进行折射而使光会聚,从而使得在第二基板上的遮光部的宽度不增大的情况下,能够有效地减小显示面板处于暗态时的漏光率,并提高显示效果。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其它方面组合实施。还应当理解,本文中的描述和特定实施例旨在说明的目的,并不旨在限制本申请的范围。
附图说明
本文中描述的附图用于仅对所选择的实施例的说明的目的,并不是 所有可能的实施方式,并且不旨在限制本申请的范围,其中:
图1示意性示出了一种显示面板的截面图;
图2示意性示出了根据本公开的一个实施例的显示面板的截面图;
图3示意性示出了根据本公开的又一个实施例的显示面板的截面图;
图4示意性示出了根据本公开的再一个实施例的显示面板的截面图;
图5示意性示出了根据本公开的另一实施例的显示面板的截面图;
图6示意性示出了根据本公开的一个实施例的显示装置的截面图;
图7示意性示出了根据本公开的又一实施例的显示装置的截面图;
图8示意性示出两种不同形状的第一电极。
具体实施方式
为使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合本公开的实施例的附图,对本公开的实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。下文中将参考附图并结合实施例来详细说明本公开的实施例。需要说明的是,在不冲突的情况下,本公开中的实施例中的特征可以相互组合。
图1示意性示出了一种显示面板的截面图。如图1所示,该显示面板包括在第一基板12和第二基板14之间依次设置的第二电极22(即,公共电极)、绝缘层10、多个第一电极18(即,像素电极)、液晶层16以及遮光部28。在显示面板进行亮态显示时,第一电极和第二电极之间施加的电压使得液晶层操作于光栅等效单元模式下,光栅等效单元将入射到液晶层上的光发散到遮光部之间的部分,从而使得光从第二基板出射出去,由此实现亮态。在显示面板进行暗态显示时,如图1所示,发明人研究发现,由于相邻的第一电极之间的间距与光的波长相近,因此准直的光L1在第一电极处发生衍射,产生衍射光L2。然后,衍射光L2被通过 第一电极和第二电极之间的电压而操作在透镜等效单元模式下的液晶层会聚为朝向遮光部的光L3,而光L3会被遮光部遮挡,由此实现暗态。然而,由于第一电极对光L1的衍射作用不利地增加了衍射光L2的发散角,使得光L3无法被遮光部完全遮挡,从而导致显示面板漏光。为了避免显示面板出现漏光,可以增加遮光部的宽度,但这样会不利地降低显示面板的开口率。
图2示意性示出了根据本公开的一个实施例的显示面板的截面图。如图2所示,显示面板可包括第一基板12;与第一基板12相对设置的第二基板14;以及位于第一基板12和第二基板14之间的液晶层16;位于第一基板12上的靠近第二基板14一侧且间隔设置的多个第一电极18;用于平坦化多个第一电极18的第一介质层20;设置在第一基板12和第二基板14之间的第二电极22;以及设置在第一介质层20上的靠近液晶层16一侧的第二介质层24。
在本公开的实施例中,相邻的第一电极之间的距离d(如图2所示)小于或等于50微米。在一个示例中,相邻的第一电极之间的距离可以为3微米,并且第一电极的宽度可以为3微米。根据实际需要,相邻的第一电极之间的距离以及第一电极的宽度也可以选择为其它值。
在本公开的实施例中,第二介质层24的折射率大于第一电极18和第一介质层20的折射率。第二介质层的折射率可以在1.846至2.095之间。第一介质层20的材料可以包括树脂,第二介质层24的材料可以包括氮化硅。第一电极18和第二电极22的材料包括透明导电材料,例如氧化铟锡等。应该理解,由于形成氮化硅的条件(例如,沉积温度或反应气体氮和硅的比例)的不同会导致氮化硅组成和微观结构存在差异,从而氮化硅的折射率可以存在差异,例如,氮化硅的折射率可以包括以下中的任意一个:2.095、2.05或1.98。在本公开的示例中,第二介质层的厚度大于或等于1000埃。在一个示例中,第二介质层的厚度为1000埃。根据实际需要,第二介质层的厚度也可以选择为其它值。需要说明的是,在本申请中,厚度是指沿着第一基板的纵向延伸的距离。
图2所示的显示面板还可包括位于第二基板14的靠近液晶层16一侧的遮光部28。在本公开的实施例中,遮光部28比第二介质层24更靠近第二基板14。
在本公开的实施例中,显示面板还可以包括位于遮光部之间的彩色滤光层(未示出)。彩色滤光层可以包括量子点。在该示例中,从液晶层中耦合出的光可以激发量子点发出不同颜色的光,从而可以实现彩色显示。
图2所示的显示面板还可包括控制电路30。控制电路30被配置为在多个第一电极18和第二电极22之间施加电压,以使液晶层16处于第一状态或第二状态。在本公开的实施例中,在显示面板处于第一状态(例如,暗态)时,以将从液晶层16的靠近第一基板12的一侧入射的光会聚到遮光部28,此时液晶层16相当于形成了多个透镜等效单元;在显示面板处于第二状态(例如,亮态)时,以将从液晶层16的靠近第一基板12的一侧入射的光(例如,通过衍射)发散到遮光部28之间的部分,从而从第二基板14出射,此时液晶层16相当于形成了多个光栅等效单元。
在本公开的实施例中,多个第一电极18可以为像素电极,其可以为多个平行排列的条状电极(如图8左边),或者在平面内呈阵列布置的点阵状电极(如图8右边)或者其它能够与第二电极一起控制液晶分子偏转的电极形状;第二电极可以为公共电极,其可以为面状电极。
在本公开的实施例中,如图2所示,第一介质层20的靠近液晶层16的一层的表面覆盖第一电极18的靠近液晶层16的一层的表面,也就是说第一介质层20的厚度大于第一电极18的厚度,使得第一电极18的表面平坦化。在本公开的实施例中,第一电极的厚度大于或等于200埃,第一介质层的厚度在1微米至1.5微米之间。如果第一电极的厚度越大,则制造显示面板的成本越高,显示面板的整体厚度也越大;如果第一电极的厚度越小,则第一电极的方块电阻越大,需要的驱动电压和功率也越大。因此,第一电极的厚度可以为200埃。第一介质层的厚度可以为1.5微米。根据实际需要,第一电极的厚度和第一介质层的厚度也可以选择为其它值。
此外,第一介质层20的折射率大于或等于第一电极18的折射率。在 第一介质层20的折射率等于第一电极18的折射率的情况下,显示面板对光的作用将参考图2详细描述;在第一介质层20的折射率大于第一电极18的折射率的情况下,显示面板对光的作用将参考图3详细描述。
在图2所示的显示面板中,第一介质层20的折射率等于第一电极18的折射率。在该显示面板进行暗态显示时,如图2所示,首先,准直的光L1在第一电极18处发生衍射,产生衍射光L2。由于,第一介质层20的折射率等于第一电极18的折射率,因此,衍射光L2在第一介质层20处不发生折射,L3沿L2的光路继续传播。然后,由于第二介质层24的折射率大于第一介质层20的折射率,光L3在第二介质层24处发生折射,折射为光L4,根据折射定律,光L4的出射角小于光L3的入射角,因此,光L4比光L3更会聚朝向遮光部28。接着,光L4被通过第一电极18和第二电极22之间的电压而操作在第一状态下的液晶层16会聚为朝向遮光部28的光L5。与图1所示的显示面板相比,在光L5到达第二基板14上的遮光部28时,光L5可以基本上被遮光部完全遮挡,这可以有效地减小漏光率。在本文中,漏光率表示入射到显示面板的光和从显示面板出射的光的比率。
图3示意性示出了根据本公开的又一个实施例的显示面板的截面图。图3所示的显示面板与图2所示的面板的结构相同,区别在于第一介质层20的折射率大于第一电极18的折射率。在显示面板进行暗态显示时,如图3所示,首先,准直的光L1在第一电极18处发生衍射,产生衍射光L2。由于,第一介质层20的折射率大于第一电极18的折射率,因此,衍射光L2在第一介质层20发生折射,折射为光L3,根据折射定律,光L3的出射角小于光L2的入射角,因此,光L3比光L2更会聚朝向遮光部28。然后,光L3在第二介质层24处被进一步折射为光L4,由于第二介质层24的折射率大于第一介质层20的折射率,根据折射定律,光L4的出射角小于光L3的入射角,因此,光L4比光L3更会聚朝向遮光部28。接着,光L4被通过第一电极18和第二电极22之间的电压而操作在第一状态下的液晶层16会聚为朝向遮光部28的光L5。与图2所示的显示面板相比,由于光L5能够进一步朝遮光部28会聚,因此,可以进一步减小漏 光率。
在本公开的实施例中,可以通过增大第二介质层24的折射率来减小显示面板的漏光率。
表1示出了相关技术的显示面板以及图2所示的包括具有不同折射率的第二介质层的显示面板的漏光率。在相关技术的显示面板中,除了不包括图2所示的第二介质层之外,相关技术的显示面板与图2所示的显示面板的其它结构相同。在表1所示的示例中,第二介质层的材料为氮化硅,具有约1000埃的厚度,第一电极的宽度为3微米,相邻的第一电极之间的距离为3微米以及第一介质层的厚度为1.5微米。此外,表1中的漏光率都是在显示面板进行暗态显示时得到的。通过表1可以看出,与相关技术的显示面板相比,图2所示的显示面板的漏光率明显减小,并且第二介质层的折射率越大漏光率越小。在第二介质层的折射率为2.095时,可以几乎完全避免显示面板的漏光。需要说明的是,第二列的数据和第五列的数据是通过积分球测量得到的数据,第三列和第四列的数据是通过理论模拟得到。
Figure PCTCN2019104221-appb-000001
表1
通过以上描述可以看出,采用根据本公开的实施例的显示面板,在显示面板进行暗态显示时,利用具有较高折射率的第二介质层,通过对光进行折射而使光朝向遮光部28会聚,从而使得在第二基板上的遮光部的宽度不增大的情况下,能够有效地减小显示面板处于暗态时的漏光 率,并提高显示效果,从表1可以看出,第一电极的厚度越大,显示面板的漏光率越高,这是由于光行进的光路越长,导致光越发散。
继续参考图2,显示面板还可包括设置在多个第一电极18和第一基板12之间的第三介质层26。在该示例中,第二电极22可设置在第一基板12和第三介质层26之间。在本公开的实施例中,第三介质层26可以是绝缘层,其用于将多个第一电极18与第二电极22绝缘隔开。
图2所示的显示面板还可包括位于液晶层16和第一基板12之间且接触液晶层16的第一取向层32,以及位于液晶层16和第二基板14之间且接触液晶层16的第二取向层34。在本公开的实施例中,第一取向层32、第二取向层34用于对液晶层16中的液晶分子进行定向。
此外,图2所示的显示面板还可包括位于第一基板12和第一电极18之间的薄膜晶体管40用于例如驱动第一电极18。
图4示意性示出了根据本公开的再一个实施例的显示面板的截面图。如图4所示,除了第一介质层20的设置不同之外,图4所示的显示面板与图2所示的显示面板的其它结构相同。在图4所示的显示面板中,第一介质层20的靠近液晶层16的一层的表面与第一电极18的靠近液晶层16的一层的表面齐平,也就是说第一介质层20的厚度等于第一电极18的厚度。
在图4所示的显示面板中,在其进行暗态显示时,如图4所示,首先,准直的光L1在第一电极18处发生衍射,产生衍射光L2。然后,由于第二介质层24的折射率大于第一介质层20和第一电极18的折射率,光L3在第二介质层24处发生折射,折射为光L4,根据折射定律,光L4的出射角小于光L3的入射角,因此,光L4比光L3更会聚朝向遮光部28。接着,光L4被通过第一电极18和第二电极22之间的电压而操作在第一状态下的液晶层16会聚为朝向遮光部28的光L5。在光L5到达第二基板14上的遮光部28时,光L5可以基本上被遮光部完全遮挡,这可以有效地减小漏光率。图5示意性示出了根据本公开的另一实施例的显示面板的截面图。图5所示的显示面板与图2所示的显示面板区别在于,第二电极22设置在第二基板14的靠近液晶层一侧16,以及显示面板不包括第三介质 层26。图5所示的显示面板中的其它结构和/或功能与图2所示的显示面板中的其它结构和/或功能相同,在此不再详述。
图6示意性示出了包括图2中的显示面板的显示装置的截面图。图6所示的显示装置除了包括图2中的显示面板之外,还包括:导光板42,其具有出光面421、与出光面421相对的底面422、以及位于出光面421和底面422之间的端面423;光源44,其位于导光板42的端面423一侧;光提取部件36,其位于导光板42的出光面321一侧。
在本公开的实施例中,还可在光提取部件36上设置有透明的第四介质层38,其用于平坦化光提取部件36。
如图6所示,光提取部件36和遮光部28在第一基板12上的投影至少部分重叠,以使得遮光部28可以对从光提取部件36出射的光有效地遮挡。
在本公开的实施例中,光源44可以为单色光源。作为示例,光源44可以为单色LED光源,诸如micro-LED;单色OLED光源,诸如micro-OLED光源;或者单色激光源。
在本公开的实施例中,光提取部件36可以包括倾斜光栅、全息布拉格光栅、台阶光栅中的任一种。光提取部件36的具体结构可根据光源部件34所发出的入射光的入射角度进行设计。
如图6所示,从光源44出射的光在导光板42中被全反射,经由光提取部件36的例如衍射或反射之后,能够从该光提取部件36中准直出射。需要说明的是,如图6所示,当从光提取部件36中出射的光与导光板42的法线之间的夹角θ均小于或等于0.15度时,则可认为该光线为准直光线。
通过以上描述可以看出,采用根据本公开的实施例的显示装置,在显示装置进行暗态显示时,利用具有较高折射率的第二介质层,通过对光进行折射而使光会聚朝向遮光部,从而使得在第二基板上的遮光部的宽度不增大的情况下,能够有效地减小显示装置进行暗态时的漏光率,并提高显示效果。
应当理解,虽然图6所示的显示装置是以包括图2所示的显示面板为 例进行说明,图6所示的显示装置还可以包括图4或图5的显示面板,在此不再详述。
图7示意性示出了根据本公开的又一实施例的显示装置的截面图。图7所示的显示装置与图6所示的显示装置相比,将图6中的第一基板12复用为导光板42,图7所示的显示装置中的其它结构和/或功能与图6所示的显示装置中的其它结构和/或功能相同,在此不再详述。
以上对本公开的具体实施例进行了描述,但本公开的范围并不限于此。对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种显示面板,包括:
    第一基板;
    与所述第一基板相对设置的第二基板,以及位于所述第一基板和所述第二基板之间的液晶层;
    位于所述第一基板上的靠近所述第二基板一侧且间隔设置的多个第一电极;
    用于平坦化所述多个第一电极的第一介质层;
    设置在所述第一基板和所述第二基板之间的第二电极;
    设置在所述第一介质层上的靠近所述液晶层一侧的第二介质层;
    位于所述第二基板的靠近所述液晶层一侧的遮光部;以及
    控制电路,所述控制电路被配置为在所述第一电极和所述第二电极之间施加电压,以使所述液晶层处于第一状态或第二状态,
    在所述第一状态下,所述液晶层能够将从所述液晶层的靠近所述第一基板的一侧入射的光会聚到所述遮光部;以及
    在所述第二状态下,所述液晶层能够将所述光发散到所述遮光部之间的部分,以从所述第二基板出射,
    其中,所述第二介质层的折射率大于所述第一电极和所述第一介质层的折射率。
  2. 根据权利要求1所述的显示面板,其中,所述第一介质层的靠近所述液晶层的一层的表面与所述第一电极的靠近所述液晶层的一层的表面齐平。
  3. 根据权利要求2所述的显示面板,其中,第二介质层的材料包括氮化硅,所述第一介质层的材料包括树脂,以及所述第一电极和所述第二电极的材料包括透明导电材料。
  4. 根据权利要求1所述的显示面板,其中,所述第一介质层的靠近所述液晶层的一层的表面覆盖所述第一电极的靠近所述液晶层的一层的表面。
  5. 根据权利要求4所述的显示面板,其中,所述第一介质层的折射率大于或等于所述第一电极的折射率。
  6. 根据权利要求5所述的显示面板,其中,第二介质层的材料包括氮化硅,所述第一介质层的材料包括树脂,以及所述第一电极和所述第二电极的材料包括透明导电材料。
  7. 根据权利要求2至6中任一项所述的显示面板,其中,所述第一电极的厚度大于或等于200埃,相邻的所述第一电极之间的距离小于或等于50微米,所述第一介质层的厚度在1微米至1.5微米之间,所述第二介质层的厚度大于或等于1000埃,所述第二介质层的折射率在1.846至2.095之间。
  8. 根据权利要求4至6中任一项所述的显示面板,其中,所述第一电极的厚度为200埃,所述第一电极的宽度为3微米,相邻的所述第一电极之间的距离为3微米,所述第一介质层的厚度为1.5微米,所述第二介质层的厚度为1000埃,以及所述第二介质层的折射率为1.98。
  9. 根据权利要求1所述的显示面板,其中,所述显示面板的漏光率小于或等于0.0051%。
  10. 根据权利要求1所述的显示面板,其中,所述多个第一电极为条状电极或点阵状电极,所述第二电极为面电极。
  11. 根据权利要求1所述的显示面板,还包括:
    位于所述液晶层和所述第一基板之间且接触所述液晶层的第一取向层,以及
    位于所述液晶层和所述第二基板之间且接触所述液晶层的第二取向层。
  12. 根据权利要求3或6所述的显示面板,其中,所述透明导电材料包括氧化铟锡。
  13. 一种显示装置,包括:
    根据权利要求1-12中任一项所述的显示面板;以及
    位于所述显示面板的第一基板的远离第二基板一侧的背光模组。
  14. 根据权利要求13所述的显示装置,所述背光模组包括:
    导光板,其具有出光面、与所述出光面相对的底面以及位于所述出光面和所述底面之间的端面;
    光源,其位于所述导光板的所述端面一侧;
    光提取部件,其位于所述导光板的所述出光面一侧。
  15. 根据权利要求14所述的显示装置,还包括位于所述显示面板的第二基板的靠近液晶层一侧的遮光部,其中,所述光提取部件和所述遮光部在所述第一基板上的投影至少部分重叠。
  16. 根据权利要求14所述的显示装置,其中,所述光源包括单色LED光源、单色OLED光源或单色激光光源。
  17. 根据权利要求14所述的显示装置,其中,所述光提取部件包括倾斜光栅、全息布拉格光栅、台阶光栅中的任一种。
  18. 根据权利要求14所述的显示装置,其中,所述第二基板还作为所述导光板。
PCT/CN2019/104221 2019-09-03 2019-09-03 显示面板及显示装置 WO2021042267A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/964,106 US11650449B2 (en) 2019-09-03 2019-09-03 Display panel and display apparatus
PCT/CN2019/104221 WO2021042267A1 (zh) 2019-09-03 2019-09-03 显示面板及显示装置
CN201980001574.1A CN113039482B (zh) 2019-09-03 2019-09-03 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104221 WO2021042267A1 (zh) 2019-09-03 2019-09-03 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2021042267A1 true WO2021042267A1 (zh) 2021-03-11

Family

ID=74851998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104221 WO2021042267A1 (zh) 2019-09-03 2019-09-03 显示面板及显示装置

Country Status (3)

Country Link
US (1) US11650449B2 (zh)
CN (1) CN113039482B (zh)
WO (1) WO2021042267A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527588A (zh) * 2022-02-28 2022-05-24 武汉华星光电技术有限公司 聚合物液晶调光盒、显示模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034227A (zh) * 2006-11-01 2007-09-12 友达光电股份有限公司 液晶显示器
KR20080061107A (ko) * 2006-12-28 2008-07-02 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
CN103278962A (zh) * 2013-05-09 2013-09-04 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
CN105785655A (zh) * 2014-12-23 2016-07-20 群创光电股份有限公司 显示面板
CN205656403U (zh) * 2016-05-31 2016-10-19 上海天马微电子有限公司 一种阵列基板、显示面板及显示装置
CN107632451A (zh) * 2017-10-26 2018-01-26 京东方科技集团股份有限公司 一种显示面板、显示装置及显示方法
CN108873436A (zh) * 2018-07-23 2018-11-23 京东方科技集团股份有限公司 一种显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4138077B2 (ja) * 1998-06-02 2008-08-20 株式会社半導体エネルギー研究所 反射型の液晶表示装置及び電子機器
CN1947204B (zh) * 2004-04-30 2011-02-23 日东电工株式会社 透明导电性层叠体及触摸屏
US20070212498A1 (en) * 2006-02-24 2007-09-13 Fujifilm Corporation Optical film, antireflection film, polarizing plate, display apparatus and method for manufacturing optical film
KR101286560B1 (ko) * 2009-12-18 2013-07-22 엘지디스플레이 주식회사 빛샘을 방지할 수 있는 반사판, 이를 구비한 백라이트 및 액정표시소자
JP5745979B2 (ja) * 2011-09-16 2015-07-08 三菱電機株式会社 マルチプルビュー液晶表示装置
KR101407877B1 (ko) * 2011-12-28 2014-06-17 (주)엘지하우시스 전기적 특성이 우수한 투명 도전성 필름 및 이를 이용한 터치 패널
JP6123317B2 (ja) * 2013-02-05 2017-05-10 セイコーエプソン株式会社 液晶装置および電子機器
CN106526942B (zh) * 2017-01-06 2018-12-11 京东方科技集团股份有限公司 显示面板和显示装置
CN107238974B (zh) * 2017-07-24 2021-03-02 京东方科技集团股份有限公司 一种背光源及液晶显示模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034227A (zh) * 2006-11-01 2007-09-12 友达光电股份有限公司 液晶显示器
KR20080061107A (ko) * 2006-12-28 2008-07-02 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
CN103278962A (zh) * 2013-05-09 2013-09-04 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
CN105785655A (zh) * 2014-12-23 2016-07-20 群创光电股份有限公司 显示面板
CN205656403U (zh) * 2016-05-31 2016-10-19 上海天马微电子有限公司 一种阵列基板、显示面板及显示装置
CN107632451A (zh) * 2017-10-26 2018-01-26 京东方科技集团股份有限公司 一种显示面板、显示装置及显示方法
CN108873436A (zh) * 2018-07-23 2018-11-23 京东方科技集团股份有限公司 一种显示装置

Also Published As

Publication number Publication date
US20220334429A1 (en) 2022-10-20
US11650449B2 (en) 2023-05-16
CN113039482A (zh) 2021-06-25
CN113039482B (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
US10627664B2 (en) Display panel, display device and display method
US9285629B2 (en) Color-converting substrate and liquid crystal display device
US20180188563A1 (en) Display substrate, liquid crystal display panel, and liquid crystal display device
US10054819B2 (en) Display device
US20170293065A1 (en) Display device
CN107918233B (zh) 一种显示装置
WO2018076961A1 (zh) 显示面板及显示装置
WO2018133406A1 (zh) 显示装置
US10866453B2 (en) Display panel and method for fabricating the same, display device and display method
US20170023724A1 (en) Optical Module And Reflective Display Apparatus
US9810946B2 (en) Display device
US10571735B2 (en) Display device
US20170276999A1 (en) Liquid crystal display device
US10684511B2 (en) Transparent display panel and transparent display apparatus
US20150338705A1 (en) Display device and liquid crystal display device
WO2015178300A1 (ja) 照明装置、及び表示装置
US9541787B2 (en) Light control film including light control layer with reflection surface and display device including same
US20180059471A1 (en) Display panel and display device
WO2021042267A1 (zh) 显示面板及显示装置
US10545366B2 (en) Optical modulator including multiple modulation units, backlight module and display device
JP2008277176A (ja) 光学デバイス、及び液晶表示装置
US9910205B2 (en) Light-emitting device and display device
US20170357043A1 (en) Display substrate including light exit patterns, display device including the same and method of manufacturing the same
CN109698223B (zh) 一种显示面板及显示装置
US11016239B1 (en) Lighting device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944543

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19944543

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19944543

Country of ref document: EP

Kind code of ref document: A1